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Abstract
This work is motivated by the following question: can an untrusted quantum server convince a classical
verifier of the answer to an efficient quantum computation using only polylogarithmic communication? We
show how to achieve this in the quantum random oracle model (QROM), after a non-succinct instance-
independent setup phase.

We introduce and formalize the notion of post-quantum interactive oracle arguments for languages
in QMA, a generalization of interactive oracle proofs (Ben-Sasson–Chiesa–Spooner). We then show how
to compile any non-adaptive public-coin interactive oracle argument (with private setup) into a succinct
argument (with setup) in the QROM.

To conditionally answer our motivating question via this framework under the post-quantum hardness
assumption of LWE, we show that the XZ local Hamiltonian problem with at least inverse-polylogarithmic
relative promise gap has an interactive oracle argument with instance-independent setup, which we can
then compile.

Assuming a variant of the quantum PCP conjecture that we introduce called the weak XZ quantum
PCP conjecture, we obtain a succinct argument for QMA (and consequently the verification of quantum
computation) in the QROM (with non-succinct instance-independent setup) which makes only black-box
use of the underlying cryptographic primitives.
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1 Introduction

This work is motivated by the following use case which is desirable in a world where quantum
computers reach larger scales but are only available in controlled facilities or laboratories.

Real World Application: Alice owns only classical devices (e.g. laptop and/or tablet) and
a classical internet connection. She wants to delegate some efficient quantum-computational
tasks to a quantum server (Merlin) in a remote location. How can she make sure that the
quantum server performed the intended tasks using only a succinct amount of classical
internet communication?

1 The author welcomes and encourages feedback about this under-review manuscript to be sent to: islam@bu.edu.
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Under some assumptions, we show how this can be achieved after a non-succinct initial setup phase
that does not depend on the subsequent tasks to be delegated. In particular, we show the following
result.

▶ Informal Theorem 1 (Informal Statement of Theorem 17). If a variant of the quantum PCP
conjecture (Conjecture 1) is true as well as the post-quantum hardness of LWE, then there exists a
classical-verifier succinct-communication argument with non-succinct setup in the QROM for QMA
(and consequently for the verification of quantum computation).

The general topic of delegating quantum computation has been studied for a while (for a
non-exhaustive list of works, see for example [Chi05, FHM18, GKK18, Mah18b, ACGH20, CCY20,
Zha22, TMT22]). In early work, the verifier was modeled as a (possibly weaker) quantum device
(e.g. [Chi05]). Mahadev’s breakthrough [Mah18a, Mah18b] enabled classical verification of quantum
computation under the post-quantum hardness assumption of Learning with Errors (LWE). This
opened the door to further subsequent developments in the topic of classical verification of quantum
computation (e.g. [VZ19, ACGH20]). In particular, the question of succinct verification of quantum
computation has been studied in these works [CCY20, BM22, BKL+22, CM21, GJMZ22, Zha21].
We discuss how they differ from our work in Section 1.1.

We will now go from our motivating question to the more general problem of deciding whether
a local Hamiltonian has a low-energy groundstate. The details of the reduction from verification
of quantum computation to the local Hamiltonian problem can be found in [FHM18] where the
standard Feynman-Kitaev circuit-to-Hamiltonian reduction is used. As alluded to in some papers
such as [BL08, FHM18], one can obtain XZ Hamiltonians from the Kitaev construction by using a
suitable universal gate set 2.

A classical-verifier protocol for the XZ local-Hamiltonian problem has been given in [ACGH20]
by iterating on a long sequence of works starting by Kitaev in 1999 and culminating in the recent
works of [MNS16, FHM18, MF16, Mah18b, VZ19, CVZ20]. We modify the protocol to eliminate
redundant communication. Then we identify the modified protocol as an instance of an interactive
oracle argument, a concept that we define by generalizing interactive oracle proofs [BCS16].

Post-quantum interactive oracle arguments - which we define in this paper - are interactive
protocols for yes/no promise problems where yes instances are defined by a quantum-witness relation.
In this class of protocols, prover messages are modeled as oracles that can be query-accessed by
the verifier. Our main technical contribution (Informal Theorem 2) shows that interactive oracle
arguments with succinct query complexity can be compiled into succinct-communication arguments.

▶ Informal Theorem 2 (Informal Statement of Corollary 11). Any public-coin non-adaptive interactive
oracle argument (with setup) with succinct (i.e. at most polylogarithmic) query complexity can be
compiled into a succinct-communication argument (with setup) in the quantum random oracle model
(QROM).

Informal Theorem 2 is the bridge that will get us to Informal Theorem 1. However, we need
a starting protocol with succinct query complexity to compile using the framework of Informal
Theorem 2. We obtain this by modifying [ACGH20]’s classical-verifier protocol for the XZ local
Hamiltonian problem by eliminating some redundant communication. The modified protocol
will have succinct query complexity when the promise gap of the local Hamiltonian is at least
inverse-polylogarithmic. The result of compilation using Informal Theorem 2 can be summarized as
follows.

▶ Informal Theorem 3. For any constant k and any relative promise gap that is at least inverse-
polylogarithmic, the XZ k-local Hamiltonian problem has a classical-verifier succinct-communication
argument system with non-succinct setup in the quantum random oracle model and under the
post-quantum hardness assumption of LWE.

The local Hamiltonian problem is QMA-complete when the promise gap is inverse-polynomial.
The quantum PCP conjecture states that the local Hamiltonian problem remains QMA-complete

2 Consider, for example, the universal gate set G = {H, X, CCNOT}. Note that H = 1√
2 (X + Z) and

CCNOT = I − 1
4 (I − Z1)(I − Z2)(I − X3). G is a universal gate set with real matrices and can be used to

obtain propagation Hamiltonians whose Pauli decomposition has the real Pauli matrices X and Z.
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when the promise gap is constant. For Informal Theorem 3 to apply to QMA (and obtain Informal
Theorem 1), it suffices that the XZ local Hamiltonian problem be QMA-complete with at least
inverse-polylogarithmic gap. We call this condition the weak XZ quantum PCP conjecture.

▶ Conjecture 1. There exists a constant k such that the XZ k-local Hamiltonian problem with a
promise gap that is at least inverse-polylogarithmic is QMA-complete.

The qualifier “weak” here is to indicate that it is enough to amplify the gap to be inverse-
polylogarithmic. When it is amplified to a constant, we call the conjecture the XZ quantum PCP
conjecture.

▶ Conjecture 2. There exists a constant k such that the XZ k-local Hamiltonian problem with a
constant relative promise gap is QMA-complete.

One can see that Conjecture 2 implies Conjecture 1 because a constant promise gap is one that is
at least inverse-polylogarithmic. However, the exact relationship between either of these modified
conjectures and the standard quantum PCP conjecture is unknown to us and we pose as an open
problem.

▶ Open Problem 3. Does the standard quantum PCP conjecture imply the (weak) XZ quantum
PCP conjecture?

1.1 Recent Related Works
Below we discuss the most relevant recent works. While most of them address the motivating
problem of succinct verification of quantum computation, our work addresses also the general
problem of compiling classical-verifier interactive oracle arguments into succinct arguments in the
QROM. The succinct verification of quantum computation is a motivation and application of that
compilation framework, but may not be the only application.

Succinct classical verification of quantum computation [BKL+22]: Their work achieves
succinct arguments for QMA (both succinct communication and succinct verification) in the
standard model assuming the post-quantum security of indistinguishability obfuscation (iO)
and Learning with Errors (LWE). A key contribution of that work is showing how to replace
the non-succinct setup phase of the Mahadev protocol with succinct key generation based on iO.
As a result, in the interactive setting, they obtain a 12-message succinct argument for QMA
in the standard model, which can be reduced to 8 messages assuming post-quantum FHE; the
latter protocol can be made non-interactive in the QROM.
Our work achieves a 5-message 3 (excluding 1 offline message setup) argument in the QROM
with non-succinct instance-independent setup without using FHE, but assuming a variant of
the quantum PCP conjecture and LWE. In particular, our protocol makes only black-box use
of cryptography and resembles practical succinct arguments for NP that compile PCPs. This
makes it easier to implement in practice if a constructive proof of the (weak) XZ quantum PCP
conjecture is discovered. We expect that the succinct key generation technique in [BKL+22]
can also be applied to our protocol, which would remove the non-succinct setup at the cost of
assuming and using post-quantum iO.
Furthermore, our work addresses the general problem of compiling interactive oracle arguments
into succinct arguments. The succinct verification of quantum computation is a motivation and
application of this compilation framework, but may not be the only application.
Quantum-computational soundness of the Kilian transformation: The soundness
of the Kilian transformation from classical probabilistically checkable proofs (PCPs) against
quantum polynomial-time cheating devices had been recently formally established in a line of

3 We conjecture that it is possible to reduce the number of messages to 3 in our work. In the current version,
the prover commits to one Merkle tree, then receives a Mahadev challenge (test/Hadamard), then commits to
another tree, then receives the challenged indices to be revealed. This description was chosen so that Section 3
can be applied in a vanilla way. However, this choice does not utilize the fact that the challenged indices in both
trees are identical! We conjecture that the verifier could send the challenged indices along with the Mahadev
test/Hadamard challenge bits without exposing soundness. The intuition is that Mahadev’s protocol is already
a form of commitment that would be capable of replacing the second Merkle tree commitment. Furthermore, we
conjecture that our protocol can be made non-interactive using the Fiat-Shamir transformation in the QROM.
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works [CMS19, CMSZ21]. [CMS19] proved its soundness when the hash function is modeled
via the QROM. Later, [CMSZ21] showed its soundness in the standard model when the hash
function family is any collapsing (see [Unr16b]) hash function family. Families of such functions
exist under the LWE assumption [Unr16a]. In our work, the input to the Kilian transformation
is not a classical PCP, but rather a quantum PCP that was transformed into a classical-verifier
interactive oracle protocol using Mahadev’s verifiable measurement protocol. [CMS19] proves the
soundness of SNARGs based on IOPs with round-by-round soundness in the QROM. However,
in our work we do not assume any special soundness properties about the IOArgs except for
standard computational soundness.
Classical verification of quantum computation with efficient verifier [CCY20]: This
work builds a protocol for the succinct classical verification of quantum computation with a
non-succinct setup from the LWE assumption as well as post-quantum indistinguishability
obfuscation (iO) and post-quantum fully homomorphic encryption (FHE). There is a gap in
the soundness proof because an underlying protocol is proven sound in the QROM, but an
assumption about its soundness with a concrete hash function is made. Our soundness proof
is fully in the quantum random oracle model, without the need to use the code for the hash
function and therefore avoiding the aforementioned gap in the soundness proof. Furthermore,
our work does not require post-quantum iO nor use post-quantum FHE but rather a variant of
the quantum PCP conjecture and the LWE assumption. As mentioned earlier, we also address
the more general problem of compiling interactive oracle arguments.
zk-SNARGs for QMA from quantum null-iO [BM22]: This work mainly studies a
cryptographic concept known as indistinguishability obfuscation for null quantum circuits
(quantum null-iO). As an application, they achieve zero-knowledge succinct non-interactive
arguments (zk-SNARGs) for QMA in the quantum random oracle model (QROM) from (i)
the quantum hardness of LWE, and (ii) post-quantum indistinguishability obfuscation (iO) for
classical circuits. As mentioned earlier, our work does not require post-quantum iO but rather
a variant of the quantum PCP conjecture and the LWE assumption and we also address the
more general problem of compiling interactive oracle arguments.
Online extractability in the quantum random oracle model [DFMS22b, DFMS22a]:
We make use of the online extractability framework of [DFMS22b] to prove the online extrac-
tion of Merkle trees (see Theorem 4 and Appendix C) which is implicit in their follow-up
work [DFMS22a] that appeared while we were working on this paper. We kept the explicit
theorem statement needed for our work and Appendix C where we prove it because the statement
in our paper as well as the notation and exposition fit better with the rest of the manuscript.
Quantum Merkle Trees in the Quantum Haar Random Oracle Model [CM21]: This
work introduced the Quantum Haar Random Oracle Model (QHROM) which is a generalization
to the quantum random oracle model. They show how to construct a quantum Merkle tree
in this model and how it can be used to commit to and later reveal quantum states. If the
quantum PCP conjecture is true, this could be used to obtain succinct arguments for QMA in
the QHROM with quantum communication. The security is proven against what they define to
be semi-honest 4 provers. In a follow-up work [CM22], they discussed zero-knowledge properties.
In our work, we focus on classical verifiers (with classical communication) in the quantum
random oracle model (QROM) - which is a more established model than the QHROM. We
analyze security against cheating quantum provers that can perform any malicious action but
limited to run in polynomial time.
Commitment to quantum states [GJMZ22]: After [CM21], [GJMZ22] announced a
construction of quantum Merkle trees from quantum-cryptographic assumptions (implied by
one-way functions) in the standard model, and proved that the proposed succinct argument
of [CM21] is secure with this instantiation (against cheating provers). This protocol is public
coin and relies on very weak cryptographic assumptions, but requires quantum communication
like [CM21] while our work focuses on classical verifiers with only classical communication.
Succinct blind quantum computation using a random oracle [Zha21]: This work
introduced a two-phase protocol for the blind delegation of quantum computation. The first

4 This notion is different from the typical usage of the term semi-honest in cryptographic secure computation
where it means an “honest but curious” adversary. A semi-honest prover in [CM21] is a prover that commits to
a cheating state but follows the steps of the protocol.
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phase is a quantum phase with succinct complexity while the second is entirely classical. Our
work considers fully classical verifiers.

2 Background and Prior Work

Appendix A provides a glossary of the mathematical symbols and notation frequently used in this
paper and Appendix B recalls some mathematical preliminaries assumed in this paper.

