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Abstract. Preimage Sampling is a fundamental process in lattice-based
cryptography whose performance directly affects the one of the crypto-
graphic mechanisms that rely on it. In 2012, Micciancio and Peikert
proposed a new way of generating trapdoors (and an associated preim-
age sampling procedure) with very interesting features. Unfortunately,
in some applications such as digital signatures, the performance may not
be as competitive as other approaches like Fiat-Shamir with Aborts.
In this work we revisit the Micciancio-Peikert preimage sampling algo-
rithm with different contributions. We first propose a finer analysis of this
procedure which results in interesting efficiency gains of around 20% on
the preimage sizes without affecting security. It can thus be used as a
drop-in replacement in every construction resorting to it.
We then reconsider the Lyubashevsky-Wichs sampler for Micciancio-
Peikert trapdoors which leverages rejection sampling but suffered from
strong parameter requirements that hampered performance. We propose
an improved analysis which allows to obtain much more compact pa-
rameters. This leads to gains of up to 30% compared to the original
Micciancio-Peikert sampling technique and opens promising perspectives
for the efficiency of advanced lattice-based constructions relying on such
mechanisms.
As an application of the latter, we give the first lattice-based aggregate
signature supporting public aggregation and that achieves relevant com-
pression compared to the concatenation of individual signatures. Our
scheme is proven secure in the aggregate chosen-key model coined by
Boneh et al. in 2003, based on the well-studied assumptions Module
Learning With Errors and Module Short Integer Solution.

Keywords: Lattice-Based Cryptography · Trapdoors · Preimage Sam-
pling · Aggregate Signature

1 Introduction

Lattice-based cryptography has proven to be a relatively stable and exten-
sively studied candidate to provide post-quantum secure primitives, and has
now shifted towards proposing concretely efficient constructions. The NIST stan-
dardization [NIS] perfectly reflects this trend as they recently announced the
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first round of future standards, which is dominated by lattice-based construc-
tions [BDK+18,DKL+18,PFH+20], and are moving to practical deployment dis-
cussions. The versatility of lattice-based cryptography has also given rise to more
advanced constructions, but that are not yet represented in standardization ef-
forts due to their remaining efficiency gap compared to currently deployed pre-
quantum4 solutions. Typically, despite very recent results, e.g., [dPK22,LNP22],
lattice-based blind signatures and group signatures still yield signatures that
are about 1000 times larger than their pre-quantum counterparts and are thus
unlikely to be included the corresponding ISO/IEC standards [ISO13,ISO16] at
this stage. Improving the performance of such primitives is therefore paramount
before considering standardization and integration. For that, it seems necessary
to propose new techniques and to reassess some widely adopted techniques in
order to identify their limitations and possibly some margin for optimization.

This work is mostly directed at the realm of lattice-based signatures, but it
may find applications in other areas of lattice cryptography. Lattice-based sig-
nature schemes are usually designed by following one of two main paradigms.
The first one, called the hash-and-sign paradigm, was instantiated by Gentry
et al. [GPV08] with lattice preimage sampleable trapdoor functions. In such
schemes, the signing key consists of a trapdoor for a publicly computable function
which allows to efficiently find short preimages. Signatures are then preimages of
seemingly random (and possibly message-dependent) syndromes. Only the signer
is able to compute such preimages, but everyone is able to compute the image
to ensure they represent valid signatures. Several schemes rely on variants of the
above, e.g., [GPV08,MP12,DM14,DLP14], and were successfully pushed towards
concrete practicality [PFH+20,EFG+22] using an additional assumption. Trap-
door preimage sampleable functions also represent the most widely used building
block in the design of more advanced forms of signatures such as group signa-
tures [dPLS18,LNPS21], blind signatures [AKSY22,dPK22], signatures with ef-
ficient protocols [LLM+16,JRS22], etc. In their general use, trapdoor preimage
sampling can however be quite computationally intensive and most preimage
sampling algorithms are designed to only support Gaussian-distributed preim-
ages.

An alternative, called the Fiat-Shamir with Aborts (FSwA) paradigm, was
proposed by Lyubashevsky [Lyu12], building signatures on Schnorr-like proofs
made non-interactive with the Fiat-Shamir transform. This framework avoids
the use of trapdoors, and uses rejection sampling to control the distribution
of signatures while making them independent of the signing key. Even though
most applications yield Gaussian-distributed signatures, it is possible to tweak
the rejection sampling step to get other distributions that can be more suitable
depending on the context. Efficient instantiations of this signature paradigm
were proposed, such as qTESLA [ABB+20] and Dilithium [DKL+18].

Interestingly, in [LW15], Lyubashevsky and Wichs show that these two ap-
proaches may be combined in the case of Micciancio-Peikert trapdoors [MP12].

4 We use pre-quantum to refer to cryptography that does not withstand the power of
quantum computing.
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They indeed propose for the latter a new sampling method relying on rejection
sampling. This method allows for a broader choice of preimage distributions but
unfortunately suffers from parameters requirements that, in the end, makes it
less efficient than the original sampling method.

1.1 Our Contributions

In this paper, we focus on improving the preimage sampler associated to the trap-
door functions from [MP12], which is the core of many advanced lattice construc-
tions, e.g., [DM14,BFRS18,dPLS18,BEP+21,LNPS21,LNP22,dPK22,JRS22]. It
also has nice connections with other approaches as illustrated by the result
in [LW15]. We first propose a finer analysis of the existing procedure resulting in
drastic gains without affecting its security. On the contrary, it leads to slightly
enhanced security guarantees and can thus be used as a drop-in replacement
for every lattice constructions using preimage sampling based on the trapdoor
functions of [MP12]. We then revisit the approach in [LW15] to show that we can
significantly alleviate the requirements in the original security analysis, at least
in case of the most common applications of preimage sampling. It entails dra-
matic gains in performance and thus enables the approach from Lyubashevsky
and Wichs to achieve its full potential. We note that these contributions apply
to constructions on both standard and structured lattices. Finally, we show that
our new preimage sampling procedure unlocks the design of new constructions
on lattices that only existed in the pre-quantum world prior to our work. More
specifically, we propose the first lattice-based aggregate signature scheme that
supports public aggregation and that has relevant compression rates with respect
to simply concatenating individual signatures.

Starting Point. In [MP12], Micciancio and Peikert propose a preimage sam-
pling algorithm for matrices AH = [A|HG − AR], where R constitutes the
trapdoor. More precisely, A is uniform matrix in Zd×2d

q , H is a tag matrix in
GLd(Zq), G ∈ Zd×kd (with k = log2 q) is the base-b gadget matrix introduced
in [MP12], and R is a short matrix. Their algorithm uses the knowledge of R
to sample v ∈ Z(2+k)d according to a spherical discrete Gaussian of parameter
σ such that AHv = u mod q for an input syndrome u. The technique first relies
on the observation that if z is a Gaussian with width σG such that HGz = u,
then the vector v′ = [(Rz)T |zT ]T is a valid candidate. This naive approach leaks
information on the trapdoor R, which is why the authors perturb this solution
v′ into v = p+v′, for some suitable perturbation vector p, while adjusting z to
verify HGz = u−AHp. By carefully choosing the covariance of the Gaussian p,
one can indeed ensure that v follows a spherical Gaussian distribution of width
σ, which in turn does not leak information on the trapdoor.

Contribution 1: From Spherical to Elliptical. Our first contribution con-
sists in a finer analysis of the approach above. We indeed observe that the in-
formation on R in v′ = [(Rz)T |zT ]T is symmetrically drowned by p to ob-
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tain a spherical distribution, which results in a Gaussian v with parameter
σ = Θ(σG · ∥R∥2). This is not optimal as v′1 = Rz and v′2 = z are not of
the same size, in particular for small bases b, and as v1 is the only one depend-
ing on the secret R.

A first attempt to break the symmetry could be to only perturb the first
part v1 but the result is insecure, as we explain in Section 3.1. We then revisit
the original security analysis based on the convolution theorem by considering
different widths σ1 and σ2 for v1 = p1 + v′1 and v2 = p2 + v′2, with the goal
of decreasing σ2 as much as possible while retaining the same security level.
This approach is indeed particularly relevant when recalling that v′2 does not
depend on R and therefore does not need to be perturbed as much as v′1. More
concretely, we show that we can use σ1 = Θ(σG · ∥R∥2) with the same constant
up to a

√
2 factor, but σ2 = σ1/∥R∥2. It thus allows us to keep v1 (almost) as

before while dramatically reducing the size of v2.
This modification alone reduces the bit-size of v between 20 and 30%. Ad-

ditionally, because v1 has roughly the same size, it also improves the expected
Euclidean norm ∥v∥2 which usually leads to increased security. We thus gain on
all metrics and are conceptually close to the original method, meaning our re-
sult can be used as a drop-in replacement in every primitive using such preimage
sampling.

We note that this approach is different from the recent technique proposed by
Espitau et al. [ETWY22] in the context of compressing hash-and-sign signatures.
Indeed, when moving from spherical to elliptical Gaussians, they shrink the part
of the preimage that corresponds to the outputted signature, but expand by the
same factor the part of the preimage that is recovered during verification. Their
optimization applies to hash-and-sign signatures that rely on different preimage
sampling procedures, such as [PFH+20,EFG+22], which are not gadget-based as
that of [MP12].

Contribution 2: Re-assessing the Lyubashevsky-Wichs Sampler. Al-
though we managed to improve for free the efficiency of preimage sampling, it
remains quite rigid as it requires sampling perturbations p from highly non-
spherical Gaussian, and is limited to Gaussian preimages. To circumvent these
limitations, we revisit the approach from Lyubashevsky and Wichs [LW15] that
further breaks the symmetry between v1 and v2. Their idea is to set p2 = 0
and z = G−1(u − Ap1) where G−1(·) is the base-b decomposition. Directly
outputting v1 = p1 + Rz and v2 = z again leaks information on R because
of v1 and they thus need to adjust this approach. Actually, by identifying Ap1,
z and v1 with (respectively) the commitment, the challenge and the answer of a
zero-knowledge proof of knowledge of R, this problem is very similar to the one
of Fiat-Shamir signature in [Lyu12]. They then resort to the same workaround,
namely rejection sampling: before outputting v1 = p1 + Rz and v2 = z, one
performs rejection sampling on v1 to make its distribution independent of R
and z.
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However, to thoroughly show that the preimages do not leak information on
R, they provide a simulation result which suffers from parameter constraints that
makes it less efficient than the original sampler from [MP12] in terms of preimage
size. More concretely, they show that the output distribution of the preimages
is statistically close to a distribution that does not depend on the trapdoor R
for an arbitrary (potentially adversarial) syndrome u. Because they deal with an
arbitrary u, nothing can be assumed about its distribution which in turn places
strong restrictions on the parameters to compensate. Indeed, in their result, they
need to assume that Av1 (and Ap1) is statistically close to uniform requiring the
parameters to be large in order to use a regularity lemma. This requirement in
turn prevents them from using a computational instantiation of MP trapdoors.
Since computational MP trapdoors lead to much smaller preimages, they are
usually more compact than the ones generated by the sampler of [LW15].

Our second contribution is then to provide a improved analysis of the sampler
from [LW15] to get rid of these restrictive requirements and thus obtain more
compact preimages. In many situations in cryptography, the syndrome follows a
prescribed distribution. For GPV signatures [GPV08] for example, the syndrome
u is the hash output of the message H(m) where H is modeled as a random or-
acle. This means that the syndrome we expect are uniformly distributed and
cannot be controlled by the adversary. Assuming the uniform distribution of u
allows us to remove this constraint on Av1 being statistically close to uniform,
as we can, at a high level, use the randomness of u to achieve the same conclu-
sions. As we show in our paper, removing this constraint removes the need for
a large perturbation (either in norm or dimension) and thus leads to improved
performances.

We give a comparison with the results of the first contribution by forcing a
Gaussian distribution on v1. In this case, p1 must be drawn from a wide enough
Gaussian with parameter σ = Θ(∥Rz∥2). Because z is the output of G−1(·), its
infinity norm is bounded by b, which yields σ = Θ(∥R∥2b

√
kd). As opposed to

the previous improvement, the size of v1 increases compared to [MP12], but v2

is now in base b which is can be much smaller (even minimal when b = 2 for
example). For a GPV signature [GPV08] using the trapdoors from [MP12], the
sampler from [LW15] with our improved simulation result actually decreases the
bit-size of the overall signature, i.e., the total bit-size of v, by 10% compared to
Contribution 1 and thus by 30% compared to the original sampling method. The
overall bit-size of said signatures drops below 8.5 KB, which shows promising
perspectives for the efficiency of advanced lattice-based signatures using the
trapdoors from [MP12].

Contribution 3: Application to Aggregate Signatures. As an example
application of our new analysis of the sampler from [LW15], we propose an
aggregate signature scheme based on structured lattices that fully leverages the
asymmetry between v1 and v2. An aggregate signature is a regular signature
scheme completed by a mechanism AggSign taking the public keys pki of N users
as well as pairs of message-signature (mi, sigi) from each user, and compresses all
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the sigi into a single signature sigagg. A second mechanism AggVerify is appended
to verify that sigagg is a valid aggregate signature on the messages mi under the
keys pki, but without requiring the individual sigi. One of the key features is
that the aggregation is public and non-interactive, meaning it does not require
the signers’ secret keys nor does it need them to interact to produce sigagg.
A basic efficiency requirement is that the size of sigagg should be lower than
the concatenation of the sigi, the latter being the simplest form of aggregate
signature.

