
Making Classical (Threshold) Signatures
Post-Quantum for Single Use on a Public Ledger

Laurane Marco, Abdullah Talayhan, and Serge Vaudenay

EPFL, Switzerland
{laurane.marco, abdullah.talayhan, serge.vaudenay}@epfl.ch

Abstract. The Bitcoin architecture heavily relies on the ECDSA sig-
nature scheme which is broken by quantum adversaries as the secret key
can be computed from the public key in quantum polynomial time. To
mitigate this attack, bitcoins can be paid to the hash of a public key
(P2PKH). However, the first payment reveals the public key so all bit-
coins attached to it must be spent at the same time (i.e. the remaining
amount must be transferred to a new wallet). Some problems remain
with this approach: the owners are vulnerable against rushing adver-
saries between the time the signature is made public and the time it is
committed to the blockchain. Additionally, there is no equivalent mech-
anism for threshold signatures. Finally, no formal analysis of P2PKH
has been done. In this paper, we formalize the security notion of a dig-
ital signature with a hidden public key and we propose and prove the
security of a generic transformation that converts a classical signature
to a post-quantum one that can be used only once. We compare it with
P2PKH. Namely, our proposal relies on pre-image resistance instead of
collision resistance as for P2PKH, so allows for shorter hashes. Addition-
ally, we propose the notion of a delay signature to address the problem
of the rushing adversary when used with a public ledger and discuss the
advantages and disadvantages of our approach. We further extend our
results to threshold signatures.

1 Introduction

The recent progress made on the development of quantum computers poses a
threat to public key cryptography schemes that are based on the discrete loga-
rithm and factorization problems. Hence, it has become essential to find post-
quantum alternatives to classical public key primitives. In this work, we focus
on digital signatures, which are heavily used in cryptocurrencies. Despite a stan-
dardization effort made by the NIST, current post-quantum signatures are not
yet mature enough, and struggle to compare with their classical counterparts,
as shown by the new call for post-quantum signature proposals [15].

An alternative way to achieve post-quantum security of digital signatures,
by using a simpler mechanism, is to hide the public key and release it along
with the signature for verification. This however restricts key pairs to one-time
use only, since in a quantum setting any key pair is trivially broken after its

release. Bitcoin P2PKH (Pay To Public Key Hash) transactions [7] currently
use a similar technique. More precisely, an account address consists of the hash
of a public key and as long as a user does not spend the funds available on their
account, only their address is revealed. The actual public key is released only
when a transaction is made from this account. If a signer fears a quantum attack,
they should collect all their unspent assets linked to the public key and make a
new transaction to redistribute them to a new address (public key hash). The
key pair is indeed broken after the transaction, but the wallet (related to the
public key) does not contain any bitcoins left to be stolen.

However, the P2PKH construction has not been formalized nor proven secure,
and it is open to attacks by a rushing quantum adversary between the release of
the signature and the time the transaction is published to the ledger. Indeed, at
this time any adversary who verifies the transaction is able to recover the secret
key from the public one, and forge a new signature. If that signature is published
on the ledger before the previous one, the attack is successful, and funds can be
stolen. Furthermore, to the best of our knowledge, there is no threshold variant
of this construction, and the rushing problem becomes worse in the threshold
setting. Indeed, any signing participant which outputs the signature can proceed
with such an attack, since the public key can be recovered from the signature.
Additionally, without guaranteed output delivery, it might be the case that the
honest signers do not even learn the original signature by the end of the protocol,
while the adversary can forge a new one, since they get access to the common
public key.

Our goal is to find a pragmatic solution to these problems that is efficient and
secure against quantum adversaries whilst still being compatible with classical
algorithms that are already in production. We stress that post-quantum signa-
tures are the obvious solutions, but they are not fully standardized yet, are less
efficient and rely on less studied assumptions. We thus propose our construction
as a solution for a transitional phase, whilst waiting for efficient, standardized
post-quantum signatures. In this work, we propose a generic transform that takes
any classically secure signature scheme and turns it into a signature scheme with
classical (with unlimited usage) and quantum (limited to one signature) secu-
rity under minimal assumptions by hiding the public key (Section 2). We also
formalize the existing construction used in Bitcoin P2PKH, analyze its security
and compare it with our approach. Furthermore, we provide a framework for a
delayed signature verification that protects the public key against rushing adver-
saries until the corresponding signature is published on a public ledger (Section
3). Finally, since threshold signatures are being used frequently in cryptocurren-
cies we extend the transform to the threshold setting (Section 4). Our extension
of the generic transform to the threshold setting does not require a multi-party
hash function evaluation (contrary to the post-quantum candidates), at the cost
of an increase in the public key and signature size which is linear in the number of
participants. In Appendix G, we introduce a non-generic threshold variant that
only induces a small overhead of a single multi-party hash function evaluation
with constant public key and signature size.

2

1.1 Related work

In this section, we discuss current classical signatures and post-quantum signa-
ture proposals, and their potential for constructing threshold signatures. We also
introduce hash-based signatures as they share similar ideas to our construction.

Cozzo and Smart [6] estimate the performance of threshold versions of the
NIST round 3 candidate schemes using generic MPC techniques. The most
promising candidates are the multivariate schemes (Rainbow and LUOV), now
broken ([3],[8]), as they only require linear secret sharing (LSSS). The other
round 3 and 4 candidates (lattice-based, hash-based) are less friendly to generic
MPC techniques, and require a tailored approach to be thresholdized. On the
other hand, classical signatures,such as Schnorr and ECDSA signatures, already
have practical and efficient threshold versions .
Hash-based signatures were introduced by Lamport. They are one-time signa-
tures that rely on hash-functions, and signing requires to reveal the secret key.
Since the unforgeability only relies on the security of the underlying one-way
function it makes them a good candidate for post-quantum security. In fact,
SPHINCS+ [2] is a NIST 4th round candidate and an instance of hash-based
signature. The idea of post-quantum signatures designed for blockchain has al-
ready been explored in [5],[13]. They construct a post-quantum signature scheme
from an optimised hash-based signature scheme with the objective of using it
for blockchain applications. However, one common problem about constructing
threshold variants of the hash based schemes is the need for multiple hash func-
tion evaluations over the secret shares. This problem motivated our approach
that does not require a multi-party hash function evaluation. Finally the con-
cept of hiding a public key to guarantee post-quantum security for blockchain
transactions was introduced in [4], but it is not formalised nor proven secure,
and no extension to the threshold case is considered.

1.2 Overview of the Construction

We now give an overview of our transformation and the methodology for re-
leasing and verifying the signatures in order to give a complete picture of our
contribution. We can simply explain our construction by putting together Figure
2, Figure 7, and Figure 9 as follows:
A key pair (sk, pk), e.g. for ECDSA, is transformed to

– sk′ = (sk, ρ, t1, t2)
– pk′ = (H(ρ), pk+ ρ,H(t1), H(t2))

where ρ, t1 and t2 are sampled randomly. Intuitively, the public key is encrypted
with a one-time pad key ρ, committed by H(ρ). Two secret tokens t1 and t2
are also committed in pk′. Hence, the original public key pk is hidden using a
committed secret key.

To sign a message msg, we compute a signature, e.g. ECDSA, on message
msg with sk and obtain σ. Then we set:

– σ1 = H(σ, ρ,msg, open)
– σ2 = (σ, ρ, open)

3

where open is a randomly sampled opening value. In order to publish the sig-
nature, the signer posts (t1, σ1,msg) on the public ledger as a commitment for
the actual signature σ (Stage 1). Once the signer observes that this commit-
ment has been safely posted on the ledger, the signer posts t2 on the ledger and
further (t1, σ1) pairs are invalid afterwards (Stage 2). Finally, the signer posts
σ2 after confirming that t2 is safely posted (Stage 3). This prevents forgeries by
rushing adversaries. The signature (σ1, σ2) is verified for msg with public key
pk′ = (H(ρ), pk+ ρ,H(t1), H(t2)) if the following conditions are satisfied:

1. σ1 appears in the ledger between a preimage of H(t1) and a preimage of
H(t2).

2. (σ, ρ, open) parsed from σ2 allows to verify σ1 = H(σ, ρ,msg, open).
3. ρ is a preimage of H(ρ).
4. After recovering pk using ρ, the original signature σ verifies the message msg.

Here, condition 1. checks that the order of commitments correctly appeared on
the ledger. Condition 2. checks that the commitments are consistent with each
other. Condition 3. verifies that the opening of the key commitment is correct
and condition 4. checks if the original signature is actually a valid signature. The
key idea is that a commitment on a signature must appear on the ledger between
the publication of two tokens and the second token allows to safely publish pk.

For our extension to threshold signatures, the transformation is similar, ex-
cept that the one-time pad key ρ and the public key pk are secretly shared. More
concretely, we assume that each participant with a key pair (pki, ski) will publish
pki + ρi and keep ρi secret. The threshold signature will be augmented with the
release of the ρi which will be used to uncover pki.

We summarize the overhead induced by P2PKH and our transformations in
Table 1. Finally, one can find a reminder on the definitions concerning threshold
signatures and their security, secret sharing and hash functions’ security required
for the rest of this work in Section A of the Appendix.

2 Hiding a Public Key

In this section, we give a generic transform that takes any classical signature
scheme and hides the public key by adding a uniform masking value in order
to obtain a post-quantum secure signature scheme with the single use of a pub-
lic/private key pair. We then compare this transform with the Bitcoin P2PKH
construction where the public key is hidden by using a hash function.

2.1 A Generic Transform

We present a transform that takes any signature scheme and allows one to sign
while only disclosing the public key at signing time.
More precisely, it takes as input Σ = (KeyGenΣ ,SignΣ ,VerifyΣ) with security
parameter λ, and a hash function H. We assume that the public key domain D
has a finite group structure with law +. The transform is illustrated in Figure
2.