2.1 Merkle trees
A classical 5 Merkle tree of depth d is a binary tree used to commit to a sequence of blocks of data
(called leaves) π = (πj)j∈[2d] using a cryptographic hash function h : X → {0, 1}λ. The root of the
Merkle tree represents a digest of the blocks of the data at its leaves. For a leaf node at index
j ∈ [2d], its authentication path can be used to verify its authenticity with respect to a root rt.

Figure 1 illustrates a Merkle tree of depth d = 3 to commit to a sequence of leaves π = (π1, . . . , π8).

π1 π2 π3 x3,0 π5 π6 π7 π8

x3,1 z3,1

z3,2 x3,2

z3,3

Figure 1 This figure illustrates a Merkle tree of depth d = 3 to commit to 23 = 8 leaves with the root
rt = z3,3. The intermediate nodes for the authentication path of π3 are marked with the notation used in
this paper. Notice that z3,0 = π3 and x3,0 = π4 and rt = z3,3 in a valid authentication path.

For notational convenience, let zj,0 = πj . We will use the notation h(x, x′) to indicate applying
the hash function to the proper concatenation of x and x′ (respecting which is left/right child).
Define hj,ℓ := h(xj,ℓ, zj,ℓ−1) where hj,0 := πj . The authentication path consists of the hash values
at levels 0 ≤ ℓ ≤ d as follows: apj = (xj,ℓ, zj,ℓ)0≤ℓ≤d. An authentication path apj is valid if and
only if zj,d = rt and hj,ℓ = zj,ℓ for all 0 ≤ ℓ ≤ d. Figure 1 provides an example of a Merkle tree
with 8 leaves. Let Q be a set of indices for some leaves. At each level ℓ (from 0 to d), we define
the following sequence Zℓ which corresponds to the hash values at this level needed to verify all
authentication paths: ZQ,ℓ = (zj,ℓ)j∈Q. We will use ẐQ,ℓ to denote the augmented sequence created
from ZQ,ℓ by ordering these intermediate Merkle tree nodes from left to right and replacing any
missing nodes with ⊥. When Q is clear in the context, we write ZQ,ℓ as Zℓ and ẐQ,ℓ as Ẑℓ for
brevity. Similarly, we define: XQ,ℓ = (xj,ℓ)j∈Q and X̂Q,ℓ as well as their shorted notations Xℓ and
X̂ℓ respectively when Q is clear in the context. The suite of Merkle tree algorithms used in this
paper are as follows:

Commith(π1, . . . , π2d): returns the root of the Merkle tree rt and all intermediate nodes,
Validh(rt, j, apj): returns true if and only if the given authentication path apj for the j-th leaf
is valid against the root rt by using the hash function h,
Consistent(Q, {apj}j∈Q): returns true if and only if the authentication paths for leaves at
indices Q ⊆ [2d] are well-formed and consistent at the common intermediate nodes 6, and

5 In this paper we will only work with classical Merkle trees where the data are classical strings and the algorithms
are executed on classical devices. However, their security is established against a cheating quantum device in
the quantum random oracle model.

6 This is equivalent to sending each overlapping intermediate node once instead of sending it multiple times inside
possibly overlapping paths for each leaf. However, for easier notation and exposition, we send the authentication
paths for each leaf and require this consistency condition when verifying a batch of authentication paths.
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Verifyh(rt,Q, apj∈Q): validates a batch of authentication paths and returns true if and only if
both Consistent(Q, apj∈Q) and ∀j ∈ Q : Validh

(
rt, j, apj

)
are true.

2.2 Merkle Trees in the Quantum Random Oracle Model (QROM)
The random oracle [BR93] models a concrete cryptographic hash function H : X → Y as an external
random oracle RO that answers queries randomly the first time they are submitted and consistently
whenever they are resubmitted. Precisely, the random oracle is a uniformly random function from
X to Y. The quantum random oracle [BDF+11] is a unitary oracle UH : |x⟩ |y⟩ 7→ |x⟩ |y ⊕H(x)⟩
defined with an underlying uniformly random function H. The query is submitted in the x register
and an answer H(x) is returned by XORing such answer with the content of the y register.

Since the introduction of the QROM, different techniques and applications were introduced,
most notably the compressed oracle technique due to Zhandry [Zha19]. Building on the success
of this line of work, [DFMS22b] introduced a framework for online extractability in the quantum
random oracle model. Online extraction means that the extraction happens (i) on-the-fly during
the algorithm’s execution, and (ii) in a straightline which means that no rewinding of the algorithm
calling the random oracle is needed. [DFMS22b] provides a framework that encapsulates many
of the inner workings that needed to be handled extensively before. Their framework offers an
extractable random oracle simulator S which has an internal database state and two query interfaces
(which are operators) (see Figure 3 in Appendix C):
1. S.RO-query: the quantum random oracle unitary, and
2. S.E-query: a classical extraction query that applies a measurement to the simulator state.

A

E

π̂

rt
...

···

...

rt

S, (πj , apj)j∈S

S

R

won/lost

...

RO E

Figure 2 This figure illustrates the game G1 referenced in Theorem 4. A wins if S ⊆ [2d], |S| = r, and
VerifyRO (rt, S, apj∈S

)
, but ∃j ∈ S : πj ̸= π̂j . The “snaked“ arrowed lines represent quantum queries and

responses thereof, while the straight arrowed lines represent classical queries and responses thereof. The
referee R consists of two main procedures: (1) verifying the authentication paths which needs to interact
with the S.RO interface, and (2) comparing the output of the adversary and the extractor which does not
interact with S.

We will use the following result about the online extraction of Merkle trees which is implicit
in a follow-up work by [DFMS22a], but we also provide a detailed discussion and a proof for it
in Appendix C which was written prior to the publication of [DFMS22a]. The theorem bounds
the probability of winning a game G1(λ, d, r, q) illustrated in Figure 2 (as well as Figure 4 in
Appendix C) where a quantum adversary A interacts with only the RO interface while a classical
honest extraction algorithm E only (classically) interacts with the E interface of the simulated
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random oracle. The adversary announces a classical value rt which is supposedly the root of a
Merkle tree of depth d and they win if they can later “fake” at least one of r leaves. Faking a
leaf here means giving a leaf value that can be authenticated against the prior commitment, but
different from that output by extraction. A referee algorithm R determines whether the adversary
won by validating the authentication paths against the root rt then comparing the adversary’s
leaves against the leaves given by the extraction algorithm.

▶ Theorem 4. For the game G1 defined in Figure 4 by the universal referee and extractor algorithms
described earlier such that λ = ω(d), q ≤ poly(2d), and any quantum adversary A = (A1,A2) where
A1 makes q1 queries to the random oracle, then A1 announces a value rt, followed by A2 making q2
queries to the random oracle such that q1 + q2 ≤ q, then A2 outputs a classical string, it holds that:

Pr[A wins G1(λ, d, r, q)] ≤ negl(λ).

2.3 The Local Hamiltonian Problem
▶ Definition 5 (Local Hamiltonian Problem (n, k, γ)-LH). The k-local Hamiltonian problem notated
as (n, k, γ)-LH is a promise problem where the input is a classical binary string x = (H, a, b) such
that:

H is a k-local Hamiltonian H =
S∑
s=1

Hs on a total of n qubits where S = poly(n) and each Hs

is a Hermitian matrix with a bounded operator norm ||Hs|| ≤ 1 and its entries are specified by
poly(n) bits and Hs is non-identity on at most k qubits,
a and b are two numbers represented with poly(n) bits such that a < b; the gap Γ = b − a is
called the absolute promise gap and γ = Γ/S is called the relative promise gap,
for yes-instances, there exists an n-qubit quantum state |ψ⟩ such that ⟨ψ|H |ψ⟩ ≤ a (i.e. energy
of the state w.r.t. H is at most a),
for no-instances, for every n-qubit quantum state |ψ⟩, it holds that ⟨ψ|H |ψ⟩ ≥ b (i.e. energy of
the state w.r.t. H is at least b), and
it is promised that any instance will be either a yes or no instance.

The problem is called the XZ k-local Hamiltonian problem and we notate it as (n, k, γ)-LH-XZ
when each Hs is a constant-scaled tensor product of n matrices from the set of 2 × 2 matrices
{1, X, Z} such that at most k of the matrices in each product are non-identity.

This problem is QMA-complete when the promise gap is at least inverse polynomial i.e. γ ≥
1/ poly(n). The k-LH problem remaining QMA-hard even when this promise gap is constant i.e.
γ ≥ α for some constant α is known as the quantum PCP conjecture (qPCP for brevity), which is
still unsettled to date. [AALV09] showed that the qPCP statement is equivalent to obtaining PCPs
for QMA where quantum reductions 7 are used to prove that the proof verification version implies
the gap amplification version.

2.4 Classical-Verifier Argument for XZ Local Hamiltonians
We will now describe Protocol 6 due to [ACGH20] which is a quantum-prover classical-verifier
argument system with an instance-independent setup phase. The protocol can be parallel-repeated
to obtain negligible completeness and soundness errors. In Appendix E, we give a detailed exposition
and proofs of completeness and soundness and explain the modular construction of this protocol
while generalizing the locality to any constant k and the promise gap to any function. We give
below a very brief summary.

Protocol 6 [ACGH20] uses Mahadev’s verifiable measurement protocol described in Section E.2
to make the verifier of a protocol for local Hamiltonian verification (Protocol 28) classical instead
of quantum. In the predecessor version of Protocol 28 [MF16, FHM18, MNS16], the choice of
measurements (X or Z) depended on the choice of the Hamiltonian term. This is because a
particular Hamiltonian term may act by X on a qubit while another term could act by Z on the

7 It is an open question whether they are equivalent under classical reductions. In fact, the proof checking
formulation itself could end up being more specific than that provided in [AALV09] which was the reason why
it was not straightforward to prove the equivalence under classical reductions. For the details of the quantum
reduction, we refer the reader to the proof of Theorem 5.5. in [Gri18].
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same qubit. This poses a challenge when using Mahadev’s verifiable measurement because the first
step of Mahadev’s protocol samples keys that depend on the basis choice. [ACGH20] got around this
issue by randomly sampling a basis for each qubit. When the time comes to select a Hamiltonian
term, the verifier first checks whether this selected term is consistent with the randomly selected
bases on the affected qubits.

In the first round of [ACGH20]’s protocol, the verifier generates a set of private trapdoors
and corresponding public keys (a trapdoor/key for each qubit in the witness state) to initiate the
Mahadev protocol. The prover then sends a commitment for the witness state - they allegedly
have - using the received public keys. The verifier then sends a challenge bit (0/1) that dictates
certain measurements to be done by the prover. The prover measures accordingly and sends
the measurement outcomes. If the verifier sent 0 as the challenge bit, a Mahadev “test round”
(TestCheck) is executed whose purpose is making sure that the prover “did not change their mind”
after the commitment. If the verifier sent 1 as the challenge bit, a Mahadev “Hadamard round”
(HadRound) is executed to extract the measurements needed to execute the verification procedure
on the Hamiltonian term. The protocol is executed multiple times in parallel using multiple copies
of the witness state.

▶ Protocol 6 (Protocol 4 in [ACGH20]; Quantum-Prover Classical-Verifier Argument System for XZ
local Hamiltonians with Instance-Independent Setup).

Parties: Quantum polynomial-time prover P & classical probabilistic polynomial-time verifier V.
Parameters: 1. n: number of qubits.

2. r,m: number of repetitions in the LH verification and Mahadev protocols respectively.
3. λ: a security parameter ≥ n.

Setup: 1. V samples uniformly random bases h ∈ {0, 1}nrm.
2. V runs Mahadev’s key generation algorithm (pk, sk)← Gen(1λ, h).
3. V sends the public keys pk to P, but maintains sk secretly 8.

Inputs: Inputs to both parties: x = (H =
S∑
s=1

dsHs, a, b) i.e. instance of the (n, k, γ)-LH-XZ.

Input to honest prover on yes instances: |Ψ⟩ = |ψ⟩⊗rm (i.e. rm copies of |ψ⟩ the ground
state of the Hamiltonian H). This state is in the register W . For each i ∈ [m], ℓ ∈ [r], j ∈ [n],
we use Wiℓj to denote the corresponding qubit.

Round P1: For each Wiℓj, the prover prepares the “commitment” state (see Section E.2; we use here F to
denote f or g depending on the uniformly chosen basis):

1√
|X |

∑
x∈X

∑
b∈{0,1}

ϕb |b⟩Wiℓj
|x⟩Xiℓj |Fpkiℓj (b, x)⟩

Yiℓj
.

P measures each register Yiℓj in the standard basis & sends the outcomes y = (yiℓj) to V.
Round V2: V samples challenge bits c1, . . . , cm ← {0, 1} and sends c = (c1, . . . , cm) to P. 0 or 1 means

asking the prover to engage in test or Hadamard rounds (respectively) of the Mahadev protocol
(see Section E.2).

Round P2: For each i ∈ [m], ℓ ∈ [r], j ∈ [n],
1. If ci = 0, P performs a standard basis measurement and gets uiℓj = (wiℓj , xiℓj).
2. If ci = 1, P performs a Hadamard basis measurement and gets uiℓj = (wiℓj , xiℓj).
P sends u = (uiℓj) to V.

V’s Verdict For each i ∈ [m],
1. If ci = 0, V sets vi :=

∧
ℓ,j

TestCheck(skiℓj , uiℓj , yiℓj) (see Section E.2).

2. If ci = 1, V records the set Ai ⊆ [r] (the subset of copies consistent with the random bases
choice). For each ℓ ∈ Ai:

a. Run the Hadamard round (see Section E.2) for each j ∈ [n]:

(ziℓj , eiℓj) := HadRound(skiℓj , uiℓj , yiℓj , hiℓj).

If it rejects (i.e. ziℓj = 0 for some j), set viℓ = 0; otherwise enter the next step.