Such primitives were first introduced by Boneh et al. [BGLS03], which has
led to several efficient constructions on classical groups, such as for example
the works in [BGLS03,BNN07,RS13,HKW15,HW18]. Post-quantum construc-
tions were however unknown until the first attempt of Döroz et al. [DHSS20].
This lattice-based proposal turned out to be either less efficient than the trivial
concatenation of signatures, or prone to attacks due to their compression tech-
nique as pointed out by Boudgoust and Roux-Langlois [BR21]. Additionally,
their construction was based on a non-standard assumption called the Partial
Fourier Recovery problem for which the hardness confidence is limited due to
recent results by Boudgoust, Gachon and Pellet-Mary [BGP22]. Boudgoust and
Roux-Langlois also proposed in [BR21] an aggregate signature based on module
lattices following the FSwA signature paradigm. Again, it turned out that the
peculiarities of aggregate signature security led to sigagg being larger than the
concatenation.

In this work, we construct the first lattice-based aggregate signature with
public aggregation that achieves relevant compression compared to the con-
catenation of individual signatures. Our scheme stems from the GPV signa-
ture [GPV08] instantiated with MP trapdoors [MP12], the sampler from [LW15]
in our improved parameter setting as a key element. At a high level, each users
has a key pair (ski, pki) = (Ri,Bi = ARi), where the matrix A is common to ev-
ery signer. To sign a message mi, user i samples a short preimage vi = [vT

1,i|vT
2,i]

T

of H(mi) using our new method, where H is modeled as a random oracle. At this
stage, it is tempting to simply add the first components v1,i of each signature
and concatenate the (very short) second ones v2,i. This would be correct, but
the resulting scheme is completely insecure as we will explain. We then resort to
a technique generally used to circumvent rogue-key attacks to ensure security,
but with some necessary tweaks.

Concretely, to aggregate the vi, one first obtains small random weights ei
and computes sigagg = (v1 =

∑
i eiv1,i, (v2,i)i). While this technique seems

classical, we note that it is not as straightforward to generate suitable ei as
one might think at first glance. Indeed, generating ei as the output of a single
hash function does not seem sufficient to prove security, even in the random
oracle model. This problem, which does not arise in classical cyclic groups, was
already faced by the authors of [BR21] who circumvented it by weakening the
security model. We show that we can avoid this by resorting to two random
oracles Hf ,He to generate the weights ei so as to deal with the peculiarities of
the forking lemma. Concretely, we first compute f = Hf ({Bj ,v2,j ,mj}1≤j≤N ),
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and then ei = He(f, i) ∈ C for all i, where C is the set of ternary polynomials
with fixed Hamming weight. To verify, one can then recompute the weights ei
and check that Av1 +

∑
i ei(G − Bi)v2,i =

∑
i eiH(mi). We thus manage to

prove security according to the conventional model for aggregate signatures at
the cost of only one additional call to a hash function.

We only achieve partial aggregation because of the fact that v2,i faces the
matrix Bi which differs for every user. As a result, we need to transmit all
the individual v2,i, thus yielding a size linear in N . However, because our new
preimage sampling algorithm minimizes the size of the v2,i’s, it amortizes this
linear dependency, enough to have relevant compression compared to the naive
concatenation. In particular, we obtain aggregate signatures that are 5% to 16%
smaller than the concatenation for N ranging from 10 to 1200 which is a range
coherent with real-life applications, such as certificate chains, blockchains or
batch software updates for example.

1.2 Organization

We start by recalling some notations and standard notions in Section 2. Then, we
provide our new results on preimage sampling in Section 3, and discuss perfor-
mances in Section 4. We then apply them to design of our lattice-based aggregate
signature in Section 5.

2 Preliminaries

In this paper, for two integers a ≤ b, we define [a, b] = {k ∈ Z : a ≤ k ≤ b}. When
a = 1, we simply use [b] instead of [1, b]. Further, q is a positive integer, and
we define Zq = Z/qZ. We may identify the latter with the set of representatives
(−q/2, q/2] ∩ Z. Vectors are written in bold lowercase letters a and matrices
in bold uppercase letters A. The transpose of a matrix A is denoted by AT .
The identity matrix of dimension d is denoted by Id. We use ∥·∥p to denote
the ℓp norm of Rd, i.e., ∥a∥p = (

∑
i∈[d]|ai|

p
)1/p for any positive integer p, and

∥a∥∞ = maxi∈[d]|ai|. We also define the spectral norm of a matrix A by ∥A∥2 =
maxx̸=0∥Ax∥2/∥x∥2. For a finite set S, we define |S| to be its cardinality, and
U(S) to be the uniform probability distribution over S. We use x ←↩ P to
describe the action of sampling x ∈ S according to the probability distribution
P . In contrast, we use x ∼ P to mean that the random variable x follows P . The
statistical distance between two discrete distributions P,Q over a countable set
S is defined as ∆(P,Q) = 1

2

∑
x∈S |P (x)−Q(x)|. Later, Ds,Dt denote arbitrary

distributions called source and target distributions respectively.

2.1 Lattices

A full-rank lattice L of rank d is a discrete additive subgroup of Rd. The dual
lattice of L is defined by L∗ = {x ∈ SpanR(L) : ∀y ∈ L,xTy ∈ Z}. We call Vol L
the volume of a lattice L. For d,m, q positive integers, we consider the family of
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lattices {L⊥q (A);A ∈ Zd×m
q }, where L⊥q (A) = {x ∈ Zm : Ax = 0 mod qZ}. For

any A ∈ Zd×m
q and u ∈ Zd

q , we define Lu
q (A) = {x ∈ Zm : Ax = u mod qZ}

which is a coset of L⊥q (A).

2.2 Probabilities

For x a discrete random variable over a set S, we define its min-entropy as
H∞(x) = − log2(maxx′∈S Px[x = x′]). We give here the leftover hash lemma
from [DORS08] for which we write to match our context and notations.

Lemma 2.1 (Adapted from [DORS08]). Let d,m1, q be positive integers
such that q is an odd prime. For A ∼ U(Zd×m1

q ), x a random variable over Zm1 ,
and u ∼ U(Zd

q), it holds that ∆((A,Ax), (A,u)) ≤ 1
2

√
qd2−H∞(x). In particular,

whenever H∞(x) ≥ d log2 q+ω(log2 λ), the statistical distance is negligible in λ.

For a center c ∈ Rd and positive definite S ∈ Rd×d, we define the Gaussian
function ρ√S,c : x ∈ Rd 7→ exp(−π(x − c)TS−1(x − c)). For a countable set
A ⊆ Rd, we define the discrete Gaussian distribution DA,

√
S,c of support A,

covariance S and center c by its density DA,
√
S,c : x ∈ A 7→ ρ√S,c(x)/ρ

√
S,c(A),

where ρ√S,c(A) =
∑

x∈A ρ√S,c(x). When c = 0, we omit it from the notations.
When S = s2Id, we use s as subscript instead of

√
S. As coined by Micciancio and

Regev [MR07], we define the smoothing parameter of a lattice L, parameterized
by ε > 0, by ηε(L) = inf{s > 0 : ρ1/s(L∗) = 1+ε}. We recall the following result
stating that DL,s,c carries a good amount of entropy when s is sufficiently large.
A similar result is given in [PR06, Lem. 2.10], but we give a tighter bound directly
resulting from Poisson’s summation formula. We give the proof for completeness.

Lemma 2.2. Let L ⊂ Rd be a lattice of rank d. For any ε > 0, s ≥ ηε(L),
and c ∈ Rd, it holds that H∞(DL,s,c) ≥ d log2 s − log2(Vol L) + log2(1 − ε). In
particular, when L = Zd and ε ≤ 1/2, it yields H∞(DZd,s) ≥ d log2 s− 1.

Proof. Let L ⊂ Rd be a lattice of rank d, ε > 0, s ≥ ηε(L) and c ∈ Rd. We look
at ρs,c(L). By the Poisson summation formula, it holds that

ρs,c(L) = sd(Vol L)−1
∑
x∈L∗

e−i·2πx
T cρ1/s(x).

Yet, it holds that
∣∣∣∑x∈L∗ e−i·2πx

T cρ1/s(x)− 1
∣∣∣ ≤ ρ1/s(L∗ \ {0}) ≤ ε, as s ≥

ηε(L). Since the sum is a positive real, it yields that the latter is bounded below
by 1− ε. Thence,

ρs,c(L) ≥ sd(Vol L)−1(1− ε).

Since ρs,c(x) ≤ 1 for all x ∈ L, we have that H∞(DL,s,c) ≥ log2 ρs,c(L), which
gives the desired inequality. When L = Zd and ε ≤ 1/2, we have Vol L = 1 and
log2(1− ε) ≥ −1, which yields the claim.
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We also give the standard tail bounds for the discrete Gaussian distribution
from [Ban93,Lyu12]. Notice that when c = 0, the usual requirement s ≥ ηε(L)
in the following results is not needed.

Lemma 2.3. Let L ⊂ Rd be a lattice of rank d. Let s > 0 and v ∈ Rd. Then,
for all t > 0, it holds that

1. Px∼DL,s

[
∥x∥2 > s

√
d
]
< 2−2d, [Ban93, Lem. 1.5]

2. Px∼DL,s
[|⟨x,v⟩| > st∥v∥2] ≤ 2e−πt

2

. [Lyu12, Lem 4.3]

Based on probabilistic bounds on the spectral norm of sub-Gaussian matrices
and on tail bounds of sub-exponential random vectors, we have the following
result, proven in e.g. [JRS22].

Lemma 2.4 (Adapted from [JRS22]). Let m1,m2, η be three positive inte-
gers and x, t > 0. We assume that m1 > x · 10/ log2 e. Let x ∈ Zm2 such that
∥x∥∞ ≤ η. We have

PR←↩U([−1,1]m1×m2 )[∥Rx∥2 ≥ η
√
m2 min(2

√
m1,
√
m1+

√
m2+t)] ≤ 2−x+2e−πt

2

,

Finally, we give the rejection sampling results from [Lyu12, Thm. 4.6, Lem.
4.7], which were slightly adapted in [JRS22].

Lemma 2.5 (Adapted from [Lyu12, Thm. 4.6, Lem. 4.7]). Let d be a
positive integer, and V,X two countable set of Rd. Let T be a positive real, and
we define VT = {v ∈ V : ∥v∥2 ≤ T}. Let h be a probability distributions on V
such that Pv∼h[v /∈ VT ] ≤ ε′ for some ε′ ≥ 0. Let Dt be a probability distribution
on X, and (D

(v)
s )v∈V a family of probability distributions on X such that

∃M > 0,∀v ∈ VT ,Px∼Dt
[M ·D (v)

s (x) ≥ Dt(x)] ≥ 1− ε′′,

for some ε′′ ≥ 0. We then define two distributions

P1: Sample v←↩ h, x←↩ D
(v)
s . Output (v,x) with probability min(1, Dt(x)

MD
(v)
s (x)

).

P2: Sample v←↩ h, x←↩ Dt. Output (v,x) with probability 1/M .

The outputs of P1 and P2 conditioned on not aborting are within statistical
distance ε′′

M + ε′(M+1)
2M .

2.3 Algebraic Number Theory

We start by giving the necessary background in algebraic number theory. Our
scheme is instantiated over a power-of-two cyclotomic ring. We take n a power
of two and let ζ be a primitive 2n-th root of unity. We define by K = Q(ζ) ∼=
Q[X]/⟨Xn+1⟩ the 2n-th cyclotomic field, and by R = Z[ζ] ∼= Z[X]/⟨Xn+1⟩ its
ring of integers. We also define Rq = R/qR ∼= Zq[X]/⟨Xn + 1⟩ for any modulus
q ≥ 2.
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Embeddings. Field and ring elements can be naturally embedded into Rn by
their coefficient vector when seen as polynomials in ζ or X. We call τ the coeffi-
cient embedding of R, i.e., for all r =

∑
i∈[0,n−1] riζ

i ∈ R, τ(r) = [r0| . . . |rn−1]T .
One can extend τ to vectors of Rd by concatenating the coefficient embeddings
of each vector entry. Using τ , for a matrix A ∈ Rd×m

q , L⊥q (A) = {x ∈ Rm :
Ax = 0 mod qR} embeds into a lattice of Rnm called module lattice. For an
integer η, we define Sη = τ−1([−η, η]n) and Tη = τ−1([0, η−1]n). We also define
the usual norms ∥·∥p over R by ∥r∥p := ∥τ(r)∥p.

Another way to embed R (or its fraction field K) is the canonical embedding,
which we denote by σ. More precisely, K has exactly n field homomorphism
σ1, . . . , σn from K to C which are characterized by the fact that each σi maps ζ
to one of the distinct roots αi of Xn +1. The canonical embedding of K is then
the ring homomorphism σ(·) = [σ1(·)| . . . |σn(·)]T from K to Cn (with entry-wise
addition and multiplication of vectors). The canonical and coefficient embeddings
are linked linearly by the Vandermonde matrix V of the αi, i.e., σ(·) = Vτ(·)
with V = [αj−1

i ]i,j∈[n]. We note that since the αi are the n-th roots of −1,
they all have magnitude 1. Additionally, in this power-of-two cyclotomic ring,
P = V/

√
n is a unitary matrix, i.e., PHP = In.

Multiplication Matrices. For all r, s ∈ R, τ(rs) = Mτ (r)τ(s), where Mτ (r)
is the multiplication matrix of Rn×n associated to r with respect to τ , which in
this ring equals

Mτ (r) =


r0 −rn−1 . . . −r1

r1
. . . . . .

...
...

