
Batching Cipolla–Lehmer–Müller’s square root
algorithm with hashing to elliptic curves

Dmitrii Koshelev[0000−0002−4796−8989]

Parallel Computation Laboratory, École Normale Supérieure de Lyon, France
http://www.ens-lyon.fr/en/

dimitri.koshelev@gmail.com

Abstract. The present article provides a novel hash function H to any
elliptic curve of j-invariant ̸= 0, 1728 over a finite field Fq of large charac-
teristic. The unique bottleneck of H consists in extracting a square root
in Fq as well as for most hash functions. However, H is designed in such a
way that the root can be found by (Cipolla–Lehmer–)Müller’s algorithm
in constant time. Violation of this security condition is known to be
the only obstacle to applying the given algorithm in the cryptographic
context. When the field Fq is highly 2-adic and q ≡ 1 (mod 3), the
new batching technique is the state-of-the-art hashing solution except
for some sporadic curves. Indeed, Müller’s algorithm costs ≈ 2 log2(q)
multiplications in Fq. In turn, (constant-time) Tonelli–Shanks’s square
root algorithm has asymptotic complexity O(log(q) + ν2), where ν is the
2-adicity of Fq. As an example, Müller’s algorithm needs ≈ 4561 fewer
multiplications in the field Fq (whose ν = 96) of the standardized curve
NIST P-224. In other words, there is an acceleration of about 11 times.

Keywords: Cipolla–Lehmer–Müller’s algorithm · conic bundles · gen-
eralized Châtelet surfaces · genus 2 curves of zero trace · gluing elliptic
curves · hashing to elliptic curves · highly 2-adic fields · unirationality
problem

1 Introduction

The idea of this paper came to the author when he was working on the other
recent one [25] on the same topic. There and here one addresses the problem of
efficient hashing to elliptic curves E : y2 = f(x) := x3 +ax+ b over highly 2-adic
fields Fq of characteristic p > 3. By definition, q − 1 = 2νm for ν,m ∈ N and ν
is quite large. In order not to repeat some thoughts expressed in the previous
author’s text, the given introduction is slightly shortened. The only important
thing unsaid earlier is that the naive hashing from [9, Section 8.1] can obviously
work in constant linear time O(log(q)) as we wish, but it is totally insecure.

Over highly 2-adic fields for square root extraction
√
α ∈ Fq (given a square

α ∈ Fq) one usually prefers Müller’s algorithm [30], which is an enhancement of
the classical Cipolla–Lehmer’s algorithm [7,28]. Unfortunately, the first stage of
the algorithm is not deterministic in contrast to its subsequent one. So, applying

http://www.ens-lyon.fr/en/

2 D. Koshelev

the given algorithm in cryptography is often not safe with regards to timing
attacks. That is why in the draft [11, Appendix I], devoted to hashing to elliptic
curves, Müller’s algorithm is not contained.

The authors of the mentioned draft are content only with a constant-time
version of Tonelli–Shanks’s algorithm (see, e.g., [12, Algorithm 3]). The point
is that the probabilistic part of the latter (unlike Müller’s algorithm) does not
depend on α, but only on q. Meanwhile, at least in elliptic cryptography the field
Fq is fixed all the time. The problem is that Tonelli–Shanks’s algorithm becomes
extremely slow for 2-adicity ν tending to log2(q).

In view of the above, in [25] the author tries to bypass painful square root
computation during hashing to E. For this purpose, he provides some cubic Fq-
polynomial in one variable having a unique Fq-root. Since its coefficients depend
on an element of the field Fq, this eventually results in a desired hash function.
The approach of this article is cardinally opposite. Instead of computing Fq-roots
of higher-degree Fq-polynomials, we will make Müller’s algorithm completely
deterministic. This turns out to be possible, because we are free to generate
specific quadratic residues in Fq equipped with additional data.

Let’s pick once and for all any quadratic non-residue v ∈ Fq. Suppose that
we possess a quadratic residue z2 with the unknown square root z ∈ Fq. Recall
that Cipolla–Lehmer–Müller’s algorithm of determining z starts with searching
for an element x ∈ Fq such that x2 − z2 is a non-square in Fq. Put another way,
x2 − z2 = vy2 for some y ∈ Fq. In Müller’s paper [30] the expression z2x2 − 4
is instead chosen, but this of course does not play any role. There is a long-
standing open problem about how to find x in constant polynomial time and
without assuming unproven conjectures of number theory. By the way, the more
malleable problem of constructing an arbitrary quadratic non-residue in Fq is
solved in [34].

Substituting the separable cubic Fq-polynomial f(t) to the place of z2, we get
the so-called Châtelet surface Sf : x2 − vy2 = f(t) originating from [6]. We deal
with an absolutely irreducible cubic surface different from the cone over a plane
cubic curve. Moreover, Sf (Fq) ̸= ∅ as the field Fq is always large in cryptography.
As a result, Sf is Fq-unirational according to [18], that is, there is a rational (not
necessarily proper) Fq-parametrization π : A2 → Sf .

Thereby, we are able to generate for free points (x, y, t) ∈ Sf (Fq) to execute

Müller’s algorithm of finding
√
f(t). Only the element x is essentially necessary

in the algorithm, but y will not hurt in its low-level optimizations. The trouble
is that f(t) may be a non-square in Fq. So, the parametrization π does not give
a hash function to E(Fq), but just to E(Fq) ∪ ET (Fq), where ET : vy2 = f(x) is
the (unique) quadratic twist of E.

