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Abstract. Homomorphic encryption requires the homomorphism of en-
crypted ciphertext, and the operation between ciphertexts can be re-
flected in plaintexts. Fully homomorphic encryption requires that the
encryption algorithm can satisfy additive homomorphism and multiplica-
tive homomorphism at the same time. At present, there are many fully
homomorphic encryption schemes, such as fully homomorphic encryption
based on ideal lattices, AGCD problem, LWE problem, RLWE problem,
and so on. But the improvement of efficiency, length of ciphertext, and
calculation limit of the fully homomorphic encryption scheme are still
problems that need further study.
Based on Lagrangian interpolation polynomials, we propose a fully ho-
momorphic encryption scheme according to the difficulty of finding roots
of a polynomial with the degree of at least two(mod n=p*q, p, q are
both private large primes). We reasonably construct polynomials trap1
and trap0 to generate the ciphertext of message m, so that calculation
between ciphertexts can directly act on plaintexts. Our scheme is safe as
long as the Rabin encryption algorithm cannot be cracked.

Keywords: Fully Homomorphic Encryption · Lagrangian Interpolation
Polynomials · Secure Multiparty Computation · trap1 ×m.

1 Introduction

Homomorphic encryption is a cryptographic technique based on the computa-
tional complexity theory of mathematical puzzles. Using homomorphic encryp-
tion technology, a user performs operations on ciphertexts and then decrypts
the result of ciphertext to be consistent with the result obtained by directly
operating on plaintexts. This feature allows an untrusted third party to directly
perform operations on ciphertexts without a private key, avoiding the leakage
of sensitive information caused by a third party. Fully homomorphic encryption
technology is a trending technology that can be applied to outsourcing comput-
ing, privacy-preserving machine learning, secure multi-party computing, joint
learning, data exchange, sharing, etc.[1]

In 1978, Rivest et al. proposed the first public key encryption scheme: the
RSA encryption scheme. Then, they pointed out the multiplicative homomor-
phic property of the RSA cryptographic system. The effective ciphertext of the



plaintext m1∗m2 can be calculated using the ciphertext c1∗c2 ”homomorphism”
without knowing the private key information. Therefore, they proposed the def-
inition of ”Fully Homomorphic Encryption” (FHE)[2]. Considering the powerful
capabilities of fully homomorphic encryption, it has become an open issue in the
cryptographic community once it is proposed[3].

Cryptographic assumptions that can construct fully homomorphic encryp-
tion mainly include: Ideal Coset Problem called ICP based on ideal lattice[4],
Approximate Greatest Common Devisor (AGCD) on integers[5], Learning with
Errors (LWE)[6], Approximate eigenvectors[7], circuit control technology[8] and
so on. However, there are still many restrictions that need to improve, such as
inefficient information processing, complex ciphertext and keys, the difficulty of
implementing encryption, etc. These restrictions make fully homomorphic en-
cryption difficult to use in practice.

To improve the efficiency of FHE, we propose a scheme based on the difficulty
of finding roots of a polynomial with the degree of at least two(mod n=p*q, p,
q are both private large primes), and it is secure as long as Rabin encryption
is secure. We call it a new high-efficiency polynomial-based fully homomorphic
encryption scheme, trap1 ×m (trap1 is a quartic polynomial or a higher-degree
polynomial and m ← Zn). The encryption algorithm we use does not target
only one bit of information at a time but for an integer plaintext message m
(m← Zn).

In our fully homomorphic encryption scheme, calculations between cipher-
texts are all calculated by quartic or higher-degree polynomials. For example, if
a message is encrypted with a quartic polynomial in our scheme, the ciphertext
length is only five times the size of n. In addition, to make our scheme more
effective, we also propose a method to fix the ciphertext length of our scheme.
If we use a quartic polynomial to represent ciphertext, no matter how many
ciphertexts are involved in the calculation, we still get a quartic polynomial ci-
phertext by modulo a quintic polynomial. Because of the unsolvable problem of
the quartic polynomial or higher-degree polynomial of Zn(x) (n=p*q, p, q are
both private large primes), the security of our scheme is guaranteed.

1.1 Contribution

The contributions of this paper are divided into the following aspects:

– Different from existing fully homomorphic encryption schemes, we construct
an efficient fully homomorphic encryption based on Lagrangian interpolation
polynomials and operations between polynomials. Our scheme satisfies the
unsolvable property of polynomials modulo n(n=p*q, p, q are both private
large primes), making our scheme feasible.

