
Standard Model Time-Lock Puzzles:
Defining Security and Constructing via Composition

Karim Eldefrawy*, Sashidhar Jakkamsetti**†, Ben Terner**†,

and Moti Yung***

* SRI International
** University of California, Irvine

*** Google and Columbia University

Abstract. The introduction of time-lock puzzles initiated the study of publicly “sending information
into the future.” For time-lock puzzles, the underlying security-enabling mechanism is the computational
complexity of the operations needed to solve the puzzle, which must be tunable to reveal the solution
after a predetermined time, and not before that time. Time-lock puzzles are typically constructed via
a commitment to a secret, paired with a reveal algorithm that sequentially iterates a basic function
over such commitment. One then shows that short-cutting the iterative process violates cryptographic
hardness of an underlying problem.

To date, and for more than twenty-five years, research on time-lock puzzles relied heavily on iteratively
applying well-structured algebraic functions. However, despite the tradition of cryptography to reason
about primitives in a realistic model with standard hardness assumptions (often after initial idealized
assumptions), most analysis of time-lock puzzles to date still relies on cryptography modeled (in an
ideal manner) as a random oracle function or a generic group function. Moreover, Mahmoody et al.
showed that time-lock puzzles with superpolynomial gap cannot be constructed from random-oracles;
yet still, current treatments generally use an algebraic trapdoor to efficiently construct a puzzle with
a large time gap, and then apply the inconsistent (with respect to Mahmoody et al.) random-oracle
idealizations to analyze the solving process. Finally, little attention has been paid to the nuances of
composing multi-party computation with timed puzzles that are solved as part of the protocol.

In this work, we initiate a study of time-lock puzzles in a model built upon a realistic (and falsifiable)
computational framework. We present a new formal definition of residual complexity to characterize
a realistic, gradual time-release for time-lock puzzles. We also present a general definition of timed
multi-party computation (MPC) and both sequential and concurrent composition theorems for MPC
in our model.

1 Introduction

Modern cryptography has expanded its scope much beyond cryptography’s traditional use for en-
suring secrecy to also address support for numerous interactions and distributed protocols in the
form of authentication, signatures, secure (zero-knowledge) validations, distributed secure and re-
silient multiparty computing (MPC), and more. Another such frontier supporting time management
in interactive settings, is the notion of delayed-release cryptography, which incorporates the “time
granularity” into cryptographic contexts by exploiting computational properties/limitations to en-
force secrecy for some amount of time rather than essentially “indefinitely” (in reality, indefinitely
is measured as any polynomial in the large enough security parameter). Time-lock puzzles have
been studied since the seminal work of Rivest, Shamir, and Wagner (RSW) [33] more than twenty-
five years ago. More recently, inherently sequential functions motivated by large scale consensus,

† Work performed partially while at SRI International.

distributed ledgers, and blockchain applications have also precipitated considerable research in ver-
ifiable delay functions [11, 32, 37]. The interest in time-lock primitives has yielded various notions
like non-malleable time-lock puzzles [21], non-malleable timed commitments [25], and UC-security
[5, 6] of time-lock puzzles in the random oracle model.

Time-lock primitives enable new techniques and applications for distributed computations. For
example, over twenty years ago, Boneh and Naor [12] introduced timed commitments as a way
to achieve fairness in MPC. Recently, Wan et al. [36] used time-lock puzzles to construct more
efficient broadcast with adaptive security. Time-lock primitives permit distributed applications in
which one party promises that a value will be revealed at a later time, without requiring the party
(or other parties) to be honestly participating, or even be online, at the time of reveal. The only
resource to both hide and later reveal secrets is the computational hardness inherent in the initial
commitment, which is output-guaranteed; specifically, the commitment comes with the promise to
reveal the result in the future without any behavioral conditions regarding the parties.

The Inconsistent State of Time-Release Analysis. To a large extent, timed cryptography still treats
cryptographic puzzles as essentially a random oracle [1, 5, 6]1. At a high level, an iterated algebraic
computation is modeled such that each iteration gives a random result, and hence the intermediate
computations are all random until the determined time when the puzzle is solved. Others similarly
cast the solution of a puzzle into a generic group (or ring) model [2, 25, 34] in order to make
analogous claims about the information available before the solution time (in generic models the
intermediate results are again random and not related to each other). As a common theme, these
works arrive at an “instantaneous” revelation model, where the solver only learns the solution in
the final step.2

However, Mahmoody et al. [28] showed that time-lock puzzles with superpolynomial gap cannot
be constructed from just random oracles. Their analysis explicitly considers a timed primitive for
which each intermediate step is random. Therefore, analyzing any algebraic timed primitive in this
way is applying an analysis to the solver that has already been shown does not match reality (or even
approximate it) if assuming that a puzzle can be generated (via a trapdoor) much faster than it can
be solved. Simply, applying random-oracle analysis to the solver is inconsistent with an algebraic
puzzle generator, as we know random-oracle analysis does not yield a puzzle with superpolynomial
gap. This leaves an open question of modeling the leakage mode of computational puzzles without
a random oracle, which is necessary to fully analyze a time-lock puzzle with superpolynomial gap.
We expound on this mismatch in Section 3.

New Foundations for Time-Release Cryptography. Traditionally, analysis and proofs of security of
cryptographic primitives are based on as realistic and general a model as possible (in computational
terms), which permits us to trust that the claims of our model translate to security in the real world.
In contrast to the above assumptions, all cryptographic puzzles are defined over well structured
algebraic domains, and are based on (concrete) computational assumptions – and any computational
puzzle continuously leaks information about the solution of the puzzle as it is being solved. More
specifically, each intermediate state reached during the solving process leaks noticeable information

1 While the authors in [21] do not explicitly treat their base puzzles as random until solved, we argue that their
analysis implicitly does so, as they treat the repeated squaring assumption as having “instantaneous” reveal.

2 In some cases, this is a limitation of the definition of time-lock puzzles only quantifying secrecy until the time
when an adversary can guess the solution with non-negligible probability. In generic group models, the solution is
explicitly hidden until the last step.

2

Protocol Model Composition Reveal Falsifiable?

Arapinis et al. [1] RO UC Instantaneous No

Baum et al. ‘20b [5] RO UC Instantaneous No

Baum et al. ‘20a [6] RO UC Instantaneous No

Freitag et al. [21] P,RO NM Instantaneous No

Katz et al. [25] Gen NM Instantaneous No

Our Work RC S,C Gradual Yes

Table 1: State of Research of Composable Time-Lock Primitives. In the “Model” column, RO stands
for “Random Oracle,” P stands for “Plain,” Gen stands for “Generic Algebraic,” and RC stands for
“Residual Complexity.” In the “Composition” column, UC stands for “Universal Composability,”
NM stands for “Non-malleability”, and S,C stands for “Sequential and Concurrent.”

about future nearby iterative upcoming states, while revealing only negligible information about
far-away states, until at some point there are no more far-away states and the solution begins being
revealed from the intermediate results. A realistic model to analyze the security of a timed primitive
must capture this “gradual” revelation of the solution.

Our goal in this work is to initiate a foundation of time-release cryptography using a refutable
computational model (rather than an idealization), and to introduce falsifiable formal notions of
security with which to characterize the time-release. Additionally, foundations of puzzles have to deal
with the notion of composability in order to allow puzzles to serve a larger distributed computation
setting, specifically multi-party computation in which time-lock puzzles are solved as part of the
protocol. We frame our work with respect to other recent time-lock research in Table 1.

1.1 A Framework for Computational Puzzles

Below we discuss subtle issues in constructing and analyzing computational puzzles.

Fine-Grained Polynomial Hardness. Current computational puzzles follow the following blueprint:3

1. The puzzle generator uses a trapdoor to efficiently sample a puzzle.

2. The solver uses a sequential algorithm to solve the puzzle. The puzzle is parameterized such
that the sequential algorithm is faster than any known method to recover the trapdoor.

In this blueprint, the solver must be able to recover the secret within time that is polynomial in
the puzzle’s security parameter. Therefore, the (leaky) iterative process occupies a regime of fine-
grained polynomial complexity, where (too much) information must not be leaked to an adversary
with some polynomial depth d, but all information must be leaked when surpassing a different
polynomial depth d′ > d.

The above guides our work into a model of cryptography with fine-grained polynomial depth
which, as we explain below, brings new challenges in modeling and intricate formal definitions.

Residual Complexity. To formalize the above notion of fine-grained polynomial hardness – in which
some problems are solvable while related underlying problems remain hard – we introduce our
definition of residual complexity. Intuitively, residual complexity quantifies the probability rd of
guessing the solution of a (randomly sampled) puzzle that has been partially solved in d depth.

3 Recall that by Mahmoody et al.[28], there is no time-lock puzzle based solely on random oracles with superpoly-
nomial time-gap, and therefore in practice puzzles depend on trapdoors.

3

Our formalization (defined in Definition 4.5 and explained in Section 2.1) is a generalization of a
technique in defining the depth-hardness of certain computational problems in [25] and others.

Residual complexity allows us to model the full lifetime of a timed primitive’s information
release, from the moment it is generated until all parties learn the solution. As an illustration,
consider the RSW time-lock puzzle construction [33], which depends on the hardness of an iterative
squaring mod RSA modulus N , while the underlying trapdoor problem of finding Φ(N) remains
hard. Specifically, a solution χ is encoded via a puzzle (α, t,N) by setting χ = α2t mod N , where t
is a hardness parameter that determines how many times the solver must repeatedly square α mod
N in order to discover the solution, and log(N) is a function of the security parameter λ.

For RSW on small N , it is easy to see that revealing such intermediate steps leaks information
about the nearby upcoming solutions. For larger moduli, even knowing x2 mod N leaks non-trivial
information about (x±δ)2 mod N for small δ (on the order of log(N)).4 By expanding the modulus
to tune the hardness of the problem, the leakage diminishes but does not disappear because the
algebraic structure remains.

In realistic computing scenarios and using clever algorithms5, the solver learns a nontrivial
distribution on the puzzle solution before it performs t squarings; we upper-bound the ability of
an adversary to learn the solution by hypothesizing a leakage curve for the RSW scheme given
a particular security parameter λ and time parameter t. We then quantify the difference in time
between when the best adversary can guess a puzzle solution (with non-negligible probability) and
the time that the honest parties learn the solution via the scheme’s solve algorithm, and can name
the moment when the adversary can guess with non-negligible probability as the critical time.6

Modeling Multi-Party Protocols with Timed Primitives. Equipped with the notion of
“hardness up to some depth,” we formalize security in the presence of a depth-bounded adversary
for protocols with timed hardness. We provide a new model (in Section 5) for depth-bounded secure
computation and a framework of security which includes considerations of timed primitives and the
subtleties that they incur, including a full treatment of privacy and leakage in fine-grained depth,
and the security degradation that results from composing timed-secure primitives.

Leakage and Temporary Privacy. As explained in Section 2, the definition of residual complexity
implies a formal treatment of the leakage of a timed primitive, which we expand to a full idealization
of a leaky functionality that slowly reveals a hidden value. Our treatment of idealized leakage allows
us to capture applications where sensitive information is revealed during the computation, but must
not be revealed before some specific point in time. For example, consider an accountable computing
application, where parties time-lock their inputs and are held accountable to them at a later time.
In traditional definitions of MPC, there is no way to quantify security of such a protocol. These
inputs would be output by all parties, making any security reduction trivial. Because the simulator
would receive all parties’ inputs (as one party’s output), the standard reduction for proving security
would declare that no adversary could learn more information than a simulator which already knows

4 This is in contrast to a random oracle analysis, for which the next step of a puzzle is always independent of the
current state.

