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Abstract. Zero-correlation linear attack is a powerful attack of block ciphers, the
lower number of rounds (LNR) which no its distinguisher (named zero-correlation
linear approximation, ZCLA) exists reflects the ability of a block cipher against the
zero-correlation linear attack. However, due to the large search space, showing there
are no ZCLAs exist for a given block cipher under a certain number of rounds is a
very hard task. Thus, present works can only prove there no ZCLAs exist in a small
search space, such as 1-bit/nibble/word input and output active ZCLAs, which still
exist very large gaps to show no ZCLAs exist in the whole search space.
In this paper, we propose the meet-in-the-middle method and double-collision method
to show there no ZCLAs exist in the whole search space. The basic ideas of those
two methods are very simple, but they work very effectively. As a result, we apply
those two methods to AES, Midori64, and ARIA, and show that there no ZCLAs
exist for 5-round AES without the last Mix-Column layer, 7-round Midori64 without
the last Mix-Column layer, and 5-round ARIA without the last linear layer.
As far as we know, our method is the first automatic method that can be used to
show there no ZCLAs exist in the whole search space, which can provide sufficient
evidence to show the security of a block cipher against the zero-correlation linear
attack in the distinguishers aspect, this feature is very useful for designing block
ciphers.
Keywords: ZCLAs · Search Tool · Proof Tool · SAT

1 Introduction
Zero-correlation linear cryptanalysis [BR14, BW12, BLNW12] is the variant and general-
ization of linear cryptanalysis. It has been applied to variour block ciphers, such as AES,
CLEFIA, and so on. Those results show that zero-correlation linear cryptanalysis is one
of the essential general techniques for analyzing a block cipher. Up to now, resisting the
zero-correlation linear cryptanalysis is the criterion of design a block cipher.

ZCLAs are the distinguishers of zero-correlation linear cryptanalysis, it is a linear hull of
a given cipher that presents no correlation. The most generic way to construct the ZCLAs
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is meet-in-middle, that is, a pair of input and output masks is called ZCLA of a function if
the input mask cannot propagate to the output mask through this function. Such ZCLAs
are the ZCLAs that we studied through this paper. The number of rounds which the
ZCLAs covered is closely related to the ability of zero-correlation linear cryptanalysis. On
the one hand, in most cases, the best cryptanalysis is based on the distinguishers who
has the longest rounds at present. On the other hand, the LNR which no ZCLAs exist
indicate the ability of a block cipher against zero-correlation linear cryptanalysis in a sense.
Thus, how to find ZCLAs that covers rounds as long as possible and get the LNR which
no, ZCLAs exist are the most essential and critical problem in regard to zero-correlation
linear cryptanalysis.

In recent years, with the improvement of computer power, cryptanalysts began to
use automated methods to search ZCLAs. The original methods, such as U-method,
UID-method and WW-method, which can be applied to search ZCLAs, but they cannot
consider the detials of Sbox. To solve this problem, some cryptanalysts turn the problem
that finding distinguishers into MILP problem, and solve such problem by MILP method.
That is, they model the propagation of mask through each operation by inequalities. Then,
the propagation of mask through a given number of rounds for a block cipher can be
modeled by inequalities. Thus, by invoking the MILP solver such as Gurobi, one can
determine whether a given input mask can propagate to a given output mask or not.
If not, such input and output mask constructs an ZCLA. In this process, modeling the
propagation of mask through Xor, Copy, and linear layer is relatively easy, and modeling
the propagation of mask through Sbox isn’t trivial and requires careful thinking. In a
word, how to model the propagation of mask through Sbox is the critical problem for
searching ZCLAs by MILP method.

In 2016, Cui et al. proposed a MILP-based tool [CJF+16] to search the impossible
differentials and ZCLAs for lightweight block ciphers. They use Sun et al.’s method
[SHW+14b, SHW+14a] to model the valid propagations of masks (differential) through
small Sbox (whose size is no more than 7-bit) by inequalities, thus their tool can search
the ZCLAs by considering the details of Sbox. Besides, there exist two works that
don’t focus on searching ZCLAs, but can be applied to search ZCLAs as well. In 2017,
Sasaki and Todo (ST-method) also presented a MILP-based tool [ST17] to search the
impossible differentials for block ciphers. For small Sbox, they method in accord with
Cui et al.’s method (independently). For large Sbox (whose size is no less than 8-bit),
they proposed the arbitrary mode creatively, although this mode cannot search ZCLAs
by considering the details of Sbox, but it can detect contradictions that occur in linear
layers. Later, Abdelkhalek et al. [AST+17] proposed a method to search the optimal
differential characteristics for block ciphers with 8-bit S-boxes. In particular, they mdoel
the propagation of differentials through Sbox whose size no more than 8-bit by inequalities
with the help of third party tool Logic Friday 1.

The application scenarios of previous tools for searching ZCLAs are summarized as
follows.

Cui et al.’s method. In their method, they modeled the propagation of masks through
Sbox by inequalities with the help of third-party tool sagemath 2, which is computa-
tionally infeasible when the size of the S-box is more than 6 bits. Thus, for S-boxes
based block ciphers, those two methods are suited for block ciphers whose S-box’s
size is less than or equal to 6-bit.

ST-method. For block ciphers whose S-box’s size is less than or equal to 6 bits, the
application scenario of this method is the same as Cui et al.’s method. For block

1http://sontrak.com
2https://www.sagemath.org
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ciphers with large S-box, their method can detect any contradictions which occur in
linear operations, but cannot consider the details of Sbox.

Abdelkhalek et al.’s method. In their method, they modeled the valid propagation of
masks through S-box by inequalities with the help of third-party tool Logic Friday,
Since Logic Friday can handle at most 16 variables only, their method is suited for
block ciphers whose sum of the input and output’s bits is less than or equal to 16
bits.

In the aspect of evaluating the security of a block cipher against zero-correlation linear
cryptanalysis, Cui et al.’s method and ST-method can get the LNR which no ZCLAs exist
by limiting the input and output mask are 1-bit/nibble/word active, there still exist a
great gap to get the LNR which no ZCLAs exist without such limitation. Besides, some
fancy works try to prove the security in theorem, for example, Wang et al. [WJ18] showed
that there no exist impossible differential for 5-round AES without the last MC layer.
But such works usually associated with the properties of the targe block cipehr, which
is not universal. Thus, those works cannot get the LNR which no ZCLAs exist. All in
all, although some advanced methods that are used to find new ZCLAs and get the LNR
which no ZCLAs exist are proposed, there are still some limitations not resolved.

- Previous methods cannot search the ZCLAs for block ciphers which the sum of the input
and output size of S-box is more than 16 bits in the case of considering all the details
of S-boxes.

- Previous methods cannot get the LNR which no ZCLAs exist without the limitation of
input mask and output mask.

- Previous methods cannot get all ZCLAs without the limitation of input mask and output
mask.

Our contribution. In this paper, we propose some methods to search new ZCLAs
for block ciphers which the sum of the input and output size of S-box is more than 16 bits
in the case of considering all the details of S-boxes, and get the LNR which no ZCLAs
exist for SPN structure block ciphers.

In the aspect of deriving new ZCLAs, we give a new sight on the representation of
correlation, which allows us to propose a new modeling method for the propagation of
masks through S-box directly. Specifically speaking, for an S-box whose input is n-bit, our
modeling method allows us to model the valid propagation of masks through S-box by
2n + 1 expressions, which can be modeled by the statements in the CVC format of the
SAT solver STP3 easily. With the modeling method for other operations, we design an
SAT-based automatic to search ZCLAs for the block ciphers which the sum of the input
and output size of S-box is more than 16 bits.

In the aspect of getting LNR which no ZCLAs exist, it is directly to get the LNR which
no 1-bit input and output active ZCLAs exist. Moreover, by studying the properties of
SPN structure block cipher, we propose the outside-in strategy and the inside-out strategy,
which allows us to show there no ZCLAs exist for a target number of rounds.

Noteworthy, based on the works above, we propose a method to get all ZCLAs without
the limitation of input and output mask.

Compared with previous methods, our method has the following advantages, which
shows our method is a stronger cryptanalytic and designed method.

- Able to search the ZCLAs by considering all the details of S-box for block
ciphers when the sum of input and output bits of S-box is more than

3http://stp.github.io/
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16-bit. As we introduced, when the sum of input and output bits of S-box is more
than 16-bit, previous methods cannot search the ZCLAs by considering all the details
of S-box. The main obstacle is it is hard to model the propagation of masks through
such S-box. In our method, for an S-box whose input is n-bit, the valid propagation
of masks through it can be modeled by 2n + 1 expressions, which allow us to search
ZCLAs by considering all the details of S-box for block ciphers when the sum of
input and output bits of S-box is more than 16-bit.

- Able to get the LNR which no 1-bit input and output active ZCLAs exist
for block ciphers when the sum of input and output bits of S-box is more
than 16-bit. Since previous methods cannot model the propagation of masks
through the S-box whose the sum of input and output bits is more than 16-bit, they
cannot get the LNR which no 1-bit input and output active ZCLAs exist for the
block cipher with such S-box. With our new modeling method, we can get the LNR
which no 1-bit input and output active ZCLAs exist for block ciphers when the sum
of input and output bits of S-box is more than 16-bit.

