
The Round Complexity of Statistical MPC
with Optimal Resiliency*

Benny Applebaum† Eliran Kachlon† Arpita Patra‡

Abstract

In STOC 1989, Rabin and Ben-Or (RB) established an important milestone in the fields of
cryptography and distributed computing by showing that every functionality can be computed
with statistical (information-theoretic) security in the presence of an active (aka Byzantine)
rushing adversary that controls up to half of the parties. We study the round complexity of
general secure multiparty computation and several related tasks in the RB model.

Our main result shows that every functionality can be realized in only four rounds of inter-
action which is known to be optimal. This completely settles the round complexity of statistical
actively-secure optimally-resilient MPC, resolving a long line of research.

Along the way, we construct the first round-optimal statistically-secure verifiable secret
sharing protocol (Chor, Goldwasser, Micali, and Awerbuch; STOC 1985), show that every
single-input functionality (e.g., multi-verifier zero-knowledge) can be realized in 3 rounds,
and prove that the latter bound is optimal. The complexity of all our protocols is exponen-
tial in the number of parties, and the question of deriving polynomially-efficient protocols is
left for future research.

Our main technical contribution is a construction of a new type of statistically-secure signa-
ture scheme whose existence was open even for smaller resiliency thresholds. We also describe
a new statistical compiler that lifts up passively-secure protocols to actively-secure protocols in
a round-efficient way via the aid of protocols for single-input functionalities. This compiler can
be viewed as a statistical variant of the GMW compiler (Goldreich, Micali, Wigderson; STOC,
1987) that originally employed zero-knowledge proofs and public-key encryption.

*This is a full version of a paper published in STOC’23.
†Tel-Aviv University, Israel bennyap@post.tau.ac.il, elirn.chalon@gmail.com. Supported by the Israel

Science Foundation grant no. 2805/21.
‡Indian Institute of Science, Bangalore, India arpita@iisc.ac.in. Supported by DST National Mission on Inter-

disciplinary Cyber-Physical Systems (NM-ICPS) 2020-2025, SONY Faculty Innovation Award and JPM Faculty Research
Award.

1

Contents

1 Introduction 5
1.1 Our Results . 5

1.1.1 Verifiable Secret Sharing . 5
1.1.2 Single Input Functionalities . 7
1.1.3 General Multiparty Computation . 8

2 Technical Overview 9
2.1 Verifiable Secret Sharing . 9

2.1.1 Step I: Signature Scheme with Virtual Verifiers 12
2.1.2 Step II: Emulating the verifiers . 14

2.2 From VSS to General MPC . 16

3 Preliminaries 18

4 Linear Private-Opening Interactive Signature scheme 19

5 Linear Interactive Signature Scheme 21

6 Verifiable Secret Sharing 26
6.1 The Construction . 26
6.2 Analysis . 30
6.3 Linearly-Homomorphic VSS . 33
6.4 On Tentative Shares . 34

7 The VSS Suite 35
7.1 Triple Secret Sharing . 35

7.1.1 Linear Operations over Tentative Shares from a Single Dealer 35
7.1.2 The Triple Secret Sharing Protocol . 37

7.2 Verifiable Sharing and Transferring . 39
7.2.1 Analysis . 44

8 Share and Compute 47
8.1 The Share-compute Functionality . 47
8.2 The Share-compute Protocol . 50

8.2.1 Linear Operations over Tentative Shares from Different Dealers 50
8.2.2 Private Linear Operations over Tentative Shares from a Single Dealer with

Verifiable Opening . 54
8.2.3 The Protocol . 57

9 Augmented Single Input Functionalities 59

10 General Multiparty Computation 63
10.1 Overview . 63
10.2 The protocol . 65

2

11 Lower Bound: Single Input Functionality 67

A Appendix: SIF does not imply VSS 75
A.1 Definition of VSS . 75
A.2 Impossibility Result . 76

B Appendix: Standard Useful Facts 77
B.1 Polynomials . 77
B.2 Secret Sharing . 78

C Linear Private-Opening Signature Scheme 78
C.1 Honest D and I . 78

C.1.1 The Simulator . 78
C.1.2 Analysis . 79

C.2 Honest D, Corrupt I . 80
C.2.1 The Simulator . 80
C.2.2 Analysis . 80

C.3 Corrupt D, Honest I . 81
C.3.1 The Simulator . 81
C.3.2 Analysis . 81

C.4 Corrupt D and I . 81
C.4.1 The Simulator . 81
C.4.2 Analysis . 82

D Linear Interactive Signature Scheme 82
D.1 Honest D and I . 82

D.1.1 The Simulator . 82
D.1.2 Analysis . 84

D.2 Honest D, Corrupt I . 87
D.2.1 The Simulator . 87
D.2.2 Analysis . 88

D.3 Corrupt D, Honest I . 90
D.3.1 The Simulator . 90
D.3.2 Analysis . 90

D.4 Corrupt D and I . 91
D.4.1 The Simulator . 91
D.4.2 Analysis . 92

E The Sharing Functionality 93
E.1 Verifiable Secret Sharing . 93
E.2 Triple Secret Sharing . 95
E.3 Verifiable Sharing and Transferring . 97
E.4 The sh-comp Simulator . 99

E.4.1 Round 1 Simulation: Input Phase . 99
E.4.2 Round 2 Simulation . 101
E.4.3 Round 3 Simulation: Linear Computation Phase 101

3

E.4.4 Communication with Fsh-comp . 104
E.4.5 Round 4 Simulation: Opening Phase . 104
E.4.6 Communication with Fsh-comp . 105

E.5 Analysis of the sh-comp Simulator . 105
E.5.1 Analysis: Round 1 Simulation . 105
E.5.2 Analysis: Round 2 Simulation . 106
E.5.3 Analysis: Round 3 Simulation . 107
E.5.4 Analysis: Output of Honest Parties . 110
E.5.5 Analysis: Round 4 Simulation . 111

F Augmented Single Input Functionality 111
F.1 The Simulator . 111
F.2 Analysis . 113

G General MPC 113
G.1 The Simulator . 114
G.2 Analysis . 115

4

1 Introduction

The round complexity of interactive protocols is one of their most important efficiency mea-
sures. Consequently, a huge amount of research has been devoted towards characterizing the
round complexity of various distributed tasks (e.g., Byzantine agreement [LF82, DR85, FM85],
coin flipping [Cle86, MNS16], zero-knowledge proofs [GK96, CKPR01], verifiable secret shar-
ing [GIKR01, KPR10] and general secure multiparty computation [Yao86, BMR90, GS18, BL18])
under different security models.

In this work, we focus on the round complexity of protocols that achieve full information-
theoretic security, including guaranteed output delivery in the presence of an active (aka Byzantine
or malicious), static, computationally-unbounded, rushing adversary. We assume that there are n
parties that communicate over secure point-to-point channels, and also that they have an access to a
broadcast channel. Feasibility results in this model were first proved in the classic works of Ben-Or,
Goldwasser, and Wigderson [BGW88] and Chaum, Crépeau and Damgård [CCD88]. Specifically,
it is known that perfect security is achievable if and only if the adversary corrupts less than a third
of the parties, i.e., the best-achievable resiliency threshold is t = ⌊(n− 1)/3⌋. Quite remarkably,
Rabin and Ben-Or [RB89] later showed that, by compromising on statistical security, the resiliency
can be improved to t = ⌊(n− 1)/2⌋. Put differently, a standard “honest majority” is sufficient
if one is willing to tolerate a negligible statistical error in privacy and correctness. This is the
best that one can hope for since an honest majority is known to be necessary even for weaker no-
tions like passive statistical security [CK89] or active computational security with guaranteed output
delivery [Cle86].

Our goal in this paper is to determine the round complexity of general multiparty compu-
tation (MPC) in the statistical setting (aka the Rabin-Ben-Or setting). Indeed, following recent
results that settled the round complexity of MPC for the perfect (aka BGW) setting [ABT18, GIS18,
ABT19, ACGJ19, AKP20b] and for different variants of the computational setting [GLS15, GS17,
GS18, BL18, ACJ17, BGJ+18, BHP17, ACGJ18, RCCG+20, BJMS20, HHPV21, AKP21], the statistical
setting is arguably the last main challenge in this domain. We therefore ask:

What is the optimal round complexity of general MPC with full statistical security,
including guaranteed output delivery, and optimal resiliency?

Indeed, the round complexity of statistically-secure protocols has remained wide open for any
resiliency t larger than n/3, let alone for the central case of optimal resiliency of t = ⌊(n− 1)/2⌋. In
fact, in this setting, we do not even know what is the exact round complexity of much more basic
primitives, such as statistically-secure verifiable secret sharing.

1.1 Our Results

In this work, we settle the round complexity of general MPC, verifiable secret sharing, and several
related primitives. Details follow.

1.1.1 Verifiable Secret Sharing

Verifiable secret sharing (VSS) [CGMA85] is arguably the most basic primitive in information-
theoretic multiparty computation, and it is known to be necessary for the construction of gen-
eral MPC protocols both in the perfect setting (see [AKP20b]), and in the statistical setting

5

(see [AKP20a]).1 At a high level, a VSS scheme consists of two phases: a sharing phase, which
allows a dealer to share a secret s among the parties, and a reconstruction phase, which allows the
parties to recover the secret s. For an honest dealer, VSS has the same guarantees as robust secret
sharing, that is, the adversary learns no information about s in the sharing phase (privacy), and the
secret s will always be reconstructed properly in the reconstruction phase despite the misbehavior
of the adversary (correctness). In addition, for a corrupt dealer, we require commitment, which
means that at the end of the sharing phase there is some value s′ that will always be reconstructed
in the reconstruction phase.

While the round complexity of perfect VSS is well-understood (see [FGG+06, KKK09,
GIKR01]), this problem is still open in the statistical settings. The best-known scheme [KPR10]
achieves 3 rounds of sharing and 2 rounds of reconstruction. It is known that 3 rounds are neces-
sary for the sharing phase [PCRR09, AKP20a], but it is unclear whether 2 rounds of reconstruction
are necessary. In fact, as shown by [CDF01], one can derive a VSS in which the reconstruction
phase consists of a single round by first constructing such a protocol under the assumption that
the dealer is honest (aka robust secret sharing) [RB89], and then using statistical MPC to emulate
the honest dealer. This approach suffers, however, from a large number of rounds in the sharing
phase, which is inherently sub-optimal since it employs a VSS with multiple rounds of reconstruc-
tion as a building block (as part of the MPC protocol). Apart from the MPC-based approach, it is
unknown how to achieve a single round of reconstruction even when more than 3 rounds of shar-
ing are being employed [RB89, CDD+99, KPR10]. Let us note that single-round reconstruction has
a qualitative advantage due to its non-interactive nature (parties can just “speak” once without
waiting for others).

Overall, the existence of a statistical VSS that simultaneously achieves 3 rounds of sharing and
a single round of reconstruction is open. In fact, the question is not fully resolved even if one adds
another round of reconstruction (as in [KPR10]) since the known construction [KPR10] lacks some
important properties that are typically employed as part of MPC protocols. Most notably, it is not
linearly homomorphic, i.e., parties cannot locally combine shares of different secrets into a new share
of a linear combination of the underlying secrets.

In this work, we provide the first construction of a round-optimal VSS scheme, that requires
three rounds of sharing, and only one round of reconstruction. Our construction is also linearly-
homomorphic (and has other “MPC-friendly” features, See Section 6).

Theorem 1.1. For a security parameter κ, number of parties n, and number of corrupt parties t < n/2,
there exists a protocol for verifiable secret sharing with three rounds of sharing and one round of reconstruc-
tion, that provides statistical security against an active, static, rushing unbounded adversary that corrupts
up to t parties, with error 2−κ. The running time of the protocol is poly(κ, 2n).

Remark 1.2 (On the exponential dependency on n). Our VSS protocol, as well as the rest of our
protocols, have exponential dependency on the number of parties n, so they are only efficient when n =
O(log κ). We emphasize that in the settings of statistical security, even inefficient protocols are meaningful,
since the protocols are secure even against a computationally-unbounded adversary. We also mention
that the question of an efficient VSS scheme with three rounds of sharing is open even if we allow more than
one round of reconstruction. Indeed, the construction of [KPR10] also has exponential dependency on the
number of parties, even though it allows two rounds of reconstruction.

1Unless stated otherwise, whenever we refer to the perfect setting and statistical setting, we assume that the resiliency
threshold is taken to be optimal, i.e., tperfect = ⌊(n− 1)/3⌋ and tstat = ⌊(n− 1)/2⌋, respectively.

6

1.1.2 Single Input Functionalities

Before moving to the case of MPC for general functionalities, it is useful to consider the special
case of single input functionalities [GIKR02], whose output depends on the input of a single party,
called the dealer. Single input functionalities capture a large class of non-trivial tasks, including
secure multicast and multi-verifier zero-knowledge. In the perfect setting, the sharing phase of
VSS can be also captured by SIF. However, in the statistical setting, where there is merely an
honest majority, it can be shown that SIF cannot capture VSS. (See Appendix A for proof.)

Augmented SIF. We present a stronger notion of SIF, called augmented SIF, that captures VSS
as well as other related tasks (that will be useful later as building blocks for general MPC). Intu-
itively, it allows the computation of a single input functionality together with some verification
information that will allow every party to publicly open its output, and convince the rest of the
parties of its validity. Formally, for a single input functionality F , the corresponding augmented
single input functionality is a two-phase functionality F ′. The first phase, the computation phase,
consists merely of the computation of F . That is, the dealer inputs x to the functionality F ′, and
the i-th party receives the value yi as an output, where F(x) = (y1, . . . , yn). In the second phase,
the opening phase, every Pi can input a command “open” to F ′, and the functionality will return
yi to the rest of the parties. It is not hard to verify that an augmented SIF of any (t + 1)-out-of-n
secret sharing scheme is indeed a VSS scheme.

The round complexity of SIF. Not much is known about the round complexity of SIF and aug-
mented SIF. The three-round lower bound for the sharing phase of VSS [PCRR09, AKP20a] implies
that the computation phase of an augmented SIF requires at least three rounds. First, we extend
this lower bound to hold for standard SIF as well.

Theorem 1.3 (Lower Bound for SIF). Let n ≥ 3 and t ≥ n/3 be positive integers. Then there exists an
n-party single input functionality that cannot be computed in two rounds with resiliency t and error 1/12.

The exact round complexity of both, SIF and augmented SIF, is open, and the best upper bound
is some large constant [IK00, IK02, GIKR02].2 We fully resolve this question and provide tight
upper bounds. We show that every augmented SIF can be realized in three rounds for the compu-
tation phase, and one round for the opening phase. This implies that every SIF can be realized in
three rounds (ignoring the opening phase).

Theorem 1.4 (Upper Bound for augmented SIF and SIF). For a security parameter κ, number of parties
n, and number of corrupt parties t < n/2, for every single input functionality F , the augmented single
input functionality F ′ can be realized in three rounds for the computation phase, and one round for the
opening phase, with statistical security against an active, static, rushing unbounded adversary that corrupts
up to t parties, with error 2−κ. The running time of the protocol is poly(κ, 2n, s), where s is the size of
the boolean circuit computing F . Consequently, the single-input functionality F can be realized in three
rounds with similar complexity in the same setting.

2The obvious approach is to use some MPC-friendly VSS, e.g., the VSS of [KPR10] whose sharing takes 4 rounds
and reconstruction takes 2 rounds. Then we can use the protocol of [CDD+99] to compute a degree-2 SIF (which is
complete for general SIF [GIKR02]). Computing one multiplication takes more than 10 rounds in [CDD+99], and so the
protocol requires more than 14 rounds. By using standard tricks (sharing random multiplication triples [Bea91]) this
can probably be improved to 7 rounds (4 rounds for sharing, 1 round for generating random challenges that are needed
for the generation of random multiplication triples, and 2 rounds for opening).

7

Previously, the best 3-round SIF protocol with active information-theoretic security achieved a
threshold of t ≤ ⌊(n− 1)/4⌋ [ABT19]. We also mention that if one is willing to relax the security
to computational then the protocols of [AKP22] provide a 2-round SIF based on cryptographic
assumptions (essentially non-interactive commitments).

Application: Multi-verifier zero-knowledge. In multi-verifier zero-knowledge [BD91] for an
NP relation R, there is a single prover and k verifiers, all holding the same statement x. The prover
wants to prove that she is holding a secret witness w so that R(x,w) = 1, without revealing any
information about w. Observe that this task is captured by a single input functionality, that takes
(x,w) from the prover, and returns (x, “true”) to all the parties if R(x,w) = 1, and (x, “false”)
otherwise. Therefore, when there is an honest majority among the k + 1 parties, we can use
our SIF protocol to derive the first multi-verifier zero-knowledge proof system that runs in three
rounds and achieves statistical security.We highlight the special case of a single prover and two
verifiers (i.e., k = 2), allowing a single corruption. That is, by adding just a single verifier to the
standard zero-knowledge settings, we obtain, for the first time, an efficient zero-knowledge proof
with statistical security under no cryptographic assumptions. As a bonus, we even provide UC-
security [Can01], which implies straight-line black-box simulation, as well as knowledge extraction.
In comparison, in the standard settings of (single-verifier) zero-knowledge proofs three rounds
protocols require non-black box simulation [GK96].

1.1.3 General Multiparty Computation

The round complexity of statistical-MPC for general functionalities is a long-standing open prob-
lem. For a long time, it is known that constant-round protocols exist [IK00, IK02], where the exact
number of rounds is some large constant. More recently, [AKP20a] proved that at least four rounds
are required for general statistical MPC. In this work, we close the gap and prove that four rounds
are also sufficient.

Theorem 1.5 (General MPC in four rounds). For a security parameter κ, number of parties n, and
number of corrupt parties t < n/2, every functionality F can be realized in four rounds with statistical
security against an active, static, rushing unbounded adversary that corrupts up to t parties, with error 2−κ.
The running time of the protocol is poly(κ, 2n, s, 2d), where s is the size of the boolean circuit computing
F , and d is the depth of the circuit.

As in all known constructions of constant-round information-theoretic MPC, there is an expo-
nential dependency on the depth of the circuit. Getting rid of this dependency, even in weaker
adversarial models (e.g., passive adversary and resiliency of t = 1), is a famous open problem
that goes back to [BMR90]. A potentially more accessible goal is to get-rid of the exponential
dependency in the number of parties n (see Remark 1.2). Based on current techniques, poly(n)-
time protocols seem to require at least 7 rounds, and so the gap between efficient and inefficient
solutions is quite large in this case.

Overall, our protocol is only efficient for n = O(log κ) and for NC1 functionalities.3 Never-
theless, even for general functions, for which our construction is inefficient, the result remains
meaningful since the protocol resists computationally unbounded adversaries. More generally,

3As in similar cases, this can be pushed up to log-space functionalities since they securely reduce to NC1 function-
alities via non-interactive reductions [IK02].

8

ignoring efficiency aspects, one can view our theorems as computability results that characterize
the minimal computational model (in terms of rounds of interactions) in which universal compu-
tation can be carried out with statistical security and optimal resiliency.

2 Technical Overview

In this section, we provide a detailed technical overview of our construction. We denote the parties
by P1, . . . , Pn, and we assume that at most t < n/2 of the parties are corrupt. We denote the
security parameter by κ, and throughout, we think of F as a finite field of size exp(n, κ), and of
1, . . . , n as n distinct non-zero field elements.

At a high level, our construction consists of two main parts: the construction of a round-
optimal VSS scheme, and a transformation from VSS to general MPC. In Section 2.1 we provide
a detailed overview of our VSS scheme, that constitutes our main technical contribution. In Sec-
tion 2.2 we provide a short overview of the transformation from VSS to general MPC via aug-
mented SIF.

2.1 Verifiable Secret Sharing

Background. We begin with some background on the qualitative difference between VSS in the
perfect setting and VSS in the statistical setting. It will be instructive to start with the simpler task
of robust secret sharing where an honest dealer D shares a secret s among n players. We require
t-privacy, i.e., t shares reveal no information about s, and also perfect t-robustness, which means
that if all the parties send their shares to a receiver R, then R can recover s even if t shares are
maliciously chosen and might depend on the honest shares. When n = 3t + 1, it is known that
Shamir’s secret sharing satisfies those requirements since Reed-Solomon codes allow to recover
the secret from t errors. On the other hand, when n = 2t + 1, it is not hard to see that this
task is impossible. Indeed, if (s1, . . . , sn) are shares of 0, and (s′1, . . . , s

′
n) are shares of 1, then the

Hamming distance between the two vectors has to be at least 2t+1 = n, or otherwise t-robustness
is violated. But this means that we can distinguish a secret sharing of 0 from a secret sharing
of 1 based on a single share, so t-privacy is violated. In fact, this argument shows that perfect
robustness is possible only when n ≥ 3t+1. We will see that this qualitative difference propagates
up to the more challenging task of VSS.

In the perfect setting, when n ≥ 3t + 1, the canonical approach [BGW88, GIKR01, FGG+06,
KKK09, AL17, AKP20b] is to design an MPC protocol for the single input functionality that takes
an input s and randomness r from the dealer, generates the shares s1, . . . , sn according to Shamir’s
scheme, and delivers si to Pi. Privacy follows from the privacy of the secret sharing scheme,
while commitment (and correctness) follows from the perfect robustness property: Even if the
dealer is dishonest, and therefore knows all the shares of the honest parties and has full control
of the shares of t corrupt parties, perfect robustness guarantees that there exists exactly one valid
opening in the reconstruction phase. Indeed, this approach leads to VSS protocols with an optimal
round complexity [GIKR01, FGG+06, KKK09, AKP20b] (3 rounds of sharing and a single round of
reconstruction) and so the problem in the perfect setting is well understood.

The situation in the statistical setting is more subtle. As already observed, we cannot hope for
perfect robustness whenever t ≥ n/3, and so the commitment property cannot be based on the
nonexistence of ambiguous openings. Instead, one has to argue that it is infeasible to find such

9

ambiguous openings given the adversary’s view. That is, we have to inject some private random-
ness into the shares of the honest parties.4 Indeed, following [RB89], the canonical approach here
is to augment each share si with a private “proof-of-validity”, that allows Pi to convince the rest
of the parties in the validity of its share si. If Pi tries to open an invalid share s′i ̸= si, then with
high probability Pi will fail to generate a proof-of-validity for s′i, and the rest of the parties will
set the share of Pi to an erasure. Since t erasures can be handled when n ≥ 2t + 1, such proofs-of-
validity suffices. Of course, some of the randomness used to generate the proofs-of-validity has
to come from the honest parties and should remain hidden from the adversary. Furthermore, the
use of interactive reconstruction (which allows for interactive verification of validity) seems to be
of significant help. (See, e.g., the discussions in [CDF01, CFOR12, FY20] in the context of robust
secret sharing.) In contrast, in the perfect setting, it can be shown that interaction is useless in the
reconstruction phase [GIKR02].)

Interactive signatures. The main tool for constructing the proofs-of-validity is some form of
information-theoretic interactive signatures (aka information-checking protocols [RB89]). This is es-
sentially a weak version of VSS in which the opening is conducted by some designated party I.
Following the definition of [PCR08, PCPR09], an interactive signature is a protocol involving n
parties, where two of them are distinguished: the dealer D and the intermediary I. (Say that P1 is
D and that P2 is I.) The protocol consists of 3 phases as follows:

1. Distribution phase: D sends to I a secret s together with some authentication information,
and some verification information to the rest of the parties.

2. Verification phase: The parties verify that the information that D sent is “valid” and “con-
sistent” with the secret s that I holds, and terminate the phase with a public decision on
success or failure that is taken based on public information (i.e., broadcasts).

3. Selective opening phase: Assuming that the verification phase succeeds, I can publicly open
the value s to all the parties. The parties decide whether to accept or reject this opening.
Crucially, the decision of whether to open the value is in the hands of I and may depend on
external reasons. (Hence the term “selective”.)

Correctness and privacy are defined in a natural way: WhenD and I are honest, the verification
succeeds, the opening of I is accepted by all honest parties (correctness), and the adversary learns
no information about s in the distribution phase and verification phase (privacy). The commit-
ment property from the VSS is replaced with the following three fine-grained requirements that
are all conditioned on the success of the verification phase: (a) unforgeability: If D is honest and
I is corrupt, the honest parties will reject an opening of s′ ̸= s by I; (b) nonrepudiation: If D is
corrupt and I is honest, then the honest parties will accept the opening of s by I; and (c) agree-
ment: All honest parties agree on whether to accept or reject the opening of I, even if both I and
D are corrupt. If verification fails, unforgeability, nonrepudiation, and agreement are vacuously
satisfied.

4Consequently, in the honest majority statistical setting, VSS cannot be realized by a single input functionality. This
is true even if multiple rounds of reconstruction are allowed as we prove in Section A.

10

VSS from signatures. The work of [KPR10] implicitly shows a VSS scheme with three rounds
of sharing and one round of reconstruction (which is also MPC friendly) can be based on any
signature scheme with one round of distribution, two rounds of verification, and a single round
of selective opening that can be executed in parallel to the second round of the verification phase.
We call such a signature scheme a (1, 2, 1)-signature. Unfortunately, all known constructions of in-
teractive signatures [RB89, CDD+99, PCR08, KPR10], regardless of the round-complexity of the
distribution phase and the verification phase, require an interactive (two-round) sub-protocol
for selective opening. To bypass this barrier, let us first take a fresh look at existing construc-
tions [PCR08, PCPR09] which originally rely on polynomials, and abstract them by using general
linear secret-sharing schemes.

Abstraction of previous constructions. Consider a linear secret-sharing scheme over F for N
secret-sharing players Q1, . . . , QN . Linearity means that in order to share a secret s ∈ F, we sam-
ple a random vector ρs whose first entry is s, and set the i-th share to Li(ρs) where Li is some
public non-degenerate linear operator that is associated with the i-th player Qi. The scheme is
parameterized by a threshold T > n and we assume that any coalition of size n learns nothing
about the secret and coalitions of size T can recover the secret and the randomness vector ρs. The
latter property implies that the mapping L : ρs 7→ (Li(ρs))i∈[N] forms a linear code of distance
∆ = N − T + 1. Jumping ahead, we will have exponentially many “virtual” secret-sharing play-
ers, i.e., N = exp(n, κ), but the threshold T is polynomial in n and κ. We will employ only n
(randomly chosen) sharing players, so the overall complexity can be, in principle, poly(n, κ).5 An
interactive signature (with 2 rounds of selective opening) can be constructed as follows.

1. Single-round Distribution phase: Given a secret s ∈ F, the dealer samples a random mask
r ∈ F, and random vectors ρs and ρr whose first entry is s and r, respectively. All these
random values are sent to I. In addition, for every Pi, the dealer picks a random index
αi ∈ [N] that represents some (virtual) secret-sharing player, and sends to party Pi the index
αi together with the corresponding shares si := Lαi(ρs) and ri := Lαi(ρr), which will be
used as “authenticators”. This step reveals no information about s and r since the adversary
can see at most n shares.

2. 2-round Verification phase: I broadcasts a random linear combination of the randomizers ρs

and ρr, i.e., I samples a non-zero scalar c ∈ F and broadcasts (c, ρ := ρs + c · ρr). This
equation is being checked by the dealer who broadcasts a public complaint if ρs+c·ρr ̸= ρ. If
such a complaint is issued verification fails, otherwise verification succeeds. These messages
do not violate privacy since ρr masks the value of ρs.

3. 2-round Selective opening phase: In order to open the secret I broadcasts ρs. We say that Pi

votes for the opening if either (a) Lαi(ρs) = si or (b) Lαi(ρ) ̸= si + c · ri and D did not
broadcast a complaint.6 In the second round, every party broadcasts its vote, and the parties
accept if a majority of the parties vote for the opening. (If the verification phase failed, then
the parties simply ignore the selective opening phase.)

5To achieve such a complexity, the secret sharing should be strongly explicit, i.e., the ith share should be computable
in time poly(T, log(N)) = poly(n, κ). For example, one can use Shamir’s (n+ 1)-out-of-N secret sharing scheme with
a field of size |F| = N + 1 and T = n+ 1.

6In the latter case, Pi thinks that D is corrupt and so he shouldn’t worry about unforgeability and there is no harm
in accepting the opening.

11

Analysis (sketch). Correctness, privacy, and agreement are straightforward. For unforgeability,
we assume that D is honest, I is corrupt, verification passes and I opens ρ′s ̸= ρs. Since the
code L has distance ∆, the probability that Lαi(ρs) ̸= Lαi(ρ

′
s), for a random αi ∈ [N], is at least

∆/N > 1−T/N , and so every honest party is likely to vote against the opening. Here we crucially
relied on the fact that the adversary does not know αi. For nonrepudiation, assume that D is
corrupt, I is honest, verification passes but I is rejected, i.e., at least one honest party Pi voted
against the opening. Thus, Lαi(ρs) ̸= si but Lαi(ρ) = si + c · ri. By linearity, this happens iff
c · (ri − Lαi(ρr)) = (Lαi(ρs)− si), and since the RHS is non-zero, this happens with a probability
of at most 1/(|F| − 1) over the choice of the random non-zero scalar c.

Reducing a round? We can try to reduce one round of the selective opening by letting each party
decide locally based on his own vote. However, in this case, an adversary that corrupts bothD and
I can violate the agreement property by generating vectors ρs,ρ, (αi, si, ri) and (αj , sj , rj), so that
an honest Pi accepts the opening while an honest Pj rejects the opening. One could also try to let
every Pi broadcast the authentication values (αi, si, ri) in the first round of the selective opening
phase, so the rest of the parties will be able to compute the vote of Pi based on ρs and (αi, si, ri).
However, given this information, a corrupt rushing I can efficiently find an invalid opening that
will be accepted by the honest parties, violating the unforgeability requirement. This problem
can be fixed by increasing the distance of the code and setting the privacy threshold below n.
But in this case, the authenticators (αi, si, ri) prematurely reveal the secret before we even know
whether the intermediate wishes to open the secret, thus violating privacy. Overall, the challenge
is to reveal enough information that allows the parties to reach an agreement (in case the secret is
opened), while keeping enough uncertainty about the secret and its “authenticators” (for privacy
and unforgeability).7

At a high level, we solve the problem by letting each party spread some partial, randomized,
pieces of information about his local authenticators. In particular, each party Pi will receive many
secret shares from the dealer and will spread random linear combinations of these shares to the
other parties. Crucially, Pi will use a local private source of randomness. (This deviates from all
previous approaches in which onlyD and I were randomized). The actual implementation of this
approach requires some care. We will start with a simplified model that includes additional (vir-
tual) verifiers (Section 2.1.1), and then explain how to emulate the verifiers in a round-preserving
way (Section 2.1.2), in order to obtain a (1, 2, 1)-signature in the standard model.

2.1.1 Step I: Signature Scheme with Virtual Verifiers

A simplified model. In previous constructions, every Pi had a dual role: Pi acted both as a veri-
fier, that had to vote for/against the opening of I, and also as a receiver, that had to accept/reject
the opening of I. We consider a simplified model where this role is divided between two entities: a
verifier Vi and a receiver Pi. Formally, the model consists of m verifiers V1, . . . ,Vm, and n receivers
P1, . . . , Pn and we assume that the dealer D is P1 and the intermediary I is P2. The adversary can
corrupt any number of the receivers, and can weakly corrupt any subset of the verifiers with one

7In contrast, in the reconstruction phase in VSS we do not care about the privacy of the secret, since the opening is
not selective and all the parties know that the secret should be revealed. In this sense, signatures (with a single round
of opening) are more challenging than VSS. Indeed, to the best of our knowledge, the question is open even when the
resiliency threshold t is smaller than n/3 and perfect-VSS is available.

12

limitation: When D is honest and I is corrupt there must be at least one honest verifier. The
notion of weak corruption is non-standard: A weakly corrupted verifier passes all her incoming
messages to the adversary but keeps her internal state (i.e., her random tape) and the messages
that she sends to the other honest parties hidden. In addition, the adversary is allowed to abort a
weakly corrupted verifier at any time. If a verifier is not aborted, it plays its role honestly.

Hadamard-based secret sharing. Recall that we employ a linear secret-sharing scheme over F
that is defined by N distinct linear mappings {Li}i∈[N], one for each virtual party. We will need
the (highly non-standard) property that this set of functions forms a linear space L. For this, we
will take L to be the space of all linear functions from Fv to F and think of each function as a vector
in Fv (so N = |F|v). This is not a valid threshold secret sharing since some small coalitions (that
span the vector e1 = (1, 0, . . . , 0)) can recover the secret, and some huge coalitions (that do not
span e1) may not be able to recover the secret. However, for a randomly chosen coalition of size
≫ v (resp.,≪ v) correctness (resp., privacy) holds with high probability. These relaxed properties
suffice (since privacy and correctness will only be needed when the dealer is honest and in this
case the virtual parties will be selected at random). From a coding perspective, this secret sharing
corresponds to the Hadamard code over a large field. Let u be polynomially larger than κ ·m · n
and let v be polynomially larger than um. We modify the previous construction as follows:

1. Single-round distribution phase: As before, the dealer samples the randomizers ρs and ρr and
sends them to I. In addition, D allocates to each verifier u random virtual secret-sharing
parties by sampling a random u × v matrix Ai, and sends to Vi the “names” of the virtual
parties and their shares, (Ai, si := Ai · ρs, ri := Ai · ρr). Since v ≫ um , with a very high
probability the row-span (Ai)i∈[m] does not include the unit vector e1 = (1, 0, . . . , 0), which
means that all the messages that the verifiers receive from D reveal no information about s
and r.

2. 2-round verification phase: As in the previous protocol, the intermediate publishes a random
non-zero scalar c and a linear combination of the secret sharing randomizers ρ := ρs+ c ·ρr,
and the dealer D announces whether verification succeeds by verifying the above equality.
In addition, in the second round, every verifier Vi does the following: (a) broadcasts a public
complaint if its local authenticators are inconsistent with the published information, i.e., if
Ai · ρ ̸= si + c · ri; and (b) privately sends to each receiver Pj , j ∈ [n], a random linear
combination of his s-shares (ti,j , ai,j := ti,j · Ai, si,j := ti,j · si), where ti,j ← Fu is a
random row vector.

3. Single-round selective opening phase: To open the secret s, the intermediate I broadcasts the
vector ρs to all the parties. After this, each receiver Pi locally computes a vote for each veri-
fier Vj and rejects the opening if at least one verifier votes against the opening. The receiver
Pi thinks that the verifier Vj votes against the opening if the following conditions hold: (1)
Vj did not broadcast a complaint8, (2) Vj did not abort, and (3) there is an inconsistency
ai,j · ρs ̸= si,j . Observe that this phase can be executed in parallel to the second round of the
verification phase, so that if the verification phase failed the opening is simply ignored.

8Again, in case of a complaint the verifier (who always operates honestly) claims that the dealer is cheating, and so
it’s safe to accept the opening without worrying about forgery.

13

Analysis (sketch). It is not hard to see that correctness and privacy hold even if none of the
verifiers are honest. For unforgeability, assume that D is honest, I is corrupt, some verifier, say V1
is honest, and the verification phase succeeds. By following the previous argument, unforgeability
boils down to showing that the vector a1,j that an honest receiver Pj gets from V1 is (almost)
uniformly distributed. Moreover, this should hold even when conditioning on the adversary’s
view that consists of all the vectors a1,ℓ that V1 sent to the corrupted receivers. To see this, observe
that the vectors a = (a1,1, . . . ,a1,n) were generated by taking n random linear combinations T =
(t1,1, . . . , t1,n) of the rows of a random matrix A1. Since T is likely to be linearly independent (as
each t1,j is of dimension u≫ n) and since A1 is uniform, the outcome a is also uniform.

For nonrepudiation, assume that D is corrupt and I is honest, and let Vi be any verifier that
did not abort. If Ai · ρs ̸= si then even weakly-corrupt Vi is likely to broadcast a public complaint
(the argument is similar to the one used in the previous scheme); Otherwise, Ai · ρs = si and all
the local authenticators that were sent by Vi will be consistent. In any case, no honest party rejects
due to Vi.

Finally, for agreement, we show that even if D and I are corrupt, if the verification phase
succeeds, then all the honest receivers are likely to see, for every (possibly weakly-corrupt) verifier
Vi, the same vote. This is trivially true if Vi aborts or broadcast a complaint. If this is not the case,
then, except with probability of 1/|F| = negl(n, κ) over the choice of the linear combination ti,j ,
the local equation tested by an honest receiver Pj , which can be written as ti,j · (Ai ·ρs) = ti,j · (si)
holds if and only if Vi’s equation Ai · ρs = si holds.

Multiple-authenticators variant. It will be useful to consider a variant of the protocol in which
every Vi sends multiple authenticators (tki,j , aki,j := tki,j ·Ai, ski,j := tki,j ·si)k∈[ℓ] to every receiver
Pj . Accordingly, in the opening phase, Pj will treat any inequality of the form aki,j · ρs ̸= ski,j
for some k ∈ [ℓ], as an inconsistency, and will reject accordingly (unless Vi aborted or issued a
public complaint). We think of the random tape of Vi as composed of ℓ blocks where the kth
block consists of all the vectors (tki,j)j∈[n]. By slightly modifying the parameters u and v, we can
securely support this extension even if the adversary partially controls the choice of the linear
combinations tki,j of non-honest verifiers Vi. Specifically, if either D or I is corrupt, the adversary
will be allowed to choose, for every non-honest Vi, all the random tape except for one block that
is sampled uniformly at random and remains unknown to the adversary. (If D and I are honest
then we allow the adversary to pick all the vectors tki,j that are generated by Vi.)

2.1.2 Step II: Emulating the verifiers

We return to the standard model with n parties P1, . . . , Pn where at most t < n/2 of them are
corrupt. We consider the multiple-authenticators variant of the protocol in the simplified model
as the outer protocol, and we use a virtualization technique to emulate the verifiers in a round-
preserving way. For ease of presentation, we assume that the parties have an access to an idealized
single-round signature scheme which is also linearly homomorphic. That is, if a signer A signs to
B over secrets (s1, . . . , sq) then B can pick any vector of coefficients βj = (βj [1], . . . ,βj [q]) and
privately open the vector of coefficients and linear combination (β,

∑
i∈[q] βj [i] · si) to some party

Pj while certifying that these values were “signed” by A. The opening is designated to Pj , and
so we use the terms A signs to B and B opens to Pj . While it may seem paradoxical to make this
assumption at this point, we will later see that it can be replaced with a weak form of interactive

14

signatures, and thus can be easily realized.

The emulation. We identify the verifiers with all subsets of t parties that do not includeD and I,
so m =

(
n−2
t

)
.9 In a nutshell, messages that will be sent to the virtual verifier Vi will be delivered

to all the parties in the corresponding committee, and whenever Vi sends a message, we let each
party in the committee send the message as well where the message will be computed with respect
to his own independent randomness. We think of Vi as weakly corrupt if it contains a corrupt party
Pj . If all the parties in Vi are honest, the virtual party will be viewed as an honest party.

In more detail, we think of the distribution phase and verification phase as a three-round
protocol. In the first round of the outer protocol, i.e., in the distribution phase, D sends every Vi
a vector (Ai, si, ri). We emulate this step by letting D pass these values to every Pj in Vi together
with linear private-opening (LPO) signatures. To make sure that D sent the same vector to all
parties in Vi, we let the parties perform a public secure pairwise comparison of those values in the
following way. For every Vi and every Pj and Pk in Vi, we let Pj sign a random pad ri,j,k to Pk in
the first round using the LPO signature, and both parties broadcast (Ai, si, ri)+ri,j,k in the second
round. Any inconsistency in the broadcasts implies that the comparison failed, in which case we
think of Vi as an aborting verifier.

In the third round of the outer protocol, i.e., in the second round of the verification phase,
every Vi verifies that Ai · ρ = si + c · ri, and also generates ℓ authenticators and sends them to
the receivers. We emulate this step by letting every Pj in Vi, verify that Ai · ρ = si + c · ri, using
the vector (Ai, si, ri) that Pj received from D, and broadcast a public complaint if equality does
not hold. If any Pj in Vi broadcasts a complaint, we think of Vi as a complaining verifier. We set
the number of authenticators generated by every verifier Vi to be ℓ = t, and we let every Pk in
Vi generate a random vector tki,j for every Pj , and privately open to Pj the values (tki,j , aki,j :=

tki,j · Ai, ski,j := tki,j · si) which are linear combinations of the values on which D signed to Pk.
That is, every party in Vi generates a single authenticator for Pj . (If Pj rejects the opening of Pk,
then Pj simply ignores the authenticator of Pk.)

Analysis. For honest D and I, we allowed all the verifiers to be non-honest in the outer proto-
col. Observe that every verifier Vi contains a corrupt party, that can broadcast a false complaint.
However, since a complaining Vi is equivalent to an aborting Vi in the outer protocol, this behav-
ior is allowed. In addition, when D is honest, the unforgeability of the LPO signature implies
that for every non-aborting Vi, all authenticators generated by the parties in Vi are of the correct
form (tki,j , t

k
i,j · Ai, t

k
i,j · si). If, in addition, I is corrupt, then there exists a verifier that contains

only honest parties that acts exactly like an honest verifier in the outer protocol, and the adversary
has no information about the internal state of this verifier. Moreover, every verifier Vi contains at
least one honest party Pk, for which the authenticators (tki,j)j∈[n] are uniformly distributed, and
the adversary has no information about the vectors corresponding to the honest parties.

When D is corrupt, every Vi contains at least one honest party, and if Vi did not abort then
the honest parties in Vi agree on the values (Ai, si, ri). This means that for every Vi at least one
authenticator is honestly generated. However, the authenticators that the corrupt parties generate
are not necessarily consistent with the values (Ai, si, ri) that the honest parties hold. To solve this
problem, we observe that each pair of parties Pℓ and Pk in a non-aborting Vi already publicly

9This is the point where complexity becomes exponential in n.

15

agreed (via broadcast) on the masked values bi,ℓ,k = (Ai, si, ri)+ ri,ℓ,k. Also Pℓ signed the random
pad ri,ℓ,k to Pk, and since bi,ℓ,k is public, this signature is effectively a signature on the “plaintext”
(Ai, si, ri). In particular, Pk can prove to any party Pj that her authenticator, (tki,j , aki,j := tki,j ·
Ai, ski,j := tki,j · si), is consistent with Pℓ, by opening to Pj the linear combinations of the random
pad ri,ℓ,k that correspond to tki,j . (See Section 5 for details.)

Realizing the linear private-opening signatures. So far we assumed that we have an ideal-
ized version of the linear private-opening signatures. To replace these signatures we construct
information-theoretic linear private-opening signatures. Since the openings are private, we do not
require agreement and show that such a scheme can be realized with a single round of distribu-
tion, two rounds of verification, and a single round of opening that can be executed in parallel to
the second round of verification. Our construction follows the blueprints presented in previous
works [PCR08, PCPR09] and reviewed in Section 2.1. (Full details appear in Section 4.) Despite
their interactive nature, our signatures can be employed in the above protocol without increasing
the round complexity. The distribution phase is executed in the first round, and the verification
phase is executed in the second and third round. A failures of an LPO verification, which is a pub-
lic event, is translated to an “abort” of the corresponding virtual verifier. The final construction
of the (1, 2, 1)-signature scheme satisfies several additional properties (e.g., linearity and refined
versions of openings) that are needed later for the other constructions. See Section 5 for details.

2.2 From VSS to General MPC

At a high level, our (long and winding) road to round-optimal general MPC has few additional
steps. First, we note that our VSS scheme satisfies some useful properties for the construction of
round-optimal general MPC protocol. We then use those properties to construct (standard) single-
input functionalities, and show how to enhance SIF to augmented SIF. Finally, we use augmented
single input functionalities for the construction of round-optimal general MPC. We continue with
a short explanation about each step.

2.5-rounds VSS. In order to obtain round-optimal protocols, we need to perform operations on
the shares before the execution of VSS terminated. This idea can be traced back to [ABT19], and
was used in several papers on round-optimal MPC [AKP20b, AKP22]. We call the shares that
the parties received in the first round of the VSS protocol tentative shares, and we observe that in
some special cases we can perform linear operations over those shares. In the first special case, a
single dealer shared many secrets s1, . . . , sm, and the parties securely compute a linear function∑

i∈[m] αi · si of the secrets already in the third round of VSS (see Section 7.1.1). In the second
special case there are two dealers D1 and D2 that share the secrets s1 and s2, respectively, and the
parties securely compute the value s1 − s2 already in the third round (see Section 8.2.1).

Single input functionalities. Recently, [AKP22] implicitly showed a round-preserving transfor-
mation from a VSS scheme that allows performing linear operations over the tentative shares into
a protocol for single input functionalities. We follow this blueprint and show that it can be adopted
to the statistical setting as well. Roughly, the transformation has two steps: (1) Based on VSS, we
construct (Section 7.1.2) a three-round protocol for triple secret sharing (TSS) that allows a dealer D
to share a triple (a, b, c) among the parties via VSS, and also prove in zero-knowledge that the triple

16

satisfies c = ab; and (2) We use the TSS protocol in order to construct a three-round SIF protocol for
a degree-2 functionality by letting the dealer shares its inputs and all the degree-2 monomials (via
TSS) and then let the parties compute linear operations over the tentative shares. Since general
SIF non-interactively reduces to degree-2 SIF [GIKR02], we get a 3-round SIF protocol.

While this approach is sufficient for the construction of SIF, it is insufficient for the construction
of an augmented SIF, since a party Pi cannot convince the other parties of the validity of its out-
puts. In order to obtain an augmented SIF, we first present a new primitive, called verifiable sharing
and transferring (VST), that allows a dealer D to share a secret s among the parties via VSS, while
delegating the ability to perform the verifiable opening of s to a designated receiver R (who also
gets to learn the secret). The protocol follows similar ideas to VSS, and is presented in Section 7.2.
Now given a SIF functionality f , we realize an augmented SIF as follows. Instead of delivering
the ith output, fi(x), privately to Pi, we use SIF to send to all the parties a masked version of
the output fi(x) + ri, and share the mask ri via VST while delegating the opening to Pi as the
receiver. As a result, Pi learns the output fi(x) and gets the ability to verifiably open ri, and let all
the parties learn fi(x).10

From Single Input Functionality to General Multiparty Computation To construct a 4-round
MPC protocol for general functionalities, we begin with 2-round perfectly secure protocol Πsm

against passive adversaries (e.g., [ABT18]), and use a 3-round augmented SIF to force an honest
behavior while increasing the total round complexity by only one round. This can be viewed as a
new round-efficient statistical realization of the GMW paradigm [GMW87]. Since the underlying
protocol Πsm uses private channels, we face a consistency problem: How should Alice convince
Bob and Charlie that she behaves well when they have different views on her behavior? To solve
this problem GMW eliminate all private communication and pass it, encrypted under public-
key encryption, over a broadcast channel, thus providing a common “point of reference” for all
the parties. This public-key assumption was carried to round-efficient realizations of the GMW
compiler [GLS15, ACGJ18], and was recently relaxed to a symmetric assumption (the existence
of commitments) in [AKP21]. We get rid of computational assumptions and present a statistical
variant of this round-efficient compiler. For this, we exploit the full power of the augmented SIF
protocol and some of its special properties such as the ability to compute the difference between
the outputs of two single input functionalities with different dealers. See Section 10.

Organization. In Section 4 we present the construction of linear private-opening interactive sig-
natures, and we use it in Section 5 to construct a (1,2,1)-signatures. Section 6 is devoted to the new
VSS scheme, Section 7 contains the related notions of TSS and VST, and Section 8 combines these
notions into a single Fsh-comp functionality. The augmented SIF protocol appears in Section 9, and
the MPC protocol appears in Section 10. A flow-chart of our construction is presented in Figure 1.

10In order to construct augmented single input functionalities, we need to execute multiple instances of VSS, TSS and
VST, and perform linear operations over the shares. All these calls should be correlated, i.e., for every pair of parties
(Pi, Pj), all instances of VSS, TSS, and VST should use the same underlying instance of linear (1,2,1)-signature with Pi

in the role of D and Pj in the role of I. In order to handle this correlation, it will be convenient to capture the execution
of all VSS, TSS and VST instances by a single ideal functionality Fsh-comp, that will formalize both the task of sharing
values by the parties and of computing linear operations over the shares.

17

Figure 1: A block diagram of our constructions.

3 Preliminaries

Notation. Throughout, we let n be the number of parties, t < n/2 be the number of corrupt
parties, κ be the security parameter, and we let F be a sufficiently large finite field, where we
usually think of the size of F as exponential in n and κ. For a vector β of length m, we denote
β = (β[1], . . . ,β[m]). For two vectors α,β ∈ Fm, we denote α · β :=

∑m
i=1α[i] · β[i] .

