
Generalized Inverse Matrix Construction for Code

Based Cryptography

Farshid, Haidary Makoui1 and T. Aaron, Gulliver1

1Department of Electrical and Computer Engineering, University of Victoria, Victoria,

B.C., Canada. email: makoui@uvic.ca and agullive@ece.uvic.ca

Abstract

The generalized inverses of systematic non-square binary matrices have ap-

plications in mathematics, channel coding and decoding, navigation signals,

machine learning, data storage and cryptography such as the McEliece and

Niederreiter public-key cryptosystems. A systematic non-square (n−k)×k ma-

trix H, n > k, has 2k×(n−k) different generalized inverse matrices. This paper

presents an algorithm for generating these matrices and compares it with two

well-known methods, i.e. Gauss-Jordan elimination and Moore-Penrose meth-

ods. A random generalized inverse matrix construction method is given which

has a lower execution time than the Gauss-Jordan elimination and Moore-

Penrose approaches.

Keywords: Code-Based Cryptography, Generalized Inverse Binary Matrix, Error-

Correcting Applications, Parity Check Inverse Matrix, Public Key Cryptosys-

tem (PKC)

1 Introduction

The generalized inverse of a systematic binary matrix is used for decoding in all ap-

plications of error-correcting codes including digital communication [1], navigation

signals [2], data storage systems [3] and coding theory [4] in cryptography. Gen-

eralized inverse matrices can be obtained using Gauss-Jordan elimination [5] and

Moore-Penrose pseudoinverse (MPP) techniques [6] [7].

1

A matrix is invertible if it has full rank. A non-square matrix A with m rows and n

columns where n > m is full rank if it is a full row rank matrix, where the rows are

linearly independent.

Gauss-Jordan elimination is used to solve linear systems Ax = b by employing row re-

duction operations to transform augmented matrices [A|b] to row-echelon form (REF).

This technique also provides a reduced row-echelon form (RREF) where the leading

coefficient in each row is the only non-zero element entry in its column. Gauss-Jordan

elimination uses an augmented matrix to construct the nullspace of the matrix A [8]

and its associated vectors that lead to the generalized inverse of full rank matrices.

The Moore-Penrose technique provides a single pseudoinverse matrix, where the mul-

tiplication of the matrix and its pseudoinverse approximately equal the identity ma-

trix. The MPP can provide a pseudoinverse for any matrix. This technique is a

useful tool for application with data analysis, optimization, neural network and ma-

chine learning applications [9].

Non-square binary matrices are used in error-correction coding, code-based cryptog-

raphy and decoding algorithms [10] [11]. This present paper introduces an efficient

algorithm for calculating all the generalized inverses of a binary matrix. A simplified

algorithm is also given to construct a random generalized inverse matrix with lower

processing time in comparison with Moore-Penrose and Gauss-Jordan methods.

1.1 Binary Linear Block Codes

In modern communication systems, redundant bits are added to a message sequence

to detect and correct errors introduced by a noisy channel. The encoder assigns a

binary codeword c = (c1, c2, ..., cn) to a message m = (m1,m2, ...,mk). For a k-tuple

message m, there are 2k distinct messages and thus codewords. The set of all 2k

codewords is referred to a C(n, k) block code. The length of a C(n, k) block code is

shown by n and k denoting dimension where k ≤ n.

The channel encoder adds redundancy in the binary information sequence to the

transmitted codewords, so each codeword has n − k redundant bits more than the

message associated with it. The message can scramble, permute and change the bits

in the corresponding codeword [12]. These redundant bits are used by the channel

decoder at the receiver’s end to detect and correct errors having occurred over a noisy

channel.

