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Abstract This work presents a novel machine-checked tight security
proof for XMSS — a stateful hash-based signature scheme that is (1)
standardized in RFC 8391 and NIST SP 800-208, and (2) employed as
a primary building block of SPHINCS+, one of the signature schemes
recently selected for standardization as a result of NIST’s post-quantum
competition.
In 2020, Kudinov, Kiktenko, and Fedoro pointed out a flaw affecting
the tight security proofs of SPHINCS+ and XMSS. For the case of
SPHINCS+, this flaw was fixed in a subsequent tight security proof by
Hülsing and Kudinov. Unfortunately, employing the fix from this proof
to construct an analogous tight security proof for XMSS would merely
demonstrate security with respect to an insufficient notion.
At the cost of modeling the message-hashing function as a random oracle,
we complete the tight security proof for XMSS and formally verify it us-
ing the EasyCrypt proof assistant. As part of this endeavor, we formally
verify the crucial step common to (the security proofs of) SPHINCS+

and XMSS that was found to be flawed before, thereby confirming that
the core of the aforementioned security proof by Hülsing and Kudinov is
correct.
As this is the first work to formally verify proofs for hash-based signa-
ture schemes in EasyCrypt, we develop several novel libraries for the fun-
damental cryptographic concepts underlying such schemes — e.g., hash
functions and digital signature schemes — establishing a common start-
ing point for future formal verification efforts. These libraries will be
particularly helpful in formally verifying proofs of other hash-based sig-
nature schemes such as LMS or SPHINCS+.

Keywords: XMSS · SPHINCS+ · EasyCrypt· Formal Verification ·
Machine-Checked Proofs · Computer-Aided Cryptography
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1 Introduction

Quantum computers threaten the security of virtually all public-key cryptogra-
phy deployed today [Mos18]. Although it is still unclear if and when large-scale
quantum computers will become operational, there is continuous progress [GH19]
and the stakes are too high to risk not being prepared. For this reason, in late
2016, the National Institute of Standards and Technology (NIST) initiated a
standardization process for post-quantum cryptography, i.e., classically com-
putable cryptographic constructions that can withstand attacks by quantum-
capable adversaries [NIS16]. Nearly six years later, NIST finally announced the
first four constructions to be standardized: the key encapsulation mechanism
CRYSTALS-Kyber, and the digital signature schemes CRYSTALS-Dilithium,
Falcon, and SPHINCS+ [NIS22]. However, for early adopters, NIST published
an initial standard (in 2020) describing the stateful hash-based signature schemes
XMSS and LMS [CAD+20], both previously specified in Request For Comments
(RFC) publications [HBG+18,MCF19]. These schemes provide post-quantum
secure signatures to users that can handle a secret state, i.e., a secret key that
changes over time. Interestingly, these schemes share a lot of structure with each
other and with SPHINCS+.

In 2020, Kudinov, Kiktenko, and Fedoro pointed out a flaw in the tight secu-
rity proof of the Winternitz One-Time Signature Scheme (WOTS) [KKF20], one
of the main building blocks of XMSS and SPHINCS+. This flaw invalidated the
tight security proof of XMSS [HRS16], as well as that of SPHINCS+ [BHK+19].
(The non-tight security proofs were not affected by this flaw; however, these
proofs could not justify practical parameters.) Regarding SPHINCS+, this flaw
was fixed by explicitly specifying the particular variant of WOTS employed in
SPHINCS+ (and XMSS), called WOTS-TW, and providing a new tight secu-
rity proof for this variant [HK22]. This proof, however, only shows security of
WOTS-TW against non-adaptive chosen-message attacks. For SPHINCS+, this
turns out to be sufficient because it exclusively uses WOTS-TW to sign user-
controlled data; nevertheless, for XMSS, this is not sufficient as it additionally
uses WOTS-TW to sign potentially adversarially controlled data, i.e., the hash
of messages. This leaves the security of XMSS an open question. Moreover, the
fact that this flaw was only found after four years — during which the concerned
schemes received quite some attention — also questions the guarantees provided
by the novel security proof for SPHINCS+.

Computer-Aided Cryptography. Hash-based signature schemes are not the
only cryptographic constructions that had flawed security proofs at some point.
Indeed, there exist numerous examples of proofs for cryptographic constructions
that were widely considered to be correct after heavy scrutiny, but still turned
out to be faulty. Furthermore, in some of these cases, the corresponding con-
structions were additionally shown to be insecure [KM19]. Often, the culprit in
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these situations is, at least partially, the sheer complexity of the cryptographic
constructions and their proofs, as well as a lack of rigor in the exposition of the
arguments in the proofs. Since post-quantum constructions and the correspond-
ing proofs tend to be relatively complex — and in many cases based on relatively
novel and lesser-studied concepts — additional care and rigor should be applied
in their evaluation.

Naturally, in the six years leading up to the final announcement in NIST’s
standardization process, each one of the eventually selected constructions under-
went extensive scrutiny by the cryptographic community and, potentially after
some adaptations, gained sufficient trust to be chosen for standardization. In-
deed, the above-mentioned flaw was discovered during this process. Nevertheless,
this does not exclude the possibility that the current beliefs regarding the secu-
rity of these constructions may be wrong, even if the corresponding proofs are
currently deemed correct.

In an attempt to address the complexity issues associated with devising and
evaluating cryptographic constructions and their proofs, the field of computer-
aided cryptography has produced a multitude of tools and frameworks aimed
at reducing the manual effort required for the verification of cryptography and,
ideally, reducing this effort to merely checking the security claims. Over the
years, these tools and frameworks have been successfully applied in the con-
struction and verification of increasingly intricate and important use cases. For
instance, in no particular order, CertiCrypt has been used to formally verify the
security of OAEP [BGLZ11]; EasyCrypt has been used to formally verify the
security and correctness of Saber’s public-key encryption scheme [HMS22]; Jas-
min (in conjunction with EasyCrypt) has been used to construct and formally
verify a functionally correct, constant-time, and efficient implementation of SHA-
3 [ABB+19]; and Tamarin has been used to formally verify TLS 1.3 [CHH+17].
For a more comprehensive overview and discussion of computer-aided cryptog-
raphy, refer to [BBB+21]. However, to the best of our knowledge, the security
properties of the standardized post-quantum hash-based signature schemes have
not been analyzed using computer-aided cryptography prior to this work.

Our Contribution. In this work, we face the challenge of reestablishing or
increasing the trust in the security of (the parameter sets considered for) XMSS
and SPHINCS+. To this end, we give a new tight security proof for XMSS
building on the analysis of [HK22] and, moreover, formally verify the entire
proof. The proof achieves a minimal security loss of log w bits, where w is the
Winternitz parameter (in practice, this parameter is often set to 16 or 256); this
loss is the same as that in [HK22]. We base the security of XMSS for fixed-
length messages on the properties of several tweakable and keyed hash functions
in the standard model (see Section 2 for definitions), as in [HK22]. This part
of the proof is shared between XMSS and SPHINCS+. For standalone XMSS,
we need to extend the proof to the parts of the construction that permit the
signing of arbitrary-length messages. Although this segment of the proof could be
carried out in the Quantum Random Oracle Model (QROM) using [GHHM21],
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we restrict ourselves to the Random Oracle Model (ROM) due to the current
limitations of the utilized tool.

We employ EasyCrypt, a tool predominantly designed for the formal verifica-
tion of security properties through code-based, game-playing proofs in the com-
putational model [BCG+12]. Since this is the first proper effort to verify hash-
based signatures in EasyCrypt, our work includes several additions to the tool. In
particular, we construct multiple comprehensive EasyCrypt libraries containing
generic specifications of several fundamental cryptographic concepts underlying
the schemes considered in this work. Specifically, we provide libraries for hash
functions — both keyed and tweakable — and digital signature schemes — both
stateless and stateful. As their content is specified generically, these libraries can
be reused in any other context that considers hash functions or digital signature
schemes. Although not presented here in detail, these libraries can be found in
the code corresponding to this work or in the standard library of EasyCrypt.

Summarizing, the purpose of this work is to establish greater confidence in
the security of XMSS and, by extension, SPHINCS+. Additionally, this work
aims to facilitate future formal verification efforts by providing generic libraries
that are reusable in a plethora of contexts.

Future Work. In future work, we will expand this work in two complementary
directions.

Extension to Quantum Setting. Our proofs are formalized in the classical (i.e.,
non-quantum) setting. However, considering the potential advent of sufficiently
powerful quantum computers, verifying whether (standalone) XMSS is resistant
against quantum adversaries would be worthwhile. In principle, the reasoning
used throughout most of the formal verification still holds true in the quantum
setting. In fact, the quantum extension of EasyCrypt is capable of formally
verifying this [BBF+21]. However, handling of the message-compression step in
the proof occurs in the ROM and, while this step can also be performed in the
QROM, the necessary techniques [GHHM21] make use of advanced concepts such
as the compressed oracle [Zha19]. At the time of writing, the quantum extension
of EasyCrypt does not yet support some of these necessary techniques. Future
work will hopefully surmount this deficiency and enable lifting our proofs to the
QROM.

Formal Verification of SPHINCS+ and LMS. A significant portion of this work
focuses on the security of the substructure of XMSS that it shares with LMS and
SPHINCS+. Indeed, given that our proof sticks to the abstraction of tweakable
hash functions, a proof for LMS seems realizable by harnessing the foundations
established in this work. Similarly, this work marks a significant milestone in for-
mally verifying the security proof of SPHINCS+. Building on the relevant results
from this work, such a formal verification project seems feasible. Nevertheless,
we note that this still requires significant additional effort due to the complexity
of the SPHINCS+ construction. For instance, among others, it requires the addi-
tional incorporation of FORS, the few-time signature scheme used in SPHINCS+.
In this context, another interesting avenue for future work is the validation of
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the constructions of tweakable hash functions from [BHK+19]. However, again,
this necessitates an expansion of the current quantum extension of EasyCrypt.

Overview. The remainder of this paper is structured as follows. First, Section 2
introduces the primary concepts underlying the considered cryptographic con-
structions and their formal verification. Second, Section 3 presents a high-level
overview of (the employed approach to) the formal verification. Finally, the re-
maining sections — Section 4, Section 5, and Section 6 — discuss different parts
of the formal verification in more detail.

Acknowledgments. Andreas Hülsing and Matthias Meijers are funded by an
NWO VIDI grant (Project No. VI.Vidi.193.066). We thank the Formosa Crypto
consortium for support and discussions. Date: 2023-03-21.

2 Preliminaries

Below, we provide the background necessary for the remainder of the paper.