8 Later, we will use the term “public-coin protocols with private setup” to highlight this again.
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b. Like in Protocol 28, sample a Hamiltonian term siℓ ← π where the distribution π is given
by:

π(s) = |ds|∑
s
|ds|

.

Denote by S(i, ℓ) the set of indices of the qubits acted upon by non-identity Pauli observables.

Set viℓ := 1
2

(
1− sgn(dsiℓ) ·

∏
j∈S(i,ℓ)

eiℓj

)
(i.e. set to 1 iff the measurement has the opposite

sign of the coefficient of the selected term).
Then, as in Step 3 of the verdict in Protocol 28: V sets vi = 1 iff:

∑
ℓ∈Ai

viℓ ≥
(c+ s)

2 · |Ai| =

(
2− (b− a)/

∑
s
|ds|
)

4 · |Ai|

where (see Protocol 28 and the proof in Appendix F for the details):

c := 1
2 −

a

2
∑
s
|ds|

and s := 1
2 −

b

2
∑
s
|ds|

.

Finally, V accepts iff v :=
∧m
i=1 vi evaluates to 1 (i.e. vi is 1 for each parallel repetition i ∈ [m]).

3 Succinct Communication from Interactive Oracle Arguments

3.1 Defining Interactive Oracle Arguments
We now formalize the notion of quantum-computationally sound classical-verifier interactive oracle
proofs for quantum-witness relations (which for brevity we also call IOArgs for interactive oracle
arguments) by generalizing interactive oracle proofs (IOPs) in [BCS16]. In particular, we introduce
IOArgs with a pre-processing (setup) phase where the verifier sends a message to the prover that
does not depend on the input instance but only on an upper bound on the instance size n. Since
this step does not need the input and can happen temporally before the execution of the protocol
on a particular input, we do not account for its cost when analyzing succinctness of the protocol
communication.

▶ Definition 7 (Interactive Oracle Arguments with Setup; Generalizing Interactive Oracle Proofs
in [BCS16]). Let p(n) be a polynomial and R be a relation: R ⊆

∞⋃
n=0
{0, 1}n ×Hp(n) where Hp(n) is

the Hilbert space of p(n)-qubit pure quantum states. Consider a promise problem A = (Ayes, Ano)
where Ayes ∩ Ano = ∅ and Ayes := {x | ∃ |ψ⟩ : (x, |ψ⟩) ∈ R}. We say that A has a quantum-
computationally sound classical-verifier interactive oracle proof system with setup with the following
parameters (notated as A ∈ IOArgc,s[t(n), ℓ(n), r(n), q(n)]):

round complexity t(n): number of prover oracle messages in the protocol,
total length of all prover messages: ℓ(n),
randomness complexity r(n): total number of random bits used by the verifier,
query complexity q(n): number of queries by the verifier to the prover’s oracle messages,
completeness c(n), and soundness s(n)

if there is an interactive protocol between:
Parties: 1. P |ψ⟩: a quantum poly(n)-time algorithm (when the input x is a yes instance, an honest

prover will receive a state |ψ⟩ such that (x, |ψ⟩) ∈ R), and
2. V = (V0, . . . ,Vt(n)): a classical probabilistic poly(n)-time algorithm using r(n) random bits.

The verifier’s sub-algorithm V0 = Setup(1n) is an optional setup phase that only depends
on the input length 9 but not the input itself while the the other sub-algorithms V1, . . . ,Vt(n)
depend on the input x.

9 In most useful interactive oracle arguments including the argument system for the local Hamiltonian problem
discussed in this paper, we do not have to know the input length exactly, but it suffices to know an upper
bound.
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Setup: The protocol starts with an optional setup phase run by the verifier (p0, v0)← Setup(1n). The
verifier sends p0 to the prover and keeps10 v0.

Interaction: For any round i ∈ [t(n)], the following interaction takes place:
1. The prover sends an oracle message pi = P(x, p0, p1, . . . , pi−1, v1, . . . , vi−1).
2. If i < t(n), the verifier samples randomness $i and outputs a message vi = V(x, v0, v1, . . . vi−1; $i).
Verdict: At the end of the protocol, the verifier samples randomness $t(n) and chooses q(n)
locations Q = (Q1, . . . , Qt(n)) to access from previous prover oracle messages p1, . . . , pk. Finally,
the verifier runs a predicate Verdict(x, p1|Q1 , . . . , pt(n)|Qt(n)

, v0, v1, . . . , vt(n)−1; $t(n)) to output
a decision (accept/reject).

Completeness: If x is a yes-instance, with |x| = n, then for an honest prover P receiving a quantum state |ψ⟩
such that (x, |ψ⟩) ∈ R: Pr[⟨P,V⟩ accepts x] ≥ c(n).

Soundness: If x is a no-instance, with |x| = n, then for any quantum polynomial-time interactive algorithm
P̃: Pr[⟨P̃,V⟩ accepts x] ≤ s(n).

We say that an IOArg is public-coin with private setup if the verifier sends the randomness
they generate to the prover 11 (except for the randomness used in the setup step). In our definition,
the queries of the IOArg are non-adaptive in the sense that one query does not depend on the
answer to another. In this paper, we work with non-adaptive public-coin IOArgs with private setup.

3.2 Succinct Communication by Applying the Kilian Transformation
We now show how to apply the standard Kilian transformation [Kil92] to compile any non-adaptive
public-coin IOArg with private setup and succinct query complexity into a succinct-communication
argument. To prove the soundness of the compiled protocol, we will use the online extraction of
Merkle trees in the quantum random oracle model discussed in Section C.

▶ Protocol 8 (Succinct-communication argument from non-adaptive public-coin IOArg with private
setup and succinct query complexity).

Model: RO : X → {0, 1}λ is a quantum random oracle which could be called in superposition.
Promise Problem: A ∈ IOArgc,s[t(n), ℓ(n), r(n), q(n)] with an underlying relation R where q(n) = Õ(λ).

Parties: Quantum poly-time prover P & classical probabilistic poly-time verifier V.
Setup: The verifier runs (p0, v0)← Setup(1n) from the underlying IOArg, keeps v0, and sends p0 to

the prover.
Inputs: To both parties: x where |x| = n & x is a yes/no instance of the promise problem A.

To the prover: The setup message p0 received during the setup. An honest prover will also
receive a state |ψ⟩ on yes-instances x such that (x, |ψ⟩) ∈ R.

Round Pi: The prover computes the message pi according to the underlying IOArg. The prover then uses
CommitRO to compute a Merkle tree root rti for the message pi and sends rti to the verifier.

Round Vi: If i < t(n): according to the underlying IOArg the verifier samples randomness $i and sends the
message vi.
If i = t(n): According to the underlying IOArg, the verifier samples randomness $t(n) and
determines the q(n) locations Q = (Q1, . . . , Qt(n)) to access from the previous prover oracle
messages p1, . . . , pt(n) that were supposedly committed with the roots rt1, . . . , rtt(n) respectively.
The verifier sends these indices Q to the prover.

Round Pt+1: The prover sends the q(n) bits at locations Q along with authentication paths to the verifier i.e.
they send the sequence

(
(πi,j , api,j)j∈Qi

)
1≤i≤t(n) where api,j means the authentication path of

the jth location with respect to the root rti of the ith Merkle tree.
Verdict: For each i = 1 . . . t(n), the verifier verifies the authentication paths with access to the random

oracle RO and using the predicate Verify defined in Section 2.1. Precisely, in the ith iteration,
the verifier performs this verification by calling VerifyRO (rti, Qi, (api,j)j∈Qi

)
. It rejects if this

predicate rejects. Otherwise, the verifier outputs the output of:

Verdict(x, π1|Q1 , . . . , πt|Qt , v0, v1, . . . , vt−1; $t(n))

10 Keeping the randomness used in the setup enables the verifier to store information such as secret keys and/or
trapdoors without revealing them to the prover.

11 or its oracle messages
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where Verdict is the verdict predicate of the underlying IOArg and πi|Qi are the locations
received from the prover during the round Pt(n)+1.

3.3 Analysis of the Compiled Protocol
The completeness of Protocol 8 is stated in Theorem 9 and proven in Appendix D.1 using the
idempotence property of the RO interface (Property 4, Theorem 21). The soundness of this protocol
is summarized in Theorem 10 and proven in Appendix D.2 which are key technical contributions
in this paper. In Appendix D.3, we analyze the total communication cost in this protocol which
is found to be O (λ · (t(n) + q(n) · log(n)) + r(n)) classical bits. The resulting protocol is succinct
when q(n) = O(poly(log(n))) = Õ(1), r(n) = Õ(1), t(n) = Õ(1), and ℓ(n) = poly(n). Finally, we
summarize these three properties of the protocol (completeness, soundness, and succinctness) in
Corollary 11.

▶ Theorem 9 (Completeness of Protocol 8). For a promise problem A ∈ IOArgc,s[t(n), ℓ(n), r(n), q(n)]
such that c(n) is the completeness of the IOArg, Protocol 8 built on that IOArg also has completeness
c(n).

▶ Theorem 10 (Computational Soundness of Protocol 8). Consider a promise problem A with an
interactive oracle argument i.e. A ∈ IOArgc,s[t(n), ℓ(n), r(n), q(n)]. Let Protocol 8 be built on top
of this IOArg in the quantum random oracle model with λ = ω(log(ℓ(n))). Let x be an instance of A
with n = |x|. If a (possibly cheating) quantum prover P running in polynomial time TP(n) = poly(n)
and access to RO can make an honest verifier V in such protocol accept x with probability ≥ δ(n),
then there exists a polynomial-time (quantum) IOArg prover P̃IOArg(x) that can make an honest
IOArg verifier accept x with probability ≥ δ(n)− negl(λ).

▶ Corollary 11 (Succinct-Communication Arguments from IOArgs). In the quantum random oracle
model with RO : X → {0, 1}λ and λ = ω(log(n)): Protocol 8 built for a promise problem A ∈
IOArgc,s[Õ(1),poly(n), Õ(1), Õ(1)] is a succinct-communication argument with (possibly non-
succinct) setup with completeness c and soundness s− negl(λ).

4 Classical-Verifier Succinct-Communication Argument for XZ Local
Hamiltonians

4.1 Eliminating redundancy in [ACGH20]’s classical-verifier argument
Protocol 12 is a modified version of Protocol 6. When executing the Mahadev verifiable measurement
test/Hadamard rounds in the protocol, we only verify the measurements for the qubits that would
have been necessary to run the LH verification. Precisely, the difference here is that - even in
Mahadev’s test round - the index j ranges over the set S(i, ℓ) which is the set of qubit indices
affected by non-identity observables in the Hamiltonian term siℓ instead of ranging over [n] (i.e. all
qubits).

▶ Protocol 12 (Modified version of Protocol 6 after eliminating redundancy).
Parties, Inputs, Setup: Same as in Protocol 6.
Rounds P1,V2,P2: Same as in Protocol 6.
V’s Verdict For each i ∈ [m], ℓ ∈ [r] : V samples a Hamiltonian terms siℓ ← π where the distribution
π is given by:

π(s) = |ds|∑
s
|ds|

.

Denote by S(i, ℓ) the set of indices of the qubits acted upon by non-identity Pauli observables.
Also, let Ai ⊆ [r] be the subset of copies consistent with the random bases choice.
For each i ∈ [m]:

1. If ci = 0 (test round), set vi :=
∧

ℓ∈Ai, j∈S(i,ℓ)
TestCheck(skiℓj , uiℓj , yiℓj).

2. If ci = 1 (Hadamard round), for each ℓ ∈ Ai:
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a. Run the Hadamard round for each j ∈ S(i, ℓ):

(ziℓj , eiℓj) := HadRound(skiℓj , uiℓj , yiℓj , hiℓj).

If it rejects (i.e. ziℓj = 0 for some j), set viℓ = 0; otherwise enter the next step.

b. Set viℓ := 1
2

(
1− sgn(dsiℓ) ·

∏
j∈S(i,ℓ)

eiℓj

)
(i.e. set to 1 iff the measurement has the opposite

sign of the coefficient of the selected term).
Then, as in Protocols 28 and 6: V sets vi = 1 iff:

∑
ℓ∈Ai

viℓ ≥
(c+ s)

2 · |Ai| =

(
2− (b− a)/

∑
s
|ds|
)

4 · |Ai|

where (see Protocol 28 and the proof in Appendix F for the details):

c := 1
2 −

a

2
∑
s
|ds|

and s := 1
2 −

b

2
∑
s
|ds|

.

Finally, as in Protocol 6, V accepts iff v :=
∧m
i=1 vi evaluates to 1 (i.e. vi is 1 for each parallel

repetition i ∈ [m]).

In Appendix F, we follow [ACGH20]’s proof of the soundness of Protocol 6 to show how the
soundness of this modified protocol still holds even when we only verify the Mahadev measurements
for the qubits affected by the selected local Hamiltonian term. We outline a corollary to that result
below.

▶ Corollary 13 (Mirror of Theorem 4.6. in [ACGH20]). Under the LWE assumption, for every
constant k, Protocol 12 with r = ω( log(n)

γ2 ) and m = ω(log(n)) has negligible completeness and
soundness errors.

4.2 Compiling towards Succinct Communication
Since only a number of selected locations are read from each prover message, we can rewrite
Protocol 12 as an IOArg by modeling the prover messages as message oracles instead of message
strings. As a result, we get Protocol 14 which is a two-round public-coin non-adaptive interactive
oracle argument with a private setup. Specifically, the verifier’s choices with the exception of
key-generation - which happens in setup - are revealed to the prover (or its message oracles). Note
that the setup phase is non-succinct because the verifier needs to send a key for each qubit. The
verifier sends a total of m (the number of parallel repetitions of the Mahadev protocol) classical bits
in the first round. The verifier needs to query k ·r ·m locations from each prover oracle. Theorem 35
and Corollary 13 still directly apply to this protocol because it is exactly the same as Protocol 12
from the point of view of both the prover and verifier. When γ is at least inverse polylogarithmic,
one can take r = ω(logn/γ2) to obtain negligible completeness and soundness errors in Protocol 14
as well as polylogarithmic query complexity. We can then apply Corollary 11 to conclude with
Corollary 15.