2

A C(n, k) code is linear when its codewords form a k-dimensional vector subspace

of the n-tuple vector space. Therefore, there are k linearly independent codewords

g1, g2, ..., gk that are settled as the rows of the generator matrix. The systematic

form of generator matrix G in linear code is given by

Gk×n = (Ik|Pk×(n−k)), (1)

where Ik is the k × k identity matrix and Pk×(n−k) is called the parity matrix. This

can be written as

G =


| p1,1 p1,2 p1,3 · · · p1,(n−k)

| p2,1 p2,2 p2,3 · · · p2,(n−k)

Ik | p3,1 p3,2 p3,3 · · · p3,(n−k)

| ...
...

...
...

| pk,1 pk,2 pk,3 · · · pk,(n−k)

 .

A parity check matrix H is an (n − k) × n matrix, such that GHT = 0 where T

denotes transpose, so H is a basis of the dual space of Cn,k. Thus, H generates the

dual code C⊥(n, k) with 2n−k codewords. This matrix can be employed to determine

if a particular vector is a codeword. The H matrix can also be used for decoding

algorithms [11]. A systematic parity check matrix has the form

H(n−k)×n = (P T
(n−k)×k|In−k). (2)

which can be expressed as

H =


p1,1 p2,1 p3,1 · · · pk,1 |
p1,2 p2,2 p3,2 · · · pk,2 |
p1,3 p2,3 p3,3 · · · pk,3 | In−k

...
...

...
... |

p1,(n−k) p2,(n−k) p3,(n−k) · · · pk,(n−k) |

 ,

3

denote the generalized inverse of this matrix as

H−1
n×(n−k) =


a1,1 a1,2 a1,3 · · · a1,(n−k)

a2,1 a2,2 a2,3 · · · a2,(n−k)

a3,1 a3,2 a3,3 · · · a3,(n−k)

...
...

...
...

an,1 an,2 an,3 · · · an,(n−k)

 , (3)

so that H(n−k)×nH
−1
n×(n−k) = In−k, which can be expressed as

p1,1 p2,1 p3,1 · · · pk,1 |
p1,2 p2,2 p3,2 · · · pk,2 |
p1,3 p2,3 p3,3 · · · pk,3 | In−k

...
...

...
... |

p1,(n−k) p2,(n−k) p3,(n−k) · · · pk,(n−k) |

×


a1,1 a1,2 a1,3 · · · a1,(n−k)

a2,1 a2,2 a2,3 · · · a2,(n−k)

a3,1 a3,2 a3,3 · · · a3,(n−k)

...
...

...
...

an,1 an,2 an,3 · · · an,(n−k)

 = In−k.

(4)

2 Generalized Inverse Matrix Construction

The matrix H−1 has n−k columns, each of which can have 2k different values, so the

number of matrices is 2k×(n−k)[13]. The i-th column of H−1 belongs to a column set

Zi which contains 2k vectors of length n

Zi =



z1,1 z1,2 z1,3 · · · z1,2k

z2,1 z2,2 z2,3 · · · z2,2k

z3,1 z3,2 z3,3 · · · z3,2k
...

...
...

...

zk,1 zk,2 zk,3 · · · zk,2k

−−− −−− −−− −− −−−
z(k+1),1 z(k+1),2 z(k+1),3 · · · z(k+1),2k

z(k+2),1 z(k+2),2 z(k+2),3 · · · z(k+2),2k

z(k+3),1 z(k+3),2 z(k+3),3 · · · z(k+3),2k

...
...

...
...

zn,1 zn,2 zn,3 · · · zn,2k



. (5)

4

This set can be divided into two subsets, Z1
i and Z2

i , where Z1
i contains rows 1 to k

and Z2
i contains rows k + 1 to n, so that

Z1
i =



z1,1 z1,2 z1,3 · · · z1,2k

z2,1 z2,2 z2,3 · · · z2,2k

z3,1 z3,2 z3,3 · · · z3,2k
...

...
...

...

zk,1 zk,2 zk,3 · · · zk,2k


, (6)

Z2
i =



z(k+1),1 z(k+1),2 z(k+1),3 · · · z(k+1),2k

z(k+2),1 z(k+2),2 z(k+2),3 · · · z(k+2),2k

z(k+3),1 z(k+3),2 z(k+3),3 · · · z(k+3),2k

...
...