- Able to get the LNR which no ZCLAs exist for SPN structure block ci-
phers without the limitation of input mask and output mask For SPN
structure block ciphers, previous automatic search methods can only show there no
1-bit/nibble/word input and output active ZCLAs exist, and there no theoretical
results to show that there no ZCLAs exist under a given number of round for SPN
structure block ciphers. In our method, we propose the outside-in strategy and
the inside-out strategy, which allows us to show there no ZCLAs exist for a target
number of rounds without the limitation of input mask and output mask, which is
a strong method of block cipher in design aspects. Besides, as a by-product, our
method also can be used to show there no t-bit/nibble/word input and output active
ZCLAs exist with small t.

- Able to get all ZCLAs for SPN structure block ciphers without the limitation
of input mask and output mask Due to the large search space, detecting all
ZCLAs directly is impossible. Inspiring by our method for getting the LNR which
no ZCLAs exist, we propose a method to get all ZCLAs for SPN structure block
ciphers without the limitation of input mask and output mask, which is a strong
method of block cipher in cryptanalysis aspects.

To show the ability of our tool, we apply it to the block ciphers MISTY1, MISTY2 [Mat97],
AES [DR02], Midori64 [BBI+15] and ARIA [KKP+03]. These results are shown as follows.

- In the aspect of searching new ZCLAs, we apply our tool to MISTY1 and MISTY2,
which are two block ciphers that adopt 7-bit and 9-bit S-boxes. Since the structures
of two successive rounds of MISTY1 and four successive rounds of MISTY2 are
different, we applied our tool to those block ciphers where the input mask is placed
at difference round. Finally, we get 660, 1016, 986, 495, 710, 486 4-round 1-bit input
and output active ZCLAs for MISTY1 where the input mask is placed in 2t+ 1-th
and 2t-th round, and MISTY2 where the input mask is placed in 4s + 1, 4s + 2,
4s+ 3-th and 4s-th round respectively (s and t are two integrals). For comparison,
we apply previous method to search the ZCLAs, that is, we model the propagation of
mask through 9-bit S-box by "arbitrary mode", and model the propagation of mask
through other operations accurately. As a result, we get 460, 860, 452, 308, 404, 308
4-round 1-bit input and output active ZCLAs for MISTY1 and MISTY2 where the
input mask is placed at difference rounds. Those results show that, our method can
detect more ZCLAs than previous methods indeed.
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- In the aspect getting LNR which no 1-bit input and output active ZCLAs exist for block
ciphers when the sum of input and output bits of S-box is more than 16-bit. Our
method directly show that, even consider all the details of S-boxes, there still no
5-round 1-bit input and output active ZCLAs for MISTY1 and MISTY2 where the
input mask is placed at difference rounds. Those results reflect the ability of MISTY1
and MISTY2 that against the zero-correlation linear attack.

- In the aspect of getting the LNR which no ZCLAs exist for SPN structure block ciphers,
we apply our method for AES and Midori64 without considering the last MC layer,
and ARIA without considering the last linear layer. Finally, the LNR we got for
AES, Midori64, and ARIA is 5, 7, and 5 respectively. That is, there no 5, 7, and
5-round ZCLAs exist for AES and Midori64 without considering the last MC layer,
and ARIA without considering the last linear layer respectively. Those results show
that our method is indeed a strong method for block cipher in design aspects.

- In the aspect of getting all ZCLAs for SPN structure block ciphers, we apply our method
for ARIA, and get all 166460 truncated ZCLAs for 4-round ARIA without the last
linear layer. Those results show that our method is indeed a strong method for block
cipher in cryptanalysis aspects.

Outline. We introduce the notations and related work in Section 2. Our method for
searching ZCLAs is discussed in Section 3. The methods to get the LNR which no ZCLAs
exist is proposed in Section 4. In Section 5, we propose our method for get all ZCLAs for
SPN structure block ciphers. In Section 6, we conclude this paper.

2 Preliminaries
2.1 Zero-correlation Linear Approximation
Let us briefly recall the notations and concepts of zero-correlation linear approxima-
tion [Mat93, Nyb94, DGV94, CCH10]. The definition of zero-correlation linear approxi-
mation is close to the concept of correlation. We recall the definitions of inner product
and correlation function first.

Definition 1 (Inner Product). For λ ∈ Fn2 , denote (λn−1, · · · , λ1, λ0) as the bit repre-
sentation of λ. For any two elements α, x ∈ Fn2 , the inner product of them is defined
as

α · x = ⊕n−1
i=0 αixi.

Definition 2 (Correlation). For a function f : Fn2 → Fm2 , the correlation of the linear
approximation for an input mask α ∈ Fn2 and an output mask β ∈ Fm2 is defined as

Cf (α, β) = 2−n
∑
x∈Fn

2

(−1)α·x⊕β·f(x).

Now, let us recall the correlation of linear trail for iterated function. Let f : Fn2 → Fn2
be a function that is the iterated composition of round functions fi : Fn2 → Fn2 :

f := fr ◦ · · · ◦ f2 ◦ f1.

Definition 3 (Linear Trail). An r-round linear trail is an (r+1)-tuple U = (u0, u1, . . . , ur),
and the correlation of this linear trail is

Cf (U) =
r∏
i=1

Cfi
(ui−1, ui).
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Based on the definition of linear trail, for an iterated function f = fr ◦ · · · ◦ f2 ◦ f1, the
correlation of the linear approximation for an input mask α ∈ Fn2 and an output mask
β ∈ Fm2 is calculated as

Cf (α, β) =
∑

u0=α,ur=β,U=(u0,...,ur)

Cf (U).

Then, the concept of zero-correlation linear approximation can be restated as follows.

Definition 4 (Zero-correlation Linear Approximation). For an iterated function f =
fr ◦ · · · ◦ f2 ◦ f1, a pair of input and output masks (α, β) is an r-round zero-correlation
linear approximation if and only if Cf (α, β) = 0.

After the concept of zero-correlation linear attack is proposed, various types of ZCLAs
are proposed. Actually, according to the values of input and output mask, the ZCLAs are
divided into various types. To introduce those types of ZCLA, we summarize three types
of masks as follows.

-k Bits Active Mask A n-bit mask α is called k(k ≤ n) bits active mask if and only if the
number of 1s in α is equal k.

-k Nibbles Active Mask For a n-bit mask α = (αn−1, . . . , α1, α0), a n
4 -bit vector v =

(vn
4−1, . . . , v1, v0) is called the nibble active pattern of it if and only if

α4j+3|α4j+2|α4j+1|α4j =
{

1 if vj = 1,
0 otherwise,

where 0 ≤ j ≤ n
4 − 1. Such relation is donated as N (α) = v. Moreover, α is called k

nibbles active mask if and only if the number of 1s in v is equal k.

-k Words Active Mask For a n-bit mask α = (αn−1, . . . , α1, α0), a n
n -bit vector v =

(vn
n−1, . . . , v1, v0) is called the nibble active pattern of it if and only if

α8j+3|α8j+2| · · · |α8j+1|α8j =
{

1 if vj = 1,
0 otherwise,

where 0 ≤ j ≤ n
8 − 1. Such relation is donated as W(α) = v. Moreover, α is called k

nibbles active mask if and only if the number of 1s in v is equal k.

With those definitions of masks, the more specific definitions of ZCLA are summarized
as follows.

Definition 5 ((ki, k0)-bit (nibble, word) Active Input and Output ZCLA). A pair of input
and output mask (α, β) is called (ki, k0)-bit (nibble, word) active input and output ZCLA
(AIAO-ZCLA) if and only if α is ki-bit (nibble, word) active mask, β is ko-bit (nibble,
word) active mask, and α cannot propagate to β.

Definition 6 ((u, v)-nibble (word) Pattern ZCLA). A pair of input and output mask
(α, β) is called (u, v)-nibble (word) pattern ZCLA if and only if N (α) = u(W(α) = u),
N (β) = v(W(β) = v), and α cannot propagate to β.

Definition 7 ((u, v)-nibble (word) Pattern Truncated ZCLA). For a block cipher, we call
it has (u, v)-nibble (word) pattern truncated ZCLA if and only if for ∀N (α) = u(∀W(α) = u)
and ∀N (β) = v(∀W(β) = v), α cannot propagate to β.

Definition 8 ((ki, k0)-nibble (word) Active Input and Output Truncated ZCLA). For a
block cipher, we call it has (ki, k0)-nibble (word) active input and output truncated ZCLA
(AIAO-T-ZCLA) if and only if for all ki nibbles (words) active mask α and ko nibbles
(words) active mask β, α cannot propagate to β.
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2.2 ZCLAs Search with SAT Method
The SAT problem is a classic scientific computation problem aiming to determine whether
there exists a solution for a set of boolean formulas, where each boolean formula is called
a clause and the variable in each clause is binary. Although the SAT problem is NP-
completed, modern solvers can solve such problem with tens of thousands of variables and
clauses.

The problem of searching ZCLAs for a given function F can be solved by SAT method.
For example, for a given search space and any input and output mask (α, β) in this space,
the SAT method can be used to determine whether (α, β) is a ZCLA for F or not as
follows:

1. Modeling the propagation of mask through F , limiting the input mask be α and
output mask be β by boolean formulas;

2. Using the SAT solver to determine whether there exists a solution for the boolean
formulas. If not, then (α, β) is a ZCLA for a given function F ; Otherwise, it isn’t.