. . . . . . −rn−1
rn−1 . . . r1 r0


In the canonical embedding, we obtain σ(rs) = Mσ(r)σ(s) where Mσ(r) =
diag(σ1(r), . . . , σn(r)) ∈ Cn×n. The link between σ and τ implies that Mτ (·) =
V−1Mσ(·)V = PHMσ(·)P.
Gaussians. We define the discrete Gaussian distribution over R by τ−1(Dτ(R),s),
which we denote by DR,s. Since τ(R) = Zn, the distribution corresponds to sam-
pling an integer vector according to DZn,s which thus defines a ring element via
τ−1. One result which we need for our aggregate signature is that the weighted
sum of discrete Gaussian vectors over R is also a discrete Gaussian. The result
is due to [MP13, Thm. 3.3] which was adapted to the ring setting in [BTT22,
Lem. 2.7]. The latter is however formulated with constraints in the canonical
embedding σ. We adapt the lemma statement to use the coefficient embedding
instead.

Lemma 2.6 (Adapted from [BTT22, Lem. 2.7]). Let d and N be positive
integers. Let e1, . . . , eN be arbitrary elements of R, and s > 0 such that s ≥√
2ηε(Znd) ·maxj∈[N ]∥Mτ (ei)∥2 for a negligible ε. Then it holds that

∆

 ∑
i∈[N ]

eiDRd,s,DLe,
√
S

 ≤ negl(λ),
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where S = Id ⊗
∑

i∈[N ] s
2Mτ (ei)Mτ (ei)

T and Le =
∑

i∈[N ] eiR
d is a submodule

of Rd.

2.4 Hardness Assumptions

The security of our aggregate signature scheme is based on the Module Short
Integer Solution (M-SIS) and Module Learning With Errors (M-LWE) prob-
lems [LS15], which we now recall. We consider both problems in their Hermite
Normal Form, i.e., we specify the identity in the M-SIS matrix, and we use the
same distribution for the M-LWE secret and error.

Definition 2.1 (M-SIS). Let n be a power-of-two and R = Z[X]/⟨Xn + 1⟩.
Let d,m, q be positive integers and β > 0 with m > d. The Module Short
Integer Solution problem in Hermite Normal Form M-SISn,d,m,q,β asks to find
x ∈ L⊥q ([Id|A′]) \ {0} such that ∥x∥2 ≤ β, given A′ ←↩ U(Rd×m−d

q ).

The advantage of a probabilistic polynomial-time (PPT) adversary A against
M-SISn,d,m,q,β is defined by

AdvM-SIS[A] = P [[Id|A′]x = 0 mod qR ∧ 0 < ∥x∥2 ≤ β : x← A(A′)] ,

where the probability is over the randomness of A′ and the random coins of A.
When the parameters are clear from the context, we define the hardness bound
as εM-SIS = supA PPT AdvM-SIS[A]. We now present the M-LWE problem in its
variant with multiple secrets which we use throughout the paper.

Definition 2.2 (M-LWE). Let n be a power-of-two and R = Z[X]/⟨Xn + 1⟩.
Let d,m, k, q be positive integers and Dr a distribution on R. The Module Learn-
ing With Errors problem HNF-M-LWEk

n,d,m,q,Dr
asks to distinguish between the

following distributions: (1) (A′, [Im|A′]R mod qR), where A′ ∼ U(Rm×d
q ) and

R ∼ Dd+m×k
r , and (2) (A′,B), where A′ ∼ U(Rm×d

q ) and B ∼ U(Rm×k
q ).

The advantage of a probabilistic polynomial-time (PPT) adversary A against
M-LWEk

n,d,m,q,Dr
is defined by

AdvM-LWE[A] = |P [A(A′, [Im|A′]R) = 1]− P [A(A′,B) = 1]|,

When the parameters are clear from the context, we define the hardness bound as
εM-LWE = supA PPT AdvM-LWE[A]. When n = 1, we use the notation LWEk

d,m,q,Dr

to denote the same problem over R = Z. Additionally, a standard hybrid argu-
ment shows that M-LWEk

n,d,m,q,Dr
is at least as hard as M-LWE1

n,d,m,q,Dr
at the

expense of a loss factor k in the reduction.

2.5 General Forking Lemma

We give here the general forking lemma from Bellare and Neven [BN06] in
Lemma 2.7 and the forking algorithm FB in Algorithm 2.1. We later need this
result to prove the security of our aggregate signature scheme in Section 5.3.
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Lemma 2.7 ([BN06, Lem. 1]). Let Qe be a positive integer and C a set of size
at least 2. Let B be a randomized algorithm that on input x, h1, . . . , hQe

returns
a pair consisting of an integer in {0, . . . , Qe} and a second element referred to
as a side output. Let IG be a randomized algorithm that we call input generator.
We define the accepting probability as

acc = P[j ≥ 1 : x← IG;h1, . . . , hQe
←↩ U(C); (j, out)← B(x, h1, . . . , hQe

)].

The forking algorithm FB associated to B takes as input x and is described in
Algorithm 2.1. We define the probability

frk = P[b = 1 : x← IG; (b, out, out′)← FB(x)].

Then, it holds that acc ≤ Qe/|C|+
√
Qe · frk

Algorithm 2.1: Forking FB

On input x, proceed as follows.
1. Pick random coins ρ for B
2. h1, . . . , hQe ←↩ U(C)
3. (j, out)← B(x, h1, . . . , hQe ; ρ)
4. if j = 0, return (0,⊥,⊥)
5. h′

j , . . . , h
′
Qe
←↩ U(C)

6. (j′, out′)← B(x, h1, . . . , hj−1, h
′
j , . . . , h

′
Qe

; ρ)
7. if (j = j′) ∧ (hj ̸= h′

j), return (1, out, out′)
8. else return (0,⊥,⊥).

3 Revisiting Trapdoor Sampling

We here focus on the trapdoor preimage sampling procedure proposed by Mic-
ciancio and Peikert [MP12]. In Section 3.2, we show that a finer analysis of
the perturbation sampling step allows one to generate preimages that are 20%
smaller without adding any requirement and at absolutely no cost on the secu-
rity. As a result, this can be used as a drop-in replacement in every scheme using
trapdoors from [MP12] and preimage sampling. This relies on the observation
that preimages v are in two parts v1,v2 which have asymmetric roles but are
treated symmetrically in [MP12]. By slightly breaking this symmetry, we are
able to significantly reduce the size of v2, which leads to the gain mentioned
above.

In a second step, we show in Section 3.3 that we can leverage further this
asymmetry using the preimage sampler of Lyubashevsky and Wichs [LW15]. The
analysis of said sampler provided by the authors however places very restrictive
constraints on the parameters that make it less efficient than the best instantia-
tion of the original sampler of [MP12]. We provide an improved analysis of the
sampler which gets rid of those parameter constraints, leading to a performance
improvement of around 30% over the original sampler from [MP12]. The result-
ing sampler is then more efficient than our first optimization mentioned above
but places moderate constraints on the applications, which are easily met in
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practice as we discuss. The special features of the resulting preimages could also
have other consequences on some specific primitives. As an example, Section 5
presents the first lattice-based aggregate signature scheme that supports public
aggregation with relevant compression.

3.1 Micciancio-Peikert Preimage Sampling

The notion of trapdoors introduced by Micciancio and Peikert [MP12] (which we
later abbreviate MP trapdoors) is very versatile and has been extensively used
in cryptographic constructions, including many advanced lattice-based prim-
itives. In particular, it yields the ability to naturally design tag-based con-
structions, a property leveraged in a number of works such as group signa-
tures [dPLS18,LNPS21] or signature with efficient protocols [JRS22]. This new
notion of trapdoors also allows for more efficient preimage sampling due to the
specific form of the trapdoor function. More precisely, they generate matrices
AH of the form

AH = [A|HG−AR] mod qZ ∈ Zd×(m1+m2)
q ,

where H ∈ Zd×d
q is an invertible tag matrix, G ∈ Zd×m2 a primitive gadget

matrix, and R ∈ Zm1×m2 a short matrix corresponding to the trapdoor. The
advantage of such a construction is that the same trapdoor information R can
be used for all tags H. The gadget G is chosen so that it is easy to compute short
preimages, and therefore, it becomes easy to compute preimages of AH with the
knowledge of R. In what follows, we consider the gadget matrix of [MP12] in
base b ≥ 2, i.e., G = Id ⊗ [1|b| . . . |b⌈logb q⌉−1] ∈ Zd×m2 where m2 = d⌈logb q⌉.

The sampling algorithm relies on the link between such matrices AH and the
gadget matrix G, that is

AH

[
R
Im2

]
= HG mod qZ.

Thence, if z is a short vector in Lu
q (HG), then v = [(Rz)T |zT ]T is a short

vector in Lu
q (AH), i.e., verifying AHv = u mod qZ, that is v is a preimage

of u by AH. Unfortunately, v leaks information about the trapdoor R which
is undesirable in cryptographic applications as R usually corresponds to the
long-term secret key. To circumvent this issue, the authors use the Gaussian
convolution theorem [Pei10, Thm. 3.1] to perturb v in order to make the final
samples independent of R. In more details, they sample a (highly) non-spherical
Gaussian perturbation p = [pT

1 |pT
2 ]

T ∼ DZm1+m2 ,
√
S with

S = s2Im1+m2
− s2G

[
RRT R
RT Im2

]
,

and then compensate this perturbation by sampling z ∼ DLx
q (G),sG with x =

H−1(u−Ap1+ARp2)−Gp2. The output sample is then v′ = [(p1+Rz)T |(p2+
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z)T ]T . By the convolution theorem, v′ is statistically close to a Gaussian distri-
bution over Lu

q (AH) with parameter s, which no longer depends on R.
Therefore, from the security standpoint, the approach above perfectly ad-

dresses the problem of preimage sampling for cryptographic applications. How-
ever, if we reconsider the unperturbed vector v = [(Rz)T |zT ]T , we note that
the convolution is now applied to both parts in the same way. This does not
seem optimal as the bottom section of v is independent of R and as Rz is al-
ways larger than z. Unfortunately, this seems inherent to the approach stated in
[Pei10, Sec. 1.3] which only considers covariance matrices of the form s2I − S1

for some covariance matrix S1. Ideally, we would like to select a perturbation
that only affects the top component, typically:

p =

[
p1

0

]
∼ DZm1+m2 ,

√
S, with S =

[
s2Im1

− s2GRRT 0
0 0

]
.

However, when sampling z and outputting p + [RT |Im2
]T z, we end up with a

joint probability of covariance[
s2Im1

− s2GRRT 0
0 0

]
+ s2G

[
RRT R
RT Im2

]
=

[
s2Im1 s2GR
s2GRT s2GIm2

]
,

which again leaks information about R. This highlights the fact that in order to
rely on the convolution technique, one needs to hide both Rz and z. Intuitively,
the first component v1 = p1 +Rz can be seen as a Gaussian distribution with
a secret center Rz. Looking at its marginal distribution, one could use standard
techniques to hide this secret center, namely convolution when z is Gaussian or
noise flooding (based on either the statistical distance or the Rényi divergence)if
z is non-Gaussian. However, giving v2 = z provides side information on this
secret center which explains why z also has to be perturbed for the convolu-
tion technique to be meaningful. We therefore need a middle way between this
efficient, but insecure, approach and the one from [MP12] that does not seem
optimal for the type of asymmetric vectors we have to perturb.

3.2 Finer Analysis of Perturbation Sampling

Our first solution is to break the symmetry between the top and bottom parts
in [MP12] by using different parameters s1 and s2. More precisely, we sample a
perturbation over Zm1+m2 of covariance

S =

[
s21Im1

0
0 s22Im2

]
− s2G

[
RRT R
RT Im2

]
,

where s2 will hopefully be much smaller than s1 because z has to be perturbed
by a smaller amount than Rz. The natural question is then to determine how
small it can be. At this stage we note that the reasoning in [Pei10, Sec. 1.3] is
of no help here as S is no longer of the form s2I− S1. We therefore need a new
result tailored to our need so as to derive bounds on s1 and s2. More specifically,
to continue using the convolution theorem in [Pei10], we need S to be positive
definite, leading to the following lemma.
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Lemma 3.1. Let m, ℓ be positive integers, R ∈ Rm×ℓ, and α, β, γ positive reals.
If α >

√
2 · γ∥R∥2 and β >

√
2γ, then the matrix

S =

[
α2Im 0
0 β2Iℓ

]
− γ2

[
R
Iℓ

] [
RT Iℓ

]
is positive definite.

