
HotStuff-2: Optimal Two-Phase Responsive BFT
Dahlia Malkhi

Chainlink Labs

Kartik Nayak

Duke University

ABSTRACT
In this paper, we observe that it is possible to solve partially-synchronous

BFT and simultaneously achieves𝑂 (𝑛2) worst-case communication,

optimistically linear communication, a two-phase commit regime

within a view, and optimistic responsiveness. Prior work falls short

in achieving one or more of these properties, e.g., the most closely

related work, HotStuff, requires a three-phase view while achiev-

ing all other properties. We demonstrate that these properties are

achievable through a two-phase HotStuff variant named HotStuff-2.

The quest for two-phase HotStuff variants that achieve all the

above desirable properties has been long, producing a series of

results that are yet sub-optimal and, at the same time, are based

on somewhat heavy hammers. HotStuff-2 demonstrates that none

of these are necessary: HotStuff-2 is remarkably simple, adding no

substantive complexity to the original HotStuff protocol.

The main takeaway is that two phases are enough for BFT after

all.

1 INTRODUCTION
In this work, we observe that it is possible to solve the known log

replication problem in the partial synchrony model, simultaneously

achieving the following measures to reach a single commit deci-

sion: An optimal 𝑂 (𝑛2) communication cost and a latency of 𝑂 (𝑛)
against a worst-case cascade of failures, optimistically linear com-

munication, and a substantial improvement in optimistic latency

(two phases) over previously known art [9, 18, 23]. At the same

time, failure-free leader rotation should incur no extra delay, so

that forming sequences of commit decisions additionally exhibit

load balance at no extra complexity, each participant suffering the

same communication load over time. We demonstrate that these

properties are achievable through a two-phase HotStuff variant

named HotStuff-2.

Existing protocols obtain various subsets of these features, but to

our knowledge, no previous protocol achieves all of them simulta-

neously. In fact, the folklore belief is that this would be impossible

(more on this later). Of particular relevance is HotStuff [23], which

HotStuff-2 improves on. HotStuff satisfies all of the above features

except the two-phase optimistic latency. In a nutshell, HotStuff-2

improves the latency of the HotStuff-based family of protocols by

33% at no extra complexity.

It is important to note that the complexity measures indicated

above account for the full complexity incurred by the protocol. In

particular, like most protocols in the partial synchrony setting, the

protocol operates in a view-by-view manner, each view having a

leader driving progress towards a commit decision. A key ingre-

dient of solutions is a sub-protocol for view-synchronization (a

“pacemaker”). Parties coordinate via the pacemaker to enter the

view roughly at the same time as the leader. We present a full

solution which does not punt on pacemaker details.

1.1 Relationship to Closely Related Results
The importance of the contribution is not in a new algorithmic

technique but rather in helping demystify the belief that there may

not exist a solution satisfying the following features simultaneously:

F-0 two-phase view regime

F-1 optimistically no wait over sequences of decisions

F-2 optimistically linear communication

F-3 balanced communication load over sequences of decisions

F-4 𝑂 (𝑛2) worst-case communication

Indeed, HotStuff-2 satisfies all of these features. It is worthy of

pointing to the evolution of the myth that led to believe this would

be impossible.

• PBFT [7], the golden standard in BFT introduced two decades

ago, emphasizes steady-state performance and obtains F-0

and F-1.

• Several enhancements on PBFT including FaB [19], Zyzzyva [17],

SBFT [15], add support on top of F-0, F-1, for F-2 as well.

• Tendermint [4], Casper [5] and the original 2-phase version

of HotStuff [1] enable F-3 through a simpler view-change

regime. However, each new view has to wait for the maxi-

mal network delay Δ, even under a planned leader rotation.

Hence, they do not satisfy F-1, namely, each view-change

requires an explicit timer delay for the maximal network

latency.

It is worth remarking that these protocols do not achieve

F-4 per se. First, as noted in [23], Tendermint/Casper would

need to incorporate signature aggregation to support F-2.

Second, an optimal pacemaker protocol is needed to support

F-4.

HotStuff removes the need for each view-change to delay, thereby

satisfying F-1 in addition to F-2 and F-3. RareSync [9] and Lewis-

Pye [18] demonstrate a pacemaker for HotStuff that satisfies F-4 as

well. However, the HotStuff family of protocols adds one phase to

the view regime, hence giving up F-0.

There has been a long line of HotStuff variants aiming to improve

HotStuff’s view regime to two phases.

• Fast HotStuff [16], DiemBFT-v4 [22], and Jolteon andDitto [13],

provide a two-phase regime satisfying F-0 but revert to a

PBFT quadratic view-change (Ditto also adding resilience

against asynchrony). Hence, they trade F-4, namely they

incur 𝑂 (𝑛2) communication every time a leader is faulty. A

fortiori, an unlucky cascade of faulty leaders incurs 𝑂 (𝑛3)
communication.