Thus, by testing all input and output mask in a given search space, one can get all ZCLAs
in this space or ensure there no ZCLAs exist in such search space. Similar approach can
be applied to search truncated ZCLAs. In the next, we recall the method for modeling the
propagation of mask and the limitation of input and output mask by boolean formulas,
which are the most necessary parts for searching ZCLAs by SAT method.

2.2.1 Modeling the Propagation of Mask

In this part, we recall the method for modeling the propagation of mask through the
operations XOR, COPY, Linear Map, and S-box by boolean formulas. For the sake
of simplicity, for α ∈ Fn2 , we donate (α0, α1, . . . , αn−1) as the binary representation of α,
where αi ∈ F2(0 ≤ i ≤ n− 1).
XOR. Let f be a XOR function, assume α0, α1 ∈ Fn2 are the input masks, and β ∈ Fn2 is
the output mask. Then, the correlation Cf ((α0, α1), β) 6= 0 if and only if α0 = α1 = β.
Thus, let x0 = (x0,0, x0,1, · · · , x0,n−1), x1 = (x1,0, x1,1, · · · , x1,n−1) be the variables for the
input masks, and y = (y0, y1, · · · , yn−1) be the variable for output mask, the following
boolean formulas can model the propagation of mask through XOR:{

yi = x0,i,
yi = x1,i,

(0 ≤ i ≤ n− 1). (1)

In particular, the operation XORed with the key or constant only changes the sign of
the correlation.
COPY. Let f be a COPY function, assume α ∈ Fn2 is the input mask, and the β0, β1 ∈ Fn2
are the output masks. Then, the correlation Cf (α, (β0, β1)) 6= 0 if and only if α =
β0 ⊕ β1 [Bih94]. Thus, let x = (x0, x1, · · · , xn−1) be the variable for the input mask, and
y0 = (y0,0, y0,1, · · · , y0,n−1), y1 = (y1,0, y1,1, · · · , y1,n−1) be the variables for output mask,
the following boolean formulas can model the propagation of mask through COPY:

xi = y0,i ⊕ y1,i, (0 ≤ i ≤ n− 1). (2)

Linear Map. Let M = (mi,j)0≤i≤n−1,0≤j≤n−1 be the binary matrix representation of
Linear Map, assume α ∈ Fn2 is the input mask and β ∈ Fn2 is the output mask. Then,
the correlation Cf (α, β) 6= 0 if and only if β = M tα, where M t is the transpose of
M [DGV94]. Thus, let x = (x0, x1, · · · , xn−1) be the variable for the input mask, and
y = (y0, y1, · · · , yn−1) be the variable for output mask, the following boolean formulas can
model the propagation of mask through Linear Map:

yt = ⊕p∈{q|mt,q=1}xp, (0 ≤ t ≤ n− 1). (3)
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S-box. Let S be a S-box which substitute n-bit value to m-bit value, assume α ∈ Fn2
is the input mask and the β ∈ Fm2 is the output mask. Then, α S→ β with correlation
CS(α, β) [DGV94]. That is, the input mask α can propagate to the output mask β if
and only if CS(α, β) 6= 0. The Abdelkhalek et al’s method can be used to model the
propagation of mask through S-box.

The origin of Abdelkhalek et al’s method is applied to derived the linear inequalities
for modeling the propagation of difference. With the same idea, we can use this method
to get the boolean formulas for modeling the propagation of mask. First, we recall the
definition of product-of-sum representation of boolean function.

Definition 9 (Product-of-Sum Representation of Boolean Function). Let f(x, y) be
a boolean function of (n + m)-bit inputs, where the input is x = (xn−1, . . . , x1, x0)
and y = (ym−1, . . . , y1, y0) and the output of f(x, y) is 0 or 1. The product-of-sum
representation of the boolean function f(x, y) is defined as

f(x, y) = ∧c=(c0,...,cn−1,cn+0,...,cn+m−1)∈T (((∨i=n−1
i=0 (xi ⊕ ci)) ∨ ((∨i=m−1

i=0 (yi ⊕ cn+i)))

where T is a set that determined by f(x, y), and ∧ and ∨ denote logical AND and OR
operations, respectively.

Thus, for a given boolean function f(x, y), once we get the product-of-sum representa-
tion of the boolean function of it, the values that satisfies the following boolean formulas
are just the values such that f(x, y) = 1.

(∨i=n−1
i=0 (xi ⊕ ci)) ∨ (∨i=m−1

i=0 (yi ⊕ cn+i)) = 1, c ∈ T. (4)

In Abdelkhalek et al’s method, they proposed the software Logic Friday4 to get the
product-of-sum representation of the boolean function. Moreover, the Logic Friday can
get the product-of-sum representation of a given boolean function with minimum number
of terms or as small as possible number of terms5.

Let f : Fn2 × Fm2 −→ F2, and

f(x, y) =
{

1, if Cs(x, y) 6= 0,
0, otherwise. (5)

We use the Logic Friday to get the product-of-sum representation of f with minimum
number of terms or as small as possible number of terms. Then, we can get the boolean
formulas such that the values that satisfies those boolean formulas are just the values such
that f(x, y) = 1, that is, the valid propagation of mask through S-box.

2.2.2 Limiting the Input and Output Mask

In this part, we recall the limitation of input and output mask for basic type of ZCLAs.
Then, we discuss the spaces for searching ZCLAs. Actually, according to the limitation of
input and output mask, the ZCLAs can be divided into two classes:

Fixed values ZCLA: For a given n-bit function F and a pair of input and output mask
(α, β)(α, β ∈ Fn2 ), assume x = (x0, x1, · · · , xn−1) and y = (y0, y1, · · · , yn−1) be the
variable for the input and output mask, respectively. To determine whether (α, β) is
an ZCLA of F or not, we limit the input and output mask as{

xi = αi,
yi = βi,

(0 ≤ i ≤ n− 1).

4http://sontrak.com/.
5The relation of the number of boolean formulas and the solve efficiency of SAT solver is unclear.

However, as a consensus, less number of boolean formulas often leads to high solve efficiency of SAT solver.
Thus, the number of boolean formulas to model the propagation of mask through S-box should as small as
possible.
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(u, v)-nibble (word) pattern truncated ZCLA: For a given n-bit function F and a pair
of nibble (word) active pattern (u, v), assume x = (x0, x1, · · · , xn−1) and y =
(y0, y1, · · · , yn−1) be the variable for the input and output mask, respectively. To
determine whether there exist an (u, v)-nibble (word) pattern truncated ZCLA of F
or not, we limit the input and output mask as{

xmp+m−1|xmp+m−2| · · · |xmp = up(0 ≤ p ≤ n
m ),

ymq+m−1|ymq+m−2| · · · |xmq = vq(0 ≤ q ≤ n
m ).

With those two basic types of ZCLAs, we recall the search space to get the ZCLAs
which are much attracted by the cryptanalysts.

(ki, ko)-bit AIAO-ZCLAs. A pair of input and output mask (α, β) is called (ki, ko)-bit
AIAO-ZCLA of a function F , if (α, β) ∈ S = {(α, β)|α is the ki-bitactive mask, and
β is the ko-bit active mask} and (α, β) is a fixed value ZCLA. The size of overall
search space is

(
n
ki

)
×
(
n
ko

)
, it is infeasible to get all ZCLAs when ki and k0 are large.

Thus, cryptanalysts usually focus on small value of ki and k0, such as (1, 1)-bit
AIAO-ZCLAs.

(u, v)-nibble (word) pattern ZCLAs. A pair of input and output mask (α, β) is called
(u, v)-nibble (word) pattern ZCLA of a function F , if (α, β) ∈ Su,v = {(α, β)|N (α) =
u,N (β) = v}(Su,v = {(α, β)|W(α) = u,W(β) = v}) and (α, β) is a fixed value
ZCLA. The size of overall search space is (2m − 1)wt(u)+wt(v), where m = 4(m = 8).

(ki, ko)-nibble (word) AIAO-ZCLAs. A pair of input and output mask (α, β) is called
(u, v)-nibble (word) pattern ZCLA of a function F , if (α, β) ∈ S =

⋃
{(u,v)|wt(u)=ki,wt(v)=ko} Su,v

and (α, β) is a fixed value ZCLA. The size of overall search space is (
( n

m
ki

)
(2m −

1)ki)× (
( n

m
ko

)
(2m − 1)ko), it is infeasible to get all ZCLAs when ki and k0 are large.

Thus, cryptanalysts usually focus on small value of ki and k0, such as (1, 1)-nibble
(word) AIAO-ZCLAs.

(ki, ko)-nibble (word) AIAO-T-ZCLAs. To search all such ZCLAs of a function F , let
S = {(u, v)|wt(u) = ki, wt(v) = ko}, and for (u, v) ∈ S, we determine whether there
exist an (u, v)-nibble (word) pattern truncated ZCLA of F or not. The size of overall
search space is

( n
m
ki

)
×
( n

m
ko

)
.

Since ZCLAs play an important role in the zero-correlation linear attack, the lower
number of rounds which no ZCLAs exist indicates the security of a given block cipher
against the zero-correlation linear attack, which is very helpful in the design of block
ciphers.

3 Evaluating the Security by Meet-in-the-Middle Approach

For a block cipher E, let S be the whole search space, if for all input and output mask
in S are not ZCLA of E, we can determine there no ZCLAs exist for E in S. However,
as the discussion above, the search space S is too large, which is infeasible by present
searching method. To solve this problem, we propose the meet-in-the-middle (MITM)
approach.