▶ Protocol 14 (Interactive Oracle Argument with Preprocessing for XZ Local Hamiltonians).
Parties, Inputs, Setup: Same as in Protocol 12.

Round P1: P follows the steps of Protocol 12 (as described in Protocol 6) and sends an oracle Oy that
represents the measurement outcomes on the commitment qubits.

Round V1: V samples c1, . . . , cm ← {0, 1} and sends c = (c1, . . . , cm) to P.
Round P2: P follows the steps of Protocol 12 and sends an oracle Ou to V that represents the measurement

outcomes of measuring the pre-image and committed qubit registers.
Round V2: V samples terms s1, . . . , srm ← π and queries their corresponding indices from the oracles Oy

and Ou.
V’s Verdict: V executes and returns the output of the verdict round of Protocol 12.

▶ Corollary 15. Under the post-quantum hardness of LWE and for any natural number n, there
exists a classical-verifier succinct-communication argument system with instance-independent setup
and negligible completeness and soundness errors for instances of size at most n of the (n, k, γ)-LH-
XZ problem with at least inverse-polylogarithmic relative promise gap in the quantum random oracle
model with RO : X → {0, 1}λ and any λ = ω(log(n)).
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4.3 XZ Quantum PCP Conjecture and Consequences to QMA
We now formally state the weak XZ quantum PCP conjecture (Conjecture 16) which was defined
informally in Informal Conjecture 1.

▶ Conjecture 16 (Weak XZ Quantum PCP Conjecture). There exist a constant k and a function
f(n) = Õ(1) such that the (n, k, γ)-LH-XZ problem with relative promise gap γ(n) = 1/f(n) is
QMA-hard.

The (weak) XZ quantum PCP conjecture (Conjecture 16) and Corollary 15 imply the existence
of succinct-communication arguments with setup for QMA under the LWE assumption in the
QROM which can be stated as follows.

▶ Theorem 17. If the Weak XZ Quantum PCP Conjecture (Conjecture 16) is true as well as the
post-quantum hardness of LWE, then for any promise problem A ∈ QMA and any natural number
n, there exists a succinct-communication argument system with setup for all instances of A of size
at most n in the quantum random oracle model with RO : X → {0, 1}λ and any λ = ω(log(n)).

While we could not prove that Conjecture 16 is implied by the standard quantum PCP conjecture,
we conjecture that this would be possible via a gap-preserving reduction. The tools to prove an
implication like that may come to light when more progress is made towards settling the standard
quantum PCP conjecture. Actually, it might be the case that a long-awaited proof of the quantum
PCP conjecture would be established via the QMA-hardness of XZ local Hamiltonians.

5 Conclusion

We formalized the notion of post-quantum interactive oracle arguments (with setup). Given that
formalism, we showed a framework to compile any public-coin non-adaptive interactive oracle
argument (with private setup) into a succinct-communication argument (with possibly non-succinct
setup). Our soundness proof utilized the online extraction of Merkle trees in the quantum random
oracle model. We stated the (weak) XZ quantum PCP conjectures as variants of the standard
quantum PCP conjectures. In the QROM, either of these conjectures is sufficient to imply the
existence of succinct-communication classical-verifier arguments with non-succinct setup for QMA
under the LWE assumptions (and consequently a protocol for succinct-communication classical
verification of quantum computation with non-succinct setup).

Appendices

We provided in the appendices enough materials to make the paper self-contained. Appendix D
expands on Section 3.3 and is an original contribution in this paper. Appendix C expands on
Section 2.2 and proves a result implicit in [DFMS22a]. The concrete statement and proof we
provide in Section C fit the exposition of other sections in this paper and were written prior to the
publication of [DFMS22a].

A Glossary

Table 1 provides a glossary of most of the symbols and notation used in this paper. While we
borrow a lot of [ACGH20]’s exposition style in introducing the classical-verifier argument system
for local Hamiltonians, we slightly diverge from their symbolic notation as indicated in that table.

B Mathematical preliminaries

We recall some of the definitions and facts frequently used later in the paper. Let p and q be two
classical probability distributions on a finite sample space Ω. The total variation distance between
p and q is

dTV(p, q) = 1
2
∑
x∈Ω
|p(x)− q(x)| = max

A⊆Ω
|p(A)− q(A)|.
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Symbol/Notation Description Symbol in [ACGH20]
n Number of qubits in a single copy of a quantum state n

j Index over qubits in a single copy of a quantum state j

H
k-local Hamiltonian on n qubits
used once to denote the Hadamard gate H

k Locality of a Hamiltonian k

S Number of Hamiltonian terms

s
Index over Hamiltonian terms
also the soundness error of (interactive) proofs S

r
Number of copies (repetitions) in LH verification protocol
see another usage for r(n) below r

ℓ

Index over copies (repetitions) in LH verification protocol
0 ≤ ℓ ≤ d indexes levels in a Merkle tree
ℓ(n): Total length of all prover messages in an IOArg

i

m Number of repetitions in Mahadev’s protocol k

i Index over repetitions in Mahadev’s protocol i

S(i, ℓ) Set of indices of the k qubits affected by
Hamiltonian verification term sampled for copy i, ℓ

overloaded with
Hamiltonian index S

c Completeness; Completeness Error is 1 − c c

s Soundness Error s

Γ = b − a Absolute promise gap for a local Hamiltonian b − a

γ Relative promise gap for a local Hamiltonian
IOP Interactive Oracle Proof
IOArg Interactive Oracle Argument
t(n) Round complexity of an IOArg
r(n) Randomness complexity of an IOArg
q(n) Query complexity of an IOArg
ℓ(n) Total length of all prover messages in an IOArg
d Depth of a Merkle tree

δ(ρ, σ) =
∥∥∥ρ − σ

∥∥∥
tr

Trace distance between density matrices ρ, σ

dTV(p, q) Total variation distance between distributions p and q

[A, B] Commutator of A, B i.e. AB − BA

x||y String concatenation of strings x and y

Table 1 Glossary of some of the mathematical notation used in this paper. When applicable, the
(slightly different) notation in [ACGH20] is indicated.

A generalization of the total variation distance is the trace distance. To define it, let’s first
define the trace norm (Schatten 1-norm) of a matrix ρ as follows:

∥∥∥ρ∥∥∥
1

= tr(
√
ρρ†).

Recall that for a density matrix ρ, it holds that ρ = ρ†. The trace distance between two quantum
states represented by their density matrices ρ and σ is

δ(ρ, σ) =
∥∥∥ρ−σ∥∥∥

tr
= 1

2

∥∥∥ρ−σ∥∥∥
1

= 1
2tr(

√
(ρ− σ)2) = max

P
tr(P (ρ−σ)) where P ranges over projectors.

We now state some helpful propositions about the trace distance.

▶ Proposition 18. The trace distance between two pure quantum states can be bounded as follows:

δ(|ψ⟩ ⟨ψ| , |ϕ⟩ ⟨ϕ|) =
∥∥∥|ψ⟩ ⟨ψ| − |ϕ⟩ ⟨ϕ|∥∥∥

tr
≤
∥∥∥|ψ⟩ − |ϕ⟩∥∥∥.

▶ Proposition 19 (Convexity Properties of the Trace Distance; Theorem 9.3 in [NC10] and consequences
thereof). Let {pi} and {qi} be probability distributions over the same index set, and {ρi} and {σi}
be density operators with indices from the same index set. Then the following properties hold:
1. Convexity: δ(

∑
i

piρi, σ) ≤
∑
i

piδ(ρi, σ),

2. Joint Convexity: δ(
∑
i

piρi,
∑
i

piσi) ≤
∑
i

piδ(ρi, σi), and

3. Strong Convexity: δ(
∑
i

piρi,
∑
i

qiσi) ≤
∑
i

piδ(ρi, σi) + dTV(p, q)
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where dTV(p, q) is the total variation distance between the probability distributions {pi} and {qi}.

The commutator of two operators is given by: [A,B] := AB −BA. Notice that [A,B] = −[B,A]
and that [A,B]† = B†A† − A†B† = [B†, A†]. We say that two operators A,B commute if
their commutator is 0 i.e. [A,B] = [B,A] = 0 and we say that they ϵ-almost commute if∥∥∥[A,B]

∥∥∥ =
∥∥∥[B,A]

∥∥∥ ≤ ϵ.
If A,B are two linear operators that ϵ-almost commute, the following proposition tells us that ϵ
also bounds the ∥·∥-distance between an output quantum state resulting from applying A then B

on an input state and the output state had we applied B then A instead on the same input.

▶ Proposition 20. If A,B are two linear operators that ϵ-almost commute, the following statements
hold:
1. for a pure quantum state |ψ⟩, it holds that (note that

∥∥∥|ψ⟩∥∥∥ = 1):∥∥∥AB |ψ⟩ −BA |ψ⟩∥∥∥ =
∥∥∥[A,B] |ψ⟩

∥∥∥ ≤ ∥∥∥[A,B]
∥∥∥ · ∥∥∥|ψ⟩∥∥∥ ≤ ϵ. (1)

2. for a (mixed) quantum state represented by the density matrix ρ =
∑
i

pi |ψi⟩ ⟨ψi|, it holds that:

δ(ABρB†A†, BAρA†B†) ≤ ϵ. (2)

Proof of Inequality (2).

δ(ABρB†A†, BAρA†B†) = δ

(∑
i

piAB |ψi⟩ ⟨ψi|B†A†,
∑
i

piBA |ψi⟩ ⟨ψi|A†B†
)

≤
∑
i

piδ
(
AB |ψi⟩ ⟨ψi|B†A†, BA |ψi⟩ ⟨ψi|A†B†

)
by joint convexity (19)

≤
∑
i

pi

∥∥∥AB |ψi⟩ −BA |ψi⟩∥∥∥ by Proposition (18)

≤
∑
i

pi · ϵ by Inequality (1)

= ϵ since
∑
i

pi = 1

◀

C Online Extraction of Merkle Trees in the QROM

We will now expand on Section 2.2 and show how Merkle trees can be extracted online in the
quantum random oracle model relying on [DFMS22b]’s framework introduced in Section 2.2 and
illustrated in Figure 3. This online extraction result is implicit in a follow-up work by [DFMS22a],
but we provide a proof - with notation more relevant to our paper - which was written prior to the
publication of [DFMS22a].

RO

...

S
RO E

... ...

Figure 3 Figure is from [DFMS22b] and illustrates the RO interface (left) vs the extractable RO-
simulator S, with its S.RO and S.E interfaces (right). The “snaked“ arrowed lines represent quantum
queries and responses thereof, while the straight arrowed lines represent classical queries and responses
thereof. Note that classical queries are a special case of quantum queries.

In Theorem 4.3. in [DFMS22b], multiple guarantees are proven on this simulated oracle. We
cite here certain special cases of their result that we will use to prove the online extractability of
Merkle trees. In [DFMS22b]’s framework, two queries are called independent if the input of either
query does not depend on the output of the other.
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▶ Theorem 21 (Special Cases of Theorem 4.3. in [DFMS22b]). For a RO : X → {0, 1}λ, the
extractable RO-simulator S with interfaces S.RO and S.E satisfies the following properties:
1. If S.E is unused, S is perfectly indistinguishable from the random oracle RO.
2. Any two consecutive independent queries to S.RO commute. The same holds for S.E.
3. Any two consecutive independent queries to S.E and S.RO 8

√
21−λ-almost-commute.

4. Classical queries to S.RO and S.E are idempotent (applying either twice in a row is equivalent
to applying it once.).

5. The total runtime of S is bounded as (where qRO and qE are the number of queries to S.RO
and S.E respectively):

TS = O
(
qRO · qE + q2

RO
)
.

We will also need the following proposition.

▶ Lemma 22 (Proposition 4.5. in [DFMS22b]). Consider a query algorithm A that makes q queries
to S.RO but no query to S.E, outputting some t ∈ {0, 1}λ and x ∈ X . Let h then be obtained by
making an additional query to S.RO on input x. Let x̂ be obtained by making an additional query
to S.E on input t. Then 12:

Pr
t, x ← AS.RO
h ← S.RO(x)
x̂ ← S.E(t)

[x̂ ̸= x ∧ h = t] ≤ 400(q + 2)3/2λ .

The main theorem in this section is stated in terms of a game G1(λ, d, r, q) illustrated in Figure 4
where a quantum adversary A interacts with only the RO interface of the (simulated) random
oracle while a classical honest extraction algorithm E only (classically) interacts with the E interface
of the simulated random oracle. The adversary announces a classical value rt which is supposedly
the root of a Merkle tree and they win if they can later “fake” at least one of r leaves. Faking
a leaf here means giving a leaf value that can be authenticated against the prior commitment,
but different from that output by extraction. A referee algorithm R runs to determine whether
the adversary won by validating the authentication paths against the root rt then comparing the
adversary’s leaves against the leaves given by the extraction algorithm.