To fix the given imperfection, it is suggested to consider a genus 2 curve
H : s2 = h(t) such that H has two (quadratic) Fq-covers φ : H → E and
φT : H → ET . We will derive the desired H for all curves E of j-invariants
̸= 0, 1728, i.e., of the coefficients a, b ̸= 0. In addition, introduce HT : vs2 = h(t),
the quadratic hyperelliptic twist of H. Up to the isomorphism (x, y) 7→ (x, vy),
formulas of φT equally define an Fq-cover HT → E. By abuse of notation, it

Batching Cipolla–Lehmer–Müller’s algorithm with hashing to elliptic curves 3

will be also denoted by φT . It turns out that the generalized Châtelet surface
Sh : x2− vy2 = h(t) is still Fq-unirational for our degree 6 polynomials h(t). And
the corresponding formulas are elementary. Thus, we will get a way to map into
E(Fq) through H(Fq) ∪HT (Fq).

The equation of Châtelet surfaces is very similar to that of elliptic curves. So,
it is no wonder that these surfaces occur in the context of elliptic cryptography.
In Ska lba’s seminal work [32, Lemma 2] a certain Châtelet surface is also utilized
(but in another way) for hashing to elliptic curves provided that a ̸= 0. Curiously,
the other remarkable sources [5, Section 3.1], [31, Section 5] on the topic are
based on a surface resembling a Châtelet one. Furthermore, whenever a = 0, the
former becomes the latter. This is a rough explanation why Chavez-Saab et al.’s
hash function SWIFTEC from [5] is always valid for elliptic curves of j-invariant
0.

To sum up, the hash function Hold from [25] is relevant only for curves having
an Fq-isogeny of degree 3, which is a pretty restrictive condition. Moreover, it
requires ≳ 4 log2(q) − ν multiplications in Fq, which is a fairly large number.
We will construct a new hash function H improving the former on the both
indicators. It is applicable to all elliptic Fq-curves of j-invariants ̸= 0, 1728. At
the same time, its running time amounts to that of Müller’s algorithm, namely
to ≈ 2 log2(q) multiplications in Fq. As seen, H has to perform ≳ log2(q) fewer
field multiplications than Hold even for the largest ν ≈ log2(q).

2 Algebraic geometry preliminaries

Let Fq be a finite field of characteristic p > 3 and 2-adicity ν > 1. The last
assumption means that

√
−1 ∈ Fq. For our objectives, it will be more convenient

to work with the more general form

E : y2 = f(x) := x3 + a2x
2 + a4x+ a6

of an elliptic Fq-curve. It still has the unique infinity point ∞ := (0 : 1 : 0) ∈ P2.
It is helpful to have before our eyes the expression of the j-invariant

j(E) =
−28(a22 − 3a4)3

4a32a6 − a22a
2
4 − 18a2a4a6 + 4a34 + 27a26

. (1)

Besides, denote by r0, r1, r2 the (pairwise distinct) roots of the polynomial f(x).
As usual,

a2 = −(r0 + r1 + r2), a4 = r0r1 + r0r2 + r1r2, a6 = −r0r1r2.

Fix once and forever a quadratic non-residue v ∈ Fq. Consider the quadratic
twist ET : vy2 = f(x) having the Weierstrass form

y2 = fT (x) := x3 + a2vx
2 + a4v

2x+ a6v
3.

By abuse of notation, ET will also stand for this form. There is the Fq2-isomorphism

θ : E → ET (x, y) 7→ (vx, v
√
v ·y).

4 D. Koshelev

Obviously, θ(rk, 0) = (vrk, 0), that is, vrk are roots of fT (x).
As is clear from the introduction, generalized Châtelet surfaces

Sh : x2 − vy2 = h(t) ⊂ A3
(x,y,t),

with separable Fq-polynomials h(t), are main geometric objects of the current
article. They are ones of the simplest examples of conic bundles or, alternatively,
of conics over the function field Fq(t). It is useful to remember that we are
primarily interested in elements t ∈ Fq for which trivially Fq(t) = Fq. Conic
bundles are a fairly common tool in applied mathematics. For instance, as seen
in [19,20], they appear in the context of compressing points on elliptic curves of
j-invariant 0.

Below, we will tacitly use the program code [26] written in Magma to verify
underlying formulas. Among other things, we need the following folklore result
about blowing up and down [13, Section V.3].

Lemma 1. Assume that a quadratic Fq-polynomial Q(t) = t2 − Tt+N is irre-
ducible, i.e., its discriminant D := T 2 − 4N is a quadratic non-residue in Fq.
Then, we have the blow-up Fq-maps

blQ,± : Sh → ShQ (x, y) 7→
((
t− T

2

)
x±

√
Dv

2
y, ±

√
Dv

2v
x+

(
t− T

2

)
y
)
,

identical on t. They are linear transformations whose determinant is equal to
Q(t). In particular, the maps blQ,± are invertible for every t ∈ Fq.

Corollary 1. For T = 0 and the non-square d := −N the blow-up maps from
the previous lemma take the form

blQ,± : Sh → ShQ (x, y) 7→
(
tx±

√
dv ·y, ±

√
d

v
·x+ ty

)
.

By default, put blQ := blQ,+. The notation Sh(α) will mean the fiber of Sh

over an arbitrary element α ∈ Fq. Evidently, it is degenerate if and only if α is
a root of h(t). In this circumstance,

Sh(α) = L+(α) ∪ L−(α), where L±(α) :=

x = ±
√
v ·y,

t = α.