• Wendy [14] and MSCFCL [2] also revert to a PBFT view-

change with a leader proof to convince parties of a safe

proposal, but focus on compressing the leader proof. These

schemes employ somewhat heavy hammers: Wendy intro-

duces a novel signature scheme that works only when the

gap between views that make progress is constant bounded

1



Protocol View-change complexity Responsive view-change Phases

PBFT [7] 𝑂 (𝑛2) ✓ 2

Tendermint [4] 𝑂 (𝑛) ✗ 2

HotStuff [23] 𝑂 (𝑛) ✓ 3

HotStuff-2 (this work) 𝑂 (𝑛) ✓ 2

Table 1: Comparison with closely related works. Note that PBFT and Tendermint have a view-change complexity of 𝑂 (𝑛3) and
𝑂 (𝑛2) respectively; however, both protocols can be easily improved by a factor of 𝑂 (𝑛) to obtain the bounds described above.

andMSCFCL utilizes succinct arguments of knowledgewhose

complexity blows up quickly.

All of these advances are much more complex than HotStuff-2,

whose key takeaway is that none of them is necessary. Indeed, a

virtue of HotStuff-2 is simplicity, adding only a handful of state-

ments to a production system currently being developed at Espresso

Systems [21] as their core consensus algorithm.

2 INTUITION
In this section, we describe the key intuition behind our result. For

simplicity, we will present it as a single-shot protocol.

At the core, view-by-view consensus works as follows. A view

consists of two abstract steps. In the first step, a designated leader
attempts to reconcile an output value, and in the second step, par-

ties check whether there is an agreed value and ratify it. A core

ingredient of the second step is commit-adopt [12], namely, if any

honest party commits an output, 2𝑡 + 1 parties adopt and protect

it; we say that parties lock the value. Likewise, a core ingredient of

the first step is a validity condition, such that a leader’s reconciled

value is accepted subject to safety with respect to commit values of

previous views and to non-equivocation. A full consensus proceeds

by alternating the two steps: A commit-adopt value is carried into

a reconciliation step of the next view in order to protect a commit

decision; A reconciliation value is carried into a commit-adopt step

to drive progress.

Different protocols differ in how commit-adopt is implemented in

the second step, and how a leader generates and drives acceprance

of a valid proposal in the first.

PBFT [7]. In PBFT, the leader collects a status of locks from 2𝑡 +
1 parties at the start of a view. Observe that if some party has

committed in earlier views, among the 2𝑡 + 1 locks in the status,

up to 𝑡 can be malicious, up to 𝑡 can be from honest parties that

are not guarding the safety of the commit, but there is at least one

that corresponds to the committed value. On the other hand, if

no party had committed in an earlier view, even if some parties

locked on to the value, their status may or may not be a part of the

locks the leader receives. In the former case, the leader proposes the

highest lock it obtains. In the latter case, the leader is guaranteed

that no honest party must have committed the value (based on the

argument above) and is free to propose any value.

How does the leader convince the honest parties to vote for the

value it proposed? It simply sends a “status certificate” containing

the 2𝑡 + 1 locks in its proposal. Observe that every honest party can

apply the same reasoning as the leader did, and thus can vote for

the value. In particular, this holds true even in situations when a

party is locked on a value and the leader proposes a different value

that is justified by the status certificate. In other words, the status

certificate from an honest leader provides sufficient information to

all honest parties to vote on the proposal.

Note that sending this message can be responsive since the leader

can act as soon as it receives 2𝑡 + 1 locks. However, the status

certificate has linear complexity and thus sending it in the proposal

leads to quadratic communication complexity.

Tendermint [4]. Tendermint improves PBFT by not requiring the

leader to send a (2𝑡+1)-sized status certificate and thus can perform
a view change with linear complexity. Well, how does a leader know

what to propose, and how can it be sure that all honest parties would

indeed vote for it? Observe that by receiving 2𝑡 + 1 locks, an honest

leader perhaps knows what to propose, but if parties do not have

access to those locks (through a status certificate), they may not

vote for it. In particular, in a situation where some honest party

𝑝 is locked on a value, and a leader proposes a conflicting value,

𝑝 cannot distinguish whether it needs to guard the safety of the

value or go ahead and vote for the proposal. A generalization of

this dilemma for this party is presented as a livelessness attack in

HotStuff [23].

To address this concern, Tendermint requires the leader to wait

for an 𝑂 (Δ) time at the start of the view. After GST, the 𝑂 (Δ) wait
ensures that the leader receives locks from all honest parties. Thus,
it can send a proposal that conforms with the value corresponding

to the lock from the highest view, and send this lock together with

the proposal. The highest-ranked lock convinces all honest parties

to vote on the proposal sent by the leader. Note that, in this solution,

while the leader learns the globally highest-ranked lock, the parties

do not. However, the amount of information is sufficient to ascertain

that the proposal is safe to vote on.

Tendermint obtains a linear communication complexity for view

change compared to PBFT’s quadratic communication complexity.

However, due to the 𝑂 (Δ) wait, the protocol is not responsive.

HotStuff [23]. The HotStuff protocol simultaneously obtains a

linear view change and responsiveness when the leader is honest

after GST. HotStuff addresses the livelessness concern differently

while still ensuring that the value corresponding to the highest lock

is proposed by the leader. Abstractly speaking, it uses the same

argument as the one used for safety. For safety, we said, “if some

party commits, then ≥ 2𝑡 + 1 parties hold a lock that will guard the

safety of the commit, and ensure that the next leader receives it.”.