The adversary - without loss of generality - can be decomposed into two quantum algorithms
A = (A1,A2) where A1 makes q1 queries to the random oracle, then announces a value rt, followed
by A2 making q2 queries to the random oracle, then outputs a classical string that represents their
attempt to win the game where q1 + q2 ≤ q. Right after A1 announces rt, the extraction algorithm
E takes place and outputs ℓ = 2d leaves of a Merkle tree whose root is rt. When the extraction
“fails”, it can default to a pre-defined leaf value (call it ⊥) for the subtrees it failed on. The classical
honest referee R algorithm declares that A won if and only if the following conditions are met:
1. A1 outputs rt, a value in the range of the random oracle, and
2. A2 outputs S, (πj , apj)j∈S such that S ⊆ [2d], |S| = r (i.e. A gives r indices of the locations
A wishes to challenge and a leaf value for each location as well as its authentication path),
and VerifyRO (rt, S, apj∈S

)
but ∃j ∈ S : πj ̸= π̂j (i.e. all authentication paths are valid and

consistent - see Section 2.1 - yet there is at least one location with a value different from the
output of the extraction procedure).

The main theorem states that when the game G1 is defined with the universal honest extractor
and referee algorithms described earlier, any quantum adversary cannot win G1(λ, d, r, q) with more
than a negligible probability in the security parameter λ (the number of bits in the output of the
random oracle) as long as λ = ω(d) and the adversary makes at most q ≤ poly(2d) queries to the
random oracle.

▶ Theorem 4. For the game G1 defined in Figure 4 by the universal referee and extractor algorithms
described earlier such that λ = ω(d), q ≤ poly(2d), and any quantum adversary A = (A1,A2) where
A1 makes q1 queries to the random oracle, then A1 announces a value rt, followed by A2 making q2
queries to the random oracle such that q1 + q2 ≤ q, then A2 outputs a classical string, it holds that:

Pr[A wins G1(λ, d, r, q)] ≤ negl(λ).

12 The constant 400 is an upper bound on the constant 40e2 in [DFMS22b] where e is Euler’s number.
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(b) G2(λ, d, r, q)

A

E ′

π

···

···

rt

S, (πj , apj)j∈S

S
RO E

R

won/lost

...

(c) G3(λ, d, r, q)

Figure 4 This figure illustrates the three main games used in our hybrid argument. In all of the games,
A wins if S ⊆ [2d], |S| = r, and VerifyRO (rt, S, apj∈S

)
, but ∃j ∈ S : πj ̸= π̂j . The “snaked“ arrowed lines

represent quantum queries and responses thereof, while the straight arrowed lines represent classical queries
and responses thereof. The referee R consists of two main procedures: (1) verifying the authentication
paths which needs to interact with the S.RO interface, and (2) comparing the output of the adversary and
the extractor which does not interact with S. The shaded rectangle indicates that the referee “pauses” its
execution between these sub-procedures for the extractor execution to take place.

To prove this theorem, we give a hybrid argument outlined in Figure 4. The hybrid argument
first transitions from game G1 to game G2 (Claim 23). The difference between games G1 and
G2 is that the extraction procedure in G2 happens after A2’s execution and the referee’s oracle
queries for verifying the authentication paths. Then, the argument transitions from game G2 to
game G3 (Claim 25). The difference between games G2 and G3 is that in G3 a new extractor E ′
is used which simply outputs a copy of the adversary’s attempt (augmented with ⊥ values for
unchallenged leaves). Notice that no adversary can win game G3 because of how E ′ is defined
i.e. Pr[A wins G3(λ, d, r, q)] = 0 for any adversary! Notice that in the game G3, it does not make
a difference whether the extractor “relays” the adversary’s output before or after the referee’s
validation of the authentication paths. Both games are equivalent in terms of the adversary’s
winning probability (which is 0 in either case).

We describe below how the extractor for games G1 and G2 works. This extraction procedure is
called recursively starting with E(rt, d). The symbol || denotes string concatenation.

E(y, d)
1 : x := S.E(y)

2 : If d
?= 0, return x

3 : Else, set x0||x1 := x

4 : return E(x0, d − 1)||E(x1, d − 1)

On the other hand, the extractor E ′ used in game G3 works as follows.

E ′(rt, d, S, (πj , apj)j∈S)
1 : return (π̂j)1≤j≤2d where π̂j = πj if j ∈ S and ⊥ otherwise

As mentioned earlier, the first step in this hybrid argument is going from game G1 to game G2
which we now prove in Claim 23.
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▷ Claim 23. Let G1 and G2 be the final joint (adversary and random oracle) states of games G1
and G2 respectively. Then, the following hold:
1. δ (G1,G2) ≤ (q + r · d) · 2d+(7−λ)/2, and consequently
2.
∣∣∣Pr[A wins G1]− Pr[A wins G2]

∣∣∣ ≤ (q + r · d) · 2d+(7−λ)/2.

Proof. In both games, the effect of the extractor on the state of S (the simulated oracle) can be
described by a sequence of 2d − 1 calls to S.E. The adversary’s behavior on its joined state with
S can be described by a sequence of at most q quantum channels and oracle unitaries (Advi and
S.RO respectively) where q1 + q2 ≤ q is the total number of times the adversary calls the random
oracle, split into q1 and q2 calls before and after announcing rt respectively. The referee’s effect
on the joint state of the adversary and simulated oracle is r · d classical queries to S.RO. We can
characterize the collective actions that the extractor, the adversary, and the referee perform on the
joint state of the adversary A and the simulated oracle S in games G1 and G2 respectively by the
following algorithms:

Net effect on the joint state of G1

1 : for i = 1, . . . , q1 apply Advi followed by S.RO.

2 : π̂ := E(rt, d) making 2d − 1 classical queries to S.E.

3 : for i = q1 + 1, . . . , q apply Advi followed by S.RO.

4 : The referee applies r · d classical S.RO queries .

Net effect on the joint state of G2

1 : For i = 1, . . . , q1 apply Advi followed by S.RO.

2 : For i = q1 + 1, . . . , q apply Advi followed by S.RO.

3 : The referee applies r · d classical S.RO queries .

4 : π̂ := E(rt, d) making 2d − 1 classical queries to S.E.

Let G1 and G2 be the final joint states of the simulated oracle and adversary at the end of
games G1 and G2 respectively. Now, we bound the distance between them using this lemma
from [DFMS22b].

▶ Lemma 24 (Special Case of Theorem 4.3. in [DFMS22b]). Any two subsequent independent queries
to S.E and S.RO 8

√
21−λ-almost-commute.

We are commuting 2d − 1 classical queries to S.E (while preserving their order) past the
execution of A2 involving q2 RO-queries and the referee’s r · d classical queries to RO. Each
S.E query made by the extractor is independent of the behavior of A2 and independent of the
result of the referee’s queries. We can use the lemma to bound the distance between G1 and G2 by
successively applying the triangle inequality (q2 + r · d) · (2d − 1) times to obtain:

δ(G1,G2) ≤ (q2 + r · d)(2d − 1) · 8
√

21−λ ≤ 8(q + r · d) · 2d
√

21−λ = (q + r · d) · 2d+(7−λ)/2. (3)

◀

We now show how to go from game G2 to game G3 in Claim 25.

▷ Claim 25.

Pr[A wins G2] ≤ Pr[A wins G3] + 400 · d · r(q + 2d + 2)3/2λ.

Proof. To prove this, we will go through a sequence of hybrid games G′i where each uses the
extractor E ′i such that d ≥ i ≥ 0. The game G2 will be equivalent to G′d while the game G3 will
be equivalent to G′0. Notice how the games are indexed in descending order to make the notation
easier later!

To describe the extractor E ′i used in these hybrid games G′i, we will use the notation set in
Section 2.1 about Merkle trees. To see the difference between G′i+1 and G′i, we notice what happens
in the extractor E from G2. It works its way down from the root rt to all the leaves of the tree.
However, the extractor of game G3 only outputs “actual” leaves for the locations challenged by the
adversary while the rest is set to ⊥. To undergo this transition from G2 to G3, we work level by
level from the root (top level) of the tree. For any two games G′i+1 and G′i where d > i ≥ 0:
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1. The extractor E ′i+1 of game G′i+1 will start with the values Zi+1 and call the extractor E(zj,i+1, i+
1) for every zj,i+1, while

2. the extractor E ′i of game G′i will do the same but starting at one level downwards. Precisely, it
will start with the values Zi and call the extractor E(zj,i, i) for every zj,i.

We now give the formal description of E ′i .

E ′i(rt, d, S, (πj , apj)j∈S)
1 : Initialize output to empty string

2 : For each zk ∈ Ẑi :
3 : Tk = E(zk, i)
4 : output := output||Tk

5 : return output

When E is called on zk = ⊥, it returns 2i leaf values of ⊥. Notice that in the previous codebox the
merge cannot fail because each of the unique zk is the root of its own subtree which is disjoint from
the other subtrees. Furthermore, notice that while the extractor outputs the leaves at the end, it
computes the intermediate nodes explicitly. This fact is going to be used in the proof of Claim 26
where we will bound the probability of winning game G′i+1 by that of winning G′i as follows:

Pr[A wins G′i+1] ≤ Pr[A wins G′i] + 400r(q + 2d + 2)3/2λ.

Using this bound, we finalize our proof of Claim 25 by applying the triangle inequality d times from
game G2 ≡ G′d to game G′0 ≡ G3:

Pr[A wins G2] ≤ Pr[A wins G3] + 400 · d · r(q + 2d + 2)3/2λ.

◀

It now remains to show Claim 26.

▷ Claim 26.

Pr[A wins G′i+1] ≤ Pr[A wins G′i] + 400r(q + 2d + 2)3/2λ

Proof. In the extractor E ′i+1, let X ′i, Z ′i be the pre-images at level i that the extractor extracts by
invoking S.E on the (i+ 1)th level and that coincide with the locations of Xi, Zi provided by the
adversary. X ′i and Z ′i will be the output of k ≤ r calls to S.E on the (i+ 1)th level. The probability
of winning the game G′i+1 can be bounded as follows:

Pr[A wins G′i+1]
= Pr[A wins G′i+1 and (Xi, Zi) = (X ′i, Z ′i)] + Pr[A wins G′i+1 and (Xi, Zi) ̸= (X ′i, Z ′i)]
≤ Pr[A wins G′i] + Pr[A wins G′i+1 and (Xi, Zi) ̸= (X ′i, Z ′i)]

≤ Pr[A wins G′i] +
k∑
j=1

Pr[A wins G′i+1 and (xj,i, zj,i) ̸= (x′j,i, z′j,i)].

In the last line, we applied the union bound on the events Ej where event Ej is the event that A
wins G′i+1 and index j is a “mismatch”. We now bound the probability Pr[Ej ]. Let’s assume that
A wins G′i+1 and (xj,i, zj,i) ̸= (x′j,i, z′j,i) where index j is a mismatch. Since winning implies the
validity and consistency of the authentication paths, we know that 13 h(xj,i, zj,i) = zj,i+1 which is
checked by the referee via calling S.RO(xj,i, zj,i). This gives rise to this event: S.RO(xj,i, zj,i) =
zj,i+1 while S.E(zj,i+1) = (x′j,i, z′j,i) where (xj,i, zj,i) ̸= (x′j,i, z′j,i). The probability of this event
can be bounded by Lemma 27 below. When we invoke the Lemma 27, the query algorithm Y
consists of the adversary and the first part of the referee i.e. Y = (A,R1). Y makes at most (q+ 2d)
queries to RO but no queries to E. By the idempotence property of classical RO queries, we can

13 As set in Section 2.1, we use the comma to denote a concatenation that respects left/right child order.
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“artificially” insert right after the execution of Y another application of the RO query where the
mismatch happened. We can also “move” the E query where the mismatch happened to the start
of the extractor E ′i+1 algorithm. This is possible at no cost because the calls of the extractor E ′i+1
on the (i+ 1)th level are pairwise independent and subsequent independent E queries commute
(Property 2 of Theorem 21). Finally, notice that the idempotence property of classical queries to
S.RO ensures that verifying repeated intermediate nodes is equivalent to verifying the repeated
node once.

▶ Lemma 27 (Proposition 4.5. in [DFMS22b]). Consider a query algorithm Y that makes q queries
to S.RO but no query to S.E, outputting some t ∈ T and x ∈ X . Let h then be obtained by making
an additional query to S.RO on input x, and x̂ by making an additional query to S.E on input t.
Then:

Pr
t, x ← YS.RO
h ← S.RO(x)
x̂ ← S.E(t)

[x̂ ̸= x ∧ h = t] ≤ 400(q + 2)3/2λ .

Therefore, we can conclude that:

Pr[Ej ] = Pr[A wins G′i+1 and (xj,i, zj,i) ̸= (x′j,i, z′j,i) is a mismatch ] ≤ 400(q + 2d + 2)3/2λ.

Consequently (noting that k ≤ r),

Pr[A wins G′i+1] ≤ Pr[A wins G′i] +
k∑
j=1

Pr[Ej ]

≤ Pr[A wins G′i] + r · 400(q + 2d + 2)3/2λ.

◀

By combining the bounds of Claim 23 and Claim 25 and using the facts that Pr[A wins G3] = 0
and r ≤ 2d, we obtain:

Pr[A wins G1] ≤ Pr[A wins G3] + (q + r · d) · 2d+(7−λ)/2 + 400 · d · r(q + 2d + 2)3/2λ

≤ q · 2d+(7−λ)/2 + d · 22d+(7−λ)/2 + 400d(q + 2d + 2)3 · 2d−λ.

This concludes the proof of Theorem 4 by noting that this upper bound is negl(λ) since λ = ω(d)
and q ≤ poly(2d).

D Analysis of Protocol 8

D.1 Completeness of Protocol 8
▶ Theorem 9 (Completeness of Protocol 8). For a promise problem A ∈ IOArgc,s[t(n), ℓ(n), r(n), q(n)]
such that c(n) is the completeness of the IOArg, Protocol 8 built on that IOArg also has completeness
c(n).