3.1 The Overview of Meet-in-the-Middle Approach
In this part, we give our MITM approach to show there no ZCLAs exist for a block cipher
E. First, we give the following theorem.
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Theorem 1. Let E is a n bits SPN structure block cipher whose Sbox’s size is m bits, α and
β be the input mask and output mask of E. Let E = F1◦F ◦F0, ΦI(β) = {γI ∈ Fn∗2 |γI

F0→ β}
and ΦO(α) = {γO ∈ Fn∗2 |α

F1→ γO}, if the following conditions are hold:

1. There exits h sets Hi and Ĥi(0 ≤ i ≤ h− 1), such that

• H0
⋃
· · ·
⋃
Hh−1 = Fn∗2 ;

• For ∀η ∈ Ĥi(0 ≤ i ≤ h− 1), it holds Hi ⊆ ΦI(η).

Meanwhile, there exists t sets Tj and T̂j(0 ≤ j ≤ t− 1) such that

• T0
⋃
· · ·
⋃
Tt−1 = Fn∗2 ;

• For ∀θ ∈ T̂j(0 ≤ j ≤ t− 1), it hold that Tj ⊆ ΦO(θ).

2. For each Ĥi(0 ≤ i ≤ h− 1) and T̂j(0 ≤ j ≤ t− 1), there exits at least an η ∈ Ĥi and
an θ ∈ T̂j, such that η F→ θ.

Then, there no ZCLA exists for E.

Proof. For any input mask γ and output mask δ, since γ ∈ Fn∗2 and δ ∈ Fn∗2 , according
to condition 1, there exist i, j(0 ≤ i ≤ h− 1, 0 ≤ j ≤ t− 1), such that γ ∈ Hi and δ ∈ Tj .
According to condition 3, there exist η ∈ Ĥi and θ ∈ T̂j , such that η F→ θ. Moreover,
according to condition 1 again, we have γ F0→ η and θ F1→ δ. Thus, the input mask γ can
propagate to the output mask δ through E. The whole process is shown in Figure 1.

γ0 η0

γ1 η1

...

γ n
m−1 η n

m−1

F0 F F1

θ0 δo

θ1 δ1

...

θ n
m−1 δ n

m−1

Figure 1: Connection of Any Input and Output Mask

For a block cipher E, we can adopt the following approach to show there no ZCLAs
exist.

Function divide. Choosing appropriate F1, F , and F0, such that E = F1 ◦ F ◦ F0.

State divide. Choosing appropriate h and t, Hi and Ĥi(0 ≤ i ≤ h − 1), and Tj and
T̂j(0 ≤ j ≤ t− 1), such that condition 2 holds.

Masks connection. For each Ĥi(0 ≤ i ≤ h− 1) and T̂j(0 ≤ j ≤ t− 1), we show that there
exits at least an η ∈ Ĥi and an θ ∈ T̂j , such that η F→ θ.

The step of masks connection can be implemented by SAT method. For the other
steps, form the view of function, the functions F1, F , and F0, the values h and t, and the
set Hi and Ĥi(0 ≤ i ≤ h− 1), and Tj and T̂j(0 ≤ j ≤ t− 1) can be treated as parameters,
which decide the efficiency of our proof for showing there no ZCLAs exist. For example, in
the case of F0 and F1 both are identity function, the MITM approach to show there no
ZCLAs exist for E is indeed to show all input and output mask are not ZCLA, which is
infeasible as we discussed above. Thus, we should deal those parameters carefully.
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3.2 The Selection of Parameters of Function Divide
As the first step of MITM approach, the selection of F0 and F1 has a great influence on the
efficiency of the proof. When F0 or F1 covers more rounds, due to the clusters of masks,
the values of h or t may be small, thus we need less tests in masks connection. However,
this also causes that F covers less rounds, which makes finding an η ∈ Ĥi and an θ ∈ T̂j ,
such that η F→ θ difficult. Thus, we need to weigh the pros and cons when we divides the
block cipher E.

As we focus on the SPN structure block ciphers, we choose F0 = F1 = Ŝ ◦ P̂ ◦ Ŝ, where
P̂ donates the linear layer of E and Ŝ donates the Sboxes layer.

3.3 The Selection of Parameters of State Divide
Since we choose F0 = F1, the method for choose the values of h and the set Hi and
Ĥi(0 ≤ i ≤ h− 1) are same as choosing the values of t and and Tj and T̂j(0 ≤ j ≤ t− 1).
Thus, we only focus on choosing the values of h and the set Hi and Ĥi(0 ≤ i ≤ h − 1)
of F0 = Ŝ ◦ P̂ ◦ Ŝ. The method for choosing such parameters are closely related to the
property of block ciphers, we mainly study two types of block ciphers: nibble-level linear
layer based block ciphers and AES-like block ciphers. For the sake of presentation, for
an m-bit Sbox, let β be the output mask of S, donate φi(β) = {γi ∈ Fm2 |γi

S→ β}, Õ is
a set such that

⋃
β∈Õ

φi(β) = Fm∗2 , ÕA = {Õ|
⋃
β∈Õ

φi(β) = Fm∗2 }, MO(S) = min
Õ∈ÕA

#Õ,

AO(S) = {Õ|Õ ∈ ÕA,#Õ = MO(S)}.

3.3.1 Nibble-level Linear Layer Based Block Ciphers

The nibble-level linear layer based block ciphers is a class of common block ciphers, such
as ARIA, Robin, Modori and so on. For a n-bit such block cipher, the state s can be
arranged as an 1× q matrix as follows:

s =
(
s0 s1 · · · sq−1

)
,

where si ∈ Fµ2 (0 ≤ i ≤ q − 1), this representation also hold for the mask of a state.
Meanwhile, one round of the encryption process (omit the key add layer) can be

expressed as follows.

SubBytes(SB): Applying the µ-bit S-box S to each nibble or byte in parallel of the cipher
internal state.

MixColumns(MC): The whole states are multiplied by the q×q word (nibble) level matrix
W = (wi,j)0≤i≤q−1,0≤j≤q−1.

Let � be an operate such that (y0, . . . , yq−1)T = M�(x0, . . . , xq−1)T if and only if yi =
m0,ix0|| · · · ||mq−1,ixq−1 and P�(M) = {(y0, . . . , yq−1)T = M�(x0, . . . , xq−1)T |(x0, . . . , xq−1) ∈
Fq∗2 }, where M = (mi,j)0≤i≤q−1,0≤j≤q−1 = (W−1)T and T is the symbol of transposition.
Assume P�(M) = {yi|0 ≤ i ≤ t−1}, letHi = {α ∈ Fn∗2 | the active pattern of α is x, where M t�
x = y}. Then, it is easily to verify H0

⋃
· · ·
⋃
Ht = Fn∗2 . Moreover, if the block cipher has

the following property, we can get Ĥi for each Hi(0 ≤ i ≤ t) easily.

Property 1. For a given block cipher E, for two consecutive rounds SB layer (S0
0 , . . . , S

0
q−1)

and (S1
0 , . . . , S

1
q−1), if there at least exist two disjoint sets G0 and G1, such that

• G0, G1 ⊆ A0(S0
0)
⋂
· · ·
⋂
A0(S0

q−1).
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• Zi = {z ∈ Fµ2 | for ∀x ∈ G0
⋃
G1
⋃
{z0 ⊕ z1|z0 ∈ G0, z1 ∈ G1}, x

S1
i→ z} 6= ∅(0 ≤ i ≤

q − 1).

Then, we call E has P tH,arl property.

Theorem 2. Let E a block cipher that fulfills property P tH,arl, for any 0 ≤ i ≤ t,
constructing R = R0× · · · ×Rq−1, where Rj = Zj when (yi)j = 1 and Rj = {0} otherwise
(0 ≤ j ≤ q − 1). Then, ∀β ∈ R, it holds that Hi ⊆ ΦI(β).

Proof. For ∀α ∈ Hi, there exists a x such that the active pattern of α is x andM�x = yi.
Let V = {v|xv = 1} = {vp|0 ≤ p ≤ l} and R′ = R′0 × · · · × R′q−1(R′p′ = G0 if p′ =
v0, R

′
q = G1 if p′ 6= v0 and p′ ∈ V, and Rp′ = {0} otherwise, 0 ≤ p′ ≤ q − 1). Since

G0, G1 ⊆ A0(S0
0)
⋂
· · ·
⋂
A0(S0

q−1), there exists γ ∈ R′, such that α Ŝ→ γ. Meanwhile, since
M is the word (nibble) level matrix, for ∀γ′ ∈ R′ and µ = Mγ′, we have µk = 0((yi)k =
0, 0 ≤ k ≤ q−1) and µk((yi)k = 1, 0 ≤ k ≤ q−1) is the xor of some values of {γ′k′ |xk′ = 1}.
Thus, for 0 ≤ k ≤ q− 1((yi)k = 1), µk ∈ G0

⋃
G1
⋃
{z0 ⊕ z1|z0 ∈ G0, z1 ∈ G1}. According

to the property 1, for ∀εk ∈ Zk, it holds µk
S1

k→ εk. Therefore, for ∀β ∈ R0 × · · · ×Rq−1, it
holds that Hj ⊆ Φi(β).

Form Theorem 2, for each Hi(0 ≤ i ≤ t), we can choose Ĥi = R0 × · · · ×Rq−1, where
Rj = Zj when (yi)j = 1 and Rj = {0} otherwise (0 ≤ j ≤ q − 1).