...
...

zn,1 zn,2 zn,3 · · · zn,2k


, (7)

Z1
i contains all 2k possible binary vectors from all zeros to all ones. For example, if

k = 3 then Z1
i contains the eight binary vectors of length 3

Z1
i =


0 1 0 1 0 1 0 1

0 0 1 1 0 0 1 1

0 0 0 0 1 1 1 1

 .

For Z2
i , the value of z(k+b),d, 1 ≤ b ≤ n − k, 1 ≤ d ≤ 2k, is determined as follows.

Multiplication of H by a column of Z1 must satisfy


p1,1 p2,1 · · · pk,1 |
p1,2 p2,2 · · · pk,2 | In−k

...
...

... |
p1,(n−k) p2,(n−k) · · · pk,(n−k) |

×



z1,d
z2,d
...

zk,d
−−−
z(k+1),d

z(k+2),d

...

zn,d


=


1

0
...

0

 , (8)

Thus, for b = 1 the result is 1, and otherwise, it is 0.

5

so, if b = 1

z(k+1),d = 1 + p1,1z1,d + p2,1z2,d + · · ·+ pk,1zk,d, 1 ≤ d ≤ 2k,

and if b ̸= 1

z(k+b),d = p1,bz1,d + p2,bz2,d + · · ·+ pk,bzk,d, 1 ≤ d ≤ 2k.

The columns of Z2 satisfy


p1,1 p2,1 · · · pk,1 |
p1,2 p2,2 · · · pk,2 | In−k

...
...

. . .
... |

p1,(n−k) p2,(n−k) · · · pk,(n−k) |

×



z1,d
z2,d
...

zk,d
−−−
z(k+1),d

z(k+2),d

...

zn,d


=


0

1
...

0

 , (9)

so for b = 2

z(k+2),d = 1 + p1,2z1,d + p2,2z2,d + · · ·+ pk,2zk,d, 1 ≤ d ≤ 2k,

and for b ̸= 2

z(k+b),d = p1,bz1,d + p2,bz2,d + · · ·+ pk,bzk,d, 1 ≤ d ≤ 2k.

Similarly, the columns of Zn−k must satisfy


p1,1 p2,1 · · · pk,1 |
p1,2 p2,2 · · · pk,2 | In−k

...
...

. . .
... |

p1,(n−k) p2,(n−k) · · · pk,(n−k) |

×



z1,d
z2,d
...

zk,d
−−−
z(k+1),d

z(k+2),d

...

zn,d


=


0

0
...

1

 , (10)

6

so for b = n− k the result is 1 and for b ̸= n− k the result is 0. Thus if b = n− k

z(k+(n−k)),d = zn,d = 1 + p1,(n−k)z1,d + p2,(n−k)z2,d + · · ·+ pk,(n−k)zk,d), 1 ≤ d ≤ 2k,

and if b ̸= n− k

z(k+b),d = p1,bz1,d + p2,bz2,d + · · ·+ pk,bzk,d, 1 ≤ d ≤ 2k.

2.1 Example

Let n = 6 and k = 3 with

G = (Ik|Pk×(n−k)) =

1 0 0 0 1 1

0 1 0 1 1 0

0 0 1 1 0 1

 ,

and

H = (P T |In−k) =

0 1 1 1 0 0

1 1 0 0 1 0

1 0 1 0 0 1

 ,

Thus, H−1 has n − k = 3 columns and there are three column sets Z1, Z2 and Z3

available (1 ≤ i ≤ n − k) with a total of 2k×(n−k) = 23×3 = 512 possible matrices.