Proof. This follows by the idempotence property of the RO interface (Property 4, Theorem 21).
When the verifier V of Protocol 8 makes the queries to the random oracle to verify the authentication
paths, they will be consistent with the classical queries that the honest prover made while generating
the Merkle tree commitments. Let x be a yes instance, and |ψ⟩ be the quantum state given to the
honest prover P . For brevity, let π|Q =

(
π1|Q1 , . . . , πt|Qt

)
be the locations sent by P and V π|QIOArg(x)

denote the output of the IOArg verifier for the same randomness choices of V. Then, we can
compute the acceptance probability as follows:

Pr[⟨P,V⟩ accepts x] = Pr
π|Q←P|ψ⟩

[V π|QIOArg(x) accepts and ∀i ≤ tVerifyRO (rti, Qi, (api,j)j∈Qi
)
]

= Pr
π|Q←P|ψ⟩

[V π|QIOArg(x) accepts ] by idempotence

= Pr[⟨P |ψ⟩IOArg,VIOArg⟩ accepts x].

◀
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D.2 Soundness of Protocol 8
▶ Theorem 10 (Computational Soundness of Protocol 8). Consider a promise problem A with an
interactive oracle argument i.e. A ∈ IOArgc,s[t(n), ℓ(n), r(n), q(n)]. Let Protocol 8 be built on top
of this IOArg in the quantum random oracle model with λ = ω(log(ℓ(n))). Let x be an instance of A
with n = |x|. If a (possibly cheating) quantum prover P running in polynomial time TP(n) = poly(n)
and access to RO can make an honest verifier V in such protocol accept x with probability ≥ δ(n),
then there exists a polynomial-time (quantum) IOArg prover P̃IOArg(x) that can make an honest
IOArg verifier accept x with probability ≥ δ(n)− negl(λ).

Proof of Theorem 10. Consider a quantum polynomial-time prover P in Protocol 8 running in
TP(n) time that makes the honest verifier V accept on an instance x with probability ≥ δ(n) where
n = |x|. According to the protocol description, this prover P can be decomposed into the quantum
channels (P1, . . . ,Pk,Pk+1) where Pi makes hi queries to RO such that

∑
1≤i≤t(n)+1

hi ≤ TP(n).

Furthermore, notice that the honest verifier can be decomposed into the classical algorithms
(V1, . . . ,Vt(n),VR,VIOArg) such that:
Vi is basically a relay interface connected to the incoming messages from the IOArg verifier Ṽ
(in particular Vt(n) is where the verifier sends the challenged locations),
VR is the predicate that verifies the authentication paths of the claimed nodes, and
VIOArg is the verdict algorithm of the underlying IOArg.

P V
rt1

(Q1, . . . , Qk)

((πi, j , apj)j∈Qi
)i≤k

RO.
.
.

E

E(rt1)

π̃1

.
.
.

VIOArg

VR

v1

rt2

v2

...

...
.
.
.

rtk

E(rt2)
π̃2

...

E(rtk)
π̃k

.
.
.

v1

P̃

v2

...

Ṽ

VIOArg

(Q1, . . . , Qk)

unilateral
communication
channel

Figure 5 This figure illustrates the reduction from the succinct argument interaction ⟨P, V⟩ to a
polynomial-time IOArg prover P̃ interacting with the honest IOArg verifier Ṽ. The prover is split into two
parts: one that interacts with the E interface and one that interacts with the RO interface. Communication
goes unilaterally from the former to the latter. The unilateral communication is indicated by a line with two
circles at its ends. This IOArg prover can make the IOArg verifier accept the instance x with probability
≥ δ(n) − negl(λ).
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As illustrated in Figure 5, we construct a (quantum) polynomial-time IOArg prover P̃ (in the
quantum random oracle). This prover is a quantum polynomial-time interactive algorithm described
by the following sequence of sub-algorithms: P̃ =

(
P̃1, . . . , P̃t(n)

)
. Each P̃i performs the following

in order:
1. it executes Pi which is the corresponding action of the prover P in the ith round, then
2. it calls the extractor E with access to the S.E interface of the simulated oracle. It will then

send the extracted string π̃i to the verifier Ṽ in the form of an oracle message.
Given the description of the constructed prover P̃, we bound η := Pr

rti←Pi(x)
π̃i←E(rti)

$ $←{0,1}r(n)

[⟨P,V⟩ accepts x]

η = Pr[⟨P,V⟩ accepts x and ∀i πi|Qi = π̃i|Qi ]
+ Pr[⟨P,V⟩ accepts x and ∃i πi|Qi ̸= π̃|Qi ] (law of total probability)
= Pr[Vπ|QIOArg(x) accepts, VR accepts, and ∀i πi|Qi = π̃i|Qi ]
+ Pr[Vπ|QIOArg(x) accepts, VR accepts, and ∃i πi|Qi ̸= π̃i|Qi ]

≤ Pr[V π̃|QIOArg(x) accepts ] + Pr[VR accepts and ∃i πi|Qi ̸= π̃i|Qi ].

If Pr[VR accepts and ∃i πi|Qi ̸= π̃i|Qi ] ≤ negl(λ), we can conclude that:

Pr[V π̃|QIOArg(x) accepts ] ≥ Pr[⟨P,V⟩ accepts x]− negl(λ) ≥ δ(n)− negl(λ). (4)

Now, it remains to show that Pr[VR accepts and ∃i π|Qi ̸= π̃|Qi ] ≤ negl(λ) which we will prove by
applying Theorem 4. To do that, we notice that for each round i, we can build an adversary A(i) =
(A(i)

1 ,A(i)
2 ) where A(i)

1 = (P1,V1, . . . ,Pi−1,Vi−1,Pi) and A(i)
2 =

(
Vi,Pi+1,Vi+1, . . . ,Pt(n)

)
that

already matches the syntax of an adversary for game G1 (λ(n), log(ℓi(n)), qi(n), h(n)) introduced
in Section C with the game parameters properly set via the parameters of the underlying IOArg
(Definition 7). Indeed, we have h(n) ≤ poly(ℓi(n)) since h(n) = poly(n) and ℓi(n) ≤ poly(n). We
also have qi(n) ≤ ℓi(n). Therefore, for any adversary A making at most h(n) queries, we have:

Pr[A wins G1] ≤ negl(λ). (5)

Let I be the final state at the end of the interaction in Figure 5. Let I ′ be obtained by moving
the extractors E(rt1), . . . , E(rti−1) past the extractor E(rti) while preserving their order. Notice
that all the queries made to RO are independent of these E calls. Also, each of these extractors’
chain of E-queries is independent of the queries of E(rti). Also, notice that because we are working
with non-adaptive IOArgs in this paper, the behavior of Ṽ does not depend on these calls. There
are i− 1 ≤ t(n) extractors that we will move past at most h(n) queries. Each jth extractor makes
ℓj(n)− 1 ≤ ℓ(n) queries. Therefore, we conclude by Property 4 of Theorem 21 that:

δ(I, I ′) ≤ h(n) · t(n) · ℓ(n) · 8 ·
√

21−λ. (6)

Therefore, we have:

Pr[VR accepts, and ∃i πiQi ̸= π̃iQi in interaction I]
≤ Pr[VR accepts, and ∃i πiQi ̸= π̃iQi in interaction I ′] + δ(I, I ′)

≤ Pr[A wins G1 (λ(n), log(ℓi(n)), qi(n), h(n))] + 8 · t(n) · h(n) · ℓ(n)
√

21−λ Inequality (6)

≤ negl(λ) + poly(ℓ(n))
√

21−λ Theorem 4
≤ negl(λ) since λ = ω(log(ℓ(n))).

Finally, we need to verify that P̃ runs in poly(n) time as long as the underlying argument prover
P runs in polynomial time. This is true because each of Pi, E(rti), Vi run in polynomial time.
Furthermore, by Property 6 of Theorem 21 the simulator S runs in time TS = O

(
qRO · qE + q2

RO
)

where qE and qRO are the number of queries to S.RO and S.E respectively. The number of
queries for either type is at most poly(n) because they are made by the underlying polynomial time
algorithms.

◀
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D.3 Communication Complexity of Protocol 8
We analyze Protocol 8’s communication complexity (excluding the setup message) provided that the
underlying IOArg is parameterized as IOArgc,s[t(n), ℓ(n), r(n), q(n)]. In the ith round, the prover
sends a Merkle tree root which is in the range of the random oracle and therefore has length λ. The
verifier sends then the message vi which has ri(n) bits. For t(n) rounds, a total of λ · t(n) + r(n) is
sent so far by both the prover and verifier excluding the setup. The verifier at the end sends the
q(n) locations needed where each location is expressed by log(ℓ(n)) where log(ℓ(n)) = O(log(n))
because ℓ(n) ≤ poly(n). This means that a total of O(q(n) · log(n)) bits are sent by the verifier for
this purpose. Finally, the prover sends the requested leaves and their authentication paths. Each
authentication path is represented by O(log(ℓ(n)) · λ) = O(log(n) · λ) bits. Therefore, the prover
sends a total of O(q(n) · log(n) · λ) bits in this round. Therefore, the total communication cost in
this protocol is O (λ · (t(n) + q(n) · log(n)) + r(n)) classical bits. The resulting protocol is succinct
when q(n) = O(poly(log(n))) = Õ(1), r(n) = Õ(1), t(n) = Õ(1), and ℓ(n) = poly(n).

E Modular Construction of Protocol 6

In this Appendix, we give an exposition of how to build Protocol 6 modularly. We generalize the
proofs of [ACGH20] to work with any constant locality k and any promise gap function γ.

E.1 Quantum-verifier protocol for XZ local Hamiltonians
We will now give an exposition of a quantum-verifier protocol for the (n, k, γ)-LH-XZ problem
which appeared in [ACGH20] and builds on earlier works of [MNS16, MF16, FHM18, VZ19].
[MF16, FHM18]’s earlier version described a proof system for QMA where the verifier is a quantum
machine capable of performing X and Z measurements on a single qubit (i.e. a probabilistic
classical device and a single-qubit quantum device capable of performing Pauli measurements as
instructed by the classical device). The protocol starts by the verifier sampling a Hamiltonian
term to be verified. The prover sends the qubits of the witness state one at a time. The verifier
measures the qubits affected by the Hamiltonian term and discards the rest thus achieving this
economic architecture of a single qubit. [VZ19] and [ACGH20] described parallel-repeated versions
of this protocol and used them to obtain zero-knowledge argument systems for QMA. [ACGH20]’s
version made another modification so that the protocol can be compiled using Mahadev’s verifiable
measurement protocol into a non-interactive classical-verifier version. Mahadev’s protocol involves
generating a pair of private/public keys that depends on the measurement basis. However, the
measurement basis could depend on the Hamiltonian term since a Hamiltonian term could affect
by X on a qubit while another Hamiltonian term could affect by Z on the same qubit. Therefore,
they modified the protocol so that the measurement bases (X or Z) for each qubit are sampled
uniformly (and therefore independent of the Hamiltonian). This way, the key generation does not
depend on the Hamiltonian (but rather only on an upper bound on the number of qubits involved).

We state here [ACGH20]’s modified version but with a slight difference where we follow [MF16]’s
track to only measure the qubits needed to verify the Hamiltonian while [ACGH20] measured all
qubits and ignored the ones not used. Furthermore, we will parameterize the protocol for any
constant k and any arbitrary relative promise gap γ.

▶ Protocol 28 (Variant of Protocol 3 in [ACGH20]; Single-qubit verifier protocol for the local Hamiltonian
problem (n, k, γ)-LH-XZ with instance-independent setup).

Parties: 1. Prover P: A quantum polynomial-time machine that wants to convince the verifier that an
input to the (n, k, γ)-LH-XZ problem has a groundstate of low energy i.e. ≤ a.

2. Verifier V: A quantum polynomial-time machine that interacts with the prover to verify
that an input XZ Hamiltonian has a groundstate of low energy.

Parameters: 1. n: number of qubits.
2. r: number of parallel repetitions of the protocol.

Setup: V samples the bases h1, . . . , hr ← {0, 1}n i.i.d. uniformly. Each string hℓ is an n-bit string
where 0 or 1 mean measure the corresponding qubit in the Z or X basis respectively.

Inputs: Input to both parties: x = (H =
S∑
s=1

dsHs, a, b) an instance of the (n, k, γ)-LH-XZ promise

problem.
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Input to honest prover on yes instances: |Ψ⟩ = |ψ⟩⊗r (r copies of |ψ⟩ the ground state of
the Hamiltonian H).

Round P: P sends the witness state |Ψ⟩ = |ψ⟩⊗r.
V’s verdict: 1. V samples r i.i.d. Hamiltonian terms (one term for each copy) s1, . . . , sr ← π where the

distribution π is given by:

π(s) = |ds|∑
s
|ds|

.

For each chosen Hamiltonian term sℓ, a choice of measurement bases will be imposed on
at most k qubits which are acted upon by non-identity Pauli observables. Denote the set of
indices of such qubits by S(ℓ).

2. V records A ⊆ [r], the subset of copies where the measurements imposed by the chosen term
are consistent with the random bases choices given by h. For each ℓ ∈ A,

a. Set mℓ,j = 1 if j /∈ S(ℓ) i.e. the j-th qubit was acted upon by the identity in the term sℓ;
otherwise (i.e. j ∈ S(ℓ)) set mℓ,j to the outcome of measuring it in the hℓ,j basis. This
gives the outcomes (mℓ,1, . . . ,mℓ,k).

b. V sets vℓ = 1
2

(
1− sgn(dsℓ) ·

∏
j∈S(ℓ)

mℓj

)
(i.e. set to 1 iff the measurement has the

opposite sign of the coefficient of the selected term).

3. V accepts iff 14 ∑
ℓ∈A vℓ ≥

(c+s)
2 · |A| =

(
2−(b−a)/

∑
s

|ds|

)
4 · |A| where:

c := 1
2 −

a

2
∑
s
|ds|

and s := 1
2 −

b

2
∑
s
|ds|

.