Keyed Hash Functions. A Keyed Hash Function (KHF) is a function KHF :
K×M → Y where key space K, message space M, and digest space Y are sets of
bitstrings. Often, K and Y constitute sets of bitstrings of a certain length — that
is, K = {0, 1}m and Y = {0, 1}n for some m > 0 and n > 0 — and M constitutes
the set of bitstrings of arbitrary length — that is, for potentially many different
n > 0, {0, 1}n ⊆ M. At times, instead of viewing KHFs as single functions, we
interpret and refer to them as families of hash functions that are indexed by keys
from the key space. Indeed, each hash function in such families has the message
space as its domain and the digest space as its codomain.

Regarding KHFs, we are merely concerned with the Collision Resistance
(CR) and Pseudo-Random Function family (PRF) properties. Intuitively, a KHF
is collision-resistant if for a known, randomly selected hash function from the
family defined by the KHF, it is computationally infeasible to compute two
messages that map to the same digest; a KHF is a PRF if querying an un-
known, randomly selected hash function from the family defined by the KHF
is computationally indistinguishable from randomly sampling elements from the
digest space. The CR and PRF properties for KHFs are formalized as the CR
and PRF games in Figure 1 and Figure 2, respectively; the oracle employed in
the PRF game is given in Figure 3. Certainly, in the PRF game, the adversary
merely gains access to the oracle’s Query procedure. Then, the advantage of any

GameCR
A,KHF

1 : k ←$ U(K)
2 : (x, x′)← A.Find(k)
3 : return x ̸= x′ ∧ KHF(k, x) = KHF(k, x′)

Figure 1. CR game for keyed hash functions.
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GamePRF
A,KHF(b)

1 : OPRFKHF.Init(b)
2 : b′ ← AOPRFKHF .Distinguish()
3 : return b′

OPRFKHF

vars b, k, m

Init(bi)

1 : b, m← bi, emptymap
2 : k ←$ U(K)

Query(x)

1 : if b then
2 : if m.[x] ̸= ⊥ then
3 : y ←$ U(Y)
4 : m.[x]← y

5 : y ← m.[x]
6 : else
7 : y ← KHF(k, x)
8 : return y

Figure 2. PRF game for keyed hash
functions.

Figure 3. Oracle employed in the PRF
game for keyed hash functions.

adversary A against CR is straightforwardly defined as follows.

AdvCR
KHF(A) = Pr

[
GameCR

A,KHF = 1
]

Moreover, the advantage of any adversary A against PRF is defined as given
below.

AdvPRF
KHF (A) =

∣∣∣Pr
[
GamePRF

A,KHF(0) = 1
]

− Pr
[
GamePRF

A,KHF(1) = 1
]∣∣∣

Tweakable Hash Functions. A Tweakable Hash Function (THF) is a func-
tion THF : P × T × M → Y where (public) parameter space P, tweak space T ,
message space M, and digest space Y are sets of bitstrings. THFs were first intro-
duced in [BHK+19]. They form an extension of Keyed Hash Functions (KHFs)
by allowing for the consideration of contextual data in the form of tweaks, i.e., el-
ements from the tweak space.6 Tweaks are predominantly used for the mitigation
of multi-target attacks.

Alongside THFs, the authors of SPHINCS+ introduced the concept of col-
lections of such functions, containing a single THF for each possible length
of the input messages [BHK+19]. Such a collection can be viewed as the set
THFC = {THFλ : P × T × Mλ → Y}λ∈Λ where Λ is the index set that contains
all the possible lengths of input messages and Mλ is the set of bitstrings of
length λ, i.e., Mλ = {0, 1}λ.

The properties we consider for (collections of) THFs in this work are the
Single-function, Multi-target, Distinct-Tweak versions of UnDetectability (SM-
DT-UD-C); Target-Collision Resistance (SM-DT-TCR-C); and PREimage resis-
tance (SM-DT-PRE-C) of a THF as a member of a Collection. These properties

6The parameter space of THFs is analogous to the key space of KHFs.
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were first introduced in [HK22] for the purpose of recovering the tight secu-
rity proof of SPHINCS+. For an extensive discussion and in-depth analysis of
these properties, we refer the interested reader to [HK22]. As their names sug-
gest, the THF properties we consider are rather similar in their formalizations.
Namely, for each property, the formalization is approximately structured as fol-
lows. First, during initialization, a parameter used to index the THF collection
is sampled uniformly at random. Then, both the challenge oracle and the col-
lection oracle are initialized with the sampled parameter. The challenge oracle
allows the adversary to adaptively define targets (through queries consisting of
tweaks and, depending on the property, potentially messages or digests) and
learn the (claimed) corresponding mappings under the considered THF. The
collection oracle enables the adversary to adaptively query any THF from the
considered collection without defining these queries as targets. After initializa-
tion, the target-selection stage commences. During this stage, the adversary has
access to both oracles, specifying its targets by queries to the challenge oracle.
Afterward, the attack stage begins. Here, the adversary is given the used param-
eter and is asked to provide a solution for (one of) the targets that it specified
in the target-selection stage.

Certainly, the solution depends on the considered game: For SM-DT-UD-C,
this is a boolean b′ indicating whether the adversary thinks the challenge oracle
returned the digest of uniformly random messages (b′ = false) or uniformly
distributed digests (b′ = true); for SM-DT-TCR-C, this consists of an index i,
identifying a target (tw, x), and a message x′ that should map to the same digest
as message x when using tweak tw; and for SM-DT-PRE-C, this consists of an
index i pointing to a target (tw, y), and a message x that should map to y using
tweak tw.

Finally, following the attack stage, success of the adversary is checked by
validating both the solution and the adversary’s behavior. The latter is necessary
as the adversary is not allowed to (1) specify more than a certain number of
tweaks, (2) use the same tweak for different targets, and (3) query the collection
oracle with a tweak occurring in any of the targets; this concurs with the fact that
XMSS and SPHINCS+ do not use the same tweak more than once. The games
formalizing the considered THF properties are given in Figure 4; the oracles
provided to the adversary in these games are specified in Figure 5 (SM-DT-UD-
C challenge oracle), Figure 6 (SM-DT-TCR-C challenge oracle), Figure 7 (SM-
DT-PRE-C challenge oracle), and Figure 8 (collection oracle). Naturally, the
adversary exclusively gains access to the Query procedures of the given oracles.
Furthermore, in these games, t denotes the number of targets the adversary may
specify, and VQSt is a predicate that validates the adversary’s behavior based
on the lists of tweaks from the challenge and collection oracles. Then, we define
the advantage of an adversary A against SM-DT-UD-C, SM-DT-TCR-C, and
SM-DT-PRE-C, as follows.

AdvSM-DT-UD-C
THF,THFC,t (A) =

∣∣∣Pr
[
GameSM-DT-UD-C

A,THF,THFC,t(0) = 1
]

− Pr
[
GameSM-DT-UD-C

A,THF,THFC,t(1) = 1
]∣∣∣ ,
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GameSM-DT-UD-C
A,THF,THFC,t(b) GameSM-DT-TCR-C

A,THF,THFC,t GameSM-DT-PRE-C
A,THF,THFC,t

1 : p←$ U(P)

2 : OUDTHF.Init(b, p) OTCRTHF.Init(p) OPRETHF.Init(p)

3 : OCTHFC.Init(p)

4 : AOUDTHF,OCTHFC .Pick() AOTCRTHF,OCTHFC .Pick() AOTCRTHF,OCTHFC .Pick()

5 : b′ ← A.Distinguish(p) i, x′ ← A.Find(p) i, x← A.Find(p)

6 : Skip tw, x← OTCR.T[i], OTCR.X[i] tw, y ← OPRE.T[i], OPRE.Y[i]

7 : return b′ ∧VQSt(OUDTHF.T, OCTHFC.T)

return x ̸= x′ ∧ THF(p, tw, x) = THF(p, tw, x′) ∧VQSt(OTCRTHF.T, OCTHFC.T)

return THF(p, tw, x) = y ∧VQSt(OPRETHF.T, OCTHFC.T)

Figure 4. SM-DT-UD-C (blue boxes), SM-DT-TCR-C (yellow boxes), and SM-DT-PRE-C
(green boxes) game for tweakable hash functions. Statements without boxes are executed in
every game.

OUDTHF

vars b, p,T

Init(bi, pi)

1 : b, p,T ← bi, pi, [ ]

Query(tw)

1 : if b then
2 : y ←$ U(Y)
3 : else
4 : x←$ U(X )
5 : y ← THF(p, tw, x)
6 : T ← T || tw
7 : return y

OTCRTHF

vars p,T,X

Init(pi)

1 : p,T,X ← pi, [ ], [ ]

Query(tw, x)

1 : y ← THF(p, tw, x)
2 : T,X ← T || tw,X || x

3 : return y

Figure 5. Challenge oracle employed
in SM-DT-UD-C game.

Figure 6. Challenge oracle employed
in SM-DT-TCR-C game.

AdvSM-DT-TCR-C
THF,THFC,t (A) = Pr

[
GameSM-DT-TCR-C

A,THF,THFC,t = 1
]
, and

AdvSM-DT-PRE-C
THF,THFC,t (A) = Pr

[
GameSM-DT-PRE-C

A,THF,THFC,t = 1
]

Addresses. XMSS — and, by extension, SPHINCS+ — consists of multiple com-
ponents; in each of these components, the same collection of THFs is employed.
As such, to mitigate multi-target attacks, schemes such as XMSS and SPHINCS+

use a unique tweak for each THF call throughout the entire construction. For the
generation of these tweaks, XMSS implements a particular addressing scheme.
Although one could almost completely abstract this addressing scheme away
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OPRETHF

vars p,T, Y

Init(pi)

1 : p,T, Y ← pi, [ ], [ ]

Query(tw)

1 : x←$ U(X )
2 : y ← THF(p, tw, x)
3 : T, Y ← T || tw, Y || y

4 : return y

OCTHFC

vars p,T

Init(pi)

1 : p,T ← pi, [ ]

Query(tw, x)

1 : y ← THFC|x|(p, tw, x)
2 : T ← T || tw
3 : return y

Figure 7. Challenge oracle employed
in SM-DT-PRE-C game.

Figure 8. Collection oracle employed
in games of properties for tweakable
hash functions.

in the analysis of XMSS and its components, we remain somewhat concrete as
to keep the connection to the actual specification clear. In particular, XMSS
employs addresses consisting of a fixed-length sequence of nonnegative integers
indicating the location and purpose of the THF call in the virtual structure. Nat-
urally, not all (fixed-length) sequences of nonnegative integers constitute valid
addresses. Furthermore, when analyzing a specific component individually, some
of the integers in the sequence may be irrelevant as they exclusively serve the
purpose of achieving uniqueness when multiple instances of the same component
are considered simultaneously.7 For these reasons, in this paper, we use “address”
to refer to a fixed-length sequence of nonnegative integers that constitutes (the
relevant part of a) valid XMSS or SPHINCS+ address in the considered con-
text. Further details regarding address validity will be provided, when relevant,
throughout the paper.