For liveness, HotStuff introduces another phase of votes and obtains

a similar invariant: “if some party locks, then ≥ 2𝑡 + 1 parties know

2



about the existence of this lock and thus hold a key corresponding

to it. This key will be shared with the next leader to decide on a

proposal appropriately.” Correspondingly, the next leader would

learn about the highest lock through the 2𝑡 + 1 keys it receives, and

the proposal would respect the globally highest lock held by any

honest party. Note that, while locks guard the safety of a commit,

keys do not, and thus honest parties only holding a higher key on

a different value than the proposal can still vote for the proposal.

Thus, HotStuff obtains linear view change and responsiveness,

but introducing the “key phase” makes it a three-phase protocol

instead.

Our solution: HotStuff-2. Our work takes a fresh look at the

livelessness concern and asks, do we really need to add another
phase to address this concern while still obtaining linear commu-
nication complexity and optimistic responsiveness? Following the

above discussion, if a leader knows about the highest lock and it

can convince all honest parties about it, then the problem is solved.

Indeed if a leader would receive a lock corresponding to the previ-

ous view, there cannot exist an even higher lock. Thus, a proposal

respecting this lock would be voted for by all honest parties and

the livelessness concern does not exist. If the leader does not obtain

such a lock from the previous view, it would wait to hear about

the locks from all honest parties by waiting 𝑂 (Δ) time — this can

happen when the leader from the previous view is malicious or

the previous view was before GST. However, in those cases, we

cannot hope to obtain responsiveness anyway. Thus, if we have a

sequence of honest leaders after GST, each of them is guaranteed

to drive progress responsively and generate a certificate in a view

that will aid the next leader. Thus, all leaders except the first one in

the chain can make honest parties commit responsively.

Our key observation is subtle, but once the insight is understood,

really simple (at least we think so!), allowing us to solve the problem

without any heavy machinery.

3 MODEL AND PERFORMANCE MEASURES
Briefly, in log replication, a group of 𝑛 = 3𝑡 + 1 parties, 𝑡 of which

are Byzantine (arbitrarily faulty), reach agreement on a growing

sequence of values referred to as “blocks”.We refer to the non-faulty

parties as correct or honest.
We operate in the partial synchrony model [11] where there is a

known bound Δ on message transmission delays, such that after

an unknown time called “GST” all transmissions arrive within Δ
bound to their destinations. Parties output increasing log prefixes

with the following guarantees:

• Safety. At all times, the outputs of every pair of correct

parties is a prefix of one another.

• Liveness. After GST, agreement decisions to extend the log

one position are repeatedly delivered by at least one correct

party.

Throughout, we use the notation ⟨𝑥⟩𝑃 to denote a signature or a

threshold signature share on message 𝑥 by party 𝑃 . Wherever it is

clear from context, we omit the signer 𝑃 .

Performance can be measured after GST, since no progress is

guaranteed until then. We are interested in preserving all the good

performance features of HotStuff as described below, while improv-

ing on a single front – its optimistic latency.

Optimistically optimal performance per single decision.When

a sequence of leaders are correct, i.e., in the happy-path protocol,

HotStuff reaches a decision with linear communication and latency

that depends only on actual network delays during execution (i.e.,

without ever waiting for the maximal network delay Δ).

Balanced per-party communication load in a sequence of
decisions. Uniquely, HotStuff’s happy-path linear regime and net-

work speed properties can extend to a sequence of consensus de-

cisions, while balancing communication load among parties. A

sequence of 𝑠 = Ω(𝑛) decisions with honest leaders incurs overall

𝑂 (𝑠 · 𝑛) communication, while each party suffers𝑂 (𝑠) communica-

tion load.

Optimal worst-case performance per single decision.When

there are Byzantine leaders, there is an unavoidable performance

cost in both communication complexity and latency. When faced

with an unlucky cascade of 𝑡 failures, Ω(𝑛2) communication cost

is mandated by the Dolev-Reischuk lower bound [10], and Ω(𝑛Δ)
latency is mandated by the Aguilera-Toueg bound [3]. Before Hot-

Stuff, the golden standard established by PBFT for handling a steady-

leader replacement incurred𝑂 (𝑛2) communication, hence a cascade

of 𝑡 failures would suffer 𝑂 (𝑛3) communication cost. Leveraging

the HotStuff linear leader-replacement regime, two recent work,

RareSync [9] and Lewis-Pye [18] closed this gap, achieving worst-

case 𝑂 (𝑛2) communication and 𝑂 (𝑛Δ) latency.

Worst-case performance on a sequence of decisions. Further-
more, HotStuff allows to amortize the 𝑂 (𝑛2) communication cost

over 𝑂 (𝑛) decisions.

Remark – On failure cascades. It’s worth noting that many

protocols randomize the election of next leaders in order to reduce

the chance of such a cascade. This improves the expected complexity

in all protocols, including HotStuff, but not the worst-case. To

make an apples-to-apples comparison, worst-case complexities are

measured against 𝑡 actual leader failures.