The following theorem establishes bounds on the completeness and soundness errors of this protocol.

▶ Theorem 29 (Appendix B of [ACGH20]). Let r be the number of copies used in Protocol 28 for
an instance of the (n, k, γ)-LH-XZ problem, then the protocol has:
1. completeness error ≤ e−rγ2/2k+4 , and
2. soundness error ≤ e−rγ2/2k+4

where γ = b−a
S is the relative promise gap as defined in Definition 5.

In Appendix E.1.1, we write down the proof of Theorem 29 which is basically a mirror of the proof
of Lemma 3.1 in [ACGH20]’s Appendix B by setting the locality to k instead of 2. It suffices to
take r to be any function that is ω( log(n)

γ2 ) to make the completeness and soundness negligible.

▶ Corollary 30 (Lemma 3.1. in [ACGH20]). If r = ω( log(n)
γ2 ), then Protocol 28 has negligible

completeness and soundness errors.

E.1.1 Completeness and soundness of the quantum-verifier protocol
We will now prove Theorem 29 which establishes the completeness and soundness of Protocol 28
in Section E.1. The proof is a mirror of the proof of Lemma 3.1 in Appendix B of [ACGH20] by
setting the locality to k instead of 2. It also uses the proof ideas in [VZ19, MNS16].

Proof of Theorem 29. The protocol is repeated r times. For each copy, the sampled k-local
Hamiltonian term will dictate that (at most) k qubits be measured in certain bases (X or Z).
The randomly chosen bases for the k qubits in the protocol setup are consistent with the desired
measurements with probability ≥ 1

2k . Since we have r copies, there are t consistent copies with
probability ≥

(
r
t

)
( 1

2k )t(1− 1
2k )r−t.

Let Xℓ be the binary random variable corresponding to the verdict at copy ℓ (i.e. vℓ). By
following the computation from [MNS16], we can compute the expected value of this random
variable.

14 Notice that c > s and c+s
2 is the midpoint of c and s. Therefore, another way to read this as explained in [VZ19]:

V accepts iff
(

1
|A|
∑

ℓ∈A
vℓ

)
is closer to c than to s. See the appendix for the details of this computation. We

suspect that there was a typo in this expression in [ACGH20].
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E [Xℓ] =
∑

1≤s≤S

1
2 (1− sgn(ds) · ⟨ψ|Hs |ψ⟩) · π(s)

= 1
2
∑

1≤s≤S
π(s)− 1

2
∑

1≤s≤S
π(s) · sgn(ds) · ⟨ψ|Hs |ψ⟩

= 1
2 −

1
2
∑

1≤s≤S

|ds|sgn(ds)∑
s
|ds|

· ⟨ψ|Hs |ψ⟩

= 1
2 −

1
2
∑

1≤s≤S

ds∑
s
|ds|
· ⟨ψ|Hs |ψ⟩

= 1
2 −

1
2
∑
s
|ds|

∑
1≤s≤S

⟨ψ| dsHs |ψ⟩ = 1
2 −
⟨ψ|H |ψ⟩
2
∑
s
|ds|

(7)

In the “yes case” when |ψ⟩ is the groundstate, we have E [Xℓ] ≥ 1
2−

a

2
∑
s

|ds|
because ⟨ψ|H |ψ⟩ ≤ a

when |ψ⟩ is the groundstate. Call this lower bound c := 1
2 −

a

2
∑
s

|ds|
.

In the “no case” for any state |ψ⟩, we have E [Xℓ] ≤ 1
2 −

b

2
∑
s

|ds|
because ⟨ψ|H |ψ⟩ ≥ b for any

state |ψ⟩. Call this upper bound s := 1
2 −

b

2
∑
s

|ds|
.

To bound the soundness error, let’s consider the probability of acceptance in the case of a
no instance. The probability that the protocol accepts conditioned on the event that the set of
consistent copies was A with |A| = t is given by the following:

Pr[accept | |A| = t] = Pr[1
t

∑
ℓ∈A

Xℓ ≥
c+ s

2 ]

= Pr[1
t

∑
ℓ∈A

Xℓ − s ≥
c− s

2 ] ≤ e−tg
2/2 By Hoeffding’s inequality

where g = c− s is the absolute promise gap Γ divided by 2
∑
s
|ds|. Now, using the fact that this

event occurs with probability
(
r
t

)
( 1

2k )t(1− 1
2k )r−t, we put that together to compute the acceptance

probability as follows:

Pr[accept] =
r∑
t=0

Pr[|A| = t] · Pr[accept | |A| = t]

≤
r∑
t=0

(
r

t

)
( 1
2k )t(1− 1

2k )r−t · e−tg
2/2

=
r∑
t=0

(
r

t

)
( 1
2k · e

−g2/2)t(1− 1
2k )r−t

= (e
−g2/2

2k + 1− 1
2k )r Binomial Theorem

= (e
−g2/2 + 2k − 1

2k )r

≤ ( (1− g2/4) + 2k − 1
2k )r since e−x ≤ 1− x/2 for x ∈ [0, 1]

= (−g
2/4 + 2k

2k )r = (1− g2

2k+2 )r

≤ e−rg
2/2k+2

since 1− x ≤ e−x for x ≥ 0

To bound the completeness error, we perform the same manipulations above to bound the
probability of rejection in the case of a yes instance.
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Figure 6 Claw in the functions f0, f1 mapping from X to Y

Pr[reject | |A| = t] = Pr[1
t

∑
ℓ∈A

Xℓ <
c+ s

2 ]

≤ Pr[c− 1
t

∑
ℓ∈A

Xℓ >
c− s

2 ] ≤ e−tg
2/2

By performing the same manipulations, we obtain Pr[reject] ≤ e−rg2/2k+2 .
By noticing that

∑
s
|ds| ≤ S, we can see that g = c− s = b−a

2
∑
s

|ds|
≥ γ

2 where γ is the relative

promise gap. We can conclude with the symmetric upper bound on the completeness and soundness
errors: e−rγ2/2k+4 .

◀

E.2 Mahadev’s verifiable measurement protocol

In 2018, Mahadev published two works [Mah18a, Mah18b] achieving the following under the
computational assumption of the quantum hardness of Learning With Errors (LWE):
1. classical verification of quantum computation, and
2. classical homomorphic encryption of quantum circuits.

Part of her works’ contribution was also introducing a protocol for verifiable measurement that
uses a quantum-computationally binding scheme for the classical “commitment” 15 of quantum
states. For a detailed description of the protocol, please refer to the original [Mah18b] paper or
Section 2.2 of [VZ19] for a concise summary. Borrowing the exposition style of [VZ19, ACGH20], we
are going to shed light on the verifiable measurement protocol in this subsection. A key component
of the protocol is the concept of claw-free function families. These are function families for which
it is computationally infeasible to find a claw except via a trapdoor. A claw as demonstrated in
Figure 6 for two functions f0, f1 : X → Y is a pair (x0, x1) such that f0(x0) = f1(x1). Furthermore,
it is computationally infeasible to find a string d and the bit d · (x0 ⊕ x1) where (x0, x1) are part of
a claw [BCM+18].

E.2.1 The Case of One Qubit

We summarize how to verifiably measure (i.e. commit and measure later) a qubit16 |ψ⟩ = α |0⟩+β |1⟩
using the pair of functions fκ,0, fκ,1 where κ is a key sent by the verifier. Actually, the selection
of the functions depends on the basis we want to perform the verifiable measurement in. This is
outlined in Protocol 31 and the notation f or g will be used depending on whether we are doing
Hadamard or standard basis measurement (respectively). However, in this walkthrough, we will
use the letter f assuming we are interested in a Hadamard basis measurement. The prover (i.e. the
measuring quantum device) performs the commitment phase by preparing the following uniform

15 Note that this notion of binding commitment is different from the one commonly used in cryptography where
the commitment needs to be hiding as well.

16 We demonstrate how to commit to a qubit state, but the scheme can be generalized to states with more qubits.
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superposition on all elements of the domain X and applying the function fκ in superposition:

1√
|X |

(∑
x∈X

α |0⟩ |x⟩ |fκ,0(x)⟩+
∑
x∈X

β |1⟩ |x⟩ |fκ,1(x)⟩
)
. (8)

Expression 8 contains three quantum registers as follows:
|b⟩: the committed qubit register,
|x⟩: the pre-image register, and
|fκ,b(x)⟩: the commitment or output register.

The prover now measures the commitment register obtaining a value y ∈ Y which is the commitment
value to be sent to the verifier. This will also make the state collapse to a post-measurement state
consistent with the performed measurement as follows:

1√
#(y)

∑
fκ,0(x0)=fκ,1(x1)=y

α |0⟩ |x0⟩ |y⟩+ β |1⟩ |x1⟩ |y⟩ (9)

where #(y) is the number of claws with y as their image. Notice how the original qubit state |ψ⟩
(i.e. the committed qubit) is now “entangled with a superposition” of the pre-images (x0, x1). After
the commitment phase, the verifier challenges the prover by uniformly sampling a challenge bit c
and accordingly performing one of the following rounds (each w.p. 1/2):
1. test round (c = 0): the verifier asks the prover to measure the pre-image register and the

committed qubit register in the standard basis and send back the results, or
2. Hadamard round (c = 1): the verifier asks the prover to measure the pre-image register and the

committed qubit register in the Hadamard basis and send back the results.
After getting back the measurement results, the verifier executes the corresponding procedure as
described in Protocol 31. While the test round is helpful in establishing soundness of the verifiable
measurement, no measurement is learned if we undergo a test round. On the other hand, the
Hadamard round helps us in learning the measurement outcome as described in Protocol 31.

▶ Protocol 31 (Mahadev’s Verifiable Measurement Suite of Algorithms). Depending on which basis
(call it h) we are interested in performing the measurement in, a function is sampled from one of
the following two families of functions:
1. Noisy Trapdoor Claw-free Functions (NTCFs) F

(for X (Hadamard) basis measurement; h = 1):

F = {fpk | fpk : {0, 1} × X → DY}pk∈KF .

This family of functions satisfy this injective pair property: there exists a perfect matching
Mpk ⊆ X × X (i.e. matching where every x ∈ X is incident to exactly one edge) such that:

(x0, x1) ∈Mpk ⇐⇒ fpk(0, x0) = fpk(1, x1).

2. Noisy Trapdoor Injective Functions (NTIFs) G
(for Z (standard) basis measurement; h = 0):

G = {gpk | gpk : {0, 1} × X → DY}pk∈KG .

This family of functions satisfy this injectivity property:

(x, b) ̸= (x′, b′)⇒ supp gpk(b, x) ∩ supp gpk(b′, x′) = ∅.

The following algorithms are used in Mahadev’s protocol:
Trapdoor Inversion: (z, e) = InvF (fpk, sk, b, y) [similarly defined for (z, e) = InvG(gpk, sk, b, y)].
This is a deterministic algorithm that can assign to e a pre-image such that y ∈ supp (fpk(b, e))
if this pre-image exists. In that case, z is set to 1; otherwise, it assigns 0 to z.
TestRound: z = TestCheck(pk, b, x, y) outputs 1 iff (b, x) is a pre-image of y under the mapping
fpk (or gpk).
HadRound: (e, z) = HadRound(sk, b, x, y, h) takes as input a secret key sk and the measured
registers b, x, y as well as a basis choice h. Depending on the basis choice, the verifier executes
one of these to output the measurement:
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1. if h = 0 (i.e. Z basis measurement is requested), output (e, z)← InvG(gpk, sk, b, y).
2. if h = 1 (i.e. X basis measurement is requested), compute both pre-images x0,y, x1,y:

(z0, x0,y) = InvF (fpk, sk, 0, y)
(z1, x1,y) = InvF (fpk, sk, 1, y)

and set e = x · (x0,y ⊕ x1,y)⊕ b. z is set to 0 if any of the two runs reject or if x is trivial
(e.g. = 0); otherwise z is set to 1.

The following theorem summarizes the soundness property of the Mahadev protocol.

▶ Theorem 32 (Soundness of Mahadev’s verifiable measurement protocol; Claim 7.1. in [Mah18b]
following the exposition of Claim 2.12. in [VZ19]). Under the LWE assumption, let P̃ be any (possibly
cheating) quantum polynomial-time prover interacting with an honest verifier of Protocol 31 with
the basis choice h adopting the following notation for brevity:

1 − ph,H : the probability that the verifier accepts the prover P̃ in a Hadamard round of the
protocol with basis h,
1− ph,T : the probability that the verifier accepts the prover P̃ in a test round of the protocol
with basis h, and
DP̃,h: the distribution over measurement outcomes obtained by the honest verifier on executing
a Hadamard round with the prover P̃ for basis h.

Then, there exists a negligible function µ, a quantum state ξ, and a prover P̂ with the following
distributions:
1. DP̂,h: the distribution over measurement outcomes obtained by an honest verifier on executing

a Hadamard round with the prover P̂, and
2. Dξ,h: the distribution over measurement outcomes obtained by directly performing a quantum

h-basis measurement on the state ξ.
such that:

dTV

(
DP̃,h, DP̂,h

)
≤ √ph,T + ph,H + µ and DP̂,h ≈c Dξ,h

where ≈c denotes quantum-computational indistinguishability.

E.3 Classical-verifier argument for XZ local Hamiltonians
This was provided as Protocol 6 in Section 2.4.

▶ Theorem 33 (Section 4 of [ACGH20]). Under the LWE assumption and for a given set of
parameters λ ≥ n, r,m, and a constant k, Protocol 6 for the (n, k, γ)-LH-XZ problem has:
1. completeness error ≤ µ+ negl(λ), and
2. soundness error ≤ 2−m + (µ)1/4 + negl(λ)
where µ = e−rγ

2/2k+4 is the symmetric bound on the completeness and soundness errors of Pro-
tocol 28 in Theorem 29.