(Tweakable Hash) Function Chains. Informally, a function chain is a se-
quence of values obtained by repeatedly applying a function on (possibly a part
of) its own output, starting with some given value as input. In the context
of WOTS-TW, the chained function is a THF. In this chaining, the initially
provided address is updated in each application of the THF as to ensure the ad-
dress’s uniqueness throughout. More precisely, given a function THF, parameter
p, start index s ∈ N, iteration counter i ∈ N, message x, and address ad, the
chaining function ChTHF is recursively defined as follows.

ChTHF(p, ad, s, i, x) =
{

x, if i ≤ 0
THF(p, ads+i−1, ChTHF(p, ad, s, i − 1, x)), otherwise

7For example, XMSS employs multiple instances of WOTS-TW, each of which is
provided an address to perform its operations with. Since each instance manipulates
and uses the same part of the provided address in an identical manner, XMSS ensures
the part that is not considered by the WOTS-TW instances is different for each instance
in order to still guarantee the uniqueness of the utilized addresses between instances.
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Here, ads+i−1 denotes the address resulting from adjusting ad to be the unique
address corresponding to the s + i − 1-th call to THF in the considered chain.
Furthermore, this definition requires that the digest space of THF is contained
in its message space; this is invariably the case for the THFs considered through-
out this work. From this definition, we can derive the following compositional
property of chain functions, represented by the following equality, where j ∈ N
and the remaining values are as previously specified.

ChTHF(p, ad, s + i, j, ChTHF(p, ad, s, i, x)) = ChTHF(p, ad, s, i + j, x)

Intuitively, this equality states that chaining i times starting from position s —
thus ending in position s+ i — and, subsequently, chaining j times from position
s + i is equal to chaining i + j times starting from position s.

3 Approach

Our objectives in this work are essentially twofold: First, we seek to formally
verify the security property of XMSS as a standalone construction to increase
the confidence in the security of this standardized scheme; second, we aim to
formally verify the security property of XMSS as it is used in SPHINCS+ to pave
the way for the formal verification of the latter. Fortunately, when approached
appropriately, one of the objectives can be achieved by extending (the results
of) the other.

On a high level, XMSS is a Merkle signature scheme; that is, it comprises a
binary hash tree of height h that authenticates the public keys of 2h key pairs
from a One-Time Signature (OTS) scheme. As alluded to before, the employed
OTS is (a variant of) WOTS. To reduce the size of the secret key, the sequence of
2h WOTS secret keys, which originally constitutes the secret key, is replaced by a
single seed used to (re)generate a WOTS secret key from the sequence whenever
required via a PRF. A message is signed by first signing it with a WOTS secret
key and then generating the authentication information for the corresponding
public key. All of the above is the same for XMSS as standalone and XMSS as
building block of SPHINCS+.

There are two principal differences between XMSS as standalone and XMSS
as used in SPHINCS+. Foremost, standalone XMSS compresses messages using
randomized hashing before they are signed. In SPHINCS+, this is not neces-
sary as messages signed by XMSS are public keys of other XMSS instances or
FORS, both being single hash values. Second, the addresses in SPHINCS+ have
a slightly different format than those of standalone XMSS; nevertheless, their
properties are identical.

As in the novel tight security proof for SPHINCS+ [HK22], we describe XMSS
using THFs whenever the input to the hash function includes an address (im-
mediately giving rise to WOTS-TW [HK22] as the employed variant of WOTS),
and base security on the properties of the utilized KHFs and THFs; that is,
we formally verify that XMSS — both as standalone and as in SPHINCS+ — is
secure assuming that the employed KHFs and THFs have certain properties.
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This leads to a slightly more abstract description and result than for the “ac-
tual” standardized XMSS, where the THF abstraction is explicitly instantiated
with a KHF and a PRF [HBG+18]. Considering this slightly more abstract ver-
sion of the standardized XMSS allows for a more natural way of achieving the
above-mentioned objectives; furthermore, doing so only strengthens the result
by making it more general while not losing the clear connection to the “actual”
standardized XMSS (since it directly arises from one of the THF instantiations
proposed and analyzed in [BHK+19]). Henceforth, we refer to this slightly more
abstract version of standalone XMSS as XMSS-TW; accordingly, we refer to
XMSS as used in SPHINCS+ as fixed-length XMSS-TW.

For SPHINCS+ to achieve standard Existential unForgeability under adap-
tive Chosen-Message Attacks (EF-CMA) security, it suffices for the fixed-length
XMSS-TW it employs to achieve Existential unForgeability under Random-
Message Attacks (EF-RMA) security. This is a weaker property than the stan-
dard EF-CMA that we usually expect standalone signature schemes, such as
XMSS-TW, to possess. However, because the difference between the specifica-
tion of fixed-length XMSS-TW and (standalone) XMSS-TW can be viewed as
an instance of a particular transformation using the hash-then-sign paradigm,
one can show in the ROM that it is sufficient for fixed-length XMSS-TW to be
EF-RMA secure in order for XMSS-TW to be EF-CMA secure.

A high-level overview of (the proofs underlying) our formal verification, i.e.,
the relations between the different properties we formally verify, is given in Fig-
ure 9. In this figure, each node signifies a property of a cryptographic construc-
tion or function: The initial lines state the considered construction or function;
the last line states the considered property. Arrows denote the dependencies be-
tween properties; more precisely, the property of a cryptographic construction
associated with a certain node is implied by — or, equivalently, can be reduced
from — the conjunction of the properties of the cryptographic constructions and
functions associated with the origin nodes of the incoming arrows.

The topmost node in Figure 9 states the first objective of this work: The
formal verification of the EF-CMA security of XMSS-TW. Now, this construction
uses randomized hash-then-sign; that is, it compresses arbitrary-length messages
to fixed-length messages using a KHF indexed by a (pseudo)random value. This
value is freshly generated for each message compression using another KHF
indexed by a (secret) key that is randomly sampled during key generation. This
latter KHF is required to be a PRF in order to successfully perform adaptive
reprogramming in the ROM based on the entropy of the values produced by
this KHF. Moreover, the former KHF is required to be collision-resistant. As
shown in [BHRv21], one can construct a reduction from weaker properties, i.e.,
some form of target-collision resistance. However, this requires an unconventional
(index-bound) model for stateful signature schemes and their security which we
consider out-of-scope for this work.

In Figure 9, the reductions associated with the randomized hash-then-sign
paradigm used in XMSS-TW are depicted by the two uppermost implications.
Notably, of these two implications, the latter is (partially) from the EF-RMA
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Figure 9. Overview of the (dependencies between) properties formally verified in this work. Within
each node, the last line states the considered property of the cryptographic construction or function
specified on the preceding lines. Furthermore, the property of the cryptographic construction or func-
tion associated with a node Is implied by — or, equivalently, can be reduced from — the conjunction
of the properties of the cryptographic constructions and functions associated with the origin nodes of
the incoming arrows.

property of fixed-length XMSS-TW. Thus, at this point, it remains to complete
the other objective of this work: The formal verification of the desired secu-
rity property, i.e., EF-RMA, of fixed-length XMSS-TW. In order to do so, as
Figure 9 suggests, we first demonstrate that this property is implied by the
PRF property of the KHF employed in fixed-length XMSS-TW to generate se-
cret keys and the EF-RMA property of fixed-length XMSS-TW with uniformly
random secret keys. Then, we show the EF-RMA property of this variant of
fixed-length XMSS-TW is implied by the SM-DT-TCR-C property of the two
THFs used to construct the binary hash tree of XMSS-TW, and a variant of
the EF-CMA property specifically devised for WOTS-TW in [HK22]. However,
instead of the original WOTS-TW — in which the secret key is generated via
a PRF — we consider a version with uniformly random secret keys as a conse-
quence of the PRF-related reduction for XMSS-TW described above. Finally,
we demonstrate that the SM-DT-UD-C, SM-DT-TCR-C, and SM-DT-PRE-C
properties of the THF employed in WOTS-TW imply this dedicated variant of
the EF-CMA property.
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After formally verifying each of the aforementioned implications, we combine
them to achieve the objectives of this work, obtaining a formal verification of
the following (informally stated) results. Fixed-length XMSS-TW — i.e., XMSS
as it is used in SPHINCS+ — is EF-RMA secure if the THF used to construct
the WOTS-TW function chains possesses SM-DT-UD-C, SM-DT-TCR-C, and
SM-DT-PRE-C; the THFs employed to construct the virtual tree structure pos-
sess SM-DT-TCR-C; and the function utilized for the generation of secret keys
is a PRF. Moreover, standalone XMSS is EF-CMA secure if, additionally, the
function used to generate keys for the message-compression function is a PRF
and the message-compression function itself is modeled as a random oracle.

In the subsequent sections, we discuss the formal verification process more
thoroughly in a bottom-up manner; that is, we commence with WOTS-TW, pro-
ceed to fixed-length XMSS-TW, and finish with standalone XMSS-TW. Through-
out this discussion, due to space considerations, we do not present any material
directly from the produced formal verification artifacts. Instead, we go over the
proofs that immediately underlie the formal verification in a manner that ad-
mits a near-direct translation to EasyCrypt and, hence, closely and accurately
represents the formally verified material. Nevertheless, the produced formal ver-
ification artifacts can be found at https://github.com/MM45/FV-XMSS-EC.

4 WOTS-TW

The first explicit specification of (fixed-length) WOTS-TW was provided by
Hülsing and Kudinov in their endeavor to recover the tight security proof of
SPHINCS+ [HK22]. As hinted at in the previous section, this original specifica-
tion compresses the secret key via a PRF which, in our case, already happens
on the level of XMSS-TW, leading to a variant of WOTS-TW that straightfor-
wardly considers uniformly random secret keys. In the ensuing, we denote this
variant by WOTS-TW$ (and use WOTS-TW to refer to the original version).