UC-security. All our results are proved in the framework of universal composability [Can01].
For more information about UC-security, the reader is referred to [Can01]. See also the overview
in [AKP21, Appendix A], with computational-indistinguishability replaced with statistical-
indistinguishability.

Randomized Encoding The following is taken with minor changes from [App17]. Let X,Y, Z
and R be finite sets.

Definition 3.1 (Perfect randomized encoding [IK00, AIK06]). Let f : X → Y be a function. We say
that a function f̂ : X×R→ Z is a perfect randomized encoding of f if there exists a pair of randomized
algorithms, decoder dec and simulator Sim, for which the following hold:

• (Correctness) For any input x ∈ X , Prr←R[dec(f̂(x; r)) = f(x)] = 1.

• (Privacy) For any x ∈ X and any computationally-unbounded distinguisher A,
|Pr[A(Sim(f(x))) = 1]− Prr←R[A(f̂(x; r)) = 1]| = 0.

We refer to the second input of f̂ as its random input.

Definition 3.2 (Perfect decomposable randomized encoding). Assume that the function f is an arith-
metic function whose input x = (x1, . . . , xn) is a vector of elements of some ring X . We say that a
randomized encoding f̂ is a decomposable randomized encoding if each output of f̂ depends on at most
a single input xi. Namely, f̂ decomposes to (f̂1(x1; r), . . . , f̂n(xn; r)), where f̂i might output several ring
elements.

We will also be interested in the special case of 2-decomposable randomized encoding.

Definition 3.3 (2-decomposable randomized encoding). Let f : X → Y be a function where
X = X1 × X2. A randomized encoding f̂ of f is 2-decomposable (also known as 2-party private
simultaneous messages) if f̂(x1, x2; r) decomposes to (f̂1(x1; r), f̂2(x2; r)).

18

We will always be interested in efficiently constructible randomized encoding whose corre-
sponding algorithms f̂ , dec and Sim are computable by polynomial-size circuits that can be con-
structed efficiently given a description of f . The following theorem, due to [IK02, CFIK03] shows
that such a construction can be obtained for the class of arithmetic circuits with logarithmic depth.

Theorem 3.4. There exists an efficiently constructible perfect decomposable randomized encoding for the
class of polynomial-size arithmetic circuits with logarithmic depth over an arbitrary ring. In particular,
there is a compiler that takes a size-S depth-D arithmetic circuit for f and in time poly(S, 2D) outputs
arithmetic circuits for f̂ , dec and Sim.

4 Linear Private-Opening Interactive Signature scheme

In this section we present the linear private-opening interactive signature scheme, that was dis-
cussed in Section 2.1.2. We formalize the requirements from the signature scheme by an ideal
functionality FpoSig, parameterized by integers m and ℓ, that correspond to the number of inputs
that D signs and the number of linear combinations that every party receives, respectively. We
slightly deviate from the structure of the interactive signature as presented in Section 2.1.2 and
include the second round of the verification phase within the opening phase, where both run in
parallel in the same round. The functionality (Figure 2) as well as the protocol (Figure 3) take care
of this change. Recall that we will only require private opening for this signature scheme and this
is accounted for in our functionality and protocol.

The functionality receives the set of corrupt parties C.

Distribution phase. D inputs s = (s1, . . . , sm) ∈ Fm. The functionality returns s to I.

Verification phase.

• (Inputs) A corrupt I inputs a bit revealI ∈ {0, 1}. For an honest I set revealI = 0.

• (Outputs) The functionality returns revealI to D.

Opening phase.

• (I’s inputs) I inputs lists of coefficients (βi,j)i∈[n],j∈[ℓ], where βi,j ∈ Fm for every i ∈ [n], j ∈ [ℓ]. A
corrupt I also inputs bits abort1, . . . , abortn ∈ {0, 1} and field elements (zi,j)i∈[n],j∈[ℓ], where zi,j ∈ F.

• (Leakage) The functionality returns (βi,j)i∈C,j∈[ℓ] to the adversary.

• (Corrupt D’s inputs) A corrupt D inputs a bit revealD and values s′1, . . . , s
′
m ∈ F. For an honest D set

revealD = 0 and s′i := si for all i ∈ [m].

• (Outputs) The functionality returns b := (revealI ∨ revealD) to all the players. If b = 1 then the
functionality returns s′1, . . . , s

′
m to all parties and terminates. Otherwise, the functionality does as

follows.

– (Honest D, I) For every i ∈ [n], the functionality returns (βi,j ,βi,j · s)j∈[ℓ] to Pi.
– (Honest D, corrupt I) For every i ∈ [n], if aborti = 1 then the functionality returns ⊥ to Pi, and

otherwise it returns (βi,j ,βi,j · s)j∈[ℓ] to Pi.

Functionality Fm,ℓ
poSig

19

– (Corrupt D, honest I) For every i ∈ [n], the functionality returns (βi,j ,βi,j · s)j∈[ℓ] to Pi.
– (Corrupt D, I) For every i ∈ [n], if aborti = 1 then the functionality returns ⊥ to Pi, and otherwise

it returns (βi,j , zi,j)j∈[ℓ] to Pi.

Figure 2: Functionality Fm,ℓ
poSig

One can realize Fm,ℓ
poSig based on a general linear secret-sharing scheme with strong recovery

properties (authorized sets can recover the randomness of the dealer). For concreteness, we de-
scribe an instantiation of this approach based on Shamir’s secret sharing scheme.

Public parameters: All parties share a statistical security parameter 1κ.

(Distribution phase or poSig.dis): D holds input s = (s1, . . . , sm) at the beginning of distribution phase,
and does the following.

• (Authentication information)D sets d := n and picks random degree-d polynomials f1(x), . . . , fm(x) ∈
F[x] conditioned on fk(0) = sk for every k ∈ [m]. It further picks random degree-d polynomials
r1(x), . . . , rm(x) ∈ F[x]. D sends (fk(x), rk(x))k∈[m] to I.

• (Verification information) For every Pi, D samples a random non-zero point αi ∈ F \ {0}, computes
fk,i := fk(αi) and rk,i := rk(αi) for every k ∈ [m], and sends (αi, f1,i, . . . , fm,i, r1,i, . . . , rm,i) to Pi.

At the end of the round I outputs (f1(0), . . . , fm(0)).

(Verification phase or poSig.ver): I picks a random non-zero field element c ∈ F \ {0}, and broadcasts
(c, fk(x) + c · rk(x))k∈[m].
Let (c, dk(x))k∈[m] be the broadcast of I. At the end of the round, if dk(x) = fk(x) + c · rk(x) for every
k ∈ [m] then D outputs revealI = 0. Otherwise, D outputs revealI = 1.

(Opening phase or poSig.open):

• (Checking verification test) D broadcasts “accept” if revealI = 0, and broadcasts s otherwise.

• (Private opening) The intermediary I receives the coefficient vectors (βi,j)i∈[n],j∈[ℓ] as inputs, and
for every i ∈ [n], she sends to Pi the values (βi,j ,Outi,j(x))j∈[ℓ] where Outi,j(x) is the univariate
polynomial βi,j [1] · f1(x) + . . .+ βi,j [m] · fm(x).

(Local computation): Every Pi does the following local computation.

• If D broadcasted s in the verification phase, then Pi sets b = 1, outputs s and terminates.

• Otherwise, Pi sets b = 0. If either (1) dk(αi) ̸= fk,i + crk,i for some k ∈ [m], or (2) it holds that
Outi,j(αi) = βi,j [1]f1,i + . . .+ βi,j [m]fm,i for every j ∈ [ℓ], then Pi outputs (βi,j ,Outi,j(0))j∈[ℓ].

• Otherwise, Pi outputs a failure symbol ⊥.

Protocol poSigm,ℓ

Figure 3: Protocol poSigm,ℓ

Notation 1 (Conflicts in private-openings signatures). We say that D is poSign-conflicted with I if
D does not broadcasts “accept” in the verification phase (i.e., if b = 1). If D and I are not conflicted, we
say that the opening of I is accepted by Pi if Pi does not output ⊥. Otherwise, if the opening of I is not
accepted by Pi, we say that the opening was rejected or that it failed.

20

Notation 2 (Specifying inputs to poSig). When we use poSig as a subprotocol of a protocol Π, we always
execute the distribution phase in the first round, the verification phase in the second round, and the opening
phase in the third round. It will be convenient to use the following notational conventions.

In the distribution phase, the signed values s1, . . . , sm will have many different contexts. Therefore, it
will be convenient to specify each input in its own context, instead of specifying all of them together. Hence,
whenever we introduce a new input si ofD to poSig, we will say thatD executes poSig.dis(D, I, si), which
means that si is the i-th input of D in the execution of poSig with I as the intermediary. In fact, we always
assume that every input of poSig has some predetermined role in the protocol Π, so no confusion can arise
regarding the order of the inputs, that we usually ignore. For example, for three field elements, a, b, c,
when we say that D executes poSig.dis(D, I, a), poSig.dis(D, I, b) and poSig.dis(D, I, c) we mean that D
executes the distribution phase with I as the intermediary, and with inputs (a, b, c).

Similarly, instead of specifying all the coefficients that I inputs in the opening phase of poSig at the
same time, it will be convenient to specify the coefficients in their own context. Therefore, whenever we
introduce a new vector of coefficients β, we will say that I executes poSig.open(D, I, Pi,β · s) if I inputs
the coefficients β to poSigm,ℓ in poSig.open at the role of some βi,j . Again, we assume that every coefficient
in the opening phase of poSig has some predetermined role in the protocol Π, so no confusion can arise
regarding the order of the coefficients, that we usually ignore.

We will sometimes think of s as a matrix M (say of dimensions a × b) rather than a vector, and
use the matrix notation poSig.open(D, I, Pi,β ·M) to specify the opening of the b linear combinations
β ·M1, . . . ,β ·Mb, where β is a row vector and Mj is the j-th column of M .

In some cases we will only be interested in opening a linear combination of a subset of inputs si1 , . . . , sik
where k < m. In this case we simplify notation and denote the opening by poSig.open(D, I,β ·
(si1 , . . . , sik)) where β ∈ Fk. Observe that β can be naturally translated into a length-m vector β̄ ∈ Fm so
that β̄ · s = β[1]si1 + . . .+ β[k]sik , by setting β̄[ij] = β[j] for all j ∈ [k], and β̄[j] = 0 in the remaining
entries. In this case it will be convenient to say that the output is (β,β · (si1 , . . . , sik)) instead of saying
that the output is (β̄, β̄ · s). This extends naturally to the matrix notation as well.

Notation 3 (On m and ℓ). When using poSig as a subprotocol in a protocol Π, the number of inputs and
outputs that every instance of poSig requires can be deduced from the definition of Π. Therefore, in order to
simplify notation, we usually ignore input parameter m and the output parameter ℓ when using poSig as a
subprotocol.

In Section C we prove the following theorem.

Theorem 4.1. Let κ be a security parameter, and let n be the number of parties and t < n/2 the number
of corrupt parties. Let m, ℓ be the parameters of poSig, and let F be a field of size greater than 2κ · 2n2mℓ.
Then protocol poSigm,ℓ is a UC-secure implementation of Fm,ℓ

poSig against a static, active, rushing adversary
corrupting up to t parties. The complexity of poSigm,ℓ is poly(κ, n,m, ℓ, log |F|).

5 Linear Interactive Signature Scheme

In this section we present our protocol for (1,2,1)-signatures, that we call linear interactive signature,
discussed in Section 2.1. We formalize the requirements by an ideal functionality FiSig, param-
eterized by an input-parameter m and and output-parameter ℓ. As in FpoSig, the functionality
consists of a single distribution phase, and a single verification phase. However, for FiSig it will be
useful to have two opening phases, where in the first opening phase I can perform both private

21

and public opening of linear combination of the secrets, and in the second opening phase I can
perform only public opening of a subset of secrets.11 The functionality is described in Figure 4.

The functionality receives the set of corrupt parties C.

Distribution phase. D inputs s = (s1, . . . , sm) ∈ Fm. The functionality returns s to I.

Verification phase.

• (Inputs) A corrupt I inputs a bit revealI ∈ {0, 1}. For an honest I set revealI = 0.

• (Outputs) The functionality returns revealI to D.

Opening phase 1 (for private and public opening of linear combination of the secrets).

• (I’s inputs) I inputs lists of coefficients, (βpub
j)j∈[ℓ] and (βpri

i,j)i∈[n],j∈[ℓ], where βpub
j ,βpri

i,j ∈ Fm for
every i ∈ [n], j ∈ [ℓ]. A corrupt I also inputs bits abortpub, abortpri1 , . . . , abortprin ∈ {0, 1} and field
elements (zpubj)j∈[ℓ] and (zprii,j)i∈[n],j∈[ℓ], where zpubj , zprii,j ∈ F for every i ∈ [n], j ∈ [ℓ].

• (Leakage) The values (βpub
j)j∈[ℓ] and (βpri

i,j)i∈C,j∈[ℓ] are leaked to the adversary.

• (D’s inputs) A corrupt D inputs a bit revealD and field elements s′1, . . . , s
′
m. For an honest D set

revealD = 0 and s′i := si for all i ∈ [m].

• (Outputs) The functionality returns b := (revealI ∨ revealD) to all the players. If b = 1 then the
functionality returns s′1, . . . , s

′
m to all parties and terminates. Otherwise, the functionality does as

follows.

– (Public opening)

* (Honest D, I) The functionality returns (βpub
i ,βpub

i · s)i∈[ℓ] to all parties.

* (Honest D, corrupt I) If abortpub = 1 then the functionality returns ⊥ to all parties. Otherwise,
the functionality returns (βpub

i ,βpub
i · s)i∈[ℓ] to all parties.

* (Corrupt D, honest I) The functionality returns (βpub
i ,βpub

i · s)i∈[ℓ] to all parties.

* (Corrupt D, I) If abortpub = 1 then the functionality returns ⊥ to all parties. Otherwise, the
functionality returns (βpub

i , zpubi)i∈[ℓ] to all parties.

– (Private opening) If I is corrupt and abortpub = 1 then the functionality returns ⊥ to all the parties.
Otherwise, the functionality does as follows.

* (Honest D, I) For every i ∈ [n], the functionality returns (βpri
i,j ,β

pri
i,j · s)j∈[ℓ] to Pi.

* (Honest D, corrupt I) For every i ∈ [n], if abortprii = 1 then the functionality returns⊥ to Pi, and
otherwise it returns (βpri

i,j ,β
pri
i,j · s)j∈[ℓ] to Pi.

* (Corrupt D, honest I) For every i ∈ [n], the functionality returns (βpri
i,j ,β

pri
i,j · s)j∈[ℓ] to Pi.

* (Corrupt D, I) For every i ∈ [n], if abortprii = 1 then the functionality returns ⊥ to Pi, and
otherwise it returns (βpri

i,j , z
pri
i,j)j∈[ℓ] to Pi.

Functionality Fm,ℓ
iSig

11We could allow I perform private and public opening of linear combination in the second opening phase as well,
however it will not be necessary for the applications.

22

Opening phase 2 (for public opening of a subset of the secrets). If (1) b = 1, or (2) I is corrupt and
abortpub = 1, then return ⊥ and terminate.a

Otherwise, the adversary inputs a bit abort and values s′′1 , . . . , s′′m. We split into cases.

• (Honest D, I) On inputs 0 ≤ µ ≤ m and k1, . . . , kµ ∈ [m] from I, return (ki, ski
)i∈[µ] to all parties.

• (Honest D, corrupt I) If abort = 1 return ⊥ to all the parties and terminate. Otherwise, on inputs
0 ≤ µ ≤ m and k1, . . . , kµ ∈ [m] from I, return (ki, ski

)i∈[µ] to all parties.

• (Corrupt D, honest I) On inputs 0 ≤ µ ≤ m and k1, . . . , kµ ∈ [m] from I, return (ki, ski)i∈[µ] to all
parties.

• (Corrupt D, I) On inputs 0 ≤ µ ≤ m and k1, . . . , kµ ∈ [m] from I, return (ki, s
′′
ki
)i∈[µ] to all parties.

aThis phase takes place after the former opening phase. This is why we have taken into account whether condition
(2) (i.e. I is corrupt and abortpub = 1) is already the case.

Figure 4: Functionality Fm,ℓ
iSig

We construct a protocol that realizes every phase in exactly one round. We let S be the family
of all sets that contain t players and do not contain D and I. The protocol is presented in Figure 5.

All parties share a statistical security parameter 1κ. Let u > tn and v > u · 2n.

(Distribution phase or iSig.dis): D holds inputs s = (s1, . . . , sm) and does as follows.

• (Authentication information) For every k ∈ [m], D picks a random vector fk ∈ Fv whose first entry is
the secret sk. It further picks a random vector rk ∈ Fv . D sends (fk, rk)k∈[m] to I.

• (Verification information) For every set S ∈ S, D picks a random u × v matrix AS ∈ Fu×v , computes
fSk := AS · fk ∈ Fu and rSk := AS · rk ∈ Fu, and executes poSig.dis(D, Pi, (A

S , (fSk , r
S
k)k∈[m])) with

every Pi in S.a

The players do as follows.

• (Exchanging random pads) For every set S ∈ S , and every pair (Pi, Pj) in S, Pi picks a random pad
rSi,j ∈ Fuv+2mu and executes poSig.dis(Pi, Pj , r

S
i,j).

• (I’s output) I outputs (fk[1])k∈[m], where fk[1] is the first entry of fk.

(Verification phase or iSig.ver): I does as follows.

• (Verification test) I picks a random non-zero field element c ∈ F\{0} and broadcasts (c, fk+crk)k∈[m].

The players do as follows.

• (poSig execution) The players continue with the verification phase of all poSig executions.

• (Comparing verification information) For every set S ∈ S , and every pair (Pi, Pj) in S, Pi broadcast
aSi,j = (AS , (fSk , r

S
k)k∈[m]) + rSi,j and bS

i,j = (AS , (fSk , r
S
k)k∈[m]) + rSj,i.

D does as follows.

• (Checking verification test) Let (c,dk)k∈[m] be the broadcast of I. D sets revealI = 0 if dk = fk + crk for
every k ∈ [m], and revealI = 1 otherwise.

Protocol iSigm,ℓ

23

(Opening phase 1 or iSig.open1): The dealer does as follows.

• D broadcasts “accept” if revealI = 0, and broadcasts s otherwise.

In addition, for every S ∈ S every Pi in S does as follows.

• (Checking verification test) If AS · dk ̸= fSk + crSk for some k ∈ [m] then Pi broadcasts “not equal”.

• (Sending verification information) Pi does as follows for every player Pj (not necessarily in S).

– Pi samples a row vector tSi,j ∈ Fu.

– Pi executes poSig.open(D, Pi, Pj , t
S
i,j ·AS). (Here we think of Pi opening v linear combinations to

Pj , denoted tSi,j ·AS [1], . . . , tSi,j ·AS [v], where AS [k] is the k-th column of AS .)

– For every Pi′ in S, Pi executes poSig.open(Pi′ , Pi, Pj , t
S
i,j · rSi′,i[AS]). (Here, rSi′,i[A

S] is the part of
rSi′,i that pads AS , where we think of rSi′,i[A

S] as a u× v matrix.)

– Pi executes poSig.open(D, Pi, Pj , t
S
i,j · fSk) for every k ∈ [m].

– For every P ′
i in S and every k ∈ [m], Pi executes poSig.open(Pi′ , Pi, Pj , t

S
i,j · rSi′,i[fSk]). (Here,

rSi′,i[f
S
k] is the part of rSi′,i that pads fSk , where we think of rSi′,i[f

S
k] as a vector of length u.)

I, that holds inputs (βpub
j)j∈[ℓ] and (βpri

i,j)i∈[n],j∈[ℓ], does as follows.

• (Public opening) I broadcasts (βpub
j ,

∑
k∈[m] β

pub
j [k] · fk)j∈[ℓ].

• (Private opening) I sends (βpri
i,j ,
∑

k∈[m] β
pri
i,j [k] · fk)j∈[ℓ] to Pi via private message.

Each party Pj does the following local computation.

• If D broadcasted s in the verification phase, then all parties output s and terminate.

• Let G ⊆ S be the set containing all sets S ∈ S so that (1) for every Pi in S, D is not poSign-conflicted
with Pi in poSig(D, Pi, (A

S , (fSk , r
S
k)k∈[m])), (2) for every Pi and Pi′ in S it holds that aSi,i′ = bS

i′,i (3)
for every Pi and Pi′ in S it holds that Pi is not poSign-conflicted with Pi′ in poSig(Pi, Pi′ , r

S
i,i′), and

(4) for every Pi in S it holds that Pi did not broadcast “not equal” in Open Phase 1.b

• For every S ∈ G, Pj defines a set GS,j that contains all player Pi in S so that:

1. Pj accepted the openings of Pi in the below instances, and Pi uses the same vector tSi,j in all of
them:
– poSig.open(D, Pi, Pj , t

S
i,j ·AS),

– (poSig.open(Pi′ , Pi, Pj , t
S
i,j · rSi′,i[AS]))Pi′∈S ,

– (poSig.open(D, Pi, Pj , t
S
i,j · fSk))k∈[m] and

– (poSig.open(Pi′ , Pi, Pj , t
S
i,j · rSi′,i[fSk]))Pi′∈S,k∈[m].

Denote the outputs by αS,j
i , (ρS,j

i′,i)Pi′∈S , (ϕ
S,j
i,k)k∈[m] and (γS,j

i′,i,k)Pi′∈S,k∈[m], respectively.

2. For every Pi′ in S it holds that αS,j
i + ρS,j

i′,i = tSi,j · bS
i,i′ [A

S] and ϕS,j
i,k + γS,j

i′,i,k = tSi,j · bS
i,i′ [f

S
k] for

every k ∈ [m].c

• (Acceptance of public opening) If there exists a set S ∈ G, a player Pi ∈ GS,j , and an index j′ ∈ [ℓ] so
that

αS,j
i ·

∑
k∈[m]

βpub
j′ [k] · fk ̸=

∑
k∈[m]

βpub
j′ [k] · ϕS,j

i,k

then Pj outputs ⊥ as the public output. Otherwise, Pj outputs the first entry of
∑

k∈[m] β
pub
j′ [k] · fk

for every j′ ∈ [ℓ].

24

• (Acceptance of private opening) If the public output is ⊥ then so is the private ouptut. Otherwise, if
there exists a set S ∈ G, a player Pi ∈ GS,j , and an index j′ ∈ [ℓ] so that

αS,j
i ·

∑
k∈[m]

βpri
j,j′ [k] · fk ̸=

∑
k∈[m]

βpri
j,j′ [k] · ϕ

S,j
i,k

then Pj outputs ⊥ as the private output. Otherwise, Pj outputs the first entry of
∑

k∈[m] β
pri
j,j′ [k] · fk

for every j′ ∈ [ℓ].

(Opening phase 2 or iSig.open2): On input µ, k1, . . . , kµ ∈ [m], I broadcasts (ki, fki
)i∈[µ].

Every Pj does the following local computation. If D broadcasted s in the verify phase, or if the public
output in iSig.open1 was ⊥, then Pj outputs ⊥ and terminate. Otherwise, If there exists a set S ∈ G and
a player Pi′ ∈ GS,j so that αS,j

i′ · fki
̸= ϕS,j

i′,ki
for some i ∈ [µ] then Pj outputs ⊥. Otherwise, Pj outputs

(ki, fki
[1])i∈[µ].

aHere we think of (AS , (fSk , rSk)k∈[m]) as a vector in Fuv+2mu.
bNote that all honest parties agree on the set G.
cNote that the set GS,j depends on the private view of Pj , and may differ for two honest parties.

Figure 5: Protocol iSigm,ℓ

Notation 4. We say thatD is iSign-conflicted with I ifD does not broadcasts “accept” in the verification
phase (i.e., if b = 1). If D and I are not conflicted, we say that the opening of I is accepted by Pi if Pi does
not output ⊥. Otherwise, if the opening of I is not accepted by Pi, we say that the opening was rejected or
that it failed.

When we use iSig as a subprotocol of a protocol Π, we always execute the distribution phase in the first
round, the verification phase in the second round, the first opening phase in the third round, and the second
opening phase in the fourth round (if exists). We therefore follow the same conventions in Notation 2 and
Notation 3.

Notation 5 (Private versus Public Opening). When we invoke the private opening of iSig.open1, we in-
voke the protocol with the receiver’s identity along with the identities ofD and I i.e. iSig.open1(D, I, R, v).
When no receiver is specified, it means we invoke the public opening of iSig.open1.

Notation 6. It will be convenient to consider the case where D and I are the same party. In this case, in
the distribution and verification phase there is no communication. In opening phase 1 we let I broadcast
(βpub

j ,βpub
j · s)j∈[ℓ] and send (βpri

i,j ,β
pri
i,j · s)j∈[ℓ] to Pi, and we assume that Pi always accepts the opening.

Similarly, in open phase 2 we let I broadcast (ki, si)i∈[µ], and we assume that all the players accept the
opening.

Throughout, we assume that F is a sufficiently large field of size exp(n, κ, ℓ,m), that allows the
execution of poSig as required by iSig. In Section D we prove the following theorem.

Theorem 5.1. Let κ be a security parameter, and let n be the number of parties and t < n/2 the number
of corrupt parties. Let m, ℓ be the parameters of poSig, and let F be a field of sufficiently large size as
a function of (n, κ, ℓ,m). Then protocol iSigm,ℓ is a UC-secure implementation of Fm,ℓ

iSig against a static,
active, rushing adversary corrupting up to t parties. The complexity of iSigm,ℓ is poly(κ, 2n,m, ℓ, log |F|).

25

6 Verifiable Secret Sharing

In this section we present a protocol for verifiable secret sharing with three rounds of sharing and
a single round of opening. We start by discussing the underlying secret sharing scheme.

The secret-sharing scheme. We consider an extension of the classical Shamir’s secret sharing
scheme, based on symmetric bivariate polynomials F (x, y) of degree at most t in each variable. It will
be convenient to think of the shares as an n × n symmetric matrix where the (i, j)-th share is
F (j, i), for i, j ∈ [n]. It is well known (see Fact B.3) that if F (x, y) is chosen uniformly at random
conditioned on F (0, 0) = s, then every t rows of the matrix reveal no information about s, but any
t+ 1 rows fully determine the matrix (see Fact B.2).

From secret sharing to VSS. We note that the task of constructing a VSS protocol can be reduced
to the construction of a two-phase protocol vss with the following guarantees: (1) in the first phase,
the sharing phase, the dealer Pd shares a polynomial F (x, y) among the parties, so that every Pi

learns the univariate polynomial fi(x) := F (x, i) and nothing else, and (2) in the second phase,
the reconstruction phase, every Pi can publicly open fi(x), and nothing else. Indeed, if Pd picks
F (x, y) at random conditioned on F (0, 0) = s, then in sharing phase the adversary can see at
most t shares, so privacy is guaranteed. In addition, in the reconstruction phase, since there are
n−t ≥ t+1 honest parties, F (x, y) will be revealed, so all parties can recover F (0, 0), which means
that correctness and commitment hold.

The rest of the section is organised as follows. In Section 6.1 we present the construction of
our vss protocol, that requires three round of sharing and only a single round of reconstruction. In
Section 6.2 we analyse protocol vss and prove that it indeed implies a VSS protocol. In Section 6.3
we show that our VSS protocol is linearly-homomorphic, and in Section 6.4 we present the notion
of tentative shares and provide some properties.

6.1 The Construction

In the first round of the protocol, the dealer Pd signs the values (F (j, i))j∈[n] for every Pi. In
addition, every Pi sends to every Pj a random pad ri,j , that will be used for a pairwise-consistency
test in the second round, together with a signature. Pi also sends ri,j to Pd with a signature. In
the second round, the parties execute the pairwise consistency test, where every Pi broadcasts
ai,j = F (j, i)+ri,j and bi,j = F (j, i)+rj,i for every j ∈ [n], and Pd broadcasts adi,j = F (j, i)+ri,j for
every i, j ∈ [n]. Observe that, because of the random pads, this step reveals no information about
the shares of the honest parties. In the third round, if Pd is conflicted with Pi (i.e., if adi,j ̸= ai,j
for some j ∈ [n]) then Pd and Pi open all the signatures that correspond to the shares of Pi.
Similarly, if Pi and Pj are conflicted (i.e., if ai,j ̸= bj,i or aj,i ̸= bi,j), then Pi and Pj open all the
signatures that correspond to the (i, j)-th share. We mention that parties also become conflicted
if they are iSign-conflicted . If the dealer is honest then every two honest parties are consistent, so
no information about their shares is revealed to the adversary. Since we use vss as a subprotocol
in our general MPC protocol, we also allow the parties to inputs flags, that indicate whether they
are conflicted due to some external reason.

At the end of the execution the parties first verify that, given the opened signatures, no player
has a clear malicious behaviour. Every party found to be corrupt is added to the set of bad parties

26

B. If Pd is found to be corrupt then Pd is discarded. Otherwise, for every Pi conflicted with Pd, the
shares of Pi will be computed based on the public openings of Pd and Pi, and will be known to all
the parties. Similarly, if Pi and Pj are conflicted, then the (i, j)-th share will be computed based
on the public openings of Pi and Pj , and will be known to all the parties. However, if Pi and Pj

are not conflicted, then the (i, j)-th share is not known to all the parties, and it is set to be bi,j− rj,i,
where bi,j is a public value, and Pi holds a signature of rj,i from Pj . In the analysis we show that
if Pd is not discarded, then the shares of the honest parties are consistent with some polynomial
F ′(x, y), so that F ′(x, y) = F (x, y) if the dealer is honest. In addition, the shares of every corrupt
Pi are either consistent with F ′(x, i), or correspond to a polynomial of degree more than t, so that
in the opening phase the parties will turn the shares into an erasure.

We continue with a formal description of the protocol in Figure 6.

Inputs: The dealer Pd has a symmetric bivariate polynomial of degree t in each variable F (x, y). All
parties share a statistical security parameter 1κ.

Round 1 (share and signature generation):

• Pd lets fi(x) := F (x, i). Pd executes iSig.dis(Pd, Pi, fi(j)) for every i, j ∈ [n]. Let every party Pi

receive f ′
i(x) via the signatures.

• Every Pi picks a random pad ri,j ∈ F for each Pj and executes iSig.dis(Pi, Pj , ri,j) and
iSig.dis(Pi, Pd, ri,j). Let the value received by Pj and Pd be denoted as r′i,j and rdi,j .

Round 2 (Pairwise consistency): The parties do the following.

• Pi broadcasts ai,j = f ′
i(j) + ri,j and bi,j = f ′

i(j) + r′j,i for every j ∈ [n].

• Pd broadcasts adi,j = fi(j) + rdi,j for every i, j ∈ [n].

• Run iSig.ver(Pd, Pi, fi(j)), iSig.ver(Pi, Pj , ri,j) and iSig.ver(Pi, Pd, ri,j) for every i, j ∈ [n].

• If Pi received f ′
i(x) which is not a polynomial of degree t, then Pi broadcasts a public complaint.

At the end of the round, the parties do the following local computation.

• If Pd iSign-conflicted with Pi OR Pi complained against Pd in Round 2 OR ai,j ̸= adi,j for some j ∈ [n],
then we say that Pd is internally-vss-conflicted with Pi. (This state is known to Pd at the end of the
round.)

• If Pi iSign-conflicted with Pj OR ai,j ̸= bj,i OR aj,i ̸= bi,j then we say that Pi is internally-vss-conflicted
with Pj . (This state is known to Pi at the end of the round.)

• If Pi iSign-conflicted with Pd then we say that Pi is internally-vss-conflicted with Pd. (This state is
known to Pi at the end of the round.)

Round 3 (Resolution by signature opening): Every Pi inputs a flag-bit flagi together with flag-bits
(flagi,j)j∈[n]. In addition, Pd inputs flags flagd1, . . . , flag

d
n.a The parties do the following.

• Every party broadcasts all of its flags.

Protocol vss

27

• If Pd is internally-vss-conflicted with Pi, or flagdi = 1, then we say that Pd is vss-conflicted with Pi. Pd

executes iSig.open1(Pi, Pd, r
d
i,k) and iSig.open1(Pk, Pd, r

d
k,i) for all k ∈ [n]. Let W be the set of parties

that Pd are vss-conflicted with. (Observe that all parties agree on W at the end of the round since
iSign-conflicted become public at the end of the round.)

• If Pi internally-vss-conflicted with Pj OR flagi,j = 1, then we say that Pi is vss-conflicted with Pj . Pi

executes iSig.open1(Pd, Pi, f
′
i(j)) and iSig.open1(Pj , Pi, r

′
j,i). (Observe that all parties agree on the

conflicts at the end of the round since iSign-conflicted become public at the end of the round.)

• If Pi internally-vss-conflicted with Pd OR flagi = 1 then we say that Pi is vss-conflicted with Pd. Pi

executes iSig.open1(Pd, Pi, f
′
i(k)) and iSig.open1(Pk, Pi, r

′
k,i) for all k ∈ [n]. Let W ′ be the set of all Pi

that are vss-conflicted with Pd and are not in W . (Observe that all parties agree on W ′ at the end of
the round since iSign-conflicted become public at the end of the round.)

• Complete iSig.open1(Pd, Pi, fi(j)), iSig.open1(Pi, Pj , ri,j) and iSig.open1(Pi, Pd, ri,j) for every i, j ∈
[n].

(Local computation):

Initialize a set B := ∅ of bad players. Add a party Pi to B, if one of the following is true:

• There exists an instance of public opening iSig.open1(∗, Pi, ∗) that failed (but did not have iSign-
confliction), or Pi did not open the correct value (i.e. it used the wrong linear coefficients βs).

• There is some Pj so that (1) Pd and Pj are not iSign-conflicted with Pi, (2) Pi executed
iSig.open1(Pd, Pi, f

′
i(j)) and iSig.open1(Pj , Pi, r

′
j,i) and opened the values f ′

i(j) and r′j,i, and (3)
it holds that bi,j ̸= f ′

i(j) + r′j,i.

Remove from W and W ′ all parties Pi that are in B.

Pd is discarded if one of the following holds.

• (Failed opening) There exists an instance of public opening iSig.open1(∗, Pd, ∗) that failed (but did
not have iSign-conflict), or Pd did not open the correct value (i.e. it used the wrong linear coeffi-
cients βs).

• (W verification I) There exists Pi ∈ W that is not iSign-conflicted with Pd, and the polynomial
defined by (adi,j − rdi,j)j∈[n], denoted fd

i (x), is not of degree-t.
• (W verification II) There exists Pi ∈ W for which the following holds. Consider the polynomial

defined by (adk,i−rdk,i) for every Pk not iSign-conflicted with Pd, and denote it by gdi (x). Then gdi (x)

is not of degree-t. If Pi is iSign-conflicted with Pd, define fd
i (x) := gdi (x).

• (W verification III) There exists Pi ∈W that is not iSign-conflicted with Pd, for which fd
i (x) ̸= gdi (x).

• (W ′ verification) There exists Pi ∈ W ′ such that the opening (iSig.open1(Pd, Pi, f
′
i(k)))k∈[n] was

accepted, but (f ′
i(k))k∈[n] does not lie on a degree-t polynomial. Otherwise, denote the polynomial

by fd
i (x).

• (Pairwise consistency of polynomials in W ∪W ′) There exist Pi, Pj ∈W ∪W ′ such that fd
i (j) ̸= fd

j (i).
• (Pairwise Consistency of polynomials) There exist Pi, Pj that Pd is not iSign-conflicted with, so that

iSig.open1(Pd, Pi, f
′
i(j)) and iSig.open1(Pd, Pj , f

′
j(i)) resulted in successful opening, and f ′

i(j) ̸=
f ′
j(i).

• (Pairwise Consistency between W ∪W ′ and its complement I) There exists Pi ∈ W ∪W ′ and some Pj

with a successful opening in iSig.open1(Pd, Pj , f
′
j(i)) so that f ′

j(i) ̸= fd
i (j).

• (Pairwise Consistency between W ∪W ′ and its complement II) There exists Pi ∈W ∪W ′ and some Pj

where Pi is not iSign-conflicted with Pd in iSig(Pi, Pd, r
d
i,j), and iSig.open1(Pi, Pd, r

d
i,j) was success-

fully opened, so that adi,j ̸= fd
i (j) + rdi,j .

28

• (Pairwise Consistency between W ∪ W ′ and its complement III) There exists Pi ∈ W ∪ W ′ so that
iSig.open1(Pj , Pd, r

d
j,i) was successfully opened for some Pj and adj,i ̸= fd

i (j) + rdj,i.

If Pd is discarded then the parties output ⊥. Otherwise, the shares are computed as follows.

For every Pi, Pj /∈ B, the parties compute the (i, j)-th share as follows:

• (Pi ∈W ∪W ′) The parties set the (i, j)-th share to be the public value fd
i (j).

• (Pi ̸∈W ∪W ′) We split into cases.
– For Pj ∈W ∪W ′ the parties set the (i, j)-th share to be the public value fd

j (i).
– Consider Pj /∈W ∪W ′ that did not vss-conflict with Pi.

If Pi is not vss-conflicted with Pj the parties set the (i, j)-th share to be bi,j − rj,i, where bi,j is
public, and Pi can open iSig.open2(Pj , Pi, rj,i) since Pj is not iSign-conflicted with Pi.
If Pi is vss-conflicted with Pj then Pi opened f ′

i(j) and r′j,i and it holds that bi,j = f ′
i(j) + r′j,i (or

otherwise Pi ∈ B). The parties set the (i, j)-the share to be f ′
i(j).

– Consider Pj /∈W ∪W ′ that vss-conflicted with Pi.
If Pi is not vss-conflicted with Pj , then Pj opened f ′

j(i) and r′i,j and it holds that bj,i = f ′
j(i)+ r′i,j

(or otherwise Pj ∈ B). The parties set the (i, j)-th share to be f ′
j(i).

If Pi is vss-conflicted with Pj then Pi opened f ′
i(j) and Pj opened f ′

j(i) and f ′
i(j) = f ′

j(i) (or
otherwise Pd is discarded). The parties set the (i, j)-th share to be f ′

j(i).

aWe allow the parties to input flags, that can make them conflicted with other parties in the vss protocol due to
an external reason. This will be useful when vss is used as a sub-protocol, and we would like to reflect conflicts in the
outer protocol in the vss protocol as well.

Figure 6: Protocol vss

For completeness, we also provide the reconstruction protocol, that requires one round.

Round 1 (Reconstruction): Every Pi ̸∈ B ∪W ∪W ′ executes iSig.open2(Pj , Pi, r
′
j,i) for every Pj ̸∈ B ∪

W ∪W ′ so that Pj is not vss-conflicted with Pi and Pi is not vss-conflicted with Pj .

Local Computation Party Pi initializes the set of accepted parties A := W ∪W ′. Pi adds Pj ̸∈ B∪W ∪W ′

to A if all the following are true.

1. For every Pk ̸∈ B ∪W ∪W ′ so that Pk is not vss-conflicted with Pj and Pj is not vss-conflicted with
Pk, the opening iSig.open2(Pk, Pj , r

′
k,j) is accepted. Let the (j, k)-th share be bj,k − r′k,j .

2. The interpolation on all (j, k)-th shares, Pk /∈ B, results in a degree-t polynomial, denoted fj(x).

For every Pj ∈ W ∪ W ′ let fj(x) := fd
j (x). Use fj(x) of every Pj in A to reconstruct the unique

symmetric bivariate polynomial F (x, y). Output F (0, 0).

Protocol vrec

Figure 7: Protocol vrec

29

6.2 Analysis

Protocol vss can be used to implement a verifiable secret sharing scheme with three rounds for
the sharing and one round for the opening, as per Definition A.1, in the following way.12 Upon
holding a secret s ∈ F, the dealer Pd picks a random symmetric bivariate polynomial F (x, y) of
degree at most t in each variable conditioned on F (0, 0) = s. The sharing phase consists of an
execution of vss with input F (x, y) to Pd, and where all the flags are set to 0. For the opening
phase, the parties execute vrec. (If Pd is discarded in the sharing phase, simply set the secret to be
0.)

For completeness, we continue with an analysis of the properties of vss in the FiSig-hybrid
model.

Privacy. A simulator is provided in Appendix E.1, and its security is implicitly proved as part of
the security-proof of protocol sh-comp. Since the privacy of protocol vss follows from known facts
about bivariate polynomials (see Fact B.3) and analysis similar to previous works (see [KPR10,
Section 5]), we skip a full analysis here.

Correctness. Assume that Pd is honest, and let F (x, y) be the input of Pd. It will be useful to
prove correctness even for the case where the honest parties might raise flags in the third round.
Observe that Pd is not discarded in the execution of vss, and that none of the honest parties are in
B. We continue with the following claim.

Claim 6.1. For every corrupt Pi /∈ B, and every honest Pj the (i, j)-th share, as well as the (j, i)-th share,
are F (i, j) = F (j, i).

Proof. We split into cases.

• Assume that Pd is vss-conflicted with Pi. Then Pd opens rdk,i for every Pk which is not
iSign-conflicted with Pd. Since there are at least n − t ≥ t + 1 honest parties that are not
iSign-conflicted with Pd, and since adk,i = F (i, k) + rdk,i for every Pk not iSign-conflicted with
Pd, then gdi (x) = F (x, i).

If Pi is iSign-conflicted with Pd then fd
i (x) := gdi (x), so the (i, j)-th share and the (j, i)-th share

are set to be fd
i (j) = F (j, i) = F (i, j), as required.

If Pi is not iSign-conflicted with Pd then Pd also opens (rdi,k)k∈[n]. Since adi,k = F (k, i) + rdi,k
for every k ∈ [n], then fd

i (x) = F (x, i) so the (i, j)-th share and the (j, i)-th share are set to
be fd

i (j) = F (j, i) = F (i, j), as required.

• Assume that Pd is not vss-conflicted with Pi, but Pi is vss-conflicted with Pd. In this case Pi

opens f ′i(k) = F (k, i) for every k ∈ [n] (as well as r′k,i for every Pk that is not iSign-conflicted
with Pi). Therefore the (i, j)-th share and the (j, i)-th share are set to be f ′i(j) = F (j, i) =
F (i, j), as required.

• Assume that Pd is not vss-conflicted with Pi, and that Pi is not vss-conflicted with Pd. We split
into cases.

12A functionality-based VSS protocol is captured by the sharing functionality Fsh-comp in Section 8. The reason that
we do not use such a definition here, is that it is inconvenient to employ VSS later as an ideal functionality (see the
discussion in Footnote 10).

30

– Assume that Pi is vss-conflicted with Pj or that Pj is vss-conflicted with Pi. In this case
at least one of the values f ′i(j) = f ′j(i) is opened, and set to be the share. Since f ′i(j) =
f ′j(i) = F (j, i) = F (i, j), the (i, j)-th share and the (j, i)-th share are F (j, i) = F (i, j), as
required.

– Assume that Pi is not vss-conflicted with Pj and that Pj is not vss-conflicted with Pi. In
this case it holds that aj,i = bi,j so bi,j − r′j,i = aj,i − rj,i = F (j, i), as required. Since
Pj is not vss-conflicted with Pi then Pj is not iSign-conflicted with Pi. Therefore, upon
opening r′j,i the parties recover the correct (i, j)-th share F (j, i). Similarly, the (j, i)-th
share is set to be bj,i − r′i,j = F (j, i), as required.

This concludes the proof of the claim.

We conclude that a corrupt Pi has to open at least n− t ≥ t+ 1 points that are consistent with
F (x, i). Therefore, the polynomial fi(x) that Pi reveals in vrec is either F (x, i), or it has degree
more than t in which case Pi is not an accepted party. We continue with the following claim.

Claim 6.2. For every honest Pi, and every Pj /∈ B. it holds that the (i, j)-th share is F (i, j) = F (j, i).

Proof. If Pj is corrupt then this follows from Claim 6.1. Otherwise, if Pj is honest, then Pi, Pj and
Pd are not internally-vss-conflicted. If flagdi = 1 or flagdj = 1 or flagi = 1 or flagj = 1 or flagi,j = 1 or
flagj,i = 1 then, by the same analysis as in the proof of Claim 6.1, the (i, j)-th share is set to be the
public value F (j, i). Otherwise, Pi, Pj /∈ W ∪W ′, and the (i, j)-th share is bi,j − rj,i = F (j, i), as
required. This concludes the proof of the claim.

We conclude that in vrec all honest parties are in A, and for every corrupt Pi in A it holds that
fi(x) = F (x, i). Since there are at least n− t ≥ t+ 1 honest parties, the polynomial F (x, y) will be
recovered, and the output will be F (0, 0) = s. This concludes the analysis of correctness.

Commitment. We continue with the analysis of the commitment property. We show that even
if Pd is corrupt, in every execution in which Pd is not discarded, at the end of vss there exists a
symmetric bivariate polynomial F (x, y) of degree at most t in each variable that will be opened in
vrec with probability 1, and we take the committed value to be F (0, 0). In fact, we prove that this
is true even if the parties are allowed to raise flags in the third round. As before, we observe that
none of the honest parties are in B. We continue with the following claim.

Claim 6.3. For every honest Pi /∈ W ∪ W ′ and every honest Pj it holds that (1) the (i, j)-th share is
consistent with the degree-t polynomial f ′i(x) that Pi received from Pd in the first round, and (2) the (i, j)-
th share is equal to the (j, i)-th share.

Proof. We split into cases.

• Assume that Pj /∈W ∪W ′. Since Pi and Pj are honest then they are not iSign-conflicted , and
it is not hard to see that if Pi is internally-vss-conflicted with Pj or Pj is internally-vss-conflicted
with Pi then Pd is discarded since f ′i(j) ̸= f ′j(i).

Otherwise, they are not internally-vss-conflicted, which means that ai,j = bj,i so f ′i(j) = f ′j(i).
If flagi,j = 1 or flagj,i = 1, then since ai,j = bj,i it must hold that the correct share f ′i(j) is
made public.

31

Otherwise, Pi and Pj are not vss-conflicted. In this case the (i, j)-th share is bi,j − r′j,i = f ′i(j),
and the (j, i)-th share is bj,i−r′i,j = f ′j(i), and it holds that f ′i(j) = bi,j−r′j,i = aj,i−rj,i = f ′j(i),
as required.

• Assume that Pj ∈ W . In this case the (i, j)-th share and the (j, i)-th share are both set to be
fd
j (i). Since Pi /∈ W ∪W ′ then Pi is not iSign-conflicted with Pd and adi,j = ai,j . Therefore Pd

has to open rdi,j , and Pd is discarded unless fd
j (i) = adi,j− rdi,j = ai,j− ri,j = f ′i(j), as required.

• Assume that Pj ∈W ′. As before, if Pi is internally-vss-conflicted with Pj , or Pj is internally-vss-
conflicted with Pi then Pd is discarded. Otherwise, it must hold that ai,j = bj,i so f ′i(j) = f ′j(i).
Since Pj ∈ W ′, the (i, j)-th share and the (j, i)-th share are both set to be fd

j (i) = f ′j(i), as
required.

This concludes the proof of the claim.

Consider now any honest Pi ∈ W ∪W ′. We’ve already argued that fd
i (x) is consistent with

f ′j(x) for any honest Pj /∈ W ∪W ′. Observe that it also has to be consistent with fd
j (x) for any

honest Pj ∈W ∪W ′ or otherwise Pd is discarded. We conclude that the polynomials

(f ′j(x))Pj∈H,Pj /∈W∪W ′ ∪ (fd
j (x))Pj∈H,Pj∈W∪W ′

are pairwise-consistent. Since there are n − t ≥ t + 1 honest parties, those polynomials define a
unique symmetric bivariate polynomial of degree at most t in each variable F (x, y) (see Fact B.2).

We continue by showing that all the shares of the honest parties are consistent with F (x, y).
This is clearly true for any Pi ∈W ∪W ′. We continue with the following claim.

Claim 6.4. For every honest Pi /∈ W ∪W ′, and every corrupt Pj /∈ B it holds that the (i, j)-th and the
(j, i)-th share are both f ′i(j) = F (j, i).

Proof. We split into cases.

• Assume that Pj /∈W ∪W ′. We split into cases.

– Assume that Pi is vss-conflicted with Pj and that Pj is vss-conflicted with Pi. In this case
Pi opens f ′i(j) and Pj opens f ′j(i). If they are not the same then Pd is discarded, and
otherwise, the (i, j)-th share, as well as the (j, i)-th share, are set to be f ′i(j).

– Assume that Pi is vss-conflicted with Pj and that Pj is not vss-conflicted with Pi. In this
case Pi opens f ′i(j) and the (i, j)-th share, as well as the (j, i)-th share, are set to be f ′i(j).

– Assume that Pi is not vss-conflicted with Pj and that Pj is vss-conflicted with Pi. In this
case Pj opens f ′j(i) and r′i,j , and the (i, j)-th share, as well as the (j, i)-th share, are set
to be f ′j(i). It must hold that bj,i = f ′j(i)+ r′i,j or otherwise Pj is in B. But then ai,j = bj,i
or otherwise Pi is vss-conflicted with Pj , so necessarily f ′j(i) = f ′i(j), as required.