4

Key
Generation

Signing Verification Signature
Size

Assumption

P2PKH
(Fig. 5)

1H - 1H |Gel| CR

HiddenPK
(Fig. 2)

1H+ 1Gadd - 1H+ 1Gadd |Gel| 2PreIm

DelayL (Fig.
9)

3H+ 1Gadd 1H 2LU+ 4H+
1Gadd

|Gel|+|H|+λ RO

Thresh-
HiddenPK
(Fig. 10)

nH+ nGadd - |S|H+
|S|Gadd +
O(Rec)

|S| · |Gel| 2PreIm

Compact
Thresh-

HiddenPK
(Fig. 23)

O(Shr) + 1H O(Rec) 1H+ 1Gadd |Gel| 2PreIm

Fig. 1: Complexity summary of the added overhead of the transformations - H
denotes a hash function evaluation, Gadd a group operation, LU a table lookup of
tokens, O(Shr) and O(Rec) the complexity of secret sharing and reconstruction,
|Gel| the size of a group element, n is the number of parties involved in a threshold
setting and S is the set of signers. CR stands for collision resistance, 2PreIm for
2nd pre-image resistance and RO for random oracle. λ is the security parameter.

HiddenPK-KeyGen(λ)

1 : (sk, pk)←$KeyGenΣ(λ)

2 : ρ←$D
3 : s̃k← (sk, ρ)

4 : p̃k← (H(ρ), pk+ ρ)

5 : return (s̃k, p̃k)

HiddenPK-Sign(s̃k,msg)

1 : (sk, ρ)← s̃k

2 : σ ← SignΣ(sk,msg)

3 : σ̃ ← (σ, ρ)

4 : return σ̃

HiddenPK-Verify(σ̃, p̃k,msg)

1 : (σ, ρ)← σ̃

2 : (p̃k1, p̃k2)← p̃k

3 : if H(ρ) = p̃k1

4 : pk = p̃k2 − ρ

5 : return VerifyΣ(σ, pk,msg)

6 : return 0

Fig. 2: HiddenPK(Σ, λ, H) generic transform.

We now define and prove the security of our transform in both the classical
and the quantum setting.

Theorem 1 (Classical security of HiddenPK). The HiddenPK(Σ,λ,H) trans-
form is secure against existential forgery under chosen-message attack if the
underlying signature scheme Σ is and if H is 2nd pre-image resistant.

Proof. This is a classic proof by reduction, and we defer the full proof to Ap-
pendix B.

We now define a similar security notion for a quantum adversary and prove
the security of HiddenPK. We want to formalize the fact that a quantum ad-
versary should not be able to recover the private key (otherwise it can trivially
forge signatures), and that the key pairs are being used only once for each signa-
ture. Contrarily to one-time signatures which remain secure after the signature

5

is released, the same notion does not apply to the case where the key pair is
broken by a quantum adversary. So, we rather call it a zero-time signature, and
we consider key-only security, since each key-pair is discarded after a signature
is issued.

Definition 1 (QEUF-KOA security). A digital signature scheme
(KeyGen,Sign,Verify) with associated security parameter λ is quantum secure
against existential forgery under key-only attack if for any quantum polynomial
time adversary A, the advantage of A in the QEUF-KOA game is negligible, i.e.

AdvQEUF-KOA
A = Pr[QEUF-KOA(A) −→ 1] ≤ negl(λ)

where the QEUF-KOA game is defined in Figure 3.

QEUF-KOA(A)
1 : KeyGen −→ (sk, pk)

2 : A(pk) −→ (m∗, σ∗)

3 : return Verify(σ∗, pk,m∗)

Fig. 3: The QEUF-KOA game for zero-time quantum security.

Theorem 2 (Quantum security of HiddenPK). Consider a digital signature
scheme Σ with security parameter λ, if the hash function H is quantum one-
way over D and the statistical distance between the distribution of pk in the
public key domain (D,+) and the uniform distribution in D is negligible, then
HiddenPK(Σ,λ,H) is zero-time quantum unforgeable (QEUF-KOA).

Note that this result requires no security assumption related to the underlying
signature scheme Σ. It is true even though the underlying scheme is broken by
quantum (or classical) adversaries. It is still true for a trivial scheme Σ for which
VerifyΣ always returns true. The only security assumption is about the quantum
one-wayness of H. The proof consists in saying that breaking HiddenPK implies
breaking H.

Proof. In the QEUF-KOA game, the signing key sk is unused. We define D(pk) by
the execution of the game after the first step.D(pk) can be seen as a distinguisher
between the distribution of pk and the uniform distribution. The advantage is
negligible, by assumption on the statistical distance. We can now define B as on
Figure 4 playing the QOW game. Since ρ and pk are independent, (H(ρ), pk+ρ)
and (H(ρ), x) have the same distribution when pk is uniform. Hence, QOW
returns 1 with the same probability as D.

Note that the HiddenPK transform is generic, and can be further optimized to
fit specific signature schemes to obtain shorter signatures. We give an example of
HiddenPK tailored to ECDSA in Appendix E which does not store the masking
value in the signature, by making use of the fact that we can recover public keys
from the signature directly.

6

QOW(B)
1 : ρ←$D
2 : y = H(ρ)

3 : B(y)→ ρ∗

4 : return 1H(ρ)=H(ρ∗)

B(y)
1 : x←$D

2 : p̃k← (y, x)

3 : A(p̃k)→ (m∗, σ̃∗)

4 : (σ∗, ρ∗)← σ̃∗

5 : return ρ∗

Fig. 4: QOW game for adversary B (Theorem 2).

2.2 Bitcoin P2PKH

The HiddenPK transform differs from the approach taken in Bitcoin P2PKH of
hiding the public key behind a hash. We give a generalized version of P2PKH
as the HashedPK transform in Figure 5, applicable to any signature scheme Σ,
and analyze its security.
Note that this transform requires a stronger assumption than our HiddenPK
transform, namely collision resistance.

HashedPK-KeyGen(λ)

1 : (pk, sk)←$KeyGenΣ(λ)

2 : pkH ← H(pk)

3 : s̃k← (sk, pk)

4 : return (s̃k, pkH)

HashedPK-Sign(s̃k,msg)

1 : (sk, pk)← s̃k

2 : σ ← SignΣ(sk,msg)

3 : σ̃ ← (σ, pk)

4 : return σ̃

HashedPK-Verify(σ̃, pkH,msg)

1 : (σ, pk)← σ̃

2 : if pkH = H(pk) :

return VerifyΣ(σ, pk,msg)

3 : return 0

Fig. 5: HashedPK(Σ, λ, H) a generic transform from the Bitcoin P2PKH con-
struction.

However, EUF-CMA security can be proven for the HashedPK construction
with the additional assumption of collision resistance on H (hence a larger hash
length and the need for a hash key). QEUF-KOA security can be proven as in
Theorem 2.

Theorem 3 (Classical security of HashedPK). If Σ is EUF-CMA and if H
is collision resistant (with a common random hk) then HashedPK(Σ,λ,H) is
EUF-CMA.

Proof. The proof follows similarly to that of Theorem 1, by considering an ad-
versary against collision resistance, instead of second pre-image resistance.

Theorem 4 (Quantum security of HashedPK). Consider a digital signature
scheme Σ with associated parameters λ, if the hash function H is quantum
one-way over D and the statistical distance between the distribution of pk in
the public key domain (D,+) and the uniform distribution in D is negligible,
HashedPK(Σ, pk, H) is QEUF-KOA.

Proof. The proof is similar to that of Theorem 2.

7

3 Delayed Signatures

One issue that needs to be addressed is front-running. In our case, if at the end
of the protocol a rushing quantum adversary has access to the signature before it
is published, the adversary can recover the public key and derive the secret key
to produce arbitrarily many new signatures before the original one is registered.
We therefore need a mechanism to prevent this behaviour.

We assume that signatures are published in an append-only ledger where
everyone can reliably check the contents of the ledger consistently and everyone
can append to the ledger with some publication delay.

We propose the idea of a two-stage transaction in which the first stage
would consist of announcing a commitment for the signature to be verified,
and the second one would release the actual signature for verification. This two
stage commit and reveal approach was introduced by Fawkescoin [4]. The high
level idea is to commit to the signature σ̃ using a commitment scheme with
opening value open that returns a commitment value com. Namely, we write
Commit(σ̃, open)→ com.

Formally, we consider a signature that is composed of two components,
namely σ1, σ2. The first component (σ1) is appended to the ledger as a sep-
arate transaction to commit to the signature. The submission of the second
transaction follows after the first component being issued to the ledger. We now
define the following delayed signature scheme and the corresponding security
notion. Note that we switch the naming to one-time signatures because only
the signatures that are committed are considered valid and hence, a signature
released without a valid commitment does not represent a forgery.

Definition 2 (One-Time Delayed Signature). A One-Time Delayed Signa-
ture consists of three algorithms
(Delay-KeyGen,Delay-Sign,Delay-Verify) such that:

– (sk′, pk′)← Delay-KeyGen(λ): A PPT algorithm that takes as input a security
parameter λ and outputs a secret key sk′ and the corresponding public key
pk′.

– (σ1, σ2)← Delay-Sign(sk′,msg): A PPT algorithm that takes as input a secret
key sk′ and the message to be signed msg. Outputs a two component signature
(σ1, σ2) where σ1 acts as a commitment for the σ2 to be verified after the
delay.

– 0/1← Delay-Verify(pk′, (σ1, σ2),msg): A deterministic polynomial time algo-
rithm that takes as input a public key pk′, a two component signature (σ1, σ2)
and the message msg to be verified. Outputs 1 if (σ1, σ2) is a valid signature
tuple for msg, 0 otherwise.

Definition 3 (One-Time Delayed Signature Unforgeability). A One-Time
Delay signature scheme is unforgeable if for any quantum polynomial time ad-
versary A the advantage of winning the OTDU game (Figure 6) is negligible in
λ, that is:

AdvOTDU
A = Pr[OTDU(A)→ 1] ≤ negl(λ)

8

OTDU(A)
1 : (sk′, pk′)←$Delay-KeyGen(λ)

2 : msg← ⊥
3 : queried← false

4 : AOSig(pk′)→ st, L

5 : A(st, σ2)→ s1, s2,m

6 : if Delay-Verify(pk′, s1, s2,m) ̸= 1

7 : return 0

8 : return 1s1∈L∧m ̸=msg

OSig(m)

1 : if queried

2 : return ⊥
3 : queried← true

4 : msg← m

5 : (σ1, σ2)← Delay-Sign(sk′,m)

6 : return σ1

Fig. 6: OTDU security game.