5 As another example, using parallel processors to compute forward mapping tables for quadratic residues modulo
N .

6 A negligible function is an asymptotic notion. For each security parameter, the protocol designer can choose
a probability that is “unacceptable” for guessing the solution, and designate the depth for which the residual
complexity meets this threshold as the critical time. This specifies the moment at which the time-lock is considered
to expire.

4

all of the parties’ inputs. However, given our treatment of idealized leakage, we can formally state
that no adversary can learn more than a simulator that learns information at some predetermined
pace.

Simulation and Composition in Fine-Grained Depth. We encounter similar nuances when defining
security of multi-party protocols. Our model departs from the standard cryptographic regime of
“security up to arbitrary composition within complexity class P,” and must account for the depths
of all involved machines – the adversary, the simulator, and the distinguisher. Our definition (Defi-
nition 5.1) is a generalization of the standard definition in the literature, accounting for fine-grained
depths.

As a first consideration for simulating a timed-puzzle, we observe that the simulator must run
in less time than the puzzle requires to solve. Otherwise, the claim of privacy via reduction will
completely fail: the reduction becomes a claim that an adversary can do no worse than a simulator
that could solve a puzzle outright and learn the solution.7 This observation alone leads to new
questions about whether existing works apply to a realistic model such as ours. The simulator in the
work by Baum et al. [6] explicitly solves a time-lock puzzle during simulation, and is able to shortcut
the solving process only because the simulator is not bound by the global clock functionality.
8 Freitag et al. [21] allow the simulator to explicitly solve puzzles, and artificially constrain the
distinguisher by allowing it only to see a function of the solution of modified puzzles, which does
not conform with meaningful definitions of a distinguisher which could run the simulator on its
own. These are very delicate arguments, and while the corresponding constructions are elegant,
they fall short of the nuances our fine-grained model brings to light: since the simulators are of a
much different type than usual, nuances regarding the qualitative properties of the proofs using
them follow.

We encounter additional challenges when composing secure timed primitives. For example,
sequentially compose protocols π and ρ, where π is proven secure in the F -hybrid model against
a da-depth adversary, and ρ securely implements F against a d′a adversary. The composition πρ is
not trivially secure against a da + d′a-depth adversary! An adversary against π could use the time
during ρ in order to continue attacking π; similarly, an adversary against ρ could use the time after
ρ concludes and π resumes in order to continue attacking ρ. Similar issues occur in concurrent
composition, although they are of the same ilk – in our model, the depth used by an environment
to run a “side session” during an attack against π counts towards its depth in the attack.

We present two composition theorems for depth-bounded secure computation (Theorems 5.1
and 5.2 in Section 5.4). These theorems include privacy degradation when protocols are composed;
specifically, for every additional protocol added to a (concurrent or sequential) composition, the
overall scheme is secure against a slightly smaller adversary. Note that our techniques are limited
to composing depth-secure protocols in a black-box manner, and we do not prove tightness of
degradation. There may be better techniques, including those with knowledge of the underlying
protocols, that show tighter security preservation under composition.

7 For phased simulations, discussed in Section 5.5, this becomes that the simulator should run in less depth per
phase than the adversary.

8 This observation is more an indictment of bounding time with a global clock functionality than of the simulation
technique, since the simulator is not constrained by the functionality and therefore not granularly constrained by
depth/time.

5

1.2 Paper Outline

Since this paper introduces a new model, it contains a longer than usual motivation, and discussion
of subtleties, definitions, and formal issues involved in this work. We build toward a general defini-
tion of timed multi-party computation (MPC) and a composition theorem for MPC in our model,
which together with the preceding intuitive discussions and the ensuing proofs, validate our defini-
tions and modeling choices. In Section 2 we outline our approach to founding timed-cryptographic-
primitives on a computational, falsifiable model, and we describe some of the subtleties in modeling
time-release protocols. Section 3 provides a technical explanation of the inconsistency of current
time-lock analysis. In Section 4 we present our model of depth-secure computation and introduce
residual complexity. In Section 5 we model depth-secure MPC and state our composition theo-
rems. In Section 6 we relate time-lock puzzles to residual complexity by proving that the residual
hardness of time-lock puzzles remains high until the time-lock expires. Our full composition theo-
rems are in Sections 7 and 8. Section 9 discusses related work in time-lock primitives and granular
computational models. Our model is expanded in Appendix A.

2 Technical Overview and Main Results

A realistic model for timed cryptographic primitivies must consider the gradual release of informa-
tion. In this section, we discuss the subtleties that this implies in our model and fit our definitions
into a framework of MPC for which puzzles are solved as part of a protocol.

2.1 Residual Complexity: A Falsifiable Leakage Model for Timed Primitives.

To realistically and falsifiably model the “leakage” of a timed primitive, we introduce the notion of
residual complexity. Intuitively, residual complexity measures the “remaining hardness” of a puzzle
that has already been (partially) solved by an adversary of depth d.9

Definition 2.1 (Residual Complexity (Informal)). A puzzle scheme has residual complexity
rd if no depth-d adversary can guess the solution of a randomly sampled puzzle with probability
more than rd.

By this definition, 1-rd is the “remaining hardness” of the puzzle after attempting to solve it in d
depth. We present the formal definition of residual complexity in Definition 4.5 in Section 4.4.

To show that residual complexity is compatible with (and specifically, a generalization of)
existing time-lock definitions, we prove (in Section 6) that a time-lock puzzle by the definition of
Bitansky et al. [8] implies small residual complexity until the time-lock expires (as illustrated in
Figure 1).

Residual complexity models the entire leakage profile of a puzzle by defining the “leakage” of
a puzzle as the decrease in residual complexity of the puzzle between every two levels of depth of
the best solving algorithm. We provide example curves of puzzle schemes in Figure 1. We note that
residual complexity is a more complete characterization of a puzzle than prior definitions, which
extend their definitions to characterize the leakage only to the point that an adversary can guess
the solution with non-negligible probability, which we refer to as the “critical time.”

9 Note that the remaining hardness measures pseudo-entropy rather than entropy, as the solution of a timed primitive
is always committed at the moment it is generated. (Otherwise the solving algorithm could not be deterministic.)

6

Falsifiability. Because puzzles always depend on the hardness of their underlying computational
assumption, it is difficult for us to compute a puzzle’s leakage curve. However, a hypothesized curve
can be falsified via an efficient experiment between a challenger and a refuter, where the challenger
repeatedly samples puzzles and the refuter must guess solutions.

For example, let a challenger claim that for a particular puzzle scheme/size, finding the solution
with non-negligible probability requires the solver’s state to be at most t steps from the depth of
the “honest” solution algorithm, which is given by the time parameter. A refuter asserts that it is
able to guess the solution earlier with non-negligible probability p when its local state is at least
t+ 1 depth less than the puzzle duration. The challenger and refuter run an interactive falsification
procedure in polynomial time (as advocated by Naor [31]):

• The challenger iteratively samples n independent random puzzle instances (e.g., an RSA mod-
ulus of a given size and a solution).

• For each puzzle, the refuter runs at most up to t + 1 steps close to the time parameter, and
outputs a guess. For each instance i, if the refuter’s guess matches the solution then let Xi = 1;
otherwise Xi = 0.

• Finally, apply the Chernoff bound: Pr[|
∑n

i=1 (Xi /n) − p| > δ] < 2e−2δ
2n /2p(1−p)

For example if the refuter claims p = 1
10 then we can choose n large enough (as a polynomial in

the security parameter) to show with all but exponentially small error that the frequency of correct
guesses is at least 1

20 (i.e., δ = 1
20). At the same time, if the actual probability is negligible, then

we will reject the refutation as most likely none of the challenges will be guessed correctly by the
refuter, and certainly (with very high probability) only fewer than than 1

20 .10

0

1

critical time
time parameter

(a) Example leakage profile for a time-lock puzzle.

0

1

time parametercritical time

(b) Example leakage profile for a puzzle scheme that
briefly hides its solution.

Fig. 1: Illustration of leakage profiles for two kinds of puzzles. The x axis represents time, and the
y axis represents the best adversary’s probability of guessing the solution. A point (x, y) on the
curve represents that the best x-depth adversary guesses the solution with probability y. At the
moment of the time-parameter, the puzzle is guaranteed to be solvable with probability 1 by the
honest strategy.

10 We use the symmetric Chernoff bound, while knowing that employing the one-sided gives better sample size, an
issue we do not address in this abstract.

7

2.2 Definition of Depth-Secure Protocols

Idealizing Leaky Functionalities. We model the time-release of information by idealizing leaky
functionalities which slowly provide information to the parties in a set of phases which take the
place of time steps. A leaky functionality is parameterized by the leakage curve of the puzzle scheme
it idealizes, which determines how much information (as a reduction in pseudo-entropy, as described
above) the functionality provides to the adversary at each phase.

Privacy Until Some Time. During simulation of a leaky functionality, we require that the simulator
knows no more information at each phase than the adversary, which by definition learns information
as the ideal functionality reveals it. As a technical consequence of this requirement, the simulator’s
input does not include the information which is revealed slowly throughout a computation; the
simulator also learns information only as the ideal functionality provides leakage. It follows that in
the security reduction, the proven statement is that the adversary can do no worse than a simulator
which knows the same amount of information at each step of the computation. We can then claim
that for time-release computations, privacy of some information holds for a specific amount of time,
after which it is revealed and the adversary (respectively simulator) can use it.

Simulation Budgets and Depth-Secure MPC. Our treatment of time-based primitives and protocols
requires a granular, depth-based definition of secure computation, where security should hold with
respect to an adversary with depth that is bounded by a fixed polynomial (in comparison to any
polynomial in the security parameter). After surpassing some predefined depth, it is alright for the
protocol to lose security, as the information is revealed anyway. Similarly, we also bound the depth
of a distinguisher (or environment) in tandem with the adversary. However, our definitions must
bound more than the depth of the adversary (and distinguisher11); they must also bound the depth
of the simulator. Otherwise, the security reduction fails where privacy is involved: the security claim
becomes that an adversary in the real world can do no worse than a simulator in the ideal world –
but if the latter can explicitly solve the puzzle, then no security is proven! Therefore, the simulator
has a granular “depth budget” and it must run in less time than privacy is required to hold. We
give the formal definition in Section 5.3 and describe it informally as follows:

Definition 2.2 (Depth-Secure Multi-Party Computation (Informal)). A protocol π (da, ds, de)-
securely implements a functionality F if π’s simulator runs in no more than ds depth, and the dis-
tribution of views produced by the simulator remains indistinguishable from the distribution of real
executions for any da-bounded adversary and any de-depth bounded distinguisher (environment).

2.3 Composition of Depth-Secure Protocols.

When composing protocols with timed primitives, the composed simulation must also be shorter
than the time that privacy must hold. We also show that the black-box composition is secure only
against the smaller of the two protocols’ distinguishers, and against an adversary that is smaller
adversary than the first protocol’s adversary by the size of the second’s simulator.

Theorem 2.1 (General Composition (Informal)). Let π (da, ds, de)-securely implement F and
let ρ (d′a, d

′
s, d
′
e)-securely implement G. The composition of π and ρ is (da−d′s, ds+d′s,min(de, d

′
e))-

secure.
11 To generalize between the works of [21] and [25], our definition states the depth of the environment, but the variable

could be either polynomially bounded or unbounded. See [21] for discussion.