– Assume that Pi is not vss-conflicted with Pj and that Pj is not vss-conflicted with Pi. In
this case the (i, j)-th share is bi,j − r′j,i = f ′i(j), and the (j, i)-th share is bj,i − r′i,j =
ai,j − ri,j = f ′i(j), as required.

• Assume that Pj ∈ W . In this case the (i, j)-th share and the (j, i)-th share are both set to
be fd

j (i). Observe that Pd opened rdi,j , and that Pd is discarded unless fd
j (i) = adi,j − rdi,j =

ai,j − ri,j = f ′i(j), as required.

32

• Assume that Pj ∈ W ′. In this case the (i, j)-th share, as well as the (j, i)-th share, are set to
be f ′j(i). We split into cases.

– Assume that Pi is vss-conflicted with Pj . In this case Pi opens f ′i(j). If f ′i(j) ̸= f ′j(i) then
Pd is discarded, and otherwise, the (i, j)-th share, as well as the (j, i)-th share, are set to
be f ′i(j).

– Assume that Pi is not vss-conflicted with Pj . Since Pj ∈ W ′ then Pj also opens r′i,j .
Since Pi is not vss-conflicted with Pj , it must hold that ai,j = bj,i and since Pj /∈ B then
bj,i = f ′j(i) + ri,j . But since ai,j = f ′i(j) + ri,j it must hold that f ′j(i) = f ′i(j), as required.

This concludes the proof of the claim.

We conclude that in the vrec execution all honest parties are in A, and that for every honest
party it holds that fi(x) = F (x, i). In addition, by the above analysis, for every corrupt Pj /∈ B,
and every honest Pi it holds that the (j, i)-th share is F (j, i) = F (i, j). This means that fj(x)
agrees with F (x, j) on n − t ≥ t + 1 points, so if Pj ∈ A then fj(x) = F (x, j). Finally, since there
are at least n − t ≥ t + 1 honest parties that will provide their shares in the opening phase, the
polynomial F (x, y) will be recovered, and the output will be F (0, 0). This concludes the analysis
of commitment.

For future reference, let us record the following lemma whose proof follows from the above
analysis.

Lemma 6.5 (Properties of the shares.). In any execution of vss in the FiSig-hybrid model, if Pd is honest
then Pd is not discarded. In addition, the following is true for any execution of vss in which Pd (that might
be corrupt) was not discarded.

1. The set B does not contain honest parties.

2. At the end of the execution, the shares of the honest parties (i.e., the (i, j)-th shares for Pi ∈ H and
Pj /∈ B) are consistent with a unique symmetric bivariate polynomial of degree at most t in each
variable, denoted by F ′(x, y). If Pd is honest then F ′(x, y) = F (x, y).

3. If Pd is honest then for every Pi, Pj /∈ B, if the (i, j)-th share is public then the (i, j)-th share is equal
to F (j, i).

4. For every Pi ∈W ∪W ′ the shares of Pi are public and they are consistent with F ′(x, i).

5. For Pi, Pj /∈ B, if Pi is honest or Pj is honest then the (i, j)-th share is F ′(j, i) = F ′(i, j).

6. For an honest Pi /∈ W ∪W ′ and every Pj /∈ B, the (i, j)-th and (j, i)-th shares are equal to f ′i(j)
and it holds that F ′(j, i) = f ′i(j).

6.3 Linearly-Homomorphic VSS

In this section we show that our VSS scheme is linearly-homomorphic, i.e., it allows parties to
combine shares of different secrets into a new share of a linear combination of the underlying
secrets. Assume that the parties shared m secrets s1, . . . , sm via m instances of vss, denoted by
vss1, . . . , vssm. To obtain linearity, we require that for every pair of parties (Pi, Pj), all instances of

33

vss use the same underlying signature scheme iSig, where Pi is D and Pj is I, denoted iSigi,j . The
m pads used in these instances act as the m messages in iSigi,j .

The underlying idea to reveal a linear combination of the secrets s1, . . . , sm is similar to vrec.
For every i, j ∈ [n] we let Pi open a linear combination of the (i, j)-th shares over all instances
of vss1, . . . , vssm, by using the linearity of the signatures scheme (by setting the βs for all cases to
the required linear combination). Then, we let the parties verify that the shares that Pi revealed
correspond to a degree t polynomial, and otherwise we set Pi’s share to an erasure. Finally, we
interpolate over all valid shares to obtain the output.

Formally, assume that the parties want to compute the value s :=
∑m

k=1 βk · sk. Let S ⊂ [m] be
the set of all indices k ∈ [m] so that the dealer in vssk was not discarded, and for every k ∈ S let
F k(x, y) be the polynomial defined by the shares of the honest parties in vssk, so that sk = F k(0, 0),
let rki,j be the random pad that Pi signed to Pj in vssk, let bki,j be the broadcast of Pi, and let Bk be
the set of bad parties in vssk. Denote B = ∪k∈SBk. Since every discarded dealer is necessarily
corrupt, we simply reset sk = 0 for every k /∈ S, so it is enough to compute

∑
k∈S βk ·F k(x, y). For

every k ∈ S denote by fk
i,j the (i, j)-th share in vssk, and for every Pi, Pj /∈ B, let Si,j be the set of

all indices k ∈ S, so that the (i, j)-th share in vssk is not public.
For the computation of the linear function, every Pi /∈ B reveals his shares of s as follows. For

every Pj /∈ B we let Pi open σi,j :=
∑

k∈Si,j
βk ·rkj,i by using the linearity of the signature scheme.13

Observe that this allows the secure computation of (
∑

k∈Si,j
βk ·bki,j)−σi,j =

∑
k∈Si,j

βk ·(bki,j−rki,j) =∑
k∈Si,j

βk ·fk
i,j by the parties. The parties set fi,j := (

∑
k∈Si,j

bki,j)−σi,j+
∑

k∈S\Si,j
fk
i,j =

∑
k∈S fk

i,j

to be the (i, j)-th share of s. If the shares (fi,j)Pj /∈B do not correspond to a degree-t polynomial
fi(x) then the parties ignore the shares of Pi. Finally, the parties interpolate all valid polynomials
fi(x) to obtain F (x, y), and output F (0, 0). Using Lemma 6.5 one can verify that the output is
indeed s.

6.4 On Tentative Shares

In order to obtain round-optimal MPC protocol, it will be crucial to perform operations on the
shares before the termination of the vss protocol. For any honest Pi that received a degree-t poly-
nomial f ′i(x) in the first round, think of the shares defined by f ′i(x) as the tentative shares. We note
that the tentative shares satisfy the following property.

Observation 6.6 (Tentative shares.). Tentative shares of an honest Pi might change in Round 3 only if
(1) Pi received a polynomial of degree more than t in the first round, or (2) Pi is iSign-conflicted with Pd,
or (3) there exists some j ∈ [n] so that adi,j ̸= ai,j . This means that Pi knows already at the end of the second
round whether its shares might change in the third round.

Indeed, assume that Pi received a degree-t polynomial, that Pi is not iSign-conflicted with Pd,
and that for every j ∈ [n] it holds that adi,j = ai,j . We split into cases.

• If Pd is vss-conflicted with Pi, then Pd must open the random pads (ri,j)j∈[n]. Since Pi is not
iSign-conflicted with Pd, and since adi,j = ai,j for every j ∈ [n], it must hold that adi,j − ri,j =

ai,j − ri,j = f ′i(j). Therefore, the polynomial fd
i (x) is equal to f ′i(x).

13The linear computation is executed in the fourth round of iSig, i.e., in iSig.open2. Technically, iSig does not support
linear operations in iSig.open2, since those will not be required for the construction of general MPC. However, it is
straightforward to modify iSig.open2 to support linear operations by following the same protocol as in iSig.open1.

34

• If Pd is not vss-conflicted with Pi, but Pi is vss-conflicted with Pd, then the (i, j)-share is set to
be f ′i(j) for all j ∈ [n].

• Otherwise, Pd is not vss-conflicted with Pi, and Pi is not vss-conflicted with Pj . The claim now
follows from Lemma 6.5.

7 The VSS Suite

In this section we present two VSS-related primitives, called triple secret sharing (TSS) and ver-
ifiable sharing and transferring (VST). In principle, we could abstract these protocols by ideal
functionalities. However, for technical reasons, it is inconvenient to employ them later as ideal
functionalities (as discussed in Footnote 10). We will therefore prove directly some useful prop-
erties of these protocols, that suffices for our applications, namely, for the construction of the
Share-Compute functionality (Section 8).

7.1 Triple Secret Sharing

In triple secret sharing the dealer Pd shares three polynomials F a(x, y), F b(x, y) and F c(x, y) and
also proves that F c(0, 0) = F a(0, 0) ·F b(0, 0). In order to do so, we first develop a sub-protocol for
performing linear operations over tentative shares from a single dealer.

7.1.1 Linear Operations over Tentative Shares from a Single Dealer

Consider the case where a single dealer Pd performs m executions of vss in parallel, using the
polynomials F 1(x, y), . . . , Fm(x, y). In the third round (the last round of the vss execution), some
Pi wishes to privately reveal a linear combination of its shares to some receiver R, using the co-
efficients β = (β[1], . . . ,β[m]). As in Section 6.3, we assume that all instances of vss use the same
underlying signature scheme iSig where Pi is D and Pj is I. In the k-th instance of vss, we de-
note the random pad that Pj sent to Pi by rkj,i, the second-round broadcast messages of Pi by
(aki,j , b

k
i,j)j∈[n], and the set of bad players by Bk.

The main idea is to extend a conflict between two parties in some vss execution into a conflict
between the same parties in all vss executions. For example, if an honest Pd is conflicted with
some Pj , then necessarily Pj is corrupt, so Pd can become conflicted with Pj in all vss executions,
and makes all the shares of Pj public. In particular, the (i, j)-th share becomes public in every vss
execution, so R can compute the (i, j)-th share of the output based on the public values. Similarly,
if an honest Pj is conflicted with Pd, then Pj becomes conflicted with Pd in all vss executions.
Note that if an honest Pj is conflicted with some Pk, then either Pk or Pd is corrupt. In both
cases there is no need to keep the (j, k)-th share secure, so Pj becomes conflicted with Pk in all
vss executions. Finally, if Pi is not conflicted with Pj , then we let Pi privately open the linear
combination

∑
k∈[m] β[k] · rkj,i to R, so R could compute (

∑
k∈[m] β[k] · bki,j)− (

∑
k∈[m] β[k] · rkj,i) =∑

k∈[m] F (j, i). Given all the shares, R can recover the polynomial
∑

k∈[m] β[k]·F (x, i). We continue
with a sub-protocol for linear operations over the tentative shares that is executed in parallel to
the vss executions.

35

Inputs. Pi inputs a vector of coefficients β = (β[1], . . . ,β[m]). All parties share a statistical security
parameter 1κ.

Assumption. We assume that the first and the second round of all vss instances were executed. In addi-
tion, we assume that in the third round of the outer protocol, the parties are instructed to execute the
vss instances as follows.

• If Pd is internally-vss-conflicted with some Pj in some vss execution, or if flagdj = 1 in some vss execu-
tion, then Pd raises a flag flagdj in all vss executions.

• If some Pj is internally-vss-conflicted with Pd in some vss execution, or if flagj = 1 in some vss execu-
tion, then Pj raises a flag flagj in all vss executions.

• If some Pj is internally-vss-conflicted with some Pj′ in some vss execution, or if flagj,j′ = 1 in some vss
execution, then Pj raises a flag flagj,j′ in all vss executions.

Round 3. Pi inputs the flags (flagi, flagi,j)j∈[n]. (Those are the flags of Pi in the vss executions.)
Pi sends β to R. In addition, Pi does as follows.

• If flagi = 1 then Pi does nothing.

• Otherwise, for every Pj , Pi does as follows.

– If flagi,j = 1 then Pi does nothing.
– Otherwise, Pi executes iSig.open1(Pj , Pi, R,

∑
k∈[m] β[k]r

k
j,i).

Local computation. If some vss execution ended with Pd discarded, or if Pd is vss-conflicted with some Pj

in some vss execution but not in others then R outputs ⊥ and terminates.
Otherwise, let B := ∪k∈[m]B

k. Add to B any Pj so that either (1) Pj is vss-conflicted with Pd in some vss
executions but not in others, or (2) Pj is vss-conflicted with some Pj′ in some vss executions but not in
others. If Pi is in B, then R outputs ⊥ and terminates.
Otherwise Pi is not in B. If Pd is vss-conflicted with Pi in all vss executions, or Pi is vss-conflicted with
Pd in all vss executions, then the shares f1

i (x), . . . , f
m
i (x) of Pi are public. In this case R sets gi(x) :=∑

k∈[m] β[k] · fk
i (x), outputs (β, gi(x)) and terminates.

Otherwise, Pd and Pi are not vss-conflicted in any execution. For every Pj /∈ B, R does as follows.

• If Pi is vss-conflicted with Pj , or Pj is vss-conflicted with Pi, or Pd is vss-conflicted with Pj , or Pj is vss-
conflicted with Pd, then the shares f1

i (j), . . . , f
m
i (j) are public, and R computes gi,j :=

∑
k∈[m] β[k] ·

fk
i (j).

• Otherwise, R computes gi,j := (
∑

k∈[m] β[k] · bki,j) − (
∑

k∈[m] β[k] · rkj,i), where the first sum can
be computed based on the public values b1i,j , . . . , b

m
i,j , and the second sum was obtained from

iSig.open(Pj , Pi, R,
∑

k∈[m] β[k]r
k
j,i).

If Pi did not use the same vector β in all iSig.open(Pj , Pi, R,
∑

k∈[m] β[k]r
k
j,i) instances, or the opening

terminated with ⊥, or if the shares (gi,j)Pj /∈B do not correspond to a degree-t polynomial, then R
outputs ⊥. Otherwise let gi(x) be the degree-t polynomial corresponding to the shares (gi,j)Pj /∈B , and
R outputs (β, gi(x)).

Protocol linop1

Figure 8: Protocol linop1

We continue with a short analysis in the FiSig-hybrid model. In the analysis of the vss protocol
(see Lemma 6.5) we have seen that any vss execution defines a polynomial F (x, y) so that (1) for
every Pk ∈ W ∪ W ′ it holds that the public polynomial fd

k (x) is equal to F (x, k), (2) for every

36

honest Pk /∈ W ∪W ′ and Pj /∈ B the (k, j)-th share is F (j, k), and (3) for every corrupt Pk and
honest Pj , the (k, j)-th share is equal to F (j, k).

Assuming that the outer-protocol satisfies the assumptions of linop1, it is not hard to see that
the set B does not contain honest parties. Therefore, for an honest Pi, the correct value gi(x) =∑

k∈[m] β[k] · F k(x, i) will be recovered by R. For a corrupt Pi, the polynomial gi(x) has to be
consistent with the shares of at least n − t ≥ t + 1 honest parties, so either gi(x) =

∑
k∈[m] β[k] ·

F k(x, i), or gi(x) has degree more than t in which case R outputs ⊥.
We proved the following lemma.

Lemma 7.1. Consider any execution of vss1, . . . , vssm and linop1 in the FiSig-hybrid model, where the
parties are instructed to act according to the assumptions of linop1. Assume that Pd was not discarded, and
let F 1(x, y), . . . , Fm(x, y) be the polynomials defined by the shares of the honest parties. Then the set B
does not contain honest parties, and the following holds.

• If Pi is honest then R outputs (β,
∑

k∈[m] β[k] · F k(x, i)).

• If Pi is corrupt then R outputs either (β,
∑

k∈[m] β[k] · F k(x, i)) or ⊥.

7.1.2 The Triple Secret Sharing Protocol

The dealer, on inputs F a(x, y), F b(x, y) and F c(x, y) so that F c(0, 0) = F a(0, 0) · F b(0, 0), picks
two random degree-d polynomials A(x), B(x) conditioned on A(0) = F a(0, 0), B(0) = F b(0, 0),
and sets the degree-2d polynomial C(x) := A(x) · B(x). The dealer shares the coefficients of
the polynomials A(x), B(x) and C(x) via vss, where the free coefficients are shared by using the
polynomials F a(x, y), F b(x, y) and F c(x, y). As in Section 6.3, we assume that all instances of vss
use the same underlying signature scheme iSig, where Pi is D and Pj is I.

The goal now is to convince the parties that F c(0, 0) = F a(0, 0) · F b(0, 0), and to do so it is
enough to convince the parties that C(x) = A(x) · B(x). At a high level, the idea is to generate
a random challenge β ∈ F \ {0}, let all the parties compute A(β), B(β) and C(β) by performing
linear operations over the tentative shares, and then verify that C(β) = A(β) ·B(β) and reject the
dealer if equality does not hold. Since A(x) and B(x) are random polynomials, this will reveal no
information about the free coefficients of A(x), B(x) and C(x). In addition, if C(x) ̸= A(x) ·B(x),
then with high probability C(β) ̸= A(β) · B(β). The main challenge in implementing this idea is
that we cannot let the adversary know the challenge β before the termination of the vss protocol.
Indeed, since the tentative share might change even in the last round of vss, a corrupt dealer who
knows β before the termination of the vss protocol could pick polynomials A(x), B(x) and C(x) so
that C(β) = A(β) ·B(β) but C(x) ̸= A(x) ·B(x).

To solve this problem we use the honest majority, and let every subset Q of t+1 parties to gen-
erate random challenges βQ,1, . . . , βQ,n, and privately open the shares of A(βQ,i), B(βQ,i), C(βQ,i)
to Pi by using linop1. First we note that there is at least one set Q that contains only honest parties,
that for this set the challenges that correspond to honest parties are unknown to the adversary, and
that every honest Pi receives t+1 shares of A(βQ,i), B(βQ,i), C(βQ,i), so Pi can recover those values
and verify that C(βQ,i) = A(βQ,i) · B(βQ,i). In addition, for every set Q that contains a corrupt
party, by the correctness of linop1, the corrupt party can either open the correct linear combination
or ⊥, so an honest dealer will not be discarded by sets that contain corrupt parties. Finally, if the

37

degree d is large enough, then even though the adversary sees many evaluations of the polyno-
mials A(x), B(x), and C(x), the adversary still holds no information about the free coefficients of
A(x), B(x), and C(x).

We continue with a description of the protocol in Figure 9.

Inputs: The dealer Pd has three polynomials F a(x, y), F b(x, y), F c(a, b) such that F c(0, 0) =
F a(0, 0)F b(0, 0). All parties share a statistical security parameter 1κ.

Round 1. The dealer does as follows.

• Pd picks three random polynomials A(x), B(x), and C(x) of degree d, d and 2d, respectively, such
that C(x) = A(x) · B(x), and A(0) = a, B(0) = b and C(0) = c, where d :=

(
n

t+1

)
· (t + 1)2. Let

Ak, Bk, and Ck denote the k-th coefficient of A(x), B(x) and C(x), respectively, where Ak = Bk = 0
for k > d.

• For each k ∈ {1, . . . , d}, D shares Ak and Bk via two vss instances, vssa,k, and vssb,k respec-
tively, and we denote the corresponding sharing polynomials by F a,k(x, y) and F b,k(x, y). For each
k ∈ {1, . . . , 2d}, D shares Ck via a vss instance, vssc,k, and we denote the corresponding sharing
polynomial by F c,k(x, y).

• For k = 0 the values A0 = a,B0 = b and C0 = c are shared by executing vssa,0, vssb,0 and vssc,0 with
inputs F a(x, y), F b(x, y) and F c(x, y), respectively. We denote the corresponding sharing polynomi-
als by F a,0(x, y), F b,0(x, y) and F c,0(x, y).

Round 2. The parties continue with all the vss executions. For every subset Q of exactly t + 1 parties,
the parties do as follows. Let PQ be the party with the minimum index in Q. Then PQ picks non-zero
random field elements βQ,i ← F \ {0} for every i ∈ [n], and sends them to all parties in Q via private
channels.

Round 3. Every Pi inputs a flag-bit flagi together with flag-bits (flagi,j)j∈[n]. In addition, Pd inputs flags
flagd1, . . . , flag

d
n.

The parties continue with all the vss executions with the following flags. If Pi is internally-vss-conflicted
with Pd in some instance of vss, or flagi = 1, then Pi inputs flagi = 1 in all instances of vss; Otherwise,
Pi inputs flagi = 0 in all instances of vss. In addition, if in some vss instance Pd is internally-vss-conflicts
with Pi, or flagdi = 1, then Pd inputs flagdi = 1 in all vss executions; Otherwise, Pd inputs flagdi = 0 in all
instances of vss. Also, if Pi is internally-vss-conflicted with Pj in some vss execution, or flagi,j = 1, then
Pi inputs flagi,j = 1 in all vss executions; Otherwise, Pi inputs flagi,j = 0 in all instances of vss.
For every set Q of t+ 1 parties, every j ∈ [n], and every Pi ∈ Q, Pi sends βQ,j to Pj and opens

β0
Q,j · F a,0(x, i) + β1

Q,j · F a,1(x, i) + . . .+ βd
Q,j · F c,d(x, i)

β0
Q,j · F b,0(x, i) + β1

Q,j · F b,1(x, i) + . . .+ βd
Q,j · F b,d(x, i)

β0
Q,j · F c,0(x, i) + β1

Q,j · F c,1(x, i) + . . .+ β2d
Q,j · F c,2d(x, i)

to Pj by executing three instances of linop1: the first instance, linopQ,a,i,j
1 , is executed with respect to

vssa,0, . . . , vssa,d and with vector of coefficients β = (β0
Q,j , . . . , β

d
Q,j); the second instance, linopQ,b,i,j

1 , is
executed with respect to vssb,0, . . . , vssb,d and with vector of coefficients β = (β0

Q,j , . . . , β
d
Q,j); and the

third instance, linopQ,c,i,j
1 , is executed with respect to vssc,0, . . . , vssc,2d and with vector of coefficients

Protocol tss

38

β = (β0
Q,j , . . . , β

2d
Q,j). In all of the instances Pi is using the flags (flagi, flagi,j)j∈[n] that are used as inputs

in the vss instances, as we defined above.

(Local computation): Every Pi does as follows.

• Run the local computation of every vss execution. If some vss execution ended with Pd discarded, or
if Pd is vss-conflicted with some Pj in some vss execution but not in others then Pd is discarded.

• Otherwise, run the local computation of every linop1 instance. Denote the output of linopQ,k,j,i
1 that

did not terminate with ⊥ by (βQ,k,j,i, gQ,k,j,i(x)).

• Let B := (∪j∈{a,b},k∈{0,...,d}B
j,k) ∪ (∪k∈{0,...,2d}B

c,k), where Bj,k is the set of bad players defined in
vssj,k. Add to B any Pj so that either (1) Pj is vss-conflicted with Pd in some vss executions but not
in others, or (2) Pj is vss-conflicted with some Pj′ in some vss executions but not in others.

• A set Q is bad if (1) Qk∩B ̸= ∅, or (2) not all parties in Q send the same βQ,i, or (3) there is some party
Pj ∈ Q and k ∈ {a, b, c} for which the output of linopQ,k,j,i

1 is either ⊥, or βQ,k,j,i ̸= (β0
Q,i, . . . , β

d
Q,i) if

k ∈ {a, b}, or βQ,k,j,i ̸= (β0
Q,i, . . . , β

2d
Q,i) if k = c.

• For every good set Q reconstruct A(βQ,i), B(βQ,i) and C(βQ,i) from
(gQ,a,j,i(x), gQ,b,j,i(x), gQ,c,j,i(x))Pj∈Q and verify that C(βQ,i) = A(βQ,i) · B(βQ,i). If equality
does not hold then Pd is discarded. Otherwise, set the shares as defined in vssa,0, vssb,0 and vssc,0.

Figure 9: Protocol tss

Analysis. We continue with a short analysis of the correctness of tss.14 We first note that by
the properties of vss (see Lemma 6.5), the set B does not contain an honest party. Consider an
honest Pd and observe that Pd is not discarded in the first step of the local computation phase. In
addition, for every honest Pi and for every set Q that is good for Pi, the correctness of linop1 (see
Lemma 7.1) implies that the shares that Pi receives from the parties in Q define the correct values
A(βQ,i), B(βQ,i) and C(βQ,i), so necessarily C(βQ,i) = A(βQ,i) ·B(βQ,i). Therefore, an honest Pd is
not discarded by the honest parties.

Consider now a corrupt Pd that was not discarded in the first step of the local computation
phase. By Lemma 6.5, the shares of the honest parties in the internal vss execution define poly-
nomials F v,k(x, y) for v ∈ {a, b, c} and k ∈ {0, . . . , 2d}, where we set F a,k(x, y) = F b,k(x, y) = 0
for k > d. Those polynomials fully defined the univariate polynomials A(x), B(x) and C(x) in
tss. Like in the case of an honest Pd, if C(x) = A(x) · B(x), then for every honest Pi and every
set Q that is good for Pi, the dealer is not discarded due to Q. We continue by proving that the
probability that C(x) ̸= A(x) · B(x) and that Pd is not discarded by all honest parties is at most
2nd/(|F|−1). We let Q∗ be a set of t+1 honest parties, and we say that the tss execution is “bad” if
(1) C(x) ̸= A(x) ·B(x) and (2) there exists an honest Pi so that C(βQ∗,i) = A(βQ∗,i) ·B(βQ∗,i). Ob-
serve that, since the values (βQ∗,i)i∈H are uniformly distributed even conditioned on the view of
the adversary in the tss execution, the probability that the execution is bad is at most 2nd/(|F|−1),
as required. Finally, it is not hard to see that in every good execution correctness holds.

7.2 Verifiable Sharing and Transferring

In verifiable sharing and transferring the dealer Pd shares a polynomial F (x, y) among the parties,
and, in addition, the same polynomial F (x, y) is also transferred to a special player R, so that R can

14A formal proof of security will be provided as part of the share-compute protocol (Section 8).

39

reconstruct F (x, y) for the other parties, and convince them that the reconstruction is correct.
In order to share F (x, y) among the parties, we simply let the dealer execute the vss protocol

with input F (x, y). In order to transfer F (x, y) to R, we follow similar ideas to those of vss. In
the first round, we let the dealer sign the values (F (j, i))i,j∈[n] for R. In the second round, every
Pi publicly compares the values (F (j, i))j∈[n] with both R and Pd. In addition, we let Pd and
R publicly compare the values (F (j, i))i∈[n],j∈[n]. Finally, in the third round, there is a conflict
resolution process. Observe that if an honest Pi is conflicted with R, then either Pd or R are
corrupt, which means that the adversary holds the polynomial F (x, y). Therefore, in this case we
allow Pi to raise a flag in the vss instance so that the share of Pi will become public, even though it
is possible that Pd is honest. Similarly, if Pd is conflicted with R, then Pd knows that R is corrupt
and that the adversary knows the polynomial F (x, y). Therefore, we allow Pd to raise a flag flagi
for every i ∈ [n], including for honest parties, in order to make the shares of all the parties public
in the vss execution. The protocol is described in Figure 10.

Inputs: The dealer Pd has a polynomial F (x, y). All parties share a statistical security parameter 1κ.

Round 1 (share and signature generation):

• The players execute the first round of vss, where Pd inputs F (x, y). For every Pi we use the same
notation as in vss, and denote the polynomial of Pi by f ′

i(x), the random pad that Pj received from
Pi by r′i,j and the random pad that Pd received from Pi by rdi,j .

• Pd executes iSig.dis(Pd, R, F (i, j)) for every i, j ∈ [n]. Assume that Pd received F ′(x, y) via the
signatures.

• R picks random pads (ρR,i,j)i,j∈[n] and executes iSig.dis(R,Pd, ρR,i,j) for every i, j ∈ [n]. In addition,
R executes iSig.dis(R,Pi, ρR,i,j) for every Pi and j ∈ [n]. Denote the random pads that Pd received
by ρdR,i,j , and the random pads that Pi received by ρ′R,i,j .

• Every Pi picks random pads (ρi,j,R)j∈[n] and executes iSig.dis(Pi, Pd, ρi,j,R) and iSig.dis(Pi, R, ρi,j,R)

for every j ∈ [n]. Denote the random pads that Pd received by ρdi,j,R and the random pads that R
received by ρ′i,j,R.

Round 2 (Pairwise consistency): The parties execute the second round of vss. For every Pi we use the
same notation as in vss, and denote the broadcasts of Pi by (ai,j , bi,j)j∈[n]. Similarly, we denoted the
broadcasts of Pd by (adi,j)i,j∈[n].
In addition, the parties do the following.

• R broadcasts αR,i,j = F ′(j, i) + ρR,i,j and βR,i,j = F ′(j, i) + ρ′i,j,R for every i, j ∈ [n].

• Pi broadcasts αi,j,R = f ′
i(j) + ρi,j,R and βi,j,R = f ′

i(j) + ρ′R,i,j for every j ∈ [n].

• Pd broadcasts αd
R,i,j = fi(j) + ρdR,i,j and αd

i,j,R = fi(j) + ρdi,j,R for every i, j ∈ [n].

• Run iSig.ver(Pd, R, F (i, j)), iSig.ver(R,Pd, ρR,i,j), iSig.ver(R,Pi, ρR,i,j), iSig.ver(Pi, Pd, ρi,j,R) and
iSig.ver(Pi, R, ρi,j,R) for every i, j ∈ [n].

• If the polynomial F ′(x, y) that R received is not a symmetric bivariate polynomial of degree at most
t in each variable, or if F ′(x, y) is not consistent with the shares that R received in the vss execution,
then R broadcasts a public complaint.

Protocol vst

40

At the end of the round the parties do the following local computation.

• If Pd is iSign-conflicted with R OR Pd is internally-vss-conflicted with R OR R complained against
Pd OR αR,i,j ̸= αd

R,i,j for some i, j ∈ [n], then we say that Pd is internally-vst-conflicted with R. (This
state is known to Pd at the end of the round.)

• If Pd is iSign-conflicted with Pi OR Pd is internally-vss-conflicted with Pi OR αi,j,R ̸= αd
i,j,R for some

j ∈ [n], then we say that Pd is internally-vst-conflicted with Pi. (This state is known to Pd at the end
of the round.)

• If R is iSign-conflicted with Pd then we say that R is internally-vst-conflicted with Pd. (This state is
known to R at the end of the round.)

• If R is iSign-conflicted with Pi OR αR,i,j ̸= βi,j,R for some j ∈ [n] OR αi,j,R ̸= βR,i,j for some j ∈ [n],
then we say that R is internally-vst-conflicted with Pi. (This state is known to R at the end of the
round.)

• If Pi is iSign-conflicted with Pd OR Pi is internally-vss-conflicted with Pd then we say that Pi is
internally-vst-conflicted with Pd. (This state is known to Pi at the end of the round.)

• If Pi is iSign-conflicted with R OR Pi is internally-vss-conflicted with R OR αi,j,R ̸= βR,i,j for some
j ∈ [n] OR αR,i,j ̸= βi,j,R for some j ∈ [n] then we say that Pi is internally-vst-conflicted with R. (This
state is known to Pi at the end of the round.)

Round 3 (Resolution by signature opening): Every Pi inputs flag-bits flagi,d, flagi,R together with
flag-bits (flagi,j)j∈[n]. In addition, Pd inputs flags flagd1, . . . , flag

d
n, flag

d
R and R inputs flags

flagR1 , . . . , flag
R
n , flag

R
d . The parties reset the flags as follows.

• If Pd is internally-vst-conflicted with Pi then Pd locally resets flagdi = 1. If Pd is internally-vst-
conflicted with R, or if flagdR = 1, then Pd locally resets flagdR = 1 and flagdi = 1 for every i ∈ [n].

• If R is internally-vst-conflicted with Pi then R locally resets flagRi = 1. Similarly, if R is internally-
vst-conflicted with Pd, or if flagRd = 1, then R locally resets flagRd = 1 and flagRi = 1 for every i ∈ [n].

• If Pi is internally-vst-conflicted with Pd, or Pi is internally-vst-conflicted with R, or flagi,d = 1, or
flagi,R = 1, then Pi locally resets flagi,d = 1 and flagi,R = 1.

In addition, the parties do as follows.

• Every party broadcasts its flags.

• If Pd is internally-vst-conflicted with R OR flagdR = 1 then we say that Pd is vst-conflicted with R. In
this case Pd executes iSig.open1(Pi, Pd, r

d
i,j), iSig.open1(Pi, Pd, ρ

d
i,j,R) and iSig.open1(R,Pd, ρ

d
R,i,j) for

all i, j ∈ [n].

• If Pd internally-vst-conflicted with Pi OR flagdi = 1, then we say that Pd is vst-conflicted with Pi. In
this case Pd executes iSig.open1(Pi, Pd, ρ

d
i,j,R) and iSig.open1(R,Pd, ρ

d
R,j,i) for all j ∈ [n]. Let V be the

set of parties that Pd is vst-conflicted with. (Observe that all parties agree on V at the end of the
round since iSign-conflicts and vss-conflicts become public at the end of the round.)

• If R internally-vst-conflicted with Pd OR flagRd = 1, then we say that R is vst-conflicted with Pd. In
this case R executes iSig.open1(Pi, R, ρ′i,j,R) and iSig.open1(Pd, R, F ′(i, j)) for all i, j ∈ [n].

• If R is internally-vst-conflicted with Pi OR flagRi = 1 then we say that R is vst-conflicted with
Pi. In this case R executes iSig.open1(Pi, R, ρ′i,j,R), iSig.open1(Pd, R, F ′(i, j)), iSig.open1(Pj , R, ρ′j,i,R),
iSig.open1(Pd, R, F ′(j, i)), for all j ∈ [n]. Let U be the set of parties that R is vst-conflicted with.

41

(Observe that all parties agree on U at the end of the round since iSign-conflicts and vss-conflicts
become public at the end of the round.)

• If Pi internally-vst-conflicted with Pd OR flagi,d = 1, then we say that Pi vst-conflictes with Pd. Pi

and executes iSig.open1(Pd, Pi, f
′
i(j)) and iSig.open1(R,Pi, ρ

′
R,i,j), for all j ∈ [n]. Let V ′ be the set of

all Pi that are vst-conflicted with Pd and are not in V . (Observe that all parties agree on V ′ at the
end of the round since iSign-conflicts and vss-conflicts become public at the end of the round.)

• If Pi internally-vst-conflicted with R OR flagi,R = 1 then we say that Pi is vst-conflicted with R. In
this case Pi executes iSig.open1(Pd, Pi, f

′
i(j)) and iSig.open1(R,Pi, ρ

′
R,i,j) for all j ∈ [n]. Let U ′ be the

set of all Pi that are vst-conflicted with R and are not in U . (Observe that all parties agree on U ′ at
the end of the round since iSign-conflicts and vss-conflicts become public at the end of the round.)

• Complete the execution of iSig.open1(Pd, R, F ′(i, j)), iSig.open1(R,Pd, ρ
d
R,i,j), iSig.open1(R,Pi, ρ

′
R,i,j),

iSig.open1(Pi, Pd, ρ
d
i,j,R) and iSig.open1(Pi, R, ρ′i,j,R) for every i, j ∈ [n].

• The parties execute the last round of vss where Pi holds flagi and (flagi,j)j∈[n], and Pd holds
flagd1, . . . , flag

d
n.

(Local computation):

Every party executes the local computation of vss. Let B be the set of bad parties, and let W,W ′ be the
sets computed in vss.

Add a party Pi to B, if one of the following is true:

• There exists an instance of public opening iSig.open1(∗, Pi, ∗) that failed (but did not have iSign-
conflict), or Pi did not open the correct value (i.e. it used the wrong linear coefficients βs).

• There is some j ∈ [n] so that (1) Pd and R are not iSign-conflicted with Pi, (2) Pi executed
iSig.open1(Pd, Pi, f

′
i(j)) and iSig.open1(R,Pi, ρ

′
R,i,j) and opened the values f ′

i(j) and ρ′R,i,j , and
(3) it holds that βi,j,R ̸= f ′

i(j) + ρ′R,i,j .
• Pi is vst-conflicted with Pd or R, but flagi,d = 0 in vst or vss.

Remove from W,W ′, V, V ′, U, U ′ the parties in B.

R is discarded if one of the following holds.

• There exists an instance of public opening iSig.open1(∗, R, ∗) that failed (but did not have iSign-
conflict), or R did not open the correct value (i.e. it used the wrong linear coefficients βs).

• There exists some Pi, and some j ∈ [n] so that (1) Pd and Pi are not iSign-conflicted with R, (2) R
executed iSig.open1(Pd, R, F ′(j, i)) and iSig.open1(Pi, R, ρi,j,R) and opened the values F ′(j, i) and
ρ′i,j,R, and (3) it holds that βR,i,j ̸= F ′(j, i) + ρ′i,j,R.

• R did not broadcast a complaint against Pd, and there exists Pi ∈ U that is not iSign-conflicted with
R, so that the polynomial hR

i (x), defined by (βR,i,j − ρ′i,j,R)j∈[n], has degree more than t.
• R did not broadcast a complaint against Pd, and there exists Pi ∈ U ′ so that the values (αR,i,j −

ρ′R,i,j)j∈[n] do not correspond to a degree-t polynomial.
• R did not broadcast a complaint against Pd, and there exist some Pi, Pj that are not iSign-conflicted

with R, R opened ρ′i,j,R and ρ′j,i,R and it holds that βR,i,j − ρ′i,j,R ̸= βR,j,i − ρ′j,i,R.

Pd is discarded if one of the following holds.

• Pd is discarded in vss.
• There exists Pi so that Pd is vst-conflicted with Pi, but flagdi = 0 in vst or vss. If Pd is not discarded

here then W = V and W ′ = V ′, and we continue with the notation of W,W ′.
• Pd is vst-conflicted with R but flagdi = 0 in vst or vss for some i ∈ [n].

42

• (Failed opening) There exists an instance of public opening iSig.open1(∗, Pd, ∗) that failed (but did
not have iSign-conflict), or Pd did not open the correct value (i.e. it used the wrong linear coeffi-
cients βs).

• (W verification I) There exists Pi ∈ W which is not iSign-conflicted with Pd so that the polynomial
defined by (αd

i,j,R − ρdi,j,R)j∈[n] is not fd
i (x), where fd

i (x) was defined in the local computation of
vss.

• (W verification II) R is not iSign-conflicted with Pd, and there exists Pi ∈ W for which the polyno-
mial defined by (αd

R,i,j − ρdR,i,j)j∈[n] is not fd
i (x).

• (U verification) Pd is not iSign-conflicted with R, and there exists Pi ∈ U for which the polynomial
defined by the values (F ′(j, i))j∈[n] is of degree more than t.

• Pd is not iSign-conflicted with R, and there exist i, j ∈ [n] such that R executed
iSig.open1(Pd, R, F ′(j, i)) and iSig.open1(Pd, R, F ′(i, j)) and it holds that F ′(i, j) ̸= F ′(j, i).

• (Pairwise Consistency between W ∪ W ′ and its complement I) There exists Pi ∈ W ∪ W ′ and some
Pj , where Pi is not iSign-conflicted with Pd in iSig(Pi, Pd, ρ

d
i,j,R), and iSig.open1(Pi, Pd, ρ

d
i,j,R) was

successfully opened, so that αd
i,j,R ̸= fd

i (j) + ρdi,j,R.
• (Pairwise Consistency between W ∪W ′ and its complement II) There exists Pi ∈ W ∪W ′ and some

j ∈ [n], so that Pd is not iSign-conflicted with R, and R opened F ′(j, i) so that F ′(j, i) ̸= fd
i (j).

• (Pairwise Consistency between W ∪W ′ and its complement III) There exists Pi ∈ W ∪W ′ and some
j ∈ [n], so that Pd is not iSign-conflicted with R, and R opened F ′(i, j) so that F ′(i, j) ̸= fd

i (j).
• (Pairwise Consistency between U and its complement I) There exists Pi ∈ U and some Pj , so

that Pd is not iSign-conflicted with Pi and R, Pi opened iSig.open1(Pd, Pi, f
′
i(j)), R opened

iSig.open1(Pd, R, F ′(j, i)), and it holds that F ′(j, i) ̸= f ′
i(j).

• (Pairwise Consistency between U and its complement II) There exists Pi ∈ U and some Pj , so
that Pd is not iSign-conflicted with Pj and R, Pj opened iSig.open1(Pd, Pi, f

′
j(i)), R opened

iSig.open1(Pd, R, F ′(j, i)), and it holds that F ′(j, i) ̸= f ′
j(i).

If Pd is discarded then the parties output ⊥. Otherwise, they output their shares as defined in vss.

If R is not discarded, then for every Pi, Pj /∈ B, the (i, j)-th share that R holds is defined as follows.

• If Pi ∈W ∪W ′ then the (i, j)-th share is fd
i (j).

• Otherwise, if Pj ∈W ∪W ′ then the (i, j)-th share is fd
j (i).

• Otherwise, if Pi ∈ U then the (i, j)-th share is set to be the public value hR
i (j).

a

• Otherwise, if Pj ∈ U then the (i, j)-th share is set to be the public value hR
j (i).

• Otherwise, the (i, j)-th share is defined to be βR,i,j − ρ′i,j,R, where βR,i,j is public, and R can open
the signature iSig(Pi, R, ρ′i,j,R).

aObserve that Pi is not iSign-conflicted with R. Indeed, if Pi is iSign-conflicted with R then either Pi ∈ W ′ since
Pi raises a flag in vss as instructed, or Pi ∈ B. Therefore, hR

i (x) is well-defined.

Figure 10: Protocol vst

Remark 7.2 (On conflicts between honest parties.). Consider the case of an honest Pd and a corrupt R,
which means that the adversary holds all the information regarding F (x, y). In this case we allow an honest
Pi to be conflicted with an honest Pd in the vss instance, since this conflict reveals no information that the
adversary doesn’t already know.

For completeness, we also provide the reconstruction protocol for R.

43

Round 1 (Reconstruction): For every Pi, Pj /∈ B so that Pi, Pj /∈ W ∪ W ′ ∪ U , R executes
iSig.open2(Pi, R, ρ′i,j,R).

Local Computation For every party Pi /∈ B, the parties do as follows.

1. If Pi ∈W ∪W ′, set fi(x) := fd
i (x).

2. Otherwise, if Pi ∈ U , set fi(x) := hR
i (x).

a

3. Otherwise, for every Pj /∈ B do as follows.

• If Pj ∈W ∪W ′ set fi,j := fd
j (i).

• Otherwise, if Pj ∈ U set fi,j := hR
j (i).

• Otherwise, set fi,j := βR,i,j − ρ′i,j,R.

Interpolate over all (fi,j)Pj /∈B to obtain a polynomial fi(x).

If there exists an instance of public opening iSig.open2(∗, R, ∗) that failed (but did not have iSign-
conflict), or R did not open the correct value (i.e. it used the wrong linear coefficients βs), or if for
some Pi /∈ B the degree of fi(x) is more than t, or there exist Pi, Pj /∈ B so that fi(j) ̸= fj(i) then
output ⊥. Otherwise, interpolate over (fi(x))Pi /∈B to obtain F (x, y). Output F (x, y).

aObserve that Pi is not iSign-conflicted with R. Indeed, if Pi is iSign-conflicted with R then either Pi ∈ W ′ since
Pi raises a flag in vss as instructed, or Pi ∈ B. Therefore, hR

i (x) is well-defined.

Protocol vrecR

Figure 11: Protocol vrecR

7.2.1 Analysis

In this section we analyse the properties of protocol vst in the FiSig-hybrid model. In Section 6
we argued that if Pd is not discarded then the shares of the honest parties are consistent with a
unique polynomial F ′(x, y) and that F ′(x, y) = F (x, y) for an honest Pd (see Lemma 6.5 for a
formal statement). We continue by proving that an honest R can open the polynomial F ′(x, y)
by executing vrecR, and that a corrupt R can either open F ′(x, y) or ⊥. We observe that in every
execution of vst the set B contains only corrupt parties, and we split into cases.

Honest Pd, R. Assume that Pd and R are honest, and that F (x, y) is the input of Pd. Observe that
Pd and R are not discarded. We show that for every Pi, Pj /∈ B the (i, j)-th share of R is F (j, i).
Observe that if Pi ∈ W ∪W ′ or Pj ∈ W ∪W ′ then the correct shares are made public in the vss
execution (see Lemma 6.5). Otherwise, if Pi ∈ U or Pj ∈ U then the correct shares are made public
in the vst execution, since hRi (x) = F (x, i) or hRj (x) = F (x, j). Otherwise, the (i, j)-th share is set
to be βR,i,j − ρ′i,j,R = F (j, i), where βR,i,j is public and R can open the value ρ′i,j,R. Since there are
at least n − t ≥ t + 1 honest parties, it is not hard to see that by executing vrecR the parties will
recover the polynomial F (x, y).

Honest Pd, corrupt R. Assume that Pd is honest with input F (x, y), and that R is corrupt. Again,
we observe that Pd is not discarded. Our goal is to show that if R is not discarded, then for every
honest Pi, the receiver R can either open fi(x) = F (x, i) in vrecR, or a polynomial fi(x) of degree
more than t. Since there are are n−t ≥ t+1 honest parties, this would imply that the only bivariate
polynomial that R can open in vrecR is F (x, y). In order to do so, it is enough to prove that for

44

every honest Pj , the (i, j)-th share of R is F (j, i). Indeed, since there are n − t ≥ t + 1 honest
parties, this would imply that fi(x) is either F (x, i) or has degree more than t.

Observe that if Pi ∈W ∪W ′, or Pj ∈W ∪W ′ then the correct shares are made public in the vss
execution (see Lemma 6.5) . Otherwise, assume that Pi ∈ U . Since Pi is not in W ∪W ′, it must hold
that βR,i,j = αi,j,R = F (j, i) + ρi,j,R for all j ∈ [n], and Pi is not iSign-conflicted with R. Therefore
it must hold that hRi (j) = F (j, i), as required. Otherwise, if Pi /∈ U but Pj ∈ U , then a similar
argument shows that the (i, j)-th share is indeed F (j, i) = F (i, j). Otherwise, if Pi, Pj /∈ U , it must
hold that βR,i,j = αi,j,R = F (j, i) + ρ′i,j,R, and the (i, j)-th share is set to be βR,i,j − ρ′i,j,R = F (j, i),
where βR,i,j is public and R can open only the value ρ′i,j,R, as required.

Corrupt Pd, R. Assume that Pd and R are corrupt, and let F (x, y) be the polynomial defined by
the shares of the honest parties in vss (see Lemma 6.5). Our goal is to show that in every execution
in which Pd and R are not discarded, for every honest Pi and any Pj /∈ B, the (i, j)-th share of R
is F (j, i). Since there are n − t ≥ t + 1 honest parties, this would imply that the only polynomial
that R can open in vrecR is F (x, y).

Observe that if Pi ∈W ∪W ′ or Pj ∈W ∪W ′ then the correct shares are made public in the vss
execution. Otherwise Pi, Pj /∈ W ∪W ′, which means that Pi and Pj are not iSign-conflicted with
R, and that βR,i,j = αi,j,R. We split into cases.

• Assume that Pi ∈ U . Then the (i, j)-th share is set to be hRi (j) = βR,i,j − ρ′i,j,R = αi,j,R −
ρ′i,j,R = f ′i(j) = F (j, i), where the last equality follows from Lemma 6.5.

• Otherwise Pi /∈ U . Assume that Pj ∈ U . Then R opens iSig.open(Pi, R, ρ′i,j,R),
iSig.open(Pd, R, F ′(i, j)), iSig.open(Pj , R, ρ′j,i,R), iSig.open(Pd, R, F ′(j, i)), and the (i, j)-th
share is set to be hRj (i) = βR,j,i − ρ′j,i,R. In addition it must hold that βR,j,i − ρ′j,i,R = βR,i,j −
ρ′i,j,R or otherwise R is discarded. Therefore, the (i, j)-th share is hRj (i) = βR,j,i − ρ′j,i,R =
βR,i,j − ρ′i,j,R = f ′i(j) = F (j, i), where the last equality follows from Lemma 6.5.

• Otherwise Pj /∈ U . Then the (i, j)-th share is βR,i,j − ρ′i,j,R, where βR,i,j is public and R can
open ρ′i,j,R. Therefore βR,i,j − ρ′i,j,R = αi,j,R − ρ′i,j,R = f ′i(j) = F (j, i), where the last equality
follows from Lemma 6.5.

Corrupt Pd, honest R. Assume that Pd is corrupt and that R is honest. In Lemma 6.5 we’ve
seen that (1) the shares of the honest parties are consistent with a unique symmetric bivariate
polynomial of degree at most t in each variable, denoted F̄ (x, y), (2) for every Pi ∈ W ∪W ′ the
public shares of Pi are consistent with F̄ (x, y), and (3) for every Pi, Pj /∈ B, if Pi is honest or Pj is
honest then the (i, j)-th share is F̄ (j, i).