Intuitively, OTDU game consists of supplying the adversary with the public
key pk′, then the adversary outputs a list of σ1 candidates in the list L. During
this process, it is possible to query the OSig oracle once, to obtain a valid σ1

for msg. This behaviour corresponds to the adversary observing a signer posting
pk′, σ1 to the ledger. In the second execution of the adversary, it is given σ2

and it outputs a two component signature s1, s2 and the forged message m.
This corresponds to the adversary seeing the release of the actual signature
within σ2. The adversary wins if the forged signature verifies successfully, the
first component s1 has been generated in the first execution and the forged
message m is not equal to msg.

3.1 Constructing a One-Time Delayed Signature from a HiddenPK
Signature

We construct a One-Time Delayed Signature from a HiddenPK signature by com-
mitting to the signature (σ1) and releasing the second part of the signature along
with the opening (σ2). The signature is only correctly verified after the signer
releasing σ2 and its opening along with the signature. More concretely, given a
HiddenPK signature scheme ΣHPK, a QOW hash function H and a commitment
scheme Commit, we construct a delayed signature in Figure 7.

Theorem 5. (QEUF-KOA→ OTDU) For a given QEUF-KOA secure HiddenPK
signature scheme ΣHPK, and a random oracle Commit with output length λ, the
resulting delayed signature scheme DelayHiddenPK (Figure 7) is unforgeable.

The proof follows from the fact that the OSig oracle can be simulated by
returning a random value as a random oracle would do. Moreover, it is possible to
extract the forged signature (σ̃) value by intercepting the random oracle queries
that A submits and obtain the output m from the output tuple (s1, s2,m). As
a result, we have an adversary that wins QEUF-KOA game by returning (σ̃,m)
given p̃k. We refer to Appendix B for the full proof.

However, this model is not strong enough to be practically used. When using
the OTDU notion, we can still face two practical problems: a Denial of Service

9

Delay-KeyGen(λ)

1 : (s̃k, p̃k)←$KeyGenΣHPK
(λ)

2 : return (s̃k, p̃k)

Delay-Sign(s̃k,msg)

1 : σ̃ ← SignΣHPK
(s̃k,msg)

2 : open←$ {0, 1}λ

3 : com← Commit(σ̃||msg, open)

4 : σ1 ← com

5 : σ2 ← (σ̃, open)

6 : return (σ1, σ2)

Delay-Verify(p̃k, (σ1, σ2),msg)

1 : com← σ1

2 : (σ̃, open)← σ2

3 : if Commit(σ̃||msg, open) ̸= com

4 : return 0

5 : return HiddenPK-Verify(σ̃, p̃k,msg)

Fig. 7: Delayed signature construction from a HiddenPK signature.

(DoS) attack consisting of flooding the ledger with rogue σ1 commits, and a
rushing adversary who would break the signature after seeing (σ1, σ2), and rush-
ing to post a rogue (σ′

1, σ
′
2) before σ2 is published. We now introduce an enriched

security model that captures both of these problems and introduce a three-stage
signature process. The first problem is solved by defining an artificial relation
between pk′ and σ1 so that pk′ values cannot be paired up with arbitrary σ1

values. The second problem is solved by adding extra mechanisms for explicitly
controlling the opening and the closing of the list L on the ledger. We formalize
the new approach as follows.

Definition 4 (One-Time Signatures with Delayed Ledger). A One-Time
Signature with Delayed Ledger consists of an append-only ledger L and the fol-
lowing algorithms:

– (sk′, pk′)← DelayL-KeyGen(λ): A PPT algorithm that takes as input a secu-
rity parameter and outputs a secret key sk′ and the corresponding public key
pk′.

– tok1 ← Open(sk′): Takes as input the secret key sk′, outputs the first token
associated with the opening of the ledger L.

– tok2 ← Close(sk′): Takes as input the secret key sk′, outputs the second token
associated with the closing of the ledger L.

– 0/1← VerifyOpen(pk′, tok1): Takes as input the public key pk′ and an open-
ing token tok1, outputs 1 if the opening value is consistent with the public
key.

– 0/1← VerifyClose(pk′, tok2): Takes as input the public key pk′ and a closing
token tok2, outputs 1 if the opening value is consistent with the public key.

– (σ1, σ2) ← DelayL-Sign(sk′,msg): A PPT algorithm that takes as input a
secret key sk′ and the message to be signed msg. Outputs a two component
signature (σ1, σ2) where σ1 acts as a commitment for the σ2 to be verified
after a delay.

– 0/1 ← DelayL-Verify(pk′, (σ1, σ2),msg): A deterministic polynomial time al-
gorithm that takes as input a public key pk′, a two component signature

10

(σ1, σ2) and the message msg to be verified. Outputs 1 if (σ1, σ2) is a valid
signature tuple for msg, 0 otherwise.

Definition 5 (One-Time Signature Unforgeability with Delayed Ledger).
A One-Time Signature with Delayed Ledger scheme is unforgeable if for any
quantum polynomial time adversary A the advantage of winning the OTDU-L
game (Figure 8) is negligible in λ, that is:

AdvOTDU-L
A = Pr[OTDU-L(A)→ 1] ≤ negl(λ)

OTDU-L(A)
1 : (sk′, pk′)←$Delay-KeyGen(λ)

2 : opened, openwish← false, false

3 : closed, closewish← false, false

4 : queried← false

5 : L← empty list

6 : msg← ⊥
7 : AO∗(pk′)→ s1, s2,m

8 : reward if (s1 ∈ L) ∧ Delay-Verify(pk′, s1, s2,m) ∧m ̸= msg

OSig(m)

1 : if queried ∨ ¬openwish ∨ closewish

2 : return ⊥
3 : queried← true

4 : msg← m

5 : (σ1, σ2)← Delay-Sign(sk′,m)

6 : return σ1

Opost(s)

1 : if opened ∧ ¬closed
2 : L← L∥s
3 : return ⊥

Oopen(t)

1 : if VerifyTokOpen(pk′, t)

2 : opened← true

3 : reward if ¬openwish
4 : return ⊥

OwishOpen()

1 : openwish← true

2 : return Open(sk′)

Oclose(t)

1 : if ¬VerifyTokClose(pk′, t)
2 : return ⊥
3 : closed← true

4 : reward if ¬closewish
5 : // returned after closure

6 : return σ2

OwishClose()

1 : if ¬queried ∨ σ1 /∈ L

2 : return ⊥
3 : closewish← true

4 : return Close(sk′)

Fig. 8: OTDU-L security game for the signature scheme with delayed ledger.

Intuitively, when a signer wants to sign a message, it opens the ledger L, it
posts the signature commitment σ1. It checks that σ1 is well posted. It closes the
ledger L and only releases σ2 after checking that the ledger L is closed. Using the
OTDU-L notion: The adversary can post arbitrary commitments to L as long as
it is open. The adversary has to call OwishOpen in order to call Oopen. That is,
it has to observe the correct opening token. Moreover, the adversary has to call
OwishClose in order to call Oclose. That is, the commitment of the signer should
appear in the list L and σ2 can only be observed after the closure of L.

11

3.2 Constructing a One-Time Signature with Delayed Ledger

We can modify the delayed signature construction in Figure 7 by integrating
two one-time tokens t1 (for opening) and t2 (for closing) to the secret key and
their corresponding hashes to the public key. More concretely, we realize the
construction as in Figure 9.

DelayL-KeyGen(λ)

1 : (s̃k, p̃k)←$Delay-KeyGen(λ)

2 : t1 ←$ {0, 1}λ, t2 ←$ {0, 1}λ

3 : sk′ ← (s̃k, t1, t2)

4 : pk′ ← (p̃k, H(t1), H(t2))

5 : return (sk′, pk′)

DelayL-Sign(sk′,msg)

1 : (s̃k, t1, t2)← sk′

2 : (σ1, σ2)← Delay-Sign(s̃k,msg)

3 : return (σ1, σ2)

Open(sk′)

1 : (s̃k, t1, t2)← sk′

2 : return t1

DelayL-Verify(pk′, (σ1, σ2),msg)

1 : (p̃k, H(t1), H(t2))← pk′

2 : return Delay-Verify(pk′, (σ1, σ2),msg)

VerifyOpen(pk′, t)

1 : (p̃k, H(t1), H(t2))← pk′

2 : return 1H(t)=H(t1)

VerifyClose(pk′, t)

1 : (p̃k, H(t1), H(t2))← pk′

2 : return 1H(t)=H(t2)

Close(sk′)

1 : (s̃k, t1, t2)← sk′

2 : return t2

Fig. 9: Delayed signature (with ledger) construction

Theorem 6. (OTDU→ OTDU-L) For a given OTDU signature scheme (Delay-
KeyGen,Delay-Sign,Delay-Verify), the resulting signature scheme with delayed
ledger OTDU-L (Figure 9) is unforgeable.

Proof. We need to show that

AdvOTDU-L
A = Pr[OTDU-L(A)→ 1] ≤ negl(λ)

We set G0 to be the OTDU-L game. Given an adversary A that wins G0, we
reduce G0 to OTDU as follows:

– G1 : We replace Oopen by an oracle who does not reward if openwish is false.
The difference between OTDU-L and G1 can express as an adversary who
break QOW on H(t1), that is:

|AdvG1A − AdvG0A | ≤ negl(λ)

– G2 : We replace Oclose by an oracle which first checks if closewish is true and
returns nothing if closewish is false. The difference between G1 and G2 can
express as an adversary who breaks QOW on H(t2). Note that Oclose does
not have a reward statement anymore.

|AdvG2A − AdvG1A | ≤ negl(λ)

12

The OTDU adversary A′ simulates A playing G2 and the oracles that are
not present in the OTDU game. That is, it selects (t1, t2), simulates Oopen,
OwishOpen,Oclose,OwishClose by using the sampled (t1, t2) values. It also sim-
ulates Opost by maintaining a list L. Furthermore, A′ stops when it makes the
Oclose query which closes L to return the list L and a state st to resume the sim-
ulation of A (Line 3 of the OTDU in Figure 6). When it resumes, σ2 is obtained
and provided to A for the rest of the simulation. Note that no calls to the oracle
OSig has been made throughout the simulation. Hence, given an adversary A
that wins the OTDU-L game, we can construct an adversary A′ that wins OTDU.
Since AdvODTU

A is negligible in λ, we have:

AdvOTDU-L
A ≤ negl(λ)

Note that it is possible to extend the One-Time Signature with Delayed
Ledger construction and the corresponding OTDU-L notion to n-time signatures
in a natural way. As long as the underlying signature scheme has QEUF-KOA se-
curity, it is possible to publish n signature commitments to the ledger under the
same public key and wait for the ledger closure before releasing the signatures.