8

The term da − d′s comes from our simulation technique. Intuitively, if the composition is not
secure against this depth of adversary, then there exists a da-depth adversary that simulates an
execution of ρ in parallel to its attack on π and uses the simulation to break π.

The above theorem considers concurrent as well as sequential composition. We additionally
prove another specialized, relaxed composition theorem, for protocols that cannot be proven con-
currently composable but may be proven sequentially composable (e.g. if the simulator must be
rewound).

Theorem 2.2 (Special Sequential Composition (Informal)). Let π (da, ds, de)-securely im-
plement F in the G-Hybrid model and let ρ (d′a, d

′
s, d
′
e)-securely implement G. The composition πρ

(da − d′s, ds · d′s,min(de, d
′
e))-securely implements F .

The multiplication in the middle term results from considering rewinding. These two theorems
provide endpoints of a spectrum of budget depletion between the two extremes; when computing
depletion for a specific composition, it is possible to reason about the execution time of each
simulator. We discuss composition further in Section 5.4.

Applying the Model Concretely When composing primitives in practice, we use the idea of a critical
time described above. Consider that an application requires privacy of a primitive until time t. The
protocol designer paramaterizes the scheme such that no one refutes (no experiment or mathemat-
ical analysis has shown otherwise to date) that the puzzle is unsolvable in t depth. We therefore
conclude that the scheme is secure against a t-depth adversary. After depth t, we assume that the
adversary can use the solution (earlier than honest parties learn the solution, who must wait for
the time parameter).

2.4 Example Application: Simultaneous Multiple Round Auction

Our framework for depth-secure multiparty computation with timed cryptographic primitives en-
ables us to reason about composition of timed primitives in a realistic setting. As an illustration,
consider the following variant of a Simultaneous Multiple Round Auction [30] with partial knowl-
edge restriction and forced reveal.12 As is standard in time-lock literature, we use time-locked bids
to guarantee that no party has information about other parties’ bids within a round, while allowing
for forced reveal.

Stage 1: Every party i submits a bid b1,i in an auction for the first round of bidding, to be opened not
before time t1.

Stage 2: After t1, all bids for the first stage of the auction are opened. The parties who submitted the
top c (constant) bids in Round 1 are chosen to submit stage-2 bids (b2,i), to be opened not
before t2.

Winner: The winner of the auction is the party i that maximizes B = b1,i + b2,i constrained such that
i’s bid in Stage 2 was opened. Party i pays $B.

Observe that this construction requires both concurrent and sequential composition of timed
primitives. Within a stage of bidding, all of the time-lock puzzles require security in concurrent
composition with each other. For each discrete round of bidding, the concurrently composed bids
require sequential composition in order to be analyzed in the framework of a larger protocol.

12 This variant also has only a fixed number of rounds, but this can be trivially extended as per a true Simultaneous
Multiple Round Auction.

9

Tuning for Timed Security We apply our composition theorems to estimate parameters to tune
the security of concurrent primitives within the first round. Assume a protocol for submitting
and solving an individual puzzle bid which can be set to be (da, ds, de)-secure. If the concurrent
composition of n puzzles must be secure against an adversary of depth t1, then each individual
puzzle must be tuned such that da = t1 + (n − 1)ds. The depth of the composed simulation is at
most nds. The concurrent composition for this round is then (at least) (t1, nds, de)-secure.

To analyze the full example above, including sequential composition between rounds, we analo-
gously apply the composition theorems again, tuning so that the first round is secure for t1 depth,
the second round is secure for t2 − t1 depth, and the full composition is secure for t2 depth.

2.5 Leaky Functionalities: Are Random Oracles Required for Composable Timed
Primitives?

The work of Baum et al. [6] showed that random oracles are necessary to construct UC-secure
time-lock puzzles. We argue that by analyzing time-lock puzzles with leaky idealizations, it may be
possible to avoid this dependence (on a paradigm that we discuss at length in Section 3).13 The
difference in modeling approaches for the idealized primitive can be understood as follows:

• In the model of [6], a timed primitive is given to the simulator by the ideal functionality, and
without further interaction the simulator must equivocate the output to match whatever the
functionality commits.

• In our model, a timed primitive is a promise given to the simulator by the ideal functionality to
reveal a value later, and the simulator continuously interacts with the functionality to gradually
learn the value until it is fully revealed.

Their proof, which is based off of one by Cleve [16], proceeds by analyzing a two-party coin
flipping protocol with guaranteed output delivery. The ideal functionality is defined to provide the
output to the adversary in the beginning of the execution, while honest parties receive it at the
end. In a real protocol execution, they show there must be a point in the protocol at which one
party sends a message which substantially impacts the output of the protocol, and if this party is
corrupted so that it does not send the message, the output of the protocol must change. They then
argue, based on the fact that an ideal functionality chooses the protocol output at the beginning,
that the simulator in the ideal experiment must actually be able to derive the correct output
from before this message is sent (intuitively, the simulator must perform some computation which
reveals an already-committed output, possibly including solving some puzzle), without any further
interaction with the environment or ideal functionality. This, however, leads to a contradiction: the
distributions of the output in the real world must differ based on whether the message was sent, but
in the ideal world the distributions cannot differ. They use this to conclude that in order to achieve
such a functionality, the model must allow the simulator to cheat in a strong way, for example by
programming a random oracle.

While appreciating the modeling efforts (avoided in many earlier works), we argue that this
model is not the correct way to understand timed primitives (due to subtleties!). Indeed, the com-
mitted output must be revealed by the end of the protocol, but if a timed primitive is modeled to
gradually reveal, then the simulator must indeed continue to interact with the ideal functionality in

13 Note that we do not implement secure time-lock puzzles in the full UC model as our model is depth-constrained,
but use this argument to further our case for a formal treatment of timed primitives in a realistic model.

10

the ideal world. It then may not need to actively interfere with the output. Hence, we formally de-
scribe simulation for leaky timed primitives, in which the ideal functionality continuously interacts
with the simulator, in Section 5.5.

3 Subtleties and Inconsistencies in Random Oracle Analysis for Time-Lock
Puzzles

In this section we discuss the subtle mismatch arising when security of time-lock constructions is
proved using random oracle-based analysis. Similar to the classical result of [14] in the random
oracle model and [17, 23] about the Fiat-Shamir transform [20], we discuss that security of the
realizations of these desired constructions do not follow from the analysis.

Mahmoody et al.’s Result and Popular Idealized Analysis. Mahmoody et al.[28] showed that time-
lock puzzles based only on random oracles cannot provide super-polynomial gap between generation
and solving time. Their analysis explicitly considers time-lock puzzles for which each step in the
solving process produces a random result.

This analysis is mirrored by analyses of time-lock puzzle solving in the literature. For example,
Baum et al.[5, 6] explicitly model an idealized time-lock functionality that provides a uniformly
random result at each step of the solving process. This form of analysis provides the next step in
the solve algorithm as a random element that provides no more information than the element itself.
In the strong algebraic group model of [2, 25] and the generic ring model of [34], each element is
expressed as a function of factors or as an inverse of another element, which gives algebraic structure
to the elements that have been seen so far, but leaks nothing more about the final solution.

Analytical Mismatch. Analyzing a trapdoor-based time-lock construction by modeling the solving
process as if a random oracle leads to apparent contradiction. On the one hand, algebraic construc-
tions are believed to realize super-polynomial gaps between generation and solving. On the other
hand, Mahmoody’s analysis in which each next step is random and independent has been shown
to only yield polynomial gaps. The state of current analysis is that puzzles are generated using a
trapdoor and then the solving process is treated as a random oracle. These analyses do not match
the realization, which should account for the computational difficulty of the solving process.

Implicit Random Oracles. Other works do not explicitly model the solving process via a random
oracle, but either the modeling implies a random oracle or it overlooks leakage as the puzzle is
partially solved. For example, the base time-lock puzzle in the construction of Freitag et al.[21] defer
to analysis by Pietrzak [32] that assumes the hardness of repeated squaring. But the formalization
simply assumes it is infeasible to guess the solution of a repeated squaring until the final squaring;
either it implicitly treats the process as if the probability of guessing the solution before the end
is negligible, or it uses a game-based definition that implies the solution process is essentially a
random oracle. Therefore, these techniques as well are not differentiated in any meaningful way
from the analysis of Mahmoody et al. and incur the same analytical mismatch as above.

Modeling Leakage After the Lock Expires. In the examples above, the repeated squaring assumption
fails to model the leakage as the solver approaches the final squaring. Moreover, time-lock definitions
such as those by [8] or [21] only require that the puzzle remain hard to solve until “close” to the
honest solution time fall implicitly into the same trap. For these definitions, the modeling is still

11

incomplete. The difference between the time when the honest parties arrive at the solution (following
the honest solve algorithm), and the hypothesized time when the “gap” expires and the adversary
can guess the solution with noticeable probability, is important to modeling a time-lock puzzle
utilized during an MPC protocol. In this time, the adversary can use the puzzle solution with a
head-start over the honest parties, even when honest parties are fully synchronized. We therefore
advocate for a complete analysis that fully models the leakage of computational puzzles.

4 Definitions

We denote by [m] the sequence {1, 2, . . . ,m} and [n1, n2] the set of all integers between n1 and n2.
When we write f = f(λ), we indicate f is a function of λ. By poly(λ), polylog(λ), and superpoly(λ) we
denote any polynomial function, any poly-logarithmic function, and any super-polynomial function
of λ, respectively. A function negl is negligible if there exists a constant n for which for every
polynomial function poly and every m > n, negl(m) < 1

poly(m) .

4.1 Interactive Circuits

We adapt a model of computation based on interactive circuits [7]. We refer to [7] for the full
definition and summarize it here.

An L-round interactive circuit iC = {iC`}`∈[L] with oracle O is a sequence of L next-step circuits
that interacts with O as follows. In round r ∈ [L], the next-step circuit iCr takes as input str−1 and
ar−1, where str−1 is the state output by the previous circuit and ar−1 is the list of oracle responses.
The round-r output is described as iCr(str−1, ar−1) = (str, qr, or), where str is the state output by
the rth circuit, qr is the set of queries output by the rth circuit, ar is the list of answers to qr, and
or is the output of the rth circuit. The initial inputs st0 and q0 are defined to be the 0 bit string,
and a0 is defined to be the circuit’s advice string. Or specifically,

(str, qr, or) =

{
iCr(str−1, ar−1) if ∀k, ar−1k = O(qr−1k) 6= ⊥
(⊥,⊥,⊥) otherwise

The transcript is the list of all queries, answers, and outputs {qr, ar, or}r∈[L]. The oracle-assisted
interface allows interactive circuits to interact concurrently with each other. One can consider two
interactive circuits A and B to interact via a configuration in which the queries qrA produced by
circuit A in round r are the answers arB provided to circuit B in round r, and vice versa.

4.2 Depth-Bounded Computation

Our computational model constrains the length of time that a party may run by constraining the
depth of its corresponding circuit. In support of this paradigm, we introduce definitions for circuits
that are bounded in both size and depth.

For any circuit C, we denote by size(C) the size of C, and by depth(C) the depth of C (indicating
parallel time). For an interactive circuit iC, depth(iC) denotes the sum of the depths of its next-step
circuits. We now define depth-bounded circuit ensembles.

Definition 4.1 (Depth-Bounded Circuits). For any function d(·), an ensemble of circuits C =
{Cλ}λ∈N is d-depth-bounded if for all λ, depth(Cλ) ≤ d(λ) and size(Cλ) ≤ poly(λ). An interactive
circuit iC = {iC`}`∈[L] is D-depth-bounded if D >

∑
`∈[L] depth(iC`) and poly(λ) ≥

∑
`∈[L] size(iC`).