3.3.2 AES-like block ciphers

For the sake of representation, we depict the AES-like block ciphers as follows. Actually,
for a n-bit AES-like block cipher, the state s can be arranged as an p× q matrix as follows:

s =


s0,0 s0,1 · · · s0,q−1
s1,0 s1,1
...

. . .
sr−1,0 sr−1,c−1

 ,

where si,j ∈ Fµ2 (0 ≤ i ≤ p− 1, 0 ≤ j ≤ q − 1), this representation also hold for the mask of
a state.

Meanwhile, one round of the encryption process (omit the key add layer) can be
summarized as follows, where

SubBytes(SB): Applying the µ-bit S-box S to each nibble or byte in parallel of the cipher
internal state.

ShuffleCell(SC): The permutation of the nibbles or bytes. For the sake of representation,
assume the nibble or byte in i0-th row and j0-th column is transform to the i1-th
row and j1-th column, we define the function λ and τ to describe the transform of
positions, this is, λ(i0, j0) = (i1, j1) and τ(i1, j1) = (i0, j0).

MixColumns(MC): Each column of the internal state is multiplied by the mix-column
matrix M .

Before we start, we introduce some notations firstly. For J ⊆ {0, 1, . . . , c−1} and a mask
α = (αi,j)0≤i≤r−1,0≤j≤c−1, let RJ = R0×· · ·×Rc−1(Rj ⊆ Fµ∗2 for j ∈ J,Rj = {0} for j /∈
J, 0 ≤ j ≤ c − 1), αj = (α0,j , . . . , αr−1,j), and DRJ

= {α|αj ∈ Rj , 0 ≤ j ≤ c − 1}.
Analogously, we define αSC−1

j = (αxj
0,y

j
0
, . . . , αxj

r−1,y
j
r−1

), where τ(l, j) = (xjl , y
j
l ), and

DSC−1

RJ
= {α|αSC−1

j ∈ Rj , 0 ≤ j ≤ c− 1}. In particular, let RJ = R0 × · · · × Rc−1(Rj =
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Fµ∗2 for j ∈ J,Rj = {0} for j /∈ J, 0 ≤ j ≤ c − 1). Then, for ∀β ∈ DSC−1

RJ
, we have

{γ|β F0→ γ} ⊆ DRJ
. Let S = (S, S, . . . , S︸ ︷︷ ︸

r

), F 0 = S ◦W ◦ S. For ∀δ ∈ (Fµ2 )r, we define

ΦI(δ) = {ε|ε F 0→ δ}. Then, if the block cipher fulfills the following property, we can get Hi

and Ĥi(0 ≤ i ≤ t).

Property 2. For a AES-like block cipher E, if there exist 2l sets Li, L̂i(0 ≤ i ≤ l − 1),
such that L0

⋃
· · ·
⋃
Ll−1 = (Fµ2 )r∗, and for ∀β ∈ L̂i, Li ⊆ ΦI(β). Then, we call E has

P lH,ael property.

For a block cipher, it always has property P r×µH,ael. However, from an application point
of view, the value of l should as small as possible. Here, we propose how to detect the
value of l as small as possible in two cases.

-u = 4 : In this case, we build a (r × µ)× (r × µ) table U , where for ∀α, β ∈ (Fµ2 )r∗, the
α row and the β column equal 1 if and only if α ∈ σ(β), and 0 otherwise.

When Branch(M) = r + 1: Since for ∀α ∈ (Fµ2 )r∗, there may exists β such that

wt(β) = r and α F 0→ β, we choose l = 1, L0 = (Fµ2 )r∗, and detect where there
exist some such values of β. That is, we search all β ∈ (Fµ∗2 )r and detect where
there exists β such that, for ∀α ∈ L0, it holds that U(α, β) = 1. We add the β
which meets the criteria into L̂0.

When Branch(M) = r: In this case, we choose l = r+1. Specifically speaking, we
divide (Fµ2 )r∗ into r+1 sets Li(0 ≤ i ≤ r), where Li = {α| the active pattern of
α is (b0, . . . , br−1), where bi = 1, and bj = 0(j 6= i)}(0 ≤ i ≤ r − 1) and Lr =

{α|wt(α) ≥ 2}. Then, for each i, we search β in the set {γ|∃α ∈ Li, α
F 0→ γ}

and detect where there exists β such that, for ∀α ∈ Li, it holds that U(α, β) = 1.
We add the β which meets the criteria into L̂i.

When Branch(M) < r: The handling method is similar to the above two cases.

If L̂i is empty, we add 1 to l and divide the Li into 2 parts by observation and repeat
the process above until L̂0, . . . , L̂l−1 are not empty.

-u = 8 : In this case, building a (r × µ) × (r × µ) table is infeasible. Thus, we make
use of the set AO. For the sake of clarity, for Õ0, . . . , Õr−1 ∈ AO and a pattern
b = (b0, . . . , br−1) ∈ Fr2, we donate Qb = Q0×· · ·×Qr−1(Qi = Õi if bi = 1, and Qi =
{0} otherwise).

When Branch(M) = r + 1: We choose first l = 1, L0 = (Fµ2 )r∗, and pick
Õ0, . . . , Õr−1 ∈ AO randomly. Then, we detect the β, such that for all
α ∈ {(M−1)Tx|x ∈ Qb, b ∈ Fr∗2 }, it hold that α S→ β. We add the β which
meets the criteria into L̂0. Moreover, if computing power permits, we can repeat
above process many times.

When Branch(M) = r: In this case, we choose l = r + 1, divide (Fµ2 )r∗ into
r + 1 sets Li(0 ≤ i ≤ r) as the situation u = 4, and pick Õ0, . . . , Õr−1 ∈ AO
randomly. Then, for each i, we detect the β, such that for all α ∈ {M tx|x ∈
Qb, the set of active pattern of element in Li contain b}, We add the β which
meets the criteria into L̂i. Moreover, if computing power permits, we can repeat
above process many times.

When Branch(M) < r: The handling method is similar to the above two cases.
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If L̂i is empty, we add 1 to l and divide the Li into 2 parts by observation and repeat
the process above until L̂0, . . . , L̂l−1 are not empty.

Under the discussion above, we give the following Theorem, which allows us to construct
Hi and Ĥi(0 ≤ i ≤ h− 1).

Theorem 3. Let E a block cipher that fulfills property P lH,ael, for ∀J ⊆ {0, 1, . . . , c− 1},
and w ∈ WJ = {(i0, . . . , ic−1)|0 ≤ ij ≤ l − 1 for j ∈ J, and ij = 0 for j /∈ J}, let
RJ,w = R0 × · · · × Rc−1(Rj = Lwj for j ∈ J,Rj = {0} for j /∈ J, 0 ≤ j ≤ c − 1) and
R′J,w = R′0× · · ·×R′c−1(R′j = L̂wj for j ∈ J,Rj = {0} for j /∈ J, 0 ≤ j ≤ c− 1). Then, for
∀β ∈ DSC−1

RJ,w
, it holds that {γ|β F0→ γ} ⊆ DR′

J,w
.

From Theorem 3, if a block cipher E fulfills property P lH,ael, let h =
∑c
i=1
(
c
i

)
li =

(l + 1)c − 1, we can choose Hi = DSC−1

RJ,w
and Ĥi = DR′

J,w
(0 ≤ i ≤ h− 1, J ⊆ {0, 1, . . . , c−

1}, w ∈WJ).

4 Application MITM Approach to Block Ciphers
4.1 Modori64
Midori64 is a 64-bit block cipher, it is a SPN structure block cipher with almost MDS
matrix. The internal state is viewed as a 4 × 4 square array of bytes as follows, where
si ∈ F4

2(0 ≤ i ≤ 16).

s =


s0 s4 s8 s12
s1 s5 s9 s13
s2 s6 s10 s14
s3 s7 s11 s15

 .

One encryption round of Midori64 is illustrated in Figure 2, it is composed of the
following four operations:

AK

Round i

SB SC MC

Round i+ 1

Figure 2: One Round of Midori64

AddRoundKey(AK): The 64-bit round key XORed with the 64-bit state.

SubBytes(SB): Applying the 4-bit involutive S-box S to each nibble in parallel of the
cipher internal state.

ShiftRows(SC): The i-th nibble of the internal state is permuted to the perm(i)-th nibble,
where perm = [0, 10, 5, 15, 14, 4, 11, 1, 9, 3, 12, 6, 7, 13, 2, 8].

MixColumns(MC): Each column of the internal state is multiplied by the involutive
almost-MDS matrix M .

Previous methods have not been evaluated the ability of Midori64 against the zero-
correlation linear attack. But, according to the dual between the impossible differentials
and ZCLAs, ST-method can be generalized to get the LNR which no ZCLAs exist. However,
this method limits the input and output mask only 1-nibble active, which implicit there is
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still a big gap to get the LNR which no ZCLAs exist. In the next, we adopt the outside-in
strategy to fill this gap.