Before presenting the actual specification, we go over several preliminar-
ies. Foremost, the construction is defined with respect to parameters n — the
byte-length of (1) secret key, public key, and signature elements, and (2) mes-
sages — and w — the Winternitz parameter, i.e., the radix in which messages
are encoded. From these parameters, the following constants are computed:
len1 = ⌈ 8·n

log2(w) ⌉ (number of w-ary digits necessary to represent any value of
n bytes), len2 = ⌊logw(len1 · (w − 1))⌋ + 1 (number of w-ary digits required
to represent any value in the range [0, len1 · (w − 1)]), and len = len1 + len2.
In addition to these parameters and constants, WOTS-TW$ employs a THF
with which it constructs function chains. Throughout the remainder, this THF
and the corresponding chaining function are denoted by F and CF(:= ChF), re-
spectively. The message and digest space of F both equal {0, 1}8·n. Moreover,
the parameter and tweak space of F are respectively referred to as the public
seed space PS and address space AD. Certainly, since we primarily consider
WOTS-TW$ as a component of some greater structure such as (fixed-length)
XMSS-TW or SPHINCS+, these spaces may coincide with the corresponding

https://github.com/MM45/FV-XMSS-EC
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Algorithm 1 WOTS-TW$’s Public Key From Secret Key Algorithm
1: procedure WOTS-TW$.PkWotsFromSkWots(skWots, ps, ad)
2: pkWots← [ ]
3: for i = 0, . . . , len− 1 do
4: ad.chainIndex← i
5: pkWots← pkWots || CF(ps, ad, 0, w − 1, skWots[i])
6: return pkWots

Algorithm 2 WOTS-TW$’s Public Key From Signature Algorithm
1: procedure WOTS-TW$.PkWotsFromSig(m, sig, ps, ad)
2: em← EncodeMessageWots(m)
3: pkWots← [ ]
4: for i = 0, . . . , len− 1 do
5: ad.chainIndex← i
6: pkWots← pkWots || CF(ps, ad, em[i], w − 1− em[i], sig[i])
7: return pkWots

spaces of the encompassing structure. In any case, we require the addresses to at
least have a chain index — a nonnegative integer indicating the function chain in
question — and a hash index — a nonnegative integer indicating the considered
hash “iteration” within the function chain. As per the definition of a chaining
function, the hash index is assumed to be updated internally by CF such that,
even within a single chain, F is exclusively called with unique addresses. Besides
these indices, the addresses may contain additional nonnegative integers that, for
example, guarantee the uniqueness of the addresses between multiple instances
of WOTS-TW$. As the concrete manifestation of such additional integers is
irrelevant to the current analysis, we leave this unspecified here.

In WOTS-TW$, secret keys, public keys, and signatures consist of a sequence
of len bitstrings, each of length 8 · n. Intuitively, the construction of these arti-
facts goes as follows. First, a secret key sk = sk0 . . . sklen−1 is sampled uniformly
at random from its domain. Then, the corresponding public key is computed by
applying the chaining function to each ski, 0 ≤ i < len, for w − 1 iterations.
Given a message m ∈ {0, 1}8·n, a signature is constructed by first encoding the
message into a sequence of len w-ary digits. This encoding must have the prop-
erty that, for any other message, it contains at least one digit that is strictly less
than the digit at the same index of the encoding of this other message. Albeit the
majority of WOTS-based constructions — among which WOTS-TW and, hence,
WOTS-TW$ — employ the same approach to encoding, we abstract away from
the concrete approach and show that the results hold for any encoding with the
foregoing property. Nevertheless, for completeness, we additionally demonstrate
that the concrete encoding used by WOTS-TW possesses this property. Here-
after, we denote the operator performing the encoding by EncodeMessageWots.
After encoding m into EncodeMessageWots(m) = d0 . . . dlen−1, the signature is
obtained by applying the chaining function to ski for di iterations, 0 ≤ i < len.
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Algorithm 3 WOTS-TW$’s Key Generation Algorithm
1: procedure WOTS-TW$.KeyGen(ps, ad)
2: skWots←$ U(({0, 1}8·n)len)
3: pkWots←WOTS-TW$.PkWotsFromSkWots(skWots, ps, ad)
4: return pk := (pkWots, ps, ad), sk := (skWots, ps, ad)

Algorithm 4 WOTS-TW$’s Signing Algorithm
1: procedure WOTS-TW$.Sign(sk := (skWots, ps, ad), m)
2: em← EncodeMessageWots(m)
3: sig← [ ]
4: for i = 0, . . . , len− 1 do
5: ad.chainIndex← i
6: sig← sig || CF(ps, ad, 0, em[i], skWots[i])
7: return sig

Algorithm 5 WOTS-TW$’s Verification Algorithm
1: procedure WOTS-TW$.Verify(pk := (pkWots, ps, ad), m, sig)
2: pkWots′ ←WOTS-TW$.PkWotsFromSig(m, sig, ps, ad)
3: return pkWots′ = pkWots

Notice that, from a message and its signature, the public key can be computed
by completing the function chains. In fact, computing a public key in this man-
ner and comparing it to the known public key is precisely how a signature is
verified in WOTS-TW$.

The specification of WOTS-TW$ is provided in Algorithm 1 through Algo-
rithm 5. Here, the former two are auxiliary algorithms performing tasks necessary
in both WOTS-TW$ and, as defined in the subsequent sections, (fixed-length)
XMSS-TW; the latter three constitute the key generation, signature, and verifi-
cation algorithm, respectively.

Security Property. For the security property of WOTS-TW$, we consider
Multi-instance Existential unForgability under Generic Chosen-Message Attack
(M-EF-GCMA),8 a variant of the EF-CMA property that was devised to recover
the tight security proof of SPHINCS+ [HK22]. Intuitively, this property captures
the feasibility of forging a signature for any of several WOTS-TW$ instances
after obtaining a signature (and corresponding public key) on an adaptively
chosen address-message pair for each considered instance. Crucially, the public
key of a WOTS-TW$ instance is only given to the adversary after it issued
the signature/challenge query for that instance. The forged signature should be
valid with respect to the same address as the observed signature for that instance
of WOTS-TW$. The game that formalizes this property, parameterized on the
considered THF collection THFC and the number of WOTS-TW$ instances d, is

8In [HK22], the authors introduce this property as D-EF-naCMA.
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GameM-EF-GCMA
A,WOTS-TW$,THFC,d

1 : ps←$ U(PS)
2 : OWOTS-TW$ .Init(ps)
3 : OCTHFC.Init(ps)
4 : AOWOTS-TW$ ,OCTHFC .Choose()
5 : i, m′, sig′ ← A.Forge(ps)
6 : ad, m, pkWots← OWOTS-TW$ .A[i], OWOTS-TW$ .M[i], OWOTS-TW$ .P[i]

7 : isValid←WOTS-TW$.Verify((pkWots, ps, ad), m′, sig′)
8 : isFresh← m ̸= m′

9 : return isValid ∧ isFresh ∧VADd(OWOTS-TW$ .A, OCTHFC.A)

Figure 10. M-EF-GCMA game for WOTS-TW$.

OWOTS-TW$

vars ps, A, M,P

Init (psi)

1 : ps, A, M,P← psi, [ ], [ ], [ ]

Query (ad, m)

1 : A, M ← A || ad, M || m

2 : skWots←$ U(({0, 1}8·n)len)
3 : pkWots← [ ]
4 : for i = 0, . . . , len− 1 do
5 : ad.chainIndex← i

6 : pkWots← pkWots || CF(ps, ad, 0, w − 1, skWots[i])
7 : em← EncodeMessageWots(m)
8 : sig← [ ]
9 : for i = 0, . . . , len− 1 do

10 : ad.chainIndex← i

11 : sig← sig || CF(ps, ad, 0, em[i], skWots[i])
12 : P←P || pkWots
13 : return pkWots, sig

Figure 11. Signature/Challenge oracle employed in M-EF-GCMA game for
WOTS-TW$.

given in Figure 10; the oracles given to the adversary in this game are specified
in Figure 11 (signature/challenge oracle) and Figure 8 (collection oracle). As
per usual, the adversary is merely given access to the Query procedures of these
oracles.

Akin to the games formalizing the THF properties, GameM-EF-GCMA
A,WOTS-TW$,THFC,d

is defined with respect to a two-stage adversary: In the first stage, this adversary
is asked to select (up to) d target addresses, receiving corresponding signatures on
chosen messages, while being able to query the considered (indexed) THF collec-
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tion; in the second stage, given the public seed used to index F (in WOTS-TW$)
and the considered THF collection, this adversary is asked to provide a signature
on a fresh message that is valid with respect to one of the targets specified in
the first stage. In the end, in addition to the legitimacy of the forgery, the adver-
sary’s behavior throughout the game is validated; this validation is performed by
the VADd(OWOTS-TW$ .A, OCTHFC.A) predicate, checking whether the number
of specified target addresses was at most d, whether the target addresses were
unique with respect to the part that can be used to differentiate between in-
stances of WOTS-TW$ — i.e., the part excluding the aforementioned chain and
hash indices — and whether the target addresses were never used in queries to the
collection oracle. Then, the advantage of any adversary A against M-EF-GCMA
(of WOTS-TW$) is defined as follows.

AdvM-EF-GCMA
WOTS-TW$,THFC,d(A) = Pr

[
GameM-EF-GCMA

A,WOTS-TW$,THFC,d = 1
]

Formal Verification. We presently discuss the (proof of) the security statement
for WOTS-TW$ that we formally verify in this work. As depicted in Figure 9, we
aim to demonstrate an implication from (the conjunction of) the SM-DT-UD-C,
SM-DT-TCR-C, and SM-DT-PRE-C properties of F to the M-EF-GCMA prop-
erty of WOTS-TW$. More formally, the security theorem we prove is the follow-
ing.

Security Theorem 1 (M-EF-GCMA for WOTS-TW$). For any adversary
A, there exist adversaries B0, B1, and B2 — each with approximately the same
running time as A — such that the following inequality holds.

AdvM-EF-GCMA
WOTS-TW$,FC,d(A) ≤ (w − 2) · AdvSM-DT-UD-C

F,FC,tudf
(B0) + AdvSM-DT-TCR-C

F,FC,ttcrf
(B1)

+ AdvSM-DT-PRE-C
F,FC,tpref

(B2)

Here, FC denotes an arbitrary THF collection containing F, d ≥ 1, tudf = d · len,
ttcrf = d · len · w, and tpref = d · len.