12

We next define a notion of depth-bounded computational indistinguishability.

Definition 4.2 (Depth-Bounded Indistinguishability). Two ensembles X = {X(a, n)}a∈{0,1}∗,n∈N
and Y = {Y (a, n)}a∈{0,1}∗,n∈N are d-depth-indistinguishable, denoted

d
≈ if for every d-depth-

bounded distinguisher D = {Dn}n∈N there exists a negligible function negl(·) such that for every
a ∈ {0, 1}∗ and every n ∈ N

Pr[Dn(X(a, n)) = 1]− Pr[Dn(Y (a, n)) = 1] ≤ negl(n)

4.3 Time-lock Puzzles

We adapt a definition of puzzles from Bitansky et al. ([8] Definition 3.1).

Definition 4.3 (Puzzle). A puzzle for solution domain M = {Mλ}λ is a pair of algorithms
Puz = (Puz.Gen,Puz.Solve) for which

• Z ← Puz.Gen(t, χ) is a probabilistic algorithm over difficulty parameter t ∈ N and solution
χ ∈Mλ, where λ is a security parameter, and outputs puzzle Z.
• χ← Puz.Solve(Z) is a deterministic algorithm that takes as input puzzle Z and outputs solution
χ ∈Mλ.

subject to the following constraints:

• Completeness: For every security parameter λ, difficulty parameter t, solution χ ∈ Mλ, and
puzzle Z in the support of Puz.Gen(t, χ), Puz.Solve(Z) outputs χ.
• Efficiency:
• Z ← Puz.Gen(t, χ) can be computed in size poly(log t, λ).
• Puz.Solve(Z) can be computed in size t · poly(λ).

We continue by adapting the more constrained definition of a time-lock puzzle by Bitansky et
al. ([8] Definition 3.2).

Definition 4.4 (Time-lock Puzzle). A puzzle Puz = (Puz.Gen,Puz.Solve) is a time-lock puzzle
for solution domain M = {Mλ}λ with gap ε < 1 if there exists a polynomial r(·) such that for every
polynomial t(·) ≥ r(·) and every polynomial size, tε-depth-bounded adversary A = {Aλ}λ∈N, there
exists a negligible function negl such that for every λ ∈ N, and every pair of solutions χ0, χ1 ∈Mλ:

Pr[b← Aλ(Z) : b← {0, 1}, Z ← Puz.Gen(t(λ), χb)] ≤
1

2
+ negl(λ)

4.4 Residual Complexity and Leakage

Residual Complexity We introduce a new basic definition of the residual complexity of a puzzle,
which describes the remaining hardness of solving a randomly sampled puzzle after a given amount
of solving time. Residual complexity measures the pseudo-entropy [24, 35] of a puzzle solution from
the perspective of a computationally bounded solver.

Definition 4.5 (Residual Complexity). For a function r : N→ [0, 1], we say that a puzzle Puz
with solution domain M = {Mλ}λ∈N has (d, r) residual complexity if for every depth d-bounded
adversary Ad, and every λ ∈ N:

Pr[χ← Ad(Y) : χ←Mλ, Y ← Puz.Gen(λ, χ)] ≤ r(λ)

When d is implied by context, we refer the residual complexity of a puzzle by the function r. When
we consider the residual complexity of a puzzle at a particular depth d, we explicitly write rd. One
can consider 1− r(λ) to be the remaining hardness of the puzzle.

13

Leakage Using the definition of residual complexity, we can define the leakage of a puzzle over
time. For depths d1 and d2 the quantity rd2 − rd1 represent the loss in pseudo-entropy of a puzzle
between d2 and d1. We call the function describing the loss in pseudo-entropy at each level of depth
a leakage curve.

For any puzzle scheme, there exists a family of leakage functions indexed by the security pa-
rameter and the time parameter, denoted L = {`λ,τ∗}λ,τ∗ , such that each function describes, based
on the parameterization, the information a party can extract from the puzzle over time. The time
parameter τ∗ describes the number of sequential operations required to “solve” the puzzle in the
honest case. The security parameter λ tunes the computational difficulty of guessing the solution
before τ∗ has elapsed. Specifically, λ parameterizes the underlying computational problem which the
iterative process solves; for the RSW puzzle, λ describes the size of the modulus used for repeated
squaring. In this work, we always consider a specific leakage function ` and elide the subscripts
from the notation because they are implied by context.

Intuition: The Distribution of Solutions Intuitively, we consider the leakage that a party obtains
on a puzzle to inform the distribution that the party learns on the puzzle’s solution. Any puzzle-
solving strategy must imply a distribution on the strategy’s “best guess” of a puzzle solution at
any point in time. When a party receives a puzzle, the distribution of its best guess has very high
pseudo-entropy. As the party learns leakage on the solution, the pseudo-entropy of the distribution
of the solution decreases, and the distribution redistributes its mass until eventually all of the mass
lies in a single point: the puzzle’s solution. We can then understand the leakage of a puzzle to
provide a distribution on the solution of the puzzle for every depth d. The residual complexity rd
gives an upper bound on the mass implied at the point of the puzzle solution.

5 Modeling Multi-party Computation

This section discusses in detail the modeling issues that arise in our work from composition of timed
primitives with other cryptographic computations, including modeling multi-phase functionalities
in the ideal/real paradigm and simulating leaky functionalities.

To provide a full treatment of depth-secure multi-party computation, we present two models:

1. A “general” model which adapts the Universal Composability (UC) framework [13] such that
all parties (including the environment, trusted third party, and adversary) are modeled as
interactive circuits.

2. A “sequential” model, which is useful for proving security of sequential composition of protocols
which cannot be proven secure in our more general model, but is otherwise similar, and adapts
standard sequential models to our fine-grained treatment.

We then present our definitions for depth-secure computation and theorems – both general and
sequential – for how depth-secure protocols compose.

5.1 General Execution Model

In our generalized, UC-like model, we consider an execution in the presence of an environment
that provides inputs to parties and reads their outputs. The environment is an interactive circuit
which directs the execution. It delivers inputs to parties as well as messages that have been sent to
them by the adversary. The environment is also responsible for directing query responses between

14

interactive circuits. Each party that receives an input or message from the environment proceeds
by evaluating its next-step circuit, after which control is returned to the environment.

The adversary informs the environment which parties it would like to (adaptively) corrupt, and
the environment passes the adversary all of the corrupt parties’ inputs, the queries they make, and
the responses they receive (the latter two are analogous to the messages they send and receive,
adapted for our model). The adversary may also inform the environment before the execution
which parties it will corrupt from the start; in this case, the environment passes the adversary
those parties’ inputs and the adversary may choose to replace their inputs by responding to the
environment. Only after this exchange, the environment provides inputs to all honest parties. This
models that an adversary may select inputs in order to affect a computation.

For a full treatment of the execution model, refer to Appendix A.1.

The Ideal/Real Paradigm in the General Model We next describe our general ideal/real
paradigm for granular-depth secure multi-party computation (MPC).

Execution in the Real Model. In the real model, participants execute a protocol π to compute the
desired functionality F without a trusted party. At the end of the execution, honest parties output
their protocol outputs. The corrupt parties output nothing. The adversary outputs an arbitrary
function of its inputs and the messages that corrupt parties have received. The environment learns
every output. The random variable REALπ,A(z),Z(x) denotes the output of the environment in a
real execution of π with honest inputs x, auxiliary input z to A, with environment Z.

Execution in the Ideal Model. In an ideal execution, the parties interact with a trusted party by
submitting all of their inputs to the trusted party in the beginning of the execution. The trusted
party for a leaky functionality responds to the parties by dividing an execution into phases such
that at the end of each phase, the parties receive some output.

At the end of an execution, honest parties output whatever they have received from the trusted
party. Corrupt parties output nothing, and the adversary outputs an arbitrary function of its input
and the messages that corrupt parties have received from the trusted party. The environment learns
every output. The random variable IDEALF ,A(z),Z(x) denotes the output of the environment in an
ideal execution of functionality F on honest inputs x, auxiliary input z to A, with environment Z.

5.2 Sequential Model

Our sequential model is like the general model, except that each protocol execution is considered
in isolation, and instead of being directed by the environment, it is directed by the adversary itself.
The adversary that controls message deliveries and may adaptively corrupt parties throughout an
execution. When the adversary delivers a message to a party, it evaluates the party’s next step
circuit. It is then responsible for forwarding any messages returned in the circuit’s queries, as per
the oracle-assisted interface explained in Section 4.1. The adversary can additionally adaptively
corrupt parties and inject messages, analogously to the exposition in Appendix A.1.

The Real/Ideal Paradigm in the Sequential Model

15

Execution in the Real Model In the real model, the parties execute a protocol π in the presence
of an adversary A. The random variable REALπ,A(z)(x) denotes the execution transcript on a
real execution of π with honest inputs x and auxiliary input z to adversary A. The execution
transcript includes all of the honest parties’ inputs, the messages received by honest parties, and
the adversary’s output.

Execution in the Ideal Model As in the general model, in the ideal experiment the honest parties
send their inputs to a trusted third party, and the third party delivers the results. In our sequential
model, the simulator generates an execution transcript by interacting with the third party on
behalf of the honest parties. The random variable IDEALF ,S(z)(x) denotes an execution transcript
generated by an adversary S in an idealized execution of functionality F on honest inputs x and
auxiliary input z to S.

5.3 Depth-Bounded Secure Multi-party Computation

Depth Constraints For a meaningful definition of secure multi-party computation (MPC) with timed
primitives, the computational power of the simulator must be constrained in a manner similar to the
adversary’s. Otherwise, if the depth of the simulator is substantially more than the adversary, then
the simulator could (for example) solve a time-lock puzzle, and use the solution in the simulation.
It would be meaningless to argue privacy by claiming that any information the adversary can learn
about the honest parties’ inputs in a real execution could also be learned by a simulator which
explicitly solves a time-lock puzzle in order to learn secret information (such as honest parties’
inputs).

Our definitions below therefore constrain the depths of both the simulator and the adversary.
We also depth-constrain the distinguisher, intuitively because for timed primitives we need only to
show security for some amount of time.

Definition 5.1 (Depth-Bounded Secure Computation: General). Let da = da(λ), ds =
ds(λ), and de = de(λ). Protocol π (da, ds, de)-depth securely computes F if there exists a ds-depth-
bounded S such that for every real-world da-depth-bounded adversary A and every de-depth-bounded
environment Z, the following two ensembles are de-depth indistinguishable:

{REALπ,A(z),Z(x)}x∈({0,1}∗)n,z∈{0,1}∗

{IDEALF ,S(z),Z(x)}x∈({0,1}∗)n,z∈{0,1}∗

Remark 5.1. Ours definitions for composition say that a protocol (da, ds, de)-securely computes
some functionality if there is a ds-depth bounded universal simulator S such that for every da-
depth-bounded adversary, S produces a distribution of views that is de-depth indistinguishable
from a real execution. Although we reverse the order of quantifiers for the simulator and adversary
in the definition from the standard ordering, most proofs are written by providing a universal
simulator that works for any adversary.

The depth of the distinguisher. The constraint on a distinguisher’s depth (in this case, the envi-
ronment; below, the distinguisher) is a significant weakening of the definition compared to those
by Goldreich or Lindell’s [22, 27], as neither constrains the depth of the distinguisher by a granular
polynomial. However, this weakening is sufficient for our setting, since in practice, if a time-locked
output will eventually be revealed anyway, we require indistinguishability of the simulation only
for the duration of the experiment.