Let F 0 = S ◦M ◦ S, where S = (S, S, S, S). Since S is an 4-bit Sbox, we can build
a (r × µ)× (r × µ) table U as discussed in Section ??. Then, we first divide (F4

2)4∗ into
5 sets Li(0 ≤ i ≤ 4), where Li = {α| the active pattern of α is (b0, . . . , b3), where bi =
1, and bj = 0(j 6= i)}(0 ≤ i ≤ 3) and Lr = {α|wt(α) ≥ 2}. Unfortunately, there
doesn’t exist an β such that, for ∀α ∈ L4, it holds that U(α, β) = 1. Thus, by ob-
servation and verification, we divide (F4

2)4∗ into 6 sets Li(0 ≤ i ≤ 4), where Li =
{α| the active pattern of α is (b0, . . . , b3), where bi = 1, and bj = 0(j 6= i)}(0 ≤ i ≤ 3),
L4 = {α|wt(α) = 3}, and L5 = {α|wt(α) = 2 or 4}. And, for each Li, we can detect a set
L̂i 6= ∅, such that for ∀α ∈ Li and ∀β ∈ L̂i, it holds that α

F 0→ β. Moreover, our experiment
show that if #L̂i is too large, the process of proof may be less efficient. Thus, we choose
#L̂i = 16 by experimental measurement, which allows us to finish our proof. The choice
of #L̂i is shown in Table 1. Note that, both S and M are involutive, thus F 0 = (F 1)−1,
which implicit that ∀α ∈ Li and ∀β ∈ L̂i, it holds that β

F 1→ α. With those discussion, we
apply the outside-in strategy to show there no ZCLAs exist for 7-round Midori64 without
the last MC layer.

Table 1: The Values of Set L̂i

i L̂i

0 {273, 275, 276, 278, 281, 282, 284, 287, 305, 307, 308, 310, 313, 314, 316, 319}
1 {4113, 4115, 4116, 4118, 4121, 4122, 4124, 4127, 4145, 4147, 4148, 4150, 4153, 4154, 4156, 4159}
2 {4353, 4355, 4356, 4358, 4361, 4362, 4364, 4367, 4865, 4867, 4868, 4870, 4873, 4874, 4876, 4879}
3 {4368, 4400, 4416, 4448, 4496, 4512, 4544, 4592, 4880, 4912, 4928, 4960, 5008, 5024, 5056, 5104}
4 {6297, 6348, 6537, 6552, 6553, 6557, 6617, 7308, 7368, 7372, 7373, 7388, 7577, 7628, 14489, 14540}
5 {5035, 5038, 5050, 5055, 5098, 5103, 5115, 5118, 5291, 5294, 5306, 5311, 5354, 5359, 5371, 5374}

Application of the MITM approach. The specific steps we take are as follows.

1. We choose F0 = Ŝ ◦ P̂ ◦ Ŝ, F = (P̂ ◦ Ŝ)3 ◦ P̂ , and F1 = Ŝ ◦ P̂ ◦ Ŝ, where P̂ represents
the composition of the operation of SR and MC.

2. For ∀J, J ′ ⊂ {0, 1, 2, 3}, w ∈ WJ = {(i0, . . . , i3) 6= 0|0 ≤ ij ≤ 5 for j ∈ J, and ij =
0 for j /∈ J}, and w′ ∈ WJ′ = {(i0, . . . , i3) 6= 0|0 ≤ ij ≤ 5 for j ∈ J ′, and ij =
0 for j /∈ J ′}, let RJ,w = R0×· · ·×Rc−1(Rj = L̂wj for j ∈ J,Rj = {0} for j /∈ J, 0 ≤
j ≤ 3), R′J′,w′ = R′0×· · ·×R′c−1(R′j = L̂w′

j
for j ∈ J ′, Rj = {0} for j /∈ J ′, 0 ≤ j ≤ 3).

Then, we show there exits at least a η ∈ DRJ,w
and a θ ∈ DSC−1

RJ,w
, such that η F→ θ

by SAT method.

Under the outside-in strategy, after ((6 + 1)4 − 1)2 ≈ 222.45 invocations of SAT solver,
we get the following Theorem. The whole process costs around 28 days totally in a single
core. Actually, we run 8 tasks parallelly, which allows us to finish our proof no more than
4 days.

Theorem 4. For 7-round Midori64 without the last MC layer, there no ZCLAs exist even
though the details of the S-box are considered, under the assumption that round keys are
independent and uniformly random.

4.2 ARIA
ARIA is a 128-bit block cipher, it is a SPN structure block cipher. The internal state is
viewed as a 1× 16 array of bytes as follows, where si ∈ F8

2(0 ≤ i ≤ 16).
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s = (s0, s0, . . . , s15)

⊕
AK

S1 S2 S−1
1 S−1

2 S1 S2 S−1
1 S−1

2 S1 S2 S−1
1 S−1

2 S1 S2 S−1
1 S−1

2

DL⊕
AK

S−1
1 S−1

2 S1 S2 S−1
1 S−1

2 S1 S2 S−1
1 S−1

2 S1 S2 S−1
1 S−1

2 S1 S2

DL

Figure 3: Two Rounds of ARIA

Two encryption round of ARIA is illustrated in Figure 3, it is composed of the following
three operations:

AddRoundKey(AK): The 128-bit round key XORed with the 128-bit state.

Substitution Layer(SL): In the odd or even number of round, applying the 8-bit S-box
S1, S2, S

−1
1 , and S−1

2 ) with difference order as shown in Figure 3 to each word in
parallel of the cipher internal state.

Diffusion Layer(DL): The internal state is multiplied by the involutive word-level matrix
M .

Previous methods can only show that there no ZCLAs exist by limiting the input and
output mask 1-word active at most, which implicit there is still a big gap to get the LNR
which no ZCLAs exist. Thus, we apply the outside-in strategy to show there no ZCLAs
exist for 5-round ARIA without the last linear layer.

Let F0 = Ŝ2 ◦M ◦ Ŝ1, F = M ◦ Ŝ1 ◦M , and F1 = Ŝ1 ◦M ◦ Ŝ2, where Ŝ1 represents the
substitution layer in the odd number of round and Ŝ2 represents the substitution layer in the
even number. By calculation, we have P�(M) = {yi|0 ≤ i ≤ 196} and there exist some sets
G0, G1 ⊆ AO(S1)

⋂
A0(S2)

⋂
A0(S−1

1 )
⋂
A0(S−1

2 ), such that G0
⋂
G1 = ∅. We pick G0 =

{1, 8} and G1 = {2, 4}. Then, G0
⋃
G1
⋃
{z0⊕z1|z0 ∈ G0, z1 ∈ G1 = {1, 2, 3, 4, 5, 8, 10, 12}.

Let Z0 = {z ∈ F8∗
2 | for ∀x ∈ {1, 2, 3, 4, 5, 8, 10, 12}, x S1→ z}, Z1 = {z ∈ F8∗

2 | for ∀x ∈

{1, 2, 3, 4, 5, 8, 10, 12}, x S2→ z}, Z2 = {z ∈ F8∗
2 | for ∀x ∈ {1, 2, 3, 4, 5, 8, 10, 12}, x

S−1
1→ z},

and Z3 = {z ∈ F8∗
2 | for ∀x ∈ {1, 2, 3, 4, 5, 8, 10, 12}, x

S−1
2→ z}. It is easily to verify Zi 6=

∅(0 ≤ i ≤ 3). Thus, ARIA has property P 197
H,arl. Let Z = (Z2, Z3, Z0, Z1, . . . , Z2, Z3, Z0, Z1),

then for any input mask α ∈ Fn∗2 , there exist 0 ≤ i ≤ 196, such that for ∀β ∈ R =
R0 × · · · ×Rq−1, where Rj = Zj when (yi)j = 1 and Rj = {0} otherwise (0 ≤ j ≤ q − 1),
it holds that α F0→ β.

In turn, since Ŝ1 = (Ŝ2)−1 andM−1 = M , we have F−1
1 = (Ŝ1◦M ◦Ŝ2)−1 = Ŝ1◦M ◦Ŝ2.

Then, ARIA also has property P 196
T,arl. Let Z ′ = (Z0, Z1, Z2, Z3, . . . , Z0, Z1, Z2, Z3), then for

any input mask α ∈ Fn∗2 , there exist 0 ≤ i′ ≤ 197, such that for ∀β ∈ R′ = R0×· · ·×Rq−1,
where Rj = Zj when (yi′)j = 1 and Rj = {0} otherwise (0 ≤ j′ ≤ q − 1), it holds that

α
(F1)−1

→ β.
Application of MITM approach. The specific steps we take are as follows.
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1. We choose F0 = Ŝ2 ◦M ◦ Ŝ1, F = M ◦ Ŝ1 ◦M , and F1 = Ŝ1 ◦M ◦ Ŝ2.

2. For each 0 ≤ i, i′ ≤ 196, we construct the set R and R′ and show there exits at least
a η ∈ R and a θ ∈ R′, such that η F→ θ by SAT method.

Under the outside-in strategy, after (197) ≈ 215.2 invocations of SAT solver, we get
the following Theorem. The whole process costs around 8 days totally in a single core.
Actually, we run 8 tasks parallelly, which allows us to finish our proof in around 1 day.

Theorem 5. For 5-round ARIA without the last MC linear layer, there no ZCLAs exist
even though the details of the S-box are considered, under the assumption that round keys
are independent and uniformly random.

5 Evaluating the Security by Double-Collision Approach

In this part, we give our double-collision approach to show there no ZCLAs exist for a
block cipher E. With different statements of Theorem 1, we have the following Corollary.