Lifting the Proofs to QROM: Since the challenger only makes a constant number
of queries to the random oracle in OTDU and OTDU-L both Theroem 5 and
Theorem 6 still holds in the QROM model. This is due to the Lifting Theorem
for Search-Type Games (Theorem 4.2 from [17]). Note that the advantage of the
adversary against ROM is divided by (2q+1)2k where q is the number of queries
the adversary makes (polynomially bounded in our case) and k is the number of
queries the challenger makes to the oracle (k = 2 in our case).

Discussion on Practical Instantiations: The construction based on the OTDU-
L notion cannot be directly implemented in Bitcoin (we present the necessary
Bitcoin Scripts in Appendix C). Mainly due to the fact that after a single close
transaction (to close the original open transaction), no further open transactions
can be made. However, this behaviour is not currently possible unless the miners
manually check for this condition, which would result in a hard fork. Neverthe-
less, it is possible to practically instantiate this for any ledger that implements
this closure mechanism.

Note that our approach of two-stage signatures targets the issue of avoiding
publication of wrong stage-1 transactions for a given address. However this does
not address the scenario in which a user floods the ledger with correct stage-1
commitments without ever paying the transaction during stage-2, but including
stage-1 transactions does consume network resources. Moreover, there is no in-
centive for miners to even include the stage-1 transactions with commitments.
This problem is well-known and has been studied since [4]. We further reflect on
this problem by considering the following scenarios:

13

– Honest stage-1 transactions with malicious opens: In this scenario,
the goal of the rushing adversary is to add many open transactions to increase
the total transaction fee paid by the original signer of the transaction.
In stage-1, the token t1 is released and rushing adversaries can create rogue
transactions with the same token t1. This can only be done until the second
token t2 is released (i.e. stage-2). We stress that t2 is released after t1 is well
posted (i.e. the block confirmation period has passed for the block containing
t1). For instance, Bitcoin requires 6 block confirmations which -assuming the
block producing time is 10 minutes- would translate to an hour.
If we assume that each miner includes only one transaction per block per t1,
this would multiply the transaction fee by the number of blocks in the block
confirmation period.

– Dishonest stage-1 transactions: In this scenario, the goal of the adversary
(not necessarily rushing) is to create as many stage-1 transactions as possible
and never proceed with the stage-2 transaction to cause congestion over the
network. In this setting, the miners would not get paid for the transactions
that have been already included if stage-2 never occurs. The malicious signer
would further lose assets.

Looking at these two scenarios, we see a relation between the denial of service
surface of the system and the miner’s motivation for including stage-1 transac-
tions. If we motivate the miners to include stage-1 transactions, there is a better
opportunity for the adversary to congest the network by dishonest stage-1 trans-
actions, but also the opportunity for the miner to extract more fees from honest
stage-1 transactions.

4 Extension to Threshold Signatures

In this section, we extend the construction of Section 2 to the case of multi-party
signing, and more precisely to threshold signatures. In particular, this means that
we present a threshold signature scheme with hidden public key.

Consider a threshold signature scheme Σ with associated parameters λ,
we assume that TSKeyGen has a specific form i.e. it consists of an algorithm
((ski, pki)i∈[n])← TSKeyGen1(λ), which is followed by a final computation pk←
Rec((pki)i∈S), where Rec is the linear reconstruction function from the associated
linear secret sharing scheme in D. We argue that this assumption is reasonable
as it matches all the existing protocols. In fact, we give an example of a con-
crete application in Section E.1. Hence, we abuse it by calling the transform as
a generic one.

Additionally, for simplicity we assume a trusted setup during TSKeyGen in
the form of an honest dealer running TSKeyGen. Appendix F discusses multi-
party protocols for secure setup.
Given such a threshold signature scheme Σ with associated parameters λ, a (t, n)
secret sharing scheme (Shrnt ,Rec), and a hash function H, the generic thresh-
old with hidden public key transform ThreshHiddenPK is describe in Figure 10.

14

Note that this transform makes the public key and the signature grow linear in
size and makes the resulting signature transparent (i.e. it is possible to distin-
guish whether a signature is the result of a threshold signing process). However,
the amount of computational overhead is minimal since the key generation is
almost non-interactive. It is possible to construct a non-transparent transforma-
tion with constant key size by considering a more computationally demanding
key generation process. This construction can be found in Appendix G.

ThreshHiddenPK-KeyGen(λ)

1 : (ski, pki)i∈[n] ←$TSKeyGen1Σ(λ)

2 : for i = 1, ..., n :

3 : ρi ←$D
4 : s̃ki ← (ski, ρi)

5 : p̃k1 ← (H(ρi))i∈[n]

6 : p̃k2 = (pki + ρi)i∈[n]

7 : p̃k← (p̃k1, p̃k2)

8 : return ((˜ski)i∈[n], p̃k)

ThreshHiddenPK-Sign((s̃ki)i∈S ,msg)

Each Pi does :

1 : (ski, ρi)← (s̃ki)

2 : σ ← TSSignΣ((ski)∈S ,msg)

3 : σ̃ ← (σ, S, (ρi)i∈S)

4 : return σ̃

ThreshHiddenPK-Verify(σ̃, p̃k,msg)

1 : (σ, S, (ρi)i∈S)← σ̃

2 : (p̃k1, p̃k2)← p̃k

3 : for each i ∈ S :

4 : if H(ρi) ̸= (p̃k1)i :

5 : return 0

6 : for each i ∈ S :

7 : pki ← (p̃k2)i − ρi

8 : pk← Rec((pki)i∈S)

9 : return VerifyΣ(σ, pk,msg)

Fig. 10: ThreshHiddenPK(Σ, λ, H) transform.

Theorem 7 (Classical security of ThreshHiddenPK). The
ThreshHiddenPK(Σ,λ,H) transform is existentially unforgeable under chosen-
message attack (TEUF-CMA) if the underlying threshold signature scheme Σ is
and if H is 2nd pre-image resistant.

Proof. The proof technique can be extended from the single signer setting in a
straightforward manner. We defer the full proof to Appendix D.

We now define and analyze the quantum security of our protocol. We extend
our definitions from the single signer setting to the threshold one, and define
zero-time threshold signatures as threshold signatures that are quantum secure
against existential forgeries under key-only attack.

Definition 6 (TQEUF-KOA security). A (t, n)-threshold-signature scheme
consisting of three algorithms (TSKeyGen,TSSign,Verify) is quantum existen-
tially unforgeable under key-only attack (TQEUF-KOA) if for any quantum ad-
versary A, and for any set of corrupted players Corr chosen by A such that
|Corr| ≤ t, the advantage of A in the TQEUF-KOA game is negligible i.e.

AdvTQEUF-KOA
A = Pr[TQEUF-KOA(A)→ 1] ≤ negl(λ)

where the TQEUF-KOA game is defined in Figure 11.

15

TQEUF-KOA(A,Corr)
1 : TSKeyGen(λ) −→ ((ski)i∈[n], pk)

2 : A(pk, (ski)i∈Corr) −→ (σ∗,m∗)

3 : return Verify(σ∗, pk,m∗) = 1

Fig. 11: The TQEUF-KOA game for zero-time quantum security of threshold
signatures.

Theorem 8 (Quantum security of ThreshHiddenPK). The
ThreshHiddenPK(Σ,λ,H) transform is quantum existentially unforgeable
under key-only attack if H is quantum one-way and given ρi, ri for i ∈ [n]
uniform and independent then (H(ρi), pki + ρi)i∈[n] is indistinguishable from
(H(ρi), ri)i∈[n].

Proof. Consider an adversary A for the TQEUF-KOA game applied to
ThreshHiddenPK(Σ,λ,H). We construct an adversary B such that if A wins
TQEUF-KOA then B breaks the one-wayness of A. Given a quantum one-way
challenge y, B generates key pairs for ThreshHiddenPK and samples a special
index j out of the uncorrupted values, for which the hash is set to y. Then
they call A on the public key and the corrupted secrets. Then B can extract
the preimage ρ∗j of y from the message-signature pair returned by A. If A wins
the TQEUF-KOA game then ρ∗j will be a valid pre-image for the QOW game.
Using the assumption on the distribution of pki and H, the view of A called as
a subroutine of B is indistinguishable from the view of A in the TQEUF-KOA
game. This implies that if A wins TQEUF-KOA then B wins QOW. Hence we
have

Pr[TQEUF-KOA(A)→ 1] ≤ Pr[QOW→ 1] = negl(λ)

by assumption on the quantum one-wayness of H.

Note that the assumption on the pki and H can be proven assuming that the
vector of pkis has high min-entropy (denoted H∞) and that given K = (k1, ...kn)
and X = (x1, ..., xn), the function hK(X) = (H(ki−xi))i∈[n] is a universal hash
function.
Let ℓ be the output length ofH. We write PK = (pki)i∈[n], PK+ρ = (pki+ρi)i∈[n]

as random vectors and U for a uniform random vector. We consider the function
hK(PK) = (H(ki − pki))i∈[n] with ki = ρi + pki of output length n · ℓ. We have
that PK and PK+ρ are independent, and are independent from uniform U . Fur-
thermore, PK+ρ is uniformly distributed since ρi is uniform for all i ∈ [n]. Since
we assume that the min-entropy of PK is high, and h is a universal hash function,
we can apply the Leftover Hash Lemma [12] and we get that the distribution
of (hPK+ρ(PK),PK + ρ) and that of (U,PK + ρ) are ϵ/2-indistinguishable, with

ϵ =
√
2n·ℓ−H∞(pk). Since hPK+ρ(PK) = (H(ρi))i∈[n], we get the desired result.

Note that typically, H∞(pki) is close to t · log2(|G|) for a group G as the pki are
t-wise independent and close to uniform in G. This implies that ℓ ≤ t

n · log2(|G|).

16

Acknowledgements

We thank Löıs Huguenin-Dumittan for discussions about lifting the proofs of
Theorem 5 and Theorem 6 to the QROM setting.