16

Depth-Secure Computation: Sequential In the sequential model, as explained above, the execution
is directed by the adversary, and the real and ideal experiments should be indistinguishable to a
depth-bounded distinguisher who receives a transcript of the execution.

Definition 5.2 (Depth-Bounded Secure Computation: Sequential). Let da = da(λ), ds =
ds(λ), and de = de(λ). Protocol π (da, ds, de)-depth securely computes F if there exists a ds-depth-
bounded S such that for every da-depth-bounded real-world adversary A, the following two ensembles
are de-depth indistinguishable:

{REALπ,A(z)(x)}x∈({0,1}∗)n,z∈{0,1}∗

{IDEALF ,S(z)(x)}x∈({0,1}∗)n,z∈{0,1}∗

5.4 Composition

We now treat the composition of depth-secure protocols. In the following, we use the notation πρ

to denote that protocol π calls ρ as a subroutine, as per the convention by Canetti [13]. We use the
notation that Γ π,ρ denotes the concurrent composition of π and ρ.

General/Concurrent Composition We now state our general composition theorem, which in-
cludes concurrent composition.

Theorem 5.1 (Composition of Two Depth-Secure Protocols). Let π (da, ds, de)-depth-
securely compute functionality F and let ρ (d′a, d

′
s, d
′
e)-depth-securely compute functionality G. Then

Γ π,ρ is (da − d′s, ds + d′s,min(de, d
′
e))-secure.

Proof (Sketch). We define a simulator S for πρ that simply composes the simulators Sπ and Sρ
which exist by assumption. We then perform a reduction that shows if there is an attack against
πρ, we can isolate an attack against π in the G-hybrid model. The reduction is straightforward,
although it must carefully consider the depths of all simulators and adversaries. Given an adversary
A which attacks πρ, we define an adversary B such that B runs A as a black box, and B forwards
messages sent by A to their recipients. The only exception is that B must simulate an execution of
ρ for A when A expects ρ to be called. The full proof is deferred to Section 8.

Remark 5.2 (The Depths da and d′e). For all composition theorems, we require that da < d′e. This
is a natural choice; in particular if da ≥ d′e then the theorem is not meaningful. Specifically, if
da ≥ d′e, then the adversary for the first protocol is deep enough to distinguish an execution of
the protocol ρ which is called by it from the callee’s simulation; the composition therefore does
not have meaningful real-world consequences, since a realistic adversary against the composition
implies an adversary for the callee protocol. For all following theorems, we elide the statement of
this requirement.

We see from the composition theorem that when composing two depth-secure protocols in order
to achieve security against any d∗a-depth adversary, the composed protocols must be parameterized
so that they are secure against stronger adversaries, due to the loss in security that results from
composition. Moreover, the composition remains secure only against the smaller of the two distin-
guishing environments.

17

Discussion: Non-malleability. One might think that Theorem 5.1 implies that any depth-secure
puzzle is non-malleable because we have shown that the protocols are naively composable. This is
not quite true; our result says that a secure protocol remains secure (and non-malleable) only for
the min granular depth of the concurrent runtimes, and against a smaller adversary. In comparison,
nonmalleability definition as in the definition of [21] are secure for arbitrary polynomial runtime of
the adversary; however, they prove only bounded nonmalleability (is possible), and require tuning
parameters based on the number of composed primitives (as we do).

Sequential Composition In some cases, a protocol cannot be proven concurrently composable,
if the simulator needs to be rewound. We therefore provide a “weaker” theorem for the sequential
composition of protocols that cannot be proven secure with respect to the general theorem.

Theorem 5.2 (Sequential Composition of Two Depth-Secure Protocols). Let π (da, ds, de)-
depth-securely compute F in the G-hybrid model, and let ρ (d′a, d

′
s, d
′
e)-depth-securely compute G.

πρ (da − d′s, ds · d′s,min(de, d
′
e))-depth-securely computes F .

Observe that the decrease in simulation budget for the concurrent composition theorem appears
to be “better” than the “weaker” sequential theorem because the simulation budget does not
deteriorate as much; however, this is attributable to the fact that the simulator for a concurrently
composable protocol must already be more efficient than the simulator for the sequential theorem
above, as rewinding is not permitted (as in the UC[13]).

We note that the (ds · d′s) term in the (·, ds · d′s, ·)-depth security of the composed protocols is
too pessimistic in some cases. In the case that the simulator for the calling protocol never needs
to rewind over the invocation of the subroutine protocol, we can prove stronger security for the
composition. This is in fact a direct fallback to Theorem 5.1.

Corollary 5.1 (Optimistic Sequential Composition of Depth-Secure Protocols). Let π
(da, ds, de)-depth-securely compute F in the G-hybrid model, and let ρ (d′a, d

′
s, d
′
e)-depth-securely

compute G. If the simulator for π in the G-hybrid model never rewinds over the point at which G
is invoked, then πρ (da − d′s, ds + d′s,min(de, d

′
e))-depth-securely computes F .

Proof (Sketch). This follows immediately from Theorem 5.1, and in fact when the simulator does
not need to be rewound, the protocol is also concurrently composable.

Discussion. Theorem 5.2 and Corollary 5.1 give the bounds on the spectrum of “simulation budget
depletion” that may occur when composing depth-secure protocols. Specifically, in order to make
a meaningful statement about security, the middle term ds must remain smaller than both of the
outer terms da and de. For a particular composition, the protocol designer may compute the actual
security statement by computing the runtime of the composed simulator.

5.5 Simulation for Leaky Functionalities

In the standard definition of secure multi-party computation(MPC) [22, 27], the simulator is given
– as input – the adversary’s ideal-world outputs, and then it must produce a view for the adversary
that is indistinguishable from its view in a real execution. For functionalities where honest parties’
inputs are not revealed, privacy is implied by this definition because the simulator must produce
such an execution without access to the honest parties’ inputs or outputs. However, in some leaky

18

applications the adversary may learn the honest parties’ inputs, but crucially, the honest parties’
inputs are hidden for some period of time.14 For such applications, the standard MPC definition
does not imply privacy of honest parties’ inputs up to the point in time that they are revealed
because the simulator receives the honest parties’ inputs in the beginning.

When we require privacy for some amount of time, we decompose the simulation into a series
of phases such that in each phase the simulator learns only the information which is permitted to
be revealed at the end of that phase.15 Specifically, an ideal functionality is parameterized with
the leakage function ` of the puzzle it emulates. In each phase, the simulator receives from the
functionality only the information that the functionality is defined to release during that phase.
The leakage is specified by the difference in residual complexity between phases, as described in
Section 4.4, which is given by the parameterized leakage function `. This means that in contrast
to standard definitions of secure computation, the simulator does not receive all of the adversary’s
outputs as an input to the computation. This enforces that the simulator does not learn any
information before it is supposed to, which implies privacy of the inputs until they are revealed.

6 Residual Complexity of a Time-Lock Puzzle

The qualification of a time-lock puzzle tells us that for any circuit Ad attempting to solve a puzzle
for which d is much less than the depth required by Puz.Solve, the probability of guessing the
solution should be no better than random guessing plus negligible advantage. However, a circuit
Ad whose depth d exceeds tε (as enforced in the definition) may have non-negligible advantage in
guessing the solution. Therefore, a time-lock puzzle constrains the residual complexity function r
of the puzzle to remain small for as long as the time-lock endures. We now formally prove this
intuition.

Theorem 6.1 (Time-Lock Puzzle Implies Small Residual Complexity). Let Puz = (Puz.Gen,Puz.Solve)
be a time-lock puzzle for solution domain M = {χλ}λ with gap ε < 1 for which |Mλ| is super-
polynomial in λ. Then there exists a polynomial r(·) for which for every polynomial t(·) > r(·) and
tε-depth-bounded At, there exists a negligible function negl(λ) such that for every tε-depth-bounded
B, and every λ ∈ N

Pr[χ← B(Y) : χ←Mλ, Y ← Puz.Gen(λ, χ)] ≤ negl(λ)

Proof. We prove the lemma by showing that if there exists an adversary Bt for which Pr[χ ←
B(Y, z)] > negl(λ), then there exists an adversary At, infinitely many λ and corresponding solutions
χ0, χ1 ∈Mλ such that Aλ can win the time-lock challenge with probability more than 1

2 + negl(λ).
For the sake of the proof, let r > negl(λ) be the probability with which B outputs χ in the above
challenge game.

Actually, we will show a result corresponding to a stronger statement. We show that if there
exists an adversary B that wins the above challenge game with non-negligible advantage, then there
exists an adversary A such that for every χ0 there are many solutions χ1 such that Aλ can win the
time-lock challenge with probability more than 1

2 + negl(λ). Our time-lock game is slightly weaker
than the definition of a time-lock puzzle (and therefore if our time-lock game is broken, the puzzle

14 For example, in accountable computing scenarios.
15 This is morally similar to the simulation technique of Baum[5], where the simulator forwards next-step queries to

the ideal functionality and returns the result. Our simulator automatically learns the leakage for a phase (which
may be longer than one step) at the beginning of the phase so that it can simulate the rest.

19

is not a time-lock puzzle). Rather than quantifying over all χ0 and χ1, we allow the adversary A
to choose any χ0, χ1 ∈ χλ and provide them to a challenger, who samples b and provides A with a
puzzle. A must guess b′ and wins if b′ = b.

We now explain how A uses B. Recall that B is given a randomly sampled puzzle and outputs a
guess χ′ of the solution. In the time-lock game, A samples χ0 and χ1 at random and must determine
which one has been encoded in a challenge puzzle Z. A forwards Z to B. At the end, A inspects
the guess χ′ that B makes. If χ′ is equal to either χ0 or χ1, then A guesses the b for which χb = χ′.
If neither χ0 nor χ1 is guessed by B, then A samples b′ uniformly at random and outputs b′. Note
that the depth of A is the same as B.

Recall that B wins its game with probability r, and that by assumption r is non-negligble. We
now analyze the probability with which A wins its game.

Claim. Pr[χ′ ∈ {χ0, χ1}] ≥ Pr[B wins] > negl(λ)

Proof. Follows immediately from the definition that B wins when it guesses the solution, and by
assumption that B wins with non-negligible probability.

Claim. Pr[χ′ = χ1−b] = negl(λ)

Proof. Consider that χ1−b is selected at random by A, and B has no information about χ1−b. Recall
that conditioned on the fact that B guesses some possible solution with non-negligible probability
(the true solution), and let X be the part of the solution space for which B outputs solutions in X
with non-negligible probability. Let Y be the part of the solution space for which B guesses solutions
with negligible probability. We claim that X composes a negligible proportion of the solution space,
and that therefore χ1−b is in Y except for negligible probability. The proof proceeds by counting.
For all of the points in X, B must guess each point with probability at least the inverse of some
polynomial. It follows that there may only be a polynomial number of points in X. However, there
are a super-polynomial number of points in the solution space. Therefore, the probability that χ1−b
is in Y is overwhelming. And by definition of Y , the probability that B guesses χ1−b is negligible.

It follows from the previous claim that conditioned on B outputting χ0 or χ1, A wins with
probability 1− negl(λ).

Claim. Pr[A wins | χ′ ∈ {χ0, χ1}] = 1− negl(λ)

Proof. The probability that A wins given that one of the solutions output by B is divided into
cases:

1. χ′ = χ1−b. A loses
2. χ′ = χb. A wins

By the previous claim, the probability of the first event is negl(λ). In the remaining case, A wins.
Note that because the second case with non-negligible probability, this case dominates, as the
other composes a negligible proportion of the event space. It follows that A wins with probability
1− negl(λ) given B outputs either χ0 or χ1.