Optimistic latency. In many practical settings, low latency happy-

path performance is crucial. Unfortunately, in HotStuff, this incurs

3-phases, each consisting of two communication rounds. In contrast,

PBFT is two-phased, but incurs higher communication. Tendermint

incurs two phases, has linear communication, but is not responsive.

So this presents a trade-off between communication optimality and

latency.

4 THE HOTSTUFF-2 PROTOCOL
Our solution operates in a view-by-view manner. It consists of

two parts, a steady-state protocol and a pacemaker protocol for

advancing views. That is, we present a full solution that does not

punt on pacemaker details. Hence, the performance analysis we

present portrays the full complexity incurred by the protocol. The

steady-state protocol drives a commit decision in a view when

all correct parties overlap in the view for sufficiently long, and a

designated leader 𝐿𝑣 for view 𝑣 known to all parties is correct. The

3



steady-state leader protocol is almost identical to a vanilla two-

phase HotStuff protocol (where we simply take HotStuff and use a

2-chain commit rule instead of 3-chain). For ease of exposition, we

let the leader drive the commit of an entire block in a view in two

phases; we can easily modify this protocol to obtain a pipelined

version akin to pipelined HotStuff protocol [23].

We will first describe some data structures and terminologies.

Block format. The protocol forms a chain of values. We use the

term block to refer to each value in the chain. We refer to a block’s

position in the chain as its height. A block 𝐵𝑘 at height 𝑘 has the

following format

𝐵𝑘 := (𝑏𝑘 , ℎ𝑘−1)

where𝑏𝑘 denotes a proposed value at height𝑘 andℎ𝑘−1 := 𝐻 (𝐵𝑘−1)
is a hash digest of the predecessor block. The first block 𝐵1 = (𝑏1,⊥)
has no predecessor. Every subsequent block 𝐵𝑘 must specify a

predecessor block 𝐵𝑘−1 by including a hash of it. We say a block is

valid if (i) its predecessor is valid or ⊥, and (ii) its proposed value

meets application-level validity conditions and is consistent with

its chain of ancestors (e.g., does not double-spend a transaction in

one of its ancestor blocks).

Block extension and equivocation. We say 𝐵𝑙 extends 𝐵𝑘 , if 𝐵𝑘
is an ancestor of 𝐵𝑙 (𝑙 > 𝑘). We say two blocks 𝐵𝑙 and 𝐵

′
𝑙 ′
equivocate

one another if they are not equal and do not extend one another.

Certificates and certified blocks. In the protocol, parties vote for

blocks by signing them using a threshold signature. We use𝐶𝑣 (𝐵𝑘 )
to denote a set of signatures on ℎ𝑘 = 𝐻 (𝐵𝑘 ) by 2𝑡 + 1 parties in

view 𝑣 . We call 𝐶𝑣 (𝐵𝑘 ) a certificate for 𝐵𝑘 from view 𝑣 . Certified

blocks are ranked by the views in which they are certified, i.e., a

certificate 𝐶𝑣 (𝐵𝑘 ) is ranked higher than 𝐶𝑣′ (𝐵′𝑘 ′ ) if 𝑣 > 𝑣 ′.

Timeout certificates. In the protocol, parties may timeout if there

is no progress in a particular view and use a pacemaker to justify

and coordinate entrance to the next view. We use 𝑇𝐶𝑣 to denote a

certificate by 2𝑡 + 1 parties about wishing to enter view 𝑣 .

Locked blocks. At any time, a party locks the highest certified

block to its knowledge. During the protocol execution, each party

keeps track of all signatures for all blocks and keeps updating its

locked block. Looking ahead, the notion of a locked block will be

used to guard the safety of a commit.

Steady-state protocol. Each view has a designated leader who is

responsible for driving consensus on a sequence of blocks. Leaders

can be chosen statically, e.g., round-robin, or randomly using more

sophisticated techniques [6, 8]. In our description, we assume a

round-robin selection of leaders for simplicity, i.e., (𝑣 mod 𝑛) is the
leader of view 𝑣 .

The goal of a view leader is to extend the highest certified block

in the current sequence with a new block and get it certified by

parties.

- A leader in view 𝑣 forms a block 𝐵𝑘 at height 𝑘 that contains

its proposed value, the view number, and the highest-ranked

certificate the leader knows. The leader sends a proposed

block to all the parties.

- Each party keeps the highest certificate it ever received. A

party votes for block 𝐵𝑘 if it extends the highest certificate,

by sending a signed vote to the leader.

- A block becomes certified if 2𝑡 + 1 parties vote for it. The cer-
tificate𝐶𝑣 (𝐵𝑘 ) formed from 2𝑡 +1 signed votes is aggregated
by the leader.

- The leader engages in another round of votes; however, par-

ties send these votes to the leader of view 𝑣 + 1.

Pacemaker. The pacemaker is responsible for synchronizing en-

trance to views. Advancing to the next view 𝑣 + 1 happens in one

of two ways.

• Case 1. If 𝐶𝑣 (𝐶𝑣 (𝐵𝑘 )) is obtained, the pacemaker can ad-

vance to the next view immediately. This guarantees opti-

mistically optimal performance when there are no failures

and the network is synchronous. Note that because the cer-

tificate is broadcast by the leader, the pacemaker does not

require any further action to synchronize entering to the

next view.