Conceptually, the formal verification of the above security theorem closely fol-
lows the original proof presented in [HK22]. Specifically, the formal verification
considers a sequence of two games; in order, we denote these games by Game0

A
and Game1

A. Both of these games only differ from GameM-EF-GCMA
A,WOTS-TW$,FC,d — and,

hence, each other — with respect to the Query procedure of the challenge or-
acle provided to the adversary. As such, the ensuing exposition of the proof
predominantly focuses on the challenge oracles instead of the games. The ad-
vantage of any adversary A playing in Gamei

A, i ∈ {0, 1}, is defined similarly to
AdvM-EF-GCMA

WOTS-TW$,FC,d(A); we refer to such an advantage as Advi(A). Imminently,
we relate or bound (the differences between) advantages obtained in the games
of the game sequence. Afterward, we combine the obtained results to acquire the
aforementioned implication from the desired properties of F to the M-EF-GCMA
property of WOTS-TW$.
Relation Between AdvM-EF-GCMA

WOTS-TW$,FC,d(A) and Adv0(A). As hinted at above, the
first game in the game sequence, Game0

A, only differs from GameM-EF-GCMA
A,WOTS-TW$,FC,d
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O0.Query(ad, m) O1.Query(ad, m)

1 : A, M ← A || ad, M || m

2 : skWots←$ U(({0, 1}8·n)len)
3 : em← EncodeMessageWots(m)
4 : sig← [ ]
5 : for i = 0, . . . , len− 1 do
6 : ad.chainIndex← i

7 : sig← sig || CF(ps, ad, 0, em[i], skWots[i])

sig← sig || (skWots[i] if em[i] = 0 else CF(ps, ad, em[i]− 1, 1, skWots[i]))

8 : pkWots← [ ]
9 : for i = 0, . . . , len− 1 do

10 : ad.chainIndex← i

11 : pkWots← pkWots || CF(ps, ad, em[i], w − 1− em[i], sig[i])
12 : P←P || pkWots
13 : return pkWots, sig

Figure 12. Query procedures of the challenge oracles employed in Game0
A (blue boxes)

and Game1
A (yellow boxes). Statements without boxes are executed in both procedures.

in the Query procedure of the challenge oracle. Namely, first, the order of the
construction of the public key and signature is reversed; second, the public key
is constructed by finishing the function chains based on the signature instead
of computing the complete function chains based on the secret key. Figure 12
provides the specification of the resulting oracle procedure. Indeed, comparing
OWOTS-TW$ .Query and O0.Query, we see that the for-loops (and the preceding
initialization of the variables used in these loops) concerning the computation
of the public key pkWots and signature sig are swapped. Furthermore, rather
than computing the i-th element of pkWots immediately as CF(ps, ad, 0, w −
1, skWots[i]), as O0.Query does, O1.Query computes it as CF(ps, ad, em[i], w−1−
em[i], sig[i]), where sig[i] equals CF(ps, ad, 0, em[i], skWots[i]). However, from the
compositional property of chaining functions, it follows that CF(ps, ad, em[i], w−
1−em[i], CF(ps, ad, 0, em[i], skWots[i])) = CF(ps, ad, 0, w −1, skWots[i]); as such,
the different computations of the public key are equivalent. Then, the two Query
procedures and, in turn, GameM-EF-GCMA

A,WOTS-TW$,FC,d and Game0
A are semantically

equivalent. In consequence, we can derive the following result.

∀A : AdvM-EF-GCMA
WOTS-TW$,FC,d(A) = Adv0(A)

Bound on Difference Between Adv0(A) and Adv1(A). As GameM-EF-GCMA
A,WOTS-TW$,FC,d

and Game0
A, Game0

A and Game1
A exclusively differ in the Query procedure of

their challenge oracles, the specifications of which are provided in Figure 12.
Collating these procedures, we see that their disparity solely concerns the gen-
eration of the signature: O0.Query properly constructs the signature by applying
the chaining function on each secret key element for the number of iterations in-
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dicated by the corresponding element of the encoded message; O1.Query merely
performs the final iteration of each of these applications of the chaining function.
Here, remember that the chaining function essentially reduces to the identity
function whenever the iteration counter is less than or equal to zero. As such, in
both procedures, sig[i] equals skWots[i] if em[i] = 0, where 0 ≤ i < len.

Considering their difference, distinguishing between Game0
A and Game1

A in-
tuitively boils down to distinguishing between, for any message and address
(and uniformly random public seed), the signature distribution resulting from
applying the chaining function the appropriate number of times on the elements
of a uniformly random secret key, and the distribution resulting from only ap-
plying the final iteration of the chaining function on the elements of a uni-
formly random secret key. Surely, these distributions should be computationally
indistinguishable if, for any address (and uniformly random public seed), the
output of the chaining function — when applied on a uniformly random value —
remains computationally indistinguishable from a uniformly random value for
up to w − 2 iterations. Namely, this would imply that, irrespective of the value
of em[i], CF(ps, ad, 0, em[i] − 1, skWots[i]) is computationally indistinguishable
from skWots[i]. Indeed, this is closely related to the SM-DT-UD-C property we
assume F to possess; in fact, by means of a hybrid argument based on the number
of omitted initial applications of F in a call to CF, we can reduce breaking this
property to distinguishing between Game0

A and Game1
A. More precisely, given

an adversary A playing in Game0
A and Game1

A, we can construct a reduction
adversary RA playing in GameSM-DT-UD-C

RA,F,FC,tudf
(b) that samples i ∈ [0, w − 3] uni-

formly at random, constructs either the i-th or i + 1-th hybrid — depending on
whether its challenge oracle returns mappings of uniformly random values or
returns uniformly random values, respectively — and employs A to determine
which hybrid it is, thereby achieving a related advantage in its own game. As
a result, abstracting away the particular reduction adversary, we obtain the fol-
lowing bound.

∀A∃B0 :
∣∣Adv0(A) − Adv1(A)

∣∣ ≤ (w − 2) · AdvSM-DT-UD-C
F,FC,tudf

(B0)

Bound on Adv1(A). In the situation where an adversary playing in GameA
1 re-

turns a valid forgery, it must be the case that this forgery allows for the extraction
of a collision or a preimage for F. Namely, a forgery in GameA

1 is a valid signature
sig′ on a fresh message m′ under a previously established public key pkWots, ad-
dress ad and public seed ps. That is, there already exists a valid signature sig on
another message m (different from m′) under this public key, address, and public
seed. However, as sig and sig′ are signatures on different messages, the encoding
guarantees that there exists an i, 0 ≤ i < len, such that em′[i] < em[i]; conse-
quently, for such an i, the verification algorithm performs more iterations of the
chaining function on sig′[i] than it performs on sig[i]. Nevertheless, since sig and
sig′ are both valid under pkWots, both function chains must result in pkWots[i].
As such, we can distinguish two cases: CF(ps, ad, em′[i], em[i] − em′[i], sig′[i]) ̸=
sig[i] and CF(ps, ad, em′[i], em[i] − em′[i], sig′[i]) = sig[i]. In the former case, the
value of the function chain of sig′[i] at the same iteration as sig[i] does not equal
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sig[i]. However, from both of these values, pkWots[i] can be obtained by com-
pleting the function chains in an identical manner as, at this point, the same
(number of) iterations remain for both function chains. Following, since at some
point along the remainder of the function chains the output of F must become
equal, the values in the function chains preceding these equal outputs constitute
a collision for F. In the other case, the value of the function chain of sig′[i] at the
same iteration as sig[i] does equal sig[i]. Then, the value in the function chain
of sig′[i] directly preceding the value at the same iteration as sig[i] constitutes a
preimage of sig[i] under F.

In line with the above reasoning, we can construct reduction adversaries that
are witnesses for the following bound.

∀A∃B0,B1 : Adv1(A) ≤ AdvSM-DT-TCR-C
F,FC,ttcrf

(B0) + AdvSM-DT-PRE-C
F,FC,tpref

(B1)

Final Result. Combining the foregoing results, we can derive Security Theorem 1
as follows.

∀A∃B0,B1,B2 :
AdvM-EF-GCMA

WOTS-TW$,FC,d(A) = Adv0(A) ≤
∣∣Adv0(A) − Adv1(A)

∣∣ + Adv1(A) ≤

(w − 2) · AdvSM-DT-UD-C
F,FC,tudf

(B0) + AdvSM-DT-TCR-C
F,FC,ttcrf

(B1) + AdvSM-DT-PRE-C
F,FC,tpref

(B2)

Although no formal runtime analysis is provided, it is evident from the prior
discussion (and from the EasyCrypt artifacts) that there exists B0, B1, and B2
that not only satisfy the above inequality, but also execute in approximately the
same time as A.

5 Fixed-Length XMSS-TW

Fixed-length XMSS-TW builds on WOTS-TW and is a component of SPHINCS+.
Conceptually, fixed-length XMSS-TW constitutes a binary hash tree, or Merkle
tree, that employs WOTS-TW as its one-time signature scheme and exclusively
processes messages of some fixed length; in fact, this fixed length matches the
fixed length of the messages processed by WOTS-TW. As briefly elaborated on
in Section 4, WOTS-TW only differs from WOTS-TW$ concerning the genera-
tion and handling of the secret keys. More precisely, rather than sampling the
secret key uniformly at random and maintaining it in its entirety, WOTS-TW
merely maintains a secret seed — an element from the secret seed space SS —
(re)generating the secret key via a KHF each time it is required. For the purpose
of (re)generating the secret key, WOTS-TW specifies an additional algorithm,
provided in Algorithm 6. In this algorithm, SKWG is a KHF of which the key
space and message space are instantiated with SS and PS × AD, respectively.
Then, the remainder of the algorithms of WOTS-TW are analogous to the algo-
rithms of WOTS-TW$; as such, we refer to them using the same identifiers, yet
preceded with WOTS-TW instead of WOTS-TW$.

Foremost, we go over several additional preliminaries. Besides the parameters
required for WOTS-TW, fixed-length XMSS-TW is defined with respect to a
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parameter h that signifies the height of the tree. From h, since fixed-length
XMSS-TW constitutes a Merkle tree, we can compute the number of leaves as l =
2h. Furthermore, in addition to the THF employed in WOTS-TW, XMSS-TW
utilizes two THFs: one for the compression of WOTS-TW public keys to leaves —
denoted by PKCO — and one for the construction of the tree from the leaves —
denoted by TRC. For these THFs, the parameter and tweak space respectively
are PS and AD, identical to those of F. Nevertheless, as fixed-length XMSS-TW
constitutes a larger structure than WOTS-TW, we require the addresses from
AD to — on top of the previously introduced chain index and hash index required
by WOTS-TW — contain a type index, key pair index, tree height index, and tree
breadth index. These indices are nonnegative integers that, in order, indicate the
considered type of operation (either function chaining, public key compression,
or tree construction), the WOTS-TW key pair (or leaf) in question, the height
of the considered tree node, and the breadth of the considered tree node (at the
height indicated by the tree height index). Here, the key pair index is only used
for the function chaining and public key compression operations, and the tree
height and tree breadth indices are only used for the tree construction operation.9
Finally, besides these indices, the addresses may comprise other nonnegative
integers that, e.g., guarantee the uniqueness of the addresses when (fixed-length)
XMSS-TW is considered in an encompassing structure such as SPHINCS+. As
before, we leave these unspecified.