More concretely, let α± := (T ±
√
D)/2 be the roots of Q(t). In geometric terms,

the inverse map bl−1Q,+ : ShQ → Sh (respectively, bl−1Q,− : ShQ → Sh) contracts the
two Fq-conjugate lines L±(α±) (respectively, L±(α∓)) on the surface ShQ to two
Fq-conjugate points on the one Sh.

Throughout the section, we will encounter the quadratic cone Sc ⊂ A3
(x,y,t)

over the plane conic C : x2 − vy2 = c with c ∈ F∗
q . The latter has the Fq-point

P0 :=

(
√
c, 0) if

√
c ∈ Fq,(

0,

√
−c
v

)
if

√
c ̸∈ Fq.

Batching Cipolla–Lehmer–Müller’s algorithm with hashing to elliptic curves 5

It is a classical fact (see, e.g., [8, Section 3.1]) that, given an abstract conic
C : ax2 + by2 + 1 = 0 having a point P0 = (x0, y0), the map inverse to the
projection of C from P0 has the form

pr−1P0
: A1

u → C u 7→
(ax0u2 + 2by0u− bx0

au2 + b
,
ay0u

2 − 2ax0u− by0
au2 + b

)
.

In our situation, a = −1/c and b = v/c. Among other things, the denominator
does not vanish for u ∈ Fq. As a result, acting identically on t, we obtain the
map pr−1P0

: A2
(u,t) → Sc with the same notation.

Hereafter, we proceed to analyzing several cases step by step.

2.1 The case when r0 ∈ Fq
Without loss of generality, put r0 = a6 = 0 and O := (0, 0). Under this premise,
a2 = −(r1 + r2) and a4 = r1r2. Let’s glue the curves E, ET along their 2-torsion
subgroups as follows:

ψ : E[2] → ET [2] O 7→ O, (r1, 0) 7→ (vr2, 0), (r2, 0) 7→ (vr1, 0).

No matter r1, r2 ∈ Fq or not, the map ψ respects the Frobenius action on E[2]
and ET [2]. In addition, note that ψ ̸= θ|E[2].

Owing to [16, Section 3.2], there are two quadratic Fq-covers

φ : H → E (t, s) 7→
(a4(vt2 + 1)

−va2t2
,

a4
a22t

3
·s
)
,

φT : H → ET (t, s) 7→
(a4(vt2 + 1)

−a2
,
va4
a22

·s
) (2)

from a genus 2 curve H : s2 = h(t). Here,

h(t) := c·Q0(t)·Q1(t)·Q2(t) = c(t6 + b2t
4 + b4t

2 + b6), (3)

where Qk(t) := t2 − δk and

c := −a2a4, δ0 := −1

v
, δ1 :=

r1
vr2

, δ2 :=
r2
vr1

, (4)

b2 := −(δ0 + δ1 + δ2), b4 := δ0δ1 + δ0δ2 + δ1δ2, b6 := −δ0δ1δ2 =
1

v3
.

Whenever j(E) ̸= 1728 (as supposed), it is clear that r1 ̸= ±r2, i.e., a2 ̸= 0. As
a consequence, c ̸= 0 and the covers φ, φT are correctly defined. Keep in mind
that φ(0,

√
cb6) = ∞ and besides

√
cb6 ∈ Fq ⇔

√
c ̸∈ Fq.

For the sake of convenience, put γk :=
√
δk. For our polynomial h(t) the

generalized Châtelet surface Sh fits with that discussed by Swinnerton-Dyer [33].
Furthermore, the polynomial Q0(t) is irreducible over Fq, i.e., γ0 ̸∈ Fq, hence we
are able to eliminate it by virtue of Corollary 1. Thereby, we get an (ordinary)
Châtelet surface Sh0

for which

h0(t) := c·Q1(t)·Q2(t) = c(t4 + d2t
2 + d4),

d2 := −(δ1 + δ2), d4 := δ1δ2 =
1

v2
.

6 D. Koshelev

2.1.1 The case when all rk ∈ Fq

The subcase
√
a4 ∈ Fq (still r0 = 0). If so, then γ1, γ2 ̸∈ Fq or, equivalently, the

polynomials Q1(t), Q2(t) are irreducible over Fq. Therefore, nothing prevents
to likewise eliminate the remaining degenerate fibers of Sh0

, arriving at the
quadratic cone Sc.

The subcase
√
a4 ̸∈ Fq (still r0 = 0). It is the most difficult, because the degener-

ate fibers of the surface Sh0
, viz. Sh0

(±γ1), Sh0
(±γ2) cannot be liquidated over

Fq. Indeed, γ1, γ2 ∈ Fq, hence every of them consists of a pair of Fq-conjugate
lines. Shifting, e.g., γ1 to the infinity point (1 : 0) ∈ P1, we immediately obtain
a cubic surface birationally Fq-isomorphic to Sh0 . Due to [18], we thus have a
constructive proof of Fq-unirationality of Sh0

.

In fact, one can reduce the subcase under consideration to the case from
Section 2.1.2 with the help of the next lemma. In this way, we are able to hash
into E through a transitional elliptic Fq-curve by analogy with [5, Section 4.3],
[36, Section 4.3].

Lemma 2. Whenever we are in the subcase conditions (and j(E) ̸= 1728), there
is an elliptic Fq-curve E′ : y2 = x(x2 + A2x + A4) (also of j-invariant ̸= 1728)
such that E, E′ are 2-isogenous over Fq and O is the only Fq-point of order 2 on
E′.