• Case 2. If such a certificate is not obtained, the pacemaker

must wait at least a delay 𝜏 = Ω(Δ) time to allow a correct

leader to make progress in a view under synchronous con-

ditions. It is important to observe that incurring an 𝑂 (Δ)
delay upon a leader’s failure is inevitable to allow correct

leaders time to drive progress; otherwise, liveness would be

compromised. It is also mandated by an Ω(𝑛Δ) latency lower
bound Aguilera and Toueg [3].

When 𝜏-timers expire at a quorum of parties, the pacemaker

can advance to the next view. To do this, the pacemaker

needs to coordinate parties, so they enter the new view at

roughly the same time.

There are various protocols for view-synchronization, including

a trivial one that synchronizes to a wall clock but note this would

not be optimistically responsive. The description below borrows the

view-synchronization approach of RareSync and Lewis-Pye [9, 18],

though other schemes could be used. Their approach is remarkably

simple and elegant. It bundles consecutive views into epochs, where

each epoch consists of 𝑡 + 1 consecutive views. Parties employ a

Cogsworth-like [20] coordination protocol in the first view of each

epoch, and then they advance through the rest of the views in the

same epoch using timeouts if there is no progress in the underlying

consensus protocol. The worst-case message complexity is 𝑂 (𝑛2)
messages per agreement decision, with 𝑂 (𝑛Δ) latency. Below, we
integrate the view-synchronization details into the pacemaker mod-

ule for completeness.

We now get to the HotStuff-2 mechanism that guarantees that a

correct leader can form a certified block in a view after GST. We

weave our mechanism into the pacemaker, such that it provides the

new leader with a certified block for chaining at a linear communi-

cation cost. This works as follows. In Case 1 above, the new leader

already obtains the certified block. In Case 2, advancing a view

without forming a certificate already incurs a mandatory latency of

𝜏 = Ω(Δ). Our key observation is that a leader can recognize that

it is in the Case 2 scenario. Since all parties enter the view within Δ
time of the leader, and each party sends the leader its status, upon

entering the new view with a TC, the leader can wait 2Δ time for all

4



Let 𝑣 be the current view number and replica 𝐿𝑣 be the leader in this view. Perform the following steps.

(1) Enter. Upon entering view 𝑣 :

• Leader 𝐿𝑣 . If entering view 𝑣 using a TC or pacemaker timer expiration, the leader sets a timer 2Δ, and then proceeds to the propose

step. Otherwise, it proceeds directly to the propose step.

• Party. If entering view 𝑣 using a TC, the party sends its locked certificate to the leader 𝐿𝑣 and proceeds to the vote step.

(2) Propose. The leader 𝐿𝑣 broadcasts ⟨propose, 𝐵𝑘 , 𝑣,𝐶𝑣′ (𝐵𝑘−1),𝐶𝑣′′ (𝐶𝑣′′ (𝐵𝑘 ′′ ))⟩𝐿𝑣 . ⊲ Executed by the leader

Here, 𝐵𝑘 := (𝑏𝑘 , ℎ𝑘−1) is the block that should extend the highest certified block 𝐵𝑘−1 with certificate 𝐶𝑣′ (𝐵𝑘−1) known to leader and

𝐶𝑣′′ (𝐶𝑣′′ (𝐵𝑘 ′′ )) is the largest double certificate known to the leader.

(3) Vote and commit. Upon receiving the first valid proposal ⟨propose, 𝐵𝑘 , 𝑣,𝐶𝑣′ (𝐵𝑘−1)⟩𝐿𝑣 in view 𝑣 : ⊲ Executed by all parties

• If𝐶𝑣′ (𝐵𝑘−1) is ranked no lower than the locked block, then send ⟨vote, 𝐵𝑘 , 𝑣⟩ as a threshold signature share to 𝐿𝑣 . Update lock to 𝐵𝑘
and the certificate to 𝐶𝑣′ (𝐵𝑘−1).

• The party commits block 𝐵𝑘 ′′ and all its ancestors.

(4) Prepare. Upon receiving 2𝑡 + 1 votes for block 𝐵𝑘 , the leader forms certificate 𝐶𝑣 (𝐵𝑘 ) and broadcasts a request ⟨prepare,𝐶𝑣 (𝐵𝑘 )⟩𝐿𝑣 to

all parties. ⊲ Executed by the leader

(5) Vote2. Upon receiving ⟨prepare,𝐶𝑣 (𝐵𝑘 )⟩𝐿𝑣 , a party updates their lock to 𝐵𝑘 and the locked certificate to 𝐶𝑣 (𝐵𝑘 ). It sends

⟨vote2,𝐶𝑣 (𝐵𝑘 ), 𝑣⟩ to 𝐿𝑣+1. ⊲ Executed by all parties

Figure 1: View protocol for parties in view 𝑣 .

(1) Set timers. Upon entering view 𝑣 , where (𝑣 mod 𝑡 + 1) = 0, a party sets a view-𝑘 timer to expire at predetermined slots 𝑘𝜏 , for

𝑘 = 1 . . . (𝑡 + 1). It then proceeds to View Protocol for view 𝑣 .