Observe that R is never discarded, and consider any execution in which Pd is not discarded. If
Pd is vst-conflicted with R, then all the shares of F̄ (x, y) are made public in vss, as required. Oth-
erwise, Pd is not vst-conflicted with R, which means that the polynomial F ′(x, y) that R received
from Pd is a symmetric bivariate polynomial of degree at most t in each variable. Assume that R is
vst-conflicted with Pd, and note that R publicly opens the polynomial F ′(x, y), and that all parties
are in U . We show that for every Pi, Pj /∈ B the (i, j)-th share of R is F ′(j, i). In addition, if Pi is
honest then F ′(i, j) = F̄ (j, i).

• Assume that Pi ∈ W ∪W ′. If fd
i (x) ̸= F ′(x, i) then Pd is discarded. Otherwise, the (i, j)-th

share is set to be fd
i (j) = F ′(j, i), and since fd

i (j) = F̄ (j, i) then F ′(j, i) = F̄ (j, i), as required.

45

• Otherwise Pi /∈ W ∪W ′. Assume that Pj ∈ W ∪W ′. Then the same argument shows that
the (i, j)-th share is F̄ (j, i) = F̄ (i, j) = fd

j (i) = F ′(i, j) = F ′(j, i), as required.

• Otherwise Pj /∈ W ∪W ′, and Pi ∈ U . This means that Pi is not iSign-conflicted with R, and
the (i, j)-th share is set to be hRi (j) = βR,i,j − ρ′i,j,R = F ′(j, i), as required.

Assume that Pi is honest. Then βR,i,j = αR,i,j = f ′i(j) + ρi,j,R or otherwise Pi ∈ W ∪W ′.
Therefore, F̄ (j, i) = f ′i(j) = F ′(j, i), as required.

We conclude that all the shares are consistent with the polynomial F ′(x, y) so F ′(x, y) will be
recovered in vrecR with probability 1. Since there are n − t ≥ t + 1 honest parties, and since
F ′(x, i) = F̄ (x, i) for every honest Pi, we conclude that F ′(x, y) = F̄ (x, y), as required.

Otherwise R is not vst-conflicted with Pd. We show that for every honest Pi and every Pj /∈
B it holds that (1) the (i, j)-th and the (j, i)-th shares of R are consistent with F̄ (x, y), and (2)
F ′(j, i) = F̄ (j, i).

• Assume that Pi ∈ W . Then the polynomial fd
i (x) = F̄ (x, i) is public, and the (i, j)-th and

(j, i)-th shares are set to be fd
i (j) = F̄ (j, i) as required. Since Pi ∈ W it must hold that Pd

opened ρdR,i,j , and since R is not vst-conflicted with Pd it must hold that αd
R,i,j − ρdR,i,j =

αR,i,j − ρdR,i,j = F ′(j, i). Since Pd is not discarded it must hold that fd
i (j) = αd

R,i,j − ρdR,i,j so
F ′(j, i) = F̄ (j, i), as required.

• Otherwise Pi /∈ W . Assume that Pj ∈ W . Then, by using the symmetry of F̄ (x, y) and
F ′(x, y), the same argument shows that the (i, j)-th and (j, i)-th shares are F̄ (j, i) = F ′(j, i).

• Otherwise Pi, Pj /∈ W . Assume that Pi ∈ W ′. Then the (i, j)-th and (j, i)-th shares are set to
be fd

i (j) = F̄ (j, i) as required. We split into cases.

– Assume that R is vst-conflicted with Pi. Then Pi ∈ U and R opens F ′(x, i), and it must
hold that fd

i (j) = F ′(j, i) or otherwise Pd is discarded.
– Assume that R is not vst-conflicted with Pi, so αR,i,j = βi,j,R. Since Pi ∈ W ′ it must

hold that Pi opened fd
i (j) and ρ′R,i,j (note that Pd and R are not iSign-conflicted with Pi).

But then fd
i (j)+ρ′R,i,j = βi,j,R = αR,i,j = F ′(j, i)+ρ′R,i,j , or otherwise Pi ∈ B. Therefore

fd
i (j) = F ′(j, i), as required.

• Assume that Pj ∈ W ′. Then, by using the symmetry of F̄ (x, y) and F ′(x, y), the same argu-
ment shows that the (i, j)-th and (j, i)-th shares are F̄ (j, i) = F ′(j, i).

• Otherwise Pi, Pj /∈ W ∪ W ′. Assume that Pi ∈ U . Observe that Pi is not iSign-conflicted
with R, so R opens hRi (x) and hRi (x) = F ′(x, i), so the (i, j)-th and (j, i)-th shares are set to
be F ′(j, i), as required. In addition, it holds that αR,i,j = βi,j,R or otherwise Pi ∈ W ∪W ′.
Therefore F ′(j, i) = f ′i(j) = F̄ (j, i), as required.

• Assume that Pj ∈ U . In this case R opens hRj (x) = F ′(x, j), so the (i, j)-th and (j, i)-th
shares are set to be F ′(i, j) = F ′(j, i), as required. Since Pi /∈ W ∪W ′ then αR,i,j = βi,j,R, so
F ′(j, i) = f ′i(j) = F̄ (j, i), as required.

• Otherwise Pi, Pj /∈ U . But then the (i, j)-th share is F ′(j, i) = βR,i,j − ρ′i,j,R = αi,j,R− ρ′i,j,R =

f ′i(j) = F̄ (j, i), as required. Similarly, the (j, i)-th share is βR,j,i − ρ′j,i,R = αj,i,R − ρ′j,i,R =

F ′(i, j) = F ′(j, i), and we’ve seen that F ′(j, i) = F̄ (j, i), as required.

46

Since F̄ (x, i) = F ′(x, i) for every honest Pi, and since there are at least n − t ≥ t + 1 honest
parties, we conclude that F̄ (x, y) = F ′(x, y). It remains to show that for corrupt Pi, Pj /∈ B the
(i, j)-th share is F̄ (j, i). By the above analysis, if Pi or Pj are in W ∪W ′ ∪ U then the above holds.
Consider any Pi, Pj /∈ B so that Pi, Pj /∈ W ∪W ′ ∪ U . Then the (i, j)-th share is βR,i,j − ρ′i,j,R =

F ′(j, i) = F̄ (j, i), as required. This concludes the analysis.

We proved the following lemma.

Lemma 7.3. Consider any execution of vst in the FiSig-hybrid model. Then an honest Pd is not discarded,
an honest R is not discarded, and the set B contains no honest parties.

For an honest Pd with input F (x, y), if R is honest then for every Pi, Pj /∈ B the (i, j)-th share is
F (j, i), and by executing vrecR, an honest R opens the polynomial F (x, y) with probability 1. On the other
hand, a corrupt R can either open F (x, y) or ⊥.

For a corrupt Pd that was not discarded, let F ′(x, y) be the polynomial defined by the shares of the
honest parties in vss. Then for an honest R, for every Pi, Pj /∈ B the (i, j)-th share of R is F ′(j, i), and
by executing vrecR, an honest R opens the polynomial F ′(x, y) with probability 1. On the other hand, a
corrupt R can either open F ′(x, y) or ⊥.

8 Share and Compute

Here we present the share-compute functionality Fsh-comp and realize it in a protocol sh-comp.

8.1 The Share-compute Functionality

The functionality Fsh-comp captures and formalizes our requirements from VSS, TSS and VST, in-
cluding the execution of linear operations over tentative shares. We continue with an explanation
of each task that the functionality performs.

Sharing polynomials. Every party Pi inputs m polynomials Gi,1(x, y), . . . , Gi,m(x) that will be
shared among the parties, i.e., every Pj receives Gi,1(x, j), . . . , Gi,m(x, j) from the functionality.
The functionality also supports triple sharing, where every Pi also inputs additional polynomi-
als H i,j,k(x, y) so that H i,j,k(0, 0) = Gi,j(0, 0) · Gi,k(0, 0) for every j, k ∈ [m], and the func-
tionality shares the polynomials among the parties, i.e., every Pi′ receives H i,j,k(x, i′). Finally,
the functionality supports the sharing and transferring operation, where Pi inputs ℓ polynomi-
als F i,1(x, y), . . . , F i,ℓ(x, y), the functionality shares the polynomials among the parties, and also
transfers F i,j(x, y) to party Pϕ(i,j) where ϕ : [n]× [ℓ]→ [n] is a mapping that, for every i ∈ [n] and
v ∈ [ℓ], specifies the receiver of F i,v(x, y). As part of the sharing and transferring, the functionality
allows Pϕ(i,v) to publicly open F i,v(x, y) at the opening phase.

Linear operations. The functionality also supports two kinds of linear operations over the
shares.15 First, for every Pi the functionality supports performing linear operations over the

15When we realize the functionality, we show that we can perform linear operations over the tentative shares to save
rounds.

47

shares that Pi distributed. This means that the functionality is parameterized by coefficients
(βv

i,j , γ
v
i,j,k)i∈[n],j,k∈[m],v∈[ℓ] and returns

m∑
j=1

βv
i,jG

i,j(x, y) +
∑

j,k∈[m]

γvi,j,kH
i,j,k(x, y) + F i,v(x, y)

to all the parties, for every v ∈ [ℓ]. Since H i,j,k(0, 0) = Gi,j(0, 0) · Gi,k(0, 0) for every j, k ∈ [m]
this allows the computation of degree-2 functions where all the inputs belong to the same party.
Looking forward, when using Fsh-comp we will think of F i,v(x, y) as a random pad, so that only
party Pϕ(i,v) can learn

∑m
j=1 β

v
i,jG

i,j(x, y)+
∑

j,k∈[m] γ
v
i,j,kH

i,j,k(x, y). Recall that Pϕ(i,v) can publicly
open F i,v(x, y), so Pϕ(i,v) will be able to reveal

∑m
j=1 β

v
i,jG

i,j(x, y) +
∑

j,k∈[m] γ
v
i,j,kH

i,j,k(x, y) to all
the parties if needed.

The functionality also supports linear operations between shares of two different dealers. For-
mally, the functionality is parameterized by a set S of tuples ((i1, v1), (i2, v2)) ∈ (([n]× [ℓ])× ([n]×
[ℓ])). The functionality returns F i1,v1(x, y)− F i2,v2(x, y) to all the parties.

Communication with the adversary. The functionality allows the adversary to choose the inputs
of the corrupt parties, after seeing the following leakage: (1) the shares of the corrupt parties from
the polynomials that the honest parties input, (2) the outputs of the linear computation over the
shares that the honest parties distributed, (3) F i1,v1(x, y) − F i2,v2(x, y) for ((i1, v1), (i2, v2)) ∈ S
with honest Pi1 , Pi2 , (4) F i1,v1(x, y) for ((i1, v1), (i2, v2)) ∈ S with corrupt Pi2 , and (5) F i2,v2(x, y)
for ((i1, v1), (i2, v2)) ∈ S with corrupt Pi1 . Looking forward, we will need to make sure that our
protocol is secure even if the adversary can choose its inputs based on the leakage.

We allow the adversary to cause every corrupt Pi to abort, by inputting flagi = 1 to the func-
tionality. The functionality returns the set I , of all aborting corrupt parties, to all the parties.

The functionality is parametrized as follows. There is an input parameter m ∈ N, an output parameter
ℓ ∈ N, a function ϕ : [n] × [ℓ] → [n] and coefficients (βv

i,j , γ
v
i,j,k)i∈[n],j,k∈[m],v∈[ℓ]. There is also a set

S ⊆ (([n] × [ℓ]) × ([n] × [ℓ])) containing tuples ((i1, v1), (i2, v2)) so that ϕ(i1, v1) = ϕ(i2, v2) and every
pair (i, v) appears in at most one tuple ((i1, v1), (i2, v2)) in S.

The functionality receives the set of corrupt parties C.

Input phase.

• (Triple sharing) Every honest party Pi inputs m symmetric bivariate polynomials of degree at most
t in each variable Gi,1(x, y), . . . , Gi,m(x, y) as well as m2 symmetric bivariate polynomials of degree
at most t in each variable (Hi,j,k(x, y))j,k∈[m] so that Hi,j,k(0, 0) = Gi,j(0, 0) · Gi,k(0, 0) for every
j, k ∈ [m].

• (Share and Transfer) Every honest party Pi inputs ℓ symmetric bivariate polynomials of degree at
most t in each variable F i,1(x, y), . . . , F i,ℓ(x, y).

• (Leakage) The values (F i,v(x, i′), Gi,j(x, i′), Hi,j,k(x, i′))i∈H,i′∈C,j,k∈[m],v∈[ℓ] are leaked to the adver-
sary. In addition, for every corrupt Pi′ , and every i ∈ H and v ∈ [ℓ] so that ϕ(i, v) = i′, the polyno-
mial F i,v(x, y) is leaked to the adversary.

Functionality Fsh-comp

48

Linear computation phase.

• (Leakage) The functionality leaks the following to the adversary. For every honest Pi the functional-
ity leaks

(∑m
j=1 β

v
i,jG

i,j(x, y) +
∑

j,k∈[m] γ
v
i,j,kH

i,j,k(x, y) + F i,v(x, y)
)
v∈[ℓ]

to the adversary. In ad-

dition, for every ((i1, v1), (i2, v2)) ∈ S so that Pi1 and Pi2 are honest, the functionality returns
F i1,v1(x, y) − F i2,v2(x, y) to the adversary. Finally, for every ((i1, v1), (i2, v2)) ∈ S so that Pi1 is
honest and Pi2 is corrupt, the functionality returns F i1,v1(x, y) to the adversary, and for every
((i1, v1), (i2, v2)) ∈ S so that Pi2 is honest and Pi1 is corrupt, the functionality returns F i2,v2(x, y)
to the adversary.

• (Corrupt parties’ inputs) Every corrupt Pi inputs m symmetric bivariate polynomials of degree at
most t in each variable Gi,1(x, y), . . . , Gi,m(x, y) as well as m2 symmetric bivariate polynomials of
degree at most t in each variable (Hi,j,k(x, y))j,k∈[m] and a bit flagi. Let I be the set of indices of all
corrupt Pi with flagi = 1, or such that Hi,j,k(0, 0) ̸= Gi,j(0, 0) ·Gi,k(0, 0) for some j, k ∈ [m].

• (Shares distribution) The functionality returns

I, (F i′,v(x, i), Gi′,j(x, i), Hi′,j,k(x, i))i′ /∈I,j,k∈[m],v∈[ℓ], and (F i′,v(x, y))i′ /∈I,v∈[ℓ]:ϕ(i′,v)=i)

to Pi.

• (Public linear computation) For every i /∈ I , the functionality returns m∑
j=1

βv
i,jG

i,j(x, y) +
∑

j,k∈[m]

γv
i,j,kH

i,j,k(x, y) + F i,v(x, y)


v∈[ℓ]

to all parties.

• In addition, for every ((i1, v1), (i2, v2)) ∈ S the functionality returns

– (i1, i2 /∈ I). The tuple ((i1, v1), (i2, v2)), F
i1,v1(x, y)− F i2,v2(x, y)) to all parties.

– (Otherwise.) The tuple ((i1, v1), (i2, v2)),⊥) to all parties.

Opening phase.

• (Inputs of honest parties) Every honest Pi inputs an integer µi ∈ N, and pairs (ji,k, vi,k)k∈[µi] so that
ji,k ∈ [n] \ I , vi,k ∈ [ℓ] and ϕ(ji,k, vi,k) = i. (The functionality just ignores pairs that are not of this
form.)

• (Leakage) For every honest Pi the functionality returns (µi, (ji,k, vi,k, F
ji,k,vi,k(x, y))k∈[µi])) to the ad-

versary.

• (Inputs of corrupt parties) Every corrupt Pi inputs a bit aborti, an integer µi ∈ N, and pairs
(ji,k, vi,k)k∈[µi] so that ji,k ∈ [n] \ I , vi,k ∈ [ℓ] and ϕ(ji,k, vi,k) = i. (The functionality just ignores
pairs that are not of this form.)

• (Output) Let I ′ be the set I together with all the corrupt parties with aborti = 1. The functionality
returns

(I ′, (µi, ji,k, vi,k, F
ji,k,vi,k(x, y))i/∈I′,k∈[µi]).

to all the parties.

Figure 12: Functionality Fsh-comp

In the next sections we realize Fsh-comp by a protocol sh-comp. As always, we assume that
F is a sufficiently large field of size exp(n, κ, ℓ,m), that allows the execution of iSig as required

49

by sh-comp. We also assume that ϕ and S can be computed in time T . We prove the following
statement in Section E.

Theorem 8.1. Let κ be a security parameter, let n be the number of parties and let t < n/2 the number of
corrupt parties. Let F be a sufficiently large finite field, as a function of (κ, n, ℓ,m). Then protocol sh-comp
is a UC-secure implementation of Fsh-comp against a static, active, rushing adversary corrupting up to t
parties. The complexity of sh-comp is poly(κ, 2n,m, ℓ, T, log |F|).

8.2 The Share-compute Protocol

The share-compute protocol requires multiple executions of vss, tss and vst. As in Section 6.3, we
assume that all instances of vss, tss and vst use the same underlying signature scheme iSig where
Pi is D and Pj is I. First, in Section 8.2.1 and Section 8.2.2 we present two subprotocols for the
computation of linear operations over tentative shares. Finally, in Section 8.2.3 we present the
protocol sh-comp.

8.2.1 Linear Operations over Tentative Shares from Different Dealers

Consider the case whereD1 andD2 share F 1(x, y) and F 2(x, y), respectively, via vss1 and vss2, and
the parties want to reveal F 1(x, y) − F 2(x, y) in the third round. For k ∈ {1, 2}, in the execution
of vssk we denote the random pad that Pi sent to Pj by rki,j , the broadcast messages of Pi by
(aki,j , b

k
i,j)j∈[n], the set of bad players in vssk by Bk, and the sets W,W ′ by W k and (W k)′. We

remind the reader that, at the end of the second round of a vss execution, a party Pi thinks that its
tentative shares might change if either (1) Pi received a polynomial of degree more than t in the
first round, or (2) Pi is iSign-conflicted with Pd, or (3) there exists some j ∈ [n] so that adi,j ̸= ai,j
(see remark 6.6).

The idea underlying our protocol is similar to that of linop1. We let every Pi who thinks that
its shares might change in vss1 to raise a flag in vss1, and also publicly open its shares in vss2, so
that the parties will be able to recover F 1(x, i)− F 2(x, i) from the public shares. We note that this
does not violate privacy, because if Pi is honest and thinks that its shares might change in vss1,
then necessarily D1 is corrupt and there is no need for privacy, because the adversary can learn
the polynomial F 2(x, y) from F 1(x, y)−F 2(x, y). Pi acts in a similar way if he thinks that its shares
might change in vss2. If Pi does not think that its share might change, then for every Pj /∈ B, we let
Pi open r1j,i−r2j,i so the parties can compute (b1i,j−b2i,j)−(r1j,i−r2j,i) = (b1i,j−r1j,i)−(b2i,j−r2j,i). If Pi is
honest, then, since Pi does not think that its share might change, this is indeed the correct (i, j)-th
share. On the other hand, if Pi is corrupt, then Pi has to be consistent with at least n − t ≥ t + 1
honest parties, which means that Pi’s shares will either correspond to a degree-t polynomial, or
set to an erasure. We continue with the description of the protocol.

Assumption We assume that the first and the second round of all vss instances were executed. In addi-
tion, we assume that in the third round of the outer protocol, the parties are instructed to execute the
vss instances as follows.

Protocol linop2

50

• For every k ∈ {1, 2}, if Pi thinks that its share might change in vssk then Pi is instructed to raise a
flag flagki = 1 in vssk.

• Let flag1i and flag2i be the flags of Pi in vss1 and vss2, respectively. If flag1i = flag2i = 0, then Pi is
instructed to do as follows.

– If Pi is internally-vss-conflicted with Pj in vss1 and vss2 then Pi sets flag1i,j = flag2i,j = 1 in vss1

and vss2.
– If Pi is internally-vss-conflicted with Pj in vss1 then Pi sets flag1i,j = 1 in vss1.

– If Pi is internally-vss-conflicted with Pj in vss2 then Pi sets flag2i,j = 1 in vss2.

Round 3 Every Pi inputs the flags (flagki , flag
k
i,j)j∈[n],k∈{1,2}. (Those are the flags that the players input

into vss1 and vss2.)
Every Pi does as follows.

• If flag1i = flag2i = 1, then Pi broadcasts “complaint:1,2”.

• Otherwise, if flag1i = 1 and flag2i = 0, then Pi broadcasts “complaint:1”. In addition, Pi executes
iSig.open1(Pj , Pi, r

2
j,i) for all j ∈ [n].

• Otherwise, if flag2i = 1 and flag1i = 0, then Pi broadcasts “complaint:2”. In addition, Pi executes
iSig.open1(Pj , Pi, r

1
j,i) for all j ∈ [n].

• Otherwise flag1i = flag2i = 0. Pi does as follows for every Pj .

– If flag1i,j = flag2i,j = 1 the Pi does nothing.

– If flag1i,j = 1 and flag2i,j = 0 then Pi executes iSig.open1(Pj , Pi, r
2
j,i).

– If flag1i,j = 0 and flag2i,j = 1 then Pi executes iSig.open1(Pj , Pi, r
1
j,i).

– If flag1i,j = flag2i,j = 0 the Pi executes iSig.open1(Pj , Pi, r
1
j,i − r2j,i).

Local computation The parties do as follows.

• Execute the local computation of vss1 and vss2, and observe that all the flags are public at the end of
the vss executions. If D1 or D2 were discarded then the parties output ⊥ and terminate.

• Compute B = B1 ∪B2.

• Add to B every Pi so that there exists an instance of public opening iSig.open1(∗, Pi, ∗) that failed
(but did not have iSign-conflict), or Pi did not open the correct value (i.e. it used the wrong linear
coefficients βs).

• Add to B every Pi that raised a flag in some vss execution but did not broadcast the corresponding
complaint.

• Add to B every Pi that broadcasted “complaint:1,2” so that Pi /∈W 1 ∪ (W 1)′ or Pi /∈W 2 ∪ (W 2)′.

• Add to B every Pi that broadcasted “complaint:1” so that Pi /∈W 1 ∪ (W 1)′.

• Add to B every Pi that broadcasted “complaint:2” so that Pi /∈W 2 ∪ (W 2)′.

• For every Pi /∈ B that broadcasted a complaint, the parties do as follows.

– If Pi ∈W 1∪ (W 1)′, then let f1
i (x) be the public polynomial that corresponds to the shares of Pi in

vss1. Otherwise, Pi /∈ W 1 ∪ (W 1)′, which means that Pi did not broadcast a complaint regarding
vss1, but did broadcast a complaint regarding vss2. Since Pi executed iSig.open1(Pj , Pi, r

1
j,i) for

every Pj so that flag1i,j = 0, the (i, j)-th share of Pi in vss1 is public for every Pj /∈ B, and let f1
i (x)

be the polynomial obtained by interpolating all the shares. If the degree of f1
i (x) is more than t

then add Pi to B.

51

– If Pi ∈W 2∪ (W 2)′, then let f2
i (x) be the public polynomial that corresponds to the shares of Pi in

vss2. Otherwise, Pi /∈ W 2 ∪ (W 2)′, which means that Pi did not broadcast a complaint regarding
vss2, but did broadcast a complaint regarding vss1. Since Pi executed iSig.open1(Pj , Pi, r

2
j,i) for

every Pj so that flag2i,j = 0, the (i, j)-th share of Pi in vss2 is public for every Pj /∈ B, and let f2
i (x)

be the polynomial obtained by interpolating all the shares. If the degree of f2
i (x) is more than t

then add Pi to B.
– Set fi(x) := f1

i (x)− f2
i (x).

• For every Pi /∈ B that did not broadcast a complaint, the parties do as follows.

– If both D1 and D2 were vss-conflicted with Pi, then Pi ∈ W 1 and Pi ∈ W 2, and let f1
i (x) and

f2
i (x) be the public polynomials corresponding to the shares of Pi. The parties compute fi(x) :=
f1
i (x)− f2

i (x).
– Otherwise, for every Pj /∈ B the parties do as follows.

* If Pj broadcasted a complaint, then set fi,j := fj(i).

* If Pi is vss-conflicted with Pj in some vss instance, then the (i, j)-th shares are public in both
instances, and we denote them by f1

i,j , f
2
i,j . The parties compute fi,j := f1

i,j − f2
i,j .

* If Pj is vss-conflicted with Pi in some vss instance, then the (j, i)-th shares are public in both
instances, and we denote them by f1

i,j , f
2
i,j . The parties compute fi,j := f1

i,j − f2
i,j .

* Otherwise Pi and Pj are not vss-conflicted in any vss execution. In this case we set fi,j :=
(b1i,j − b2i,j) − (r1j,i − r2j,i), where b1i,j and b2i,j are public values, and (r1j,i − r2j,i) was opened by
Pi.

The parties interpolate over (fi,j)Pj /∈B in order to obtain a polynomial fi(x). If fi(x) is of degree
more than t then the parties add Pi to B. Otherwise, the i-th share is taken to be fi(x).

• Finally, the parties interpolate (fi(x))Pi /∈B in order to obtain a symmetric bivariate polynomial of
degree at most t in each variable F (x, y), and output F (x, y).

Figure 13: Protocol linop2

We continue with an analysis of the correctness in the FiSig-hybrid model in an execution in
which the parties are instructed according to our assumptions. Recall that in any vss execution
in which the dealer is not discarded, the shares of the honest parties fully define a symmetric bi-
variate polynomial of degree at most t in each variable (see Lemma 6.5). Consider any execution
of vss1 and vss2 in which the dealers were not discarded, let F 1(x, y) and F 2(x, y) be the corre-
sponding polynomials, and observe that the set B does not contain any honest party. We start by
showing that for any Pi /∈ B that broadcasts a complaint it holds that fi(x) = F 1(x, i) − F 2(x, i).
We split into cases.

• If Pi ∈W 1 ∪ (W 1)′ then f1
i (x) = F 1(x, i) by Lemma 6.5.

• Otherwise, if Pi is honest, then by Lemma 6.5, for every Pj /∈ B1 the (i, j)-th share of Pi is
F 1(j, i), and since there are at least n− t ≥ t+1 honest parties that are not in B, it holds that
the (i, j)-th shares for all Pj /∈ B fully determine the polynomial F 1(x, i), so f1

i (x) = F 1(x, i).

• Otherwise Pi is corrupt. By Lemma 6.5 for every honest Pj it holds that the (i, j)-th share of
Pi is F 1(j, i), and since there are at least n− t ≥ t+ 1 honest parties that are not in B either
f1
i (x) = F 1(x, i), or f1

i (x) has degree more than t and Pi ∈ B.

A similar argument shows that f2
i (x) = F 2(x, i). Therefore, fi(x) = F 1(x, i)−F 2(x, i), as required.

52

Consider now every honest Pi that did not broadcast a complaint. If Pi ∈ W 1 and Pi ∈ W 2

then f1
i (x) = F 1(x, i) and f2

i (x) = F 2(x, i), so fi(x) = F 1(x, i) − F 2(x, i), as required. Otherwise,
consider any Pj /∈ B. We show that fi,j = F 1(j, i)− F 2(j, i).

• If Pj broadcasted a complaint then by the analysis above fi,j = fj(i) = F 1(i, j) − F 2(i, j) =
F 1(j, i)− F 2(j, i), as required.

• Otherwise Pj did not broadcast a complaint. If Pi is vss-conflicted with Pj in some vss in-
stance, then the (i, j)-th shares are public in both executions, and by Lemma 6.5 it holds that
f1
i,j = F 1(j, i) and f2

i,j = F 2(j, i), so fi,j = F 1(j, i) − F 2(j, i), as required. (Observe that this
is true even if Pi or Pj are in W 1 or W 2.)

• Otherwise, if Pj is vss-conflicted with Pi in some vss instance,then the (j, i)-th shares are
public in both executions, and by Lemma 6.5 it holds that f1

i,j = F 1(j, i) and f2
i,j = F 2(j, i),

so fi,j = F 1(j, i)− F 2(j, i), as required.

• Otherwise, Pi and Pj are not vss-conflicted in any instance. Since Pi is honest and Pi did
not complain, then the shares of Pi are equal to f ′i(j) even if Pi ∈ W 1 or Pi ∈ W 2 (see
Remark 6.6). In particular, the (i, j)-th share in vss1 and vss2 are equal to b1i,j − r1j,i and
b2i,j − r2j,i, respectively. Therefore, fi,j = (b1i,j − b2i,j)− (r1j,i − r2j,i) = (b1i,j − r1j,i)− (b2i,j − r2j,i) =

F 1(j, i)− F 2(j, i), as required.

Consider now any corrupt Pj /∈ B that did not broadcast a complaint. If Pi ∈W 1 and Pi ∈W 2

then f1
i (x) = F 1(x, i) and f2

i (x) = F 2(x, i), so fi(x) = F 1(x, i) − F 2(x, i), as required. Otherwise,
we show that fi,j = F 1(j, i) − F 2(j, i) for every honest Pj . Since there are at least n − t ≥ t + 1
honest parties, this means that either fi(x) = F 1(x, i)−F 2(x, i) or fi(x) has degree more than t, in
which case Pj ∈ B.

The same arguments as before show that if Pj broadcasts a complaint, or if Pi and Pj are vss-
conflicted, then fi,j = F 1(j, i)− F 2(j, i). Therefore, we only analyse the case where Pi and Pj are
not vss-conflicted in any instance of vss. Since Pj is honest and not vss-conflicted with Pi it must
hold that bki,j = akj,i = fk

j (i) + rkj,i for every k ∈ {1, 2}. In addition, since Pj is honest and did not
broadcast a complaint, by Lemma 6.5 and Remark 6.6 it must hold that the (j, i)-th share in vssk is
fk
j (i) = F k(i, j). But then fi,j = (b1i,j−b2i,j)−(r1j,i−r2j,i) = (b1i,j−r1j,i)−(b2i,j−r2j,i) = F 1(j, i)−F 2(j, i),

as required.
Finally, since there are n− t ≥ t+1 honest parties not in B, and since for every Pi /∈ B it holds

that fi(x) = F 1(x, i)−F 2(x, i), then the polynomial recovered by the parties is F 1(x, y)−F 2(x, i),
as required.

We proved the following lemma.

Lemma 8.2 (Correctness of linop2). Consider any execution of vss1, vss2 and linop2 in the FiSig-hybrid
model, where the parties are instructed according to the assumptions, and D1 and D2 are not discarded.
Then the set B does not contain honest parties, and the output of the honest parties is F 1(x, y)− F 2(x, y),
where F 1(x, y) and F 2(x, y) are the polynomials defined by the shares of the honest parties in vss1 and vss2.

53

8.2.2 Private Linear Operations over Tentative Shares from a Single Dealer with Verifiable
Opening

Consider the case where the dealer Pd shares F 1(x, y), . . . , Fm(x, y) via vss and wants to let a
receiver R learn a linear combination

H(x, y) := β1F
1(x, y) + . . . βmFm(x, y),

in three rounds, where the linear coefficients β1, . . . , βm ∈ F are known to all the parties at the
beginning of the execution. In addition, R should be able to choose, based on external reasons,
whether or not to open the polynomial H(x, y) to the rest of the parties in the fourth round. If R
chooses to open H(x, y), then R should be able to convince the rest of the parties of the correctness
of this polynomial.

In order to do so, we let Pd share another random polynomial Fm+1(x, y) via vst with R as the
receiver, and we would like the parties to compute the public value

β1F
1(x, y) + . . . βmFm(x, y) + Fm+1(x, y) = H(x, y) + Fm+1(x, y).

In this way (1) the parties have no information about H(x, y), as Fm+1(x, y) is used as a one-time
pad, (2) R knows Fm+1(x, y) so he can compute H(x, y), and (3) R can choose to open Fm+1(x, y)
via the reconstruction of vst and let all the parties learn the value of H(x, y).

We denote the vss execution of F i(x, y) by vssi, the vst execution of Fm+1(x, y) by vstm+1, and
the internal vss execution by vssm+1. In vssk, we denote the random pad that Pi sent to Pj by rki,j ,
and the broadcast messages of Pi by (aki,j , b

k
i,j)j∈[n]. We denote the set of bad parties in vssk by

Bk for k ∈ [m], and for vstm+1 by Bk+1. The protocol follows the same lines as linop1, with the
following modifications: (1) if Pd is not internally-vst-conflicted with Pi in the vst execution, but
Pd raises flagdi in the vst execution, then Pd is not required to raise a flag in all vss instances, since it
is possible that Pd raises the flag because of a corrupt R, and (2) if Pi is not internally-vst-conflicted
with Pi in the vst execution, but Pi raises flagi in the vst execution, then Pi is not required to raise
a flag in all vss instances, since it is possible that Pi raises the flag because of a corrupt R. The
protocol is described in Figure 14.

Assumptions We assume that the first and the second round of all vss and vst instances were executed.
In addition, we assume that in the third round of the outer protocol, the parties are instructed to execute
the vss and vst instances in the following way. Pd does as follows.

• For every i ∈ [n], if Pd is internally-vss-conflicted with Pi, or flagdi = 1 in some vssk execution for
k ∈ [m], or Pd is internally-vst-conflicted with Pi then Pd inputs flagdi = 1 to all vss and vst executions.
Otherwise, if Pd is internally-vst-conflicted with R or flagdR = 1, then Pd inputs flagdi = 1 to vstm+1

and vssm+1.

• If Pd is internally-vst-conflicted with R then Pd inputs flagdR = 1 to vstm+1.

R does as follows.

• If R is internally-vst-conflicted with Pd then R inputs flagRd = 1 to the vst executions.

Protocol linop3

54

• If R is internally-vst-conflicted with Pi, or if R is internally-vst-conflicted with Pd or flagRd = 1, then
R inputs flagRi = 1 to vst.

Every Pi does as follows.

• If Pi is internally-vss-conflicted with Pd in any vss execution, or flagi = 1 in some vssk execution for
k ∈ [m], or Pi is internally-vst-conflicted with Pd in the vst execution, then Pi inputs flagi = 1 to all
vss and vst executions. Otherwise, if Pi is internally-vst-conflicted with R, or flagi,R = 1 in the vst
execution, then Pi inputs flagi,d = 1 to vstm+1 and vssm+1.

• If Pi is internally-vst-conflicted with R then Pi inputs flagi,R = 1 to the vst execution.

• If Pi is internally-vss-conflicted with Pj , or flagi,j = 1 in some vss or vst execution, then Pi sets
flagi,j = 1 in all vss and vst executions.

Round 3 Every Pi inputs (flagki , flag
k
i,j)j∈[n],k∈[m] and (flagm+1

i,d , flagm+1
i,R , flagm+1

i,j)j∈[n]. (Those are the flags
to the vss and vst instances.)
Every Pi does as follows.

• If flag1i = . . . = flagmi = 0 and flagm+1
i,R = 0 then Pi executes iSig.open1(Pj , Pi, β1 · r1j,i+ . . .+βm · rmj,i+

rm+1
j,i) for every Pj with flag1i,j = . . . = flagm+1

i,j = 0.

• If flag1i = . . . = flagmi = 0 and flagm+1
i,R = 1 then Pi executes iSig.open1(Pj , Pi, β1 · r1j,i + . . .+ βm · rmj,i)

for every Pj with flag1i,j = . . . = flagm+1
i,j = 0.

Local computation At the end of the vss and vst execution, all flags are public. If some vss or vst execution
ended with Pd discarded, or if Pd did not follow the assumed instructions, then Pd the parties output
⊥ and terminate.
Otherwise, let B := ∪k∈[m+1]B

k. Add to B any Pi that did not follow the assumed instructions, or that
there exists an instance of public opening iSig.open1(∗, Pi, ∗) that failed (but did not have iSign-conflict),
or Pi did not open the correct value (i.e. it used the wrong linear coefficients βs).
For every Pi /∈ B the parties do as follows.

• If Pd is conflicted with Pi in all vss and vst executions, or Pi is conflicted with Pd in all vss and vst
executions, let f1

i (x), . . . , f
m+1
i (x) be the public shares of Pi. The parties compute gi(x) := β1f

1
i (x)+

. . .+ βmfm
i (x) + Fm+1

i (x).

• Otherwise, if flagm+1
i,R = 1, then the polynomial fm+1

i (x) is public. For every Pj /∈ B do as follows.

– If flagi,j = 1 or flagj,i = 1 or flagj = 1 or flagdj = 1 in all vss instances, then all the (i, j)-th shares,
denoted f1

i,j , . . . , f
m
i,j , f

m+1
i,j , are public. The parties locally compute gi,j := β1f

1
i,j + . . .+ βmfm

i,j +

fm+1
i,j .

– Otherwise the parties compute gi,j := (β1 ·b1i,j+ . . .+βm ·bmi,j)−(β1 ·r1j,i+ . . .+βm ·rmj,i)+fm+1
i (j),

where (β1 · r1j,i + . . .+ βm · rmj,i) was opened by Pi.

The parties interpolate over (gi,j)Pj /∈B to obtain a polynomial gi(x). If gi(x) is of degree more than t
then the parties add Pi to B.

• Otherwise, if flagi,R = 0, then for every Pj /∈ B do as follows.

– If flagi,j = 1 or flagj,i = 1 or flagj = 1 or flagdj = 1 in all vss instances, then all the (i, j)-th, denoted
f1
i,j , . . . , f

m
i,j , f

m+1
i,j , are public. The parties locally compute gi,j := β1f

1
i,j + . . .+ βmfm

i,j + fm+1
i,j .

– Otherwise, the parties compute gi,j := (β1·b1i,j+. . .+βm·bmi,j+bm+1
i,j)−(β1·r1j,i+. . .+βm·rmj,i+rm+1

i,j),
where (β1 · r1j,i + . . .+ βm · rmj,i + rm+1

i,j) was opened by Pi.

55

The parties interpolate over (gi,j)Pj /∈B to obtain a polynomial gi(x). If gi(x) is of degree more than t
then the parties add Pi to B.

The parties interpolate over all (gi(x))Pi /∈B in order to obtain a symmetric bivariate polynomial G(x, y)
of degree at most t in each variable. The parties output G(x, y). The receiver R also outputs Fm+1(x, y).

Round 4 (Opening phase) In order to reveal the unencrypted value G(x, y) − Fm+1(x, y), R executes
vrecR with respect to vstm+1. If the output is ⊥ then all parties output ⊥. Otherwise, let the output be
Fm+1(x, y) and all the parties output G(x, y)− Fm+1(x, y).

Figure 14: Protocol linop3

We continue by analysing the correctness of linop3 in the FiSig-hybrid model, in an execution
in which the parties are instructed according to our assumptions. It is not hard to see that the
honest parties are not in B, and that honest Pd and R are not discarded. Consider any execution in
which Pd is not discarded, and by Lemma 6.5 the shares of the honest parties in the executions of
vss1, . . . , vssm+1 define polynomials F 1(x, y), . . . , Fm+1(x, y). We show that the output is G(x, y) =∑m

i=1 βiF
i(x, y) + Fm+1(x, y) with probability 1.

Consider any Pi so that flagi = 1 or flagdi = 1 in all vss and vst executions. Then the shares
f1
i (x), . . . , f

m+1
i (x) are public, and by Lemma 6.5 those shares are equal to F 1(x, i), . . . , Fm+1(x, i).

Therefore gi(x) = G(x, i).
Consider now any honest Pi so that flagi = flagdi = 0 in vssk for all k ∈ [m]. Let Pj /∈ B be any

party. We prove that gi,j = G(j, i). We split into cases.

• If flagi,j = 1 or flagj,i = 1 or flagj = 1 or flagdj = 1 in all vss executions then the (i, j)-th share
is public in all vss executions. Correctness now follows from Lemma 6.5.

• Otherwise, assume that flagi,R = 1. In this case the (i, j)-th share of vssm+1 is public, and by
Lemma 6.5 it is equal to Fm+1(j, i). In addition, by Lemma 6.5 for every k ∈ [m] it holds that
bki,j − rkj,i = F k(j, i). Correctness follows.

• Otherwise flagi,R = 0. By Lemma 6.5 for every k ∈ [m] it holds that bki,j − rkj,i = F k(j, i), as
required. If flagdi = 0 in vstm+1 then by Lemma 6.5 it holds that bm+1

i,j − rm+1
j,i = Fm+1(j, i) as

well, and correctness follows.

Otherwise, flagdi = 1. Since Pd did not raise flags in all vss instances, then Pd is not internally-
conflicted with Pi (or otherwise Pd is discarded). In particular, this means that Pi did not
raise a complaint against Pd in any vss instance, and in every vss instance it holds that adi,j =
ai,j for all j ∈ [n]. Since Pi did not raise flags in all vss instances, then Pi is not iSign-conflicted
with Pd. Therefore the tentative shares of Pi do not change (see Remark 6.6), and bm+1

i,j −
rm+1
j,i = Fm+1(j, i) as well, and correctness follows.

Consider now any corrupt Pi /∈ B so that flagi = flagdi = 0 in vssk for all k ∈ [m]. We show that
for every honest Pj it holds that gi,j = G(i, j). Since there are at least n− t ≥ t+ 1 this means that
gi(x) = G(x, i), or otherwise gi(x) has degree more than t and Pi ∈ B. We split into cases.

• If flagi,j = 1 or flagj,i = 1 or flagj = 1 or flagdj = 1 in all vss executions then the (i, j)-th share
is public in all vss executions. Correctness now follows from Lemma 6.5.

56

• Otherwise, assume that flagi,R = 1. In this case the (i, j)-th share of vssm+1 is public, and
by Lemma 6.5 it is equal to Fm+1(j, i). In addition, by Lemma 6.5 it holds that in vssk the
(i, j)-th share is bki,j − rkj,i = F k(j, i), for every k ∈ [m]. Correctness follows.

• Otherwise flagi,R = 0. Since flagj,i = flagi,j = 0 in all vss instances, then for every k ∈ [m+ 1]

it holds that bki,j = akj,i = (bkj,i − rki,j) + rkj,i, and we’ve already seen that bkj,i − rki,j = F k(i, j).
Correctness follows.

Since there are n − t ≥ t + 1 honest parties not in B, and since for every Pi /∈ B it holds that
gi(x) = G(x, i), then the polynomial recovered by the parties is indeed G(x, y), as required. In
addition, by the correctness of vst (Lemma 7.3), it follows that R outputs Fm+1(x, y).

Finally, by Lemma 7.3, an honest R can open Fm+1(x, y) by executing vrecR, and all the parties
can output G(x, y) − Fm+1(x, y) =

∑m
i=1 βiF

i(x, y). In addition, a corrupt R can either open
Fm+1(x, y) or ⊥, so the output of the honest parties is either

∑m
i=1 βiF

i(x, y) or ⊥, as required.
We proved the following lemma.

Lemma 8.3. Consider any execution of vss1, . . . , vssm, vstm+1 and linop3 in the FiSig-hybrid model,
where the parties are instructed according to the assumptions, and Pd is not discarded. Let
F 1(x, y), . . . , Fm+1(x, y) be the polynomials defined by the shares of the honest parties in the vss execu-
tions. Then the output of all honest parties at the end of the third round is β1F 1(x, y)+ . . .+βmFm(x, y)+
Fm+1(x, y), and R outputs the polynomial Fm+1(x, y).

In the opening phase, if R is honest then all honest parties output β1F 1(x, y) + . . . + βmFm(x, y). If
R is corrupt, then the output is either β1F 1(x, y) + . . .+ βmFm(x, y) or ⊥.

8.2.3 The Protocol

We continue with the description of protocol sh-comp. We let every Pi to share
(Gi,j(x, y), Gi,k, H i,j,k(x, y)) via tss, thus proving that they satisfy the multiplicative relation. We
also let Pi share F i,v(x, y) via vst with Pϕ(i,v) as a receiver. The linear computation over tentative
shares from a single dealer is done by using linop3, while the linear computation between shares
of two different dealers is done by linop2. The protocol is presented in Figure 15.

Round 1 (Input phase) Every Pi does as follows.

• For every j ∈ [m], Pi shares Gi,j(x, y) via an instance of vss, denoted vssG
i,j

.

• For every j, k ∈ [m], Pi shares Hi,j,k(x, y) via an instance of vss, denoted vssH
i,j,k

.

• For every j, k ∈ [m] the parties execute an instance of tss, denoted tssi,j,k, with Pi as a dealer and the
instances vssG

i,j

, vssG
i,k

and vssH
i,j,k

as the sharing of A0, B0 and C0.

• For every v ∈ [ℓ], Pi shares F i,v(x, y) via an instance of vst, denoted vstF
i,v

, with Pϕ(i,v) as the
receiver. Denote the internal vss execution by vssF

i,v

.

Round 2 The parties continue with the execution of all vst, vss and tss instances.

Protocol sh-comp

57

Round 3 (Linear computation phase) At the beginning of the round all flags are initialized to 0. Every
Pi sets its flags as follows.

• (Pi as a dealer I) For every j ∈ [n], if Pi is internally-vss-conflicted with Pj in any vss execution where
Pi is the dealer, or Pi is internally-vst-conflicted with Pj in any vst execution where Pi is the dealer,
then Pi inputs flagdj = 1 to every vss, tss and vst execution where Pi is the dealer.

• (Pi as a dealer II) If there exists an instance of vst in which Pi is the dealer and Pi is internally-vst-
conflicted with the corresponding receiver, then Pi inputs (flagdj = 1)j∈[n] and flagdR = 1 into this vst
instance.

• (Pi as a receiver I) If there exists an instance of vst in which Pi is the receiver, and Pi is internally-vst-
conflicted with the corresponding dealer, then Pi inputs (flagRj = 1)j∈[n] and flagRd = 1 into this vst
instance.

• (Pi as a receiver II) For every j ∈ [n], if there exists an instance of vst in which Pi is the receiver, and
Pi is internally-vst-conflicted with Pj , then Pi inputs flagRj = 1 into this vst instance.

• (Conflicts with dealer I) For every j ∈ [n], if Pi is internally-vss-conflicted with the dealer in any vss
execution where Pj is the dealer, or Pi is internally-vst-conflicted with the dealer in any vst execution
where Pj is the dealer, then Pi inputs flagi = 1 to every vss, tss and vst execution where Pj it the
dealer, as well as flagi,R = 1 in the vst executions where Pj is the dealer.

• (Conflicts with dealer II) For every j ∈ [n], if Pi thinks that its share might change in any vss execution
in which Pj is the dealer (as per Observation 6.6), then Pi inputs flagi = 1 to every vss, tss and vst
execution where Pj it the dealer, as well as flagi,R = 1 in the vst executions where Pj is the dealer.

• (Conflicts with receiver) If there exists some instance of vst where where Pi is internally-vst-conflicted
with the receiver, then Pi inputs flagi,R = 1 and flagi,d = 1 into this vst instance, and flagi = 1 into
the internal vss instance.

• (Conflicts with other players) For every j, k ∈ [n], if Pi is internally-vss-conflicted with Pj in any vss
execution where Pk is the dealer, then Pi inputs flagi,j = 1 to every vss, tss and vst execution where
Pk it the dealer.

The parties do as follows.

• The parties execute all vss, tss and vst instances using the above flags.

• For every Pi and every v ∈ [ℓ], the parties compute

m∑
j=1

βv
i,jG

i,j(x, y) +
∑

j,k∈[m]

γv
i,j,kH

i,j,k(x, y) + F i,v(x, y)

by executing linop3 with respect to the instances (vssG
i,j

, vssH
i,j,k

)j,k∈[m] and vstF
i,v

, where Pi is the
dealer, and Pϕ(i,v) is the receiver, and with the same flags as in those instances.

• For every ((i1, v1), (i2, v2)) ∈ S the parties compute

F i1,v1(x, y)− F i2,v2(x, y)

by executing linop2 with respect to the instances vssF
i1,v1 and vssF

i2,v2 with Pi1 as D1 and Pi2 as D2,
and with the same flags as in those instances.

58

• (Local computation) At the end of the round the parties execute the following local computation. Let
B be the union of all sets of bad parties, discarded dealers, and discarded receivers, in all vss, tss, vst
executions, as well as in linop2 and linop3 operations. The parties set I = B. The parties output the
following values.

– The set I .
– For every i /∈ I and j ∈ [m], every party outputs the degree-t polynomial defined by its shares in

vssG
i,j

. The parties act similarly in vssH
i,j,k

and vstF
i,v

for all i /∈ I , j, k ∈ [m] and v ∈ [ℓ].
– For every i /∈ I and v ∈ [ℓ], the parties output

∑m
j=1 β

v
i,jG

i,j(x, y) +
∑

j,k∈[m] γ
v
i,j,kH

i,j,k(x, y) +

F i,v(x, y). For every i /∈ I and every v ∈ [ℓ] so that ϕ(i, v) = j, Pj outputs the bivariate polynomial
defined by its shares as a receiver in vstF

i,v

.
– For every ((i1, v1), (i2, v2)) ∈ S so that i1, i2 /∈ I , the parties output ((i1, v1), (i2, v2), F i1,v1(x, y)−

F i2,v2(x, y)). If i1 ∈ I or i2 ∈ I then the parties output ((i1, v1), (i2, v2),⊥).