Proof. As seen in [12, Example 9.6.9], the quotient curve E′ := E/O possesses
the coefficients A2 = −2a2 and A4 = a22 − 4a4. In accordance with the formula
(1) applied to E′,

j(E′) = 1728 ⇔ A2 = 0 or A4 =
2A2

2

9
⇔ a2 = 0 or a4 =

a22
62
.

The second equality is never fulfilled, since
√
a4 ̸∈ Fq. So, we do not hit a

j = 1728 curve if the initial curve E is not. By the same reason, the discriminant
A2

2 − 4A4 = 42a4 is a non-square. This is nothing but the lemma’s statement. □

2.1.2 The case when r0 ∈ Fq, but r1, r2 ̸∈ Fq. If so, then δ1, δ2 ̸∈ Fq as
well. However, γ1, γ2 ∈ Fq2 , because the norm NFq2/Fq (δk) = d4 is a quadratic

residue in Fq. Not losing generality, let γq1 = γ2. We have the factorization h0(t) =
c·Q+(t)·Q−(t) into two irreducible quadratic Fq-polynomials

Q±(t) := (t∓ γ1)(t∓ γ2) = t2 ∓ (γ1 + γ2)t+
1

v
.

Applying twice Lemma 1, we again come to the quadratic cone Sc.

Batching Cipolla–Lehmer–Müller’s algorithm with hashing to elliptic curves 7

2.2 The case when all rk ̸∈ Fq
Suppose that rqk = rk+1, where the index k is taken modulo 3. Let’s glue the
curves E, ET along their 2-torsion subgroups in the following way:

ψ : E[2] → ET [2] (rk, 0) 7→ (vrk+1, 0).

The map ψ respects the Frobenius action on E[2] and ET [2]. Furthermore, note
that ψ ̸= θ|E[2]. For the sake of compactness, it is worth introducing the new
Fq-values

numy := (r0 − r1)(r0 − r2)(r1 − r2), R := r0r
2
1 + r1r

2
2 + r2r

2
0 + 3a6,

denT
x := a22 − 3a4, RT := r0r

2
2 + r1r

2
0 + r2r

2
1 + 3a6.

Owing to [16, Section 3.2], there are two quadratic Fq-covers

φ : H → E (t, s) 7→
(
vR·t2 − numy

v ·denTx ·t2
,

numy

(denTx)2 ·t3
·s
)
,

φT : H → ET (t, s) 7→
(
v ·numy ·t2 +RT

denTx
,
v ·numy

(denTx)2
·s
) (5)

from a genus 2 curve H : s2 = h(t). Here, h(t) has the same shape as the
polynomial (3) except that

c := numy ·denTx , δk :=
rk−1 − rk
v(rk − rk+1)

, (6)

and b6 = −1/v3. In addition, put ĥ(t) := h(t)/c. Due to the formula (1), the
covers φ, φT are correctly defined (equivalently, c ̸= 0) if and only if j(E) ̸= 0 as
assumed. Keep in mind that φ(0,

√
cb6) = ∞ and besides

√
cb6 ∈ Fq ⇔

√
c ̸∈ Fq.

It is readily seen that δqk = δk+1 ̸∈ Fq. In turn, γk :=
√
δk ̸∈ Fq3 , because

the norm NFq3/Fq (δk) = −b6 is a quadratic non-residue in Fq. Consequently,

the polynomial h(t) is Fq-irreducible. Without loss of generality, let γq0 = γ1,
γq1 = γ2, and γq2 = −γ0. The components of the degenerate fibers on the surface
Sh constitute two Frobenius orbits, namely{
L+

(
(−1)kγk

)
, L−

(
(−1)k+1γk

)}2

k=0
,

{
L+

(
(−1)k+1γk

)
, L−

(
(−1)kγk

)}2

k=0
.

We can contract over Fq any of them, obtaining the quadratic cone Sc as
before. As a consequence, the composition

blĥ,± := blQ0,± ◦ blQ1,∓ ◦ blQ2,± : Sc → Sh

is defined over Fq (unlike blQk,±). More precisely,

blĥ,± : Sc → Sh (x, y) 7→
(
ρ(t)·x±

√
v ·ϱ(t)·y, ±ϱ(t)√

v
·x+ ρ(t)·y

)
,

where

ρ(t) := t3 + (−γ0γ1 + γ0γ2 − γ1γ2)t, ϱ(t) := (γ0 − γ1 + γ2)t2 − γ0γ1γ2.

By default, put blĥ := blĥ,+.

8 D. Koshelev

3 New hash function

Let’s stick to the symbolism of Section 2. In it we established the following
theorem.

Theorem 1. Take the polynomial h(t) of the form (3) with the values (6) or
(4) except for the case r0 = 0, r1, r2 ∈ Fq, but

√
a4 ̸∈ Fq. Then, there is a

birational Fq-parametrization π : A2
(u,t) → Sh of the generalized Châtelet surface

Sh. Moreover, π is well defined on the whole set F2
q .

To be more precise,

π =

blQ0

◦ blQ1
◦ blQ2

◦ pr−1P0
if r0 = 0 and r1, r2,

√
a4 ∈ Fq,

blQ0 ◦ blQ+ ◦ blQ− ◦ pr−1P0
if r0 ∈ Fq, but r1, r2 ̸∈ Fq,

blĥ ◦ pr−1P0
if rk ̸∈ Fq.

The exceptional case of the theorem is treated by means of Lemma 2, hence it
is excluded from our discussion. For uniformity of notation, S := Sh henceforth.
In fact, the restriction of the map π to the line u = t gives rise to an Fq-section
σ : A1

t → S of the conic bundle prt : S → A1
t or, alternatively, to an Fq(t)-point

of S as a conic. To further simplify the formulas of π it is reasonable to actually
put u = t as it is originally done for Ska lba’s map [32].