(2) Timer expiration. Upon timer expiration, the party stops processing messages and voting for view 𝑣 .

• If (𝑣 mod 𝑡 + 1) ≠ 0 (a non “epoch-view”), it executes View Protocol.

• Epoch synchronization. Else, if 𝑣 mod (𝑡 + 1) = 0, it performs an “epoch-view” procedure for view 𝑣 :

– send a timeout message ⟨wish, 𝑣 + 1⟩ to the 𝑡 + 1 view leaders in the epoch

– any one of the 𝑡 + 1 leaders that collects 2𝑡 + 1 ⟨wish, 𝑣 + 1⟩ messages forming a 𝑇𝐶𝑣+1, or obtains 𝑇𝐶𝑣+1, broadcasts the TC to all

parties.

(3) Advance. At any time, a party enters view 𝑣 ′ where 𝑣 ′ > 𝑣

• upon receiving a 𝑇𝐶𝑣′ from any of the 𝑡 + 1 leaders for view 𝑣 ′, where 𝑣 ′ mod (𝑡 + 1) = 0. In this case, a party also relays the TC to

𝑡 + 1 leaders in the epoch of 𝑣 ′.

• upon receiving 𝐶𝑣′−1 (𝐶𝑣′−1 (𝐵𝑘 ′ ))

Figure 2: Pacemaker protocol.

correct parties to respond, and then proceed to propose. The leader

does not need to convince parties about the safety of its proposal

by sending all status certificates it has received – this is because it

provides enough time for all parties to report their highest lock; it

will attach the highest certificate among all honest parties.

We emphasize that since Case 2 view-synchronization is invoked

after a Ω(Δ) delay, (asymptotically) there is no loss in latency.

In summary, the HotStuff-2’s view-changemechanism is a simple

addition over a vanilla two-phase HotStuff protocol, which incurs

an extra 2Δ delay on top of 𝜏 = 𝑂 (Δ) under pessimistic conditions.

In fact, most of the protocol pseudo-code below constitutes a vanilla

two-phase HotStuff.

4.1 Performance Measures
We analyze the performance measures after GST.

Communication complexity. Observe that, when rotating lead-

ers round-robin, in the worst case, we would have an honest leader

within 𝑡 +1 views. In each view, all messages are either leader-to-all

or all-to-leader. Moreover, since we use threshold signatures, each

message consists of 𝑂 (1) words. Thus, the total communication

within a view is 𝑂 (𝑛) words, resulting in total communication of

𝑂 (𝑛2) words. Moreover, for 𝑡 + 1 views, the communication com-

plexity of the RareSync/Lewis-Pye pacemaker protocol is 𝑂 (𝑛2).
In the optimistic case, when the leader is honest, a block is com-

mitted within a view, incurring only𝑂 (𝑛) words of communication.

5



Worst-case latency. Again, in the worst-case, we would reach a

view with an honest leader after 𝑡 + 1 views. Moreover, each view

incurs 𝑂 (Δ) time. Thus, the worst-case commit latency is 𝑂 (𝑛Δ)
time.

Optimistic responsiveness with a sequence of honest leaders.
After GST, when we have a sequence of honest leaders, observe

that all protocol steps (except the first honest leader’s proposal in

the sequence) are a result of obtaining a quorum of messages from

the previous step, making the protocol optimistically responsive.

4.2 Security Proof
We introduce the notion of direct and indirect commits to aid our

proof. We say a block 𝐵𝑘 is committed in view 𝑣 directly if it receives
𝐶𝑣 (𝐶𝑣 (𝐵𝑘 )). We say a block is committed indirectly if this condition

does not apply to a block in the view but to one of its successors.

Lemma 4.1. If a party directly commits block 𝐵𝑘 in view 𝑣 , then a
certified block that ranks no lower than 𝐶𝑣 (𝐵𝑘 ) must equal or extend
𝐵𝑘 .

Proof. Suppose we consider a block 𝐵′
𝑘 ′ that is certified in view

𝑣 ′ to produce certificate 𝐶𝑣′ (𝐵′𝑘 ′ ). 𝐶𝑣′ (𝐵′𝑘 ′ ) has a rank higher than

𝐶𝑣 (𝐵𝑘 ) if 𝑣 ′ > 𝑣 . We will use induction on view 𝑣 ′.
For the base case, we have 𝑣 = 𝑣 ′. Thus, block 𝐵′

𝑘 ′ is certified in

view 𝑣 . However, this requires votes from 2𝑡 + 1 parties which is

not possible due to a quorum intersection argument in view 𝑣 .