Round 4 (Opening phase) Assume that Pi holds inputs (µi, (ji,k, vi,k)k∈[µi])). Then Pi broadcasts
(µi, (ji,k, vi,k)k∈[µi])), and for every k ∈ [µi], Pi executes the open phase of the linop3 execution that

corresponds to (vssG
ji,k,j′

, vssH
ji,k,j′,k′

)j′,k′∈[m] and vstF
ji,k,vi,k .

In addition, the parties do the following local computation. Initialize I ′ := I , and add every Pi for
which the opening phase of linop3 where Pi is the receiver ended with ⊥ to I ′. Output

(I ′, (µi, ji,k, vi,k, F
ji,k,vi,k(x, y))i/∈I′,k∈[µi]).

Figure 15: Protocol sh-comp

9 Augmented Single Input Functionalities

In this section we present our protocol for augmented SIF. First, we formalize our requirements
by an ideal functionality Fasif . We start by providing an overview of the functionality. The func-
tionality is parameterized by single input functionalities F1, . . . ,Fn, where Fi takes as an input
a vector xi ∈ Fm and returns fi,j(xi) to Pj , where fi,j(xi) = (fi,j,1(xi), . . . , fi,j,ℓ(xi)) is a length-ℓ
vector.

Input and computation phase. In the input phase, every Pi inputs xi to Fasif , and in the com-
putation phase every Pj receives fi,j(xi). In addition, in the computation phase, the functionality
supports linear operations over the outputs from different dealers. Formally, the functionality is
parameterized by a set S of tuples (k, (i1, v1), (i2, v2)) ∈ [n] × ([n] × [ℓ]) × ([n] × [ℓ]) and returns
fi1,k,v1(xi1)− fi2,k,v2(xi2) to all the parties for each such tuple.

Communication with the adversary. Like in Fsh-comp, the functionality allows the adversary
to choose the inputs of the corrupt parties, after seeing the following leakage: (1) the outputs
of the corrupt parties in (Fi)i∈H, (2) fi1,k,v1(xi1) − fi2,k,v2(xi2) for (k, (i1, v1), (i2, v2)) ∈ S with
honest Pi1 , Pi2 , (3) fi1,k,v1(xi1) for (k, (i1, v1), (i2, v2)) ∈ S with corrupt Pi2 , and (4) fi2,k,v2(xi2) for
(k, (i1, v1), (i2, v2)) ∈ S with corrupt Pi1 . Looking forward, when using Fasif as a subprotocol we
will make sure that the outer protocol is secure even if the adversary can choose its inputs based
on the leakage. We also allow the adversary to cause every corrupt Pi to abort the computation

59

of Fi by inputting flagi = 1 to the functionality. The functionality returns the set I , of all aborting
corrupt parties, to all the parties.

The functionality is parameterized by an integer ℓ, and single input functionalities F1, . . . ,Fn, where Fi

takes as an input a vector xi ∈ Fm and returns fi,j(xi) to Pj , where fi,j(xi) = (fi,j,1(xi), . . . , fi,j,ℓ(xi)).
There is also a set S ⊆ [n]× ([n]× [ℓ])× ([n]× [ℓ]) containing tuples (k, (i1, v1), (i2, v2)) where every pair
(i, v) appears in at most one such tuple.

The functionality receives the set of corrupt parties C.

Input phase. Every honest party Pi inputs xi.

Computation phase.

• (Leakage) The values (fi,j(xi))i∈H,j∈C are leaked to the adversary.
In addition, for every (k, (i1, v1), (i2, v2)) ∈ S so that Pi1 and Pi2 are honest, the adversary receives
fi1,k,v1(xi1)− fi2,k,v2(xi2). For every (k, (i1, v1), (i2, v2)) ∈ S so that Pi1 is honest and Pi2 is corrupt,
the adversary receives fi1,k,v1(xi1). For every (k, (i1, v1), (i2, v2)) ∈ S so that Pi2 is honest and Pi1 is
corrupt, the adversary receives fi2,k,v2

(xi2).

• (Corrupt parties’ inputs) Every corrupt Pi inputs xi and a bit flagi. Let I be the set of all corrupt parties
Pi with flagi = 1.

• (Outputs) Every honest Pi receives the private output

(I, fj,i(xj))j /∈I .

In addition, for every (k, (i1, v1), (i2, v2)) ∈ S, the functionality returns

– (i1, i2 /∈ I) The tuple (k, (i1, v1), (i2, v2), fi1,k,v1
(xi1)− fi2,k,v2

(xi2)).

– (Otherwise) The tuple (k, (i1, v1), (i2, v2),⊥).

Opening phase.

• (Inputs of honest parties) Every honest Pi inputs an integer µi ∈ N, and pairs (ji,k, vi,k)k∈[µi] so that
ji,k ∈ [n] \ I , and vi,k ∈ [ℓ].

• (Leakage) For every honest Pi the functionality returns (µi, (ji,k, vi,k, fji,k,i,vi,k(xji,k)k∈[µi])) to the
adversary.

• (Inputs of corrupt parties) Every corrupt Pi inputs a bit aborti, an integer µi ∈ N, and pairs
(ji,k, vi,k)k∈[µi] so that ji,k ∈ [n] \ I , and vi,k ∈ [ℓ].

• (Output) Let I ′ be the set I together with every corrupt Pi with aborti = 1. The functionality returns

(I ′, (µi, ji,k, vi,k, fji,k,i,vi,k(xji,k))i/∈I′,k∈[µi])

to all the parties.

Functionality Fasif

Figure 16: Functionality Fasif

First we consider the special case where F1, . . . ,Fn are degree-2 single input functionalitiess
over F, and present a protocol asif for this special case. Later, we explain how to reduce general
single input functionalities to degree-2 functionalities. Therefore, let us assume for now that for

60

every i, i′ ∈ [n] and v ∈ [ℓ], the function fi,i′,v is a degree-2 function of the form

m∑
j=1

βv
i,i′,jxi,j +

∑
j,k∈[m]

γvi,i′,j,kxi,j · xi,k.

We use protocol sh-comp as a subprotocol with the following parameters. The input parameter is
m and the output parameter is nℓ, and that the field F is sufficiently large, as per Theorem 8.1.
For simplicity we identify each pair (i, v) ∈ [n] × [nℓ] with a tuple (i, j, v′) ∈ [n] × [n] × [ℓ], where
j = ⌊(v − 1)/ℓ⌋+1 and v′ = (v+1) mod ℓ. That is, the ℓ pairs (i, (j − 1)ℓ+1), . . . , (i, jℓ) are iden-
tified with the ℓ tuples (i, j, 2), . . . , (i, j, ℓ), (i, j, 1), respectively. The coefficients in the definition of
sh-comp are set to be (βv

i,i′,j , γ
v
i,i′,j,k)i,i′∈[n],j,k∈[m],v∈[ℓ], and we define ϕ(i, j, v) = Pj . Given the set S

of Fasif , we define S′ of sh-comp to include ((i1, k, v1), (i2, k, v2)) for every (k, (i1, v1), (i2, v2)). We
continue with a description of the protocol.

Round 1 (Input phase) Every Pi does as follows.

• Samples a random symmetric bivariate polynomial F i,i′,v(x, y) of degree at most t in each variable,
for every i′ ∈ [n] and v ∈ [ℓ]

• Samples a random symmetric bivariate polynomial Gi,j(x, y) of degree at most t in each variable,
conditioned on Gi,j(0, 0) = xi,j , for every j ∈ [m].

• Samples a random symmetric bivariate polynomial Hi,j,k(x, y) of degree at most t in each variable,
conditioned on Hi,j(0, 0) = xi,j · xi,k, for every j, k ∈ [m].

The parties execute the first round of sh-comp with those inputs.

Round 2 The parties execute the second round of sh-comp with those inputs.

Round 3 (Computation phase) The parties execute the third round of sh-comp. Observe that all the
parties agree on the set I and on the bivariate polynomialsOuti,i

′,v(x, y) :=

m∑
j=1

βv
i,i′,jG

i,j(x, y) +
∑

j,k∈[m]

γv
i,i′,j,kH

i,j,k(x, y) + F i,i′,v(x, y)


i,i′∈[n]\I,v∈[ℓ]

and
(Out(k,(i1,v1),(i2,v2))(x, y) := F i1,k,v1(x, y)− F i2,k,v2(x, y))(k,(i1,v1),(i2,v2))∈S:i1,i2 /∈I .

In addition, every Pi′ holds the polynomials (F i,i′,v(x, y))i∈[n]\I,v∈[ℓ], that were transferred as part of
sh-comp. Every Pi′ does as follows.

• For every i ∈ [n] \ I and v ∈ [ℓ], party Pi′ sets

fi,i′,v := (Outi,i
′,v(0, 0)− F i,i′,v(0, 0)).

• For every (k, (i1, v1), (i2, v2)) ∈ S so that i1, i2 /∈ I , party Pi′ sets f(k,(i1,v1),(i2,v2)) := (Outi1,k,v1(0, 0)−
Outi2,k,v2(0, 0))− Out(k,(i1,v1),(i2,v2))(0, 0).

Protocol asif

61

• Pi′ outputs
(I, (fi,i′,v)i∈[n],v∈[ℓ], (f(k,(i1,v1),(i2,v2)))(k,(i1,v1),(i2,v2))∈S:i1,i2 /∈I).

Round 4 (Opening phase) Every Pi on input µi ∈ N, and pairs (ji,k, vi,k)k∈[µi] broadcasts
(µi, (ji,k, vi,k)k∈[µi]), and executes the opening phase of sh-comp with input µi ∈ N, and pairs
(ji,k, i, vi,k)k∈[µi]. At the end of the round the parties execute the local computation of sh-comp. De-
note the outputs by

(I ′, (µi, ji,k, vi,k, F
ji,k,i,vi,k(x, y)i/∈I′,k∈[µi])).

Then every Pi outputs

(I ′, (µi, ji,k, vi,k,Out
ji,k,i,vi,k(0, 0)− F ji,k,i,vi,k(0, 0)i/∈I′,k∈[µi])).

Figure 17: Protocol asif

Notation 7. In the opening phase, instead of specifying all the indices that Pi opens, it would be convenient
to say that Pi opens fj,i,v(xj) via asif, if one of the indices that Pi inputs is (j, v).

In Section F we prove the following theorem. As always, we assume that F is a sufficiently
large field of size exp(n, κ, s).

Theorem 9.1. Let κ be a security parameter, let n be the number of parties and t < n/2 the number of
corrupt parties. Let F1, . . . ,Fn be degree-2 single input functionalities with circuit size at most s, over
a sufficiently large field F as a function of (n, κ, s). Then protocol asif is a UC-secure implementation
of Fasif against a static, active, rushing adversary corrupting up to t parties. The complexity of asif is
poly(κ, 2n, s, log |F|).

Computing general single input functionalities. Let F1, . . . ,Fn be single input functionalities
given by boolean circuits C1, . . . , Cn, respectively, where the size of each circuit is at most s. Fol-
lowing the standard reduction from circuit-satisfiability to quadratic equations over an arbitrary
field F, it is well known (see, e.g., [GIKR02, Theorem 1]) that the computation of every single input
functionality Fi can be efficiently and non-interactively reduced to the computation of a degree-2
single input functionality Hi over an arbitrary finite field F, where the circuit size of Hi is at most
s′ = O(s), where s′ is independent of the choice of F. More concretely, the functionality Hi receives
from the dealer the values of all wires of Ci, and (1) returns to every Pj the values of all output
wires that belong to Pj , and (2) returns to all the parties a public vector that is equal to 0 if and
only if the inputs are “well-formed”, i.e., the values of all wires are binary and for every gate of Ci

the values of the wires incident to the gate are consistent with the gate. Note that verifying that
the inputs are well-formed can be computed by degree-2 functions.

We show that we can apply this reduction even for the case of augmented SIF. That is, we ar-
gue that the computation of Fasif with F1, . . . ,Fn can be efficiently and non-interactively reduced
to the computation of H1, . . . ,Hn over any field F that is an extension field of F2. Indeed, in the
computation of Fasif with H1, . . . ,Hn, if the players find out in the computation phase that a cor-
rupt Pi did not use “well-formed” inputs, they automatically add Pi to the set of bad parties I ,
and we observe that the use of not “well-formed” inputs reveals no additional information in the
linear computation in the computation phase, as all the relevant information is already leaked
to the adversary. We emphasize that we need to use an extension field of F2, since for every
(k, (i1, v1), (i2, v2)) ∈ S, if the inputs of Pi1 and Pi2 are “well-formed” and Pi1 and Pi2 are not in

62

I , then fi1,k,v1(xi1) and fi2,k,v2(xi2) are in {0, 1}, and the computation of fi1,k,v1(xi1) − fi2,k,v2(xi2)
should be perforemd over F2, which is exactly what happens if we work over an extension field
of F2.

We conclude that by choosing the field F to be a sufficiently large extension field of F2 as a
function of (n, κ, s), we can use Theorem 9.1 with respect to H1, . . . ,Hn to obtain the following
theorem.

Theorem 9.2. Let κ be a security parameter, let n be the number of parties and t < n/2 the number of
corrupt parties. Let F1, . . . ,Fn be single input functionalities with boolean circuit size at most s. Then
protocol asif is a UC-secure implementation of Fasif against a static, active, rushing adversary corrupting
up to t parties. The complexity of asif is poly(κ, 2n, s).

In the rest of the paper, we always assume that the single input functionalities F1, . . . ,Fn are
boolean functionalities.

10 General Multiparty Computation

10.1 Overview

Let F be an n-party functionality, with circuit size s and depth d. Our starting point is a 2-round
perfectly-secure protocol Πsm for general MPC against rushing semi-malicious adversaries. Such
adversaries are allowed to choose their inputs and randomness, but other than that play hon-
estly. For concreteness, we take the protocol of [ABT18] as Πsm, that is executed over F2 and has
complexity poly(n, s, 2d). An important feature of [ABT18] is that for every player, given the input,
randomness, and all incoming first-round messages, the second-round messages can be computed
by a circuit with size poly(n, s, 2d) and depth O(log(n · s · 2d)).

We follow the blueprints of [AKP21]. We start with the 2-round perfectly secure protocol Πsm

against rushing semi-malicious adversaries and compile this protocol into a 3-round protocol Πfs,
secure against fail-stop adversaries, that follow the protocol but can abort every corrupt Pi at any
time. We then explain how to use augmented SIF in order to compile this protocol into a 4-round
protocol, secure against malicious adversaries.

Throughout this section all computation is over F2. Therefore, all messages sent in the proto-
cols are simply binary vectors, and by addition and subtraction we simply mean bitwise-XOR of
vectors.

From semi-malicious to fail-stop. The work of [AKP21] provided compiler from semi-malicious
security to fail-stop security, that preserves information-theoretic security. We briefly recall the de-
tails here. We note that protocol Πsm consists of only private messages in the first round, and only
broadcast messages in the second round,16, and we denote the first-round private message from
Pi to Pj in Πsm by ai,j and the second round broadcast of Pi by bi.

First-round abort of a party Pi causes two problems to the other parties: (1) Pi did not send her
first round messages; and (2) the first-round messages that were directed to Pi were lost. The first
issue is solved by letting each party to locally generate the outgoing messages of Pi by running

16In fact, using standard padding techniques [GIKR01], every protocol can be transformed into a protocol of this
form.

63

Pi on the all-zero input and the all-zero random tape.17 The second issue is solved by letting
every party share its outgoing messages among the parties, using (t + 1)-out-of-n secret sharing
scheme. In this case, if Pi aborts during the first round, then in the second round the parties
reconstruct all the first round incoming messages of Pi. After the second round, the parties have
enough information to locally continue the emulation of Pi (with respect to the all-zero inputs)
and generate her second round broadcast messages.

Handling second-round aborts is more subtle. The main idea is to let every Pi that did not
abort in the first round to share enough information among the parties, so the parties could se-
curely compute the second-round broadcast of Pi by themselves. In order to do so, we first make
the communication in Πsm public in the following way. We add a round at the beginning of the
protocol, Round 0, in which every Pi sends a one-time pad ρi,j to Pj . In Round 1, the parties ex-
ecute the first round of Πsm over the broadcast channel, where Pj encrypts its message to Pi with
the one-time pad ρi,j (i.e., Pj sends aj,i + ρi,j to Pi). Every Pi also generates a garbled circuit to a
function Gi that takes (1) the input and randomness of Pi in Πsm, (2) the one-time pads (ρi,j)j∈[n],
and (3) the encrypted incoming messages of Pi, i.e., (aj,i + ρi,j)j∈[n]. The function returns the
broadcast of Pi according to Πsm given its input, randomness and all decrypted incoming mes-
sages. Observe that inputs (1)–(2) are known to Pi already in the first round, so Pi can share the
label of those inputs among the parties. In addition, Pi shares the labels that correspond to every
potential encrypted incoming message. Since all the encrypted messages to Pi are public by the
end of Round 1, in Round 2 the parties can recover all the labels, and compute the output of Gi,
that is, the broadcast of Pi in Round 2.

From fail-stop to malicious. The work of [AKP21] showed a round-preserving compiler from
security against fail-stop adversaries to security against malicious adversaries assuming the exis-
tence of non-interactive commitments. In this work we show that this technique can be adapted
to the statistical regime as well, without any cryptographic assumptions, at the expanse of having
an additional round.

In the first three rounds, every Pi executes an augmented single input functionality, that takes
the input and randomness of Pi to Πsm, the inputs of Gi, and some additional random pads
(ηi,j)j∈[n] that Pi picked. The functionality returns to all parties the encrypted outgoing messages
of Pi in Πsm, where the message to Pj is Ai,j := ai,j +ηi,j . In addition, it shares the (not-encrypted)
outgoing messages (ai,j)j∈[n] of Pi among the parties (to handle first-round aborts), and also shares
the labels of the garbled circuit of Gi (to handle second-round aborts). In the fourth round, every
Pi can simply use the opening phase of the augmented SIF to open the labels of the garbled circuits
of each party.

However, there is a little technicality to be handled: the function Gi was defined with respect
to random pads (ρi,j)j∈[n] that are known to Pi already in the first round. However, the encrypted
message from Pj to Pi is encrypted with the random pad ηj,i which is not known to Pi. To solve
this mismatch, we use the linearity of our augmented SIF protocol, and publicly compute the
value νj,i := ηj,i − ρi,j already in the third round, so that all the parties can locally compute the
new encrypted message Aj,i− νj,i = aj,i+ ρi,j , and open the corresponding label according to this
encrypted message. The full details appear in the next section.

17Here, among other places, we use the fact that Πsm is secure against a semi-malicious adversary.

64

10.2 The protocol

We continue with a formal presentation of the protocol.

The function Gi. For every i ∈ {1, . . . , n}we define the following function. (We slightly deviate
from the high-level overview in order to simultaneously handle first-round aborts and second-
round aborts.)

Inputs. The function receives (1) (xi, ri) the input and randomness of Pi in Πsm, (2) random pads
(ρi,j)j∈{1,...,n}, (3) a set Li ⊆ {1, . . . , n}, represented as an n-bit string where the j-th bit is 1 if j ∈ Li,
(4) messages (Aj,i)j∈{1,...,n}.

Outputs. Define aj,i := Aj,i if j ∈ Li, and aj,i := Aj,i − ρi,j otherwise. Let bi be the broadcast message
of Pi in the second round of Πsm, where Pi has input xi, randomness ri, and Pi received the private
message aj,i from Pj in the first round. Output bi.

Function Gi

Figure 18: Function Gi

Let ℓ be the bit-length of each input of Gi (by using padding, we assume without loss of generality
that all inputs of Gi have the same length, and that every Gi and Gj the inputs have the same
length of 4ℓ). Since for every player in Πsm the second-round messages can be computed by a cir-
cuit of size poly(n, s, 2d) and depth O(log(n·s·2d)), the function Gi can be implemented by a circuit
of size poly(n, s, 2d) and depth O(log(n ·s ·2d)). Therefore, by Theorem 3.4, Gi has a perfect decom-
posable randomized encoding of size poly(n, s, 2d), which we denote by Ĝi := (Ĝi,1, . . . , Ĝi,4ℓ).

The functionality Fi. For every i ∈ {1, . . . , n} we define the functionality Fi, presented in Fig-
ure 19. The functionality uses (t+1)-out-of-n secret sharing over F2: this is simply Shamir’s secret
sharing over an extension field F of the binary field F2 of size at least n + 1, where the computa-
tion can be performed by a boolean circuit of size poly(n). By computing Shamir shares of a secret
s we always mean sampling a degree-t polynomial p(x) over F whose free coefficient is s, and
generating the shares (p(1), . . . , p(n)).

Inputs. The functionality receives from the dealer Pi the following inputs: (1) (xi, ri) the input and ran-
domness of Pi in Πsm, (2) random pads (ρi,j , ηi,j)j∈{1,...,n}, and (3) auxiliary randomness, as described
below.

Outputs. The functionality computes the first-round messages of Pi in Πsm on input xi and randomness
ri, denoted (ai,1, . . . , ai,n). Using the auxiliary randomness, the functionality samples Shamir shares
(ai,j [1], . . . , ai,j [n]) for every messages ai,j .
In addition, using the auxiliary randomness, the functionality samples a random string rREi for a ran-
domized encoding Ĝi of Gi and does as follows.

Functionality Fi

65

• (For inputs (1)–(2).) Inputs (1)–(2) of Gi correspond to (xi, ri) and the random pads (ρi,j)j∈{1,...,n}.
Consider the j-th input bit of Gi that correspond to inputs (1)–(2), denoted βj where j ∈ {1, . . . , 2ℓ}.
Compute Ĝi,j(βj , r

RE
i), and use the auxiliary randomness to sample Shamir’s shares of this value,

denoted si,j [1], . . . , si,j [n].

• (For inputs (3)–(4).) Recall that inputs (3)–(4) of Gi correspond to a set Li and messages
(Aj,i)j∈{1,...,n}. Consider the j-th input bit of Gi that correspond to inputs (3)–(4) where j ∈
{2ℓ + 1, . . . , 4ℓ}. For every β ∈ {0, 1} compute Ĝi,j(β, r

RE
i), and use the auxiliary randomness to

sample Shamir’s shares of this value, denoted sβi,j [1], . . . , s
β
i,j [n].

For every k ∈ [n], return the following values to Pk: (1) the message ai,k and the random pads ηi,k, (2)
the shares (ai,j [k])j∈{1,...,n} of Pi’s first round messages (3) the shares (si,j [k])j∈{1,...,2ℓ} corresponding
to inputs (1)–(2) of Gi, (4) the shares (sβi,j [k])β∈{0,1},j∈{2ℓ+1,...,4ℓ} corresponding to inputs (3)–(4) of Gi,
(5) the encrypted messages (ai,j + ηi,j)j∈{1,...,n}.
In addition, Pi receives the values (ρi,j)j∈[n] as an output.

Figure 19: Functionality Fi

The protocol. We consider a asif protocol parameterized by F1, . . . ,Fn, so that in the linear com-
putation phase the values (ηk,j − ρj,k)j,k∈[n] are revealed (note that Pj is the receiver for both ηk,j
and ρj,k). We continue with the protocol for general MPC.

Inputs. Every Pi holds an input xi. All parties share a statistical security parameter 1κ.

Round 1. Every party Pi samples randomness ri for Πsm, random pads (ρi,j , ηi,j)j∈{1,...,n}, and the aux-
iliary randomness required for Fi. The parties execute the first round of asif.

Round 2. The parties execute the second round of asif. This completes the input phase of asif.

Round 3. The parties execute the third round of asif, the linear-computation phase, where the values
(νj,k := ηj,k − ρk,j)j,k∈{1,...,n} are revealed. At the end of the round, let I be the set of corrupt parties in
the linear-computation phase of asif. For every j, k /∈ I the parties hold νj,k.
For i /∈ I denote the output of Pk from Fi by (1) the message ai,k and the random pads ρi,k, ηi,k, (2)
the shares (ai,j [k])j∈{1,...,n} of Pi’s first round messages (3) the shares (si,j [k])j∈{1,...,2ℓ} corresponding
to inputs (1)–(2) of Gi, (4) the shares (sbi,j [k])b∈{0,1},j∈{1,...,2ℓ} corresponding to inputs (3)–(4) of Gi, (5)
the encrypted messages (A′

i,j)j∈{1,...,n}.

Round 4. Every Pk does as follows in the fourth round of asif.
For every i ∈ I :

• For every j /∈ I , open the value aj,i[k] via asif.

For every i /∈ I :

• (For inputs (1)–(2).) For every j ∈ {1, . . . , 2ℓ}, open the value si,j [k] via asif.

• (For inputs (3)–(4).) Let Li := I . For j /∈ I locally compute Aj,i := A′
j,i−νj,i. For j ∈ I , compute Aj,i =

aj,i, where aj,i is the message that Pj sends according to Πsm when xj and rj are the all-zero string.

Protocol mpc

66

Consider the length-2ℓ binary string βi = (βi[1], . . . ,βi[2ℓ]) that corresponds to (Li, (Aj,i)j∈{1,...,n}).
For j ∈ {2ℓ+ 1, 4ℓ}, open the value s

βi[j−2ℓ]
i,j [k] via asif.

Local computation. The parties execute the local computation of asif. The parties do as follows.

• For every i ∈ I , set xi and ri to be the all zero string. For every j ∈ I compute the message aj,i based
on the input and randomness of Pj (that are set to the all zero string). For j /∈ I , use all opened
shares aj,i[k] in order to recover aj,i. Compute the second-round broadcast bi of Pi in Πsm according
to xi, ri, and (aj,i)j∈{1,...,n}.

• For every i /∈ I , and j ∈ {1, . . . , 4ℓ}, use all valid opened shares to recover the value of Ĝi,j , denoted
gi,j . Given (gi,j)j∈{1,...,4ℓ} use the decoding algorithm of the randomized encoding to obtain the
output bi.

Finally, every Pi computes its output in Πsm based on xi, ri, (aj,i)j∈{1,...,n} and the broadcast messages
(bj)j∈{1,...,n}.

Figure 20: Protocol mpc

In Section G we prove the following theorem.

Theorem 10.1. Let κ be a security parameter, let F be a degree-2 functionality with boolean circuit size s
and depth d. Protocol mpc is a UC-secure implementation of F , against a static, active, rushing adversary
corrupting up to t parties. The complexity of the protocol is poly(s, 2d, 2n, κ).

11 Lower Bound: Single Input Functionality

Theorem 11.1 (Lower Bound for SIF). Let n ≥ 3 and t ≥ n/3 be positive integers. Then there exists an
n-party single input functionality that cannot be computed in two rounds with resiliency t and error 1/12.
This holds even for a non-rushing adversary.

Let F be the 3-party single input functionality that takes x, y ∈ {0, 1} from D, and returns x to
P1 and the tuple (y, x ∧ y) to P2. D itself gets nothing. Formally,

F (x, y) := (x, (y, x ∧ y),⊥).

Let π be a 2-round protocol that provides ϵ-statistical security for ϵ = 1/12.

Adversary Ax,y. Adversary Ax,y corrupts D and acts as follows.

• In the first round D samples randomness rD, computes (ax,yD , ax,yD,1, a
x,y
D,2) := πD,1((x, y); rD),

broadcasts ax,yD , sends ax,yD,2 to P2, and sends ⊥ to P1.

• At the end of the roundAx,y receives the messages (a1, a1,D) from P1, and (a2, a2,D) from P2.
Ax,y samples r̄1 conditioned on the event ā1 = a1, where (ā1, ā1,D, ā1,2) = π1,1(r̄1).

• In the second round A computes bx,yD := πD,1((a1, ā1,D, a2, a2,D), (x, y); rD) and broadcasts
bx,yD .

67

Adversary B. Adversary B corrupts P1 and acts as follows.

• In the first round P1 samples randomness r1, and computes (a1, a1,D, a1,2) := π1,1(r1). P1

samples r̄1 conditioned on ā1 = a1, where (ā1, ā1,D, ā1,2) = π1,1(r̄1). P1 broadcasts a1, sends
a1,2 to P2, and ā1,D to D.

• At the end of the first round B receives the messages (aD, aD,1) from D, and (a2, a2,1) from
P2. The adversary sets āD,1 := ⊥.

• In the second round A computes b1 := π1,2((aD, āD,1, a2, a2,1); r1) and broadcasts b1.

• At the end of the round B receives the second-round broadcasts bD and b2.

• We define the imaginary view of B to be (r1, aD, āD,1, a2, a2,1, bD, b2).

Adversary C. Adversary C corrupts P2 and plays honestly.

Analysis. We start with the following simple observation.

Observation 11.2. The view of P2 in an execution of πAx,y has the same distribution as in an execution
of πB(x, y). In addition, the view of P1 in an execution of πAx,y has the same distribution as the imaginary
view of B in an execution of πB(x, y).

We continue with the following lemma.

Lemma 11.3. The output of P2 in πAx,y is (y, x ∧ y) with probability at least 1− ϵ.

Proof. Consider an execution πAx,y . By Observation 11.2, the view of P2 has the same distribution
as in an execution of π(x, y) with adversary B. By the correctness of π the output of P2 in πB(x, y)
is (y, x∧ y) with probability 1− ϵ. Therefore, the output of P2 in πAx,y is (y, x∧ y) with probability
at least 1− ϵ.

Case I (x = y = 1). We show that the output of P1 in πA1,1 is 1 with probability 1 − 3ϵ. By
Lemma 11.3 the output of P2 in πA1,1 is (1, 1) with probability at least 1 − ϵ. Therefore, in the
ideal-world with A1,1, the output of P2 is (1, 1) with probability at least 1 − 2ϵ. This means that
the inputs of A1,1 must be (x = 1, y = 1) with probability at least 1 − 2ϵ. We conclude that in the
real-world, the output of P1 and P2 is (1, (1, 1)) with probability at least 1− 3ϵ.

Case II (x = 1, y = 0). We show that the output of P1 in πA1,0 is 1 with probability at least
1− 5ϵ. By security against B, we conclude that the imaginary-view of B in πB(1, 1) is ϵ-close to the
simulated view. Since the simulator sees the same output when (x = 1, y = 1) and (x = 1, y = 0),
we conclude that the simulated view is ϵ-close to the imaginary-view in πB(1, 0). Therefore, the
imaginary-view of B in πB(1, 1) is 2ϵ-close to the imaginary-view in πB(1, 0).

By the analysis of Case I we know that the output of P1 in πA1,1 is 1 with probability at least
1−3ϵ. By Observation 11.2 the view of P1 in πA1,1 has the same distribution as the imaginary-view
of B in πB(1, 1), so the output of B in πB(1, 1) is 1 with probability at least 1 − 3ϵ. Therefore, the
output of P1 in πB(1, 0) is 1 with probability at least 1− 5ϵ. By Observation 11.2 the view of P1 in
πA1,0 has the same distribution as the imaginary-view of B in πB(1, 0), so the output of P1 in πA1,0

is 1 with probability at least 1− 5ϵ.

68

Case III (x = 0, y = 0). We show that the output of P1 in πA0,0 is 1 with probability at least 1−7ϵ.
Denote the view of P1 in an execution πAx,y by

(rx,y1 , ax,yD , ax,yD,1, a
x,y
2 , ax,y2,1 , b

x,y
D , bx,y2).

Observe that ax,yD,1 is ⊥with probability 1.
First, we note that

(r0,02 , a0,0D , a0,0D,2, a
0,0
1 , b0,0D) is 2ϵ-close to (r1,02 , a1,0D , a1,0D,2, a

1,0
1 , b1,0D). (1)

Indeed, the LHS has the same distribution as the partial view of P2 in an honest execution with
(x = 0, y = 0) and the RHS has the same distribution as the partial view of P2 in an honest
execution with (x = 1, y = 0), and the claim follows by security against C. We continue by
showing that

(r0,01 , a0,0D , a0,0D,1, a
0,0
2 , a0,02,1, b

0,0
D , b0,02) is 2ϵ-close to (r1,01 , a1,0D , a1,0D,1, a

1,0
2 , a1,02,1, b

1,0
D , b1,02). (2)

Consider the following probabilistic process. Given (r2, aD, aD,2, a1, bD) as an input, the process
(1) sets aD,1 := ⊥, (2) samples r1 conditioned on (a1, a1,D, a1,2) = π1,1(r1), for some a1,D, a1,2, (3)
computes (a2, a2,D, a2,1) = π2,1(r2), (4) computes b2 = π2,2(aD, aD,2, a1, a1,2; r2), and (5) outputs
(r1, aD, aD,1, a2, a2,1, bD, b2). It is not hard to see that given a sample from the LHS (resp., RHS) of
Equation 1 the process outputs a sample from the LHS (resp., RHS) of Equation 2, and the claim
follows. Finally, since the output of P1 in πA1,0 is 1 with probability at least 1− 5ϵ, then the output
of P1 in πA0,0 is 1 with probability at least 1− 7ϵ.

Case IV (x = 0, y = 1). We show that the output of P1 in πA1,0 is 1 with probability at least
1− 9ϵ. By security against B, we conclude that the imaginary-view of B in πB(0, 0) is ϵ-close to the
simulated view. Since the simulator sees the same output when (x = 0, y = 0) and (x = 0, y = 1),
we conclude that the simulated view is ϵ-close to the imaginary-view in πB(0, 1). Therefore, the
imaginary-view of B in πB(0, 0) is 2ϵ-close to the imaginary-view in πB(0, 1).

By the analysis of Case III we know that the output of P1 in πA0,0 is 1 with probability at least
1−7ϵ. By Observation 11.2 the view of P1 in πA0,0 has the same distribution as the imaginary-view
of B in πB(0, 0), so the output of B in πB(0, 0) is 1 with probability at least 1 − 7ϵ. Therefore, the
output of P1 in πB(0, 1) is 1 with probability at least 1− 9ϵ. By Observation 11.2 the view of P1 in
πA0,1 has the same distribution as the imaginary-view of B in πB(0, 1), so the output of P1 in πA0,1

is 1 with probability at least 1− 9ϵ.

Contradiction. By Lemma 11.3 the output of P2 in πA0,1 is (1, 0) with probability at least 1 − ϵ.
We’ve seen that the output of P1 is 1 with probability 1 − 9ϵ, so the probability that the output of
P1 and P2 is (1, (1, 0)) is at least 1 − 10ϵ. Note that (1, (1, 0)) is an output that cannot occur in the
ideal-world, so the probability that it occurs is at most ϵ. Therefore, 1−10ϵ ≤ ϵ so 1/12 = ϵ ≥ 1/11,
in contradiction. This concludes the proof.

References

[ABT18] Benny Applebaum, Zvika Brakerski, and Rotem Tsabary. Perfect secure computation
in two rounds. In Theory of Cryptography - 16th International Conference, TCC 2018,
Panaji, India, November 11-14, 2018, Proceedings, Part I, pages 152–174, 2018.

69

[ABT19] Benny Applebaum, Zvika Brakerski, and Rotem Tsabary. Degree 2 is complete for the
round-complexity of malicious MPC. In Advances in Cryptology - EUROCRYPT 2019
- 38th Annual International Conference on the Theory and Applications of Cryptographic
Techniques, Darmstadt, Germany, May 19-23, 2019, Proceedings, Part II, pages 504–531,
2019.

[ACGJ18] Prabhanjan Ananth, Arka Rai Choudhuri, Aarushi Goel, and Abhishek Jain. Round-
optimal secure multiparty computation with honest majority. In Advances in Cryp-
tology - CRYPTO 2018 - 38th Annual International Cryptology Conference, Santa Barbara,
CA, USA, August 19-23, 2018, Proceedings, Part II, pages 395–424, 2018.

[ACGJ19] Prabhanjan Ananth, Arka Rai Choudhuri, Aarushi Goel, and Abhishek Jain. Two
round information-theoretic MPC with malicious security. In Advances in Cryptology -
EUROCRYPT 2019 - 38th Annual International Conference on the Theory and Applications
of Cryptographic Techniques, Darmstadt, Germany, May 19-23, 2019, Proceedings, Part II,
pages 532–561, 2019.

[ACJ17] P. Ananth, A. R. Choudhuri, and A. Jain. A new approach to round-optimal secure
multiparty computation. In CRYPTO, 2017.

[AIK06] Benny Applebaum, Yuval Ishai, and Eyal Kushilevitz. Cryptography in NC0. SIAM
Journal on Computing, 36(4):845–888, 2006.

[AKP20a] Benny Applebaum, Eliran Kachlon, and Arpita Patra. The resiliency of MPC with
low interaction: The benefit of making errors (extended abstract). In Theory of Cryp-
tography - 18th International Conference, TCC 2020, Durham, NC, USA, November 16-19,
2020, Proceedings, Part II, pages 562–594, 2020.

[AKP20b] Benny Applebaum, Eliran Kachlon, and Arpita Patra. The round complexity of per-
fect MPC with active security and optimal resiliency. In 61st IEEE Annual Symposium
on Foundations of Computer Science, FOCS 2020, Durham, NC, USA, November 16-19,
2020, pages 1277–1284, 2020.

[AKP21] Benny Applebaum, Eliran Kachlon, and Arpita Patra. Round-optimal honest-
majority MPC in minicrypt and with everlasting security. IACR Cryptol. ePrint Arch.,
2021:346, 2021. To appear in TCC 2022.

[AKP22] Benny Applebaum, Eliran Kachlon, and Arpita Patra. Verifiable relation sharing and
multi-verifier zero-knowledge in two rounds: Trading nizks with honest majority. In
Yevgeniy Dodis and Thomas Shrimpton, editors, Advances in Cryptology – CRYPTO
2022, pages 33–56. Springer, 2022.

[AL17] Gilad Asharov and Yehuda Lindell. A full proof of the BGW protocol for perfectly
secure multiparty computation. J. Cryptology, 30(1):58–151, 2017.

[App17] Benny Applebaum. Garbled circuits as randomized encodings of functions: a primer.
In Tutorials on the Foundations of Cryptography., pages 1–44. 2017.

70

[BD91] Mike Burmester and Yvo Desmedt. Broadcast interactive proofs (extended abstract).
In Advances in Cryptology - EUROCRYPT ’91, Workshop on the Theory and Application
of of Cryptographic Techniques, Brighton, UK, April 8-11, 1991, Proceedings, pages 81–95,
1991.

[Bea91] D. Beaver. Efficient Multiparty Protocols Using Circuit Randomization. In Advances
in Cryptology - CRYPTO ’91, 11th Annual International Cryptology Conference, Santa Bar-
bara, California, USA, August 11-15, pages 420–432, 1991.

[BGJ+18] Saikrishna Badrinarayanan, Vipul Goyal, Abhishek Jain, Yael Tauman Kalai, Dak-
shita Khurana, and Amit Sahai. Promise zero knowledge and its applications to
round optimal mpc. In Annual International Cryptology Conference, pages 459–487.
Springer, 2018.

[BGW88] Michael Ben-Or, Shafi Goldwasser, and Avi Wigderson. Completeness theorems for
non-cryptographic fault-tolerant distributed computation (extended abstract). In Pro-
ceedings of the 20th Annual ACM Symposium on Theory of Computing, May 2-4, 1988,
Chicago, Illinois, USA, pages 1–10, 1988.

[BHP17] Zvika Brakerski, Shai Halevi, and Antigoni Polychroniadou. Four round secure
computation without setup. Cryptology ePrint Archive, Report 2017/386, 2017.
http://eprint.iacr.org/2017/386.

[BJMS20] Saikrishna Badrinarayanan, Aayush Jain, Nathan Manohar, and Amit Sahai. Secure
MPC: laziness leads to GOD. In Shiho Moriai and Huaxiong Wang, editors, Advances
in Cryptology - ASIACRYPT 2020 - 26th International Conference on the Theory and Appli-
cation of Cryptology and Information Security, Daejeon, South Korea, December 7-11, 2020,
Proceedings, Part III, volume 12493 of Lecture Notes in Computer Science, pages 120–150.
Springer, 2020.

[BL18] Fabrice Benhamouda and Huijia Lin. k-round multiparty computation from k-round
oblivious transfer via garbled interactive circuits. In Advances in Cryptology - EU-
ROCRYPT 2018 - 37th Annual International Conference on the Theory and Applications
of Cryptographic Techniques, Tel Aviv, Israel, April 29 - May 3, 2018 Proceedings, Part II,
pages 500–532, 2018.

[BMR90] Donald Beaver, Silvio Micali, and Phillip Rogaway. The round complexity of secure
protocols (extended abstract). In Proceedings of the 22nd Annual ACM Symposium on
Theory of Computing, May 13-17, 1990, Baltimore, Maryland, USA, pages 503–513, 1990.

[Can01] Ran Canetti. Universally composable security: A new paradigm for cryptographic
protocols. In 42nd Annual Symposium on Foundations of Computer Science, FOCS 2001,
14-17 October 2001, Las Vegas, Nevada, USA, pages 136–145, 2001.

[CCD88] David Chaum, Claude Crépeau, and Ivan Damgård. Multiparty unconditionally se-
cure protocols (extended abstract). In Proceedings of the 20th Annual ACM Symposium
on Theory of Computing, May 2-4, 1988, Chicago, Illinois, USA, pages 11–19, 1988.

71

http://eprint.iacr.org/2017/386

[CDD+99] Ronald Cramer, Ivan Damgård, Stefan Dziembowski, Martin Hirt, and Tal Rabin.
Efficient multiparty computations secure against an adaptive adversary. In Advances
in Cryptology - EUROCRYPT ’99, International Conference on the Theory and Application
of Cryptographic Techniques, Prague, Czech Republic, May 2-6, 1999, Proceeding, pages
311–326, 1999.

[CDF01] Ronald Cramer, Ivan Damgård, and Serge Fehr. On the cost of reconstructing a secret,
or VSS with optimal reconstruction phase. In Advances in Cryptology - CRYPTO 2001,
21st Annual International Cryptology Conference, Santa Barbara, California, USA, August
19-23, 2001, Proceedings, pages 503–523, 2001.

[CDN15] Ronald Cramer, Ivan Damgård, and Jesper Buus Nielsen. Secure Multiparty Computa-
tion and Secret Sharing. Cambridge University Press, 2015.

[CFIK03] Ronald Cramer, Serge Fehr, Yuval Ishai, and Eyal Kushilevitz. Efficient multi-party
computation over rings. In International Conference on the Theory and Applications of
Cryptographic Techniques, pages 596–613. Springer, 2003.

[CFOR12] Alfonso Cevallos, Serge Fehr, Rafail Ostrovsky, and Yuval Rabani. Unconditionally-
secure robust secret sharing with compact shares. In Advances in Cryptology - EU-
ROCRYPT 2012 - 31st Annual International Conference on the Theory and Applications of
Cryptographic Techniques, Cambridge, UK, April 15-19, 2012. Proceedings, pages 195–208,
2012.

[CGMA85] Benny Chor, Shafi Goldwasser, Silvio Micali, and Baruch Awerbuch. Verifiable secret
sharing and achieving simultaneity in the presence of faults (extended abstract). In
26th Annual Symposium on Foundations of Computer Science, Portland, Oregon, USA, 21-
23 October 1985, pages 383–395, 1985.

[CK89] B. Chor and E. Kushilevitz. A zero-one law for boolean privacy. In Proceedings of the
Twenty-First Annual ACM Symposium on Theory of Computing, STOC ’89, page 62–72,
New York, NY, USA, 1989. Association for Computing Machinery.

[CKPR01] Ran Canetti, Joe Kilian, Erez Petrank, and Alon Rosen. Black-box concurrent zero-
knowledge requires omega˜(log n) rounds. In Proceedings on 33rd Annual ACM Sym-
posium on Theory of Computing, July 6-8, 2001, Heraklion, Crete, Greece, pages 570–579,
2001.

[Cle86] Richard Cleve. Limits on the security of coin flips when half the processors are faulty
(extended abstract). In Proceedings of the 18th Annual ACM Symposium on Theory of
Computing, May 28-30, 1986, Berkeley, California, USA, pages 364–369, 1986.

[DR85] Danny Dolev and Rüdiger Reischuk. Bounds on information exchange for byzantine
agreement. J. ACM, 32(1):191–204, 1985.

[FGG+06] Matthias Fitzi, Juan A. Garay, Shyamnath Gollakota, C. Pandu Rangan, and K. Sri-
nathan. Round-optimal and efficient verifiable secret sharing. In Theory of Cryptogra-
phy, Third Theory of Cryptography Conference, TCC 2006, New York, NY, USA, March 4-7,
2006, Proceedings, pages 329–342, 2006.

72

[FM85] Paul Feldman and Silvio Micali. Byzantine agreement in constant expected time (and
trusting no one). In 26th Annual Symposium on Foundations of Computer Science, Port-
land, Oregon, USA, 21-23 October 1985, pages 267–276, 1985.

[FY20] Serge Fehr and Chen Yuan. Robust secret sharing with almost optimal share size and
security against rushing adversaries. In Theory of Cryptography - 18th International
Conference, TCC 2020, Durham, NC, USA, November 16-19, 2020, Proceedings, Part III,
pages 470–498, 2020.

[GIKR01] Rosario Gennaro, Yuval Ishai, Eyal Kushilevitz, and Tal Rabin. The round complex-
ity of verifiable secret sharing and secure multicast. In Proceedings of the thirty-third
annual ACM symposium on Theory of computing, pages 580–589, 2001.

[GIKR02] Rosario Gennaro, Yuval Ishai, Eyal Kushilevitz, and Tal Rabin. On 2-round secure
multiparty computation. In Advances in Cryptology - CRYPTO 2002, 22nd Annual In-
ternational Cryptology Conference, Santa Barbara, California, USA, August 18-22, 2002,
Proceedings, pages 178–193, 2002.

[GIS18] Sanjam Garg, Yuval Ishai, and Akshayaram Srinivasan. Two-round MPC:
information-theoretic and black-box. In Theory of Cryptography - 16th International
Conference, TCC 2018, Panaji, India, November 11-14, 2018, Proceedings, Part I, pages
123–151, 2018.

[GK96] Oded Goldreich and Hugo Krawczyk. On the composition of zero-knowledge proof
systems. SIAM J. Comput., 25(1):169–192, 1996.

[GLS15] S. Dov Gordon, Feng-Hao Liu, and Elaine Shi. Constant-round MPC with fairness
and guarantee of output delivery. In Advances in Cryptology - CRYPTO 2015 - 35th
Annual Cryptology Conference, Santa Barbara, CA, USA, August 16-20, 2015, Proceedings,
Part II, pages 63–82, 2015.

[GMW87] Oded Goldreich, Silvio Micali, and Avi Wigderson. How to play any mental game
or A completeness theorem for protocols with honest majority. In Proceedings of the
19th Annual ACM Symposium on Theory of Computing, 1987, New York, New York, USA,
pages 218–229, 1987.

[GS17] Sanjam Garg and Akshayaram Srinivasan. Garbled protocols and two-round mpc
from bilinear maps. In 2017 IEEE 58th Annual Symposium on Foundations of Computer
Science (FOCS), pages 588–599. IEEE, 2017.

[GS18] Sanjam Garg and Akshayaram Srinivasan. Two-round multiparty secure computa-
tion from minimal assumptions. In Advances in Cryptology - EUROCRYPT 2018 - 37th
Annual International Conference on the Theory and Applications of Cryptographic Tech-
niques, Tel Aviv, Israel, April 29 - May 3, 2018 Proceedings, Part II, pages 468–499, 2018.

[HHPV21] Shai Halevi, Carmit Hazay, Antigoni Polychroniadou, and Muthuramakrishnan
Venkitasubramaniam. Round-optimal secure multi-party computation. Journal of
Cryptology, 34(3):1–63, 2021.

73

[IK00] Yuval Ishai and Eyal Kushilevitz. Randomizing polynomials: A new representation
with applications to round-efficient secure computation. In 41st Annual Symposium
on Foundations of Computer Science, FOCS 2000, 12-14 November 2000, Redondo Beach,
California, USA, pages 294–304, 2000.

[IK02] Yuval Ishai and Eyal Kushilevitz. Perfect constant-round secure computation via
perfect randomizing polynomials. In Automata, Languages and Programming, 29th In-
ternational Colloquium, ICALP 2002, Malaga, Spain, July 8-13, 2002, Proceedings, pages
244–256, 2002.

[KKK09] Jonathan Katz, Chiu-Yuen Koo, and Ranjit Kumaresan. Improving the round com-
plexity of VSS in point-to-point networks. Inf. Comput., 207(8):889–899, 2009.