The sets Z1
i and Z2

i are defined as follows. Z1
i is common for all i and is given by

Z1
i =


0 1 0 1 0 1 0 1

0 0 1 1 0 0 1 1

0 0 0 0 1 1 1 1

 ,

and Z2
i can be expressed as

Z2 =


z(k+1),1 z(k+1),2 z(k+1),3 z(k+1),4 z(k+1),5 z(k+1),6 z(k+1),7 z(k+1),8

z(k+2),1 z(k+2),2 z(k+2),3 z(k+2),4 z(k+2),5 z(k+2),6 z(k+2),7 z(k+2),8

z(k+3),1 z(k+3),2 z(k+3),3 z(k+3),4 z(k+3),5 z(k+3),6 z(k+3),7 z(k+3),8

 .

7

Combining Z1
i and Z2

i gives

Zi =



0 1 0 1 0 1 0 1

0 0 1 1 0 0 1 1

0 0 0 0 1 1 1 1

−− −− −− −− −− −− −− −−
z4,1 z4,2 z4,3 z4,4 z4,5 z4,6 z4,7 z4,8
z5,1 z5,2 z5,3 z5,4 z5,5 z5,6 z5,7 z5,8
z6,1 z6,2 z6,3 z6,4 z6,5 z6,6 z6,7 z6,8


.

For i = 1, we have

0 1 1 1 0 0

1 1 0 0 1 0

1 0 1 0 0 1

×



0

0

0

−
z4,1
z5,1
z6,1


=

1

0

0

 ,

so
z41 = 1 + (0)(0) + (1)(0) + (1)(0) = 1,

z51 = (1)(0) + (1)(0) + (0)(0) = 0,

z61 = (1)(0) + (0)(0) + (1)(0) = 0.

The elements of Z2
1 are

z4,d = 1 + p1,1z1,d + p2,1z2,d + p3,1z3,d,

z5,d = p1,2z1,d + p2,2z2,d + p3,2z3,d,

z6,d = p1,3z1,d + p2,3z2,d + p3,3z3,d,

so

Z1 =



0 1 0 1 0 1 0 1

0 0 1 1 0 0 1 1

0 0 0 0 1 1 1 1

−− −− −− −− −− −− −− −−
1 1 0 0 0 0 1 1

0 1 1 0 0 1 1 0

0 1 0 1 1 0 1 0


.

8

The elements of Z2
2 are

z4,d = p1,1z1,d + p2,1z2,d + p3,1z3,d,

z5,d = 1 + p1,2z1,d + p2,2z2,d + p3,2z3,d,

z6,d = p1,3z1,d + p2,3z2,d + p3,3z3,d,

so

Z2 =



0 1 0 1 0 1 0 1

0 0 1 1 0 0 1 1

0 0 0 0 1 1 1 1

−− −− −− −− −− −− −− −−
0 0 1 1 1 1 0 0

1 0 0 1 1 0 0 1

0 1 0 1 1 0 1 0


.

The elements of Z2
3 are given by

z4,d = p1,1z1,d + p2,1z2,d + p3,1z3,d,

z5,d = p1,2z1,d + p2,2z2,d + p3,2z3,d,

z6,d = 1 + p1,3z1,d + p2,3z2,d + p3,3z3,d,

so

Z3 =



0 1 0 1 0 1 0 1

0 0 1 1 0 0 1 1

0 0 0 0 1 1 1 1

−− −− −− −− −− −− −− −−
0 0 1 1 1 1 0 0

0 1 1 0 0 1 1 0

1 0 1 0 0 1 0 1


.

Selecting columns from each column set Z1, Z2, Z3 in order gives 2k×(n−k) = 29 = 512

H−1 matrices which satisfy HH−1 = In−k.

2.2 Random Generalized inverse Matrix Construction

An generalized inverse matrix H−1 can be divided into two parts, A1 and A2, where

A1 consists of rows 1 to k and A2 consists of rows k + 1 to n

9

H−1
n×(n−k) =



a1,1 a1,2 a1,3 · · · a1,(n−k)

a2,1 a2,2 a2,3 · · · a2,(n−k)

a3,1 a3,2 a3,3 · · · a3,(n−k)

...
...