Proof. We first consider the singular value decomposition of R as R = USVT ,
with U ∈ Rm×m unitary, V ∈ Rℓ×ℓ unitary, and S ∈ Rm×ℓ a diagonal ma-
trix with non-negative entries in decreasing order. Using the fact that U,V are
unitary, we have

Σ =

[
U 0
0 V

]([
α2Im 0
0 β2Iℓ

]
− γ2

[
SST S
ST Iℓ

])[
UT 0
0 VT

]
Let x = [xT

1 |xT
2 ]

T ∈ Rm+ℓ \ {0} with x1 ∈ Rm and x2 ∈ Rℓ. We then define
y1 = UTx1, y2 = VTx2 and y = [yT

1 |yT
2 ]

T ̸= 0. Now assume that m ≥ ℓ. We
thus have S = [D|0m−ℓ×ℓ]

T with D = diag(s1, . . . , sℓ) ∈ Rℓ×ℓ. Hence,

xTΣx = α2
m∑
i=1

y21,i + β2
ℓ∑

i=1

y22,i − γ2
ℓ∑

i=1

(siy1,i + y2,i)
2

≥ α2
m∑
i=1

y21,i + β2
ℓ∑

i=1

y22,i − γ2
ℓ∑

i=1

2
(
s2i y

2
1,i + y22,i

)
=

ℓ∑
i=1

(
(α2 − 2γ2s2i )y

2
1,i + (β2 − 2γ2)y22,i

)
+

m∑
i=ℓ+1

α2y21,i

> 0,

because α2 > 2γ2∥R∥22 = 2γ2 max1≤i≤ℓ s
2
i , and β2 > 2γ2. Next, assuming m ≤ ℓ,

we have S = [D|0m×ℓ−m] with D = diag(s1, . . . , sm) ∈ Rm×m. Similarly, it yields

xTΣx = α2
m∑
i=1

y21,i + β2
ℓ∑

i=1

y22,i − γ2
m∑
i=1

(siy1,i + y2,i)
2 − γ2

ℓ∑
i=m+1

y22,i

≥ α2
m∑
i=1

y21,i + β2
ℓ∑

i=1

y22,i − γ2
m∑
i=1

2
(
s2i y

2
1,i + y22,i

)
− γ2

ℓ∑
i=m+1

y22,i

≥ α2
m∑
i=1

y21,i + β2
ℓ∑

i=1

y22,i − γ2
m∑
i=1

2
(
s2i y

2
1,i + y22,i

)
− γ2

ℓ∑
i=m+1

2y22,i

=

m∑
i=1

(α2 − 2γ2s2i )y
2
1,i +

ℓ∑
i=1

(β2 − 2γ2)y22,i

> 0,

as desired.
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In the context of [MP12], we will have to use the previous lemma on the
matrices S− Im1+m2

and S− 2[RT |I]T [RT |I]. As a result, we must take s1 and
s2 such that

√
s21 − 1 >

√
2sG∥R∥2 and

√
s22 − 1 >

√
2sG, as well as s1 >√

2(s2G + 2)∥R∥2 and s2 >
√

2(s2G + 2). The latter two conditions subsum the
former two. We recall that we also have to consider the randomized rounding
factor r ≥ ηε(Z), typically r ≈ 5.4. We can therefore set s1 > r

√
2s2G + 4∥R∥2

and s2 > r
√

2s2G + 4 with sG ≈
√
b2 + 1, and still inherit from the analysis

of [MP12]. This allows us to drastically reduce the size of the bottom part for free,
while keeping the size of the top part (almost) the same as before. Additionally,
the overall norm of v is smaller which can result in slightly increased concrete
security. For example, in GPV signatures [GPV08], smaller preimages leads to
a smaller SIS bound and in turn better security. This modification can thus be
used as is in every scheme using MP trapdoor preimage sampling, leading to
better performance as illustrated in Section 4.

3.3 A More Flexible Preimage Sampler

Although we improved the quality of the preimage sampling procedure, it is
still quite rigid. Namely, it still requires the sampling of a perturbation vector p
from a (highly) non-spherical Gaussian distribution. Such a perturbation sam-
pling is rather costly and represents the most part of the computation time of
preimage sampling. The gadget sampling step (sampling z ←↩ DLx

q (G),sG) also
requires the sampling of non-spherical Gaussian perturbations when q is not a
power of the gadget base b. However, the latter has been analyzed in several
works [GM18,ZY22] by identifying structure in the basis of L⊥q (G) to enable
more efficient sampling over L⊥q (G). But for the perturbation p we consider, we
cannot leverage a particular structure of the covariance matrix S as R is gener-
ated randomly. Another limitation is that this convolution method is seemingly
limited to Gaussian distributions, which in turn limits the possible preimage
distributions.

3.3.1 Description. To circumvent these shortcomings, Lyubashevsky and
Wichs [LW15] proposed another more flexible preimage sampling procedure
which only perturbs the top component. The approach from [LW15] can be
seen as combining the features of tag-friendly gadget-based preimage sampling
with rejection sampling that is extensively used in Fiat-Shamir with Aborts
(FSwA) signatures. Let G−1(·) be the entry-wise base-b decomposition of vec-
tors of Zd

q , thus resulting in vectors of [0, b − 1]m2 . The intuition is to sample
a perturbation p1 ∈ Zm1 from a source distribution Ds. Further, instead of us-
ing Gaussian G-sampling, we simply use the base-b decomposition and obtain
v2 = G−1(H−1(u−Ap1)). Then, we can define v1 = p1+Rv2 so that the rela-
tion AHv = u is verified, and apply rejection sampling to make v1 independent
of Rv2 and in turn R. This setting is reminiscent of lattice-based zero-knowledge
arguments or Lyubashevsky’s signature scheme [Lyu12], where R is the witness,
p1 is the mask, Ap1 is a commitment to the mask, v2 is the challenge, and v1
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is the response to the challenge. We slightly modify the presentation of the sam-
pler from [LW15] by taking the matrix A in Hermite Normal Form. Concretely,
throughout the rest of the paper, A = [Id|A′] for a matrix A′ of dimension
d× (m1 − d).

Algorithm 3.1: SamplePre(R;A′,H,u,Ds,Dt)

Input (offline phase): Matrix A′ ∈ Zd×(m1−d)
q , Source distribution Ds over Zm1 .

Input (online phase): Trapdoor R ∈ Zm1×m2 , Tag H ∈ GLd(Zq), Syndrome u ∈
Zd
q , Target distributions Dt over Zm1 such that rejection sampling can be performed

with respect to Ds.
Offline phase

1. p1 ←↩ Ds.
2. w← [Id|A′]p1 mod qZ.

Online phase
3. x← H−1(u−w) mod qZ. ▷ Syndrome correction
4. v2 ← G−1(x) ∈ [0, b− 1]m2 . ▷ Deterministic. m2 = d⌈logb q⌉
5. v1 ← p1 +Rv2.
6. Sample a continuous u←↩ U([0, 1]).
7. if u > min

(
1, Dt(v1)

M·Ds(p1)

)
then go back to 1.

Output: v =

[
v1

v2

]
.

3.3.2 Current Limitations. At first glance, the approach from [LW15] seems
to fully achieve what we wanted to do in Section 3.2, namely to completely break
the symmetry between v1 and v2 to further reduce the size of v2. However, in
practice, the choice of parameters and suitable distributions Ds,Dt is conditioned
by the security requirements coming from the simulation result of [LW15, Thm.
3.1]. Unfortunately, the latter is too restrictive in most cases, which explains
why it does not lead to improvements on the preimage size, as we explain below.

In [LW15, Thm. 3.1], it is shown that the output distribution of SamplePre
is statistically close to a distribution that does not depend on the trapdoor R
for an arbitrary (potentially adversarial) syndrome u. It means that a preimage
v of u can be simulated without resorting to the trapdoor R, and thus does
not leak information on R. Because they deal with an arbitrary u, nothing can
be assumed about its distribution which in turn places strong restrictions on
the parameters to compensate. Indeed, in their result, they need to assume that
Av1 (and Ap1) is statistically close to uniform requiring the parameters to be
large in order to use a regularity lemma. This requirement in turn prevents them
from using a (much more efficient) computational instantiation of MP trapdoors
where m1 = 2d so that AR can be argued to be pseudorandom based on LWE
rather than the leftover hash lemma. This results in significant performance
losses which cancel out the benefits of having smaller v2.

3.3.3 An Improved Simulation of Preimages. We now explain how to
get rid of this requirements. In many situations in cryptography, the syndrome
follows a prescribed distribution. For GPV signatures, and also in our aggre-
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gate signature scheme that we present in Section 5, the syndrome u is the hash
output H(m) of the message m where H is modeled as a random oracle. This
means that the syndrome we expect are uniformly distributed and cannot be
controlled by the adversary. Making this assumption on the distribution of u
allows us to remove this constraint on Av1 being statistically close to uniform
as we can, at a high level, use the randomness of u to achieve the same conclu-
sions. Removing this constraint avoids the need for a large perturbation (either
in norm or dimension) and thus leads to improved performances. We provide
our new simulation result in Theorem 3.1, which we instantiate for Gaussian
distributions in Corollary 3.1. Because we assume u to be uniform in the real
distribution, we also need to ensure that the simulated syndromes are indeed
uniform. More precisely, we prove that the pairs (v,u), with u uniform, can be
simulated without resorting to the trapdoor R, and that they indeed do not leak
information about R.

This trapdoor-independence property of the preimages is necessary for cryp-
tographic applications, e.g., signatures, as an adversary can usually have access
to many such preimages (and syndromes) for a single key. To anticipate such
uses, we present the simulation of Q preimages. Looking ahead, Q would later
denote the maximal number of emitted signatures per key as in the GPV con-
struction [GPV08].

Theorem 3.1. Let d, q, b,Q be positive integers with q prime. Let m1 = 2d,
k = ⌈logb q⌉ and m2 = dk. Let Dr,Ds,Dt be three distributions over Z, Zm1

and Zm1 respectively. We denote by D ′t the marginal distribution of the last
m1−d = d entries of a random vector sampled from Dt. We then define by h the
distribution obtained by sampling R ←↩ Dm1×m2

r and v2 ←↩ G−1(U(Zd
q)) and

outputting Rv2. We denote by V = Supp(h). We let T be a positive real and
assume Py∼h[∥y∥2 > T ] ≤ ε′ for some ε′ ≥ 0. We assume there exists M > 0
such that for all y ∈ V , if ∥y∥2 ≤ T , then Pv1∼Dt

[M(y + Ds)(v1) ≥ Dt(v1)] ≥
1− ε′′ for some ε′′ ≥ 0.

Let A′ ∼ U(Zd×d
q ), R ∼ Dm1×m2

r , H ∈ GLd(Zq) and A = [Id|A′] ∈ Zd×m1
q .

We define the following distributions.

P1

1. u1, . . . ,uQ ←↩ U(Zd
q).

2. For all i ∈ [Q], vi ← SamplePre(R;A′,H,ui,Ds,Dt).
Output: ((vi)i∈[Q], (ui)i∈[Q]).

P2

For all i ∈ [Q]
1. v1,i ←↩ Dt, v2,i ←↩ G−1(U(Zd

q)).
2. vi ← [vT

1,i|vT
2,i]

T .
3. ui ← [A|HG−AR]vi mod qZ.
4. With probability 1− 1/M go back to 1. for the same i

Output: ((vi)i∈[Q], (ui)i∈[Q]).

Then, it holds that the advantage of any PPT distinguisher A between P1 and
P2 is at most

AdvP1,P2
[A] ≤ εLWE +Q

(
2−

1
2H∞(D′

t)−1 +
ε′′

M
+

ε′(M + 1)

2M

)
,

18



where εLWE is the hardness bound of LWEm2

d,d,q,Dr
.

Proof. We first look at the first components vi. When ui ∼ U(Zd
q), then for

p1,i ∼ Ds independent of ui, it holds that xi = H−1(ui − Ap1,i) mod qZ is
also uniformly distributed in Zd

q . This is due to the fact that H−1 ∈ GLd(Zq)
and thus preserves the uniform distribution. Note that v2,i is not uniform in
[0, b− 1]m2 but in G−1(Zd

q) which is not the same unless q = bk. Hence, we have

∆((v2,i)P1
, (v2,i)P2

) = 0. (1)

It thus holds that in P1, yi = Rv2,i is distributed according to h, and p1,i + yi

according to Ds + yi. By our assumptions on h,Ds,Dt, the rejection sampling
result of Lemma 2.5 yields that

∆((Rv2,i,v1,i)P1
, (Rv2,i,v1,i)P2

) ≤ ε′′

M
+

ε′(M + 1)

2M
,

By the data processing inequality of the statistical distance, it holds

∆((v1,i)P1 , (v1,i)P2) ≤
ε′′

M
+

ε′(M + 1)

2M
. (2)

Now let us look at the second components ui. Let A′ be a distinguisher be-
tween ((ui)P1

)i and ([A|HG−AR](vi)P2
)i with advantage δ. We use it to con-

struct a distinguisher B for LWEm2

d,d,q,Dr
. B takes as input (A′,B) ∈ Zd×d

q ×Zd×m2
q

with A′ ←↩ U(Zd×d
q ). The distinguisher then samples the vi as in P2 and set ui =

[Id|A′|HG − B]vi mod qZ. It then sends (ui)i to A′. If B = [Id|A′]R mod qZ
(LWE case), then the input to A′ follows the second distribution. If B is uni-
form, then HG −B is also uniform. As a result, the leftover hash lemma from
Lemma 2.1 gives that ui is within statistical distance 1

2

√
qd2−H∞((v′

i)P2
) of the

uniform, where v′i is the subvector of vi corresponding to the last d+m2 entries.
This is because we apply the leftover hash lemma on a uniform matrix, whereas
our full matrix has a first block which is the identity. It thus yields that

Adv[B] ≥ δ − Q

2

√
qd2−H∞((v′

i)P2
).

In P2, v1,i and v2,i are sampled independently and therefore H∞((v′i)P2
) =

H∞(D ′t) + H∞(G−1(U(Zd
q))), with D ′t being the marginal distribution of the

last d entries of (v1)P2
. The definition of G−1 implies that the entropy of

H∞(G−1(U(Zd
q))) is exactly d log2 q. This is due to the fact that G−1(·) is a

bijection between Zd
q and G−1(Zd

q), and thus preserves the entropy of its input.
Under our LWE assumption, we then obtain

δ ≤ εLWE +
Q

2
2−H∞(D′

t)/2.