Denote by HT : vs2 = h(t) the hyperelliptic quadratic twist of H. Any cover
φT : H → ET is clearly can be interpreted (up to an Fq-isomorphism) as the
cover φT : HT → E. Since the curves E, ET possess opposite traces and H is
obtained by gluing them, H (and hence HT) is a curve of zero trace, that is,

#H(Fq) = #HT (Fq) = q + 1.

The polynomial h(t) with the values (4) fits [24, Section 5], because d :=
b4/b2 = 1/v is a quadratic non-residue and the coefficient b6 = d3. Therefore,
we enjoy bijective maps P1(Fq) → H(Fq) and P1(Fq) → HT (Fq) extracting a
square root in Fq. These maps are based on a non-hyperelliptic involution of H,
HT defined over Fq2 , but not over Fq. It is not hard to prove that the geometric
automorphism group Aut(H) of the general H is isomorphic to the dihedral
group D8 of order 8. Interestingly, the hash function from [25] is built in a
similar way on other genus 2 curves H having Aut(H) ≃ D12. By the way, there
are no other dihedral groups Aut(H) for genus 2 curves (see details in [2,3]).

The facts of the previous paragraph are wrong if we talk about the values
(6). The point is that the (geometric) automorphism group of the general H
is just isomorphic to (Z/2)2. Roughly speaking, the curve H is not sufficiently
“symmetric”. That is why instead of mapping separately to H(Fq) and HT (Fq)
it is suggested to map onto U(Fq) from two copies of P1(Fq), where

U := H ⊔HT ⊂ A2
(t,s) × {0, 1}

Batching Cipolla–Lehmer–Müller’s algorithm with hashing to elliptic curves 9

for compactness. We purposely introduce the disjoint union, because the curves
H, HT intersect at the points (±γk, 0). Unless stated otherwise, the subsequent
exposition is carried out for the both suites (4), (6).

Given x, y ∈ Fq such that x2 − vy2 = z2 for z ∈ Fq, denote by M(x, y)
Müller’s algorithm returning z by using the values x, y. It should be noted that
x = y = 0 is the only possible situation for z = 0. Consider the twisted surface
ST : v(x2 − vy2) = h(t). In contrast to the twisted curves ET , HT , there is the
Fq-isomorphism

ι : S → ST (x, y) 7→
(
iy,

ix

v

)
,

where i :=
√
−1 ∈ Fq.

Eventually, we get the map

τ : S(Fq) × {0, 1} → U(Fq)

τ(x, y, t, b) :=

(t, 0, b) if

(h(t)
q

)
= 0,(

t, (−1)bM(x, y), 0
)

if
(h(t)

q

)
= 1,(

t, (−1)bM
(
ι(x, y)

)
, 1
)

if
(h(t)

q

)
= −1.

Here,
(·
q

)
is nothing but the Legendre symbol in Fq supplemented by the equality(

0
q

)
= 0. It is worth emphasizing that it (as well as the inversion in F∗

q) can be

implemented in fast constant time in compliance with [5, Section 2.1]. On the
same subject, an implementer must call M(0, 0) in the first case to achieve a
deterministic execution of τ for all input arguments.

We also lack the auxiliary map

Φ : U(Fq) → E(Fq) Φ(P, b) :=

φ(P) if b = 0,

φT (P) if b = 1.

Lastly, we obtain the map

e := Φ ◦ τ ◦ σid : Fq × {0, 1} → E(Fq),

where σid := σ × id. It can be extended to P1(Fq) × {0, 1} by tinkering with the
Fq-points of P1, S, H, HT , and E at infinity. Nonetheless, this is unnecessary in
practice. In cryptographic language, we also have the hash function H := e ◦ η,
picking any one η : {0, 1}∗ → Fq × {0, 1}.

Example 1. As far as the author knows, 2-adicity ν = 96 is maximal among the
basic fields of standardized elliptic curves (around the world). It is attained by
the curve NIST P-224 from the American standard [4, Section 3.2.1.2] recently
updated. As the name indicates, the curve is defined over a field Fq of length
⌈log2(q)⌉ = 224. The order q ≡ 1 (mod 3), hence Icart’s hash function [17] (cf.
Table 1) is not applicable to the curve as opposed to H and Hold from the former

10 D. Koshelev

work [25]. Before Hold, the so-called simplified SWU hash function HsSWU (see,
e.g., [36, Section 4.1]) was the best for NIST P-224.

Recall that HsSWU extracts a square root in Fq as well. From [25, Table
1] we know that a constant-time implementation of Tonelli–Shanks’s algorithm
requires ≈ 5009 multiplications in the field Fq under consideration. In turn,
Müller’s algorithm performs ≈ 2 ·224 = 448 ones (see an optimization in the
patent [27]). Finally, Hold has to compute ≈ 865 field multiplications. To sum
up, the new hash function H carries out ≈ 417 (respectively, ≈ 4561) fewer
multiplications than Hold (respectively, HsSWU). In other terms, there is an
acceleration of about 2 and 11 times, respectively.

3.1 Indifferentiability from a random oracle

In this section we will encounter some statistical notions, which are common in
the current research area. They can be found, e.g., in [1, Sections 2, 3].

Lemma 3. For the covers (2) and any affine point P = (x, y) ∈ E(Fq) there is
the criterion

φ−1(P) ∩H(Fq) = ∅ ⇔ (φT)−1(P) ∩HT (Fq) = ∅.