[KPR10] Ranjit Kumaresan, Arpita Patra, and C. Pandu Rangan. The round complexity of
verifiable secret sharing: The statistical case. In Advances in Cryptology - ASIACRYPT
2010 - 16th International Conference on the Theory and Application of Cryptology and In-
formation Security, Singapore, December 5-9, 2010. Proceedings, pages 431–447, 2010.

[LF82] Leslie Lamport and Michael Fischer. Byzantine generals and transaction commit pro-
tocols. Technical report, Technical Report 62, SRI International, 1982.

[MNS16] Tal Moran, Moni Naor, and Gil Segev. An optimally fair coin toss. J. Cryptology,
29(3):491–513, 2016.

[PCPR09] Arpita Patra, Ashish Choudhary, and Chandrasekharan Pandu Rangan. Simple and
efficient asynchronous byzantine agreement with optimal resilience. In Proceedings of
the 28th ACM symposium on Principles of distributed computing, pages 92–101, 2009.

[PCR08] Arpita Patra, Ashish Choudhary, and C Pandu Rangan. Round efficient uncondition-
ally secure multiparty computation protocol. In Progress in Cryptology-INDOCRYPT
2008: 9th International Conference on Cryptology in India, Kharagpur, India, December 14-
17, 2008. Proceedings, volume 5365, page 185. Springer, 2008.

[PCRR09] Arpita Patra, Ashish Choudhary, Tal Rabin, and C. Pandu Rangan. The round com-
plexity of verifiable secret sharing revisited. In Advances in Cryptology - CRYPTO 2009,
29th Annual International Cryptology Conference, Santa Barbara, CA, USA, August 16-20,
2009. Proceedings, pages 487–504, 2009.

[RB89] Tal Rabin and Michael Ben-Or. Verifiable secret sharing and multiparty protocols
with honest majority (extended abstract). In Proceedings of the 21st Annual ACM Sym-
posium on Theory of Computing, May 14-17, 1989, Seattle, Washigton, USA, pages 73–85,
1989.

[RCCG+20] Arka Rai Choudhuri, Michele Ciampi, Vipul Goyal, Abhishek Jain, and Rafail Ostro-
vsky. Round optimal secure multiparty computation from minimal assumptions. In
Theory of Cryptography Conference, pages 291–319. Springer, 2020.

[Yao86] Andrew Chi-Chih Yao. How to generate and exchange secrets (extended abstract).
In 27th Annual Symposium on Foundations of Computer Science, Toronto, Canada, 27-29
October 1986, pages 162–167, 1986.

74

A Appendix: SIF does not imply VSS

In this section we prove that SIF does not capture VSS when n ≤ 3t−1. Closely related statements
have appeared in [BGW88, CCD88, RB89], and the proof is mainly given here for the sake of
completeness. In Section A.1 we provide a formal definition of VSS as a standalone primitive.
Then, in Section A.2 we prove the impossibility result.

A.1 Definition of VSS

The following definition is taken verbatim from [AKP20a].

Definition A.1 (ϵ-secure VSS). Let Y be a finite domain, |Y | ≥ 2, and let P be a set of parties that
includes a distinguished dealer D ∈ P . A VSS protocol consists of two phases, a sharing phase and a
reconstruction phase, with the following syntax.

• Sharing: At the beginning, D holds a secret s ∈ Y and each party including the dealer holds an
independent random input ri. The sharing phase may span over several rounds. At each round,
each party can privately send messages to the other parties and it can also broadcast a message. Each
message sent or broadcasted by Pi is determined by the view of Pi, consists of its input (if any), its
random input and messages received from other parties in previous rounds.

• Reconstruction: At the beginning of the reconstruction, the parties are holding their view from the
sharing phase. The reconstruction phase may span over several rounds, and at each round the parties
send messages based on their view. At the end of the reconstruction, each party outputs a value.

Let ϵ > 0. A two-phase, n-party protocol as above is called an ϵ-secure (n, t)-VSS, if for any adversary
A = (Ash,Arec) corrupting at most t parties, the following holds:

• Correctness: If D is honest then all honest parties output s at the end of the reconstruction phase,
with probability at least 1− ϵ.

• Privacy: If D is honest then the adversary’s view during the sharing phase reveals almost no infor-
mation on s. Formally, let Ds is the view A in the sharing phase on secret s. Then, for any s ̸= s′,
the random variables Ds and Ds′ are ϵ-close in statistical-distance.

• Commitment: If D is corrupt then, except with probability 1−ϵ, at the end of the sharing phase there
is a value s∗ ∈ Y such that at the end of the reconstruction phase the output is s∗. More formally,
we assume that an adversary A that corrupts D is a two-phase adversary A = (Ash,Arec) where
Ash takes randomness rA, plays the sharing phase and outputs a state Z. At the reconstruction phase
Arec gets Z and, in addition, a bit σ and tries to flip the outcome depending on σ. Specifically, let H
denote the set of honest parties. For r = (ri)i∈H and σ ∈ {0, 1} denote by yr,rA(i, σ) the final output
of party Pi in an execution with Ash(rA),Arec(Z, σ) where the random tape of an honest party Pj is
set to rj . Then the commitment property requires that

Pr
r,rA

[∃s∗ ∈ Y : ∀i ∈ H, σ ∈ {0, 1}, s∗ = y(i, σ)] > 1− ϵ.

75

A.2 Impossibility Result

Consider an n-party VSS protocol Π with parties D = P1, . . . , Pn with the following structure.

• The sharing phase of Π consists of the computation of a single input functionality F , that
takes from D the secret s and randomness r, and returns a share si to Pi.

• In the reconstruction phase, we assume that the parties execute a (possibly multi-round)
protocol rec where every Pi inputs si.

We prove that Π has error at least 1/10.
Assume towards contradiction that Π is a VSS protocol with error at most ϵ ≤ 1/10. We

construct two adversaries, A and B, so that one of them violates the commitment property of Π
with probability 1/10, which is a contradiction.

Adversary A. Let A be the adversary that corrupts D = P1, . . . , Pt. In the sharing phase, A
samples a random string r, and inputs (0, r) to F . Let F(0, r) = (s1, . . . , sn). In the reconstruction
phase, we present two strategies for A.

• Strategy A0: The corrupt parties play the reconstruction phase honestly with inputs
s1, . . . , st.

• Strategy A1: The adversary samples randomness r′ conditioned on F(1, r′)i = si for ev-
ery i ∈ {2t, . . . , 3t − 1}, where F(1, r′)i is the i-th output of F(1, r′). Let F(1, r′) =
(s′1, . . . , s

′
2t−1, s2t, . . . , s3t−1). D aborts and does not send any more messages. The corrupt

parties P2, . . . , Pt play honestly as if the shares they received are s′2, . . . , s
′
t.

By the correctness property, when A picks strategy A0 the output is 0 with probability 1 − ϵ.
Let

p := Pr[rec3t−1(⊥, s′2, . . . , s′t, st+1, . . . , s3t−1) = 1]

where rec3t−1(⊥, s′2, . . . , s′t, st+1, . . . , s3t−1) denotes the output of P3t−1 in the reconstruction phase
when D aborts, and P2, . . . , Pn play honestly with inputs s′2, . . . , s

′
t, st+1, . . . , s3t−1, respectively,

sampled as in strategy A1.

Adversary B. Let B be the adversary that corrupts D = P1, Pt+1 . . . , P2t−1. In the sharing phase,
B samples a random string r̄, and inputs (1, r̄) to F . Let F(1, r̄) = (s̄1, . . . , s̄n). In the reconstruc-
tion phase, we present two strategies for B.

• Strategy B0: The adversary samples randomness r̃ conditioned on F(0, r̃)i = s̄i for every
i ∈ {2t, . . . , 3t − 1}. Let F(0, r̃) = (s̃1, . . . , s̃2t−1, s̄2t, . . . , s̄3t−1). D aborts and does not send
any more messages. The corrupt parties Pt+1, . . . , P2t−1 play honestly as if the shares they
received are s̃t+1, . . . , s̃2t−1.

• Strategy B1: The corrupt parties play the reconstruction phase honestly with inputs
s̄1, s̄t+1 . . . , s̄2t−1.

76

By the correctness property, when B picks strategy B1 the output is 1 with probability 1− ϵ.
Let

q := Pr[rec3t−1(⊥, s̄2, . . . , s̄t, s̃t+1, . . . , s̃2t−1, s̄2t, . . . , s̄3t−1) = 1]

where rec3t−1(⊥, s̄2, . . . , s̄t, s̃t+1, . . . , s̃2t−1, s̄2t, . . . , s̄3t−1) denotes the output of P3t−1 in
the reconstruction phase when D aborts, and P2, . . . , Pn play honestly with inputs
s̄2, . . . , s̄t, s̃t+1, . . . , s̃2t−1, s̄2t, . . . , s̄3t−1, respectively, sampled as in strategy B0.

Analysis. First, we prove that p ≥ q − ϵ. Indeed, by the privacy property, the random variables
s2t, . . . , s3t−1 are ϵ-close in statistical distance to the random variables s̄2t, . . . , s̄3t−1. Now, the
random variables (s′2, . . . , s

′
t, st+1, . . . , s3t−1) are ϵ-close to (s̄2, . . . , s̄t, s̃t+1, . . . , s̃2t−1, s̄2t, . . . , s̄3t−1)

because they can be sampled by the same randomized procedure given either s2t, . . . , s3t−1
or s̄2t, . . . , s̄3t−1. Concretely, given s2t, . . . , s3t−1 the randomized procedure samples r and
r′ conditioned on F(0, r)i = F(1, r′)i = si for all i ∈ {2t, . . . , 3t − 1}, computes si :=
F(1, r′)i for all i ∈ {2, . . . , t} and si := F(0, r)i for all i ∈ {t + 1, . . . , 2t − 1}, and returns
(s2, . . . , s3t−1). It can be verified that the procedure perfectly samples (s′2, . . . , s

′
t, st+1, . . . , s3t−1)

(resp., (s̄2, . . . , s̄t, s̃t+1, . . . , s̃2t−1, s̄2t, . . . , s̄3t−1)) given (s2t, . . . , s3t−1) (resp., (s̄2t, . . . , s̄3t−1)).
If q ≤ 1/2 then the probability that the output of P3t−1 is 0 if B follows strategy B0 is at least

1 − q ≥ 1/2. This means that with probability at least 1 − ϵ − 1/2 = 1/2 − ϵ, if B picks strategy
0 the output is 0, and if B picks strategy 1 the output is 1. Since 1/2 − ϵ > ϵ, the commitment
property is violated, in contradiction. Therefore, q > 1/2. This means that p > 1/2 − ϵ. But
now the same argument with respect to A shows that the commitment property is violated with
probability 1/2− 2ϵ > ϵ, in contradiction. This completes the proof.

B Appendix: Standard Useful Facts

B.1 Polynomials

Let n > 0 be a natural number, and let t < n. In the following, unless stated otherwise, F is a field
of size greater than n. We start with basic facts about polynomials (see., e.g., [AL17]).

Fact B.1. Let s ∈ F and let p(x) be a random degree-d polynomial, conditioned on p(0) = s. Let
α1, . . . , αd ∈ F be distinct nonzero field elements. Then the random variables

p(α1), . . . , p(αd)

are uniformly distributed over Fd.

Fact B.2. Let K ⊆ {1, . . . , n} be a set of size at least t + 1, and let {fk(x)}k∈K be a set of degree-t
polynomials. If for every i, j ∈ K it holds that fi(j) = fj(i) then there exists a unique symmetric bivariate
polynomials F (x, y) of degree at most t in each variable such that fk(x) = F (x, k) = F (k, x) for every
k ∈ K.

We denote by Ps,t the uniform distribution over symmetric bivariate polynomials F (x, y) of
degree at most t in each variable, conditioned on F (0, 0) = s.

Fact B.3. For any s, s′ ∈ F and C ⊆ {1, . . . , n} of size at most t, it holds that

(i, F (x, i))i∈C ≡ (i, F ′(x, i))i∈C,

where F is sampled from Ps,t and F ′ is sampled from Ps′,t.

77

B.2 Secret Sharing

The following fact is adopted from [CDN15, Theorem 6.6].

Fact B.4. Let A ∈ Fu×v be a u × v matrix so that the unit vector (1, 0, . . . , 0) is not spanned by the rows
of A. Let s, s′ ∈ F be two elements in F, and let f , f ′ ∈ Fv be two random vectors conditioned on f [1] = s
and f ′[1] = s′. Then the distribution of A · f is identical to the distribution of A · f ′.

C Linear Private-Opening Signature Scheme

In this section, we prove that protocol poSig UC-emulates FpoSig with statistical security. Let A
be the dummy adversary. We define the simulator as follows. The simulator uses A in a black-
box manner, and forwards all messages between Z and A. The simulator first receives the set of
corrupt parties C. We split into cases.

C.1 Honest D and I

C.1.1 The Simulator

Simulation of poSig.dis. The simulator sets s = (0, . . . , 0), takes the role of the honest parties,
where D has input s, and executes poSig.dis. The simulator computes the outgoing messages of
D in poSig.dis, and gives them to the respective parties, where messages to honest parties are
transferred to the simulated honest parties, and messages to corrupt parties are transferred to the
adversary. Denote the polynomials that D picked by f1(x), . . . , fm(x), r1(x), . . . , rm(x), and let
(αi, f1,i, . . . , fm,i, r1,i, . . . , rm,i) be the message from D to Pi.

Simulation of poSig.ver. In poSig.ver the simulator continues by computing the broadcast mes-
sage (c, dk(x))k∈[m] of I, and giving it to the adversary.

Simulation of poSig.open. In poSig.open, the simulator first receives the outputs of the corrupt
parties, denoted (βi,j , gi,j)i∈C,j∈[ℓ], where gi,j ∈ F. The simulator does as follows.

• (D to corrupt parties) The simulator broadcasts “accept” on behalf of D.

• (I to corrupt parties) The simulator finds any pre-image s̄ = (s̄1, . . . , s̄m) such that βi,j · s̄ = gi,j
for all i ∈ C and j ∈ [ℓ]. (This can be done in polynomial time by Guassian elimination.)

The simulator samples a random degree-d polynomial f̄k(x) conditioned on (1) f̄k(αi) = fk,i
for all i ∈ C and k ∈ [m], and (2) f̄k(0) = s̄k for every k ∈ [m].

The simulator computes Outi,j(x) := βi,j [1] · f̄1(x) + . . .+ βi,j [m] · f̄m(x) for every i ∈ C and
j ∈ [ℓ], and sends (βi,j ,Outi,j(x))j∈[ℓ] to every corrupt Pi on behalf of I.

This concludes the simulation.

78

C.1.2 Analysis

The environment Z sees during the execution (1) the inputs (s1, . . . , sm) of D, that are
picked by the environment, (2) the outputs (s1, . . . , sm) of I in poSig.dis, (3) the values
(αi, f1,i, . . . , fm,i, r1,i, . . . , rm,i)i∈C received from D, (4) the broadcast of D in poSig.open, (5) the
broadcast (c, dk(x))k∈[m] of I, (6) the inputs (βi,j)i∈[n],j∈[ℓ] to I, (7) the values (βi,j ,Outi,j(x))i∈C,j∈[ℓ]
from I, and (9) the outputs of the honest parties.

The inputs (s1, . . . , sm) are chosen by Z in the same way in both worlds, so (1) has the same
distribution in both worlds. Fix (1). In the ideal world the output of I is always (s1, . . . , sm). It is
not hard to see that this is also the case in the real world. This means that (2) is the same in both
worlds.

Let S ⊆ F \ {0} be the set of all points αi that appear in (3), and observe that |S| ≤ n = d.
All those points are chosen uniformly at random both in the real world and the ideal world, so
they have the same distribution. Fix those points. Conditioned on those points, (3) consists of
evaluations of each polynomial in f1(x), . . . , fm(x), r1(x), . . . , rm(x) on the points of S. Observe
that for every k ∈ [m] it holds that (a) in the real world fk(x) is a random degree-d polynomial
conditioned on fk(0) = sk, and in the ideal world fk(x) is a random degree-d polynomial condi-
tioned on fk(0) = 0, and (b) rk(x) is a random degree-d polynomial both in the real world and in
the ideal world. Since |S| ≤ d, by Fact B.1 those evaluations have the same distribution in both
worlds. We conclude that (3) has the same distribution in both worlds, and we fix those values.

Since D and I are honest, the broadcast of D in the real-world is always “accept” just like in
the ideal-world. Therefore, it remains to show that conditioned on (1)–(4), the partial view (5)–
(8) has the same distribution in both worlds. In both worlds the random variable c is uniformly
distributed in F \ {0}, and we fix it. In both worlds rk(x) is a random degree-d polynomial con-
ditioned on rk(αi) = rk,i for every i ∈ C. (Note that those are exactly the points in S.) Therefore,
in both worlds, the random variables d1(x), . . . , dm(x) are uniformly distributed degree-d polyno-
mial conditioned on dk(αi) = fk,i + crk,i for every k ∈ [m] and every i so that i ∈ C. Therefore (5)
has the same distribution in both worlds, and we fix it.

Conditioned on those values, observe that (βi,j)i∈[n],j∈[ℓ] are picked by the environment in
the same way in both worlds. Fix those values as well. Observe that even conditioned on (1)–
(6), the real-world polynomials f1(x), . . . , fm(x) are uniformly distributed degree-d polynomials
conditioned on fk(0) = sk and fk(αi) = fk,i for every k ∈ [m] and every i so that i ∈ C. (Observe
that those are exactly the points in S.) Similarly, the ideal-world polynomials f̄1(x), . . . , f̄m(x)
are uniformly distributed degree-d polynomials conditioned on f̄k(0) = s̄k and f̄k(αi) = fk,i for
every i so that i ∈ C. In addition, the real-world polynomials (Outi,j(x))i∈C,j∈[ℓ] and the ideal-
world polynomials (Outi,j(x))i∈C,j∈[ℓ] agree on all the points in S ∪ {0}. Let T ⊆ F \ S be a set
of d− |S| non-zero points. Then, by Fact B.1 the real-world values (fk(α))k∈[m],α∈T and the ideal-
world values (f̄k(α))k∈[m],α∈T are uniformly distributed. This means that the real-world values
(Outi,j(α) = βi,j [1]f1(α) + . . .+ βi,j [m]fm(α))i∈C,j∈[ℓ],α∈T and the ideal-world values (Outi,j(α) =
βi,j [1]f̄1(α) + . . . + βi,j [m]f̄m(α))i∈C,j∈[ℓ],α∈T have the same distribution. Finally, for every fixing
of those values, the real-world polynomial Outi,j(x) and the ideal-world polynomial Outi,j(x)
are both of degree-d and agree on d + 1 points (the points in S ∪ T ∪ {0}), which means that
Outi,j(x) = Outi,j(x). Fix (7) as well.

It remains to show that the outputs of the honest parties are the same in both worlds. In the
ideal world every honest Pi outputs b = 0 and (βi,j ,βi,j · s)j∈[ℓ] with probability 1. In the real

79

world, since D and I are honest, it is not hard to see that b = 0 with probability 1, that every
honest Pi accepts the opening, and that Outi,j(0) = βi,j · s for all i ∈ [n] and j ∈ [ℓ]. This concludes
the proof for honest D and I.

C.2 Honest D, Corrupt I

C.2.1 The Simulator

Simulation of poSig.dis. At the beginning of poSig.dis, the simulator receives (s1, . . . , sm) from
the ideal functionality. The simulator, that holds all the inputs of D, simply initiates an execution
of poSig.dis by taking the roles of the honest parties, where D inputs (s1, . . . , sm).

Simulation of poSig.ver. The simulator continues with the execution of poSig.ver, by receiving
from the adversary the broadcast of the corrupt I, and transfers it to all the simulated honest
parties. The simulator computes the output revealI of D, and sends it to the ideal functionality as
the input of the corrupt I.

Simulation of poSig.open. The simulator continues with the execution of poSig.open, and com-
putes the outputs of the honest parties.

If revealI = 1 then the inputs of I to the ideal functionality do not matter, and the simulator
terminates. Otherwise, for every honest Pi the simulator does as follows. If the output of Pi is ⊥
then the simulator inputs aborti = 1 to the ideal functionality. Otherwise, let (βi,j , wi,j)j∈[ℓ] be the
output of Pi, and the simulator inputs aborti = 0 and (βi,j)j∈[ℓ] to the ideal functionality.

C.2.2 Analysis

Observe that there is a 1-1 correspondence between real-world executions of the protocol and
executions of the simulator, and that those executions agree on the output of D in poSig.ver, and
on the output bit b in poSig.open. It remains to show that for (1 − 2−κ)-fraction of the executions,
the real-world outputs of the honest parties in poSig.open is the same as the ideal-world output.

We say that an execution is “bad” if there exists some honest Pi so that (1) Pi received
(βi,j ,Outi,j(x)) from I for some j ∈ [ℓ], so that Outi,j(x) ̸= βi,j [1] · f1(x) + . . . + βi,j [m] · fm(x),
and (2) Outi,j(αi) = βi,j [1] · f1,i + . . . + βi,j [m] · fm,i. Fix any honest Pi, any j ∈ [ℓ]. Since
D is honest, we have f1,i = f1(αi), . . . , fm,i = fm(αi). Since Outi,j(x) and f1(x), . . . , fm(x)
are all degree-d polynomials, and since αi is uniformly distributed even conditioned on the
view of the adversary, the probability that Outi,j(x) ̸= βi,j [1] · f1(x) + . . . + βi,j [m] · fm(x) and
Outi,j(αi) = βi,j [1] ·f1(αi)+ . . .+βi,j [m] ·fm(αi) is at most d/(|F|−1) ≤ 2−κ/(nℓ). By taking union
bound over all Pi and j ∈ [ℓ], we conclude that the probability that the execution is bad is at most
2−κ.

Consider any good execution. If revealI = 1 then D broadcasts s in poSig.open then the output
is the same in both worlds. Otherwise revealI = 0 and D broadcasts “accepts”. This means that
for every k ∈ [m] it holds that dk(x) = fk(x) + crk(x). Consider now any honest Pi. If there
exists j ∈ [ℓ] so that Outi,j(x) ̸= βi,j [1] · f1(x) + . . . + βi,j [m] · fm(x) then Pi outputs ⊥ in both
worlds. Otherwise, Outi,j(x) = βi,j [1] · f1(x) + . . .+ βi,j [m] · fm(x) for every j ∈ [ℓ], so Pi outputs
(βi,j ,Outi,j(0))j∈[ℓ] = (βi,j ,βi,j [1] · f1(0)+ . . .+βi,j [m] · fm(0))j∈[ℓ] = (βi,j ,βi,j · s)j∈[ℓ], as required.
This concludes the analysis of honest D and corrupt I.

80

C.3 Corrupt D, Honest I

C.3.1 The Simulator

Simulation of poSig.dis. The simulator initiate an execution of poSig.dis by taking the roles of
the honest parties. Let (f1(x), . . . , fm(x)) be the polynomials that the corrupt D sent to I. The
simulator sets si := fi(0) for all i ∈ [m], and inputs (s1, . . . , sm).

Simulation of poSig.ver. The simulator continues with the execution of poSig.ver.

Simulation of poSig.open. The simulator receives (βi,j)i∈C,j∈[ℓ] from the ideal functionality. In
addition, the simulator computes the private opening of I to every corrupt Pi as follows: I sends
(βi,j ,Outi,j(x))j∈[ℓ] to Pi, where Outi,j(x) = βi,j [1] · f1(x) + . . .+ βi,j [m] · fm(x).

If D broadcasts s′ in poSig.open, then the simulator inputs revealD = 1 and s′ to the ideal
functionality. Otherwise, the simulator inputs revealD = 0 and s to the ideal functionality. This
concludes the simulation.

C.3.2 Analysis

Observe that there is a 1-1 correspondence between real-world executions of the protocol and
executions of the simulator, and that those executions agree on the output of D in poSig.ver, and
on the output bit b in poSig.open. It remains to show that for (1 − 2−κ)-fraction of the executions,
the real-world outputs of the honest parties in poSig.open is the same as the ideal-world output.

We say that an execution is “bad” if there exists some honest Pi, and some k ∈ [m] so that
(1) fk(αi) ̸= fk,i, and (2) dk(αi) = fk,i + crk,i. Since dk(αi) = fk(αi) + crk(αi), (2) implies that
fk(αi) + crk(αi) = fk,i + crk,i. Therefore (2) holds only if

fk(αi)− fk,i = c(rk,i − rk(αi)).

Since c is uniformly distributed over F \ {0} we conclude that if fk(αi) ̸= fk,i then (2) holds with
probability at most 1/(|F| − 1) ≤ 2−κ/(nm). By taking a union bound over all Pi and k ∈ [m], we
conclude that an execution is “bad” with probability at most 2−κ.

Consider any good execution of the protocol. If b = 1 then the output in both worlds is s′, as
required. Otherwise, b = 0. Fix any honest Pi, and observe that, since the execution is good, Pi

outputs (βi,j ,βi,j [1] · f1(0) + . . . + βi,j [1] · fm(0)) = (βi,j ,β · s), just like in the ideal world. This
concludes the analysis of corrupt D and honest I.

C.4 Corrupt D and I

C.4.1 The Simulator

Simulation of poSig.dis. The simulator initiate an execution of poSig.dis by taking the roles of the
honest parties. The simulator sets si := 0 for all i ∈ [m], and inputs (s1, . . . , sm).

Simulation of poSig.ver. The simulator continues with the execution of poSig.ver. The simulator
inputs revealI = 0 to the functionality.

81

Simulation of poSig.open. The simulator continues with the execution of poSig.open. At the end
of the execution the simulator computes the outputs of the honest parties.

If D broadcasts s′ in poSig.open, then the simulator inputs revealD = 1 and s′ to the ideal func-
tionality. Otherwise, the simulator inputs revealD = 0 and s to the ideal functionality. In addition,
if the output of Pi is ⊥ then the simulator inputs aborti = 1 to the functionality (in this case the
value of (βi,j , zi,j)j∈[ℓ] doesn’t matter). Otherwise, denote the output of Pi by (βi,j , zi,j)j∈[ℓ]. Then
the simulator inputs (βi,j , zi,j)j∈[ℓ] to the functionality. This concludes the simulation.

C.4.2 Analysis

It is straightforward to verify that the simulator perfectly simulates a real execution of the protocol.
This concludes the analysis of protocol poSig.

D Linear Interactive Signature Scheme

In this section, we prove that protocol iSig UC-emulates FiSig with statistical security in the FpoSig-
hybrid model. From the composition properties of UC-security, this implies that protocol iSig UC-
emulates FiSig. Let A be the dummy adversary. We define the simulator as follows. The simulator
uses A in a black-box manner, and forwards all messages between Z and A. The simulator first
receives the set of corrupt parties C. We split into cases.

D.1 Honest D and I

D.1.1 The Simulator

Simulation of iSig.dis. For every k ∈ [m], the simulator picks a random vector fk ∈ Fv whose
first entry is 0, and a random vector rk ∈ Fv.

The first-round communication between D and a corrupt Pi consists only of the output of
the distribution phase of FpoSig where D is the dealer and Pi the intermediary. Those outputs
correspond to the values (AS , (fSk , r

S
k)k∈[m]) for every set S that contains Pi. We simulate those

values as follows. For every set S that contains a corrupt Pi,

• The simulator picks a random u× v matrix AS ∈ Fu×v.

• The simulator computes fSk := AS · fk and rSk := AS · rk.

• The simulator simulates the output of the distribution phase of FpoSig corresponding to the
set S by giving (AS , (fSk , r

S
k)k∈[m]) to every corrupt Pi in S.

We also let the simulator sample a random u× v matrix AS ∈ Fu×v, and compute fSk := AS · fk and
rSk := AS · rk for every set S that contains only honest parties (if such exists).

The first-round communication between an honest Pi and a corrupt Pj consists only of the
output of the distribution phase of FpoSig, where Pi is the dealer and Pj is the intermediary. Those
outputs correspond to the vectors (rSi,j) for every set S that contains both Pi and Pj . We simulate
those values as follows. For every set S that contains Pi and Pj ,

• The simulator picks a random pad rSi,j ∈ Fuv+2mu.

82

• The simulator simulates the output of FpoSig corresponding to the set S by giving rSi,j to Pj .

We also let the simulator sample a random pad rSi,j ∈ Fuv+2mu for every set S and every two
honest parties Pi and Pj in S.

At the end of the round the simulator receives the inputs rSi,j of the corrupt parties to FpoSig,
for every set S, corrupt Pi in S and any Pj in S.

Simulation of iSig.ver. The simulator picks a random non-zero field element c ∈ F \ {0} and
broadcasts (c, fk+crk). In addition, for every instance of FpoSig where the dealer is corrupt and the
intermediary is honest, the simulator returns revealI = 0 as the output of FpoSig in the verification
phase.

In addition, for every set S every honest Pi in S and every Pj in S, the simulator computes
aSi,j := (AS , (fSk , r

S
k)k∈[m])+ rSi,j and bS

i,j := (AS , (fSk , r
S
k)k∈[m])+ rSj,i, and broadcasts aSi,j and bS

i,j on
behalf of Pi.

Finally, the simulator receives the following from the adversary.

• The broadcasts aSi,j and bS
i,j for every set S, every corrupt Pi in S, and every Pj in S.

• The input bit revealI for every instances of FpoSig where the intermediary is corrupt.

Simulation of iSig.open1. The simulator receives the bit b = 0, as well as the outputs of the
corrupt parties, denoted (βpub

j , wj)j∈[ℓ] and (βpri
i,j , wi,j)i∈C,j∈[ℓ]. The simulator continues by broad-

casting “accept” on behalf of D. In addition, for every instance of FpoSig where both the dealer
and the intermediary are honest, the simulator returns the bit b = 0 as the output of FpoSig in the
opening phase. In addition, for every instance of FpoSig where the dealer is honest and I is cor-
rupt, the simulator returns the bit b = revealI as the output of poSig in the opening phase, where
revealI was received from the adversary in the simulation of iSig.ver.

The simulator finds any vector s̄ = (s̄1, . . . , s̄m) such that βpub
j · s̄ = wj and βpri

i,j · s̄ = wi,j

for every i ∈ C, j ∈ [ℓ]. The simulator picks random vectors f̄1, . . . , f̄m ∈ Fv conditioned on (1)
AS · f̄k = fSk for every S ∈ S and k ∈ [m], and (2) f̄k[1] = s̄k for every k ∈ [m]. The simulator
broadcasts (βpub

j ,
∑

k∈[m] β
pub
j [k] · f̄k)j∈[ℓ] on behalf of I. For every corrupt Pi, the simulator sends

(βpri
i,j ,
∑

k∈[m] β
pri
i,j [k] · f̄k)j∈[ℓ] to the adversary as the private message from I to Pi.

Consider any set S and any honest Pi in S. The simulator does as follows for every corrupt Pj .

• The simulator samples a row vector tSi,j ∈ Fu.

• The simulator returns (tSi,j · AS , tSi,j · fSk) to the adversary as the output of Pj in the instance
of poSig where D is the dealer and Pi is the intermediary.

• For every honest Pi′ in S, the simulator returns (tSi,j · rSi′,i[AS], tSi,j · rSi′,i[fSk]) to the adversary
as the output of Pj in the instance of FpoSig where Pi′ is the dealer and Pi is the intermediary.

• For every corrupt Pi′ in S, the simulator leaks the vector of coefficients corresponding to tSi,j
to the adversary in the instance of FpoSig where Pi′ is the dealer and Pi is the intermediary.

At the end of the round the simulator receives from the adversary the broadcasts of the corrupt
parties, and their inputs to the FpoSig. For every instance of FpoSig in which the dealer is corrupt
or the intermediary is corrupt, the simulator holds all the inputs to FpoSig, and can compute the
outputs and return them to the adversary.

83

Simulation of iSig.open2. The simulator receives from the functionality a list of length µ, denoted
(ki, ski)i∈[µ], where µ ≤ m, ki ∈ [m] and ski ∈ F for every i ∈ [µ]. The simulator finds any vector
s̃ = (s̃1, . . . , s̃m) such that (1) βpub

j · s̃ = wj for every j ∈ [ℓ], (2) βpri
i,j · s̃ = wi,j for every i ∈ C, j ∈ [ℓ],

and (3) s̃ki = ski for every i ∈ [µ].
The simulator samples random vectors f̃1, . . . , f̃m ∈ Fb conditioned on (1) AS · f̃k = fSk for

every S ∈ S and every k ∈ [m], (2)
∑

k∈[m] β
pub
j [k] · f̃k =

∑
k∈[m] β

pub
j [k] · f̄k for every j ∈ [ℓ], (3)∑

k∈[m] β
pri
i,j [k] · f̃k =

∑
k∈[m] β

pri
i,j [k] · f̄k, for every i ∈ C and j ∈ [ℓ], and (4) f̃i[1] = s̃i for every i ∈ [m].

The simulator broadcasts (ki, f̃ki)i∈[m] on behalf of I. This concludes the simulation.

D.1.2 Analysis

The environment Z sees during the execution (1) the inputs (s1, . . . , sm) of D, that are picked by
the environment, (2) the outputs (s1, . . . , sm) of I in poSig.dis, (3) the values (AS , (fSk , r

S
k)k∈[m]) for

every set S ∈ S that contains a corrupt party, (4) the vector rSi,j , for every set S ∈ S, every honest
Pi in S, and every corrupt Pj in S, (5) the broadcast (c,dk)k∈[m] of I, (6) the broadcasts aSi,j and
bS
i,j for every set S, every honest Pi ∈ S and every Pj ∈ S, (7) the output of D in the verification

phase, (8) the inputs of I in iSig.open1 that are picked by the environment, (9) the broadcast of D
in iSig.open1, (10) the broadcast of I in iSig.open1, (11) the output and leakage from the opening
phase of all instances of FpoSig, (12) the outputs of the honest parties in iSig.open1, (13) the inputs
of I in iSig.open2, that are picked by the environment, (14) the broadcast of I in iSig.open2, and
(15) the outputs of the honest parties in iSig.open2.

Distribution phase. First, observe that the inputs (s1, . . . , sm) are picked byZ in the same way in
both worlds, and that in both worlds the output of I is (s1, . . . , sm). Let A be the

(
n−2
t

)
u×v matrix

consists of all matrices (AS)S∈S one on top of the other. In both worlds A is a random
(
n−2
t

)
u× v,

and the probability that its rows span the unit vector (1, 0, . . . , 0) is at most |F|(
n−2
t)u/|F|v ≤ 2−κ.

Here we require v > u
(
n−2
t

)
which is guaranteed from our assumption that v > u · 2n. Fix any

matrix A whose rows do not span the unit vector (1, 0, . . . , 0), and observe that this fixes the
matrices (AS)S∈S . Then, by Fact B.4 the vectors (fA,k := A · fk, rA,k := A · rk)k∈[m] have the
same distribution in both worlds. Fix those vectors and note that this means that the vectors
(fSk , r

S
k)S∈S,k∈[m] are fixed as well. Finally, it is not hard to see that for every set S , and every

honest Pi, the vectors (rSi,j)Pj∈S are sampled in the same way in both worlds, and we fix them as
well. This concludes the analysis of (1)–(4).

Verification phase. In both worlds the field element c that I picks is uniformly distributed over
F \ {0}. Fix c. In both worlds, the random variables r1, . . . , rm are uniformly distributed con-
ditioned on AS · rk = rSk for every S ∈ S. Therefore, in both worlds the vectors d1, . . . ,dm are
uniformly distributed conditioned on AS ·dk = fSk + crSk for every S ∈ S. Fix those vectors, which
fixes (5).

Fix any set S and any honest Pi in S. For every Pj in S, it holds that aSi,j := (AS , (fSk , r
S
k)k∈[m])+

rSi,j is fixed, since we’ve already fixed AS , fSk , r
S
k and rSi,j . Similarly, it holds that bS

i,j :=

(AS , (fSk , r
S
k)k∈[m]) + rSj,i is fixed, since AS , fSk , r

S
k were already fixed, and if Pj is honest then rSj,i

was fixed, and if Pj is corrupt then rSj,i was picked by the adversary in the distribution phase,

84

so it is also fixed. We conclude that (6) has the same distribution in both worlds, and we fix it.
Finally, since both D and I are honest, in both worlds the output of D in the verification phase is
revealI = 0, which fixes (7).

Opening phase 1. In both worlds the environment picks the inputs of I in the same way. Fix
those inputs, which fixes (8). In both worlds, since both D and I are honest, D always broadcasts
“accept”, which fixes (9).

Consider the subspace spanned by the rows of the matrix A that we defined above, and Let
α1, . . . ,αν ∈ Fv be a basis for the subspace. Observe that for every i ∈ [ν] and k ∈ [m] the
values αi · fk and αi · f̄k are fixed and equal, and we denote this value by γi,k. Recall that A
does not span the unit vector (1, 0, . . . , 0), and let αν+1, . . . ,αv ∈ Fv be vectors so that α1, . . . ,αv

is a basis of Fv, where we assume that αv = (1, 0, . . . , 0). Observe that the random variables
(αi·fk,αi·f̄k)ν+1≤i≤v−1,k∈[m] are uniformly distributed, where fk is the real-world random variable,
and f̄k is the ideal-world random variable defind by the simulator. Also, observe that every vector
α ∈ Fv is fully determined by the values α1 ·α, . . . ,αv ·α.

Consider the real-world broadcasts of I and the private messages from I to the corrupt par-
ties, (βpub

j ,Outj :=
∑

k∈[m] β
pub
j [k] · fk)j∈[ℓ] and (βpri

i,j ,Outi,j :=
∑

k∈[m] β
pri
i,j [k] · fk)i∈C,j∈[ℓ], and the

corresponding ideal-world messages (βpub
j ,Outj :=

∑
k∈[m] β

pub
j [k] · f̄k)j∈[ℓ] and (βpri

i,j ,Outi,j :=∑
k∈[m] β

pri
i,j [k] · f̄k)i∈C,j∈[ℓ]. Consider the random variables

(αk · Outj ,αk · Outi,j)i∈C,j∈[ℓ],k∈[v] and (αk · Outj ,αk · Outi,j)i∈C,j∈[ℓ],k∈[v],

and note that they have the same distribution. Indeed, for every i ∈ C, j ∈ [ℓ], and k ∈ [ν] it holds
that

αk · Outj = αk ·
∑

k′∈[m]

βpub
j [k′] · fk′ =

∑
k′∈[m]

βpub
j [k′]γk,k′ = αk ·

∑
k′∈[m]

βpub
j [k′] · fk′ = αk · Outj

αk · Outi,j = αk ·
∑

k′∈[m]

βpri
i,j [k

′] · fk′ =
∑

k′∈[m]

βpri
i,j [k

′]γk,k′ = αk ·
∑

k′∈[m]

βpri
i,j [k

′] · fk′ = αk · Outi,j .

In addition, for every i ∈ C, j ∈ [ℓ] and ν + 1 ≤ k ≤ v − 1 it holds that

αk · Outj =
∑

k′∈[m]

βpub
j [k′] · (αk · fk′) and αk · Outj =

∑
k′∈[m]

βpub
j [k′] · (αk · fk′)

αk · Outi,j =
∑

k′∈[m]

βpri
i,j [k

′] · (αk · fk′) and αk · Outi,j =
∑

k′∈[m]

βpri
i,j [k

′] · (αk · fk′)

Since the random variables (αi · fk,αi · f̄k)ν+1≤i≤v−1,k∈[m] are uniformly distributed, we con-
clude that (αk · Outj ,αk · Outi,j)i∈C,j∈[ℓ],ν+1≤k≤v−1 have the same distribution as (αk · Outj ,αk ·
Outi,j)i∈C,j∈[ℓ],ν+1≤k≤v−1. In addition, by definition of (f̄k)k∈[m] it holds that

αv · Outj = Outj [1] =
∑
k∈[m]

βj [k] · f̄k[1] = βpub
j · s̄ = wj = Outj [1] = αv · Outj ,

αv · Outi,j = Outi,j [1] =
∑
k∈[m]

βi,j [k] · f̄k[1] = βpub
i,j · s̄ = wi,j = Outi,j [1] = αv · Outi,j ,

85

for every i ∈ C and j ∈ [ℓ]. Since every vector α ∈ Fv is fully determined by the
values α1 · α, . . . ,αv · α, we conclude that the real-world random variables (βpub

j ,Outj)j∈[ℓ]

and (βpri
i,j ,Outi,j)i∈C,j∈[ℓ], and the corresponding ideal-world messages (βpub

j ,Outj)j∈[ℓ] and
(βpri

i,j ,Outi,j)i∈C,j∈[ℓ] have the same distribution. We conclude that (10) has the same distribution in
both worlds, and we fix it.

We continue by analysing the outputs ofFpoSig. Consider any set S ∈ S that contains an honest
party, any honest Pi in S, and any corrupt Pj (not necessarily in S).

• First, observe that in both worlds the vector tSi,j ∈ Fu is uniformly distributed, and we fix
this vector.

• Consider the instance of FpoSig in which D is the dealer and Pi is the intermediary. Then in
both worlds corresponding output is fixed to be (tSi,j ·AS , tSi,j · fSk).

• For an honest Pi′ in S, consider the instance of FpoSig in which Pi′ is the dealer and Pi is the
intermediary. Then the value rSi′,i is fixed to be aSi′,i − (AS , (fSk , r

S
k)k∈[m]). Therefore, in both

worlds the corresponding output is fixed to be (tSi′,i · rSi′,i[AS], tSi′,i · rSi′,i[fSk])k∈[m].

• For a corrupt Pi′ in S, consider the instance of FpoSig in which Pi′ is the dealer and Pi is the
intermediary. Then the leakage is fixed and computed in the same way in both worlds, as
required.

At this point the corrupt parties send their inputs to the functionality FpoSig, and the outputs are
computed in the same way in both worlds. This concludes the analysis of (11).

Outputs of honest parties in opening phase 1. In the ideal world the output of an honest Pi is
(βpub

j ,βpub
j · s)j∈[ℓ] and (βpri

i,j ,β
pri
i,j · s)j∈[ℓ] with probability 1. We show that this is also the case in the

real world.
Consider any honest Pi and any S ∈ G (if G is empty then Pi accepts the opening with prob-

ability 1). We show that Pi does not reject the opening because of S. Fix any Pk ∈ GS,i (if GS,i is
empty then Pi does not reject the opening because of S). Since D is honest, and since Pk ∈ GS,i,
it must hold that there exists some tSk,i ∈ Fu so that αS,i

k = tSk,i · AS and ϕS,i
k,k′ = tSk,i · fSk′ for every

k′ ∈ [m]. In particular, for every j ∈ [ℓ] it holds that

αS,i
k

∑
k′∈[m]

βpub
j [k′] · fk′ =

∑
k′∈[m]

βpub
j [k′] · tSk,i ·AS · fk′

=
∑

k′∈[m]

βpub
j [k′] · tSk,i · fSk′

=
∑

k′∈[m]

βpub
j [k′]ϕS,i

k,k′ ,

86

and

αS,i
k

∑
k′∈[m]

βpri
i,j [k

′] · fk′ =
∑

k′∈[m]

βpri
i,j [k

′] · tSk,i ·AS · fk′

=
∑

k′∈[m]

βpri
i,j [k

′] · tSk,i · fSk′

=
∑

k′∈[m]

βpri
i,j [k

′]ϕS,i
k,k′ .

Therefore Pi does not reject the opening because of S. Since this holds for every S ∈ G, the output
of Pi in the real world is (βpub

j ,βpub
j · s)j∈[ℓ] and (βpri

i,j ,β
pri
i,j · s)j∈[ℓ] with probability 1, as required.

This concludes the analysis of (12).

Opening phase 2. The inputs of I are picked by Z in the same way in both worlds, and we fix
them, which fixes (13). Let the inputs be (ki)i∈[µ]. We show that the real-world random variables
(fki)i∈[µ] have the same distribution as the ideal-world random variables (f̃ki)i∈[µ]. Observe that
the real-world random variables (fk)k∈[m] are uniformly distributed conditioned on (a) fk[1] = sk

for every k ∈ [m], (b) AS · fki = fSk for every S ∈ S and k ∈ [m], (c)
∑

k′∈[m] β
pub
j [k′] · fk′ = Outj

for every j ∈ [ℓ], and (d)
∑

k′∈[m] β
pri
i,j [k

′] · fk′ = Outi,j for every i ∈ C and j ∈ [ℓ]. Similarly, the
ideal-world random variables (f̃k)k∈[m] are uniformly distributed conditioned on (a) f̃k[1] = s̃k for
every k ∈ [m], (b) AS · f̃ki = fSk for every k ∈ [m], (c)

∑
k′∈[m] β

pub
j [k′] · f̃k′ = Outj for every j ∈ [ℓ],

and (d)
∑

k′∈[m] β
pri
i,j [k

′] · f̃k′ = Outi,j for every i ∈ C and j ∈ [ℓ].
As before, it is not hard to see that αj · fki = αj · f̃ki , for every j ∈ [ν] and i ∈ [µ]. Similarly,

since αv is the unit vector (1, 0, . . . , 0) it holds that αv · fki = αv · f̃ki , for every i ∈ [µ].
For every ν + 1 ≤ j ≤ v − 1, observe that the random variables (αj · fk)k∈[m] are independent

of (αj · fk)k∈[m],j′ ̸=j . Fix any ν + 1 ≤ j ≤ v − 1, and observe that (αj · fk)k∈[m] are uniformly
distributed conditioned on (a)

∑
k′∈[m] β

pub
j′ [k′] · αj · fk′ = αj · Outj′ for every j′ ∈ [ℓ], and (b)∑

k′∈[m] β
pri
i,j′ [k

′] · fk′ = Outi,j′ for every i ∈ C and j′ ∈ [ℓ]. Since the same argument holds with
respect to (αj · f̃k)k∈[m], we conclude that (αj · fki)i∈[µ],ν+1≤j≤v−1 has the same distribution as
(αj · f̃ki)i∈[µ],ν+1≤j≤v−1. Since every vector α ∈ Fv is fully determined by the values α1 ·α, . . . ,αv ·
α, we conclude that the real-world random variables (fki)i∈[µ] have the same distribution as the
ideal-world random variables (f̃ki)i∈[µ]. This completes the analysis of (14).

Outputs of honest parties in opening phase 2. In the ideal world the output of an honest Pi is
(ki, ski)i∈[µ] with probability 1. By the same analysis as in the outputs of honest parties in opening
phase 1, we conclude that this is also true for the real world. This completes the analysis of an
honest D and I.

D.2 Honest D, Corrupt I

D.2.1 The Simulator

Simulation of iSig.dis. At the beginning of iSig.dis, the simulator receives (s1, . . . , sm) from the
ideal functionality. The simulator, that holds all the inputs of D, simply initiate an execution of

87

iSig.dis by taking the roles of the honest parties, where the inputs of D are (s1, . . . , sm).

Simulation of iSig.ver. The simulator continues with the execution of iSig.ver, first by sending
the messages of the honest parties, and then by receiving from the adversary the broadcast of the
corrupt I, and sending it to all the simulated honest parties. The simulator computes the output
revealI of D, and sends it to the ideal functionality.

Simulation of iSig.open1. The simulator continues with the execution of iSig.open1, and com-
putes the outputs of the honest parties. If revealI = 1 then the inputs of I to FiSig do not matter,
and the simulator terminates. Otherwise, fix any honest party Pi. If Pi outputs ⊥ as the public
output, then the simulator inputs abortpub = 1 to FiSig and terminates (the rest of the inputs do not
matter). Otherwise, the public output of Pi is (βpub

i , wi)j∈[ℓ], and the simulator inputs (βpub
j)j∈[ℓ] to

the ideal functionality FiSig.
In addition, for every honest Pi the simulator does as follows. If Pi outputs ⊥ as the private

output, then the simulator inputs abortprii = 1 to FiSig. Otherwise, the private output of Pi is
(βpri

i,j , wi,j)j∈[ℓ], and the simulator inputs (βpri
i,j)j∈[ℓ] to the ideal functionality FiSig.

Simulation of iSig.open2. The simulator continues with the execution of iSig.open2, and com-
putes the outputs of the honest parties. Let Pi be any honest party. If Pi outputs ⊥ as the public
output, then the simulator inputs abort = 1 to FiSig, and terminates (the rest of the inputs do not
matter). Otherwise, the output of Pi is (ki, ski)i∈[µ], and the simulator inputs µ and (ki)i∈[µ] to the
ideal functionality FiSig. This concludes the simulation.

D.2.2 Analysis

Observe that there is a 1-1 correspondence between real-world executions and the simulated ex-
ecutions performed by the simulator up to the end of iSig.open1. It is not hard to see that iSig.dis,
iSig.ver, the outputs of the honest parties in iSig.ver and iSig.open1 are perfectly simulated. We
continue by considering the outputs of the honest parties in iSig.open1.