Combined with Equations (1) and (2), we get

AdvP1,P2
[A] ≤ εLWE +Q

(
2−

1
2H∞(D′

t)−1 +
ε′′

M
+

ε′(M + 1)

2M

)
,

as claimed.
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Theorem 3.1 proves that when (half of) Dt carries sufficient min-entropy, and
that ε, ε′, ε′′ are negligible, then the output v of SamplePre is is indistinguishable
from a distribution that is independent of the trapdoor R, albeit conditioned on
[A|HG − AR]v = u mod qZ. Since AR mod qZ is generally made public, P2

acts as a simulator of P1 which does not require the trapdoor R, a property we
desire to have for trapdoor preimage sampling. Just like [LW15, Thm. 3.1], this
improved simulation result carries over to an algebraic setting over number fields
using [LW20, Cor. 5.9], at the expense of requiring low-splitting of the unramified
prime q. The low-splitting is used to argue that v mod q carries enough entropy,
where q|qR and q ̸= R. Typically, v2 mod q carries at least df log2 q bits of
entropy, where f = n/l and l the number of prime ideal factors of qR. Later,
we use a modulus q that splits into 2 prime ideal factors in the power-of-two
cyclotomic field of degree n.

3.3.4 Gaussian Instantiation. We can instantiate Theorem 3.1 with a Gaus-
sian distribution on v1 for a fair comparison with previous results. This instan-
tiation is also crucial in our aggregate signature scheme of Section 5 as we rely
on the geometric properties of Gaussians to have a more compact aggregation.
We thus choose Dr = U([−1, 1]) for the trapdoor distribution, and we select
Ds = Dt = DZm1 ,s for the source and target distributions. For convenience, we
write SamplePre(R;A′,H,ui, s) instead of specifying Ds and Dt. In order to set
s, we first derive the appropriate bound T on Rv2 with Lemma 2.4. Then, we
choose a repetition rate M > 1 which defines the minimal slack α > 0 so that
s = αT . This leads to the following corollary, which will be more convenient to
use later.

Corollary 3.1. Let λ, d, q, b,Q be positive integers with q prime. Let m1 = 2d,
k = ⌈logb q⌉, m2 = dk and assume that d ≥ 5(λ+ 4 + log2 Q)/ log2 e. We define
t1 =

√
(λ+ 4 + log2 Q)/(π log2 e) and t2 =

√
(λ+ 3 + log2 Q)/(π log2 e), and

T = (b − 1)
√
m2 min(2

√
m1,
√
m1 +

√
m2 + t1). Let α > 0, M = exp(π(α−2 +

2t2α
−1)), and finally s = αT . Let A′ ∼ U(Zd×d

q ), R ∼ U([−1, 1]m1×m2) and
H ∈ GLd(Zq). We define P1 and P2 the same way as in Theorem 3.1 but where
Ds,Dt are replaced with DZm1 ,s. Then, it holds that the advantage of any PPT
distinguisher A between P1 and P2 is at most

AdvP1,P2 [A] ≤ εLWE +Q

(
2−

d log2 s+1
2 + 2−(λ+3+log2 Q)M + 3

2M

)
,

where εLWE is the hardness bound of LWEm2

d,d,q,Dr
. In particular, if εLWE ≤

2−(λ+1), then AdvP1,P2
[A] ≤ 2−λ.

Proof. We simply have to verify that the conditions of Theorem 3.1 are met.
First, because of the condition on d and the way we set t1, we have m1 ≥
10(λ+ 4 + log2 Q)/ log2 e and Lemma 2.4 yields

PR,v2
[∥Rv2∥2 > T ] ≤ 2−(λ+4+log2 Q) + 2e−πt

2
1 = 2−(λ+3+log2 Q) =: ε′.
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Additionally, for v1 ∼ DZm1 ,s and y = Rv2 such that ∥y∥2 ≤ T , we have

DZm1 ,s(v1)

(y +DZm1 ,s)(v1)
=

DZm1 ,s(v1)

DZm1 ,s(v1 − y)
= exp

( π

s2
(∥y∥22 − 2⟨y,v1⟩)

)
.

By Lemma 2.3, it holds that |⟨y,v1⟩| ≤ st2∥y∥2 except with probability at most
2e−πt

2
2 = 2−(λ+3+log2 Q) = ε′. Conditioned on |⟨y,v1⟩| ≤ st2∥y∥2, we have

DZm1 ,s(v1)

(y +DZm1 ,s)(v1)
≤ exp

( π

s2
(∥y∥22 − 2t2s∥y∥2)

)
≤ exp

(
π((T/s)2 + 2t2(T/s))

)
= exp(π(α−2 + 2t2α

−1))

= M.

We then obtain that

Pv1∼DZm1 ,s
[M(y +DZm1 ,s)(v1) ≥ DZm1 ,s(v1)] ≥ 1− ε′,

and we can set ε′′ = ε′ = 2−λ−3/Q. Note that the marginal distribution D ′t for
Dt = DZm1 ,s is exactly DZd,s. Since s ≥ ηδ(Zd) for some δ ∈ (0, 1/2), Lemma 2.2
gives H∞(DZd,s) ≥ d log2 s− 1. It thus yields

2−
1
2H∞(DZd,s

)−1 ≤ 2−
d log2 s−1

2 −1,

and in turn

AdvP1,P2
[A] ≤ εLWE +Q

(
2−

d log2 s+1
2 + ε′

M + 3

2M

)
,

by Theorem 3.1 as ε′ = ε′′.
Finally, because of our condition on d, which we use to set T , we have

2−
d log2 s+1

2 ≤ ε′. It then holds that

AdvP1,P2
[A] ≤ εLWE +Qε′(1 +

M + 3

2M
) ≤ εLWE + 3 · 2−(λ+3).

Assuming εLWE ≤ 2−(λ+1) gives AdvP1,P2
[A] ≤ 2−λ as claimed.

In this specific instantiation of [LW15] and Theorem 3.1 with Gaussian dis-
tributions, we only reach widths s which are larger than the ones from [MP12].
Indeed, in the latter, v1 was distributed according to a discrete Gaussian of
width s = Θ(b∥R∥2) = Θ(b(

√
m1 +

√
m2)), while here we obtain a width

s = Θ(b
√
m2(
√
m2 +

√
m1)). However, in the meantime, we drastically reduce

the size of v2, which somewhat compensate for the increase in size of v1 for
typical parameters. Although this may appear as irrelevant in standard appli-
cations of MP trapdoors at first glance, we show in Section 4 that it leads to
interesting improvements in the size of preimages, and that it also finds advanced
applications as that of Section 5 which were vacuous prior to our work.
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4 Optimal Gadget Base and Sampler Performances

In the computational instantiation of MP trapdoors, the gadget base b is an
important parameter to optimize over. Since the base defines the length of the
gadget matrix m2 = d⌈logb q⌉, choosing a larger base results in lower dimensional
vectors, at the expense of a larger norm. As the norm only impacts the bitsize
logarithmically while the dimension impacts it linearly, one could think that the
optimal choice for b is around √q, thus resulting in m2 = 2d, smaller preimages
and in turn smaller signatures. We however discuss here that the optimal base
actually depends on the preimage sampler. We illustrate our discussion with
the instructive example of GPV signatures [GPV08] with MP trapdoors. We
compare the original sampler of [MP12] (thereafter called MP signatures) with
the elliptic sampler we introduced Section 3.2 (later called ellMP signatures),
and that of [LW15] (recalled in Algorithm 3.1) with our new simulation from
Corollary 3.1 (later called LW signatures). We consider this simple example as
the security analysis and parameter estimate are quite straightforward. Other
more complex constructions would require a brand new security analysis when
changing the sampler, especially with the LW sampler which has a very different
structure. Nevertheless, from this simple example alone, we witness interesting
improvement factors on the size of preimages from our analyses. This represents
a step towards concrete practicality of constructions based on MP trapdoors.

GPV Signature. We briefly describe the signature from [GPV08] with MP
trapdoors in their computational instantiation based on M-LWE. The secret
key R is drawn from U(Sm1×m2

1 ) with m1 = 2d, and the public key is composed
of A = [Id|A′] ∈ Rd×m1

q and B = AR mod qR. As described before, the sig-
nature of a message m ∈ {0, 1}∗ consists of a short preimage v = [vT

1 |vT
2 ]

T ∈
Rm1+m2 satisfying

[A|G−B]v = H(m) mod qR.

Since the matrix A has Id as its first block, we can use similar tricks as for
example [PFH+20,EFG+22,ETWY22] to reduce the signature size. The GPV
signature now consists of (v1,2,v2), where v1 = [vT

1,1|vT
1,2]

T , because v1,1 is
determined by the verification equation as v1,1 = H(m)−A′v1,2 − (G−B)v2.

Choosing the Gadget Base. For a given base, the minimal Gaussian pa-

rameter needed for MP signatures v is s = r
√
b2 + 3

√
∥R∥22 + 1, where r is a

randomized rounding factor around 4−5, and ∥R∥2 can be bounded heuristically
by
√
nm1 +

√
nm2 + t for a slack t ≈ 7. The bitsize of a signature is thus

|sigMP| = |v1,2|+ |v2| = nd(1 + ⌈logb q⌉)⌈log2 s log2 λ⌉. (3)

For ellMP signatures, we introduce an asymmetry between v1 and v2 and thus
have two Gaussian parameters s1 = r

√
2
√
b2 + 3∥R∥2 and s2 = s1/∥R∥2. The

bitsize of a signature is

|sigellMP| = |v1,2|+ |v2| = nd⌈log2 s1 log2 λ⌉+ nd⌈logb q⌉⌈log2 s2 log2 λ⌉. (4)

22



Finally, for the sampler from Algorithm 3.1, the Gaussian parameter for v1 is
given by s = α∥R∥2(b − 1)

√
nm2 where the slack α defines the repetition rate

M . The bitsize of a signature is

|sigLW| = |v1,2|+ |v2| = nd⌈log2 s log2 λ⌉+ nd⌈logb q⌉⌈log2 b⌉. (5)

We already see that as opposed to Equations (3) and (4), the size of v2 for LW
signatures in Equation (5) is roughly nd log2 q independently of the choice of
b. However, s increases with b which means that a larger base b would result
in larger signatures. The opposite phenomenon happens for MP signatures as
we observe that the function mapping b to |sigMP| is roughly non-increasing in
typical parameter settings. Hence, based on this sole metric, larger bases b would
give smaller signatures, and the optimal choice would therefore be b =

⌈√
q
⌉
. For

ellMP signatures however, the asymmetry of the preimages places it in between
MP and LW signatures. Typically, |sigellMP| is non-increasing up to an inflexion
point that is slightly smaller than that of MP signatures but that is still larger
than

⌈√
q
⌉
. So the asymmetry introduced by our optimization does not impact

the choice of the gadget base by much.
However, as illustrated in the tables below, the choice of the optimal base

is not as straightforward as the formula above might lead us to think. One
must indeed take into account the impact of the parameters on the underlying
computational assumptions. Indeed, in the security proof, one needs to argue
that simulated signatures lead to programmed random oracle responses which
are close to uniform. To do so, we use the simulation result from Corollary 3.1
(or its equivalent for the old sampling procedure for the MP and ellMP samplers)
in the module setting. As such, we need to consider parameters that ensure the
M-LWEn,d,d,q,U(S1) problem is hard. For a fair estimate, we aim at λ+ log2 m2

bits of security for M-LWE, as the pseudorandomness of [Id|A′]R mod qR is
argued under the M-LWE assumption with m2 secrets. The security proof is
then concluded by a reduction to M-SISn,d,m1+m2,q,β where β ≥ ∥v − v∗∥2 for
two preimages v,v∗. It yields β = 2s

√
nm1 + nm2 for MP signatures, β =√

4s21nm1 + 4s22nm2 for ellMP signatures, and β =
√
4s2nm1 + (b− 1)2nm2 for

LW signatures. For MP signatures, the bound β is dominated by the bottom part
v2 as m2 ≥ m1. It thus makes sense to increase the base in order to reduce the
dimension of m2 and thus have balanced contributions of v1 and v2 to the M-SIS
bound β. On the contrary, for ellMP and LW signatures, the asymmetry between
v1 and v2 due to the sampler reduces the size of v2 and thence re-balances
the contributions of v1 and v2 in the bound β. Typically, for LW signatures,
β is already dominated by v1 for b = 2, and increasing b will only enlarge the
gap between the contributions of v1 and v2 to the M-SIS bound and inherently
decrease the security.

Estimates. We now give performance estimates for MP, ellMP and LW signa-
tures with parameters achieving λ = 128 bits of security for the GPV signature,
using the Core-SVP methodology with sieving SVP oracle. For that, we fix the
randomized rounding factor r = 5.4, and the spectral norm slack t = 7, and
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rejection sampling slack α = 8 (leading to a repetition rate of M ≈ 73). We
use Q = 240 as the maximal number of emitted signatures per key. We then
find the appropriate dimension d and modulus q to achieve the security target
while minimizing the signature size. Although our goal is also to optimize over
the gadget base, we give the performance for several choices of base to show the
overall trends described above.

The values of λM-LWE and λM-SIS correspond to the reached security of
M-LWEn,d,d,q,U(S1) and M-SISn,d,m1+m2,q,β respectively. The estimates are given
in Tables 4.1, 4.2 and 4.3. When the base is said to be q1/k, we actually consider
b =

⌈
q1/k

⌉
to have an integer base for which the gadget dimension is m2 = dk.

The optimal sizes and parameters are highlighted in the tables. Using the base
b =
√
q impacts the M-SIS bound too drastically, and parameters need to be in-

creased to compensate the security accordingly. In particular, one has to ensure
that the infinity norm of the M-SIS solution is smaller than q to avoid trivial
solutions.

λM-LWE λM-SIS q d s |v1,2| |v2| |sigMP|

b = 2 239 144 ≈ 215.2 5 2655 2.34 37.50 39.84

b = 4 233 150 ≈ 215.5 5 3461 2.34 18.75 21.09

b = q1/5 216 147 ≈ 216.7 5 7661 2.50 12.50 15.00

b = q1/3 181 131 ≈ 219.7 5 56804 2.97 8.91 11.88

b = q1/2 194 154 ≈ 226.7 7 6616938 5.69 11.37 17.06

Table 4.1. Parameter and size estimates of MP signatures using different bases b. The
sizes are expressed in KB. The ring degree is n = 256.