The lemma immediately follows from the simple equality

(prx ◦ φT)(t) = (prx ◦ φ)
(1

vt

)
.

For the other pair of covers (5) the given lemma is false. In particular, the
situation Φ−1(P)∩U(Fq) = ∅ occurs quite often. A counterexample can be easily
found by sampling randomly the appropriate parameters q, rk, and P .

We see that the map Φ (and hence e) is itself far from surjective. This implies
non-regularity of the maps Φ, e. By this reason, we are forced to resort to the
tensor squares

Φ⊗2 := [+] ◦ Φ×2 : U2(Fq) → E(Fq),

e⊗2 := Φ⊗2 ◦ τ×2 ◦ σ×2
id : F2

q × {0, 1}2 → E(Fq),

where
[+] : E2 → E (P, P ′) 7→ P + P ′.

Despite the fact that the original map π acts from the whole plane A2
(u,t),

we cannot benefit from this circumstance. We conclude that restricting π to the
diagonal u = t is actually justified. Otherwise, the output length (and hence the
running time) of the auxiliary hash function η would be doubled without any
advantage. In comparison, certain maps from F2

q in the recent works [5,22,23]
lead to indifferentiable hash functions requiring only one root extraction.

Theorem 2. The map Φ⊗2 is admissible.

Batching Cipolla–Lehmer–Müller’s algorithm with hashing to elliptic curves 11

Proof. We lack the quantities

WS(ϕ, χ) :=
∑
P∈S

(χ ◦ ϕ)(P), ∆(ϕ) :=
∑

P∈E(Fq)

∣∣∣∣#ϕ−1(P)

#S
− 1

#E(Fq)

∣∣∣∣ ,
where χ : E(Fq) → C∗ is a complex character and ϕ : S → E(Fq) is any map from
a finite set S. The first quantity is an analogue of Weil sum [29, Section 5.4].
The second is the statistical distance between the uniform distribution on E(Fq)
and that induced by ϕ (provided that the distribution on S is also uniform).

Due to [10, Theorem 7], the cover φ is 2-well-distributed, i.e., |WS(φ, χ)| ⩽
2
√
q for every non-trivial character χ. Besides, since φ is a quadratic cover,

φ−1(P) contains at most two Fq-points for each P ∈ E(Fq). The same properties
are true for φT . We have the right to suppose (for simplicity) the near-equality
#E(Fq) ≈ q. So, in accordance with [35, Corollary 1], the tensor products

φ⊗2, (φT)⊗2, φ⊗ φT , φT ⊗ φ

are ϵ-regular, where the value ϵ ≈ 2
√

2/q is negligible.
Note that

U2 = H2 ⊔ (HT)2 ⊔ H ×HT ⊔ HT ×H

and thereby #U2(Fq) = 4(q + 1)2. It is readily seen that

∆(Φ⊗2) ⩽
∆(φ⊗2) +∆((φT)⊗2) +∆(φ⊗ φT) +∆(φT ⊗ φ)

4
⩽ ϵ.

By definition, the map Φ⊗2 is also ϵ-regular. Formally speaking, we established
regularity when the domain of Φ⊗2 includes all pairs of Fq-points on H, HT

(together with two bits) such that at least one of them lies at infinity. Nonethe-
less, restricting to U2(Fq) ⊂ F4

q × {0, 1}2 remains regular, because we discard a
negligible number of points, viz. O(q), with respect to 4(q + 1)2.

Further, the map Φ⊗2 is computable in constant time as the “basic” maps φ,
φT are of the same degree (two) and have similar formulas. That is why evaluat-
ing them can be easily implemented without time difference. Lastly, their pair-
wise tensor products are samplable according to [35, Algorithm 1]. This entails
samplability of Φ⊗2, because nothing prevents to choose uniformly at random
the pairs of φ, φT . Eventually, all the admissibility characteristics are proved. □

Let Σ ⊂ S stand for the image of the section σ. The restriction τ : Σ(Fq) ×
{0, 1} → U(Fq) is bijective. Indeed, it is effortlessly checked that the inverse map
to τ has the form

τ−1 : U(Fq) → Σ(Fq) × {0, 1}

τ−1(t, s, b) =

(0, 0, t, b) if s = 0,

(x, y, t, 0) if s = M
(
ιb(x, y)

)
̸= 0,

(x, y, t, 1) if s = −M
(
ιb(x, y)

)
̸= 0,

12 D. Koshelev

where (x, y, t) = σ(t) and ι0 := id.

In general, the composition operation leads beyond the class of admissible
maps as said in [1, Appendix C.1]. However, the bijective maps τ , σid (and hence
τ×2, σ×2

id) admit a deterministic evaluation along with their inverses. Conse-
quently, we arrive at the next statement.

Theorem 3. The map e⊗2 is admissible.

Corollary 2. Whenever η : {0, 1}∗ → F2
q × {0, 1}2 is an indifferentiable hash

function, so is the composition e⊗2 ◦ η : {0, 1}∗ → E(Fq).

The output length of η is only two bits longer than 2⌈log2(q)⌉, hence the
executing time of η is (almost) identical to that of hash functions {0, 1}∗ → F2

q

of a more classical kind.

4 Conclusion

Seemingly, the hashing approach of the present article can be extended to elliptic
Fq-curves of j-invariants 0, 1728 whose Frobenius trace has a small divisor. To
this end, one should study the generalized Châtelet surfaces Sh with polynomials
h(t) (of degrees 5, 6) written out in [24, Sections 3, 4]. The only potential obstacle
on the path is non-unirationality of Sh over the field Fq. Further investigation is
needed to address the Fq-(uni)rationality problem for Sh or at least to construct
a rational Fq-curve on Sh (of geometric genus 0) different from the fibers Sh(α)
over α ∈ Fq.