Corollary 1. Let α and β be the input mask and output mask of a block cipher E =
F1 ◦ F ◦ F0, donate ΦI(β) = {γi ∈ Fn∗2 |γi

F0→ β} and ΦO(α) = {γo ∈ Fn∗2 |α
F1→ γo}, if the

following conditions are hold:

1. There exits h sets Hi(0 ≤ i ≤ h − 1) and t sets Tj(0 ≤ j ≤ t − 1), such that
H0
⋃
· · ·
⋃
Hh−1 = Fn∗2 and T0

⋃
· · ·
⋃
Tt−1 = Fn∗2 .

2. For each i, j(0 ≤ i ≤ h − 1, 0 ≤ j ≤ t − 1), there exists η, θ ∈ Fn∗2 , such that
Hi ⊆ ΦI(η), Tj ∈ ΦO(θ), and η FI→ θ.

Then, there no ZCLA exists for E.

Let Ĥ ′i(0 ≤ i ≤ h− 1) be a set such that, for ∀α ∈ Ĥ ′i, all mask in Hi may propagate to
α through F0 forward. Analogously, let T̂ ′j(0 ≤ j ≤ t− 1) be a set such that, for ∀α ∈ T̂ ′j ,
all mask in Tj may propagate to α through F1 backward. Then, the double-collision
approach can be summarized as follows.

Function divide. Choosing appropriate F1, F , and F0, such that E = F1 ◦ F ◦ F0.

State divide. Choosing appropriate h and t, Hi and Ĥi(0 ≤ i ≤ h − 1), and Tj and
T̂j(0 ≤ j ≤ t− 1), such that condition 2 holds, the technique are .

Masks connection. For each Ĥi(0 ≤ i ≤ h− 1) and T̂j(0 ≤ j ≤ t− 1), we get an ηi ∈ Ĥi

and an θ ∈ T̂j , such that θj
F→ θ.

Double collision. For each ηi(0 ≤ i ≤ h− 1) and θj(0 ≤ j ≤ t− 1), we show Hi ⊆ ΦI(η)
and Tj ∈ ΦO(θ).

6 Application Double-Collision Approach to AES
AES is a 128-bit block cipher, it supports the key size of 128, 192, and 256-bit. There is no
doubt that AES is one of the most famous block ciphers all around the world. Its design
philosophy has had a profound impact on block ciphers. The internal state is viewed as a
4× 4 square array of bytes as follows, where si ∈ F8

2(0 ≤ i ≤ 16).
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s =


s0 s4 s8 s12
s1 s5 s9 s13
s2 s6 s10 s14
s3 s7 s11 s15

 .

One encryption round of AES is illustrated in Figure 4, it is composed of the following
four operations:

AK

Round i

SB SR MC

Round i+ 1

Figure 4: One Round of AES-128

AddRoundKey(AK): The 128-bit round key which is derived from the key schedule XORed
with the state.

SubBytes(SB): Applying the 8-bit S-box S to each byte in parallel of the cipher internal
state.

ShiftRows(SR): The i-th rows (0 ≤ i ≤ 3) of the internal state is rotated by i bytes form
right to left.

MixColumns(MC): Each column of the internal state is multiplied by the MDS matrix
M .

As AES plays an important role in the development of block ciphers, the security of
it has received extensive research. Significant work has been achieved in the research of
impossible differentials. In 2018, Wang et al. [WJ18] show that there no 1-word active
input and output impossible differentials exist for 5-round AES without the last MC
layer in the case of considering the key schedule. Later, they [WJ19] show that there no
impossible differentials exist for 5-round AES without the last MC layer in the case of
considering the key schedule. However, their approach is specific and cannot applied to
analysis the existence of ZCLAs. Besides, In EUROCRYPT2016, Sun et al. [SLG+16]
showed that there exist no zero-correlation linear approximations covering more than four
rounds for AES, but they work cannot consider the details of Sbox. Thus, the LNR which
no ZCLAs exist for AES in the case of considering the details of the Sbox is still unknown.
To fill this gap, with the technique in Section ??, we study the property of the S-box of
AES first.

Property 3. Let S be the S-box of AES, it holds that MI(S) = MO(S) = 2.

Under the Property 3, we can get AI and AO by exhaustive search as discussion in
Section ??. Let F 0 = S ◦M ◦ S, S = (S, S, S, S). Since branch(M) = 5, for ∀α ∈ (F8

2)4∗,
there may exists a β, such that α F 0→ β. In turn, for ∀β ∈ (F8

2)4∗, there may exists a α,
such that α F 0→ β. Thus, we adopt the inside-out strategy to show there no ZCLAs exist
for 5-round AES without the last MC layer in the case of considering the details of S-box.

Application of the inside-out strategy. The specific steps we take are as follows.

1. We choose F0 = Ŝ ◦ P̂ ◦ Ŝ, F = P̂ ◦ Ŝ ◦ P̂ , and F1 = Ŝ ◦ P̂ ◦ Ŝ, where P̂ represents
the composition of the operation of SR and MC.

2. For ∀J, J ′ ⊂ {0, 1, 2, 3}, let RJ = R0 × · · · × Rc−1(Rj = F8∗
2 for j ∈ J,Rj =

{0} for j /∈ J, 0 ≤ j ≤ 3), RJ′ = R0 × · · · × Rc−1(Rj = F8∗
2 for j ∈ J ′, Rj =

{0} for j /∈ J ′, 0 ≤ j ≤ 3). Then,
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(a) Detecting an α ∈ DRJ
and an β ∈ DSR−1

RJ′
, such that α F→ β by SAT method.

(b) For each αj ∈ (F8∗
2 )4(j ∈ J), we determine whether for ∀γj ∈ (F8

2)4∗, such

that γj
F 0→ αj ; And for each βj′ ∈ (F8∗

2 )4(j′ ∈ J ′), we determine whether for

∀δj′ ∈ (F8
2)4∗, such that βj′

F 1→ δj′ .

If conditions in 2(b) hold, then for ∀γ ∈ DSR−1

RJ
and ∀δ ∈ DRJ′ , it holds that

γ
F1◦F◦F0→ δ. Otherwise, we repeat the steps of 2(a) and 2(b).

Note that, the verification of 2(b) can be achieved by random verification. Picking j ∈ J ,
we use the determination that for ∀γj ∈ (F8

2)4∗, such that γj
F 0→ αj as an example. Here,

for the sake of narrative, we donate Qb = Q0 × · · · × Q3(Qi = Õi if bi = 1, and Qi =
{0} otherwise), where Õ0, . . . , Õ3 ∈ AO and b = (b0, . . . , b3) ∈ F4

2. For each b ∈ F4∗
2 , we

pick Õ0, . . . , Õ3 ∈ AO randomly, and verify for ∀εj ∈ {M tx|x ∈ Qb}, it hold that εj
S→ αj .

If for all b ∈ F4∗
2 , there always exist Õ0, . . . , Õ3 ∈ AO, such that ∀εj ∈ {M tx|x ∈ Qb}, it

hold that εj
S→ αj . Then, ∀γj ∈ (F8

2)4∗, it holds that γj
F 0→ αj .

In our experiments, the repetition of steps of 2(a) and 2(b) is never occur. That is, by
15× 15 = 225 invocations of SAT solver and some time for random verification, we get the
following Theorem. The whole process costs 3356 seconds totally, which is very efficient.

Theorem 6. For 5-round AES without the last MC layer, there no ZCLAs exist even
though the details of the S-box are considered, under the assumption that round keys are
independent and uniformly random.

To show the correctness of our method, we give specific propagation of masks as an
example.

Example 1. For J = {0} and J ′ = {0, 1}, let

α =


94 0 0 0
247 0 0 0
96 0 0 0
195 0 0 0

 ∈ DRJ
, β =


12 120 0 0
0 166 11 0
0 0 196 209
78 0 0 184

 ∈ DSR−1

RJ′
.

Then, it can be verified that α F→ β. Besides, as shown is Table 2, Table 3 and Table 4,
∀γSR−1

0 ∈ (F8
2)4∗, there exists 1 ≤ i ≤ 15, such that γSR−1

0 ∈ Λ1
i . Then, there exists

γSR
−1

0 ∈ Λ1
i, such that γSR−1

0
S→ γSR

−1

0 . Meanwhile, we can verify that ∀ε0 ∈ {M tx|x ∈
Λ1

i}, it hold that ε0
S→ [94, 247, 96, 195]. Thus, ∀γSR−1

0 ∈ (F8
2)4∗, we have γSR−1

0
F0→

[94, 247, 96, 195]. With the same reason, for ∀δ0, δ1 ∈ (F8
2)4∗, we have [12, 166, 196, 184] F1→

δ0 and [120, 11, 209, 78] F1→ δ1. Therefore, for ∀γ ∈ DSR−1

RJ
and ∀δ ∈ DRJ′ , it holds that

γ
F1◦F◦F0→ δ.