We can now conclude the proof:

Pr[A wins] = Pr[A wins | χ′ ∈ {χ0, χ1}] Pr[χ′ ∈ {χ0, χ1}]
+ Pr[A wins | χ′ 6∈ {χ0, χ1}] Pr[χ′ 6∈ {χ0, χ1}]

= (1− negl(λ)) Pr[χ′ ∈ {χ0, χ1}] +
1

2
Pr[χ′ 6∈ {χ0, χ1}]

20

Recall that the two events χ′ ∈ {χ0, χ1} and χ′ 6∈ {χ0, χ1} are complements. Therefore, if Pr[χ′ ∈
{χ0, χ1}] > negl(λ), then Pr[A wins] > 1

2 + negl(λ). The proof concludes by the first claim, which
states that Pr[χ′ ∈ {χ0, χ1}] ≥ Pr[B wins] > negl(λ).

7 Sequential Composition of Depth-Secure Protocols: Proof of Theorem 5.2

In this section, we provide the full proof of Theorem 5.2, which we restate below for convenience.

Theorem 5.2 (Sequential Composition of Two Depth-Secure Protocols). Let π (da, ds, de)-
depth-securely compute F in the G-hybrid model, and let ρ (d′a, d

′
s, d
′
e)-depth-securely compute G.

πρ (da − d′s, ds · d′s,min(de, d
′
e))-depth-securely computes F .

Notation. For the proof of Theorem 5.2, we require notation to describe the distribution of execu-
tions in the ideal world for a fixed simulator, fixed distinguisher, and fixed inputs, making explicit
the adversary. Let IDEALF ,S(z)(x) denote the distribution of executions of the naive protocol in
the ideal world that calls functionality F , with simulator S and advice string z, on honest inputs
x. (In this experiment, the parties forward their inputs the ideal functionality, and the simulator
generates a view for A that is indistinguishable from the real experiment.)

Proof. The proof will use the simulators Sπ for π and Sρ for ρ to construct a new simulator S for πρ

such that S is (ds ·d′s)-depth bounded, and for every (da−d′s)-depth A, and every min(de, d
′
e)-depth

Z, the distributions REALπρ,A(z)(x) and IDEALF ,S(z)(x) are min(de, d
′
e)-depth indistinguishable.

The simulator S works by composing the simulators Sπ and Sρ. Specifically, to simulate an
execution of πρ up to the point that ρ is called, S runs Sπ. When ρ is called, S invokes Sρ. After
ρ terminates, S resumes Sπ.

Claim 1 S’s depth is bounded by ds · d′s.

Proof. The claim follows from the observation that every time Sπ is rewound, Sρ must also be
rewound the maximum number of times. If Sπ’s running time is at most ds, then for each rewinding
of Sπ, Sρ must be rewound at most d′s times. The total run-time of S is thus ds · d′s.

We proceed with our main lemma, which completes the proof:

Lemma 7.1. For every (da − d′s)-depth adversary A, and every x ∈ ({0, 1}poly(λ))n and z ∈
{0, 1}poly(λ) the distributions REALπρ,A(z)(x) and IDEALF ,S(z)(x) are min(de, d

′
e)-depth indistin-

guishable.

Proof Sketch: If there is an adversary A and a distinguisher D that distinguishes the above two
distributions, then we create another adversary B and distinguisher E that isolates an attack against
the caller protocol π in the G-hybrid model. B runs A as a black box, and when π must call ρ,
B simply simulates an execution of ρ (using Sρ), feeding messages to A so that A believes it is
running a full execution of πρ. Similarly, E is provided with the execution transcript generated by
B, with the call to ρ in the transcript replaced by the simulated output generated by B. Because
the transcript of the simulation of ρ is indistinguishable from a real execution by assumption, this
attack must distinguish an execution of π in the real model from its simulation, contradicting the
security of π.

21

Proof. Assume to the contrary that the lemma statement is false. Then there exists a (da − d′s)-
depth adversary A, a min(de, d

′
e)-depth distinguisher D, and inputs x, z such that the distributions

REALπρ,A(z)(x) and IDEALF ,S(z)(x) are min(de, d
′
e)-depth distinguishable (for any (ds · d′s)-depth

S).
We will show how to use A for πρ in order to build an adversary B to contradict the (da, ds, de)-

security of π in the G-hybrid model.
In an execution of π in the G-hybrid model, B works as follows:

1. Until the point at which G is invoked, B runs A as a black box, forwarding any messages output
by A

2. When G is invoked, B submits its input y to G and receives some output w. B runs the simulator
Sρ(y, w) for ρ, forwarding messages provided by the simulator to A, and forwarding the replies
by A to Sρ to continue the simulation.

3. After Sρ terminates, B resumes calling A as a black box given messages from its execution of
π. B outputs whatever A outputs.

Claim 2 B runs in depth at most da.

Proof. B runs the adversary A as a black box, which requires depth at most da−d′s. B also runs the
simulator Sρ, which requires depth at most d′s. (Recall that we have already counted the depth of
rewindingA during this step towards the depth d′s.) The sum of the two run-times is da−d′s+d′s = da
which concludes the claim.

We proceed to compare the views of the adversary A when it is running in its own execution, or
being called by B. Let VIEWA(REALπρ,A(z)(x)) denote the view of A in a real execution of πρ, and
let VIEWA(REALπG,A(z)(x)) denote the view of A in a real execution of π in the G-hybrid model,

in which B calls A. Similarly, we denote by VIEWA(IDEALBF ,S(z)(x)) the view of A in support of
the ideal experiment in which B calls A, and S runs both the simulators for π and for ρ; and we
denote by VIEWA(IDEALBF ,Sπ(z)(x)) the view of A in support of the ideal experiment in which B
must call the simulator for ρ.

Claim 3 Let f ′ = min(de, d
′
e). For all x ∈ ({0, 1}poly(λ))n and z ∈ {0, 1}poly(λ)

VIEWA(REALπρ,A(z)(x))
f ′

≈ VIEWA(REALπG,A(z)(x)})

Proof. The difference between the two distributions is that on the right, B simulates an execution
of ρ using the simulator Sρ and provides those messages to A, and then continues to call A after
the call to Sρ using messages from its real execution. By assumption, A is (da−d′s)-depth-bounded
and da < d′e. Therefore, A must not be able to distinguish the messages in the real execution of
ρ on the left from the simulation on the right. The claim follows from the additional fact that all
other messages in A’s view are distributed identically in both experiments, since they are from the
real execution of π.

We make another claim that A cannot distinguish between an idealized execution of F in which
S generates its view of the execution and an idealized execution of F in which B interacts with Sπ
in the G-hybrid model, forwarding its messages to A and when B’s execution of in the G-hybrid
model invokes G, B runs Sρ to generate a view for A.

22

Claim 4 For all x ∈ ({0, 1}poly(λ))n and z ∈ {0, 1}poly(λ)

VIEWA(IDEALBF ,S(z)(x)) ≡ VIEWA(IDEALBF ,Sπ(z)(x))

Proof. The proof is analogous to the previous. However, in this case, B perfectly simulates the
execution of ρ in comparison to A’s view in the ideal execution of πρ, since B does exactly the same
thing that S does: both run Sρ.

To complete the proof, we describe how the distinguisher E is built from D. E simply runs D
as a black box and outputs whatever D outputs.

Next we claim that D’s view in support of REALπρ,A(z)(x) is min(de, d
′
e)-depth indistinguishable

from its view in support of REALπ,B(z)(x) (as forwarded by E). This follows from Claim 3, due to
the fact that A’s views in support of the two distributions are min(de, d

′
e)-depth indistinguishable,

and D sees the transcript of A’s interaction with the real protocol, and A’s outputs must not be
distinguishable by the claim.

Similarly, D’s view in support of IDEALAF ,S(z),D(x) is min(de, d
′
e)-depth indistinguishable from

its view in support of IDEALBF ,Sπ(z),E(x) (as forwarded by E). This follows from Claim 4, via the
same argument as above.

It follows that if D distinguishes REALπρ,A(z),D(x) and IDEALAF ,S(z),D(x), then E distinguishes

REALπ,B(z),E(x) and IDEALBF ,Sπ(z),E(x). Notice that because B’s depth is bounded by da (by Claim

2), and because E’s depth is bounded by min(de, d
′
e) (by assumption toward contradiction, since

E’s depth is exactly D’s depth), this contradicts the (da, ds, de)-depth security of π in the G-hybrid
model.

ut

8 Concurrent Composition of Depth-Secure Protocols: Proof of Theorem 5.1

In this section, we provide the full proof of Theorem 5.1, which we restate below for convenience.
Recall the notation that Γ π,ρ denotes the concurrent composition of π and ρ. Similarly, ζF,G is a
functionality that concurrently provides functionalities F and G. We also let VIEWA(·) denote the
view of A during the enclosed experiment.

Theorem 5.1 (Composition of Two Depth-Secure Protocols). Let π (da, ds, de)-depth-
securely compute functionality F and let ρ (d′a, d

′
s, d
′
e)-depth-securely compute functionality G. Then

Γ π,ρ is (da − d′s, ds + d′s,min(de, d
′
e))-secure.

Proof. First we create a simulator S for the composition. S works by invoking the simulators Sπ
and Sρ (for π and ρ, respectively) in parallel. Note that its depth is at most ds + d′s.

For the sake of the following lemma, we use the notation x to denote the honest parties’ inputs
and z to denote an auxiliary input. Because we consider two separate protocols in concurrent
composition, we let x = (x1, x2) where x1 are for π and x2 are for ρ, and similarly we let z = (z1, z2)
with analogous association.

We now state our main lemma, from which the proof follows.

Lemma 8.1. Let f ′ = min(de, d
′
e). For every da − d′s-depth adversary A, every min(de, d

′
e)-depth

environment Z, and every x ∈ ({0, 1}poly(λ))n and z ∈ {0, 1}poly(λ):

REALΓπ,ρ,A(z),Z(x)
f ′

≈ IDEALζF,G,S(z),Z(x)

23

Proof. Assume towards contradiction that the above is not true. Then there exist a (da−d′s)-depth
adversary A, a min(de, d

′
e)-depth environment Z, and inputs x, z for which (A,Z) distinguishes the

two distributions (for any simulator S).
We build an adversary B and environment E that distinguish the execution of π from its sim-

ulation on honest inputs x and advice string z. E will run Z as a black box, forwarding messages
to Z, sending whatever messages Z sends, and outputting whatever Z outputs. B will use A and
Z to attack its real-world execution of π, but B will simulate the concurrent execution of ρ for A
(and Z) in parallel to the execution of π. By the assumption that ρ is secure, this will imply that
B and E use A and Z to distinguish π from its simulation, reaching contradiction.

We first introduce notation for an experiment which B uses to attack π. In this experiment,
B and E will attack a real execution of π by running A and Z as black boxes; when they expect
messages from the run of ρ, B simulates a concurrent execution of ρ using Sρ. We denote the
experiment by REALBΓπ,G,A(z),Z(x). We argue that by the security of ρ, A’s view of this distribution

must be indistinguishable from its view of REALΓπ,ρ,A(z),Z(x).