λM-LWE λM-SIS q d s1 s2 |v1,2| |v2| |sigellMP|

b = 2 178 134 ≈ 215.5 4 3372 19 1.88 16.00 17.88

b = 4 173 130 ≈ 216 4 4570 31 1.88 9.00 10.88

b = q1/5 207 161 ≈ 217.4 5 11797 86 2.66 7.81 10.47

b = q1/3 174 136 ≈ 220.4 5 94702 792 3.13 6.09 9.22

b = q1/2 188 154 ≈ 227.4 7 11926700 94109 5.91 8.75 14.66

Table 4.2. Parameter and size estimates of ellMP signatures using different bases b.
The sizes are expressed in KB. The ring degree is n = 256.

These estimates indeed reflect the expected behavior, namely MP signatures
becomes much more compact with larger bases while LW signatures are most
efficient for smaller bases. They also show that in the context of GPV signa-
tures, the ellMP sampler leads to more compact preimages than the MP sam-
pler. Finally, our new analysis of Algorithm 3.1 leads to signatures that are
more compact than with both the MP and ellMP samplers. Other signature de-
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λM-LWE λM-SIS q d s |v1,2| |v2| |sigLW|

b = 2 195 157 ≈ 222.5 6 376491 4.13 4.31 8.44

b = 4 188 151 ≈ 223.2 6 645772 4.31 4.50 8.81

b = q1/5 167 134 ≈ 225.6 6 3576993 4.69 5.62 10.31

b = q1/3 167 137 ≈ 230.3 7 90206170 6.56 7.22 13.78

b = q1/2 162 138 ≈ 240.3 9 90202905475 11.25 11.81 23.06

Table 4.3. Parameter and size estimates of LW signatures using different bases b. The
sizes are expressed in KB. The ring degree is n = 256.

signs [DM14,BFRS18,dPLS18,BEP+21,LNPS21,LNP22,dPK22,JRS22] may ben-
efit from using the sampler from [LW15]. However, the choice of the optimal
sampler depends on the application and the security analysis. For GPV signa-
tures, v1 and v2 contribute somewhat similarly to the M-SIS bound. In more
complex designs, the M-SIS bound may already be dominated by v1, in which
case the LW sampler may not be relevant as it increases the size of v1 while
reducing that of v2.

5 A Lattice-Based Aggregate Signature Scheme

As concrete application of how we can leverage the asymmetry of the preimage
resulting from our new analyses, we construct the first lattice-based aggregate
signature that supports public aggregation and that is more efficient than the
naive concatenation of individual signatures. It in particular shows that the
LW sampler from Algorithm 3.1 improved as described in Section 3.3 can unlock
new signature designs. We start by recalling the definition of aggregate signature
schemes in Section 5.1, before presenting our construction in Section 5.2. Then,
we prove the security of our scheme in the aggregate chosen-key model coined
by Boneh et al. [BGLS03] in Section 5.3. Finally, we dedicate Section 5.4 to
discussing the performance of our scheme.

5.1 Aggregate Signature Schemes

An aggregate signature is a regular signature scheme {KeyGen,Sign,Verify} which
also enables public aggregation of different signatures on different messages and
under different signing keys. The regular signature is thus completed with two
algorithms AggSign and AggVerify. The former takes as input a sequence of
messages (mi)i∈[N ], of public keys (pki)i∈[N ] and of signatures (sigi)i∈[N ] of said
messages under the corresponding keys, and outputs a single signature sigagg. The
AggVerify algorithm then takes the same inputs except that it gets sigagg instead
of the individual signatures, and returns 1 if the aggregate signature is valid
and 0 otherwise. An aggregate signature scheme is expected to be correct, i.e.,
honestly generated signatures and aggregate signatures verify using Verify and
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AggVerify respectively, and secure in a security model introduced by [BGLS03]
which we recall in Section 5.3.

The goal of aggregate signatures is to perform batch verification of several
independent signatures, albeit sharing the same public parameters. The naive
solution is to define sigagg as the concatenation of the (sigi)i∈[N ] and perform
verification individually but the resulting construction is meaningless, except
perhaps to show that aggregate signatures trivially exist. In practice, we are
therefore interested in aggregate signature schemes that perform better than the
naive concatenation.

As explained in Section 1.1, several aggregate signatures gathering such fea-
tures have been proposed in the classical setting, but it was yet open to propose
a post-quantum construction. A first attempt over lattices was proposed by
Döroz et al. [DHSS20], but had major drawbacks either in performance (MMSA)
or security (MMSAT/MMSATK), and was based on a non-standard assumption
called Vandermonde-SIS (or Partial Fourier Recovery). Boudgoust and Roux-
Langlois [BR21] then proposed another lattice-based aggregate signature based
on the FSwA paradigm, which unfortunately ended up being larger than the
trivial concatenation. One explanation of this lack of compression is the half ag-
gregation and the peculiarities of aggregate signatures which in the end make the
parameters slightly worse than for the standalone signature. In particular, FSwA
signatures are composed of two parts (sig1, sig2) and only one of them can be
aggregated, i.e., the aggregate signature is of the form sigagg = (sig1, (sig2,i)i∈[N ])
where (sig1,i, sig2,i)i∈[N ] are the signatures to be aggregated. Unfortunately, one
needs larger parameters to prove the security of the aggregate signature scheme.
As a result the size of the non-aggregated part sig2,i becomes larger than the size
of a full FSwA signature with the smaller parameters. Hence, sigagg is always
larger than the concatenation of standalone signatures in the case of [BR21],
regardless of the value of N .

We now present a lattice-based aggregate signature scheme that supports
public aggregation, whose security is proven in the aggregate chosen-key model
based on standard (module) lattice assumptions, and that performs better than
the naive solution. This answers positively to the open problem left by Boudgoust
et al. in [BR21], and provides, to the best of our knowledge, the first post-
quantum aggregate signature combining all such features.

5.2 Our Construction

Our aggregate signature scheme is based on the GPV hash-and-sign frame-
work [GPV08], with MP trapdoors [MP12] and the preimage sampling algorithm
of [LW15] presented in Section 3 with our new parameter analysis. We present
our scheme over module lattices.

As explained in Section 4, the combination of the GPV signature and MP
trapdoors produces signatures sig = v on messages m by sampling the preimage
v of H(m) by [A|G − AR] mod q. The function H is modeled by a random
oracle, the matrix A is uniformly random and part of the public key, while
R is a short matrix constituting the secret key. The matrix B = AR is also
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part of the public key. For different users, each user i would have a set of keys
pki = (Ai,Bi = AiRi) and ski = Ri. An intuitive way of aggregating signatures
sigi is to sum them, but this becomes tricky when the public matrices involved in
verification, i.e., [Ai|G−Bi], are all different. We can however force all the Ai to
be the same matrix A for all i, making sure A is honestly generated, i.e., without
embedding an illicit trapdoor. This can for example be done by setting A as the
hash of some public parameters. Each user would thus share the same A and
would have their own public key Bi = ARi. Hence, by summing the verification
equations, we would obtain A·

∑
i∈[N ] v1,i+

∑
i∈[N ](G−Bi)v2,i =

∑
i∈[N ]H(mi).

The aggregate signature could then be (
∑

i v1,i, (v2,i)i), meaning we would only
be aggregating the v1,i and providing the individual v2,i.

As in the previous attempts [DHSS20,BR21], it seems difficult to achieve full
aggregation due to the fact that v2,i faces Bi, which must differ for every user.
As a result, the bit size of the first half

∑
i v1,i would grow logarithmically with

N , while that of the second half (v2,i)i would grow linearly with N . Similarly
to FSwA signatures, as described in Section 5.1, if the increased complexity of
aggregate signature security results in v2,i being larger that a full MP signature
(v1,v2), the aggregate signature scheme would be vacuous. Fortunately, based
on our new assessment, the preimage sampler recalled in Section 3 moves the
bulk of the signatures in the v1,i while minimizing the size of v2,i which makes
the concatenation of the v2,i minimal. It therefore amortizes the linear cost of the
aggregate signature, and each v2,i in the aggregate signature stays sufficiently
below the size of a full LW signature to allow for relevant compression.

Unfortunately, this aggregate signature is not secure as it is. Indeed, one can
note that the user j can produce a forged aggregate signature on behalf of the
set of users 1, . . . , N as follows:

1. Select a set of messages mi, for i ∈ [N ].
2. Select v2,i, for i ̸= j, distributed as in a normal signature.
3. Compute v2,j such that Gv2,j = −

∑
i̸=j(G−Bi)v2,i +

∑
i∈[N ]H(mi).

4. Set v1 = Rjv2,j .

The resulting aggregate signature (v1, (v2,i)i) is indeed valid on (mi)i under
public keys (Bi)i since

A · v1 +
∑
i∈[N ]

(G−Bi)v2,i = A · v1 + (G−Bj)v2,j +
∑
i ̸=j

(G−Bi)v2,i

= Gv2,j +
∑
i ̸=j

(G−Bi)v2,i

=
∑
i∈[N ]

H(mi).

Intuitively, the problem stems from the fact that the rogue signer is able to
compute its own signature after seeing/selecting the other components. It can
thus use its own trapdoor to select a preimage that will cancel all these compo-
nents. To solve this problem, we rely on a countermeasure reminiscent of the one
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used against rogue key attacks. We tweak the verification equation with small
random weights ei that deterministically depend on the full set {(mi,v2,i,Bi)}i.
This therefore forces the adversary to commit to each v2,i before seeing the ver-
ification equation it must satisfy, which thwarts the previous attack.

However, if we follow the standard approach where ei ← H(B1,v2,1,m1, . . . ,
BN ,v2,N ,mN , i) for some hash function H, we will end up with the same prob-
lem as in [BR21]: we could only ensure unforgeability for the last signature (the
one generated under public key BN ). This has led the authors in [BR21] to use
a specific security model, where the challenge key must necessarily be the last
one, but the real-world security assurances provided by this model are question-
able. Informally, the problem is related to the forking lemma: at some point
in the security proof we need to rewind and change the weight ej associated
with the challenge public key Bj . However, the proof works only if ej is the last
weight to be queried to the random oracle, hence the restriction in the model
of [BR21]. Otherwise, the adversary could change the other weights after the
rewinding, which would completely invalidate the proof strategy. Here, we stress
that one cannot simply run the simulation several times until this event (ej is
the last queried weight) happens because j is known to the adversary (it is the
index corresponding to the challenge public key). Therefore, an adversary could
systematically initiate its queries with ej , leading this probabilistic approach to
fail.

We show that we can circumvent this issue at almost no cost by generating
the small elements ei in two steps. Concretely, we first compute f as the out-
put of hash function Hf taking as input {Bj ,v2,j ,mj}j . The output space is
denoted by F but there are no restrictions on it because f is then fed to another
random oracle. The only constraint is that |F | must be exponential in the secu-
rity parameter to avoid simple guessing or collision-finding attacks. Then, each
ei is generated as the output of another hash function He run on (f, i). Here, the
output of the random oracle shall be small polynomials. We typically use ternary
polynomials ei with fixed Hamming weight, i.e., in C = {e ∈ S1 : ∥e∥1 = w}.
Intuitively, this resorting to two successive random oracles Hf ,He enables the
simulation to anticipate the weight queries and, more importantly, to control
their order. This way, we can rely on the forking lemma without placing any
contrived restrictions on the model, at the cost of only one hash evaluation for
the whole aggregate signature.

The sampler from [LW15] given in Algorithm 3.1 can be instantiated so
that it samples the v1,i close to a Gaussian distribution, which is the object of
Corollary 3.1. Although [LW15] can be used for a broader class of distributions
such as uniform over a hypercube, the properties of Gaussian distributions lead
to tighter verification bounds and in turn a smaller M-SIS bounds and thus
smaller parameters. More precisely, the weighted sum v1 =

∑
i∈[N ] eiv1,i follows

a Gaussian distribution, and the tail bound thus gives ∥v1∥2 ≤ w ·
√
N · s√nm1.

For other distribution, one would use the triangle inequality and get ∥v1∥2 ≤∑
i∈[N ]∥ei∥1∥v1,i∥2 ≤ w ·N ·B where B would be the norm bound on each v1,i
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for a single signature. The dependency in N is therefore optimized in the case
of Gaussian distributions.

Finally, as in Section 4, we can consider the matrix A in Hermite Nor-
mal Form, i.e., A = [Id|A′] with A′ ∼ U(Rd×d

q ). If each v1,i is parsed as
[vT

1,1,i|vT
1,2,i]

T with v1,1,i,v1,2,i ∈ Rd, this allows us to only aggregate the v1,2,i

as v1,2 =
∑

i∈[N ] eiv1,2,i. The other part, i.e., v1,1 =
∑

i∈[N ] eiv1,1,i can be
recovered during verification as

v1,1 =
∑
i∈[N ]

eiH(mi)−A′v1,2 −
∑
i∈[N ]

ei(G−Bi)v2,i.

Although this does not have a tremendous impact on the aggregate signature
size when N is large, as the bulk of it is due to the concatenation of the v2,i, it
leads to a more compact signature and gives a fair comparison with concatenated
LW signatures.

The Scheme. In what follows, we work over the 2n-th cyclotomic ring denoted
by R for n a power of two, as defined in Section 2.3. Although we have seen that
the optimal base for the sampler from [LW15] seems to be b = 2, we present
the scheme for an arbitrary b and optimize over it to give the most efficient
parameter sets. The aggregate signature is described by Algorithms 5.1 to 5.6.