For the inductive step, since 𝐶𝑣 (𝐶𝑣 (𝐵𝑘 )) exists, it must be the

case that a set 𝑆 of ≥ 2𝑡 + 1 parties have access to 𝐶𝑣 (𝐵𝑘 ) and are

locked on 𝐵𝑘 or a block that extends 𝐵𝑘 at the end of view 𝑣 . By

the inductive hypothesis, any certified block that ranks equally or

higher from view 𝑣 up to 𝑣 ′ either equals or extends 𝐵𝑘 . Thus, at the
end of view 𝑣 ′, the parties in set 𝑆 are still locked on 𝐵𝑘 or a block

that extends 𝐵𝑘 . Consider a proposal in view 𝑣 ′ + 1. If the leader

makes a proposal 𝐵′
𝑘 ′ containing a certificate that does not extend

𝐵𝑘 , by the inductive hypothesis, this certificate must be ranked

lower than𝐶𝑣 (𝐵𝑘 ). Consequently, no honest party in set 𝑆 will vote

for it, and thus a certificate 𝐶𝑣′+1 (𝐵′𝑘 ′ ) cannot be formed. Thus, if

𝐵′
𝑘 ′ was committed and 𝐶𝑣′+1 (𝐶𝑣′+1 (𝐵′𝑘 ′ )) is formed it must be the

case that 𝐵′
𝑘 ′ extends 𝐵𝑘 . □

Theorem 4.2 (Safety). Two parties commit the same block 𝐵𝑙 for
each height 𝑙 .

Proof. Suppose for contradiction, two distinct blocks 𝐵𝑙 and 𝐵
′
𝑙

are committed at height 𝑙 . Supposed 𝐵𝑙 is committed as a result

of 𝐵𝑘 being directly committed in view 𝑣 and 𝐵′
𝑙
is committed as

a result of 𝐵′
𝑘 ′ being directly committed in view 𝑣 ′. Thus, 𝐵𝑘 is

or extends 𝐵𝑙 and 𝐵′
𝑘
is or extends 𝐵′

𝑙 ′
. WLOG, suppose 𝑣 ≤ 𝑣 ′. If

𝑣 = 𝑣 ′, suppose, 𝑘 ≤ 𝑘′. By Lemma 4.1, 𝐶𝑣′ (𝐵′𝑘 ′ ) must equal or

extend 𝐵𝑘 . Thus, 𝐵𝑙 = 𝐵′
𝑙
. □

Theorem 4.3 (Liveness). Assuming all honest parties are in view
𝑣 for time > 6Δ and the latest honest party enters view 𝑣 within Δ
time after the leader 𝐿𝑣 , GST occurred more than Δ time before the
earliest honest party entered view 𝑣 , and leader 𝐿𝑣 is honest, honest
parties in the protocol would commit a block in view 𝑣 .

Proof. Let us consider the time period after GST has already

occurred. Observe that the pacemaker protocol [9, 18] ensures that

parties enter a view within Δ time of the view’s leader; thus, if we

set 𝜏 appropriately, the honest parties would overlap for > 6Δ time

in view 𝑣 . Consider an honest leader 𝐿𝑣 ’s state at the start of its

view. It could have entered the view using one of the two methods:

(1) Using a TC. In this case, the leader waits for 2Δ time and

then proceeds to propose. Suppose the leader enters view 𝑣

at time 𝑡 . Observe that, all honest parties would enter view

𝑣 no later than time 𝑡 + Δ. Hence, at time 𝑡 + Δ, they would

send the highest certified block known to them to the leader

𝐿𝑣 .

Since 𝐿𝑣 waits for 2Δ time, it would receive locked blocks

with certificates from all honest parties. Thus, the leader has

access to the highest certified block across all honest parties.

Hence, the leader’s proposal would extend this highest certi-

fied block. Consequently, all honest parties can vote on this

block.

(2) Using 𝐶𝑣−1 (𝐶𝑣−1 (𝐵𝑘−1)). In this case, the leader sends a

proposal ⟨propose, 𝐵𝑘 , 𝑣,𝐶𝑣−1 (𝐵𝑘−1),𝐶𝑣−1 (𝐶𝑣−1 (𝐵𝑘−1))⟩𝐿𝑣 .
On receiving 𝐶𝑣−1 (𝐶𝑣−1 (𝐵𝑘−1)), an honest party would im-

mediately advance to view 𝑣 and proceed to the vote step.

Moreover, a proposal in view 𝑣 cannot include a lock ranked

higher than a view 𝑣 − 1 certificate. Thus, all honest parties,

on receiving a proposal containing this lock, would vote for

the block.

In both cases, when the leader is honest, subsequent steps such as

prepare and vote2 would proceed as expected since the message

would contain a certificate from view 𝑣 . In all, obtaining the highest

certificate takes up to 2Δ time, proposal and vote takes up to 2Δ
time, and sending prepare and vote2 consumes up to 2Δ time. Thus,

the leader drives a commit within 6Δ time. □

REFERENCES
[1] Ittai Abraham, Guy Gueta, and Dahlia Malkhi. Hot-stuff the linear, optimal-

resilience, one-message BFT devil. CoRR, abs/1803.05069, 2018.
[2] Mark Abspoel, Thomas Attema, and Matthieu Rambaud. Malicious security

comes for free in consensus with leaders. Cryptology ePrint Archive, 2020.
[3] Marcos Kawazoe Aguilera and Sam Toueg. A simple bivalency proof that t-

resilient consensus requires t+ 1 rounds. Information Processing Letters, 71(3-
4):155–158, 1999.