Claim 5 Let f ′ = min(de, d
′
e). For any f ′-depth Z, for all x ∈ ({0, 1}poly(λ))n and z ∈ {0, 1}poly(λ)

VIEWA(REALΓπ,ρ,A(z),Z(x))
f ′

≈ VIEWA(REALBΓπ,G,A(z),Z(x))

Proof. The difference between the two distributions is that on the right, B simulates an execution
of ρ using the simulator Sρ and provides those messages to A (and Z), and then continues to
call A after the call to Sρ using messages from its real execution. By assumption, A is (da − d′s)-
depth-bounded and da < d′e. Therefore, A must not be able to distinguish the messages in the real
execution of ρ on the left from the simulation on the right. By a similar argument, neither can (any)
Z. The claim follows from the additional fact that all other messages in A’s view are distributed
indistinguishably in both experiments, since they are both from a real execution of π.

We make another claim that is analogous to the previous, but for the ideal experiment. We
claim that A cannot distinguish between an idealized execution of ζF,G in which S generates A’s
view of the execution, and an idealized execution of F in which B forwards messages generated
for it by Sπ, and in place of the ideal functionality call to G, B generates a view of the call to ρ
(realizing G) by simulating Sρ, and forwards these messages to A. (The right-hand distribution
denoted IDEALBζF,G,Sπ(z),Z(x) represents the ideal world execution of B’s attack on π, in which B
must still simulate the functionality G for A.)

Claim 6 For all x ∈ ({0, 1}poly(λ))n and z ∈ {0, 1}poly(λ)

VIEWA(IDEALζF,G,S(z),Z(x)) ≡ VIEWA(IDEALBζF,G,Sπ(z),Z(x))

Proof. The proof is analogous to the previous. However, in this case, B perfectly simulates the
execution of ρ in comparison to A’s view in the ideal execution of πρ, since B does exactly the
same thing that S does: both run Sρ. In light of this observation, the claim is mostly notational,
since on the left A receives messages from S, and on the right it receives the same messages, simply
forwarded by B (and generated by B for the call to G).

Note that B runs A and Sρ as black boxes, so its depth is da − d′s + d′s = da. E ’s depth is at
most min(de, d

′
e) because it is identical to Z.

24

If there exist x, z for which A,Z distinguish REALΓπ,ρ,A(z),Z(x) and IDEALζF,G,S(z),Z(x), then

by Claims 5 and 6, B and E distinguish REALBΓπ,G,A(z),Z(x) and IDEALBζF,G,Sπ(z),Z(x). The latter
two are exactly B, E ’s game against π, except that we specified a strategy by which B simulates a
concurrent execution of ρ which it feeds to A when it runs A. Therefore, we have a contradiction
to the security of π, because (B, E) are a (da, de) adversary and distinguisher for π.

9 Related Work

We briefly highlight classical works in time-delayed and fine-grained cryptography that we build
on, we also review the most related recent work. In spite of the early work, ours is the first (to the
best of our knowledge) that considers composition of timed primitives with fine-grained security.
Recent work (below) on composability of non-malleable time-lock puzzles and timed-commitments
do not provide a full treatment of fine-grained security.

Time-lock Puzzles. The seminal work on time-lock puzzles was produced by Rivest, Shamir, and
Wagner (RSW) [33]. Boneh and Naor [12] introduced timed-commitments, which progressed the
study of using timed primitives for fairness in MPC. Verifiable delay functions, which are crypto-
graphic primitives that depend on sequential work in order to delay release of information, have
also been the focus of several recent research efforts [10, 32, 37]. Bitansky et al.[8] formally de-
fined time-lock puzzles and constructed them using randomized encodings, which in turn depend
on indistinguishability obfuscation. They also construct weak time-lock puzzles (with fast paral-
lel generation time, although sequentially they may take longer to generate than to solve) from
one-way functions. Baum et al.[5, 6] formalized time-lock puzzles in the UC model [13]. Freitag et
al.[21] built publicly verifiable, non-malleable time-lock puzzles. Katz et al.[25] recently constructed
non-interactive non-malleable timed-commitments that come with a proof that they can be forced
open. They additionally showed that in a quantitative group model, speeding up squaring is as
hard as factoring. In terms of negative results, Mahmoody et al.[28] proved that in the random
oracle model, there are no time-lock puzzles with more than polynomial time gap.

Two additional works of note have addressed the assumptions underlying the repeated squaring
problem in idealized models. Rotem and Segev [34] showed that speeding up repeated squaring in
a generic ring is equivalent to factoring. van Baarsen and Stevens [2] address multiple hardness
assumptions used for timed primitives in generic Abelian hidden-order groups.

Time-locked Cryptography and Composition. The recent work by Baum et al.[6] studies composition
of time-lock puzzles in the UC model. The recent work by Freitag et al. [21] studies concurrent
composition of non-malleable primitives. To our knowledge, these are the only other work that
consider composition of time-based primitives. The comparison with Baum is not straightforward
because we generalize depth-secure computation and Baum considers concurrent composition of
time-lock puzzles in UC; there are common themes which receive different treatment. Baum provides
an idealized version of RSW’s underlying assumption, while we introduce a generic model which may
leak information. Freitag et al. consider depth-bounded adversaries against concurrent composition
of time-lock primitives with other time-lock primitives and imply small leakage until a puzzle is
solved, but do not consider the more general composition with MPC.

25

9.1 Techniques for Timed Primitives

We next overview techniques in the literature that are similar to our own for modeling and com-
posing timed primitives.

Fine-grained Cryptography: A number of recent works have studied fine-grained cryptographic
primitives. Degwekar et al.[18] initiated the study of fine-grained cryptographic primitives that can
be built in one complexity class and are secure against adversaries in larger complexity classes.
Egashira et al.[19] recently extended their results. Ball et al.[3] and [4] built fine-grained proofs-
of-work by using fine-grained worst-case to average-case reductions of hard problems. Lavigne et
al.[26] studied the properties necessary to imply fine-grained public key cryptography and presented
a fine-grained key exchange protocol.

Homomorphic Time-lock Puzzles. Malavolta and Thyagarajan [29] provided practical homomor-
phic time-lock puzzles that are either additively homomorphic, multiplicatively homomorphic, or
branching programs, but they require indistinguishability obfuscation in order to achieve full ho-
momorphism. They also do not consider composition of their puzzles with other cryptographic
primitives.

Time-lock Cryptography and Composition. We now provide a more thorough contrast with the
approach of Baum et al.[6, 5].

The model by Baum et al.[6] models a new abstraction of time by allowing the adversary to
control ticks of some time-keeping functionality. They define a time-lock functionality that imple-
ments the assumption by RSW [33], and provide a protocol that builds a puzzle with respect to
this functionality. The functionality implements an idealized version of their assumption which does
not leak information until the time-lock expires. In contrast, we model the leakage of puzzles that
occurs in the transition from not knowing to knowing the solution. Moreover, in our model time
is modeled by depth of computation, and is therefore not controlled by the adversary. To enforce
time-based privacy, we model idealized leaky functionalities that respond to environment-directed
time. With respect to our functionality, we discuss how to simulate an adversary’s view as it slowly
extracts information from a time-lock puzzle.

The central issue for Baum’s approach is a “side-door” attack in which an environment may use
cycles from the concurrent execution of a different session in order to solve a time-lock puzzle in given
session. Our approach considers this particular attack to be infeasible. All parties in our model are
depth-bounded, including the environment. In our model, an environment should be constrained
by the same depth requirements among all of its concurrent executions. An environment that
expends computational resources in a concurrent session in order to solve a TP must also expend
the same depth in the session of a given time-lock protocol; therefore, although the environment
may increase its parallel computation to solve a puzzle by invoking concurrent sessions, the depth
constraint remains. Therefore, our depth-bounded model specifically excludes this form of attack.

Simulation of Time-Lock Puzzles in Phases. The work of Chvojka et al.[15] builds time-release
encryptions and sequential time-lock puzzles, and uses a phased simulation technique to argue the
security of their puzzles. They define a sequential time-lock puzzles to be one where an intermediate
solution is considered to be the starting point of the next puzzle in the sequence. However, the
intermediate values provided to their simulators in the arguments of security treat a different
issue than arises in our proof. When they consider the simulatability of a sequential puzzle, they

26

must show how to simulate an intermediate step without computing the previous steps explicitly.
Their technique is to provide a function of the previous steps as advice to the simulator for an
intermediate step, but they cannot provide the true solutions for previous sequential steps as input
to their simulator.

Our simulation in phases treats an entirely different issue; we consider the ability of an uninter-
rupted simulator to successfully simulate a prefix of the execution ending in a specific phase, given
only the information it may learn by the end of that phase. In our case, all of the intermediate
values of a prefix of the execution are available to the simulator; in their case, the intermediate
values from a prefix of the sequential puzzle solution are not available.

9.2 Comparison with Other Definitions

We now provide a deeper treatment comparing our model with popular approaches for defining
time-lock puzzles in the existing literature. In both cases, the provided treatment is insufficient for
completely modeling the use of such a primitive in composition with other protocols.

Bitansky’s Time-lock Definition. Bitansky et al. [8] formalized the notion that up to a certain point
in time before the puzzle is solved, the solver’s distribution on the puzzle solution retains very high
pseudo-entropy. We reproduce their notion in Definition 4.4 in Section 4.3. Intuitively, for any puzzle
with polynomial running time t and any polynomial time solver running in time up to tε, where
ε < 1 is called the gap parameter, the solver gains only negligible advantage in guessing the solution
of a challenge puzzle. The “few” described above is then cleverly guaranteed by this definition to
be no sooner than the solver has run in the time-gapped tε time. This definition, however, does
not consider what happens after the solver exceeds the time-gapped running time. (We remark
that the notion of a time-lock puzzle by [21] has a similar feel, where the solver runs within some
polynomially smaller time than the puzzle has been tuned for, and also does not describe what
happens after the time-lock puzzle expires but before the honest parties solve the puzzle.)

Blum-Blum Shub. As a more concrete and illustrative example of what happens when a time-
based primitive reaches the end of its guarantees, we recall the generalized Blum-Blum-Shub (BBS)
assumption by Boneh and Naor [12].

Definition 9.1 ((n, n′, δ, ε)-Generalized BBS Assumption [12]). For g ∈ Z and a positive

integer k > n′, let Wg,k = 〈g2, g4, g16, . . . , g22
i

, . . . , g2
2k 〉. Then for any integer n′ < k < n and any

δ ∗ 2k-depth-bounded A,

| Pr[A(N, g, k,Wg,k mod N, g2
2k+1

) = 1] − Pr[A(N, g, k,Wg,k mod N,R2) = 1] |≤ ε

where the probability is taken over the random choice of an n-bit RSA modulus N = p1p2, where
p1 and p2 are equal primes satisfying p1 = p2 = 3 mod 4, and element g ∈ ZN ,and R ∈ ZN .

The assumption was first introduced for the design of a pseudo-random generator [9], and then
elegantly generalized [12] to develop timed commitments (with a trapdoor). As noted in [12], the
assumption states that given the sequence of repeated squares Wg,k of some generator g, the k+1st

element in the sequence g2
2k+1

is indistinguishable from a random quadratic residue, for any party
whose running time is much less than 2k. This suffices for showing the pseudo-randomness of the
BBS generator.

27

However, for timed protocols in which any party solves a puzzle as part of the protocol, eventu-
ally the depth of the puzzle solver must approach the sequence length 2k by definition. At this point,
the guarantee of the BBS assumption breaks down! Indeed, as the solver approaches the duration
of the time-lock – even before it finally learns the solution – the distribution of the solver’s “best
guess” on the solution becomes more refined over time.