References

1. Aumasson, J.P., Hamelink, A., Shlomovits, O.: A Survey of ECDSA Threshold
Signing. Cryptology ePrint Archive, Report 2020/1390 (2020), https://ia.cr/
2020/1390

2. Bernstein, D.J., Hülsing, A., Kölbl, S., Niederhagen, R., Rijneveld, J., Schwabe, P.:
The SPHINCS+ signature framework. In: Proceedings of the 2019 ACM SIGSAC
Conference on Computer and Communications Security. p. 2129–2146. CCS ’19,
Association for Computing Machinery, New York, NY, USA (2019). https://doi.
org/10.1145/3319535.3363229, https://doi.org/10.1145/3319535.3363229

3. Beullens, W.: Breaking Rainbow Takes a Weekend on a Laptop. In: Dodis, Y.,
Shrimpton, T. (eds.) Advances in Cryptology – CRYPTO 2022. pp. 464–479.
Springer Nature Switzerland, Cham (2022)

4. Bonneau, J., Miller, A.: Fawkescoin a cryptocurrency without public-key cryptogra-
phy, pp. 350–358. Lecture Notes in Computer Science (including subseries Lecture
Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), Springer Ver-
lag (2014). https://doi.org/10.1007/978-3-319-12400-1_35, publisher Copy-
right: © Springer International Publishing Switzerland 2014.

5. Chalkias, K., Brown, J., Hearn, M., Lillehagen, T., Nitto, I., Schroeter, T.:
Blockchained Post-Quantum Signatures. In: 2018 IEEE International Conference
on Internet of Things (iThings) and IEEE Green Computing and Communica-
tions (GreenCom) and IEEE Cyber, Physical and Social Computing (CPSCom)
and IEEE Smart Data (SmartData). pp. 1196–1203 (2018). https://doi.org/10.
1109/Cybermatics_2018.2018.00213

6. Cozzo, D., Smart, N.P.: Sharing the LUOV: Threshold Post-quantum Signatures.
In: Albrecht, M. (ed.) Cryptography and Coding. pp. 128–153. Springer Interna-
tional Publishing, Cham (2019)

7. Developper, B.: Developper guides - transactions. Bitcoin Developper, https://
developer.bitcoin.org/devguide/transactions.html

8. Ding, J., Deaton, J., Vishakha, Yang, B.Y.: The Nested Subset Differential Attack.
In: Canteaut, A., Standaert, F.X. (eds.) Advances in Cryptology – EUROCRYPT
2021. pp. 329–347. Springer International Publishing, Cham (2021)

9. Evans, D., Kolesnikov, V., Rosulek, M.: A Pragmatic Introduction to Secure Multi-
Party Computation. Foundations and Trends in Privacy and Security 2(2-3), 70–
246 (2018). https://doi.org/10.1561/3300000019

10. Gennaro, R., Jarecki, S., Krawczyk, H., Rabin, T.: Robust Threshold DSS Sig-
natures. In: Maurer, U. (ed.) Advances in Cryptology — EUROCRYPT ’96. pp.
354–371. Springer Berlin Heidelberg, Berlin, Heidelberg (1996)

11. Goldreich, O., Micali, S., Wigderson, A.: A Completeness Theorem for Protocols
with Honest Majority. Conference Proceedings of the Annual ACM Symposium on
Theory of Computing (01 1987)

12. Impagliazzo, R., Levin, L.A., Luby, M.: Pseudo-Random Generation from One-
Way Functions. In: Proceedings of the Twenty-First Annual ACM Symposium on
Theory of Computing. p. 12–24. STOC ’89, Association for Computing Machinery,
New York, NY, USA (1989). https://doi.org/10.1145/73007.73009

17

https://ia.cr/2020/1390
https://ia.cr/2020/1390
https://doi.org/10.1145/3319535.3363229
https://doi.org/10.1145/3319535.3363229
https://doi.org/10.1145/3319535.3363229
https://doi.org/10.1145/3319535.3363229
https://doi.org/10.1145/3319535.3363229
https://doi.org/10.1007/978-3-319-12400-1_35
https://doi.org/10.1007/978-3-319-12400-1_35
https://doi.org/10.1109/Cybermatics_2018.2018.00213
https://doi.org/10.1109/Cybermatics_2018.2018.00213
https://doi.org/10.1109/Cybermatics_2018.2018.00213
https://doi.org/10.1109/Cybermatics_2018.2018.00213
https://developer.bitcoin.org/devguide/transactions.html
https://developer.bitcoin.org/devguide/transactions.html
https://doi.org/10.1561/3300000019
https://doi.org/10.1561/3300000019
https://doi.org/10.1145/73007.73009
https://doi.org/10.1145/73007.73009

13. van der Linde, W.: Post-quantum blockchain using one-time signature chains
(2018)

14. Lindell, Y.: Secure Multiparty Computation. Commun. ACM 64(1), 86–96 (dec
2020). https://doi.org/10.1145/3387108

15. NIST: Request for Additional Digital Signature Schemes
for the Post-Quantum Cryptography Standardization Pro-
cess. https://www.nist.gov/news-events/news/2022/09/

request-additional-digital-signature-schemes-post-quantum-cryptography

16. Pettit, M.: Efficient Threshold-Optimal ECDSA. In: Conti, M., Stevens, M., Krenn,
S. (eds.) Cryptology and Network Security. pp. 116–135. Springer International
Publishing, Cham (2021)

17. Yamakawa, T., Zhandry, M.: Classical vs Quantum Random Oracles. In: Canteaut,
A., Standaert, F.X. (eds.) Advances in Cryptology – EUROCRYPT 2021. pp. 568–
597. Springer International Publishing, Cham (2021)

18

https://doi.org/10.1145/3387108
https://doi.org/10.1145/3387108
https://www.nist.gov/news-events/news/2022/09/request-additional-digital-signature-schemes-post-quantum-cryptography
https://www.nist.gov/news-events/news/2022/09/request-additional-digital-signature-schemes-post-quantum-cryptography

Supplementary Material

A Preliminaries

In this section, we provide the necessary definitions for the primitives that we
use throughout this work.

Definition 7 (Synchronous Multiparty Protocol). A synchronous mul-
tiparty protocol P is defined by algorithms Pi for i = 1, ..., n. We write
((outi)i∈I , out)← P ((ini)i∈I , in) to mean that we run the following steps:

1. Set mr,ext = in, str,i = ini for r = 0, all i ∈ I.
If ini is not specified it is set to ⊥ by default.
Below, all undefined mr,i are set to ⊥ by default.

2. Repeat Step 3 until all Pi return a final state.
3. (str+1,i,mr+1,i)← Pi(str,i, (mr,j)j=1...n,ext) for all i ∈ I and r ← r + 1.
4. Set outi = str+1,i and out = (mr+1,i)i∈I .

The idea captured by Definition 7 is that Pi corresponds to one round of a
protocol executed by one participant. Given some possible inputs by the other
parties and themselves, they execute the round and return a broadcast message
for all other participants. The input of the first round may be a common input
in but can also include private inputs ini for each participant. Similarly, the
last round outputs a broadcast message out and private outputs outi for each
participant.

Definition 8 (Threshold Signature Scheme). A (t, n)-threshold signature
scheme with associated public parameters λ, message space M, and public key
domain D consists of two polynomial-time algorithms TSKeyGen and Verify and
a synchronous multiparty protocol TSSign defined in the following way:

– ((ski)i∈[n], pk)←$TSKeyGen(λ): It takes as input the security parameter λ.
It outputs a secret key share ski for each party Pi and a common public key
pk.

– σ ← TSSign((ski)i∈S ,msg): It takes as input the secret keys ski for i ∈ S
and the message to be signed msg. It outputs a signature σ.
Actually, we have
((⊥, ...,⊥), (σ, ..., σ)) ← TSSign((ski)i∈S ,msg), i.e. no private output and
one common output σ, but we use the above notation for convenience and
clarity.

– 0/1 ← Verify(σ, pk,msg): A deterministic polynomial time algorithm which
takes as input the public key, the message and the signature and outputs 1
if the signature is accepted and 0 otherwise.

The scheme is correct if ∀ (λ, S,msg) such that S ⊂ {1, ..., n}, |S| > t, the
Correctness game returns 1 with probability 1.

19

Correctness(λ, S,msg)

1 : ((ski)i∈[n], pk)←$TSKeyGen(λ)

2 : σ ← TSSign((ski)i∈S ,msg)

3 : return Verify(σ, pk,msg)

For simplicity in this definition we assumed a trusted setup during TSKeyGen
in the form of an honest dealer running TSKeyGen. We will assume so in the
following of this work, except in Section F where we consider multi-
party protocols for secure setup.

Before giving a formal security definition for threshold signatures, we give a
reminder on the different adversarial models.([1])

1. Corruption type:
– Static adversary: the corrupted participants are chosen before the begin-

ning of the protocol.
– Adaptive adversary: the adversary may corrupt participants after the

protocol has started, and obtain their full view.
2. Obedience:

– Honest-but-curious adversary: the adversary only learns information from
the corrupted parties but cannot force them to deviate from the protocol.

– Malicious: The corrupted parties may arbitrarily deviate from the pro-
tocol.

In the rest of this work, we consider static malicious adversaries.

Gennaro et al. define the security of threshold signatures in [10]. The following
formalizes this definition, given our assumption about trusted set-up.

Definition 9 (TEUF-CMA Security). A (t, n)-threshold signature scheme
(TSKeyGen,TSSign,Verify) with security parameter λ is existentially unforgeable
under chosen-message attack (TEUF-CMA) if for any probabilistic polynomial
time (PPT) adversary A, and for any set of corrupted players Corr chosen by A
such that |Corr| ≤ t, the probability, taken over all the inputs and random tapes,
of winning the TEUF-CMA game (Figure 12) is negligible in λ i.e

AdvTEUF-CMA
A,Corr = Pr[TEUF-CMA(A,Corr)→ 1] ≤ negl(λ)

For non-threshold signatures, this boils down to EUF-CMA security.

Definition 10 (EUF-CMA security). A digital signature scheme
(KeyGen,Sign,Verify) is secure against existential forgery under chosen message
attack if for all probabilistic polynomial time adversary A the advantage of A in
the EUF-CMA game is negligible, i.e.