Meanwhile, (most) modern elliptic curves of j-invariants 0, 1728 over highly
2-adic fields are initially equipped with an Fq-isogeny χ of small degree to another
elliptic curve. The SNARK-friendly j = 0 curves from the web pages [14,15] can
serve as a confirmation of the given words. Therefore, indirect hashing via χ
takes place. Let’s repeat again that the hash function Hold is relevant only if
deg(χ) = 3. So, Hold does not cover any curve of j = 0, 1728 that H could not
cover indirectly. At this stage of development of elliptic cryptography we hereby
handled (almost) all real-world elliptic curves over fields of large 2-adicity ν.

Finally, it is impossible not to mention that there are even more efficient hash
functions Hk represented in Table 1. More precisely, their bottleneck consists
in finding a radical ℓ

√
· ∈ Fq of odd degree ℓ ∈ N. For most fields Fq this is

nothing but one exponentiation in Fq requiring n ∈ N field multiplications, where
log2(q) ≲ n ≲ 2 log2(q). Nevertheless, as opposed to H, the hash functions Hk

suffer from specific limitations on E and Fq. Surprisingly, H2 behaves as a random
oracle unlike H1, H3, though evaluating twice H1 (or H3) suffices to obtain a
random oracle (cf. Corollary 2).

Acknowledgements. The author expresses his gratitude to Damien Stehlé
for hiring him as a postdoc at École Normale Supérieure de Lyon.

Batching Cipolla–Lehmer–Müller’s algorithm with hashing to elliptic curves 13

k Year Author Reference Bottleneck Conditions Is indifferentiable?

1 2009 Icart [17]
3
√
·

q ≡ 2 (mod 3) no

2 2022
K.

[22] q ≡ 1 (mod 3),
a = 0,

√
b ∈ Fq

yes

3 2023 [21, Section 2.2] 7
√
· q ≡ 2, 4 (mod 7),

j-invariant −3353 no

Table 1. Hash functions Hk : {0, 1}∗ → E(Fq) to elliptic Fq-curves E : y2 = x3 +ax+ b
whose running time amounts to computing a radical ℓ

√
· ∈ Fq of odd degree ℓ ∈ N

References

1. Brier, E., Coron, J.S., Icart, T., Madore, D., Randriam, H., Tibouchi, M.: Efficient
indifferentiable hashing into ordinary elliptic curves. In: Rabin, T. (ed.) Advances
in Cryptology – CRYPTO 2010. Lecture Notes in Computer Science, vol. 6223,
pp. 237–254. Springer, Berlin, Heidelberg (2010)

2. Cardona, G.: Q-curves and abelian varieties of GL2-type from dihedral genus 2
curves. In: Cremona, J.E., Lario, J.C., Quer, J., Ribet, K.A. (eds.) Modular Curves
and Abelian Varieties. Progress in Mathematics, vol. 224, pp. 45–52. Birkhäuser,
Basel (2004)

3. Cardona, G., Quer, J.: Curves of genus 2 with group of automorphisms isomorphic
to D8 or D12. Transactions of the American Mathematical Society 359(6), 2831–
2849 (2007)

4. Chen, L., Moody, D., Regenscheid, A., Robinson, A., Randall, K.: Recommen-
dations for discrete logarithm-based cryptography: Elliptic curve domain pa-
rameters (NIST Special Publication 800-186) (2023), https://csrc.nist.gov/

publications/detail/sp/800-186/final

5. Chávez-Saab, J., Rodŕıguez-Henŕıquez, F., Tibouchi, M.: SWIFTEC: Shallue-van
de Woestijne indifferentiable function to elliptic curves. In: Agrawal, S., Lin, D.
(eds.) Advances in Cryptology – ASIACRYPT 2022. Lecture Notes in Computer
Science, vol. 13791, pp. 63–92. Springer, Cham (2022)

6. Châtelet, F.: Points rationnels sur certaines courbes et surfaces cubiques.
L’Enseignement Mathématique 5(3), 153–170 (1959)

7. Cipolla, M.: Un metodo per la risolutione della congruenza di secondo grado. Ren-
diconto dell’Accademia delle Scienze Fisiche e Matematiche 9, 154–163 (1903)

8. Cremona, J., Rusin, D.: Efficient solution of rational conics. Mathematics of Com-
putation 72(243), 1417–1441 (2003)

9. El Mrabet, N., Joye, M. (eds.): Guide to pairing-based cryptography. Cryptography
and Network Security Series, Chapman and Hall/CRC, New York (2017)

10. Farashahi, R.R., Fouque, P.A., Shparlinski, I.E., Tibouchi, M., Voloch, J.F.: Indif-
ferentiable deterministic hashing to elliptic and hyperelliptic curves. Mathematics
of Computation 82(281), 491–512 (2013)

11. Faz-Hernandez, A., Scott, S., Sullivan, N., Wahby, R.S., Wood, C.A.:
Hashing to elliptic curves (2022), https://datatracker.ietf.org/doc/

draft-irtf-cfrg-hash-to-curve

12. Galbraith, S.D.: Mathematics of public key cryptography. Cambridge University
Press, New York (2012)

https://csrc.nist.gov/publications/detail/sp/800-186/final
https://csrc.nist.gov/publications/detail/sp/800-186/final
https://datatracker.ietf.org/doc/draft-irtf-cfrg-hash-to-curve
https://datatracker.ietf.org/doc/draft-irtf-cfrg-hash-to-curve