References

1. Arapinis, M., Lamprou, N., Zacharias, T.: Astrolabous: A universally composable time-lock encryption scheme.
Cryptology ePrint Archive, Report 2021/1246 (2021), https://ia.cr/2021/1246

2. van Baarsen, A., Stevens, M.: On time-lock cryptographic assumptions in abelian hidden-order groups. In: ASI-
ACRYPT (2). Lecture Notes in Computer Science, vol. 13091, pp. 367–397. Springer (2021)

3. Ball, M., Rosen, A., Sabin, M., Vasudevan, P.N.: Average-case fine-grained hardness. In: STOC. pp. 483–496.
ACM (2017)

4. Ball, M., Rosen, A., Sabin, M., Vasudevan, P.N.: Proofs of work from worst-case assumptions. In: CRYPTO (1).
Lecture Notes in Computer Science, vol. 10991, pp. 789–819. Springer (2018)

5. Baum, C., David, B., Dowsley, R., Nielsen, J.B., Oechsner, S.: Craft: Composable randomness beacons and output-
independent abort mpc from time. Cryptology ePrint Archive, Report 2020/784 (2020), https://eprint.iacr.
org/2020/784

6. Baum, C., David, B., Dowsley, R., Nielsen, J.B., Oechsner, S.: TARDIS: A foundation of time-lock puzzles in
UC. In: EUROCRYPT (3). Lecture Notes in Computer Science, vol. 12698, pp. 429–459. Springer (2021)

7. Benhamouda, F., Lin, H.: k-round mpc from k-round ot via garbled interactive circuits. Cryptology ePrint
Archive, Report 2017/1125 (2017), https://eprint.iacr.org/2017/1125

8. Bitansky, N., Goldwasser, S., Jain, A., Paneth, O., Vaikuntanathan, V., Waters, B.: Time-lock puzzles from
randomized encodings. In: ITCS-2016. pp. 345–356. ACM (2016)

9. Blum, L., Blum, M., Shub, M.: Comparison of two pseudo-random number generators. In: Crypto82. pp. 61–78.
Plenum (1982)

10. Boneh, D., Bonneau, J., Bünz, B., Fisch, B.: Verifiable delay functions. In: CRYPTO (1). LNCS, vol. 10991, pp.
757–788. Springer (2018)

11. Boneh, D., Bünz, B., Fisch, B.: A survey of two verifiable delay functions. Cryptology ePrint Archive, Report
2018/712 (2018), https://eprint.iacr.org/2018/712

12. Boneh, D., Naor, M.: Timed commitments. In: Crypto’00. p. 236–254. LNCS, Springer-Verlag, Berlin, Heidelberg
(2000)

13. Canetti, R.: Universally composable security: A new paradigm for cryptographic protocols. Cryptology ePrint
Archive, Report 2000/067 (2000)

14. Canetti, R., Goldreich, O., Halevi, S.: The random oracle methodology, revisited (preliminary version). In: STOC.
pp. 209–218. ACM (1998)

15. Chvojka, P., Jager, T., Slamanig, D., Striecks, C.: Versatile and sustainable timed-release encryption and sequen-
tial time-lock puzzles. Cryptology ePrint Archive, Report 2020/739 (2020), https://ia.cr/2020/739

16. Cleve, R.: Limits on the security of coin flips when half the processors are faulty (extended abstract). In: STOC.
pp. 364–369. ACM (1986)

17. Dachman-Soled, D., Jain, A., Kalai, Y.T., Lopez-Alt, A.: On the (in)security of the fiat-shamir paradigm,
revisited. Cryptology ePrint Archive, Paper 2012/706 (2012), https://eprint.iacr.org/2012/706, https:

//eprint.iacr.org/2012/706

18. Degwekar, A., Vaikuntanathan, V., Vasudevan, P.N.: Fine-grained cryptography. In: CRYPTO (3). LNCS,
vol. 9816, pp. 533–562. Springer (2016)

19. Egashira, S., Wang, Y., Tanaka, K.: Fine-grained cryptography revisited. In: ASIACRYPT (3). LNCS, vol. 11923,
pp. 637–666. Springer (2019)

20. Fiat, A., Shamir, A.: How to prove yourself: Practical solutions to identification and signature problems. In:
CRYPTO. Lecture Notes in Computer Science, vol. 263, pp. 186–194. Springer (1986)

21. Freitag, C., Komargodski, I., Pass, R., Sirkin, N.: Non-malleable time-lock puzzles and applications. Cryptology
ePrint Archive, Report 2020/779 (2020), https://eprint.iacr.org/2020/779

22. Goldreich, O.: Foundations of Cryptography: Volume 2, Basic Applications. Cambridge University Press, USA,
1st edn. (2009)

28

23. Goldwasser, S., Kalai, Y.T.: On the (in)security of the fiat-shamir paradigm. In: FOCS. pp. 102–113. IEEE
Computer Society (2003)

24. H̊astad, J., Impagliazzo, R., Levin, L.A., Luby, M.: A pseudorandom generator from any one-way function. SIAM
J. Comput. 28(4), 1364–1396 (1999)

25. Katz, J., Loss, J., Xu, J.: On the security of time-lock puzzles and timed commitments. In: TCC (3). LNCS, vol.
12552, pp. 390–413. Springer (2020)

26. LaVigne, R., Lincoln, A., Williams, V.V.: Public-key cryptography in the fine-grained setting. In: CRYPTO (3).
Lecture Notes in Computer Science, vol. 11694, pp. 605–635. Springer (2019)

27. Lindell, Y.: How to simulate it - A tutorial on the simulation proof technique. In: Tutorials on the Foundations
of Cryptography, pp. 277–346. Springer (2017)

28. Mahmoody, M., Moran, T., Vadhan, S.P.: Time-lock puzzles in the random oracle model. In: CRYPTO. LNCS,
vol. 6841, pp. 39–50. Springer (2011)

29. Malavolta, G., Thyagarajan, S.A.K.: Homomorphic time-lock puzzles and applications. In: CRYPTO (1). LNCS,
vol. 11692, pp. 620–649. Springer (2019)

30. Milgrom, P.: Putting auction theory to work: The simultaneous ascending auction. Journal of political economy
108(2), 245–272 (2000)

31. Naor, M.: On cryptographic assumptions and challenges. In: CRYPTO. Lecture Notes in Computer Science,
vol. 2729, pp. 96–109. Springer (2003)

32. Pietrzak, K.: Simple verifiable delay functions. In: ITCS. LIPIcs, vol. 124, pp. 60:1–60:15. Schloss Dagstuhl -
Leibniz-Zentrum für Informatik (2019)

33. Rivest, R.L., Shamir, A., Wagner, D.A.: Time-lock puzzles and timed-release crypto. Tech. rep. (1996)
34. Rotem, L., Segev, G.: Generically speeding-up repeated squaring is equivalent to factoring: Sharp thresholds for

all generic-ring delay functions. In: CRYPTO (3). Lecture Notes in Computer Science, vol. 12172, pp. 481–509.
Springer (2020)

35. Vadhan, S.P., Zheng, C.J.: Characterizing pseudoentropy and simplifying pseudorandom generator constructions.
In: STOC. pp. 817–836. ACM (2012)

36. Wan, J., Xiao, H., Devadas, S., Shi, E.: Round-efficient byzantine broadcast under strongly adaptive and majority
corruptions. In: TCC (1). Lecture Notes in Computer Science, vol. 12550, pp. 412–456. Springer (2020)

37. Wesolowski, B.: Efficient verifiable delay functions. In: EUROCRYPT (3). Lecture Notes in Computer Science,
vol. 11478, pp. 379–407. Springer (2019)

A Model for Depth-Secure MPC

This appendix is an extension of Section 5. Here, we discuss in more detail the execution of ideal
model.

A.1 Execution Model

Our execution model is based on a simpler version of the Universal Composability (UC) framework,
modified for our application scenario and depth-bounded computation. In our execution model, all
parties (including the environment, trusted third party, and adversary) are modeled as interactive
circuits.

The Environment: As in the UC framework, we consider an execution in the presence of an en-
vironment that provides inputs to parties and reads their outputs. The environment directs the
execution by proceeding in rounds. It delivers inputs to parties, activates each party in every round,
and delivers messages. The environment controls the time elapse of an execution via the number
of protocol rounds it has directed. Importantly, the environment is responsible for directing query
responses between interactive circuits. In our model, when the environment activates a party, it
evaluates one next-step circuit at a time, after which control is returned to the environment. The en-
vironment also ensures that the queries made by a party in one round are delivered to the intended
oracles (or parties, if oracle queries are used to communicate).

29

When the adversary is activated, it learns the corrupt parties’ inputs, the queries they send, and
the responses they receive. In the beginning of the execution, the adversary informs the environment
of the identities of the parties it wishes to corrupt. The environment responds with the corrupt
parties’ inputs, and the adversary may choose new inputs for the corrupt parties based on the
provided inputs and its auxiliary information. (This models the fact that inputs for corrupted parties
may be adversarially selected, which is in the application scenario of accountable computation.)

As the execution proceeds, the environment activates the adversary after activating other par-
ties, informing the adversary of the queries the corrupt parties make and the responses they receive.
The adversary can respond to the environment by making additional queries. (This structure allows
the adversary and environment to pass additional messages.) The adversary can also adaptively
choose to corrupt additional parties by passing an appropriate query to the environment.

Defining a View: The view of any party is defined to be the ordered list of inputs and events it
receives from the environment, along with the ordered list of messages it receives from other parties.
Formally, we denote the view of party i in an execution of protocol π on inputs ~x and security
parameter 1λ as Viewπi (~x, 1λ) = (xi; r; ~m), where xi is party i’s input, r is the party’s randomness,
and ~m is the set of messages that party i receives from other parties and the environment.

A.2 The Ideal/Real Paradigm

Execution in the Ideal Model. We define an ideal model in which parties interact with a trusted
third party in an execution that is secure by definition.

Interaction with the Trusted Party In an ideal execution, the parties interact with a trusted party
as follows:

1. Initialization: The adversary A receives an auxiliary input z, and may choose to corrupt some
parties. It informs Z of the corruptions.

2. Inputs: The environment sends the corrupt parties’ inputs to A, which choose new inputs
for the corrupted parties based on its auxiliary information and the inputs provided by the
environment. It then forwards the new inputs to the environment. All parties then receive
inputs from the environment.

3. Send Inputs to Trusted Party: Each party sends its input xi to the trusted party.
4. Computing Functionalities: After receiving all inputs, the trusted third party computes the

functionality outputs over the provided inputs and saves the outputs.
5. Phased Output Release: An execution is divided into phases such that at the end of each

phase, the parties learn some information from the trusted party. The moment that the trusted
party provides the protocol participants with their ith message denotes the end of the ith phase
and the beginning of the i+ 1st phase.

6. Protocol Outputs: At the end of an execution, honest parties output whatever they have
received from the trusted party. Corrupt parties output nothing, and the adversary outputs
an arbitrary function of its input, the messages it has received from the environment, and the
messages that corrupt parties have received from the trusted party. The environment learns
every output.

The random variable IDEALF ,A(z),Z(x) denotes the output of the environment in an ideal exe-
cution of functionality F on honest inputs x, auxiliary input z to A, with environment Z.

30

Execution in the Real Model. In the real model, participants execute a protocol π to compute
the desired functionality F without a trusted party. At the end of the execution, honest parties
output their protocol outputs. The corrupt parties output nothing. The adversary outputs an
arbitrary function of its inputs and the messages that corrupt parties have received.

The random variable REALπ,A(z),Z(x) denotes the output of the environment in a real execution
of π with honest inputs x, auxiliary input z to A, with environment Z. The environment learns
every output.

31