AdvEUF-CMA
A = Pr[EUF-CMA(A) −→ 1] ≤ negl(λ)

where the EUF-CMA game is defined in Figure 13.

20

TEUF-CMA(A, Corr)
1 : TSKeyGen(λ) −→ ((ski)i∈[n], pk)

2 : L← ∅
3 : st{} ← ∅

4 : ARunSign(pk, (ski)i∈Corr) −→ (σ∗,m∗)

5 : return 1Verify(σ∗,pk,m∗)=1 ∧ m∗ /∈L

RunSign(i, sid, (m1, ...mn,mext))

1 : if st{i, sid} undefined
2 : st{i, sid} ← ski

3 : L← L ∪ {mext}
4 : M ← (m1, ...mn,mext))

5 : (st{i, sid}, res)← TSSigni(st{i, sid},M)

6 : return res

Fig. 12: TEUF-CMA game for classical security of threshold signatures.

EUF-CMA(A)
1 : KeyGen(λ) −→ (sk, pk)

2 : L← ∅

3 : AOsign(pk) −→ (m∗, σ∗)

4 : if m∗ ∈ L :

return 0

5 : return Verify(σ∗, pk,m∗)

Osign(m)

1 : σ ← Sign(sk,m)

2 : L← L ∪ {m}
3 : return σ

Fig. 13: EUF-CMA game for classical signature security

We give further definitions for primitives used in this work. The first one is
secret sharing as it is an essential tool for the design of threshold protocols.

Definition 11 (Secret Sharing [9]). Let D be the domain of inputs and let
S be the domain for secret shares. A (t, n)-secret sharing scheme consists of a
PPT algorithm Shrnt : D → Sn that generates n secret shares of a value from D
and a deterministic polynomial time algorithm for k shares Rec : Sk → D that
reconstructs the original value from the shares such that the following properties
hold:

– Correctness: For any v ∈ D, (s1, s2, . . . , sn) ← Shr(v) and any I ⊂
{s1, .., sn} such that #I > t:

Pr[Rec((si)i∈I) = v] = 1

– Security: For any two values v1, v2 ∈ D and any vector s of shares with less
than t+ 1 elements:

Pr[s = Shr(v1)|s|] = Pr[s = Shr(v2)|s|]

where |.| denotes the number of elements in a vector and Shr(v1)|s| denotes
a subspace of Shr(v1) with |s| elements.

We proceed with some additional definitions regarding properties of hash
functions that will be required in the rest of this work.

21

Definition 12 (2nd pre-image resistance, collision resistance, quantum
one-wayness). A hash function H with message domain D(λ), output domain
{0, 1}τ(λ) (key space K(λ) for collision resistance) and security parameter λ is:

– 2nd pre-image resistant if for any probabilistic polynomial time algorithm A,
we have

Pr[2PreIm(A)→ 1] ≤ negl(λ)

– collision resistant if for any probabilistic quantum polynomial time algorithm
A, we have

Pr[CR(A)→ 1] ≤ negl(λ)

– quantum one-way if for any probabilistic quantum polynomial time algorithm
A, we have

Pr[QOW(A)→ 1] ≤ negl(λ)

The 2PreIm, CR and QOWgames are described in Figure 14. For simplicity,
the parameter λ will be omitted from the notation of D, τ and K.

2PreIm(A)
1 : x←$D
2 : A(x)→ x′

3 : return 1H(x′)=H(x)∧x ̸=x′

CR(A)
1 : hk←$K
2 : A(hk)→ x, x′

3 : return 1H(hk,x)=H(hk,x′)∧x ̸=x′

QOW(A)
1 : x←$D
2 : y ← H(x)

3 : A(y)→ x′

4 : return 1H(x′)=y

Fig. 14: 2PreIm, CR and QOW games for hash function security.

Finaly, we give some reminders on multi-party computations.

Definition 13 (Multi Party Computation (MPC)). An n-party MPC
protocol consists of n parties (P1, . . . , Pn) with their respective private inputs
(in1, . . . , inn) and an evaluation function f(in1, . . . , inn) = (out1, . . . , outn) such
that for any i ∈ [n], Pi learns nothing more than ini and outi.

The security of MPC protocols is given in the ideal vs. real paradigm. In the
context of static malicious adversaries, we define the following distributions.

Definition 14 (Ideal vs. real distributions - malicious adversary ([9])).
Given an adversary A, let Corr(A) be the set of parties corrupted by A and
Corr(Sim) the set of parties corrupted by the ideal adversary Sim. These are
fixed at the beginning of the protocol, and cannot be changed afterwards since we
consider a static corruption model. We define two associated distributions.

– Realπ,A(λ; {ini|i /∈ Corr(A)}): Run the protocol with security parameter λ.
Each honest party Pi runs the protocol honestly on given private input ini.
The messages of corrupted parties are chosen according to A.

22

We denote by yi = (outi, out) the output of honest party Pi and Viewj the
final view of party Pj.
The output is ({View(A)}, {yi|i /∈ Corr(A)})

– IdealF,Sim(λ; {ini|i /∈ Corr(Sim)}): On input
{ini|i /∈ Corr(Sim}), run Sim until it outputs a set of inputs {inj |j ∈ Corr(A)}
and keeps a state st.
Compute (y1, .., yn)← F(in1, ..., inn).
Return {yj |j ∈ Corr(A)} to Sim.
Sim returns as final output a set of simulated views View∗.
The final output is (View∗, {yi|i /∈ Corr(A)})

Definition 15 (Malicious security for MPC ([9])). A protocol π securely
realizes an ideal functionality F in the presence of a malicious adversary if for ev-
ery real-world adversary A, there exist a simulator Sim with Corr(A) = Corr(Sim)
such that, for all inputs of the honest parties {xi|i /∈ Corr(A)} the distributions

Realπ,A(λ; {ini|i /∈ Corr(A)})

IdealF,Sim(λ; {ini|i /∈ Corr(Sim)})
are indistinguishable in λ.

If we assume honest majority, by Goldreich et al. [11], we have that for
any function it is possible to achieve a secure multiparty protocol with fair-
ness and guaranteed output delivery with information theoretic security. This
assumes that the parties have access to private point-to-point channels as well
as a broadcast channel ([14]). If we do not assume honest majority, we have to
give up fairness or guaranteed output delivery.

B Proofs of Theorem 1 and 5

In this section, we give a detailed proof of Theorem 1 and Theorem 5. We recall
them each time for completeness

Theorem 9 (Classical security of HiddenPK). The
HiddenPK(Σ,λ,H) transform is secure against existential forgery under chosen-
message attack if the underlying signature scheme Σ is and if H is 2nd pre-image
resistant.

Proof. Consider an EUF-CMA adversary A′ for HiddenPK(Σ,λ,H).

Let 2PreIm = {Given ρ from sk, ρ∗ from σ∗ : ρ ̸= ρ∗, H(ρ∗) = H(ρ)}. Since
EUF-CMA(A′)→ 1 implies that H(ρ) = H(ρ∗), we have:

Pr[EUF-CMA(A′)→ 1] = Pr[EUF-CMA(A′)→ 1 ∧ 2PreIm]

+ Pr[EUF-CMA(A′)→ 1 ∧ 2PreIm]

≤ Pr[2PreIm]

+ Pr[EUF-CMA(A′)→ 1 ∧ ρ = ρ∗]

23

Intuitively, the first term corresponds to the 2nd pre-image resistance of H and
the second to the EUF-CMA security of Σ. We want to show that they are both
negligible.

Let us consider an adversary C for 2nd pre-image resistance (Figure 15).
We have negl(λ) = Pr[C wins] ≥ Pr[2PreIm] because of 2nd pre-image resistance.

Now let us consider an EUF-CMA adversary A for Σ (Figure 15).
We have that the view of A′ called as a subroutine of EUF-CMA(A) is the same
as the view of A′ in EUF-CMA(A′).
If we assume that A′ succeeds and 2PreIm then A succeeds. Indeed, if we have
2PreIm and a success forA′, it implies that ρ = ρ∗ and HiddenPK-Verify(m∗, σ̃∗, p̃k) =
1. Hence (m∗, σ∗) is a valid forgery for A.
Therefore we have Pr[EUF-CMA(A) → 1] ≥ Pr[EUF-CMA(A′) → 1 ∧ 2PreIm]
and the first term is negligible by assumption.

C(ρ)
1 : (sk, pk)←$KeyGenΣ(λ)

2 : s̃k← (sk, ρ)

3 : p̃k← (H(ρ), pk+ ρ)

4 : A′(p̃k)

1 : if query mi :

C computes σi = Sign(sk,mi)

C returns σ′
i = (σi, ρ) to A′

2 : return (m, σ̃)

5 : σ̃ → (σ∗, ρ∗)

6 : return ρ∗

AOSign(pk)

1 : ρ←$G

2 : p̃k← (H(ρ), pk+ ρ)

3 : A′(p̃k)

1 : if query mi :

σi ← OSignA(mi)

A returns (σi, ρ) to A′

2 : return (m∗, σ̃∗)

4 : σ̃∗ → (σ∗, ρ∗)

5 : return (m∗, σ∗)

Fig. 15: Adversary C calling A′ for 2nd pre-image resistance (left) and adversary
A calling A′ for EUF-CMA(A) (right) (Theorem 1).

Theorem 10. (QEUF-KOA→ OTDU) For a given QEUF-KOA secure HiddenPK
signature scheme ΣHPK, and a random oracle Commit with output length λ, the
resulting delayed signature scheme DelayHiddenPK (Figure 7) is unforgeable.