14 D. Koshelev

13. Hartshorne, R.: Algebraic geometry, Graduate Texts in Mathematics, vol. 52.
Springer, New York, 8 edn. (1997)

14. Hopwood, D.: The Pasta curves for Halo 2 and beyond (2020), https://

electriccoin.co/blog/the-pasta-curves-for-halo-2-and-beyond

15. Hopwood, D.: Pluto/Eris supporting evidence (2021), https://github.com/

daira/pluto-eris

16. Howe, E.W., Leprévost, F., Poonen, B.: Large torsion subgroups of split Jacobians
of curves of genus two or three. Forum Mathematicum 12(3), 315–364 (2000)

17. Icart, T.: How to hash into elliptic curves. In: Halevi, S. (ed.) Advances in Cryptol-
ogy – CRYPTO 2009. Lecture Notes in Computer Science, vol. 5677, pp. 303–316.
Springer, Berlin, Heidelberg (2009)

18. Kollár, J.: Unirationality of cubic hypersurfaces. Journal of the Institute of Math-
ematics of Jussieu 1(3), 467–476 (2002)

19. Koshelev, D.: Batch point compression in the context of advanced pairing-based
protocols (2021), https://eprint.iacr.org/2021/1446

20. Koshelev, D.: New point compression method for elliptic Fq2 -curves of j-invariant
0. Finite Fields and Their Applications 69, Article 101774 (2021)

21. Koshelev, D.: Some remarks on how to hash faster onto elliptic curves (2021),
https://eprint.iacr.org/2021/1082

22. Koshelev, D.: Indifferentiable hashing to ordinary elliptic Fq-curves of j = 0 with
the cost of one exponentiation in Fq. Designs, Codes and Cryptography 90(3),
801–812 (2022)

23. Koshelev, D.: The most efficient indifferentiable hashing to elliptic curves of j-
invariant 1728. Journal of Mathematical Cryptology 16(1), 298–309 (2022)

24. Koshelev, D.: Optimal encodings to elliptic curves of j-invariants 0, 1728. SIAM
Journal on Applied Algebra and Geometry 6(4), 600–617 (2022)

25. Koshelev, D.: Hashing to elliptic curves over highly 2-adic fields Fq with O(log q)
operations in Fq (2023), https://eprint.iacr.org/2023/121

26. Koshelev, D.: Magma code (2023), https://github.com/dishport/

Batching-Cipolla-Lehmer-Muller-square-root-algorithm-with-hashing-to-elliptic-curves

27. Lambert, R.J.: Method to calculate square roots for elliptic curve cryptography
(2013), https://patents.google.com/patent/US9148282B2/en, United States
patent No. 9148282B2

28. Lehmer, D.H.: Computer technology applied to the theory of numbers. In: LeVeque,
W.J. (ed.) Studies in Number Theory. Studies in Mathematics, vol. 6, pp. 117–151.
Mathematical Association of America, Washington (1969)

29. Lidl, R., Niederreiter, H.: Finite fields, Encyclopedia of Mathematics and its Ap-
plications, vol. 20. Cambridge University Press, Cambridge (1997)

30. Müller, S.: On the computation of square roots in finite fields. Designs, Codes and
Cryptography 31(3), 301–312 (2004)

31. Shallue, A., van de Woestijne, C.E.: Construction of rational points on elliptic
curves over finite fields. In: Hess, F., Pauli, S., Pohst, M. (eds.) Algorithmic Number
Theory. ANTS 2006. Lecture Notes in Computer Science, vol. 4076, pp. 510–524.
Springer, Berlin, Heidelberg (2006)

32. Ska lba, M.: Points on elliptic curves over finite fields. Acta Arithmetica 117(3),
293–301 (2005)

33. Swinnerton-Dyer, P.: Rational points on some pencils of conics with 6 singular
fibres. Annales de la Faculté des Sciences de Toulouse: Mathématiques (Série 6)
8(2), 331–341 (1999)

https://electriccoin.co/blog/the-pasta-curves-for-halo-2-and-beyond
https://electriccoin.co/blog/the-pasta-curves-for-halo-2-and-beyond
https://github.com/daira/pluto-eris
https://github.com/daira/pluto-eris
https://eprint.iacr.org/2021/1446
https://eprint.iacr.org/2021/1082
https://eprint.iacr.org/2023/121
https://github.com/dishport/Batching-Cipolla-Lehmer-Muller-square-root-algorithm-with-hashing-to-elliptic-curves
https://github.com/dishport/Batching-Cipolla-Lehmer-Muller-square-root-algorithm-with-hashing-to-elliptic-curves
https://patents.google.com/patent/US9148282B2/en

Batching Cipolla–Lehmer–Müller’s algorithm with hashing to elliptic curves 15

34. T.-W. Sze with an appendix by L. C. Washington: On taking square roots with-
out quadratic nonresidues over finite fields. Mathematics of Computation 80(275),
1797–1811 (2011)

35. Tibouchi, M., Kim, T.: Improved elliptic curve hashing and point representation.
Designs, Codes and Cryptography 82(1–2), 161–177 (2017)

36. Wahby, R.S., Boneh, D.: Fast and simple constant-time hashing to the BLS12-
381 elliptic curve. IACR Transactions on Cryptographic Hardware and Embedded
Systems 2019(4), 154–179 (2019)

	Batching Cipolla–Lehmer–Müller's square root algorithm with hashing to elliptic curves