7 Conclusion and Future work
In this paper, we propose some method for ZCLAs. Those methods are able to search the
ZCLAs and get the LNR which no 1-bit AIAO-ZCLAs exist by considering all the details
of S-box for block ciphers when the sum of input and output bits of S-box is more than
16-bit. Notable, those method can also get the LNR which no ZCLAs exist and all ZCLAs
SPN structure block ciphers without the limitation of input mask and output mask.
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Table 2: Result of Random Verification of [94, 247, 96, 195]

1 Λ1
i Λ1

i

2 F8∗
2 × {0} × {0} × {0} {1, 2} × {0} × {0} × {0}

3 {0} × F8∗
2 × {0} × {0} {0} × {2, 4} × {0} × {0}

4 F8∗
2 × F8∗

2 × {0} × {0} {1, 2} × {1, 5} × {0} × {0}
5 {0} × {0} × F8∗

2 × {0} {0} × {0} × {1, 5} × {0}
6 F8∗

2 × {0} × F8∗
2 × {0} {1, 2} × {0} × {4, 6} × {0}

7 {0} × F8∗
2 × F8∗

2 × {0} {0} × {1, 2} × {1, 2} × {0}
8 F8∗

2 × F8∗
2 × F8∗

2 × {0} {1, 2} × {3, 5} × {1, 2} × {0}
9 {0} × {0} × {0} × F8∗

2 {0} × {0} × {0} × {1, 2}
10 F8∗

2 × {0} × {0} × F8∗
2 {1, 2} × {0} × {0} × {1, 5}

11 {0} × F8∗
2 × {0} × F8∗

2 {0} × {1, 2} × {0} × {2, 4}
12 F8∗

2 × F8∗
2 × {0} × F8∗

2 {1, 2} × {2, 4} × {0} × {1, 8}
13 {0} × {0} × F8∗

2 × F8∗
2 {0} × {0} × {1, 2} × {2, 4}

14 F8∗
2 × {0} × F8∗

2 × F8∗
2 {1, 2} × {0} × {1, 2} × {1, 8}

15 {0} × F8∗
2 × F8∗

2 × F8∗
2 {0} × {1, 2} × {2, 4} × {1, 9}

Table 3: Result of Random Verification of [12, 166, 196, 184]

Λ2
i Λ2

i

F8∗
2 × {0} × {0} × {0} {1, 2} × {0} × {0} × {0}
{0} × F8∗

2 × {0} × {0} {0} × {1, 8} × {0} × {0}
F8∗

2 × F8∗
2 × {0} × {0} {1, 2} × {5, 17} × {0} × {0}

{0} × {0} × F8∗
2 × {0} {0} × {0} × {1, 2} × {0}

F8∗
2 × {0} × F8∗

2 × {0} {1, 2} × {0} × {9, 10} × {0}
{0} × F8∗

2 × F8∗
2 × {0} {0} × {1, 2} × {5, 6} × {0}

F8∗
2 × F8∗

2 × F8∗
2 × {0} {1, 2} × {1, 2} × {9, 10} × {0}

{0} × {0} × {0} × F8∗
2 {0} × {0} × {0} × {1, 2}

F8∗
2 × {0} × {0} × F8∗

2 {1, 2} × {0} × {0} × {8, 13}
{0} × F8∗

2 × {0} × F8∗
2 {0} × {1, 2} × {0} × {7, 9}

F8∗
2 × F8∗

2 × {0} × F8∗
2 {1, 2} × {1, 2} × {0} × {17, 18}

{0} × {0} × F8∗
2 × F8∗

2 {0} × {0} × {1, 2} × {6, 11}
F8∗

2 × {0} × F8∗
2 × F8∗

2 {1, 2} × {0} × {1, 2} × {36, 47}
{0} × F8∗

2 × F8∗
2 × F8∗

2 {0} × {1, 2} × {1, 2} × {8, 13}

Table 4: Result of Random Verification of [120, 11, 209, 78]

Λ3
i Λ3

i

F8∗
2 × {0} × {0} × {0} {1, 8} × {0} × {0} × {0}
{0} × F8∗

2 × {0} × {0} {0} × {1, 2} × {0} × {0}
F8∗

2 × F8∗
2 × {0} × {0} {1, 2} × {7, 9} × {0} × {0}

{0} × {0} × F8∗
2 × {0} {0} × {0} × {3, 5} × {0}

F8∗
2 × {0} × F8∗

2 × {0} {1, 2} × {0} × {5, 11} × {0}
{0} × F8∗

2 × F8∗
2 × {0} {0} × {1, 2} × {7, 9} × {0}

F8∗
2 × F8∗

2 × F8∗
2 × {0} {1, 2} × {1, 2} × {8, 9} × {0}

{0} × {0} × {0} × F8∗
2 {0} × {0} × {0} × {2, 10}

F8∗
2 × {0} × {0} × F8∗

2 {1, 2} × {0} × {0} × {9, 12}
{0} × F8∗

2 × {0} × F8∗
2 {0} × {1, 2} × {0} × {12, 15}

F8∗
2 × F8∗

2 × {0} × F8∗
2 {1, 2} × {1, 2} × {0} × {8, 9}

{0} × {0} × F8∗
2 × F8∗

2 {0} × {0} × {1, 2} × {11, 12}
F8∗

2 × {0} × F8∗
2 × F8∗

2 {1, 2} × {0} × {1, 2} × {12, 15}
{0} × F8∗

2 × F8∗
2 × F8∗

2 {0} × {1, 2} × {1, 2} × {12, 15}
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As a result, we apply our method to derive new ZCLAs for the block ciphers MISTY1
and MISTY2, and show there no 5, 7, 5-round ZCLAs exist for AES, Midori64 and ARIA.
What’s more, we get all 4-round ZCLAs for ARIA. Those results show that our methods
are indeed the advanced search method of ZCLAs from design and cryptanalysis aspects.

Proving the security of block ciphers against known attacks is very import, one of our
works shows the security of block ciphers against zero-correlation linear attack for the view
of the LNR which no ZCLAs exist for SPN structure. Unfortunately, our method is not
suited for other structures. How to extend this work to more structures is still unknown.
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A Finding the set Ĩ with minimum number of elements
Let us focus the following problem.

Problem 1. For a give integer N and a m-bit S-box S, whether there exists a set Ĩ ⊆ Fm∗2
with |Ĩ| = N and

⋃
α∈Ĩ

φo(α) = Fm∗2 ?

If for ∀N(1 ≤ N ≤ 2m − 1), we can solve the Problem 1. Then, we can test N for 1 to
2m − 1 until the Problem 1 has a solution. In this time, the solution of Problem 1 is the
set Ĩ we desired. Thus, solving the problem that finding a Ĩ with the minimum number of
elements turns into solving Problem 1. Again, to solve Problem 1, we study the following
Problem.

Problem 2. Let S be an m-bit S-box, Pi = {j ∈ Fm∗2 |i
S→ j}, and Qj = {i ∈ Fm∗2 |i

S→ j},
whether there exists a solution {xi} for

2m−1∑
i=1

xi = N,

ti,j = xi(j ∈ Pi, 1 ≤ i ≤ 2m − 1),
ti,j = 0(j /∈ Pi, 1 ≤ i ≤ 2m − 1),
∨

i∈Qj

ti,j = 1(1 ≤ j ≤ 2m − 1),

xi ∈ {0, 1}, ti,j ∈ {0, 1}(1 ≤ i, j ≤ 2m − 1)?

Note that Problem 2 is a SAT problem and can be solved by the SAT solvers. More
importantly, Problem 2 is equivalent to Problem 1. That is, the solutions of Problem 1
and Problem 2 can be derived from each other, which leads to the following lemma.

Theorem 7. For an integer N , if Ĩ is a solution of Problem 1, let xi = 1(i ∈ Ĩ) and
xi = 0(i /∈ Ĩ), then {xi} is a solution of Problem 2. In turn, if {xi} is a solution of
Problem 2, then Ĩ = {i|xi = 1} is a solution of Problem 1.
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Proof. On the one hand, since Ĩ is a solution of Problem 1, then |Ĩ| = N and
⋃
α∈Ĩ

φo(α) =

Fm∗2 . Let xi = 1(i ∈ Ĩ) and xi = 0(i /∈ Ĩ), then
2m−1∑
i=1

xi = N . Since
⋃
α∈Ĩ

φo(α) = Fm∗2 , for

∀j ∈ Fm∗2 , there exists at least one i′(i′ ∈ Ĩ), such that i′ E→ j, thus i′ ∈ Qj and xi′ = 1.
Let ti,j = xi(j ∈ Pi, 1 ≤ i ≤ 2m − 1) and ti,j = 0(j /∈ Pi, 1 ≤ i ≤ 2m − 1), it holds that
∨

i∈Qj

ti,j = 1(1 ≤ j ≤ 2m − 1). Thus, we have constructed a solution xi of Problem 2.

On the other hand, if xi(1 ≤ i ≤ 2m − 1) is a solution of Problem 2, let Ĩ = {i|xi = 1}.
Then, we have |Ĩ| = N . Moreover, for ∀j ∈ Fm∗2 , since ∨

i∈Qj

ti,j = 1, then there exists at

least one i′ ∈ Qj , such that ti′,j = 1, thus xi′ = ti′,j = 1, which implies i′ ∈ Î. Thus, we
have

⋃
i∈Ĩ

φo(j) = Fm∗2 .

From the discussion above, for a given Sbox S, we can get the set Ĩ with minimum
number of elements. For the sake of simplicity, we donate such minimum number asMI(S).
Moreover, we can get the set AI = {Ĩ|#Ĩ = MI(S)} who contains all set Ĩ with minimum
number of elements in the following two ways:

SAT solver Once we get a solution, we remove this solution and ask SAT solver for another
solution until SAT solver return no solution. Then, we can get the set AI .

Exhaustive search If permits, we can exhaustive search the set Fm∗2 × · · · × Fm∗2︸ ︷︷ ︸
MI (S)

to get

all Ĩ with #Ĩ = Mi(S).
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