In fixed-length XMSS-TW, key pairs are, intuitively, constructed as follows.
Foremost, a secret key is a four-tuple sk = (i, ss, ps, ad) where i ∈ [0, l − 1],
ss ∈ SS, ps ∈ PS, and ad ∈ AD. Here, i indicates which WOTS-TW key pair
is supposed to be used for the construction of the next signature. Then, the
public key associated with sk is produced by, first, generating a sequence of l
WOTS-TW secret keys via SKWG. Subsequently, the corresponding sequence of
WOTS-TW public keys is computed and, in turn, transformed into a sequence of
leaves by means of PKCO. Now, this sequence of leaves uniquely defines a Merkle
tree of which we can obtain the root by iteratively computing each of the tree’s
layers. Specifically, in the construction of the layer at height thi, the node at
breadth tbi is computed from its children cl and cr as TRC(ps, adthi,tbi, cl || cr),
where adthi,tbi signifies the address resulting from modifying ad to be the unique
address for the node at height thi and breadth tbi. After obtaining the root of
the Merkle tree rt, the public key is defined as the three-tuple pk = (rt, ps, ad).
Henceforth, we denote the operator that performs this root computation by
RootFromLeaves.

Given a key pair (pk, sk) as described above and a message m ∈ {0, 1}8·n, sig-
natures are, on a somewhat high level, created and verified as follows. First, using
the i-th WOTS-TW secret key from the aforementioned sequence (recall that i is
part of sk), a WOTS-TW signature sigWots on m is produced. Next, a so-called
authentication path is computed for the i-th leaf of the Merkle tree. This path
is a sequence of nodes that, in order, comprises the siblings of the nodes on the

9Consequently, in practice, it may be the case that, e.g., the key pair index and the
tree height index refer to the same location of an address.
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Algorithm 6 WOTS-TW’s Secret Key Generation Algorithm
1: procedure WOTS-TW.SkWotsGen(ss, ps, ad)
2: skWots← [ ]
3: for i = 0, . . . , len− 1 do
4: ad.chainIndex, ad.hashIndex← i, 0
5: skWots← skWots || SKWG(ss, (ps, ad))
6: return skWots

Algorithm 7 FL-XMSS-TW’s Leaves From Secret Key Algorithm
1: procedure FL-XMSS-TW.LeavesFromSk(ss, ps, ad)
2: leaves← [ ]
3: for i = 0, . . . , l − 1 do
4: ad.typeIndex, ad.keypairIndex← chainType, i
5: skWots←WOTS-TW.SkWotsGen(ss, ps, ad)
6: pkWots←WOTS-TW.PkWotsFromSkWots(skWots, ps, ad)
7: ad.typeIndex← compressionType
8: leaves← leaves || PKCO(ps, ad, pkWots)
9: return leaves

path from the root to the i-th leaf. Hereafter, we denote the operator that com-
putes this authentication path by AuthPath. Given the authentication path ap,
the signature on m is the three-tuple sig = (i, sigWots, ap). Verification of sig is
performed by, first, computing the WOTS-TW public key pkWots corresponding
to sigWots and compressing it to a leaf lf using PKCO. Afterward, a candidate
root value rt′ for the Merkle tree is computed from lf and ap. Indeed, this is
achieved by reconstructing the path from the i-th leaf to the root by using lf
and the sibling nodes in ap. For example, if the i-th leaf is a left child, the second
node on the path is reconstructed as p1 = TRH(ps, ad1,j , lf || ap[h − 1]), where
j = ⌊i/2⌋; then, if p1 is a right child, the third node on the path is reconstructed
as p2 = TRH(ps, ad2,k, ap[h−2] || p1), where k = ⌊j/2⌋; et cetera.10 Throughout
the remainder, we denote the operator that performs this computation of a can-
didate root by RootFromAuthPath. Finally, if rt′ equals rt, verification succeeds;
otherwise, verification fails.

Following the above description, the specification of fixed-length XMSS-TW
is provided in Algorithm 7 through Algorithm 10. Here, the former is an aux-
iliary algorithm for the construction of the leaves from the secret seed, public
seed, and address of the secret key; the latter three constitute the actual key
generation, signing, and verification algorithm, respectively. In these algorithms,
and from this point onward, we explicitly refer to fixed-length XMSS-TW as
FL-XMSS-TW to prevent potential ambiguity with (standalone) XMSS-TW.

Security Property. As hinted at in Section 3, the security property we con-
sider for FL-XMSS-TW is the EF-RMA property. However, to be more precise,

10Whether the nodes along the reconstructed path are left or right children can be
determined from the value of i.
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Algorithm 8 FL-XMSS-TW’s Key Generation Algorithm
1: procedure FL-XMSS-TW.KeyGen(ss, ps, ad)
2: leaves← FL-XMSS-TW.LeavesFromSk(ss, ps, ad)
3: ad.typeIndex← treeType
4: rt← RootFromLeaves(leaves, ps, ad)
5: return pk := (rt, ps, ad), sk := (0, ss, ps, ad)

Algorithm 9 FL-XMSS-TW’s Signing Algorithm
1: procedure FL-XMSS-TW.Sign(sk := (i, ss, ps, ad), m)
2: ad.typeIndex, ad.keypairIndex← chainType, i
3: sigWots←WOTS-TW.Sign((ss, ps, ad), m)
4: leaves← FL-XMSS-TW.LeavesFromSk(ss, ps, ad)
5: ad.typeIndex← treeType
6: ap← AuthPath(i, leaves, ps, ad)
7: return sig := (i, sigWots, ap), sk := (i + 1, ss, ps, ad)

Algorithm 10 FL-XMSS-TW’s Verification Algorithm
1: procedure FL-XMSS-TW.Verify(pk := (rt, ps, ad), m, sig := (i, sigWots, ap))
2: ad.typeIndex, ad.keypairIndex← chainType, i
3: pkWots←WOTS-TW.PkWotsFromSig(m, sigWots, ps, ad)
4: ad.typeIndex← compressionType
5: lf ← PKCO(ps, ad, pkWots)
6: rt′ ← RootFromAuthPath(i, lf, ap)
7: return rt′ = rt

GameEF-RMA
A,FL-XMSS-TW

1 : ss←$ U(SS)
2 : ps←$ U(PS)
3 : ad← A.Choose()
4 : pk, sk← FL-XMSS-TW.KeyGen(ss, ps, ad)
5 : ms, sigs← [ ], [ ]
6 : for i = 0, . . . , l − 1 do
7 : m←$ U(M)
8 : sig, sk← FL-XMSS-TW.Sign(sk, m)
9 : ms, sigs← ms || m, sigs || sig

10 : m′, sig′ ← A.Forge(pk, ms, sigs)
11 : isValid← FL-XMSS-TW.Verify(pk, m′, sig)
12 : isFresh← m′ ̸∈ ms

13 : return isValid ∧ isFresh

Figure 13. EF-RMA property considered for FL-XMSS-TW.

we actually consider a minor variant of this property that accounts for the fact
that FL-XMSS-TW operates on an address that is provided by the environment
and, besides having (valid values for) the previously described indices, may be
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arbitrarily structured.11 Ensuring FL-XMSS-TW possesses the desired security
property regardless of the additional structure of the provided address, the vari-
ant of EF-RMA we consider is defined with respect to a two-stage adversary that
selects the address to be used in its first stage, and only attempts to provide a
forgery in its second stage. Figure 13 provides the game formalizing this property.
Then, the advantage of any adversary A against EF-RMA (of FL-XMSS-TW)
is defined as follows.

AdvEF-RMA
FL-XMSS-TW(A) = Pr

[
GameEF-RMA

A,FL-XMSS-TW = 1
]

Formal Verification. We now go over the (proof of) the security statement
concerning FL-XMSS-TW that we formally verify in this work. As illustrated in
Figure 9, we aim to show that the EF-RMA property of FL-XMSS-TW is implied
by the PRF property of SKWG, the M-EF-GCMA property of WOTS-TW$, and
the SM-DT-TCR-C property of PKCO and TRC. Specifically, we formally verify
the following security theorem.

Security Theorem 2 (EF-RMA for FL-XMSS-TW). For any adversary A,
there exist adversaries B0, B1, B2, and B2 — each with approximately the same
running time as A — such that the following inequality holds.

AdvEF-RMA
FL-XMSS-TW(A) ≤ AdvPRF

SKWG(B0) + AdvM-EF-GCMA
WOTS-TW$,THFC,l(B1)

+ AdvSM-DT-TCR-C
PKCO,THFC,l (B2)

+ AdvSM-DT-TCR-C
TRC,THFC,l−1 (B3)

Here, THFC denotes an arbitrary THF collection containing F, PKCO, and TRC.

The formal verification of Theorem 2 proceeds as follows. Foremost, we consider
FL-XMSS-TW$ instead of FL-XMSS-TW to obtain GameEF-RMA

A,FL-XMSS-TW$ . Here,
FL-XMSS-TW$ is analogous to WOTS-TW$ in that, rather than (re)generating
the WOTS-TW secret keys via SKWG whenever necessary, it samples these keys
uniformly at random and directly takes them as input whenever they are re-
quired. Alternatively stated, FL-XMSS-TW$ is obtained from FL-XMSS-TW
by replacing the call to WOTS-TW.SkWotsGen in FL-XMSS-TW.LeavesFromSk
with the appropriate sampling operation, and replacing the calls to the remain-
ing WOTS-TW procedures with their WOTS-TW$ analogs. Given these differ-
ences, we reduce from the PRF property of SKWG to distinguishing between
GameEF-RMA

A,FL-XMSS-TW and GameEF-RMA
A,FL-XMSS-TW$ . Afterward, considering the situa-

tion in which A returns a valid forgery in GameEF-RMA
A,FL-XMSS-TW$ , we perform a case

analysis, allowing us to rephrase the corresponding probability as a sum of sev-
eral terms. Subsequently, we bound each of these terms by providing a reduction
from either the M-EF-GCMA property of WOTS-TW$, or the SM-DT-TCR-C
property of PKCO or TRC. Altogether, this suffices to derive the desired result.

11For example, as previously mentioned, an address may contain additional indices
that differentiate the context in an encompassing structure.



Machine-Checked Security for XMSS as in RFC 8391 and SPHINCS+ 25

Bound on Difference Between AdvEF-RMA
FL-XMSS-TW(A) and AdvEF-RMA

FL-XMSS-TW$(A). As
alluded to above, the sole semantic difference between GameEF-RMA

A,FL-XMSS-TW and
GameEF-RMA

A,FL-XMSS-TW$ regards the manner in which the secret key is obtained: In
FL-XMSS-TW, the secret key is (re)generated via SKWG each time it is required;
in FL-XMSS-TW$, the secret key is sampled uniformly at random, maintained
as is, and reused whenever it is required. Ergo, given an adversary A playing
in these games, we can straightforwardly construct a reduction adversary RA

achieving an advantage in GamePRF
RA,SKWG(b) that equals the (absolute) difference

between AdvEF-RMA
FL-XMSS-TW(A) and AdvEF-RMA

FL-XMSS-TW$(A). Generalizing this result,
we acquire the following bound.