Proof. We set G0 to be the OTDU game. Given an adversary A that wins G0 we
reduce G0 to QEUF-KOA as follows:

– G1 : We put an additional constraint to G0 that Commit does not have
any collisions. Since Commit is a random oracle, the probability of having a
collision is negligible. Hence, we have:

|AdvG1A − AdvG0A | ≤ negl(λ)

24

– G2: We put another additional constraint that the s1 that is output by A was
returned from a Commit query that is queried before the final Delay-Verify
(line 5 of OTDU). Note that this implies that the output s2,m was queried to
the random oracle in the first phase of A. If the constraint is not satisfied, it
implies that the adversary has successfully predicted a fresh random oracle
query which is negligible in λ. That is:

|AdvG2A − AdvG1A | ≤ negl(λ)

– G3: In order to simulate the second phase of A we intercept all random
oracle queries s2, parse the values (σ̃,m, open) and their corresponding oracle
replies s1, check if
HiddenPK-Verify(σ̃, p̃k,m) = 1 and we output the correct s1, s2,m triplet.
Since |L| is polynomial, we can exhaust L for all s1 values and find the
correct triplet with probability 1. Hence, this game is at least as good as G2
in terms of advantage, that is:

AdvG3A ≥ AdvG2A

– G4: We add the constraint that the query (σ̃,m, open) from OSig was not
queried by A. Otherwise, it would imply that the adversary correctly guessed
a correct opening open for a forged σ̃. Hence, the difference between G4 and
G3 is negligible:

|AdvG4A − AdvG3A | ≤ negl(λ)

– G5: Since Osig only returns the fresh commitment output σ1 which is a
random oracle output, we simulate Osig oracle by randomly sampling a σ1

from the output domain of the random oracle. Hence, the advantage remains
the same:

AdvG5A = AdvG4A

The QEUF-KOA adversary A′ runs the adversary A playing G5. This pro-
duces a valid forgery (σ̃,m) on the public key p̃k. However, since AdvQEUF-KOA

A,ΣHPK

is negligible, by combining the results for G5,G4,G3,G2 and G1 we have:

AdvG0A ≤ negl(λ)

AdvOTDU
A ≤ negl(λ)

C Bitcoin Scripts

25

HashedPK(P2PKH): <sig> <pubKey> OP_DUP OP_HASH160

<pubKeyHash> OP_EQUALVERIFY OP_CHECKSIG

HiddenPK-Verify: <sig> <rho> OP_DUP OP_SHA256

<pk1> OP_EQUALVERIFY <pk2> OP_SUB* OP_CHECKSIG

DelayL-Verify: <pk> <m|sig2> OP_DUP OP_SHA256

<sig1> OP_EQUALVERIFY HiddenPK-Verify

VerifyOpen: <t1> OP_SHA256 <Ht1> OP_EQUAL

VerifyClose: <t2> OP_SHA256 <Ht2> OP_EQUAL

Fig. 16: Bitcoin Script implementations for the delayed signature construction
in Figure 9. Note that the HiddenPK-Verify script would not work out of the
box since OP SUB has to be followed by an OP MOD operation to realize the group
addition but OP MOD is currently disabled. Also note that although it is not
possible to call subroutines, we call HiddenPK-Verify inside DelayL-Verify to
present the logic in a more clear way.

D Proof of classical security of ThreshHiddenPK

We prove here in details Theorem 7. We re-state it below for completeness.

Theorem 11 (Classical security of ThreshHiddenPK). The
ThreshHiddenPK(Σ,λ,H) transform is existentially unforgeable under chosen-
message attack (TEUF-CMA) if the underlying threshold signature scheme Σ is
and if H is 2nd pre-image resistant.

Proof. Consider an adversary A′ for ThreshHiddenPK(Σ,λ,H) with set of cor-
rupted players Corr.
Let PreImRes = {∃i such that given ρi, ρ

∗
i from σ∗; ρi ̸= ρ∗i and H(ρi) = H(ρ∗i)}.

Observe that TEUF-CMA(A′)→ 1 implies that for all i, H(ρi) = H(ρ∗i). There-
fore, we have

Pr[TEUF-CMA(A′)→ 1] = Pr[TEUF-CMA(A′)→ 1 ∧ PreImRes]+

Pr[TEUF-CMA(A′)→ 1 ∧ PreImRes]

≤ Pr[PreImRes]

+ Pr[TEUF-CMA(A′)→ 1 ∧ (∀i ρi = ρ∗i)]

Intuitively, the first term represents the 2nd pre-image resistance of H and the
second the TEUF-CMA security of Σ.

Consider an adversary C for multi-target pre-image resistance (See Figure
17). It finds a pre-image for one out of n targets. We can reduce to a single

26

target adversary by guessing which target will be solved. Since n = poly(λ),
we guess the correct target with probability 1

n which is non-negligible. We have
Pr[PreImRes] ≤ Pr[2PreIm(C) → 1] = negl(λ) because of 2nd pre-image resis-
tance.

Now consider a TEUF-CMA adversary A for Σ in Figure 17. We have that
the view of A′ called as a subroutine of TEUF-CMA(A) is the same as the view
of A′ in TEUF-CMA(A′).
If we assume that A′ succeeds and PreImRes then A succeeds. Indeed, if we
have PreImRes and a success for A′, it implies that for all i, ρi = ρ∗i and
ThreshHiddenPK-Verify(m∗, σ̃∗, p̃k) = 1. Hence (m∗, σ∗) is a valid forgery for
A.
Therefore we have

Pr[TEUF-CMA(A)→ 1] ≥ Pr[TEUF-CMA(A′)→ 1 ∧ PreImRes]

and the first term is negligible by assumption.

C(ρ1, . . . , ρn)
1 : (ski, pki)i∈[n] ←$TSKeyGen1Σ(λ)

2 : s̃ki ← (ski, ρi) i = 1, ..., n

3 : p̃k1 ← (H(ρi))i∈[n]

4 : p̃k2 ← ((pki + ρi))i∈[n]

5 : A′(p̃k, (s̃ki)i∈Corr)

1 : if query (i, sid, (m1, ...mn,mext))) :

2 : C does:

3 : if st{i, sid} undefined
4 : st{i, sid} ← ski

5 : L← L ∪ {mext}
6 : M ← (m1, ...mn,mext))

7 : (st{i, sid}, res)← TSSigni(st{i, sid},M)

8 : C returns res to A′

9 : return (σ̃∗,m∗)

6 : σ̃∗ → (σ∗, S, (ρ∗i)i∈S)

7 : if ∀i ρi = ρ∗i or H(ρ∗i) ̸= H(ρi) :

8 : return ⊥
9 : else return (i, ρ∗i)

TEUF-CMA(A,Corr)
1 : TSKeyGen(λ) −→ ((ski)i∈[n], pk)

2 : L← ∅
3 : st{}

4 : ARunSign(pk, (ski)i∈Corr)

1 : ρi ←$D, i = 1, . . . n

2 : (s̃ki)← (ski, ρi), i ∈ Corr

3 : p̃k1 ← (H(ρi))i∈[n]

4 : (pki)i∈[n] ← Shrnt (pk)

5 : p̃k2 ← (pki + ρi)i∈[n]

6 : Run A′(p̃k, (˜ski)i∈Corr) :

7 : if query (i, sid, (m1, ...mn,mext))) :

8 : res← RunSignAi (i, sid, (m1, ...mn,mext)))

9 : A returns res to A′

10 : A′ returns (m∗, σ̃∗) to A
11 : σ̃∗ → (σ∗, S, (ρ∗i)i∈S)

12 : return (m∗, σ∗)

5 : return 1Verify(σ∗,pk)=1 ∧ m∗ /∈L

Fig. 17: Adversary C against 2nd pre-image resistance (left) and TEUF-CMA(A)
calling A′ (right) (Theorem 7).

E Tailoring the HiddenPK and ThreshHiddenPK
transforms to ECDSA

In this section, we provide a tailored version of the HiddenPK to fit ECDSA more
closely.

27

Observe that given an ECDSA signature σ = (r, s) over an elliptic curve E/Fq

with a point G of order n, we can actually recover two possible public key from
the signature in the following way : Let x(.) denote the x-coordinate of the
associated point and set R1, R2 to be the two points with x(Ri) = r, then

pki =
s

r
·Ri −

(
H(m)

r

)
·G

This gives rise to two possible public keys pk1, pk2. We denote this process
ComputePKs(σ).
We can use that fact to remove the need to release ρ together with signature.
Hence we modify the HiddenPK transform slightly. See Figure 18.
The advantage of this tailored transform is that the signing algorithm is just

HiddenPK-ECDSA-KeyGen(λ)

1 : (s̃k, p̃k)← HiddenPK-KeyGen(λ)

2 : return (s̃k, p̃k)

HiddenPK-ECDSA-Sign(s̃k,msg)

1 : σ ← SignECDSA(sk,msg)

2 : return σ

HiddenPK-ECDSA-Verify(σ, p̃k,msg)

1 : pk1, pk2 ← ComputePKs(σ)

2 : (p̃k1, p̃k2)← p̃k

3 : ρi ← p̃k2 − pki, i = 1, 2

4 : if H ′(ρi) = p̃k1 for some i = 1, 2 :

5 : return 1

6 : return 0

Fig. 18: HiddenPK-ECDSA(E/Fq, G, n,H,H ′) signature hiding the public key.

the regular ECDSA signing, the signature is not changed. Key generation comes
from the HiddenPK transform and the verification algorithm uses our discussion
above.

Theorem 12 (Security of HiddenPK-ECDSA). If H ′ is 2nd preimage resis-
tant and ECDSA is EUF-CMA, then HiddenPK-ECDSA is EUF-CMA. If H ′ is
quantum one-way, HiddenPK-ECDSA is QEUF-KOA.

Proof. We show that this is equivalent to the generic transform of Figure 2
applied to ECDSA.

Assume that HiddenPK applied to ECDSA is EUF-CMA. Consider an EUF-
CMA adversary A for HiddenPK-ECDSA, we construct an adversary B for the
EUF-CMA game of HiddenPK applied to ECDSA in Figure 19.

Clearly if A wins EUF-CMA(A) then B wins EUF-CMA(B). Hence, we have

Pr[EUF-CMA(A)→ 1] ≤ Pr[EUF-CMA(B)→ 1] = negl(λ)

Then, we apply Theorem 1 on EUF-CMA(B).

28

BOsign(p̃k)

1 : A(p̃k)

1 : if query mi

2 : B queries OsignB(mi)→ σ̃i

(σi, ρi)← σ̃i

B returns (σi) to A
3 : return (m∗, σ∗)

2 : pk1, pk2 ← ComputePKs(σ∗)

3 : ρi ← p̃k2 − pki, i = 1, 2

4 : if H(ρi) = p̃k1 :

5 : return (m∗, (σ∗, ρi))

Fig. 19: Classical security equivalence of HiddenPK-ECDSA and HiddenPK applied
to ECDSA (Theorem 12).