Algorithm 5.1: Setup
Input: Security parameter λ, Maximal number of signers N .
1. Choose a positive integers d, q, w, b with q prime and q = 5 mod 8.
2. C ← {e ∈ S1 : ∥e∥1 = w}. ▷ Hash space for weights, such that |C| ≥ 22λ

3. k ← ⌈logb q⌉.
4. (m1,m2)← (2d, dk).
5. G = Id ⊗ [1 · · · bk−1] ∈ Rd×dk

q . ▷ Gadget vector

6. t←
√

(3λ/2 + 4 + log2 Q)/(π log2 e). ▷ t ≈ 7

7. Choose α > 0. ▷ Rejection Sampling Slack
8. M ← exp(π(α−2 + 2tα−1)). ▷ Repetition rate
9. s← max(α(b− 1)

√
nm2(

√
nm1 +

√
nm2 + t), w

√
2ηε(Znm1)). ▷ Width

10. A′ ←↩ U(Rd×d
q ).

Output: pp = (A′;G;λ,N, n, q, d,m1,m2, w, k, s,M).

Algorithm 5.2: KeyGen
Input: Public parameters pp as in Algorithm 5.1.
1. R←↩ U(Sm1×m2

1 )
2. B← [Id|A′]R mod qR ∈ Rd×m2

q

Output: pk = B, and sk = R. ▷ pp stored with pk for simplicity

Algorithm 5.3: Sign
Input: Secret key sk, Message m ∈ {0, 1}∗, Public key pk.
1. if (m,v) is stored then look-up v
2. else v← SamplePre(R;A′, Id,H(m), s). ▷ Algorithm 3.1
3. Store v. Parse v as [vT

1,1|vT
1,2|vT

2 ]
T with v1,1,v1,2 ∈ Rd and v2 ∈ Rm2 .

Output: sig = (v1,2,v2).
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Algorithm 5.4: Verify
Input: Public key pk, Message m ∈ {0, 1}∗, Signature sig.
1. v1,1 ← H(m)−A′v1,2 − (G−B)v2 ∈ Rd

2. v1 ← [vT
1,1|vT

1,2]
T ∈ Rm1 .

3. b← (∥v1∥2 ≤ s
√
nm1) ∧ (v2 ∈ Tm2

b )
Output: b. ▷ b = 1 if valid, 0 otherwise

Algorithm 5.5: AggSign
Input: Public keys (Bi)i∈[N ], Signatures (v1,2,i,v2,i)i∈[N ], Messages (mi)i∈[N ]

1. f ← Hf (B1,v2,1,m1, . . . ,BN ,v2,N ,mN ) ∈ F ▷ |F | ≥ |C| ≥ 22λ

2. ∀i ∈ [N ], ei ← He(f, i) ∈ C.
3. v1,2 ←

∑
i∈[N ] eiv1,2,i.

Output: sigagg = (v1,2, (v2,i)i∈[N ]).

Algorithm 5.6: AggVerify
Input: Public keys (Bi)i∈[N ], Aggregate Signature (v1,2, (v2,i)i∈[N ]), Mes-
sages (mi)i∈[N ]

1. f ← Hf (B1,v2,1,m1, . . . ,BN ,v2,N ,mN ) ∈ F
2. ∀i ∈ [N ], ei ← He(f, i) ∈ C.
3. v1,1 ←

∑
i∈[N ] eiH(mi)−A′v1,2 −

∑
i∈[N ] ei(G−Bi)v2,i

4. v1 ← [vT
1,1|vT

1,2]
T ∈ Rm1 .

5. b1 ← (∥v1∥2 ≤ ws
√
N · nm1).

6. b2 ← (∀i ∈ [N ],v2,i ∈ Tm2
b )

Output: b1 ∧ b2. ▷ 1 if valid, 0 otherwise

We give prove the correctness of our scheme in the following theorem.

Theorem 5.1 (Correctness). The aggregate signature scheme (Setup, Key-
Gen, Sign, Verify, AggSign, AggVerify) described in Section 5.2 is correct. For-
mally, for all security parameters λ and number of signers N , the following hold.

Single signature correctness. For all pp ← Setup(1λ, N), for all (pk, sk) ←
KeyGen(pp), for all m ∈ {0, 1}∗,

P[Verify(pk,m,Sign(sk,m; pk)) = 1] ≥ 1− negl(λ).

Aggregate signature correctness. For all pp← Setup(1λ, N), for all i ∈ [N ]
and for all (pki, ski)← KeyGen(pp), mi ∈ {0, 1}∗, sigi ← Sign(ski,mi; pki),

P[AggVerify(PK,AggSign(PK,SIG,M),M) = 1] ≥ 1− negl(λ),

where PK = (pki)i∈[N ], SIG = (sigi)i∈[N ] and M = (mi)i∈[N ].

Proof. We first look at the single signature correctness. Let pp← Setup(1λ, N),
(B,R) ← KeyGen(pp), m ∈ {0, 1}∗, and (v1,2,v2) ← Sign(R,m;B). We re-
construct v1,1 ← H(m) − A′v1,2 − (G − B)v2 and v1 = [vT

1,1|vT
1,2]

T . It thus
holds that [vT

1 |vT
2 ]

T was obtained using SamplePre. Using the parameters of Al-
gorithm 5.1,similarly as in the proof Theorem 3.1, Lemma 2.5 gives that v1 is
within statistical distance at most 1 · (ε′/M + ε′′(M + 1)/(2M)) ≤ 2−3λ/2−2/Q
of DRm1 ,s, where ε′, ε′′ are as in Corollary 3.1 satisfying ε′, ε′′ ≤ 2−3λ/2−3/Q.
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Notice that in the correctness we look at one signature which explains the factor
1 and not Q. Lemma 2.3 then yields

P[Verify(B,m,v) = 1] ≥ 1− 2−3λ/2−2/Q− 2−2nm1 = 1− negl(λ).

Additionally, by construction it holds that v2 ∈ Tm2

b .
Let us now investigate the correctness of our aggregate signature. Let pp←

Setup(1λ, N), and for all i ∈ [N ] let (pki, ski) ← KeyGen(pp), mi ∈ {0, 1}∗,
sigi ← Sign(ski,mi; pki). Let sigagg ← AggSign(PK,SIG,M) and parse it as
(v1,2, (v2,i)i∈[N ]). From the single signature correctness above, we directly have
that b2 = 1, namely that v2,i ∈ Tm2

b for all i ∈ [N ].
We reconstruct v1,1 ←

∑
i∈[N ] eiH(mi)−A′v1,2−

∑
i∈[N ] ei(G−B)v2,i and

v1 = [vT
1,1|vT

1,2]
T . Since the signatures were honestly generated, it holds that

v1 =
∑

i∈[N ] eiv1,i where [vT
1,i|vT

2,i]
T was obtained using SamplePre.

We now look at the norm bound on v1. The idea is that v1 behaves as a
discrete Gaussian over a lattice that depends on the weights ei and its covariance
depends on the size of the ei. Using the Gaussian tail bound of Lemma 2.3 yields
the correct bound. We now give more details. First, since v1 is a weighted sum
of discrete Gaussian vectors, Lemma 2.6 yields

∆(
∑
i∈[N ]

eiDRm1 ,s,D∑
i∈[N] eiR

m1 ,
√
S) ≤ negl(λ),

where S = Im1 ⊗
∑

i∈[N ] s
2Mτ (ei)Mτ (ei)

T , as long as the Gaussian width veri-
fies s ≥

√
2ηε(Znm1) ·maxi∈[N ]∥Mτ (ei)∥2. Due to the specific form of Mτ (ei) as

described in Section 2.3, it holds by e.g. [BJRW23, Lem. 2.2] that ∥Mτ (ei)∥2 ≤
∥τ(ei)∥1 = w. The condition thus becomes s ≥ w

√
2ηε(Znm1), which is encom-

passed by our parameter choice. Then, using the fact that each ei has weight
w ̸= 0, it holds that ei ̸= 0 in the field K and in turn that all the Mτ (ei)
are invertible. As a result, the final covariance matrix S is positive definite.
Using [GMPW20, Lem. 2.3], we obtain that

D∑
i∈[N] eiR

m1 ,
√
S =
√
SD√

S
−1 ∑

i∈[N] eiR
m1 ,1

,

and we can therefore apply Lemma 2.3 and get

Pv1∼D∑
i eiR

m1 ,
√

S

[
∥v1∥2 >

∥∥∥√S∥∥∥
2

√
nm1

]
= Px∼D√

S−1 ∑
i eiR

m1 ,1

[∥∥∥√Sx∥∥∥
2
>

∥∥∥√S∥∥∥
2

√
nm1

]
≤ Px∼D√

S−1 ∑
i eiR

m1 ,1
[∥x∥2 >

√
nm1]

≤ 2−2nm1 ,

where the first inequality follows by inclusion of events. We now only need to
bound

∥∥∥√S∥∥∥
2
. The latter corresponds to

√
λmax(S) which itself equals

√
λmax(S′)
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with S′ = s2
∑

i∈[N ] Mτ (ei)Mτ (ei)
T , and where λmax denotes the largest eigen-

value. Recalling from Section 2.3 that Mτ = PHMσP with P a unitary matrix,
a standard calculation yields

S′ = s2PHdiag

 ∑
i∈[N ]

|σ1(ei)|2, . . . ,
∑
i∈[N ]

|σn(ei)|2
P,

where the σi are the individual field embeddings. It thus proves that

λmax(S
′) = s2 max

k∈[n]

∑
i∈[N ]

|σk(ei)|2.

For all (k, i), we have |σk(ei)| ≤ ∥σ(ei)∥∞ = ∥Mσ(ei)∥2. By [BJRW23, Lem.
2.3], it gives ∥Mσ(ei)∥2 = ∥Mτ (ei)∥ ≤ ∥τ(ei)∥1 = w. As a result, we obtain
λmax(S

′) ≤ s2Nw2. Combining the rejection sampling, the weighted sum of
Gaussians, the tail bound and the spectral bound on λmax(S), it proves that

Pv1
[∥v1∥2 > ws

√
N · nm1] ≤ N · 2−3λ/2−2/Q+ 2−2nm1 + negl(λ),

thus proving that b1 = 1 except with negligible probability, as N ≪ Q and
N = poly(λ). It then yields

P[AggVerify(PK,M, sigagg) = 1] ≥ 1−N · 2−3λ/2−2/Q− 2−2nm1 − negl(λ)

= 1− negl(λ),

concluding the proof.

5.3 Security

The aggregate chosen-key security model introduced by Boneh et al. [BGLS03]
captures the idea that an adversary cannot produce an aggregate signature on
behalf of N users, even if it colludes with (at most) N−1 of them. The adversary
is given a challenge public key pk and the ability to query signatures on this key,
and is asked to produce N − 1 keys pki as well as an aggregate signature sigagg
that verifies with these N public keys. We formally define this model by a game
between an adversary A and a challenger B in three stages.

Setup Stage. B runs Setup and KeyGen to obtain pp, pk, and sk. It then gives
pp and pk to A.

Query Stage. A queries signatures on at most Q messages m(1), . . . ,m(Q),
which are answered by B returning sig(i) ← Sign(sk,m(i); pk).

Forgery Stage. A eventually provides a forgery ((pki)i∈[N ], (mi)i∈[N ], sigagg).

The adversary wins the game if (1) there exists an i∗ ∈ [N ] such that pki∗ = pk,
(2) for all i ∈ [Q], mi∗ ̸= m(i), and (3) AggVerify((pki)i∈[N ], sigagg, (mi)i∈[N ]) =
1. The adversary’s advantage is defined as Adv[A] = P[A wins], where the prob-
ability is over all the random coins. We say that the aggregate signature scheme
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is secure in the aggregate chosen-key model if for all probabilistic polynomial
time (PPT) adversary A, Adv[A] is negligible in the security parameter λ.

We note that in [BGLS03], the challenge key is set to be pk1. In the context
of their construction in bilinear groups, this can be assumed without loss of gen-
erality because the order of the signatures that are aggregated does not matter.
In our case, each (half) signature v1,i is multiplied by a weight ei = He(f, i)
which depends on the position i and also the order of the signatures because
of f = Hf (B1,v2,1,m1, . . . ,BN ,v2,N ,mN ). These weights are necessary in the
lattice setting to avoid the attack we described in Section 5.2. As a result, in the
security proof, the challenger has to guess the position i∗ of the challenge key in
order to exploit the forgery to break the underlying computational assumption.

Theorem 5.2 (Security). The aggregate signature scheme (Setup, KeyGen,
Sign, Verify, AggSign, AggVerify) described in Section 5.2 is secure in the ag-
gregate chosen-key model under the M-SIS and M-LWE assumptions. More for-
mally, for any PPT adversary A against the aggregate chosen-key security, it
holds that

Adv[A] ≤ N ·
(
2εM-LWE +

Qe

|C|
+

√
QeεM-SIS

)
+ negl(λ) = negl(λ),

where εM-LWE is the hardness bounds of M-LWEm2

n,d,d,q,U(S1)
, and εM-SIS is that

of M-SISn,d,m1+m2,q,β with β =
√

(2w(
√
N + 1)s

√
nm1)2 + (4w(b− 1)

√
nm2)2.

Proof. We proceed by a sequence of games that we prove indistinguishable from
the aggregate chosen-key game. In the final game, we use the general forking
lemma in order to deduce a solution of M-SIS. We first denote by Q the maximal
number of signature queries, and by Qe the maximal number of queries to He.