▶ Corollary 34 (Theorem 4.6. in [ACGH20]). Under the LWE assumption, for every constant k,
Protocol 6 with λ ≥ n, r = ω( log(n)

γ2 ) and m = ω(log(n)) has negligible completeness and soundness
errors.

F Soundness of ACGH’s protocol after eliminating redundancy

We now analyze the soundness of Protocol 12 given in Section 8. Most of the contents that follow
in this Appendix except Lemma 40 and its proof are verbatim or almost verbatim from [ACGH20]
while changing whatever is needed and proving Lemma 40 that we give.

▶ Theorem 35 (Mirror of Section 4 of [ACGH20]). Under the LWE assumption, for a given set of
parameters λ ≥ n, r,m, and a constant k, Protocol 12 for the (n, k, γ)-LH-XZ problem has:
1. completeness error ≤ µ+ negl(λ), and
2. soundness error ≤ 2−m + (µ)1/4 + negl(λ)
where µ ≤ e−rγ

2/2k+4 is the symmetric bound on the completeness and soundness errors of Pro-
tocol 28 in Theorem 29.
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▶ Lemma 36 (Mirror of Lemma 4.4. in [ACGH20]). In Protocol 12 parameterized by positive integers
r and m , let {Uc}c∈{0,1}m be any set of unitaries that may be implemented by P after the challenge
coins are sent. Let |Ψpk⟩ be any state that P holds in the commitment round, and suppose P applies
Uc followed by honest measurements when the coins are c. Then there exists a negligible function δ

such that V1, . . . ,Vm accept P with probability at most 2−m + µ1/4 + δ1/2 where µ = e−rγ
2/2k+4 is

the soundness error of Protocol 28 with r copies.

Proof. The success probability of any prover in the k-fold protocol is

Pr[success] = 2−m E
(pk,sk)←Gen(1λ,h),h,s

[⟨Ψpk|
∑
c

πUcs,sk,c |Ψpk⟩]

where h, s are drawn from uniform distributions. The uniform string s is used in [ACGH20] to
sample the Hamiltonian terms from the distribution induced by the coefficients of the terms.

▶ Lemma 37. (Lemma 4.3. verbatim from [ACGH20]). Let A1, . . . , Am be projectors and |ψ⟩ be a
quantum state. Suppose there are real numbers δij ∈ [0, 2] such that ⟨ψ|AiAj +AjAi |ψ⟩ ≤ δij for
all i ̸= j. Then ⟨ψ|A1 + · · ·+Am |ψ⟩ ≤ 1 +

(∑
i<j δij

)1/2.

Exactly as in [ACGH20], define a total ordering on {0, 1}m such that a < b if ai < bi for the
smallest index i such that ai ̸= bi. Then by Lemma 37, we have

Pr[success] ≤ 2−m + 2−m E
h,s

[∑
a<b

E
(pk,sk)←Gen(1λ,h)

[⟨Ψpk|πUas,sk,aπ
Ub
s,sk,b + πUbs,sk,bπ

Ua
s,sk,a |Ψpk⟩]

]1/2

.

▶ Lemma 38 (Modified Lemma 4.2. in [ACGH20]). Let P be a prover in Protocol 12 that prepares
|Ψpk⟩ in Round P1 and performs Uc in Round P2. Let a, b ∈ {0, 1}m such that a ̸= b and choose i
such that ai ≠ bi. Then there is an (mr)-qubit quantum state ρ such that for every basis choice h
and randomness s,

E
(pk,sk)←Gen(1λ,h)

[
⟨Ψpk|πUbs,sk,bπ

Ua
s,sk,a + πUas,sk,aπ

Ub
s,sk,b |Ψpk⟩

]
≤ 2α1/2

hi,si,ρ
+ negl(n) ,

where αhi,si,ρ is the success probability with ρ conditioned on the event that hi is sampled.

By Lemma 38, there exists a negligible function δ such that

E
(pk,sk)←Gen(1λ,h)

[⟨Ψpk|πUas,sk,aπ
Ub
s,sk,b + πUbs,sk,bπ

Ua
s,sk,a |Ψpk⟩] ≤ 2α1/2

hi(a,b),ρab
+ δ(n)

for every pair (a, b). Here i(a, b) is the smallest index i such that ai ̸= bi and ρab is the reduced
quantum state associated with a, b, as guaranteed by Lemma 38.

Let µ be the soundness error of the Protocol 28 with r copies. We have

Pr[success] ≤ 2−m + 2−m E
h,s

[∑
a<b

(
2α1/2

hi(a,b),si(a,b),ρab
+ δ(n)

)]1/2

≤ 2−m + µ1/4 +
√
δ(n) see [ACGH20] for the computations.

◀

To prove Lemma 38, we will again follow [ACGH20]’s proof and replace the projectors Π with
the new projectors π and using this modified version of Lemma 4.1. in [ACGH20].

▶ Lemma 39 (Modified Version of Lemma 4.1. in [ACGH20]). Let P = (|Ψpk⟩ , Ut, Uh) be a prover
in Protocol 12 such that, for every h ∈ {0, 1}nr and s ∈ {0, 1}p (p is a polynomial bound on the bits
needed to sample the Hamiltonian terms),

E
(pk,sk)←Gen(1λ,h)

[⟨Ψpk|πUt

s,sk,t |Ψpk⟩] ≥ 1− negl(n) . (10)

Then there exists an (nr)-qubit quantum state ρ such that, for every h, s,

E
(pk,sk)←Gen(1λ,h)

[⟨Ψpk|π
Uh

s,sk,h |Ψpk⟩] ≤ αh,s,ρ + negl(n) ,

where αh,s,ρ is the success probability in Protocol 28 with basis choice h and r-copies of the quantum
state ρ.
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Proof of lemma 39. We use the following helpful technical lemma that we show later:

▶ Lemma 40. Let π1, . . . , πn be single qubit projectors on the same domain. Let P1 and P2 be of
the form

⊗n
i=1 π̂i where π̂i is either I or πi. If for some |ϕ⟩, it holds that:

⟨ϕ|P1 |ϕ⟩ ≥ 1− δ1 and ⟨ϕ|P2 |ϕ⟩ ≥ 1− δ2

then, it follows that:

⟨ϕ|P2P1 |ϕ⟩ ≥ 1− (δ1 + δ2).

Noting that ΠUt

s,sk,t in Lemma 4.1. in [ACGH20] is the same as
∏
s
πUt

s,sk,t, and since each πUt

s,sk,t

is of the form in the hypothesis of Lemma 40, we can apply Lemma 40 for as many as there are
Hamiltonian terms and obtain:

E
(pk,sk)←Gen(1λ,h)

[⟨Ψpk|ΠUt

s,sk,t |Ψpk⟩] ≥ 1−O(n) · negl(n)

Now this is basically the hypothesis of Lemma 4.1 in [ACGH20]. Therefore, the first paragraph of
the proof of this Lemma holds but the second paragraph is the one that is slightly different. In this
alteration, we consider the new measurement {πUh

s,sk,h,1− π
Uh

s,sk,h}. Verbatim from [ACGH20], the
proof completes by noting that these two cases are computationally indistinguishable:

1. An output is sampled from the distribution DP,h and the verifier applies the final checks
in Protocol 28. In this case, the final outcome is obtained by performing the measurement
{πUh

s,sk,h,1− π
Uh

s,sk,h} on the state |Ψpk⟩, and accepting if the first outcome is observed.
2. An output is sampled from the distribution Dρ,h and the verifier applies the final checks in

Protocol 28. In this case, the acceptance probability is αh,s,ρ by the protocol definition.
We can conclude that:

E
(pk,sk)←Gen(1λ,h)

[⟨Ψpk|π
Uh

s,sk,h |Ψpk⟩] ≤ αh,s,ρ + negl(n) ,

◀

We now move to prove lemma 40.

Proof of lemma 40. Let {|u0⟩ , |u1⟩} be an orthonormal basis for the domain of each projector πi.
|ϕ⟩ can be written as:

|ϕ⟩ =
∑

b∈{0,1}n
αb |ub1 . . . ubn⟩ where

∑
b∈{0,1}n

|αb|2 = 1

We write Pj =
⊗n

i=1 π̂j,i. We use vi,b to denote ⟨ub|πi |ub⟩ and v̂j,i,b to denote ⟨ub| π̂j,i |ub⟩. It can
be seen that:

v̂j,b := ⟨ub|
n⊗
i=1

π̂j,i |ub⟩ = v̂j,1,b . . . v̂j,n,b.

By the hypothesis of the lemma, we have:

⟨ϕ|Pj |ϕ⟩ =
∑

b∈{0,1}n
|αb|2 ⟨ub|

n⊗
i=1

π̂j,i |ub⟩

=
∑

b∈{0,1}n
|αb|2 ⟨ub1 | π̂j,1 |ub1⟩ . . . ⟨ubn | π̂j,n |ubn⟩

=
∑

b∈{0,1}n
|αb|2 v̂j,1,b . . . v̂j,n,b

=
∑

b∈{0,1}n
|αb|2 v̂j,b ≥ 1− δj

Let’s write Π̂i = π̂2,iπ̂1,i. Since πi is a projector, so is π2
i = πi. Therefore, Π̂i is either πi or I.

Let v̂i,b := ⟨ub| Π̂i |ub⟩ and for brevity let v̂b := ⟨ub|
⊗n

i=1 Π̂ |ub⟩. By the fact that ⟨ub|πi |ub⟩ ≤
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⟨ub| I |ub⟩ = 1, one can conclude, by exhausting all cases, that v̂i,b ≥ v̂2,i,bv̂1,i,b and consequently
v̂b ≥ v̂2,bv̂1,b. Putting this together, it follows that:

⟨ϕ|P2P1 |ϕ⟩ =
∑

b∈{0,1}n
|αb|2 ⟨ub|

n⊗
i=1

Π̂i |ub⟩

=
∑

b∈{0,1}n
|αb|2 ⟨ub1 | Π̂1 |ub1⟩ . . . ⟨ubn | Π̂n |ubn⟩

=
∑

b∈{0,1}n
|αb|2 v̂b

Now, let’s show that ⟨ϕ|P2P1 |ϕ⟩ ≥ 1− (δ1 + δ2) which is equivalent to 1− ⟨ϕ|P2P1 |ϕ⟩ ≤ δ1 + δ2.

1− ⟨ϕ|P2P1 |ϕ⟩ = 1−
∑

b∈{0,1}n
|αb|2 v̂b

≤ 1−
∑

b∈{0,1}n
|αb|2 v̂2,bv̂1,b (v̂b ≥ v̂2,bv̂1,b)

≤

δ1 +
∑

b∈{0,1}n
|αb|2 v̂1,b

− ∑
b∈{0,1}n

|αb|2 v̂2,bv̂1,b (⟨ϕ|P1 |ϕ⟩ ≥ 1− δ1)

= δ1 +
∑

b∈{0,1}n
|αb|2 v̂1,b (1− v̂2,b)

≤ δ1 +
∑

b∈{0,1}n
|αb|2 (1− v̂2,b) (v̂1,b ≤ 1)

= δ1 +
∑

b∈{0,1}n
|αb|2 −

∑
b∈{0,1}n

|αb|2 v̂2,b

= δ1 +

1−
∑

b∈{0,1}n
|αb|2 v̂2,b


≤ δ1 + δ2 (⟨ϕ|P2 |ϕ⟩ ≥ 1− δ2)

◀

G A Tale of Alice on a Quantum Island

Alice is a passionate explorer who studied Egyptology and cryptology. She has just embarked on an
expedition to the island of Elephantine. Legend has it that the ancient Egyptians built a large-scale
quantum computer on this very island 4,000 years ago. While she was excavating for this elusive
quantum computer, she found a hieroglyphic LATEXpapyrus entitled “proof of the quantum PCP
theorem and reductions to XZ Hamiltonians” ! “What a fruitful trip already!”, Alice said to herself
as she continued her excavation. After a few days, she found herself in front of a wondrous building
and a sign carved in Hieroglyphics that says “The Classical Interface". "Is this a bottle of liquid
luck 17 or water?", Alice exclaimed looking at her water bottle after realizing that she just unveiled
an ancient instantiation of a quantum random oracle! Alice goes around the giant building to find
another hieroglyphic sign on the other side that says “The Quantum Interface”. Suddenly, someone
appears in a blue cloak while facing towards the entrance and waving aggressively with his hand
in front of the building as if he were casting a sequence of spells. As Alice calls on him, he turns
and she immediately recognizes him as Merlin! After a short conversation, Merlin claims to have
access to the ancient Egyptian quantum computer! While it seems like good news, he also claims
that he magically hid it with no intention of unveiling it to anyone. However, not all hope is lost
because he claims to be able to communicate with it using his magical powers. Alice has a lot
of important questions about life, the universe, and everything that she hopes to settle with the
help of this long-awaited quantum computer. She even designed an efficient quantum circuit to
answer these quests in anticipation of this very moment. Although Merlin promises to help her,

17 Also called Felix Felicis for the interested reader; c.f. J.K. Rowling (2005).
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she is concerned that he might mislead her. As a well-trained cryptographer, Alice asks Merlin to
prove to her that indeed these answers were obtained by executing her quantum circuit. She asks
him to engage with her in an interactive conversation where she will ask him follow-up questions.
Merlin agrees to Alice’s proposal on one condition; “If you do not trust me, that is your problem. I
am very thirsty at the moment. I will only respond to these follow-up questions if and only if my
answers to these additional questions are very short." Merlin said to Alice unhappily. Alice knew
that she could reasonably suggest to him to drink as much as he desires from the Nile flowing right
in front of them. However, she did not feel that she had the luxury to further upset him. Since
Alice is a very smart cryptographer who read this paper, she knows how to verify Merlin’s answers
to her questions under some assumptions despite his short temper!
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