For quantum security, we similarly apply the above reduction, the only dif-
ference is that there is no Osign anymore, and we can apply Theorem 2. The
hypothesis on the statistical distance is verified since the statistical distance
between the distribution of pk and the uniform distribution in ⟨G⟩ is 1

|⟨G⟩| =
1
n .

E.1 An application to Threshold ECDSA

We give an example of application to the Threshold ECDSA protocol described
in [16].

We describe in Figure 20 the adapted Key Generation protocol in details.
The signature protocol is basically the same as the one described in [16] with a
broadcast round added at the end to return the value ρi for each participant.
We additionally describe the verification protocol in Figure 21.

F Instantiating Multiparty Key Generation for
ThreshHiddenPK

So far we have assumed a secure set-up for multiparty key generation. In this
section, we discuss how to achieve it. A reminder on multi-party computations
can be found at the end of section A.

Theorem 13 (Security of Key Generation). If there exists a secure protocol
πTSKeyGen1 that securely realizes TSKeyGen1, then Π (Figure 22) securely realizes
ThreshHiddenPK-KeyGen.

29

ThreshHiddenPK-KeyGen(λ)

Each participant Pi does :

1 : aiℓ, biℓ ←$ Zn for j = 0, .., t

2 : fi(x)←
t∑

j=0

aijx
j ; gi(x)←

t∑
j=0

bijx
j

3 : ciℓ ← aiℓ ·G+ biℓH, H generator

4 : Sendfi(j), gi(j) to each participant Pj

5 : Receive fj(i), gj(i) for j ̸= i

6 : Check fi(j) ·G+ gi(j) ·H =
t∑

ℓ=0

jtCiℓ for j ̸= i

7 : Participants that pass this check are added to the subset Q
If a participant fails the check, they must broadcast the values fi(j), gi(j)

8 : ski ←
∑
j∈Q

fj(i) ; pki ← ski ·G

9 : ρi ←$ ⟨G⟩
10 : s̃ki ← (ski, ρi)

11 : Compute H(ρi) and broadcast it

12 : Receive H(ρj) for j ̸= i

13 : Broadcast pki + ρi

14 : Receive pkj + ρj for j ̸= i

15 : p̃k1 ← (H(ρi))i∈Qp̃k2 ← (pki + ρi)i∈Q

16 : p̃k← (p̃k1, p̃k2)

17 : return ((˜ski)i∈Q, p̃k)

Fig. 20: Key Generation for the ThreshHiddenPK transform applied to [16]

30

ThreshHiddenPK-Verify(σ̃, p̃k,msg)

1 : (σ, S, (ρi)i∈S)← σ̃

2 : (p̃k1, p̃k2)← p̃k

3 : for each i ∈ S :

4 : if H(ρi) ̸= (p̃k1)i :

5 : return 0

6 : for each i ∈ S :

7 : pki ← (p̃k2)i − ρi

8 : Use Lagrange interpolation with the pki = (
∑
j∈Q

fj(i)) ·G

to recover pk = (
∑
j∈Q

fj(0)) ·G

9 : return VerifyΣ(σ, pk,msg)

Fig. 21: Verification for the ThreshHiddenPK transform applied to [16]

Π

1 : (ski, pki)i∈[n] ← πTSKeyGen1

2 : Each participant i does :

3 : ρi ←$D
4 : s̃ki ← (ski, pki)

5 : Compute and broadcast H(ρi)

6 : Receive H(ρj), j = 1, ..., n

7 : Compute and broadcast pki + ρi

8 : Receive pkj + ρj , j = 1, ..., n

9 : p̃k1 ← (H(ρi))i∈[n]

10 : p̃k2 ← (pki + ρi)i∈[n]

11 : return (ski)i∈[n], p̃k

12 :

Fig. 22: Protocol Π realizing ThreshHiddenPK-KeyGen.

31

Proof. We want to show that given a real adversary A against Π, there exists
an ideal adversary Sim such that

Real(A, Π) ∼ Ideal(Sim,ThreshHiddenPK-KeyGen)

i.e. the two distributions are indistinguishable. (We abbreviate the notation from
Def. 14 for clarity)
Given such an adversary A, consider the adversary A′ for πTSKeyGen1 who runs
A until the honest participants terminate in πTSKeyGen1 . A′ outputs the state of
A when πTSKeyGen1 terminated so that the computation of A can be resumed.
Given Real(A′, πTSKeyGen1) we define an algorithm B that will play the role of the
honest players in Π, i.e. B just follows the protocol Π from Line 2 onward on
behalf of the honest players.

We have that the output of B is precisely Real(A′, Π).
Now given an adversary A′ for πTSKeyGen1 , since πTSKeyGen1 securely realizes

TSKeyGen1 by assumption, there exists an ideal adversary Sim′ such that

Ideal(Sim′,TSKeyGen1) ∼ Real(A′, πTSKeyGen1)

We now construct an ideal adversary Sim for ThreshHiddenPK-KeyGen in the
following way :

1. Sim runs Sim′ and gets Ideal(Sim′,TSKeyGen1).

2. Sim simulates B on this output and gives the final output.

We have

Ideal(Sim,ThreshHiddenPK-KeyGen) = B(Ideal(Sim′,TSKeyGen1))

∼ B(Real(A′, πTSKeyGen1))

= Real(A, Π)

G Alternative Extension to Threshold Signatures

In Section 4, we introduced an extension of our generic transformation to thresh-
old signatures, but the construction has two downfalls. Namely the public key
and signature sizes grow linearly with the number of participants and the out-
put signature is transparent. In this section, we introduce an alternative exten-
sion to threshold signatures with constant public key and signature size and a
non-transparent resulting signature. However, there is an additional computa-
tional overhead during key generation consisting of evaluating a hash function
in a multi-party setting. Moreover, the security of the MPC implementation of
KeyGen is not generic.

32

G.1 Description of the Transform

Given a threshold signature scheme Σ with associated parameters λ, we assume
that TSKeyGen has a specific form i.e. it consists of an algorithm ((ski, pki)i∈[n])←
TSKeyGen1(λ), which is followed by a final computation pk ← Rec((pki)i∈S),
where Rec is the linear reconstruction function from the associated linear secret
sharing scheme in D.

Given a threshold signature scheme Σ with associated parameters λ, a (t, n)
secret sharing scheme (Shrnt ,Rec), and a hash functionH, an alternative (generic)
threshold with hidden public key transform CompactThreshHPK is describe in
Figure 23.

CompactThreshHPK-KeyGen(λ)

1 : (ski, pki)i∈[n] ←$TSKeyGen1Σ(λ)

2 : ρ←$D
3 : (ρi)i∈[n] ← Shrnt (ρ)

4 : s̃ki ← (ski, ρi)

5 : p̃k1 ← H(ρ)

6 : p̃k2 = pk+ ρ

7 : p̃k← (p̃k1, p̃k2)

8 : return ((˜ski)i∈[n], p̃k)

CompactThreshHPK-Sign((s̃ki)i∈S ,msg)

Each Pi does:

1 : (ski, ρi)← (s̃ki)

2 : σ ← TSSignΣ((ski)∈S ,msg)

3 : Exchange ρi with participants

4 : ρ← Rec((ρi)i∈S)

5 : σ̃ ← (σ, ρ)

6 : return σ̃

CompactThreshHPK-Verify(σ̃, p̃k,msg)

1 : return HiddenPK-VerifyΣ(σ̃, p̃k,msg)

Fig. 23: Threshold signature hiding the public key: the CompactThreshHPK(Σ,
λ, H) transform.

Note that in Figure 23, just as in the regular threshold setting, HiddenPK-Verify
refers to the verification algorithm for the single signer version of our transform
in Figure 2, namely HiddenPK. Additionally, we remind that we consider a secure
set-up, and therefore key generation is given as an ideal functionality, and we do
not provide a specific protocol for realizing it.

G.2 Security of CompactThreshHPK

Here we prove the classical and quantum security of the
CompactThreshHPK transform.

Theorem 14 (Classical security of CompactThreshHPK).
A threshold signature CompactThreshHPK(Σ,λ,H) is existentially unforge-

able under chosen-message attack if the underlying threshold signature scheme
Σ is and if H is 2nd pre-image resistant.

33

Proof. The proof of the theorem follows exactly from 7 where the 2nd pre-image
resistance only applies to a single target.

We now prove the quantum security of the non-generic transformation.

Theorem 15 (Quantum security of CompactThreshHPK).
A threshold signature CompactThreshHPK(Σ,λ,H) is zero-time quantum ex-

istentially unforgeable if H is quantum one-way, and if the statistical distance
between the distribution of pk in the public key domain (D,+) and the uniform
distribution in D is negligible.

Proof. Consider an adversary A for the TQEUF-KOA game applied to
CompactThreshHPK(Σ,λ,H).
We want to construct an adversary B such that if A wins TQEUF-KOA then B
breaks the one-wayness of A. See Figure 24.

QOW(B)
1 : ρ←$D
2 : y = H(ρ)

3 : B(y)→ ρ∗

4 : return 1H(ρ)=H(ρ∗)

B(y)
1 : x←$D

2 : p̃k← (y, x)

3 : ski ←$Dsk for i = 1...n

4 : ρi ←$D for i = 1...n

5 : s̃ki ← (ski, ρi) for i = 1...n

6 : A(p̃k, (s̃ki)i∈Corr)→ (σ̃∗,m∗)

7 : σ̃∗ → (σ∗, ρ∗)

8 : return ρ∗

Fig. 24: Adversary B against the QOW game for the Quantum Security of
CompactThreshHPK (Theorem 15).

We argue that the view of A in this game is similar to the view of A playing
TQEUF-KOA.
The distribution of (y, x) and that of p̃k are similar by the same argument as in
the proof of Theorem 2.
Now we argue that the distribution of ski and ρi given by B is indistinguishable
from the real one by A. Indeed, if Shrnt is secure then any set of up to t share is
uniformly distributed (see Definition 11).
Therefore if A wins TQEUF-KOA, B wins QOW. Hence,

Pr[TQEUF-KOA(A)→ 1] ≤ Pr[QOW(B)→ 1] = negl(λ)

34

	 Making Classical (Threshold) Signatures Post-Quantum for Single Use on a Public Ledger