Game G0. We change the original aggregate chosen-key game by programming
the random oracles in a certain way. The challenger B starts by sampling i+ ←↩
U([N ]), which later acts as a guess on the position of the challenge key in the
forgery. B is also provided with some random inputs hj ←↩ U(C) for all j ∈ [Qe].
Additionally, B keeps four tables Ts, Tf , Te, Tm that will be used to store the
corresponding queries, and which are all empty at the outset of the game. Finally,
it further stores an index je, initially set to 0.
Setup. B computes pp← Setup(1λ) and (B,R) = (pk, sk)← KeyGen(pp). It then
sends pp, pk to A.
Queries to H. On input m ∈ {0, 1}∗ given by A, B first checks whether m is
already stored in Tm. If so, it directly outputs the u from Tm corresponding to
m. If not, it samples u←↩ U(Rd

q), stores (m,u) in Tm and sends u to A.
Queries to Hf . On input (Bi,v2,i,mi)i∈[N ] given by A, B first checks whether
it already appears in Tf . If so, it directly outputs the f in Tf corresponding to
the input. If not, it samples f ←↩ U(F ), stores ((Bi,v2,i,mi)i∈[N ], f) in Tf and
sends f to A. Additionally, for all i ∈ [N ] \ {i+}, B samples ei ←↩ U(C) and
stores (f, i, ei) in Te.
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Queries to He. On input (f, i) given by A, B first checks whether it already
appears in Te. If so, it outputs the ei from Te corresponding to (f, i). If (f, i)
does not appear in Te, then either f does not appear in Tf or i = i+. Without
loss of generality, we can assume that f has previously been obtained by a query
to Hf , and therefore we necessarily have i = i+. Then, B increments je to je+1
and sends hje to A. It also stores (f, i+, hje) in Te. Notice that He(f, i

+) is
therefore set after all the other He(f, i) for i ̸= i+.
Signature queries. On input m, B first checks if m appears in Ts. If so, it out-
puts the v from Ts corresponding to m. If not, it proceeds as follows. B checks
if m is in Tm. If not, it samples u ←↩ U(Rd

q) and stores (m,u) in Tm. Other-
wise, it gets the corresponding syndrome u. Then, it runs the legitimate signing
algorithm Sign with sk, pk, pp by just replacing H(m) by u, namely sampling
v = (v1,1,v1,2,v2)← SamplePre(R;A′, Id,u, s). It then stores (m,v) in Ts and
sends (v1,2,v2) to A.
Forgery. Eventually, A outputs ((pki)i∈[N ], (mi)i∈[N ], sigagg) to B such that there
exists i∗ ∈ [N ] satisfying pki∗ = pk, that mi∗ was not part of the signing
queries, and such that AggVerify((pki)i∈[N ], sigagg, (mi)i∈[N ]) = 1. If these con-
ditions are not met, then B outputs (0,⊥). From now on, we assume that these
conditions are met, which happens with probability Adv[A] as everything is
correctly distributed. Then, if i∗ ̸= i+, then B also outputs (0,⊥). Since i+

is completely independent of the view of A as all the random oracle queries
are identical as in the standard game, this happens with probability 1/N . If
f = Hf ((pki,v2,i,mi)i∈[N ]) was not queried, then A would have had to guess
the correct value of f to obtain the weights ei, and thus the signature would
verify with probability at most 1/|F |. Noting that 1/|F | = negl(λ), it would
entail a negligible advantage for A. So we assume that f has been queried.
Similarly, if He(f, i

+) was not queried, then the probability that AggVerify
passes is at most 1/|C| as A would have had to guess the value of ei+ . Since
1/|C| = negl(λ), then such an adversary A would have a negligible advantage.
So we further assume, without loss of generality that He(f, i

+) was queried and
is equal to some hj for some counter index j. Then, B outputs (j, out) with
out = ((pki)i∈[N ], (mi)i∈[N ], sigagg, (He(f, i))i∈[N ])). Further, we let pk denote
the probability that B does not output (0,⊥) in game Gk. Here, we have

p0 =
1

N
Adv[A]. (6)

Game G1. This game is identical to game G0 except in the way signatures are
generated. Instead, B simulates signatures without resorting to sk by using the
simulator from Corollary 3.1. We thus change the way queries to H and signing
queries are handled.
Queries to H. On input m ∈ {0, 1}∗ given by A, B first checks whether m is
already stored in Tm. If so, it directly outputs the u from Tm corresponding to
m. If not, it samples v1 ←↩ DRm1 ,s, v2 ←↩ G−1(U(Rd

q)), sets v = [vT
1 |vT

2 ]
T ∈

Rm1+m2 and computes u = [Id|A′|G−B]v mod qR. It rejects such a v,u with
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probability 1−1/M and repeats the procedure until v,u is kept. Then, B stores
(m,u) in Tm and (m,v) in Ts. It then sends u to A.
Signature queries. On input m ∈ {0, 1}∗ given by A, B first checks whether m
is already stored in Ts. If so, it directly outputs the v from Ts corresponding to
m. If not, it means that H was never queried on m. In this case, B performs the
query to H(m) on its own as above and fills Tm with (m,u) and Ts with (m,v).
It then sends v to A.

The simulation result of [LW15, Thm. 3.1] which we overhauled in Theo-
rem 3.1 applies to the Gaussian case as stated in Corollary 3.1. Hence, the
latter, extended to the module setting as explained in Section 3.3.3, yields that

|p0 − p1| ≤ εM-LWE +Q · 2−3λ/2−1−log2 Q = εM-LWE + negl(λ). (7)

Game G2. Since sk is no longer used in game G1, we define G2 to be identical
to G1 except in the setup stage.
Setup. B computes pp ← Setup(1λ) and samples B′ ←↩ U(Rd×m2

q ). It then
computes B← G−B′ and sets pk← B. It then sends pp, pk to A.

Since B′ is uniform, then so is B. By the M-LWEm2

n,d,d,q,U(S1)
assumption,

[Id|A′]R mod qR in game G1 is εM-LWE-indistinguishable from B in game G2.
As a result, it holds that

|p1 − p2| ≤ εM-LWE. (8)

Forking. We now aim at bounding p2, using the general forking lemma recalled
in Lemma 2.7. We use the forking algorithm FB of Algorithm 2.1 around B
and we will invoke Lemma 2.7. The input generator IG is defined by outputting
A = [Id|A′|B′] where [A′|B′] ←↩ U(R

d×(m1−d+m2)
q ) and pp honestly generated

(where A′ is the same matrix as the one in pp). For clarity, we denote by A the
matrix [Id|A′]. We call acc the accepting probability of B, i.e., acc = p2, and
frk the forking probability from Lemma 2.7. Hence, with probability frk, the two
calls to B, and in turn A (which are both oblivious to the fact they are being
rewound), return (j, out) and (j′, out′) with j = j′ ̸= 0 and hj ̸= h′j . The output
of FB is in this case (1, out, out′). We now use out, out′ to construct a solution
to M-SIS on the matrix A.

By definition of the forking, we have that the random coins are the same up
to the forking index j. As a result, (f, i+) = (f ′, i+) and ei+ = hj ̸= h′j = e′i+ .
Because f = f ′, this implies that pki = pk′i, v2,i = v′2,i and mi = m′i for all
i ∈ [N ]. Additionally, due to the fact that ei+ is set before all the ei in the
queries to He, we have that ei = e′i for all i ̸= i+. Then, since sigagg and sig′agg
both verify, by definition of the reconstructed vectors v1,1,v

′
1,1 in Algorithm 5.6

and v1,v
′
1, we have

Av1 +
∑
i∈[N ]

ei(G−Bi)v2,i =
∑
i∈[N ]

eiH(mi) mod qR

Av′1 +
∑
i∈[N ]

e′i(G−B′i)v
′
2,i =

∑
i∈[N ]

e′iH(m′i) mod qR,
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such that ∥v1∥2, ∥v′1∥2 ≤ ws
√
Nnm1. We call ∆e = ei+ − e′i+ . With the prior

observations, combining the above equations gives

A(v1 − v′1) +∆e · (G−B)v2,i+ = ∆e · H(mi+) mod qR

We note that mi+ was not queried for a signature, but it must have been queried
to H (otherwise A would have had a negligible advantage to begin with). Hence,
Ts contains an entry (mi+ ,v

′′) where v′′ was generated as in game G2. Then,
v′′ verifies Av′′1 + (G−B)v′′2 = H(mi+) mod qR. We then obtain

A(v1 − v′1 −∆e · v′′1 ) +∆e · (G−B)(v2,i+ − v′′2 ) = 0 mod qR,

which can be written Ax = 0 mod qR for

x =

[
v1 − v′1
∆e · v2,i+

]
−∆e · v′′ ∈ Rm1+m2 .

The adversary A does not know v′′ but only Av′′ mod qR which takes 2nd log2 q

possible values. By [DORS08, Lem. 2.2], the entropy of v′′ given Av′′ mod qR is
at least H∞(v′′)− nd log2 q. Since v′′ is sampled by the simulator, it holds that
v′′1 ∼ DRm1 ,s and v′′2 ∼ G−1(U(Rd

q)). As a result, H∞(v′′) = H∞(DRm1 ,s) +
nd log2 q. Then, by Lemma 2.2, we have that H∞(DRm1 ,s) ≥ nm1 log2 s − 1 as
s ≥ ηδ(R

m1) for some negligible δ > 0. We thus obtain that the entropy of v′′
given Av′′ mod qR is at least nm1 log2 s − 1 ≫ 4λ, and then that x = 0 only
with negligible probability. Finally, we have

∥x∥2 ≤
√
(∥v1∥2 + ∥v′1∥2 + ∥∆e∥1∥v′′1∥2)2 + (∥∆e∥1 · (

∥∥v2,i+
∥∥
2
+ ∥v′′2∥2))2

≤
√
(2w · (

√
N + 1) · s

√
nm1)2 + (2w · 2(b− 1)

√
nm2)2

= β,

except with probability 2−2nm1 ≪ 2−4λ that is due to Lemma 2.3. Therefore, x
is a solution to M-SISn,d,m1+m2,q,β except with negligible probability. Since we
assumed that the hardness bound of the latter was εM-SIS, it thus hold that

frk ≤ εM-SIS + negl(4λ) (9)

Combining Equation (9) with the result from the general forking lemma, we get

p2 = acc ≤ Qe

|C|
+

√
Qe(εM-SIS + negl(4λ)).

We can assume without loss of generality that Qe ≤ 2λ, and recalling that C
is chosen so that |C| ≥ 22λ, it holds Qe/|C| = negl(λ). Combined with Equa-
tions (6), (7), and (8), we get

Adv[A] ≤ N ·
(
2εM-LWE +

Qe

|C|
+
√

QeεM-SIS

)
+ negl(λ),

as claimed.
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5.4 Performance Evaluation

We now evaluate the performance of our aggregate signature compared to the
naive concatenation. For that we define the compression rate as

compression rate = 100 ·
(
1− |sigagg|
|concatenation|

)
%.

However, to obtain a fair comparison, we cannot simply compare the con-
catenation of signatures produced by Algorithm 5.3 with the aggregate signature
output by Algorithm 5.5. Indeed, in the case of a mere concatenation, the pa-
rameters used in Algorithm 5.3 would not be optimal, one would instead use
those for single GPV signatures, as described in Section 4. We thus compare
below the size of an aggregate signature with the concatenation of signatures
generated with better parameters, tailored to the single signature use-case. Con-
cretely, although we use the same ring R = Z[x]/⟨xn + 1⟩, where n = 256, we
select the optimal parameters from Table 4.3, that is q ≈ 222.5, d = 6, b = 2,
s ≈ 376491 for single signatures, leading to signature size of |sig| = 69120 bits
≈ 8.44 kb. Hence, the concatenation of N signatures results in a naive aggregate
signature of |concatenation| = N · 69120 bits.

We estimate the aggregate signature size for different values of N ranging
from N = 10 to N = 1200. The bit-size of the aggregate signature is given by

|sigagg| = n(m1 − d)
⌈
log2(ws

√
N log2 λ)

⌉
+N · nd⌈logb q⌉⌈log2 b⌉.

The parameters of our scheme are set according to Setup (Algorithm 5.1) with
Q = 240, where q, d and b are selected to guarantee sufficient security for the un-
derlying M-SISn,d,m1+m2,q,β and M-LWEm2

n,d,d,q,U(S1)
problems while minimizing

the aggregate signature size. Since the parameters increase with N (typically the
bound β), the values of q and d will naturally depend on N accordingly. Hence,
when N increases the modulus q and rank d need to be increased to preserve
the security of the scheme, which results in lower compression rates. The higher
N gets, the more we would have to increase q and d, and we thus expect that
passed a certain threshold N the concatenation would become better than our
aggregate signature. Nevertheless, in practical use cases of aggregate signatures
the number of signers stays in the low hundreds which in our case offer a 10−15%
compression rate compared to the naive concatenation, as shown in Table 5.1.
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N 5 10 50 100 500 1000 1200

|concat| 42.2 84.4 421.9 843.8 4218.8 8437.5 10125

(d, q) (6, 222.5) (6, 222.5) (6, 222.5) (6, 222.5) (6, 222.5) (6, 222.5) (6, 222.5)

|sigagg| 45.5 80.5 363.6 713.6 3732.8 7670.7 9464.4

(d, q) (7, 229.9) (7, 230.3) (7, 231.3) (7, 231.7) (7, 233.9) (7, 234.8) (7, 235.2)

Comp. Rate 0% 4.59% 13.82% 15.43% 11.52% 9.09% 6.52%

Table 5.1. Comparison estimates of our aggregate signature and the concatenation of
LW signatures over module lattices. Sizes of |concat| and |sigagg| are expressed in KB.
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