...
...

ak,1 ak,2 ak,3 · · · ak,(n−k)

−−− −−− −−− −− −−−
a(k+1),1 a(k+1),2 a(k+1),3 · · · a(k+1),(n−k)

a(k+2),1 a(k+2),2 a(k+2),3 · · · a(k+2),(n−k)

a(k+3),1 a(k+3),2 a(k+3),3 · · · a(k+3),(n−k)

...
...

...
...

an,1 an,2 an,3 · · · an,(n−k)



=

A1

−
A2

 . (11)

A random generalized inverse matrix H−1 can be constructed by selecting a random

A1 and constructing the corresponding matrix A2. For example, if n = 20 and k = 12,

then A1 contains n− k = 8 random binary vectors of length 12 such as

A1 =



1 1 0 1 0 1 0 1

0 0 1 1 0 1 0 0

1 0 0 0 1 1 0 0

0 0 1 1 1 1 0 0

1 0 1 0 0 0 1 1

1 1 1 1 1 1 0 0

0 1 0 0 0 1 1 1

0 1 1 1 1 1 0 0

0 0 1 0 1 1 0 0

1 1 0 1 0 0 0 1

0 0 1 1 1 1 0 0

0 1 0 1 1 0 1 1



.

Hence, the elements of A2 are

A2 =


a(k+1),1 a(k+1),2 a(k+1),3 · · · a(k+1),(n−k)

a(k+2),1 a(k+2),2 a(k+2),3 · · · a(k+2),(n−k)

a(k+3),1 a(k+3),2 a(k+3),3 · · · a(k+3),(n−k)

...
...

...
...

an,1 an,2 an,3 · · · an,(n−k)

 , (12)

10

where

a(k+b),d =
k∑

i=1

pibaid, (b ̸= d),

and

a(k+b),d = 1 +
k∑

i=1

pibaid, (b = d).

In general, this can be expressed as

a(k+b),d = 2|b−d| mod 2 +
k∑

i=1

pibaid. (13)

For example, a(k+1),1 in A2 is given by

a(k+1),1 = 1 + p11a11 + p21a21 + · · ·+ pk1ak1.

The result in matrix form to construct A2 is shown as follows.

Let B1 = P T
(n−k)×k and B2 = In−k, so

HH−1 =
(
B1|B2

)
×

A1

−
A2

 = In−k,

= B1A1 +B2A2 = In−k,

A2 = B1A1 + In−k, (14)

so A2 = B1A1 + In−k and then

HH−1 =
(
B1|B2

)
×

A1

−
A2

 =
(
B1|B2

)
×

 A1

B1A1 + In−k

 ,

= B1A1 +B2(B1A1 + In−k) = B1A1 +B1A1 + In−k = In−k.

The next section provides the analysis of the proposed algorithm for constructing a

random generalized inverse matrix.

11

2.3 Construction Comparison and Analysis

In this section, the processing time of Moore-Penrose pseudoinverses and the proposed

method for constructing random generalized inverse matrices are compared.

The computation time is given in Table 1 for several parameter values. As an example,

the processing time required to construct the random generalized inverse of H matrix

with 524×1568 would be 594 millisecond using the proposed method, compared with

2172 milliseconds using the Moore-Penrose pseudoinverse.

Matrix size Moore-Penrose

(ms)

Proposed (ms)

k = 213, n = 500 94 16

k = 524, n = 1568 2172 594

k = 768, n = 2048 5109 2368

k = 1024, n = 2896 14735 5211

Table 1: Processing time

An algorithm’s computational efficiency depends on the number of arithmetic opera-

tions, algorithm complexity and the amount of resources, including time and memory,

needed to run the algorithm.