Output of honest parties in iSig.open1. Since I is corrupt, there exists some set S∗ ∈ S that
contains only honest parties. It is not hard to see that if D broadcasts “accept” then S∗ ∈ G, and
that for every honest Pi it holds that GS∗,i = S∗. We say that an execution is “bad” in iSig.open1 if
D broadcasts “accept” in iSig.open1 and there exists an honest Pi and some j ∈ [ℓ] so that one of
the following holds.

• I broadcasted (βpub
j ,Outj) as the j-th public output so that (1) it holds that

∑
k∈[m] β

pub
j [k] ·

fk ̸= Outj , and (2) for every Pi′ in S∗ it holds that αS∗,i
i′ · Outj =

∑
k∈[m] β

pub
j [k] · ϕS,i

i′,k.

• I sent (βpri
i,j ,Outi,j) as the j-th private output of Pi so that (1) it holds that

∑
k∈[m] β

pri
i,j [k] · fk ̸=

Outi,j , and (2) for every Pi′ in S∗ it holds that αS∗,i
i′ · Outi,j =

∑
k∈[m] β

pri
j [k] · ϕS,i

i′,k.

We continue by showing that an execution is bad in iSig.open1 with probability at most 2−κ.
Consider the tn×u matrix TS∗

, that consists of all the rows (tS
∗

i,j)Pi∈S∗,j∈[n]. Observe that T ∗ has
full rank with probability at least 1−|F|tn/|F|u ≥ 1−2−κ. Here we require u > tn which is what we

88

assume in our protocol. Fix any such matrix TS∗
, and note that this fixes the rows (tS

∗
i,j)Pi∈S∗,j∈[n].

Consider the tn × v matrix TS∗ · AS∗
and observe that since TS∗

has full rank, and since AS∗
is

uniformly distributed, then TS∗ · AS∗
is uniformly distributed. This means that even conditioned

on the vectors (αS∗,j
i′)Pi′∈S∗,j∈C, the vectors (αS∗,j

i′)Pi′∈S∗,j∈H are uniformly distributed.
Fix any Pi, any j ∈ [ℓ]. Then for every Pi′ ∈ S∗ the event αS∗,i

i′ · Outj =
∑

k∈[m] β
pub
j [k] · ϕS,i

i′,k

occurs if and only if αS∗,i
i′ ·Outj =

∑
k∈[m] β

pub
j [k] · tS∗

i′,iA
S∗
fk, since ϕS,i

i′,k = tS
∗

i′,i · fSk = tS
∗

i′,iA
S∗
fk; this

event occurs if and only if αS∗,i
i′ ·Outj = αS∗,i

i′ · (
∑

k∈[m] β
pub
j [k] · fk) since αS∗,i

i′ = tS
∗

i′,iA
S∗

; therefore

this event occurs if and only if αS∗,i
i′ ·(Outj−

∑
k∈[m] β

pub
j [k] ·fk) = 0, which occurs with probability

1/|F| ≤ 2−κ/(2ℓn) if Outj ̸=
∑

k∈[m] β
pub
j [k] · fk since the vectors the vectors (αS∗,j

i′)Pi′∈S∗,j∈H are
uniformly distributed even conditioned on the view of Z . Since the same argument holds for the
j-th private output, and by taking union bound over all honest Pi and j ∈ [ℓ], we conclude that the
execution is bad in iSig.open1 with probability at most 2−κ. Note that here we require |F| ≥ 2κ ·2ℓn.

Consider any good execution of the protocol. IfD did not broadcast “accept” in iSig.open1 then
we’re done. Otherwise, if Outj ̸=

∑
k∈[m] β

pub
j · fk for some j ∈ [ℓ] then since the execution is good,

all the parties output ⊥ in both worlds. Otherwise Outj =
∑

k∈[m] β
pub
j · fk for every j ∈ [ℓ]. In this

case, since D is honest, for every Pi, every S ∈ G and every Pi′ ∈ GSi it holds that αS,i
i′ = tSi′,iA

S

and ϕS,i
i′,k = tSi′,i · fSk for some vector tSi′,i ∈ Fu. Therefore in the real-world Pi does not reject the

public output on behalf of Pi′ . Since this is true for every Pi, every S ∈ G and every Pi′ ∈ GS,i, we
conclude that in the real-world all honest parties output (βpub

j ,
∑

k∈[m] β
pub
j · fk)j∈[ℓ] as the public

output. Therefore, in the ideal world the simulator inputs (βpub
j)j∈[ℓ] to the ideal functionality, and

all the parties output (βpub
j ,

∑
k∈[m] β

pub
j · fk)j∈[ℓ] as the public output, as required.

Consider now the private output of an honest Pi. Then the same analysis shows that if the
execution is good then the private output of Pi is the same in both worlds. This concludes the
analysis of the outputs of the honest parties in iSig.open1.

Execution of iSig.open2. The only party that communicates in this round is the corrupt I, so
communication is done in the same way in both worlds. It remains to analyse the outputs of
the honest parties in this round. We say that an execution is “bad” in iSig.open2 if D broadcasts
“accept” in iSig.open1 and there exists some j ∈ [µ] so that I broadcasted (kj ,gkj) in iSig.open2,
and it holds that fkj ̸= gkj , and there exists some honest Pi so that for every Pi′ in S∗ it holds that
αS∗,i

i′ · gkj = ϕS,i
i′,kj

.

By the above analysis, the random variables (αS∗,j
i′)Pi′∈S∗,j∈H are 2−κ-close to uniform in sta-

tistical distance even conditioned on the view of Z and on the execution being good in iSig.open1.
Therefore, conditioned on the execution being good in iSig.open1, the same analysis as before
shows that an execution is bad in iSig.open2 with probability at most mn/|F| + 2−κ ≤ 2 · 2−κ, as
required. Note that here we require |F| ≥ 2κmn. Conditioned on the execution being good in
iSig.open2 as well, it is not hard to see that the outputs are the same in both worlds. This concludes
the analysis of honest D and corrupt I.

89

D.3 Corrupt D, Honest I

D.3.1 The Simulator

Simulation of iSig.dis. The simulator initiate an execution of iSig.dis by taking the roles of the
honest parties. Let (f1, . . . , fm) be the polynomials that the corrupt D sent to I. The simulator sets
si := fi[1] for all i ∈ [m], and inputs (s1, . . . , sm).

Simulation of iSig.ver. The simulator continues with the execution of iSig.ver.

Simulation of iSig.open1. The simulator receives (βpub
i)j∈[ℓ] (β

pri
i,j)i∈C,j∈[ℓ] from the ideal function-

ality. The simulator continues by executing the honest parties that send the verification informa-
tion to each other. In addition, the simulator computes the opening of I as follows.

• I broadcasts (βpub
j ,Outj)j∈[ℓ], where Outj = βpub

j [1] · f1 + . . .+ βpub
j [m] · fm.

• For every corrutp Pi, I sends (βpri
i,j ,Outi,j)j∈[ℓ], where Outi,j = βpri

i,j [1] · f1 + . . .+ βpri
i,j [m] · fm.

If D broadcasts s′ in poSig.open, then the simulator inputs revealD = 1 and s′ to the ideal
functionality and terminates. Otherwise, the simulator inputs revealD = 0 and s to the ideal func-
tionality.

Simulation of iSig.open2. The simulator receives (ki, ski)i∈[µ] from the ideal functionality. The
simulator broadcasts (fki)i∈[µ] on behalf of I. This concludes the simulation.

D.3.2 Analysis

Observe that there is a 1-1 correspondence between real-world executions and the simulated ex-
ecutions performed by the simulator up to the end of iSig.open1. It is not hard to see that iSig.dis,
iSig.ver, the outputs of the honest parties in iSig.ver and iSig.open1 are perfectly simulated. We
continue by considering the outputs of the honest parties in iSig.open1.

Outputs of honest parties in iSig.open1. Since D is corrupt, every set S ∈ S contains at least on
honest party. For every set S ∈ S and every honest Pi in S, denote the matrix that Pi from D by
AS,i, and the corresponding vectors by (fS,ik , rS,ik)k∈[m]. We say that an execution is “bad” if there
exists a set S ∈ S, an honest Pi in S, and some k ∈ [m], so that (1) AS,i · fk ̸= f iS,k, and (2) Pi did not
broadcast “not equal” in iSig.open1. Observe that Pi broadcasts “not equal” if AS,i ·dk ̸= fS,ik +crS,ik

for some S ∈ S that contains Pi, and some k ∈ [m]. Since dk = fk + crk then Pi broadcasts “not
equal” if AS,i · (fk + crk) ̸= fS,ik + crS,ik . Therefore, Pi broadcasts “not equal” if

AS,i · fk − fS,ik ̸= c(rS,ik − rk).

Since c is uniformly distributed over F \ {0} we conclude that if AS,i · fk ̸= fS,ik then Pi does
not broadcasts “not equal” with probability at most 1/(|F| − 1) ≤ 2−κ/(nm

(
n−2
t

)
). By taking a

union bound over all S ∈ S , honest Pi and k ∈ [m], we conclude that an execution is “bad” with
probability at most 2−κ. Note that here we require |F| > 2κnm

(
n−2
t

)
.

90

Consider any good execution of the protocol. If b = 1 then the output in both worlds is s′, as
required. Otherwise, b = 0, and in the ideal world the output of any honest Pi is (βpub

j · s)j∈[ℓ]
and (βpri

i,j · s)j∈[ℓ]. We show that in the real-world every honest Pi accepts the openings of I, so the
outputs are the same in both worlds. Fix any honest Pi, and every set S ∈ G. We show that Pi does
not reject due to S. Recall that S contains at least one honest party, denoted Pi∗ . Observe that all
honest parties in S are in GS,i, that they agree on the values of AS , (fSk , r

S
k)k∈[m], and since the view

is good it holds that AS ·fk = fSk for every k ∈ [m]. Therefore, for every honest party Pi′ in S it holds
that αS,i

i′ ·
∑

k∈[m] β
pub
j [k]·fk =

∑
k∈[m] β

pub
j [k]·ϕS,i

i′,k, and αS,i
i′ ·
∑

k∈[m] β
pri
i,j [k]·fk =

∑
k∈[m] β

pri
i,j [k]·ϕ

S,i
i′,k

for every j ∈ [ℓ].
Consider any corrupt Pi′ in GS,i and let tSi′,i be the vector that Pi received from Pi′ . We use the

following claim.

Claim D.1. It holds that αS,i
i′ = tSi′,i ·AS , and ϕS,i

i′,k = tSi′,i · fSk for all k ∈ [m].

Proof. Since S ∈ G then bS
i′,i∗ = aSi∗,i′ , and since Pi′ is in GS,i then the following holds.

• αS,i
i′ +ρS,i

i∗,i′ = tSi′,i ·bS
i′,i∗ [A

S] = tSi′,i ·aS,i∗,i[AS] = tSi′,i · (AS + rSi∗,i′ [A
S]) and since Pi∗ is honest

then ρS,i
i∗,i′ = tSi′,i · rSi∗,i′ [AS] so αS,i

i′ = tSi′,i ·AS .

• For every k ∈ [m] it holds that ϕS,i
i′,k + γS,ii∗,i′,k = tSi′,i · bS

i′,i∗ [f
S
k] = tSi′,i · aSi∗,i′ [fSk] = tSi′,i · (fSk +

rSi∗,i′ [f
S
k]) and since Pi∗ is honest then ρS,i

i∗,i′ = tSi′,i · rSi∗,i′ [fSk] so ϕS,i
i′,k = tSi′,i · fSk .

This concludes the proof of the claim.

Therefore, the same argument as for an honest Pi′ shows that Pi does not reject because of Pi′ ,
as required. This concludes the analysis of the outputs of the honest parties in iSig.open1.

Execution of iSig.open2. It is not hard to see that iSig.open2 is perfectly simulated. It remains to
analyse the outputs of the honest parties. However, this follows as before for every good execution
of the protocol. This concludes the analysis of a corrupt D and an honest I.

D.4 Corrupt D and I

D.4.1 The Simulator

Simulation of iSig.dis. The simulator initiate an execution of iSig.dis by taking the roles of the
honest parties. The simulator sets si := 0 for all i ∈ [m], and inputs (s1, . . . , sm).

Simulation of iSig.ver. The simulator continues with the execution of iSig.ver. The simulator
inputs revealI = 0 to the functionality.

Simulation of iSig.open1. The simulator continues with the execution of iSig.open1. At the end
of the execution the simulator computes the outputs of the honest parties. If D broadcasts s′ in
iSig.open1, then the simulator inputs revealD = 1 and s′ to the ideal functionality. Otherwise, the
simulator inputs revealD = 0 and s to the ideal functionality.

91

Let Pi be an arbitrary honest party. If the public output of Pi is ⊥ then the simulator inputs
abortpub = 1 and terminates (the rest of the inputs do not matter). Otherwise, let the public output
of Pi be (βpub

j , zpubj)j∈[ℓ]. Then the simulator inputs (βpub
j , zpubj)j∈[ℓ] and abortpub = 0 to the ideal

functionality for the public outputs.
For the private inputs of an honest Pi the simulator does as follows. If the private output

is ⊥ then the simulator inputs abortprii = 1, and otherwise abortprii = 0. In the latter case, let
(βpri

i,j , z
pri
i,j)j∈[ℓ] be the private output of Pi. Then the simulator inputs (βpri

i,j , z
pri
i,j)j∈[ℓ] for the public

outputs, for the private outputs of Pi.

Simulation of iSig.open2. The simulator continues with the execution of iSig.open1. At the end
of the execution the simulator computes the outputs of the honest parties. Let Pi be an arbitrary
honest party. If the output of Pi is⊥ then the simulator inputs abort = 1 and terminates. Otherwise
abort = 0, and we denote the outputs of Pi by (ki, wki)i∈[µ]. Then the simulator inputs s′′ki = wki for
every i ∈ [µ], inputs arbitrary values for the rest of s′′i , and inputs µ, (ki)i∈[µ] to the functionality.

D.4.2 Analysis

Observe that there is a 1-1 correspondence between real-world executions and the simulated ex-
ecutions performed by the simulator up to the end of iSig.open1. It is not hard to see that iSig.dis,
iSig.ver, the outputs of the honest parties in iSig.ver and iSig.open1 are perfectly simulated. We
continue by considering the outputs of the honest parties in iSig.open1.

Outputs of honest parties in iSig.open1. We start by analysing the public output. Observe that if
some honest party outputs (βpub

j , zpubj)j∈[ℓ] as the public output, then the rest of the honest parties
can either output (βpub

j , zpubj)j∈[ℓ] or ⊥. Therefore, we need to show that the honest parties agree
on whether to accept the public output.

Denote the broadcast of I by (βpub
j ,Outj)j∈[ℓ]. Fix any set S ∈ G, and observe that since D is

corrupt, S contains at least one honest party, denoted Pi∗ , and that for every honest Pi it holds that
all honest parties in S are also in GS,i. Also observe that all honest parties in S agree on the values
of AS , (fSk , r

S
k)k∈[m]. We split into cases.

• Assume that AS ·Outj ̸=
∑

k∈[m] βj [k] · fSk for some j ∈ [ℓ]. Then, for every honest Pi it holds

that αS,i
i∗ · Outj =

∑
k∈[m] βj [k] · ϕS,i

i∗,k if and only if tSi∗,i · AS · Outj =
∑

k∈[m] βj [k] · tSi∗,i · fSk
if and only if tSi∗,i · (AS · Outj −

∑
k∈[m] βj [k] · fSk) = 0. Since AS · Outj ̸=

∑
k∈[m] βj [k] · fSk ,

and since tSi∗,i is uniformly distributed even conditioned on the view of the adversary so far,
it follows that the probability that Pi accepts the public opening is at most 1/|F|. By taking
union bound on every honest Pi, it holds that the probability that some honest Pi accepts is
at most n/|F|.

• Assume that AS · Outj =
∑

k∈[m] βj [k] · fSk for all j ∈ [ℓ]. Fix any honest Pi. It is not hard to
see that Pi does not reject the public opening due to an honest party in S. Consider a corrupt
Pi′ in GS,i. Then the same proof of Claim D.1 shows that αS,i

i′ = tSi′,i ·AS , and ϕS,i
i′,k = tSi′,i · fSk

for all k ∈ [m]. Therefore, it is not hard to see that Pi does not reject on behalf of Pi′ as well.

92

We conclude that for every set S ∈ G, the parties agree whether to accept or reject the opening due
to S with probability at least 1 − n/|F|. Taking a union bound over all sets S ∈ S we conclude
that the probability of disagreement is at most

(
n−2
t

)
n/|F| ≤ 2−κ, as required. Note that here we

require |F| ≥
(
n−2
t

)
n2κ. Finally, it is not hard to see that if there is an agreement on the public

output, then the private outputs are the same in both worlds.

Execution of iSig.open2. Even conditioned on the view of the adversary so far, the random vari-
ables (tSi,j)S∈G,Pi∈S∩H,Pj∈H are 2−κ-close to uniform. Therefore the same argument as in the anal-
ysis of the outputs in iSig.open1 shows that the honest parties agree on the outputs in iSig.open2.
This concludes the analysis of iSig.

E The Sharing Functionality

In this section, we prove that protocol sh-comp UC-emulates Fsh-comp with statistical security in
the FiSig-hybrid model. From the composition properties of UC-security, this implies that protocol
sh-comp UC-emulates Fsh-comp. We do so by presenting a simulator Simsh-comp for the protocol
sh-comp.

We begin by presenting some helper simulators, that will be used by the Simsh-comp to simulate
the sub-protocols of sh-comp. Those helper simulators receive inputs from Simsh-comp and simulate
the view of the adversary in an execution of a sub-protocol of sh-comp.

E.1 Verifiable Secret Sharing

We begin by presenting a helper simulator Simvss for the vss protocol. We consider only the case of
an honest Pd, and denote the simulator by SimH

vss.

Round 1. On input (i, fi(x))i∈C, the simulator gives (fi(j))j∈[n] as the output of the distribution
phase of FiSig in the instance where Pd is the dealer and Pi is the intermediary. In addition, for
every honest Pi and every corrupt Pj , the simulator picks a random pad ri,j ∈ F and gives ri,j
as the output of the distribution phase of FiSig in the instance where Pi is the dealer and Pj is the
intermediary. At this stage the simulator receives the messages from the corrupt parties to the
honest parties, and the inputs of the corrupt parties to the FiSig instances in which the dealer is
corrupt.

Round 2. For every honest Pi the simulator does as follows.

• For every honest Pj where j ≥ i the simulator picks random field elements ai,j and bi,j and
broadcasts ai,j and bi,j on behalf of Pi.

• For every honest Pj where j < i the simulator already picked aj,i and bj,i. The simulator sets
ai,j := bj,i and bi,j := aj,i and broadcasts ai,j and bi,j on behalf of Pi.

• For every corrupt Pj the simulator picked in the first round the random pad ri,j , and also
received from the adversary the pad r′j,i. The simulator sets ai,j := fj(i) + ri,j and bi,j :=
fj(i) + r′j,i and broadcasts ai,j and bi,j on behalf of Pi.

93

In addition, the simulator does as follows for Pd.

• For every honest Pi, the simulator sets adi,j := ai,j for every j ∈ [n], and broadcasts (adi,j)j∈[n]
on behalf of Pd.

• For every corrupt Pi, the simulator received a pad rdi,j from Pi, for all j ∈ [n]. The simulator
sets adi,j := fi(j) + rdi,j for every j ∈ [n], and broadcasts (adi,j)j∈[n] on behalf of Pd.

At this stage the simulator receives the messages from the corrupt parties to the honest parties,
and the inputs of the corrupt parties to the FiSig instances in which the intermediary is corrupt.

We say that Pd is internally-vss-conflicted with a corrupt Pi if either (1) Pi’s input to the verifi-
cation phase of the iSig instance in which Pd is the dealer and Pi is the intermediary is revealI = 1,
or (2) Pi broadcasted a public complaint in the second round, or (3) ai,j ̸= adi,j for some j ∈ [n],
where ai,j was received from the adversary in the second round.

We say that an honest Pi is internally-vss-conflicted with a corrupt Pj if either (1) Pj ’s input
to the verification phase of the iSig instance in which Pi is the dealer and Pj is the intermediary is
revealI = 1, or (2) ai,j ̸= bj,i, or (3) aj,i ̸= bi,j .

Round 3. The simulator receives the flags flagi, (flagi,j)j∈[n] for every honest Pi, as well as the
flags (flagdj)j∈[n], where we assume that flagi,j = 0 for every honest Pi, Pj , and that flagj = 0 and
flagdj = 0 for every honest Pj .

The simulator first broadcasts the flags of all honest parties. In addition, the simulator does as
follows.

• Consider any corrupt Pi for which either: (1) Pd is internally-vss-conflicted with Pi, or (2)
flagdi = 1. In this case Pd is vss-conflicted with Pi, and for every honest Pk the simulator sets
rk,i as the output of the output phase 1 of the FiSig instance in which Pk is the dealer and
Pd is the intermediary. In addition, in the instance of FiSig where Pi is the dealer and Pd is
the intermediary the simulator leaks that Pd intends to open (rdi,j)j∈[n] in that FiSig instance.
Similarly, for every corrupt Pk, the simulator leaks that Pd intends to open (rdk,i) in the FiSig

instance where Pk is the dealer and Pd is the intermediary.

• Consider an honest Pi and a corrupt Pj so that one of the following holds: (1) Pi is internally-
vss-conflicted with Pj , or (2) flagi,j = 1. In this case Pi is vss-conflicted with Pj , and the
simulator sets fj(i) as the output of the output phase 1 of the FiSig instance in which Pd is
the dealer and Pi is the intermediary. In addition,in the FiSig instance where Pj is the dealer
and Pi is the intermediary, the simulator leaks that Pi intends to open (ri,j) in that FiSig

instance.

At this point the simulator receives the messages of the corrupt parties, and their inputs to the
various FiSig instances. Consider the opening phase 1 of the FiSig instance in which a corrupt Pi is
the dealer and Pd is the intermediary.

• If the input is revealD = 1, then the simulator also received a pad (r̄di,j)j∈[n] from the dealer
Pi, and the simulator simply returns b = 1 and (r̄di,j)j∈[n] as the output of the open phase 1.

• Otherwise, revealD = 0 and the simulator returns b = 0 as the output of the functionality.

94

If Pd is vss-conflicted with Pi then the simulator also returns (rdi,j)j∈[n] as the output of the
functionality.

If Pd is vss-conflicted with some Pk, then the simulator also returns rdi,k as the output of the
functionality.

Consider the opening phase 1 of the FiSig instance in which a corrupt Pi is the dealer and an
honest Pj is the intermediary.

• If the input is revealD = 1, then the simulator also received a pad (r̄di,j)j∈[n] from the dealer
Pi, and the simulator simply returns b = 1 and (r̄di,j)j∈[n] as the output of the open phase 1.

• Otherwise, revealD = 0 and the simulator returns b = 0 as the output of the functionality.

In addition, if Pj is vss-conflicted with Pi, then the simulator also returns (ri,j) as the output
of the functionality.

For every instance of FiSig in which the dealer is Pd and the intermediary Pi is corrupt, the
simulator holds all the inputs of Pd, and therefore, given the inputs of the corrupt Pi can compute
the output of the functionality and return it to the adversary. Similarly, for every instance of
FiSig in which the dealer is an honest Pi and the intermediary a corrupt Pj , the simulator holds
all the inputs of Pi, and therefore, given the inputs of the corrupt Pj can compute the output of
the functionality and return it to the adversary. Finally, for every instance of FiSig in which both
the dealer and the intermediary are corrupt, the simulator holds all the inputs, and therefore can
compute the output and return it to the adversary. This completes the simulation for an honest
Pd.

E.2 Triple Secret Sharing

We continue by presenting a helper protocol Simtss for the tss protocol. We only consider the
simulator for an honest Pd, denoted SimH

tss.

Round 1. The simulator receives inputs (i, fa
i (x), f

b
i (x), f

c
i (x))i∈C. The simulator picks random

polynomials A(x), B(x) and C(x) of degree d, d and 2d, respectively, conditioned on A(0) =
B(0) = C(0) = 0. The simulator picks any symmetric bivariate polynomials F a,0(x, y), F b,0(x, y)
and F c,0(x, y) of degree at most t in each variables, such that F u,0(x, i) = fu

i (x) and F u,0(0, 0) = 0,
for every u ∈ {a, b, c}. In addition, for every 1 ≤ k ≤ d, the simulator picks random symmet-
ric bivariate polynomials F a,k(x, y) and F b,k(x, y) of degree at most t in each variables such that
F a,k(0, 0) = Ak and F b,k(0, 0) = Bk. Similarly, for every 1 ≤ k ≤ 2d, the simulator picks a ran-
dom symmetric bivariate polynomial F c,k(x, y) of degree at most t in each variables such that
F c,k(0, 0) = Ck.

For every u ∈ {a, b} and k ∈ {0, . . . , d} the first round of vssu,k is simulated by executing an
instance of SimH

vss, denoted SimH
vss[u, k], with Pd as the dealer, and with inputs (i, F u,k(x, i))i∈C.

Similarly, for every k ∈ {0, . . . , 2d} the first round of vssc,k is simulated by executing an instance
of SimH

vss, denoted SimH
vss[c, k], with Pd as the dealer, and with inputs (i, F c,k(x, i))i∈C.

95

Round 2. The second round of vssu,k is simulated by continuing the execution of SimH
vss[u, k]. In

addition, for every set Q of size t+ 1 in which PQ is honest, the simulator picks random non-zero
field elements (βQ,i)i∈{1,...,n}, and sends them to all corrupt parties in Q as the message from PQ.
At this stage the simulator receives the messages from the corrupt parties to the honest parties.

Round 3. The simulator receives the flags flagi, (flagi,j)j∈[n] for every honest Pi, as well as the
flags (flagdj)j∈[n], where we assume that flagi,j = 0 for every honest Pi, Pj , and that flagdj = flagj = 0
for every honest Pj . For every honest Pi the simulator sets

• flagi := 0,

• flagi,j := 0 for every honest Pj ,

• flagi,j := 1 for every corrupt Pj with flagi,j = 1 or so that Pi is internally-vss-conflicted with
Pj in SimH

vss[u, k] for some u ∈ {a, b, c} and k ∈ {0, . . . , 2d}.

In addition, for every corrupt Pi the simulator sets flag
d

i := 1 if flagdi = 1 or if Pd is internally-vss-
conflicted with Pi in SimH

vss[u, k] for some u ∈ {a, b, c} and k ∈ {0, . . . , 2d}.
The third round of vssu,k is simulated by continuing the execution of SimH

vss[u, k] with inputs

flagi, (flagi,j)j∈[n] for every honest Pi, as well as the flags (flag
d

j)j∈[n] for the dealer.
The simulation of linop1 is done as follows. For every set Q, every honest Pi in Q does as fol-

lows for every corrupt Pj . If PQ is honest then we already sampled βQ,j . Otherwise let βQ,j be
the value that the corrupt PQ sent to Pi as the challenge corresponding to Pj . For every honest
Pj′ , the private output of Pj in the instance of FiSig where Pj′ is the dealer and Pi the intermedi-
ary is (

∑d
k=0 β

k
Q,j · r

a,k
j′,i,
∑d

k=0 β
k
Q,j · r

b,k
j′,i,
∑2d

k=0 β
k
Q,j · r

c,k
j′,i) together with the vector of coefficients

(β0
Q,j , . . . , β

d
Q,j), (β

0
Q,j , . . . , β

d
Q,j), and (β0

Q,j , . . . , β
2d
Q,j), respectively, where ru,kj′,i = bu,ki,j′ − F u,k(j′, i),

and bu,ki,j′ is the broadcast of Pi in the second round of SimH
vss[u, k]. In addition, for every corrupt

Pj′ for which flagi,j′ = 0, the simulator leaks the vectors (β0
Q,j , . . . , β

d
Q,j), (β

0
Q,j , . . . , β

d
Q,j), and

(β0
Q,j , . . . , β

2d
Q,j) to the adversary in the FiSig instance in which Pj′ is the dealer and Pi is the inter-

mediary.
At this point the simulator receives the messages of the corrupt parties, and their inputs to the

various FiSig instances. Consider the opening phase 1 of the FiSig instance in which a corrupt Pj′

is the dealer and an honest Pi is the intermediary.

• If the input is revealD = 1, then the simulator does nothing (the simulation is done in the
third round of the SimH

vss executions).

• Otherwise, revealD = 0 and the simulator returns b = 0 as the output of the functionality.

In addition, if Pi is flagi,j′ = 1 then the simulator does nothing. Otherwise, for every set Q the
simulator does as follows for every corrupt Pj . If PQ is honest then we already sampled βQ,j .
Otherwise let βQ,j be the value that PQ sent to Pi as the challenge corresponding to Pj . The
private output of Pj in the instance of FiSig where Pj′ is the dealer and Pi the intermediary
is (
∑d

k=0 β
k
Q,j · r

a,k
j′,i,
∑d

k=0 β
k
Q,j · r

b,k
j′,i,
∑2d

k=0 β
k
Q,j · r

c,k
j′,i) together with the vector of coefficients

(β0
Q,j , . . . , β

d
Q,j), (β

0
Q,j , . . . , β

d
Q,j), and (β0

Q,j , . . . , β
2d
Q,j), respectively, where ru,kj′,i is the input of

96

Pj′ to the instance of FiSig corresponding to SimH
vss[u, k], where Pj′ is the dealer and Pi is the

intermediary.

For every instance of FiSig in which the dealer is an honest Pi and the intermediary a corrupt
Pj , the simulator holds all the inputs of Pi, and therefore, given the inputs of the corrupt Pj can
compute the output of the functionality and return it to the adversary. Finally, for every instance
of FiSig in which both the dealer and the intermediary are corrupt, the simulator holds all the
inputs, and therefore can compute the output and return it to the adversary. This completes the
simulation for an honest Pd.

E.3 Verifiable Sharing and Transferring

We continue by presenting a helper protocol Simvst for the vst protocol. We only consider the
simulator for honest Pd, R, denoted SimH,H

vst .

Round 1. The simulator receives inputs (i, fi(x))i∈C. The simulator simulates the vss instance
by executing SimH

vss with inputs (i, fi(x))i∈C. In addition, the simulator picks random pads
(ρR,i,j)i∈C,j∈[n] and gives (ρR,i,j)j∈[n] as the output of the distribution phase of FiSig in the instance
where R is the dealer and a corrupt Pi is the intermediary. At this stage the simulator receives the
messages from the corrupt parties to the honest parties, and the inputs of the corrupt parties to
the FiSig instances in which the dealer is corrupt.

Round 2. The simulator continues the simulation of the vss instance by executing the second
round of SimH

vss. In addition, for every honest Pi, and every j ∈ [n] the simulator picks random
field elements αi,j,R and βi,j,R, and broadcasts αi,j,R and βi,j,R on behalf of Pi.

For every honest Pi, and every j ∈ [n], the simulator sets αR,i,j := βi,j,R and βR,i,j := αi,j,R,
and broadcasts αR,i,j and βR,i,j on behalf of R. For every corrupt Pi, and every j ∈ [n], let ρ′i,j,R
be the pad that R received in the first round. Then the simulator sets αR,i,j := fi(j) + ρR,i,j and
βR,i,j := fi(j) + ρ′i,j,R, and broadcasts αR,i,j and βR,i,j on behalf of R.

In addition, the simulator does as follows for Pd.

• For every i, j ∈ [n] the simulator sets αd
R,i,j := αR,i,j , and broadcasts αd

R,i,j on behalf of Pd.

• For every honest Pi and every j ∈ [n], the simulator sets αd
i,j,R := αi,j,R, and broadcasts αd

i,j,R

on behalf of Pd.

• For every corrupt Pi, the simulator received a pad ρdi,j,R from Pi, for all j ∈ [n]. The simulator
sets αd

i,j,R := fi(j) + ρdi,j,R for every j ∈ [n], and broadcasts (αd
i,j,R)j∈[n] on behalf of Pd.

At this stage the simulator receives the messages from the corrupt parties to the honest parties,
and the inputs of the corrupt parties to the FiSig instances in which the intermediary is corrupt.

Round 3. The simulator receives the flags flagi,d, flagi,R, (flagi,j)j∈[n] for every honest Pi, as well
as the flags (flagdj)j∈[n] and (flagRj)j∈[n], where we assume that flagi,j = 0 for every honest Pi, Pj ,
and that flagdj = flagRj = flagj,d = flagj,R = 0 for every honest Pj .

For every honest Pi the simulator sets

97

• flagi,d = flagi,R = 0,

• flagi,j = 0 for every honest Pj ,

• flagi,j = 1 for every corrupt Pj with either (1) flagi,j = 1, or (2) Pi is internally-vss-conflicted
with Pj in SimH

vss.

For the dealer, the simulator sets flag
d

R = 0; the simulator sets flag
d

i = 0 for every honest Pi; for

every corrupt Pi the simulator sets flag
d

i := 1 if either (1) flagdi = 1 or (2) if Pd is internally-vss-

conflicted with Pi in SimH
vss, or (3) if αi,j,R ̸= αd

i,j,R. For the receiver, the simulator sets flag
R

d = 0;

the simulator sets flag
R

i = 0 for every honest Pi; for every corrupt Pi the simulator sets flag
d

i := 1
if either (1) flagdi = 1, or (2) αR,i,j ̸= βi,j,R, or (3) βR,i,j ̸= αi,j,R.

The simulator continues the execution of the vss instance by executing the third round of SimH
vss

with inputs (flagi,d, flagi,R, flagi,j)i∈H,j∈[n], (flag
d

j , flag
d

R)j∈[n] and (flag
R

j , flag
R

d)j∈[n]. The simulator
also broadcasts the flags of all honest parties. In addition, the simulator does as follows.

• Consider any corrupt Pi for which flag
d

i = 1. In this case Pd is vst-conflicted with Pi, and the
simulator sets (ρdR,i,j := αd

R,i,j − fi(j))j∈[n] as the output of the output phase 1 of the FiSig

instance in which R is the dealer and Pd is the intermediary. In addition, in the FiSig instance
where Pi is the dealer and Pd is the intermediary, the simulator leaks that Pd intends to open
(ρdi,j,R)j∈[n].

• Consider any corrupt Pi for which flag
R

i = 1. In this case R is vst-conflicted with Pi, then
for every honest Pj the simulator sets (ρj,i,R := βd

R,i,j − fi(j))j∈H as the output of the output
phase 1 of the FiSig instance in which an honest Pj is the dealer and R is the intermediary.
Moreover, for every corrupt Pj , in the FiSig instance where Pj is the dealer and R is the
intermediary, the simulator leaks that R intends to open (ρ′j,i,R).

In addition, the simulator sets the values (fi(j))j∈[n] as the output of the output phase 1 of
the FiSig instance in which Pd is the dealer and R is the intermediary, both for F ′(j, i) and for
F ′(i, j).

Moreover, in theFiSig instance where Pi is the dealer and R is the intermediary, the simulator
leaks that R intends to open (ρ′i,j,R)j∈[n].

At this point the simulator receives the messages of the corrupt parties, and their inputs to the
various FiSig instances. Consider the opening phase 1 of the FiSig instance in which a corrupt Pi is
the dealer and Pd is the intermediary.

• If the input is revealD = 1, then the simulator also received a pad (ρ̄di,j,R)j∈[n] from the ad-
versary as an input to FiSig, and the simulator simply returns b = 1 and (ρ̄di,j,R)j∈[n] as the
output of the open phase 1.

• Otherwise, revealD = 0 and the simulator returns b = 0 as the output of the functionality.

If Pd is vst-conflicted with Pi then the simulator also returns (ρdi,j,R)j∈[n] as the output of the
functionality.

98

Consider the opening phase 1 of the FiSig instance in which a corrupt Pi is the dealer and R is
the intermediary.

• If the input is revealD = 1, then the simulator also received a pad (ρ̄′i,j,R)j∈[n] from the ad-
versary as an input to FiSig, and the simulator simply returns b = 1 and (ρ̄′i,j,R)j∈[n] as the
output of the open phase 1.

• Otherwise, revealD = 0 and the simulator returns b = 0 as the output of the functionality.

In addition, if R is vst-conflicted with Pi then the simulator also returns (ρi,j,R)j∈[n] as the
output of the functionality.

If R is vst-conflicted with Pk, then the simulator also returns (ρk,i,R) as the output of the
functionality.

For every instance of FiSig in which the dealer is Pd and the intermediary Pi is corrupt, the
simulator holds all the inputs of Pd, and therefore, given the inputs of the corrupt Pi can compute
the output of the functionality and return it to the adversary. Similarly, for every instance of FiSig

in which the dealer is R and the intermediary a corrupt Pj , the simulator holds all the inputs of
R, and therefore, given the inputs of the corrupt Pj can compute the output of the functionality
and return it to the adversary. Finally, for every instance of FiSig in which both the dealer and the
intermediary are corrupt, the simulator holds all the inputs, and therefore can compute the output
and return it to the adversary. This completes the simulation for an honest Pd and an honest R.

E.4 The sh-comp Simulator

In this section, we describe the simulator for protocol sh-comp.

E.4.1 Round 1 Simulation: Input Phase

For every honest Pi the simulator receives the values (F i,v(x, i′), Gi,j(x, i′), H i,j,k(x, i′))i∈H,i′∈C,j,k∈[m],v∈[ℓ]
from the ideal functionality, as well as the polynomial F i,v(x, y) for every corrupt Pi′ , and every
i ∈ H and v ∈ [ℓ] so that ϕ(i, v) = i′.

vst simulation. The simulator simulates the vst executions as follows.

• For every i ∈ H and v ∈ [ℓ] so that Pϕ(i,v) is honest, the simulator simulates vstF
i,v

by exe-
cuting an instance of SimH,H

vst , denoted SimH,H
vst [F

i,v], with inputs (F i,v(x, i′))i′∈C. Denote the
internal execution of SimH

vss by SimH
vss[F

i,j].

• For every i ∈ H and v ∈ [ℓ] so that Pϕ(i,v) is corrupt, the simulator simulates vstF
i,v

as
follows. The simulator, that holds the input F i,v(x, y) of the honest dealer, take the roles of
the honest parties, samples randomness for the execution of vstF

i,v
on their behalf, computes

their messages, including the calls to FiSig, and transfers them to the corrupt parties and to
the simulated honest parties in vstF

i,v
. We denote this sub-execution by SimH,C

vst [F
i,v].

• For every i ∈ C and v ∈ [ℓ] so that Pϕ(i,v) is honest, the simulator simulates vstF
i,v

by taking
the roles of the honest parties, that have no inputs, sampling randomness for the execution of
vstF

i,v
on their behalf, computing their messages, including the calls toFiSig, and transferring

99

them to the corrupt parties and to the simulated honest parties in vstF
i,v

. We denote this sub-
execution by SimH,C

vst [F
i,v]. We denote this sub-execution by SimC,H

vst [F
i,v].

• For every i ∈ C and v ∈ [ℓ] so that Pϕ(i,v) is corrupt, the simulator simulates vstF
i,v

by
taking the roles of the honest parties, that have no inputs, sampling randomness for the
execution of vstF

i,v
on their behalf, computing their messages, including the calls to FiSig,

and transferring them to the corrupt parties and to the simulated honest parties in vstF
i,v

.
We denote this sub-execution by SimC,C

vst [F
i,v].

tss simulation. We start by describing how to simulate the internal vss executions.

• For every i ∈ H and j ∈ [m], the simulator simulates vssG
i,j

by executing an instance of
SimH

vss, denoted SimH
vss[G

i,j], with inputs (Gi,j(x, i′))i′∈C.

• For every i ∈ H and j, k ∈ [m], the simulator simulates vssH
i,j,k

by executing an instance of
SimH

vss, denoted SimH
vss[H

i,j,k], with inputs (H i,j,k(x, i′))i′∈C.

• For every i ∈ C and j ∈ [m], the simulator simulates the execution of vssG
i,j

by taking the role
of the honest parties, that have no inputs, sampling randomness for the execution of vssG

i,j

on their behalf, computing their messages, including the calls to FiSig, and transferring them
to the corrupt parties and to the simulated honest parties in vssG

i,j
. We denote this sub-

execution by SimC
vss[G

i,j].

• For every i ∈ C and j, k ∈ [m], the simulator simulates the execution of vssH
i,j,k

by taking
the role of the honest parties, that have no inputs, sampling randomness for the execution of
vssH

i,j,k
on their behalf, computing their messages, including the calls to FiSig, and transfer-

ring them to the corrupt parties and to the simulated honest parties in vssH
i,j,k

. We denote
this sub-execution by SimC

vss[H
i,j,k].

In order to simulate the tss executions, the simulator does as follows.

• For every i ∈ H and j, k ∈ [m], the simulator simulates tssi,j,k by executing an instance
of SimH

tss with inputs (Gi,j(x, i′), Gi,k(x, i′), H i,j,k(x, i′))i′∈C, where the internal SimH
vss execu-

tions corresponding to A0, B0 and C0 are SimH
vss[G

i,j], SimH
vss[G

i,k] and SimH
vss[H

i,j,k] that were
already executed. We denote this execution by SimH

tss[i, j, k].

• For every i ∈ C and j, k ∈ [m], the simulator simulates tssi,j,k by taking the role of the
honest parties, that have no inputs, sampling randomness for the execution of tssi,j,k on
their behalf, computing their messages, including the calls to FiSig, and transferring them to
the corrupt parties and to the simulated honest parties in tssi,j,k, where the internal SimH

vss

executions corresponding to A0, B0 and C0 are SimC
vss[G

i,j], SimC
vss[G

i,k] and SimC
vss[H

i,j,k] that
were already executed. We denote this execution by SimC

tss[i, j, k].

At this stage the simulator receives from the adversary the massages of all corrupt parties, as well
as the inputs of all honest parties to the FiSig instances where the dealer is corrupt.

100

E.4.2 Round 2 Simulation

The second round simulation is done by continuing the execution of all Simvss,Simvst and Simtss

in the same manner as in the first round. At the end of the round the simulator receives from the
adversary the massages of all corrupt parties, as well as the inputs of all honest parties to the FiSig

instances where the intermediary is corrupt.

E.4.3 Round 3 Simulation: Linear Computation Phase

For every honest Pi the simulator receives m∑
j=1

βv
i,jG

i,j(x, y) +
∑

j,k∈[m]

γvi,j,kH
i,j,k(x, y) + F i,v(x, y)


v∈[ℓ]

from the ideal functionality. In addition, for every ((i1, v1), (i2, v2)) ∈ S so that Pi1 and Pi2 are hon-
est, the simulator receives F i1,v1(x, y)−F i2,v2(x, y). Finally, for every or every ((i1, v1), (i2, v2)) ∈ S
so that Pi1 is honest and Pi2 is corrupt, the simulator receives F i1,v1(x, y) from the ideal function-
ality, and for every ((i1, v1), (i2, v2)) ∈ S so that Pi2 is honest and Pi1 is corrupt, the simulator
receives F i2,v2(x, y) from the ideal functionality.

Flag computation. At the beginning of the third round of simulation, for every honest Pi and
every corrupt Pj , the simulator can compute whether Pi is iSign-conflicted with Pj by checking the
input bit revealI that the corrupt Pj sent to the FiSig instance where Pi is the dealer and Pj is the
intermediary. For every honest Pi and Pj , we say that Pi and Pj are not iSign-conflicted . Therefore,
for every honest Pi, and every Pj the simulator knows whether Pi is iSign-conflicted with Pj or
not.

Based on this information, in every vss, tss and vst instance, the simulator can compute for
every honest Pi and every Pj whether Pi is internally-vss-conflicted and internally-vst-conflicted
with Pj . Based on this information, for every honest Pi the simulator can compute the input-flags
of Pi to every vss, tss and vst instance just like in the protocol. Similarly, for every honest Pi and
every corrupt Pj we know whether Pi thinks that its shares might change in a vss instance in which
Pj is the dealer.

The simulator simulates the third round of vss, tss and vst by continuing the execution of all
Simvss,Simvst and Simtss in the same manner, and using the computed flags as the inputs of the hon-
est parties. In addition, for every instance of FiSig in which both the dealer and the intermediary
are honest, the simulator returns the bit b = 0.

linop3 simulation. Consider any honest Pi and v ∈ [ℓ]. Let Pi′ be an honest party, and for every
j, k ∈ [m], denote by (bG

i,j

i′,j′)j′∈[n], (b
Hi,j,k

i′,j′)j′∈[n], (b
F i,v

i′,j′)j′∈[n] the broadcast of Pi′ in the simulation of

vssG
i,j
, vssH

i,j,k
and vssF

i,v
, respectively. Then the messages of Pi′ in the v-th linear computation of

Pi are simulated as follows.

• If flagi′,R = 0 in vstF
i,v

, then for every honest Pj′ , let the corresponding output of FiSig where

101

Pj′ is the dealer and Pi′ is the intermediary be m∑
j=1

βv
i,jb

Gi,j

i′,j′ +
∑

j,k∈[m]

γvi,j,kb
Hi,j,k

i′,j′ + bF
i,v

i′,j′

−
 m∑

j=1

βv
i,jG

i,j(j′, i′) +
∑

j,k∈[m]

γvi,j,kH
i,j,k(j′, i′) + F i,v(j′, i′)

 ,

where the first term can be computed from the broadcasts of Pi′ , and the second term is
given as part of the leakage.

In addition, for every corrupt Pj′ with flagi′,j′ = 0 in vssG
i,j
, vssH

i,j,k
and vssF

i,v
, the simulator

gives the vector of coefficients (βv
i,j , γ

v
i,j,k, 1)j,k∈[m] to the adversary, as the corresponding

leakage in FiSig where Pj′ is the dealer and Pi′ is the intermediary. (Otherwise, the vector of
coefficients is set to be the all-zero vector.)

• If flagi′,R = 1 in vstF
i,v

, then R is necessarily corrupt, and for every honest Pj′ , let the corre-
sponding output of FiSig where Pj′ is the dealer and Pi′ is the intermediary be m∑

j=1

βv
i,jr

Gi,j

j′,i′ +
∑

j,k∈[m]

γvi,j,kr
Hi,j,k

j′,i′

 .

Observe that the simulator holds all the random pads since R is corrupt.

In addition, for every corrupt Pj′ with flagi′,j′ = 0 in vssG
i,j
, vssH

i,j,k
and vssF

i,v
, the simu-

lator gives the vector of coefficients (βv
i,j , γ

v
i,j,k)j,k∈[m] to the adversary, as the corresponding

leakage in FiSig where Pj′ is the dealer and Pi′ is the intermediary. (Otherwise, the vector of
coefficients is set to be the all-zero vector.)

Consider any corrupt Pi and v ∈ [ℓ]. Let Pi′ be an honest party, and denote by
(rG

i,j

j′,i′), (r
Hi,j,k

j′,i′), (rF
i,v

j′,i′) the random pads that Pj′ sent to Pi′ in the simulation of vssG
i,j
, vssH

i,j,k

and vssF
i,v

, respectively. (Observe that the simulator holds all of those values when Pi is corrupt.)
Then the messages of Pi′ in the v-th linear computation of Pi are simulated as follows.

• If flagi′,R = 0 in vstF
i,v

and flagi′ = 0 in (vssG
i,j
, vssH

i,j,k
)j,k∈[m], then for every honest Pj′ , let

the corresponding output of FiSig where Pj′ is the dealer and Pi′ is the intermediary be m∑
j=1

βv
i,jr

Gi,j

j′,i′ +
∑

j,k∈[m]

γvi,j,kr
Hi,j,k

j′,i′ + rF
i,v

j′,i′

 .

In addition, for every corrupt Pj′ with flagi′,j′ = 0 in vssG
i,j
, vssH

i,j,k
and vssF

i,v
, the simulator

gives the vector of coefficients (βv
i,j , γ

v
i,j,k, 1)j,k∈[m] to the adversary, as the corresponding

leakage in FiSig where Pj′ is the dealer and Pi′ is the intermediary. (Otherwise, the vector of
coefficients is set to be the all-zero vector.)

• If flagi′,R = 1 in vstF
i,v

and flagi′ = 0 in (vssG
i,j
, vssH

i,j,k
)j,k∈[m], then for every honest Pj′ , let

the corresponding output of FiSig where Pj′ is the dealer and Pi′ is the intermediary be m∑
j=1

βv
i,jr

Gi,j

j′,i′ +
∑

j,k∈[m]

γvi,j,kr
Hi,j,k

j′,i′

 .

102

In addition, for every corrupt Pj′ with flagi′,j′ = 0 in vssG
i,j
, vssH

i,j,k
and vssF

i,v
, the simu-

lator gives the vector of coefficients (βv
i,j , γ

v
i,j,k)j,k∈[m] to the adversary, as the corresponding

leakage in FiSig where Pj′ is the dealer and Pi′ is the intermediary. (Otherwise, the vector of
coefficients is set to be the all-zero vector.)

linop2 simulation. Let ((i1, v1), (i2, v2)) ∈ S. Consider any honest Pi and denote by bik,vki,j the
broadcast message of Pi in vssF

ik,vk , k ∈ {1, 2}. We split into cases.