∀A∃B0 :
∣∣∣AdvEF-RMA

FL-XMSS-TW(A) − AdvEF-RMA
FL-XMSS-TW$(A)

∣∣∣ ≤ AdvSKWG
PRF (B0)

Case Distinction for GameEF-RMA
A,FL-XMSS-TW$ = 1. Considering the situation where

an adversary playing in GameEF-RMA
A,FL-XMSS-TW$ provides a valid forgery, we can dis-

tinguish three (exhaustive) cases. Namely, a valid forgery in GameEF-RMA
A,FL-XMSS-TW$

consists of a message m′ and a signature sig′ = (i′, sigWots′, ap′) such that m′

is fresh and sig′ is valid for m′ under the considered public key pk = (rt, ps, ad).
Now, recall that sig′ being valid for m′ under pk means that the candidate root
rt′ equals the actual root rt. As such, at a certain point along the computation
of rt′, the considered values should coincide with the corresponding values used
in the computation of rt. Building on this observation, the first case we distin-
guish concerns pkWots′, the WOTS-TW$ public key corresponding to sigWots′,
coinciding with pkWotsi′ , the i′-th WOTS-TW$ public key in the sequence used
during key generation and, hence, the computation of rt. As per the verifica-
tion procedure of WOTS-TW$, this means that sigWots′ is a valid signature
for m′ under pkWotsi′ ; since m′ is fresh, it follows that m′ and sigWots′ form
a valid forgery for the WOTS-TW$ instance corresponding to the i′-th leaf of
the Merkle tree. Henceforth, we denote the event that this first case occurs by
EF . Then, if pkWots′ does not equal pkWotsi′ , the second case we distinguish
regards the leaves resulting from the compression of these WOTS-TW$ public
keys coinciding. In this case, the inputs of PKCO are unequal yet map, under the
same public seed and address, to the same output. Consequently, pkWots′ and
pkWotsi′ constitute a collision for PKCO. Hereafter, EP signifies the event that
this second case occurs. Lastly, if both of the preceding cases do not happen,
it must be the case that, from a certain point onward, the reconstructed path
coincides with the corresponding path through the original Merkle tree. Follow-
ing, since the initial (few) nodes along the paths do not coincide, the first node
for which the paths do coincide must be obtained by applying TRC, with the
same public seed and address, on different inputs. As such, these inputs form a
collision for TRC.

Formally, the foregoing can essentially be summarized by the following, where
GA serves as a shorthand for GameEF-RMA

A,FL-XMSS-TW$ .

∀A : Pr[GA = 1] =
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Pr[GA = 1 ∧ EF ] + Pr[GA = 1 ∧ ¬EF ] =
Pr[GA = 1 ∧ EF ] + Pr[GA = 1 ∧ ¬EF ∧ EP ] + Pr[GA = 1 ∧ ¬EF ∧ ¬EP ]

Bound on Pr
[
GameEF-RMA

A,FL-XMSS-TW$ = 1 ∧ EF

]
. For the case where the (valid)

forgery returned by A in GameEF-RMA
A,FL-XMSS-TW$ comprises a valid forgery for

the indicated WOTS-TW$ instance, we can devise a reduction adversary RA

playing in GameM-EF-GCMA
RA,F,THFC,l as follows. Foremost, RA produces a sequence of

l WOTS-TW$ signatures and public keys by repeatedly querying its challenge
oracle on an appropriately updated address (based on the address obtained from
A) and a uniformly random message.12 Then, utilizing the public seed provided
in its second stage, the reduction adversary finishes the generation of, and pro-
vides A with, the FL-XMSS-TW$ signatures and public key corresponding to
the previously produced sequence of WOTS-TW$ signatures and public keys. Fi-
nally, as soon as A returns a (valid) forgery — comprised of, say, message m′ and
signature sig′ = (i′, sigWots′, ap′) — RA straightforwardly extracts and returns
i′, m′, and sigWots′.

Based on the above, we can derive the ensuing result.

∀A∃B1 : Pr
[
GameEF-RMA

A,FL-XMSS-TW$ = 1 ∧ EF

]
≤ AdvM-EF-GCMA

WOTS-TW$,THFC,l(B1)

Bound on Pr
[
GameEF-RMA

A,FL-XMSS-TW$ = 1 ∧ ¬EF ∧ EP

]
. In the case that the (valid)

forgery provided by A in GameEF-RMA
A,FL-XMSS-TW$ does not contain a WOTS-TW$

forgery but does allow for the extraction of a collision for PKCO, we can consider
the ensuing reduction adversary RA playing in GameSM-DT-TCR-C

RA,PKCO,THFC,l. First, RA

samples a sequence of l WOTS-TW$ secret keys uniformly at random and, sub-
sequently, computes the corresponding public keys by continually querying its
collection oracle on a properly updated address (based on the address provided
by A) and a function chain element. Afterward, the reduction adversary produces
the corresponding sequence of leaves through its challenge oracle, thereby speci-
fying every WOTS-TW$ public key as a collision target.13 Then, employing the
public seed provided in its second stage, RA constructs, and provides A with, the
FL-XMSS-TW$ signatures (on uniformly random messages) and public key cor-
responding to the formerly obtained sequences. Lastly, when A returns a (valid)
forgery — consisting of, say, message m′ and signature sig′ = (i′, sigWots′, ap′) —
the reduction adversary computes the WOTS-TW$ public key corresponding to
sigWots′ and returns it together with i′.

From the preceding, we can deduce the following bound.

∀A∃B2 : Pr
[
GameEF-RMA

A,FL-XMSS-TW$ = 1 ∧ ¬EF ∧ EP

]
≤ AdvSM-DT-TCR-C

PKCO,THFC,l (B2)

12As such, it suffices to consider l simultaneous WOTS-TW$ instances and, accord-
ingly, only allow l queries to the challenge oracle.

13Thus, allowing for at most l targets is sufficient, as this is precisely the number of
considered WOTS-TW$ public keys.
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Bound on Pr
[
GameEF-RMA

A,FL-XMSS-TW$ = 1 ∧ ¬EF ∧ ¬EP

]
. In the final case, the

(valid) forgery provided by A in GameEF-RMA
A,FL-XMSS-TW$ allows for the extraction

of a collision for TRC; so, we consider a reduction adversary RA playing in
GameSM-DT-TCR-C

RA,PKCO,THFC,l. In essence, this reduction adversary is fairly similar to the
reduction adversary considered in the previous case. Namely, RA commences
identically but produces the leaves by querying its collection oracle instead of
its challenge oracle. Subsequently, the reduction adversary actually computes
the corresponding FL-XMSS-TW public key via its challenge oracle; as such, it
specifies all (concatenations of sibling) nodes in the entire Merkle tree as collision
targets.14 Then, utilizing the public seed provided in its second stage, RA pro-
duces the FL-XMSS-TW$ signatures corresponding to the previously sampled
sequence of WOTS-TW$ secret keys. Ultimately, whenever A returns a (valid)
forgery, the reduction adversary computes the corresponding path and searches
for the first node on this path that coincides with the corresponding node in the
original Merkle tree. After finding this node, the reduction adversary returns
(the concatenation of) its children and an integer j such that the j-th query to
the challenge oracle contained the colliding value from the original Merkle tree.

Given the foregoing, we can derive the following result.

∀A∃B3 : Pr
[
GameEF-RMA

A,FL-XMSS-TW$ = 1 ∧ ET

]
≤ AdvSM-DT-TCR-C

TRC,THFC,l−1 (B3)

Final Result. Aggregating the results established above, we can derive Security
Theorem 2 as shown below. In this derivation, GA denotes GameEF-RMA

A,FL-XMSS-TW$ .

∀A∃B0,B1,B2,B3 :
AdvEF-RMA

FL-XMSS-TW(A) ≤∣∣∣AdvEF-RMA
FL-XMSS-TW(A) − AdvEF-RMA

FL-XMSS-TW$(A)
∣∣∣ + AdvEF-RMA

FL-XMSS-TW$(A) ≤

AdvSKWG
PRF (B0) + AdvEF-RMA

FL-XMSS-TW$(A) =
AdvSKWG

PRF (B0) + Pr[GA = 1 ∧ EF ] + Pr[GA = 1 ∧ ¬EF ∧ EP ]
+ Pr[GA = 1 ∧ ¬EF ∧ ¬EP ] ≤
AdvSKWG

PRF (B0) + AdvM-EF-GCMA
WOTS-TW$,THFC,l(B1) + AdvSM-DT-TCR-C

PKCO,THFC,l (B2)

+ AdvSM-DT-TCR-C
TRC,THFC,l−1 (B3)

Once again, even though no formal runtime analysis is provided, it is clear from
the preceding discussion (and from the EasyCrypt artifacts) that there exist B0,
B1, B2, and B3 that not only satisfy the above inequality, but also terminate in
approximately the same time as A.

Here, we could trivially combine Security Theorem 1 and Security Theorem 2
to obtain a bound on AdvEF-RMA

FL-XMSS-TW(A) solely based on the properties of the
employed KHFs and THFs. This completes the formal verification of the security
of XMSS-TW as a component of SPHINCS+.

14Hence, allowing for at most l − 1 targets is sufficient, since this is exactly the
number of nodes in the Merkle tree (excluding the leaves).
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Algorithm 11 XMSS-TW’s Key Generation Algorithm
1: procedure XMSS-TW.KeyGen()
2: ms←$ U(MS)
3: ss←$ U(SS)
4: ps←$ U(PS)
5: ad← adc

6: pk, _← FL-XMSS-TW.KeyGen(ss, ps, ad)
7: return pk := (rt, ps, ad), sk := (ms, 0, ss, ps, ad)

Algorithm 12 XMSS-TW’s Signing Algorithm
1: procedure XMSS-TW.Sign(sk := (ms, i, ss, ps, ad), m)
2: mk← MKG(ms, i)
3: cm← MCO(mk, m)
4: (i, sigWots, ap), _← FL-XMSS-TW.Sign((i, ss, ps, ad), cm)
5: return sig := (mk, i, sigWots, ap), sk := (ms, i + 1, ss, ps, ad)

Algorithm 13 XMSS-TW’s Verification Algorithm
1: procedure XMSS-TW.Verify(pk := (rt, ps, ad), m, sig := (mk, i, sigWots, ap))
2: cm← MCO(mk, m)
3: ver← FL-XMSS-TW.Verify(pk, cm, (i, sigWots, ap))
4: return ver

6 XMSS-TW

XMSS-TW extends FL-XMSS-TW in a way that allows for the processing of
arbitrary-length messages. In essence, the transformation from FL-XMSS-TW to
XMSS-TW is an instance of the hash-then-sign paradigm. To this end, XMSS-TW
employs two additional KHFs — MKG and MCO — to compress arbitrary-length
messages before executing the relevant procedures of FL-XMSS-TW. More pre-
cisely, MKG is used as a PRF to generate an indexing key for MCO; in turn,
indexed on this key, MCO is used to compress the message. The specification of
XMSS-TW is provided in Algorithm 11 (key generation), Algorithm 12 (sign-
ing), and Algorithm 13 (verification). Here, MS denotes the set of indexing keys
for MKG, and adc signifies an arbitrary address that satisfies the requirements
for addresses used in FL-XMSS-TW (see Section 5).