Solving a system of n equations with n variables using Gauss-Jordan row elimination

requires approximately (2n3 + 3n2 − 5n)/3 arithmetic operations to achieve the row

echelon form (REF) [14], and (n3+3/2n2−5/2n) arithmetic operations to form RREF

which is about fifty percent more than the number of REF arithmetic operations.

Hence, the number of arithmetic operations that Gauss-Jordan elimination required

to form RREF for a parity check matrix H with (n − k) × n index would be (n −
k)3 + 3/2(n− k)2 − 5/2(n− k).

After performing RREF, Gauss-Jordan needs to solve a system of linear equations

using the null-space approach to find the set of associated vectors. Therefore, not

all the augmented matrices can form RREF, known as inconsistent matrices. When

RREF is formed, additional n(n − k − 1) arithmetic operations need to construct a

generalized inverse matrix.

There are many different choices of row combinations to perform Gauss-Jordan row

elimination on large-size matrices, and finding an optimum choice of linear combina-

tions is NP-hard [15]. In fact, there are numerous different execution sequences and

12

therefore time complexity is exponential [15].

Moore-Penrose requires (n − k)2(2n − 1) arithmetic operations to construct a full-

rank HHT and approximately (n− k)(2n2 − 2nk− n) arithmetic operations, exclude

determinant, to construct HT [HHT]−1 of a parity check matrix H. The algorithm

is less complex than Gauss-Jordan, and in fact, it is faster than the Guass-Jordan

elimination algorithm.

The number of arithmetic operations the proposed method requires to construct a

random generalized inverse would equal the number of operations to build A2 =

B1A1+ In−k, which would be (2k−1)(n−k)2+(n−k). Therefore, the multiplication

of B1 with index (n− k)× k and A1 with index k× (n− k) required (2k− 1)(n− k)2

number of arithmetic operations.

The arithmetic computation is given in Table 2 for Gauss-Jordan elimination, Moore-

Penrose, and the proposed algorithm for constructing a random non-square binary

generalized inverse matrix. The introduced method provides optimum choices to con-

struct a random generalized inverse matrix with less processing time and complexity

than Moore-Penrose and Gauss-Jordan elimination methods.

Gauss-Jordan

Elimination

Moore-Penrose Proposed

(n−k)3+3/2(n−k)2−
5/2(n−k)+n(n−k−1)

(n− k)2(4n− 1)−
n(n− k)

(2k−1)(n−k)2+(n−k)

Table 2: Computational Cost

2.4 Key change interval comparison

Based on the security key management, it is recommended to increase the system

security by changing the keys in shorter time intervals. Every time that a new key is

selected, the generator matrix and its associated parity-check matrix will be replaced,

the Gauss-Jordan elimination method ought to transform the H matrix to RREF and

find out the associated vectors to construct a random generalized inverse matrix. For

instance, finding the optimum choice of linear combinations of an H matrix with

1280 rows (n = 2048, k = 768) to form RREF is time-consuming and may affect the

performance of the system applications. The Moore-Penrose pseudoinverse also is

slower than the proposed method. In fact, any time matrix H changes, the proposed

algorithm can construct a random generalized inverse matrix with less complexity

13

and lower processing time. This fact could make the proposed algorithm a suitable

candidate for any system that requires changing the key (including the code-based

public key with G and H matrices) periodically in a shorter time interval.

3 Conclusion

This paper considered the construction of all H generalized inverse matrices of a non-

square (n ̸= k) matrix H. The matrix H−1 has n− k columns. The paper proposes

a column set Zi where 1 ≤ i ≤ n − k. The “i” column of H−1 belongs to a column

set Zi that contains 2k vectors. It also divides the column set Zi into two subsets

which simplifies the calculation of all 2k vectors and leads to the construction of all

the 2k×(n−k) generalized inverse matrices.