[4] Ethan Buchman. Tendermint: Byzantine fault tolerance in the age of blockchains.
PhD thesis, University of Guelph, 2016.

[5] Vitalik Buterin and Virgil Griffith. Casper the friendly finality gadget. arXiv
preprint arXiv:1710.09437, 2017.

[6] Christian Cachin, Klaus Kursawe, and Victor Shoup. Random oracles in Con-

stantinople: Practical asynchronous byzantine agreement using cryptography.

Journal of Cryptology, 18(3):219–246, 2005.
[7] Miguel Castro, Barbara Liskov, et al. Practical byzantine fault tolerance. In OSDI,

volume 99, pages 173–186, 1999.

[8] Jing Chen and Silvio Micali. Algorand, 2016.

[9] Pierre Civit, Muhammad Ayaz Dzulfikar, Seth Gilbert, Vincent Gramoli, Rachid

Guerraoui, Jovan Komatovic, and Manuel José Ribeiro Vidigueira. Byzantine

consensus is𝜃 (nˆ 2): The dolev-reischuk bound is tight even in partial synchrony!

Technical report, Dagstuhl Publishing, 2022.

[10] Danny Dolev and Rüdiger Reischuk. Bounds on information exchange for byzan-

tine agreement. Journal of the ACM (JACM), 32(1):191–204, 1985.
[11] Cynthia Dwork, Nancy Lynch, and Larry Stockmeyer. Consensus in the presence

of partial synchrony. Journal of the ACM (JACM), 35(2):288–323, 1988.
[12] Eli Gafni. Round-by-round fault detectors (extended abstract): unifying syn-

chrony and asynchrony. In Proceedings of the Seventeenth Annual ACM Sympo-
sium on Principles of Distributed Computing (PODC ’98), 1998.

[13] Rati Gelashvili, Lefteris Kokoris-Kogias, Alberto Sonnino, Alexander Spiegelman,

and Zhuolun Xiang. Jolteon and ditto: Network-adaptive efficient consensus

6



with asynchronous fallback. In Financial Cryptography and Data Security: 26th
International Conference, FC 2022, Grenada, May 2–6, 2022, Revised Selected Papers,
pages 296–315. Springer, 2022.

[14] Neil Giridharan, Heidi Howard, Ittai Abraham, Natacha Crooks, and Alin

Tomescu. No-commit proofs: Defeating livelock in bft. Cryptology ePrint Archive,
2021.

[15] Guy Golan Gueta, Ittai Abraham, Shelly Grossman, Dahlia Malkhi, Benny Pinkas,

Michael Reiter, Dragos-Adrian Seredinschi, Orr Tamir, and Alin Tomescu. Sbft:

a scalable and decentralized trust infrastructure. In 2019 49th Annual IEEE/IFIP
international conference on dependable systems and networks (DSN), pages 568–580.
IEEE, 2019.

[16] Mohammad M Jalalzai, Jianyu Niu, Chen Feng, and Fangyu Gai. Fast-hotstuff: A

fast and resilient hotstuff protocol. arXiv preprint arXiv:2010.11454, 2020.
[17] Ramakrishna Kotla, Lorenzo Alvisi, Mike Dahlin, Allen Clement, and Edmund

Wong. Zyzzyva: speculative byzantine fault tolerance. In Proceedings of twenty-
first ACM SIGOPS symposium on Operating systems principles, pages 45–58, 2007.

[18] Andrew Lewis-Pye. Quadratic worst-case message complexity for state machine

replication in the partial synchrony model. CoRR, abs/2201.01107, 2022.
[19] J-P Martin and Lorenzo Alvisi. Fast byzantine consensus. IEEE Transactions on

Dependable and Secure Computing, 3(3):202–215, 2006.
[20] Oded Naor, Mathieu Baudet, Dahlia Malkhi, and Alexander Spiegelman.

Cogsworth: Byzantine View Synchronization. Cryptoeconomic Systems, 1(2),
oct 22 2021. https://cryptoeconomicsystems.pubpub.org/pub/naor-cogsworth-

synchronization.

[21] Espresso Systems. https://hackmd.io/@EspressoSystems/EspressoSequencer , 2022.
[22] The Diem Team. https://developers.diem.com/papers/diem-consensus-state-

machine-replication-in-the-diem-blockchain/2021-08-17.pdf , 2021.
[23] Maofan Yin, Dahlia Malkhi, Michael K Reiter, Guy Golan Gueta, and Ittai Abra-

ham. Hotstuff: Bft consensus with linearity and responsiveness. In Proceedings of
the 2019 ACM Symposium on Principles of Distributed Computing, pages 347–356,
2019.

7

https://hackmd.io/@EspressoSystems/EspressoSequencer
https://developers.diem.com/papers/diem-consensus-state-machine-replication-in-the-diem-blockchain/2021-08-17.pdf
https://developers.diem.com/papers/diem-consensus-state-machine-replication-in-the-diem-blockchain/2021-08-17.pdf

	Abstract
	1 Introduction
	1.1 Relationship to Closely Related Results

	2 Intuition
	3 Model and Performance Measures
	4 The HotStuff-2 Protocol
	4.1 Performance Measures
	4.2 Security Proof

	References