Security Property. As for the majority of standalone signature schemes, we
require XMSS-TW to possess the EF-CMA security property. However, since
XMSS-TW only allows for the signing of at most l signatures, we consider a
bounded version of EF-CMA. The game formalizing this property is provided in
Figure 14; the oracle given to the adversary in this game is specified in Figure 15.
As before, the adversary exclusively gains access to the oracle’s Query procedure.
Then, the advantage of any adversary A against EF-CMA (of XMSS-TW) is
defined as follows.

AdvEF-CMA
XMSS-TW(A) = Pr

[
GameEF-CMA

A,XMSS-TW = 1
]
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GameEF-CMA
A,XMSS-TW

1 : pk, sk← XMSS-TW.KeyGen()
2 : OXMSS-TW.Init(sk)
3 : m′, sig′ ← AOXMSS-TW .Forge(pk)
4 : isValid← XMSS-TW.Verify(pk, m′, sig′)
5 : isFresh← m′ ̸∈ OXMSS-TW.M

6 : return isValid ∧ isFresh ∧ |OXMSS-TW.M| ≤ l

OXMSS-TW

vars sk, M

Init(ski)

1 : sk, M ← ski, [ ]

Query(m)

1 : M ←M || m

2 : sig, sk← XMSS-TW.Sign(sk, m)
3 : return sig

Figure 14. EF-CMA game for XMSS-TW. Figure 15. Oracle employed in EF-CMA
game for XMSS-TW.

Formal Verification. Next, we cover the (proof of) the security statement con-
cerning XMSS-TW that we formally verify in this work. As can be extracted
from Figure 9, we aim to demonstrate that the EF-CMA property of XMSS-TW
is implied by the PRF property of MKG, the CR property of MCO, and the
EF-RMA property of FL-XMSS-TW. More precisely, we formally verify the fol-
lowing security statement.

Security Theorem 3 (EF-CMA for XMSS-TW). Let MCO be a random oracle.
Then, for any adversary A, there exist adversaries B0, B1, and B2 — each with
approximately the same running time as A — such that the following inequality
holds.

AdvEF-CMA
XMSS-TW(A) ≤ AdvPRF

MKG(B0) + AdvCR
MCO(B1) + AdvEF-RMA

FL-XMSS-TW(B2)

+ (qM + qS + 1) · qS

|MS|

Here, qM and qS denote the number of queries A that issues to MCO and
OXMSS-TW, respectively.

Evidently, as MCO is assumed to be a random oracle, this security theorem —
and, consequently, its formal verification — manifests itself in the ROM. Intu-
itively, this is required because, at some point, MCO needs to be adaptively
reprogrammed in order to properly simulate OWOTS-TW. This reprogramming
additionally induces the ((qM + qS + 1) · qS)/|MS| term in the bound. Further-
more, since MCO is considered to be a random oracle, the corresponding CR
property essentially becomes a statistical bad event that occurs when two key-
message pairs queried to the random oracle turn out to have the same output.

Loosely speaking, the formal verification of Security Theorem 3 proceeds as
follows. Foremost, we change GameEF-CMA

A,XMSS-TW to GameEF-CMA
A,XMSS-TW$ ; that is, we

consider XMSS-TW$ instead of XMSS-TW. Here, XMSS-TW$ is nearly iden-
tical to XMSS-TW, merely replacing the call to MKG by a sampling from the
appropriate uniform distribution; accordingly, XMSS-TW$ does not sample and
maintain ms, i.e., the value from XMSS-TW that is exclusively used as input to
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MKG. As these constitute the sole differences, we can reduce the PRF property of
MKG to distinguishing between GameEF-CMA

A,XMSS-TW to GameEF-CMA
A,XMSS-TW$ . Then, we

separate the situation in which an adversary playing in GameEF-CMA
A,XMSS-TW$ returns

a valid forgery into two cases. For both of these cases, we bound the probability
via a reduction from either the CR property of MCO or the EF-RMA property
of FL-XMSS-TW. Collectively, this allows us to acquire the desired result.
Bound on Difference Between AdvEF-CMA

XMSS-TW(A) and AdvEF-CMA
XMSS-TW$(A). Consid-

ering the differences between XMSS-TW and XMSS-TW$ described above, we
can — given an adversary A playing in GameEF-CMA

A,XMSS-TW and GameEF-CMA
A,XMSS-TW$ —

straightforwardly construct a reduction adversary RA attaining an advantage in
GamePRF

RA,MKG(b) that equals the (absolute) difference between AdvEF-CMA
XMSS-TW(A)

and AdvEF-CMA
XMSS-TW$(A). In consequence, by abstracting appropriately, we obtain

the following bound.

∀A∃B0 :
∣∣∣AdvEF-CMA

XMSS-TW(A) − AdvEF-CMA
XMSS-TW$(A)

∣∣∣ ≤ AdvPRF
MKG(B0)

Case Distinction for GameEF-CMA
A,XMSS-TW$ = 1. In the situation where an adver-

sary playing in GameEF-CMA
A,XMSS-TW$ provides a valid forgery — consisting of, say,

message m′ and signature sig′ = (mk′, i′, sigWots′, ap′) — we distinguish two (ex-
haustive) cases: In the first case, the provided forgery allows for the extraction
of a collision for MKG; in the second case, it does not. More precisely, in the first
case, mk′ and m′ map to the same value under MCO as (at least) one of the pairs
of values produced in previous queries from A to OWOTS-TW. Furthermore, in the
second case, it is possible — by appropriately reprogramming MCO — to guaran-
tee that the forgery for XMSS-TW contains a valid forgery for FL-XMSS-TW
with respect to the EF-RMA property. Hereafter, ECOLL represents the event
that the forgery allows for the extraction of a collision for MCO in the above
way.

Formally, the preceding can be summarized by the following equality, where
GA denotes GameEF-CMA

A,XMSS-TW$ .

∀A : Pr[GA = 1] = Pr[GA = 1 ∧ ECOLL] + Pr[GA = 1 ∧ ¬ECOLL]

Bound on Pr
[
GameEF-CMA

A,XMSS-TW$ = 1 ∧ ECOLL

]
. In the case that the (valid) forgery

provided by A in GameEF-CMA
A,XMSS-TW$ allows for the extraction of a collision for

MCO in the previously described manner, we can trivially construct a reduction
adversary RA playing in GameCR

RA,MCO that searches for the collision in A’s ran-
dom oracle queries and returns it. As a result, by abstracting away the redundant
details, we obtain the following bound.

∀A∃B1 : Pr
[
GameEF-CMA

A,XMSS-TW$ = 1 ∧ ECOLL

]
≤ AdvCR

MCO(B1)

Bound on Pr
[
GameEF-CMA

A,XMSS-TW$ = 1 ∧ ¬ECOLL

]
. In case the (valid) forgery pro-

vided by A in GameEF-CMA
A,XMSS-TW$ does not allow for the extraction of a collision for
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MCO, we can construct a reduction adversary RA playing in GameEF-RMA
RA,FL-XMSS-TW

that directly forwards each random oracle query, but reprograms MCO in every
signing query. Specifically, when A issues the i-th signing query, the reduction
adversary samples an indexing key for MCO uniformly at random and, subse-
quently, reprograms MCO to map this indexing key and the message from the
signing query to the message of the i-th message-signature pair it received from
its own game. Afterward, it returns the signature of the i-th message-signature
pair, prepending the previously sampled indexing key. Indeed, A can only detect
this reprogramming if it queried MCO on an indexing key and message before
it issued a signing query with this same message in which, by pure chance, RA

happened to sample the same indexing key. As such, since A issues qS signing
queries — each of which has a probability of at most 1

|MS| of coinciding with any
of the up to qM random oracle queries A issued before and any of the up to
qS previous programmings as part of signing queries — the probability that A
detects any reprogramming is at most ((qM + qS) · qS)/|MS|.15 In the ensuing,
we denote the event that detection occurs by EDR. Then, if A does not detect
any reprogramming, at some point it returns a (valid) forgery — comprised of,
say, m′ and sig′ = (mk′, i′, sigWots′, ap′) — for XMSS-TW with respect to the
EF-CMA property. Indeed, MCO(mk′, m′) and (i′, sigWots′, ap′) then constitute
a valid forgery for FL-XMSS-TW with respect to the EF-RMA property.

Based on the above, we can derive the following result. Here, GA serves as a
shorthand for GameEF-CMA

A,XMSS-TW$ .

∀A∃B2 : Pr[GA = 1 ∧ ¬ECOLL] =
Pr[GA = 1 ∧ ¬ECOLL ∧ EDR] + Pr[GA = 1 ∧ ¬ECOLL ∧ ¬EDR] ≤

AdvEF-RMA
FL-XMSS-TW(B2) + (qM + qS + 1) · qS

|MS|

Final Result. Amalgamating the results obtained above, we can derive Security
Theorem 3 as follows. In this derivation, GA signifies GameEF-CMA

A,XMSS-TW$ .

∀A∃B0,B1,B2 :
AdvEF-CMA

XMSS-TW(A) ≤∣∣∣AdvEF-CMA
XMSS-TW(A) − AdvEF-CMA

XMSS-TW$(A)
∣∣∣ + AdvEF-CMA

XMSS-TW$(A) ≤

AdvPRF
MKG(B0) + AdvEF-CMA

XMSS-TW$(A) =
AdvPRF

MKG(B0) + Pr[GA = 1 ∧ ECOLL] + Pr[GA = 1 ∧ ¬ECOLL] ≤

AdvPRF
MKG(B0) + AdvCR

MCO(B1) + AdvEF-RMA
FL-XMSS-TW(B2) + (qM + qS + 1) · qS

|MS|

As for the preceding security theorems, even in the absence of a formal runtime
analysis, it is evident from the foregoing discussion (and from the EasyCrypt ar-

15In the final bound, we get an extra one in the numerator. This is merely a proof
artifact caused by the reduction adversary having to make a final query to verify the
forgery.
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tifacts) that there exist B0, B1, and B2 that not only satisfy the above inequality,
but also execute in approximately the same time as A.

At this point, we can straightforwardly combine Security Theorem 1, Security
Theorem 2, and Security Theorem 3 to obtain a bound on AdvEF-CMA

XMSS-TW(A) exclu-
sively based on the properties of the employed KHFs and THFs. This completes
the formal verification of the security of XMSS-TW as a standalone construc-
tion.
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