Furthermore, the random generalized inverse matrix construction method presented,

introduces matrix A1 and A2, where A1 consists of n − k binary vectors. In simple

term, the elements of the matrix A1 can be selected on a random basis and the matrix

A2 can be constructed using a simplified proposed equation A2 = B1A1 + In−k. In

fact, the proposed approach provides a shorter processing time to construct a random

generalized inverse matrix that can be suitable for applications that demand new keys

to be generated periodically in shorter interval times.

Considering the restricted applicability of Moore-Penrose and Gauss-Jordan methods,

the approach introduced in the present paper may have superiority over previous

methods regarding computational simplicity and generality. In fact, it offers a shorter

processing time, and computational simplicity and might be a suitable approach to

providing better performance if a system demands changing or generating the keys

periodically for any reason including enhancing the system security.

14

References

[1] C. Shannon, “A mathematical theory of communication,” Bell Syst. Tech. J.,,

vol. 27, no. 3, pp. 379-423, 1948.

[2] R. Acharya, “Undrestanding satellite navigation,” Mobile geographic info sys-

tems, Academic press, electronic books, 2014.

[3] Alexander Thomasian, “Storage Systems: Organization, Performance, Cod-

ing, Reliability, and Their Data Processing,” Storage systems book, publisher

Waltham, Massachusetts, Elsevier, 2011.

[4] S. Saraf, S. Dhingra, and G. Pinheiro, “Parallel algorithm for finding inverse of

a matrix and its application in message sharing (coding theory),” International

Journal of Computer Applications, vol. 975, p. 8887, 2016.

[5] P. S. Stanimirović and M. D. Petković, “Gauss–Jordan elimination method for

computing outer inverses,” Applied Mathematics and Computation, vol. 219, no.

9, pp. 4667–4679, Jan. 2013.

[6] J.C.A. Barata, M.S. Hussein, “The Moore-Penrose Pseudoinverse. A Tutorial

Review of the Theory,” Instituto de F´ısica, Universidade de S˜ao Paulo, C.P.

66318, 05314-970 S˜ao Paulo, SP, Brazil, Oct. 2011.

[7] H. Chen and Y. Wang, “A family of higher-order convergent iterative methods for

computing the Moore–Penrose inverse,” Applied Mathematics and Computation,

vol. 218, no. 8, pp. 4012–4016, Dec. 2011.

[8] N. Guglielmi, M. L. Overton, and G. Stewart, “An efficient algorithm for comput-

ing the generalized null space decomposition,” SIAM Journal on Matrix Analysis

and Applications, vol. 36, no. 1, pp. 38–54, 2015.

[9] J Tapson, A van Schaik, “Learning the inverse solution to network weights,”

Neural networks, vol. 45, pp. 94–100, 2013.

[10] R. J. McEliece, “A public-key cryptosystem based on algebraic coding theory,”

Jet Propulsion Lab, DSN Tech. Rep. 42.44, pp. 114–116, 1978.

[11] H. Niederreiter, “Knapsack-type cryptosystems and algebraic coding theory,”

Problems of Control and Information Theory, vol. 15, pp. 159–166, 1986.

15

[12] M. Esmaeili, T.A.Gulliver, “Joint channel coding-cryptography based on ran-

dom insertions and deletions in quasi-cyclic-low-density parity check codes,” IET

communications, vol.9 (12), pp. 1555-1560, 2015.

[13] M. Esmaeili, T.A.Gulliver, “Application of Linear Block Codes in Cryptogra-

phy,” University of Victoria department of Electrical and Computer Engineering,

Chapter 5, Security analysis. pp. 45-53, 2019.

[14] Farebrother, R.W., “Linear least squares computations,” Statistics, textbooks and

monographs, London. Taylor and Francis. pp. 12, 2017.

[15] Fang Xin, Havas George, “On the worst-case complexity of integer Gaussian

elimination,” International Conference on Symbolic and Algebraic Computation,

ISSAC ’97, Proceedings of the 1997 international symposium on Symbolic and

algebraic computation. pp. 28-31, July 1997.

16