• Assume that Pi1 , Pi2 are honest. Then for every honest Pj , the output of FiSig where Pj is the
dealer and Pi is the intermediary is (bi1,v1i,j − bi2,v2i,j)− (F i1,v1(j, i)− F i2,v2(j, i)).

• Assume that Pi1 is corrupt and Pi2 is honest. If flagi = 1 in vssF
i1,v1 , then Pi broadcasts

“complaint:1”. In addition, for every honest Pj let the corresponding output of FiSig where
Pj is the dealer and Pi is the intermediary be bi2,v2i,j − F i2,v2(j, i).

Otherwise, flagi = 0 in vssF
i1,v1 . For every honest Pj , if flagi,j = 1 in vssF

i1,v1 then let the
corresponding output of FiSig where Pj is the dealer and Pi is the intermediary be bi2,v2i,j −
F i2,v2(j, i). Otherwise, if flagi,j = 0 in vssF

i1,v1 , let the corresponding output of FiSig where
Pj is the dealer and Pi is the intermediary be ri1,v1j,i − (bi2,v2i,j − F i2,v2(j, i)), where ri1,v1j,i is the
random pad sent from Pj to Pi in the simulation of vssF

i1,v1 .

The case where Pi1 is honest and Pi2 is corrupt is symmetric.

• Assume that Pi1 and Pi2 are corrupt. If flagi = 1 in vssF
i1,v1 and in vssF

i2,v2 then Pi broadcasts
“complaint:1,2”.

Otherwise, if flagi = 1 in vssF
i1,v1 but not in vssF

i2,v2 then Pi broadcasts “complaint:1”. In
addition, for every honest Pj let the corresponding output of FiSig where Pj is the dealer
and Pi is the intermediary be ri2,j2j,i , where ri2,j2j,i is the random pad sent from Pj to Pi in the
simulation of vssF

i2,j2 .

Otherwise, if flagi = 1 in vssF
i2,j2 but not in vssF

i1,j1 then Pi broadcasts “complaint:2”. In
addition, for every honest Pj let the corresponding output of FiSig where Pj is the dealer
and Pi is the intermediary be ri1,j1j,i , where ri1,j1j,i is the random pad sent from Pj to Pi in the
simulation of vssF

i1,j1 .

Otherwise flagi = 0 in vssF
i1,j1 and in vssF

i2,j2 . For every honest Pj , if flagi,j = 1 in vssF
i1,j1

and vssF
i2,j2 then do nothing. If flagi,j = 1 only in vssF

i1,j1 then let the corresponding output
of FiSig where Pj is the dealer and Pi is the intermediary be ri2,j2j,i . Similarly, if flagi,j = 1

only in vssF
i2,j2 then let the corresponding output of FiSig where Pj is the dealer and Pi is

the intermediary be ri1,j1j,i . Otherwise, if flagi,j = 0 in vssF
i1,j1 and in vssF

i2,j2 , we let the
corresponding output of FiSig where Pj is the dealer and Pi is the intermediary be ri1,j1j,i −
ri2,j2j,i .

For every honest Pi and corrupt Pj , the leakage of the FiSig instance in which Pj is the dealer
and Pi is the intermediary is computed as follows. If flagi = 1 in vssF

i1,v1 or in vssF
i2,v2 then the

103

leakage is the all-zero string. Otherwise, flagi = 0 in vssF
i1,v1 and in vssF

i2,v2 . If flagi,j = 1 in
vssF

i1,v1 and in vssF
i2,v2 , then the leakage is the all-zero string. Otherwise, if flagi,j = 1 in vssF

i1,v1

but not in vssF
i2,v2 then the leakage is the vector of coefficients (1). Otherwise, if flagi,j = 1 in

vssF
i2,v2 but not in vssF

i1,v1 then the leakage is the vector of coefficients (1). Otherwise, if flagi,j = 0

in vssF
i1,v1 and in vssF

i2,v2 then the leakage is the vector of coefficients (1,−1).

Completing linop3 and linop2. At this stage the simulator receives the messages from the corrupt
parties to the honest parties, as well as the inputs to the FiSig instances where either the dealer
or the intermediary (or both) is corrupt. For all of those instances that correspond to linop3 and
linop2 the simulator holds all the inputs the FiSig, and can compute the output accordingly. This
concludes the simulation of the third round.

E.4.4 Communication with Fsh-comp

The simulator computes the set I like in the protocol. Consider a corrupt Pi. If Pi is in I ,
then the simulator inputs flagi = 1 to Fsh-comp. Otherwise flagi = 0, and Pi is not discarded
in any vss instance. Let (Gi,j(x, y), H i,j,k(x, y), F i,v(x, y))j,k∈[m],v∈[ℓ] be the polynomials defined
by the shares of the honest parties in (vssG

i,j
, vssH

i,j,k
, vssF

i,v
)j,k∈[m],v∈[ℓ]. The simulator inputs

flagi, (G
i,j(x, y), H i,j,k(x, y), F i,v(x, y))j,k∈[m],v∈[ℓ] as the input of Pi.

E.4.5 Round 4 Simulation: Opening Phase

For every honest Pi the simulator receives (µi, (ji,k, vi,k, F
ji,k,vi,k(x, y))k∈[µi])). For every honest Pi

the simulator broadcasts (µi, (ji,k, vi,k)k∈[µi])) on behalf of Pi. In addition, for every honest Pi and
every k ∈ µi the simulator does as follows.

Honest Pji,k . Assume that Pji,k is honest. Then for every honest Pi′ so that Pi′ is not in W ∪W ′ ∪
U ∪ B in vstF

ji,k,vi,k , the simulator returns (bi′,j′ − F ji,k,vi,k(j′, i′))j′∈[n] as the output of the FiSig

instance in which Pi′ is the dealer and Pi is the intermediary, where bi′,j′ is the broadcast of Pi′ in
vstF

ji,k,vi,k . In addition, for every corrupt Pi′ so that Pi is not in W ∪W ′ ∪ U ∪B in vstF
ji,k,vi,k , the

simulator gives the vector of coefficients (1) to the adversary as the leakage of the FiSig instance in
which Pi′ is the dealer and Pi is the intermediary.

Corrupt Pji,k . Assume that Pji,k is corrupt. Then for every honest Pi′ so that Pi′ is not in W ∪
W ′ ∪ U ∪ B in vstF

ji,k,vi,k , the simulator returns (ρ′i′,j′)j′∈[n] as the output of the FiSig instance in
which Pi′ is the dealer and Pi is the intermediary, where ρ′i′,j′,R is the message that Pi′ sent to R in

the execution of vstF
ji,k,vi,k . In addition, for every corrupt Pi′ so that Pi is not in W ∪W ′∪U ∪B in

vstF
ji,k,vi,k , the simulator gives the vector of coefficients (1) to the adversary as the leakage of the

FiSig instance in which Pi′ is the dealer and Pi is the intermediary.

At this stage the simulator receives the messages from the corrupt parties to the honest parties,
as well as the inputs to the FiSig instances where either the dealer or the intermediary (or both) is
corrupt. For all of those instances the simulator holds all the inputs the FiSig, and can compute the
output accordingly.

104

E.4.6 Communication with Fsh-comp

For every corrupt Pi so that i /∈ I at the beginning of Round 4, let
(µi, (ji,k, vi,k, F

ji,k,vi,k(x, y))k∈[µi])) be the broadcast of Pi. If the output of the opening phase of
some linop3 execution where Pi is the receiver ended with ⊥, then the simulator inputs aborti = 1.
Otherwise, the simulator inputs (µi, (ji,k, vi,k)k∈[µi])) as the input of Pi. This concludes the
simulation.

E.5 Analysis of the sh-comp Simulator

E.5.1 Analysis: Round 1 Simulation

At the beginning of the round the environment picks the inputs to the honest parties in the same
way in both worlds. Fix those inputs. We begin by analysing the internal vss executions in the
various tss and vst executions. Fix any order to the vss instances and consider the i-th instance.
Then it is not hard to see that the internal randomness used to generate the messages of the honest
parties in the i-th vss instance is independent of the messages of the honest parties in the previous
instances. Therefore we can analyse each instance separately. Consider any instance of vss, and let
us split into cases.

Corrupt Pd. Assume that dealer Pd is corrupt. In this case, the vss instance is executed in the
same way in both worlds, so the view is the same in both worlds, as required.

Honest Pd and corrupt receiver in vst. Assume that dealer Pd is honest, and the vss instance
is executed as part of a vst execution in which the receiver is corrupt. Then the vss instance is
executed in the same way in both worlds, so the view is the same in both worlds, as required.

Honest Pd. Assume that the dealer Pd is honest, and the vss execution is not part of a vst ex-
ecution in which the receiver is corrupt. Denote the real-world sharing polynomial by f(x, y).
We start by analysing the inputs (i, fi(x))i∈C to SimH

vss, and show that those inputs have the same
distribution as the real-world values (i, f(x, i))i∈C. Indeed, if the execution corresponds to the
sharing of F i,j(x, y), Gi,j(x, y) or H i,j,k for some i ∈ [n] and j, k ∈ [m], then f(x, y) is fixed and
equal to F i,j(x, y), Gi,j(x, y) or H i,j,k, respectively, and it is not hard to verify that the claim holds.
Otherwise the execution is an internal vss-simulation inside the simulation of tss. In this case, the
claim holds by Fact B.3. Fix the inputs (i, fi(x))i∈C. Then, in both worlds the corresponding out-
puts of FiSig where Pd is the dealer and a corrupt Pi is the intermediary are (fi(j))j∈C. In addition,
for every honest Pi and corrupt Pj the random pads ri,j are uniformly distributed, so the output
of FiSig where Pd is the dealer and a corrupt Pi is the intermediary is ri,j .

Fix the view of the adversary in all vss instances. Since the first round of tss consists only of
vss calls, we conclude that the adversary’s view in tss is fixed as well. We continue by analysing
the vst instances. Fix any order to the vst instances and consider the i-th instance. Then it is not
hard to see that the internal randomness used to generate the messages of the honest parties in
the i-th vst instance is independent of the messages of the honest parties in the previous instances.
Therefore we can analyse each instance separately. Consider any instance of vst, and let us split
into cases.

105

Honest Pd and R. Assume that the dealer Pd and the receiver R are honest. Denote the real-
world sharing polynomial by f(x, y). Then the same analysis as in the vss cast shows that the
inputs (i, fi(x))i∈C to SimH

vss are fixed and equal to (i, f(x, i))i∈C. In addition, the random pads
(ρR,i,j)i∈C,j∈[n] are uniformly distributed in both worlds, so the output of FiSig where R is the
dealer and a corrupt Pi is the intermediary, that is (ρR,i,j)j∈[n], has the same distribution in both
worlds.

Honest Pd, corrupt R. Assume that Pd is honest and R is corrupt. Denote the real-world sharing
polynomial by f(x, y), and observe that f(x, y) is the input to vst. Therefore, it is not hard to verify
that the vst instance is executed in the same way in both worlds, so the view is the same in both
worlds, as required.

Corrupt Pd. Assume that the dealer Pd is corrupt. In this case, the vst instance is executed in the
same way in both worlds, so the view is the same in both worlds, as required.

This concludes the analysis of the first round.

E.5.2 Analysis: Round 2 Simulation

Fix any first-round view of the adversary. We begin by analysing the second-round simulation of
the internal vss executions in the various tss and vst executions. As before, the messages of the
honest parties in the i-th vss instance are independent of the messages of the honest parties in
previous instances. Therefore we can analyse each instance separately. Consider any instance of
vss, and let us split into cases.

Corrupt Pd. Assume that dealer Pd is corrupt. In this case, the vss instance is executed in the
same way in both worlds, so the view is the same in both worlds, as required.

Honest Pd and corrupt receiver in vst. Assume that dealer Pd is honest, and the vss instance
is executed as part of a vst execution in which the receiver is corrupt. Then the vss instance is
executed in the same way in both worlds, so the view is the same in both worlds, as required.

Honest Pd. Assume that the dealer Pd is honest, and the vss execution is not part of a vst execu-
tion in which the receiver is corrupt. As before, we denote the real-world sharing polynomial by
f(x, y) and the inputs to the simulator by (i, fi(x))i∈C, where we saw that fi(x) = f(x, i) for every
i ∈ C. For every honest Pi and Pj , the random variables ai,j and bi,j are uniformly distributed, and
it holds that aj,i = bi,j and bj,i = ai,j . Therefore, the broadcast messages (ai,j , aj,i, bi,j , bj,i) have the
same distribution in both worlds. Fix those messages. In addition, in both worlds the broadcast
messages (adi,j)i∈H,j∈[n] are fixed and equal to (ai,j)i∈H,j∈[n].

For every honest Pi and corrupt Pj , the real-world broadcast message ai,j is set to be f(j, i) +
ri,j = fj(i) + ri,j , so it is equal to the ideal-world broadcast message. Similarly, the real-world
broadcast message bi,j is set to be f(j, i) + r′j,i = fj(i) + r′j,i, so it is equal to the ideal-world
broadcast message. Finally, for every corrupt Pi and j ∈ [n], the real-world broadcast message ai,j
is set to be f(j, i) + rdi,j = fj(i) + rdi,j , so it is equal to the ideal-world broadcast message.

106

Fix the view of the adversary in all vss instances. We continue by analysing the second round
of all tss instances, and by the same reasoning as before, we can analyse each instance separately.
Observe that the second round of tss consists only of vss calls and challenge generation. Therefore,
the only additional messages sent by the honest parties are the challenges (βQ,i)Q,i, where we
enumerate over all sets Q where PQ is honest and Q contains a corrupt party, and all i ∈ [n].
In both worlds (βQ,i)Q,i, are uniformly distributed. Fix those challenges, so the view in the tss
execution is fixed as well. We continue by analysing the vst instances and by the same reasoning
as before, we can analyse each instance separately. We split into cases.

Honest Pd and R. Assume that Pd and R are honest. As before, denote the real-world sharing
polynomial by f(x, y), and the inputs to the simulator by (i, fi(x))i∈C, where we saw that fi(x) =
f(x, i) for every i ∈ C. For every honest Pi and every j ∈ [n], the random variables αi,j,R and βi,j,R
are uniformly distributed, and it holds that αR,i,j = βi,j,R and βR,i,j = αi,j,R. Fix those messages.
In addition, in both worlds the broadcast messages (αd

i,j,R, α
d
R,i,j)i∈H,j∈[n] are fixed and equal to

(αi,j,R, αR,i,j)i∈H,j∈[n].
For every corrupt Pi, the real-world broadcast message αR,i,j is set to be f(j, i) + ρR,i,j =

fj(i) + ρR,i,j , so it is equal to the ideal-world broadcast message. Similarly, βR,i,j is set to be
f(j, i) + ρ′i,j,R = fj(i) + ρ′i,j,R, so it is equal to the ideal-world broadcast message. Moreover, the
broadcast messages (αd

R,i,j)i∈C,j∈[n] are fixed and equal to (αR,i,j)i∈C,j∈[n]. Finally, in both worlds,
for every corrupt Pi and every j ∈ [n] the broadcast message αd

i,j,R is fixed and equal to f(j, i) +

ρdi,j,R = fi(j) + ρdi,j,R.

Other cases. In all other cases, the vst instance is executed in the same way in both worlds, so
the view is the same in both worlds, as required.

This concludes the analysis of the second round.

E.5.3 Analysis: Round 3 Simulation

Fix any second-round view of the adversary. It is not hard to see that the flags of the honest
parties to each vss, tss and vst instance are computed in the same way in both worlds. We continue
by analysing the third-round simulation of the internal vss executions in the various tss and vst
executions, and by the same reasoning as before, we can analyse each instance separately. We split
into cases.

Corrupt Pd. Assume that dealer Pd is corrupt. In this case, the vss instance is executed in the
same way in both worlds, so the view is the same in both worlds, as required.

Honest Pd and corrupt receiver in vst. Assume that dealer Pd is honest, and the vss instance
is executed as part of a vst execution in which the receiver is corrupt. Then the vss instance is
executed in the same way in both worlds, so the view is the same in both worlds, as required.

107

Honest Pd. Assume that the dealer Pd is honest, and the vss execution is not part of a vst execu-
tion in which the receiver is corrupt. As before, we denote the real-world sharing polynomial by
f(x, y) and the inputs to the simulator by (i, fi(x))i∈C, where we saw that fi(x) = f(x, i) for every
i ∈ C. For an honest Pi we denote the flags by flagi, (flagi,j)j∈[n] and we denote the flags of Pd by
(flagdi)i∈[n].

First, we observe that for every honest Pi it holds that flagdi = 0. Indeed, Pd is not
iSign-conflicted with Pi, or internally-vss-conflicted with Pi in any vss execution in which Pd is
the dealer, or internally vst-conflicted with Pi in any vst execution in which Pd is the dealer, since
both are honest. A similar reasoning shows that for every honest Pi it holds that flagi = 0, and
that for every pair of honest parties Pi, Pj it holds that flagi,j = flagj,i = 0. In addition, observe
that if Pd is internally-vss-conflicted with some corrupt Pi then flagdi = 1, and that if an honest Pj

is internally-vss-conflicted with Pi then flagj,i = 1. Therefore, the broadcasts of the flags of the
honest parties are the same in both worlds.

Consider any corrupt Pi with flagdi = 1. Then in both worlds for every honest Pj the value rj,i
is opened in any FiSig instance in which Pj is the dealer and Pd is the intermediary; if flagdi = 0
then no value is opened. Similarly, for every honest Pi and corrupt Pj so that flagi,j = 1 the value
fj(i) = fi(j) is opened in the FiSig instance in which Pd is the dealer and Pi is the intermediary; if
flagi,j = 0 then no value is opened.

In the rest of theFiSig instances, where either the dealer or the intermediary or both are corrupt,
the simulator holds all the inputs to FiSig and the computation of the outputs is done in the same
way in both worlds.

Fix the view of the adversary in all vss instances. We continue with the analysis of the tss. By
the same reasoning as before, we can analyse each instance separately. We split into cases.

Honest Pd. First, observe that the values (F v,k(x, i))v∈{a,b,c},k∈{0,...,2d},i∈C are fixed and the same
in both worlds, where F a,k(x, y) = F b,k(x, y) = 0 for k > d.

Like in the case of vss, it is not hard to verify that for every honest Pi it holds that flagdi =
flagi = 0, that for every pair of honest parties Pi, Pj it holds that flagi,j = flagj,i = 0. In addition,
if Pd is internally-vss-conflicted with some corrupt Pi then flagdi = 1, and that if an honest Pj is
internally-vss-conflicted with Pi then flagj,i = 1.

Consider any set Q and honest Pi in Q. If PQ is corrupt than the challenges that PQ sent to Pi

were chosen by the adversary in Round 2. If PQ is honest and Q contains a corrupt party, then
the challenges (βQ,j)j∈C were already fixed in the second round. Otherwise, if PQ is honest and Q
does not contain a corrupt party, then the challenges (βQ,j)j∈C are uniformly distributed in both
worlds, and we fix them. This fixes all the challenges that the adversary sees, and we denote those
challenges by α1, . . . , αq for q ≤ d. We need the following lemma, that was proved in [AKP22,
Lemma H.2].

Lemma E.1. Let F be a field, let q ≤ d be some positive integers with 2d < |F|, and let α1, . . . , αq ∈ F
be distinct non-zero elements. Let n and t < n/2 be positive integers, and let C ⊆ {1, . . . , n} be a set
of size at most t. Let P (x) be a degree-2d polynomial, and let F̄ 0(x, y) and F̄ d+1(x, y), . . . , F̄ 2d(x, y)
be symmetric bivariate polynomials of degree at most t in each variable, such that F̄ k(0, 0) = P k for
k ∈ {0, d+ 1, . . . , 2d}, where P k is the k-th coefficient of P (x). For k ∈ {0, d+ 1, . . . , 2d}, and i ∈ C let
fk
i (x) := F̄ k(x, i). Let {fk

i (x)}k∈{1,...,d},i∈C be a set of degree-t polynomials, such that f̄k
i (j) = f̄k

j (i) for
all i, j ∈ C and k ∈ {1, . . . , d}.

108

Let F 0(x, y), . . . , F 2d(x, y) be uniformly distributed symmetric bivariate polynomials of degree at most
t in each variable, conditioned on (1) F 0(x, y) = F̄ 0(x, y) and F k(x, y) = F̄ k(x, y) for every k ∈ {d +
1, . . . , 2d}, (2) F k(x, i) = fk

i (x) for all k ∈ {1, . . . , d} and i ∈ C, and (3) F k(0, 0) = P k, where P k is the
k-th coefficient of P (x), for every k ∈ {1, . . . , d}.

Then the random variables (Gj(x, y))j∈{1,...,q}, where

Gj(x, y) :=
2d∑
k=0

αk
j · F k(x, y),

are uniformly distributed symmetric bivariate polynomials of degree at most t in each variable, conditioned
on

Gj(x, i) =
2d∑
k=0

αk
j · fk

i (x) and Gj(0, 0) = P (αj),

for all j ∈ {1, . . . , q} and i ∈ C.

Consider the real-world random variables (A(αi), B(αi), C(αi))i∈[q] and observe that
(A(αi), B(αi))i∈[q] are uniformly distributed, and that C(αi) = A(αi) · B(αi) for every i ∈ [q].
Since q ≤ d, and by Fact B.1 the ideal-world random variables (A(αi), B(αi), C(αi))i∈[q] have the
same distribution. Fix those random variables. By Lemma E.1 the random variables(

Gv,j(x, y) :=

2d∑
k=0

αk
j · F v,k(x, y)

)
v∈{a,b,c},j∈[q]

have the same distribution in both worlds, where F a,k(x, y) = F b,k(x, y) = 0 for k > d. Condi-
tioned on those values, it is not hard to verify that the computation in linop1 is done in the same
way in both worlds.

Corrupt Pd. Assume that Pd is corrupt. In this case, the tss instance is executed in the same way
in both worlds, so the view is the same in both worlds, as required.

Fix the view of the adversary in all tss instances as well. We continue with the analysis of the
vst. Again, we can analyse each instance separately. We split into cases.

Honest Pd, R. Assume that Pd and R are honest. Like in the case of vss and tss, one can verify
that flagRd = flagdR = 0, that for every honest Pi it holds that flagdi = flagRi = flagi,d = flagi,R = 0,
and that for every pair of honest parties Pi, Pj it holds that flagi,j = flagj,i = 0. In addition, if Pd is
internally-vss-conflicted with some corrupt Pi then flagdi = 1, and that if an honest Pj is internally-
vss-conflicted with Pi then flagj,i = 1. Therefore, the broadcasts of the flags of the honest parties
are the same in both worlds.

Consider a corrupt Pi with flagdi = 1. In the real world the values (ρdR,j,i)j∈[n] are opened in the
FiSig instance where R is the dealer and Pd is the intermediary, and since βd

R,i,j = fi(j) + ρdR,j,i it
is not hard to see that the same values are opened in the ideal world as well. Similarly, consider a
corrupt Pi with flagRi = 1. The for every honest Pj , in the real world the values (ρdj,i,R) are opened
in theFiSig instance where Pj is the dealer and R is the intermediary, and since βR,i,j = fi(j)+ρj,i,R,

109

the same values are opened in the ideal world as well. In addition, in both worlds the values
(fi(k))k∈[n] are opened in both worlds in the FiSig instance where Pd is the dealer and R is the
intermediary.

In the rest of theFiSig instances, where either the dealer or the intermediary or both are corrupt,
the simulator holds all the inputs to FiSig and the computation of the outputs is done in the same
way in both worlds.

Other cases. In all other cases, the vst instance is executed in the same way in both worlds, so
the view is the same in both worlds, as required.

We continue with the analysis of linop3. Consider any honest Pi and v ∈ [ℓ]. Then in the real
world, for every honest Pi′ with flagi′,R = 0 in vstF

i,v
, and every j′ ∈ H it holds that m∑

j=1

βv
i,jb

Gi,j

i′,j′ +
∑

j,k∈[m]

γvi,j,kb
Hi,j,k

i′,j′ + bF
i,v

i′,j′


=

 m∑
j=1

βv
i,j(G

i,j(j′, i′) + rG
i,j

j′,i′) +
∑

j,k∈[m]

γvi,j,k(H
i,j,k(j′, i′) + rH

i,j,k

j′,i′) + (F i,v(j′, i′) + rF
i,v

j′,i′)

 .

Therefore, the simulator perfectly simulates the output of FiSig for every honest dealer Pj′ and
honest intermediary Pi′ . If flagi′,R = 1 then R is corrupt, and then the output the FiSig is computed
in the same way in both worlds. Similarly, if Pi is corrupt then the output the FiSig is computed in
the same way in both worlds. Finally, one can verify that in all cases the leakage to the adversary
is computed exactly like in the real world. This concludes the analysis of linop3. The analysis of
linop2 follows in a similar way, by noting that, in the real world, for every honest Pi, every v ∈ [ℓ],
and every honest Pj , Pk it holds that bF

i,v

j,k = F i,v(k, j) + rF
i,v

k,j . This concludes the analysis of the
third round of the simulation.

E.5.4 Analysis: Output of Honest Parties

Consider an honest Pi. Then, by Lemma 6.5 Pi is never discarded as a dealer in vss, by the analysis
in Section 7.1.2 Pi is not discarded as a dealer in tss, and by Lemma 7.3 Pi is not discarded as a
dealer in vst. In addition, it is not hard to verify that all the assumptions of linop1, linop2 and linop3
are satisfied, so by the above lemmas, together with Lemmas 7.1, Lemma 8.2 and Lemma 8.3 it
holds that the set B contains no honest parties. Therefore, by Lemma 6.5, in the real world every
honest Pi′ outputs (F i,v(x, i′), Gi,j(x, i′), H i,j,k(x, i′))j,k∈[m],v∈[ℓ],, just like in the ideal world. In
addition, by the correctness of linop3 (Lemma 8.3), the recovered values that correspond to the
linear operations on the inputs of Pi are exactly (

∑m
j=1 β

v
i,jG

i,j(x, y) +
∑

j,k∈[m] γ
v
i,j,kH

i,j,k(x, y) +

F i,v(x, y))v∈[ℓ], as required.
Consider now a corrupt Pi. By the analysis in Section 7.1.2, the probability that there exists

a tss instance in which Pi is the dealer, Pi is not discarded by some honest party, and F a,0(0, 0) ·
F b,0(0, 0) ̸= F c,0(0, 0) is at most 2m2nd/(|F| − 1). Taking a union bound over all corrupt parties,
we conclude that the probability that there exists a tss instance in which a corrupt party is the
dealer, the dealer is not discarded by some honest party, and F a,0(0, 0) · F b,0(0, 0) ̸= F c,0(0, 0) is
at most 2m2n2d/(|F| − 1) ≤ 2−κ. Fix any execution for which this even does not occur. Then it

110

is not hard to see that in both worlds the set I is the same. In addition, by Lemma 6.5, for every
corrupt Pi so that i /∈ I it holds that the shares of the honest parties in Pi’s polynomials are the
same in both worlds. Finally, by the correctness of linop2 (Lemma 8.2) it follows that for every
((i1, v1), (i2, v2)) ∈ S so that i1, i2 /∈ I , the output of linop2 is F i1,v1(x, y)− F i2,v2(x, y), as required.

E.5.5 Analysis: Round 4 Simulation

By Lemma 7.3, in every vst execution where R is honest, and every Pi, Pj /∈ B, the (i, j)-th share
is F ′(j, i), where F ′(x, y) is the polynomial defined by the shares of the honest parties in the un-
derlying vss execution (and F ′(x, y) = F (x, y) if the dealer is honest). Therefore, both in the
real-world and in the simulation the shares are revealed in the same way, as required. In addi-
tion, by Lemma 7.3 in every vst execution where R is corrupt, R either opens F ′(x, y) or ⊥, where
F ′(x, y) is the polynomial defined by the shares of the honest parties in the underlying vss execu-
tion. Therefore, the outputs of the honest parties are the same in both worlds. This concludes the
analysis of the simulator of sh-comp.

F Augmented Single Input Functionality

In this section, we prove that protocol asif UC-emulates Fasif with statistical security in the
Fsh-comp-hybrid model. From the composition properties of UC-security, this implies that protocol
asif UC-emulates Fasif .

Let A be the dummy adversary. We define the simulator as follows. The simulator uses A in a
black-box manner, and forwards all messages between Z and A. The simulator first receives the
set of corrupt parties C.

F.1 The Simulator

Round 1. The simulator does as follows on behalf of every honest Pi.

• Samples a random symmetric bivariate polynomial F i,i′,v(x, y) of degree at most t in each
variable, for every i′ ∈ [n] and v ∈ [ℓ]

• Samples a random symmetric bivariate polynomial Gi,j(x, y) of degree at most t in each
variable, conditioned on Gi,j(0, 0) = 0, for every j ∈ [m].

• Samples a random symmetric bivariate polynomial H i,j,k(x, y) of degree at most t in each
variable, conditioned on H i,j(0, 0) = 0, for every j, k ∈ [m].

The simulator gives the adversary the values (F i,i′,v(x, j′), Gi,j(x, j′), H i,j,k(x, j′))i∈H,i′∈[n],v∈[ℓ],j,k∈[m],j′∈C
as well as (F i,i′,v(x, y))i∈H,i′∈C,v∈[ℓ] as the leakage from Fsh-comp.

Round 2. The simulator does nothing.

111

Round 3. The simulator receives the values (fi,j(xi))i∈H,j∈C as a leakage from Fasif , as well as
(1) fi1,k,v1(xi1) − fi2,k,v2(xi2) for every (k, (i1, v1), (i2, v2)) ∈ S so that Pi1 and Pi2 are honest,
(2) fi1,k,v1(xi1) for every (k, (i1, v1), (i2, v2)) ∈ S so that Pi1 is honest and Pi2 is corrupt, and (3)
fi2,k,v2(xi2) for every (k, (i1, v1), (i2, v2)) ∈ S so that Pi2 is honest and Pi1 is corrupt.

The simulator samples symmetric bivariate polynomials of degree at most t in each variables
(F̄ i,i′,v(x, j′), Ḡi,j(x, j′), H̄ i,j,k(x, j′))i∈H,i′∈[n],v∈[ℓ],j,k∈[m],j′∈C conditioned on

1. (F̄ i,i′,v(x, j′) = F i,i′,v(x, j′))i∈H,i′∈[n],v∈[ℓ],j′∈C,

2. (Ḡi,j(x, j′) = Gi,j(x, j′))i∈H,j∈[m],j′∈C,

3. (H̄ i,j,k(x, j′) = H i,j,k(x, j′))i∈H,j,k∈[m],j′∈C,

4. (F̄ i,i′,v(x, y) = F i,i′,v(x, y))i∈H,i′∈C,v∈[ℓ],

5. For every (k′, (i1, v1), (i2, v2)) ∈ S so that Pi1 and Pi2 are honest, the value m∑
j=1

βv1
i1,k′,j

Ḡi1,j(0, 0) +
∑

j,k∈[m]

γv2i1,k′,j,kH̄
i1,j,k(0, 0)

−
 m∑

j=1

βv2
i2,k′,j

Ḡi2,j(0, 0) +
∑

j,k∈[m]

γv2i2,k′,j,kH̄
i2,j,k(0, 0)


is equal to fi1,k,v1(xi1)− fi2,k,v2(xi2),

6. For every (k′, (i1, v1), (i2, v2)) ∈ S so that Pi1 is honest and Pi2 is corrupt, the value m∑
j=1

βv1
i1,k′,j

Ḡi1,j(0, 0) +
∑

j,k∈[m]

γv2i1,k′,j,kH̄
i1,j,k(0, 0)


is equal to fi1,k,v1(xi1),

7. For every (k′, (i1, v1), (i2, v2)) ∈ S so that Pi1 is corrupt and Pi2 is honest, the value m∑
j=1

βv2
i2,k′,j

Ḡi2,j(0, 0) +
∑

j,k∈[m]

γv2i2,k′,j,kH̄
i2,j,k(0, 0)


is equal to fi2,k,v2(xi2).

The simulator gives the following values to the adversary as the leakage from Fsh-comp: the
valuesOuti,i

′,v(x, y) :=
m∑
j=1

βv
i,i′,jG

i,j(x, y) +
∑

j,k∈[m]

γvi,i′,j,kH
i,j,k(x, y) + F i,i′,v(x, y)


i∈H,i′∈[n],v∈[ℓ]

and (1) the polynomial F i1,k,v1(x, y) − F i2,k,v2(x, y) for every (k, (i1, v1), (i2, v2)) ∈ S so that Pi1

and Pi2 are honest, (2) the polynomial F i1,k,v1(x, y) for every (k, (i1, v1), (i2, v2)) ∈ S so that Pi1 is
honest and Pi2 is corrupt, and (3) the polynomial F i2,k,v2(x, y) for every (k, (i1, v1), (i2, v2)) ∈ S so
that Pi1 is corrupt and Pi2 is honest.

112

Communication with Fsh-comp. At this stage the simulator receives the inputs of the honest
parties to Fsh-comp. For every corrupt Pi the simulator does as follows. If flagi = 1, or if
(F i,i′,v(x, j′), Gi,j(x, j′), H i,j,k(x, j′))i′∈[n],v∈[ℓ],j,k∈[m],j′∈C are not all symmetric bivariate polynomi-
als of degree at most t in each variable, or if there exist j, k ∈ [m] so that Gi,j(0, 0) · Gi,k(0, 0) ̸=
H i,j,k(0, 0) then the simulator inputs flagi = 1 to Fasif (the rest of the inputs do not matter). Other-
wise the simulator sets xi[j] = Gi,j(0, 0) for all j ∈ [m], and inputs flagi = 0 and xi to Fasif .

Round 4. The simulator receives the leakage (µi, ji,k, vi,k, f
ji,k,i,vi,k(xji,k))i∈H,k∈[µi] from Fasif .

The simulator samples symmetric bivariate polynomials of degree at most t in each variables
(F̃ i,i′,v(x, j′), G̃i,j(x, j′), H̃ i,j,k(x, j′))i∈H,i′∈[n],v∈[ℓ],j,k∈[m],j′∈C with the same conditioning (1)–(7) as
in Round 3, together with

8. For every i ∈ H and k ∈ [µi] so that ji,k ∈ H the value m∑
j=1

β
vi,k
ji,k,i,j

G̃ji,k,j(0, 0) +
∑

j,k∈[m]

γ
vi,k
ji,k,i,j,k

H̃ji,k,j,k(0, 0)


is equal to f ji,k,i,vi,k(xji,k).

The simulator gives (µi, ji,k, vi,k, F
ji,k,i,vi,k(x, y))i∈H,k∈[µi] to the adversary as the leakage of Fasif .

Communication with Fsh-comp. The simulator receives the inputs of the corrupt parties to
Fsh-comp. For every corrupt Pi with aborti = 1, the simulator inputs aborti = 1 to Fasif . Otherwise,
on inputs µi and (ji,k, i, vi,k)k∈[µi] from Pi, the simulator inputs aborti = 0, µi and (ji,k, vi,k)k∈[µi] to
Fasif . This conclude the simulation.

F.2 Analysis

The security proof of our protocol in the Fsh-comp-hybrid model follows the same lines as the
security proof of the classic BGW protocol [BGW88] for linear computation in the settings honest-
majority and perfect security against against a semi-honest adversary (see [AL17] for more infor-
mation). We therefore omit the analysis.

G General MPC

In this section, we prove that protocol mpc UC-emulates F with statistical security in the Fasif-
hybrid model. From the composition properties of UC-security, this implies that protocol mpc
UC-emulates F . As mentioned in Section 10, we assume without loss of generality that F has
public output.

Recall that protocol Πsm provides perfect security for the computation of F against semi-
malicious adversaries. We note that all we actually need is a weak form of security against rush-
ing semi-malicious adversaries, that first see the first-round messages of the honest parties, then
generate input xi and randomness ri for every corrupt Pi, and write (xi, ri)i∈C on a special input-
randomness tape, so the corrupt parties play according to (xi, ri)i∈C in the protocol Πsm. For secu-
rity, we assume that there exists a simulator Sim that receives the description of the semi-malicious

113

adversary and uses the adversary in a straight-line black-box way. That is, Sim first generates the
messages of the honest parties in the first round, and then queries the adversary in order to obtain
(xi, ri)i∈C. Therefore, it will be convenient to assume that Sim actually receives (xi, ri)i∈C from
an external party. In addition, we assume that at the end of the first-round simulation, Sim sends
(xi)i∈H to the ideal functionality F and receives F(x1, . . . ,xn).18

Let A be the dummy adversary. We define the simulator for mpc as follows. The simulator
uses A in a black-box manner, and forwards all messages between Z and A. The simulator first
receives the set of corrupt parties C.

G.1 The Simulator

Rounds 1 and 2. The simulator does nothing in Round 1 and Round 2.

Round 3. The simulator executes Sim to get the messages from the honest parties to the corrupt
parties, denoted (ai,j)i∈H,j∈C. For every i ∈ H and j ∈ C, the simulator samples Shamir’s shares
of ai,j , denoted (ai,j [1], . . . , ai,j [n]). In addition, for every i ∈ H and j ∈ H, the simulator samples
random values for the shares (ai,j [k])k∈C. Moreover, for every honest Pi the simulator samples
random values for the shares (si,j [k])j∈[2ℓ],k∈C and (sbi,j [k])j∈{2ℓ+1,...,4ℓ},b∈{0,1},k∈C. The simulator
also samples random pads ηi,j for every i ∈ H and j ∈ C, and sets A′i,j := ai,j + ηi,j . For i ∈ H and
j ∈ H the simulator sets A′i,j to be a random value.

For every honest Pi and very corrupt Pk, the simulator provides the adversary with the fol-
lowing values as the output of Fi that corresponds to Pk: (1) the message ai,k together with ηi,k,
(2) the shares (ai,j [k])j∈[n], (3) the shares (si,j [k])j∈[2ℓ], (4) the shares (sbi,j [k])j∈{2ℓ+1,...,4ℓ},b∈{0,1}, (5)
the encrypted messages (A′i,j)j∈[n].

In addition, for every honest Pi and Pj , the simulator samples ρi,j and ηi,j at random. For an
honest Pi and corrupt Pj , the simulator samples ρi,j at random. The simulator gives the adversary
the following values as the additional leakage of Fasif : (1) ηj,k − ρk,j for every honest Pj , Pk, and
(2) ηj,k, ρj,k for every honest Pj and corrupt Pk.

At this stage the simulator receives the input of the corrupt parties to Fasif . The simulator
returns the set I as the set of all corrupt Pi’s with flagi = 1. For every corrupt Pi and Pj so that
i /∈ I , the simulator holds all the inputs of Fi and can provide Pj with the corresponding outputs.
This concludes the simulation of the third round.

Communication with F . For every corrupt Pi with flagi = 1, the simulator resets xi and ri to be
the all-zero string. Denote the messages For every corrupt Pi with flagi = 0, the simulator holds
the values xi and ri that Pi sent to Fasif . The simulator inputs (xi)i∈C to F . The simulator receives
from F the outputs of the corrupt parties, denoted F(x1, . . . ,xn).

Round 4. The simulator provides Sim with (xi, ri)i∈C, receives the query (xi)i∈C from Sim to
F and provides Sim with the outputs F(x1, . . . ,xn). The simulator now receives from Sim the
broadcasts (bi)i∈H of the honest parties in the second round of Πsm.

For every i ∈ H the simulator sampled ηi,j , ρi,j for every j ∈ [n]. For every corrupt Pi so that
i /∈ I , the simulator holds the inputs of Fi can compute the values ηi,j , ρi,j for every j ∈ [n]. For
every i, j /∈ I we set νj,i := ηj,i − ρi,j .

18We note that the protocol of [ABT18] satisfies this property.

114

For every i ∈ I and every j /∈ I , the simulator broadcasts aj,i[k] on behalf of every honest Pk,
where aj,i was sampled by the simulator in Round 3 if j ∈ H, and aj,i[k] is given in the output of
Fj if j ∈ C.

In addition, for i /∈ I the simulator does as follows. The simulator sets Li := I . In addition, for
every j /∈ I the simulator sets Aj,i := A′j,i − νj,i. For every j ∈ I let Aj,i := aj,i, where aj,i is the
message that Pj sends to Pi according to Πsm when xj and rj are the all-zero string. Consider the
length-2ℓ binary string βi = (βi[1], . . . ,βi[2ℓ]) that corresponds to (Li, (Aj,i)j∈[n]). We split into
cases.

• Assume that Pi is honest. The simulator executes SimRE
i (bi) to obtain a binary string, denoted

si,1, . . . , si,4ℓ, where SimRE
i is the simulator of the randomized encoding of Gi. For every

j ∈ [2ℓ] the simulator samples Shamir shares of si,j conditioned on the k-th share being
si,j [k]. Similarly, for every j ∈ {2ℓ + 1, . . . , 4ℓ} the simulator samples Shamir shares of si,j
conditioned on the k-th share being s

βi[j−2ℓ]
i,j [k]. For every honest Pk, the simulator gives

the adversary the values (si,j [k])j∈[2ℓ] and (s
βi[j−2ℓ]
i,j [k])j∈{2ℓ+1,...,4ℓ} as the output of Fasif that

corresponds to Pk.

• Assume that Pi is corrupt. Then for every honest For every honest Pk, the simulator gives
the adversary the values (si,j [k])j∈[2ℓ] and (s

βi[j−2ℓ]
i,j [k])j∈{2ℓ+1,...,4ℓ} as the output of Fasif that

corresponds to Pk, where si,j [k] is computed by the simulator that holds all inputs to Fi.

This concludes the simulation.

G.2 Analysis

The first and second round consist only of the input-phase of Fasif so there is no communication
in this round.

Third round simulation. In the third round, the adversary first receives the outputs of Fi for ev-
ery honest Pi as leakage. By the perfect security of Πsm, the messages (ai,k)i∈H,k∈C have the same
distribution in both worlds. Fix those messages. The random pads (ηi,k)i∈H,k∈C also have the
same distribution in both worlds, and we fix them as well. By the perfect privacy of Shamir’s se-
cret sharing, the shares (ai,j [k])i,j∈H,k∈C, (si,j [k])i∈H,j∈[ℓ],k∈C and (sβi,j [k])i∈H,j∈{2ℓ+1,...,4ℓ}β∈{0,1},k∈C
have the same distribution in both worlds, and we fix them as well. In addition, the shares
(ai,j [k])i∈H,j∈C,k∈[n], are sampled in the same way in both worlds, and we fix them as well. Fi-
nally, for every i ∈ H and k ∈ C the encrypted message A′i,k is fixed and equal to ai,j + ηi,k in
both worlds, while for every i ∈ H and k ∈ H the encrypted message A′i,k is uniformly distributed
in both worlds. In addition, in the third round the adversary receives νj,k as a leakage for every
honest Pj , Pk. In both worlds νj,k is uniformly distributed since ρk,j is uniformly distributed. The
adversary also receives ηj,k and ρj,k for every honest Pj and corrupt Pk, where ηj,k was already
fixed, and ρj,k is uniformly distributed in both worlds. At the end of the round, the inputs of
the corrupt parties to Fasif are generated in the same way in both worlds. Fix those inputs. This
concludes the analysis of the third round simulation.

Fourth round simulation. For every i, j /∈ I , the values νj,i are fixed and the same in both worlds.
In addition, for every i ∈ I and j /∈ I , the shares (ai,j [k])k∈H are fixed and the same in both worlds.

115

The first round messages of the corrupt parties in Πsm are generated according to (xi, ri)i∈C
and fully defines the messages (ai,j)i∈C,j∈[n]. We continue by analysing the broadcasts regarding
the i-th randomized encoding, for i /∈ I .

• Assume that Pi is honest, denote the input of Pi by xi and the randomness that Pi picked
for Πsm by ri (this is a random variable). Observe that this two values fully determine the
first-round messages (ai,j)j∈[n] of Pi in Πsm (those are random variables as well).

In the real-world, consider the second-round broadcast bi of Pi, that is defined according to
xi, ri, (aj,i)j∈[n]. By the perfect security of Πsm, we conclude that bi has the same distribution
in both worlds. Fix those broadcasts. Note that the output of Gi on inputs (xi, ri), (ρi,j)j∈[n],
Li = I and (Aj,i)j∈[n] is indeed the vector bi.

Observe that the vector βi is fixed and the same in both worlds. Consider the real-world
random variables (gi,1, . . . , gi,4ℓ) and the ideal-world random variables (si,1, . . . , si,4ℓ). by the
perfect correctness of the randomized encoding, the decoding of (gi,1, . . . , gi,4ℓ) is bi. There-
fore, by the perfect privacy of the randomized encoding, the distribution of (gi,1, . . . , gi,4ℓ) is
the same as the distribution of (si,1, . . . , si,4ℓ). Conditioned on those values, it is not hard to
see that the broadcasts of the honest parties have the same distribution in both worlds.

• Assume that Pi is corrupt. Then broadcasts of every honest Pk are based on the same fixed
values (βi, (si,j [k])j∈[2ℓ], (s

βi[j−2ℓ]
i,j [k])j∈{2ℓ+1,...,4ℓ}) in both worlds, and therefore they are the

same.

This concludes the analysis of the fourth round simulation.

Outputs of honest parties. In the ideal world the output of every honest Pi is F(x1, . . . ,xn).
It remains to show that this is also the output in the real world. We’ve seen that the first-round
messages of Πsm correspond to an execution with inputs (xi, ri) to Pi, and that for every honest Pi

the second-round broadcast is also computed in the same way as in Πsm. To complete the proof
we need to show that for every corrupt Pi, the second-round broadcast of Pi is also computed as
in Πsm. This is clearly true for i ∈ I , since the parties locally compute the broadcast bi according
to xi = 0 and ri = 0. In addition, for a corrupt Pi with i /∈ I , this is true by the perfect correctness
of the randomized encoding. Therefore, the messages that the honest parties see correspond to an
execution of Πsm with (xi, ri)i∈[n]. Correctness now follows from the perfect correctness of Πsm.
This concludes the proof.

116

	Introduction
	Our Results
	Verifiable Secret Sharing
	Single Input Functionalities
	General Multiparty Computation

	Technical Overview
	Verifiable Secret Sharing
	Step I: Signature Scheme with Virtual Verifiers
	Step II: Emulating the verifiers

	From VSS to General MPC

	Preliminaries
	Linear Private-Opening Interactive Signature scheme
	Linear Interactive Signature Scheme
	Verifiable Secret Sharing
	The Construction
	Analysis
	Linearly-Homomorphic VSS
	On Tentative Shares

	The VSS Suite
	Triple Secret Sharing
	Linear Operations over Tentative Shares from a Single Dealer
	The Triple Secret Sharing Protocol

	Verifiable Sharing and Transferring
	Analysis

	Share and Compute
	The Share-compute Functionality
	The Share-compute Protocol
	Linear Operations over Tentative Shares from Different Dealers
	Private Linear Operations over Tentative Shares from a Single Dealer with Verifiable Opening
	The Protocol

	Augmented Single Input Functionalities
	General Multiparty Computation
	Overview
	The protocol

	Lower Bound: Single Input Functionality
	Appendix: SIF does not imply VSS
	Definition of VSS
	Impossibility Result

	Appendix: Standard Useful Facts
	Polynomials
	Secret Sharing

	Linear Private-Opening Signature Scheme
	Honest D and I
	The Simulator
	Analysis

	Honest D, Corrupt I
	The Simulator
	Analysis

	Corrupt D, Honest I
	The Simulator
	Analysis

	Corrupt D and I
	The Simulator
	Analysis

	Linear Interactive Signature Scheme
	Honest D and I
	The Simulator
	Analysis

	Honest D, Corrupt I
	The Simulator
	Analysis

	Corrupt D, Honest I
	The Simulator
	Analysis

	Corrupt D and I
	The Simulator
	Analysis

	The Sharing Functionality
	Verifiable Secret Sharing
	Triple Secret Sharing
	Verifiable Sharing and Transferring
	The sh-comp Simulator
	Round 1 Simulation: Input Phase
	Round 2 Simulation
	Round 3 Simulation: Linear Computation Phase
	Communication with Fsh-comp
	Round 4 Simulation: Opening Phase
	Communication with Fsh-comp

	Analysis of the sh-comp Simulator
	Analysis: Round 1 Simulation
	Analysis: Round 2 Simulation
	Analysis: Round 3 Simulation
	Analysis: Output of Honest Parties
	Analysis: Round 4 Simulation

	Augmented Single Input Functionality
	The Simulator
	Analysis

	General MPC
	The Simulator
	Analysis