– We mainly give two implementations of our scheme. They are encryption
using the same encryption key and using different encryption keys respec-
tively. Compared with existing schemes, our scheme is simpler to implement
and only a few quartic polynomials modulo n are required to implement an
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efficient fully homomorphic encryption scheme. We prove that our algorithm
is safe with the safety of polynomial computation and unsolvable polynomial
modulo n. The security of our encryption algorithm is guaranteed as long as
the Rabin algorithm is safe.

– We also give a method to make the ciphertext size constant for our scheme. In
constant size polynomial-based fully homomorphic encryption(Construction
3), our scheme has no restriction on calculation and the length of ciphertexts
in our encryption remains unchanged during the evaluation, which always
keeps the s size of n. The performance of our algorithm will not decrease as
the calculation between ciphertexts is always equivalent to the calculation
of quartic polynomials.

It is worth noting that our encryption scheme is arithmetically homomorphic
because our scheme not only supports addition and multiplication operations but
also supports subtraction and division operations. However, relevant literature
indicates that only addition and multiplication are needed to satisfy Turing com-
pleteness. Therefore, the main contribution of this paper will be around the fully
homomorphic encryption scheme with addition and multiplication operations.

1.2 Related Works

In 1978 [2], the concept of homomorphic encryption was proposed by three re-
searchers, Rivest, Adleman, and Dertouzos. The earliest public key cryptosystem
RSA was introduced and it is also the earliest encryption scheme with mul-
tiplicative homomorphism. Then, Fully Homomorphic Encryption(FHE) came
into being.

The first fully homomorphic encryption scheme was proposed in 2009 and
it was proposed by Gentry. This fully homomorphic encryption is constructed
based on ideal lattice[4] and its security is based on two assumptions: some
Worst-case problems, and sparse (or low-weight) subset-sum problems. The pro-
posal of this scheme has caused an upsurge in the research of fully homomorphic
encryption. In 2010, Dijk, Gentry, Halevi, and Vaikuntanathan[5] proposed a
fully homomorphic encryption scheme based on integers(DGHV), and the de-
sign is based on the approximate greatest common factor problem. This scheme
uses many tools of Gentry’s construction but does not require ideal lattices.
As a result, their scheme is conceptually simpler than Gentry’s ideal lattice
scheme, but operational efficiency has not been improved and the original scheme
only supports low-order polynomial operations. In 2011, Brakerski and Vaikun-
tanathan introduced two FHE schemes based on LWE[9] and RLWE[10] prob-
lems using bootstrapping technique and circular security assumption. They also
introduce two new techniques called ”re-linearization” and dimension-modulus
reduction to reduce the multiplication ciphertext size. In 2012, Brakerski, Gen-
try, and Vaikunthanathan[11] present a method for defining a leveled fully ho-
momorphic scheme that avoids computationally expensive bootstrapping tech-
niques. Their scheme of RLWE problem was implemented and optimized by
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Fan and Vercauteren[12]. In 2013, Gentry, Sahai, and Waters (GSW)[13] pro-
posed a new technique for constructing FHE scheme that avoids the expensive
”re-linearization” step in homomorphic multiplication. Brakerski and Vaikun-
tanathan observed that for certain types of circuits, GSW cryptosystems have
slower noise growth, and are more efficient and secure. These techniques were
further refined to develop efficient loop variants of the GSW cryptosystem:
FHEW[14] and TFHE[15]. In 2017, Cheon proposed a new fully homomorphic
encryption scheme, CKKS[7]. This scheme supports the homomorphic opera-
tions of addition and multiplication of floating-point numbers for real or complex
numbers. The calculation results obtained by it are approximate values, which
are suitable for scenarios that do not require accurate results, such as machine
learning model training. However, these FHE schemes still have great defects,
such as low encryption efficiency, only supporting bit operations, and requiring
the assistance of control circuits, etc.

An article from a long time ago gave us the inspiration for our encryption
scheme. In 1979, the Rabin encryption algorithm was released by Michael O.
Rabin[16]. It is an asymmetric encryption algorithm based on the modular square
root and its security is based on the difficulty of finding the modular square root
of composite number n(n=p*q, p, q are both private large primes)[17]. We know
Rabin’s algorithm is secure as long as the factorization of large numbers remains
practically intractable. It is said that finding the modular square root of an
equation when modulo a composite number n is difficult. Through the Rabin
algorithm, we know that polynomials with the second degree and above are
not rootable in the case of modulo composite number n(n=p*q, p, q are both
private large primes). At the same time, we have found that fully homomorphic
encryption has high feasibility in the polynomial field, and it is challenging to
construct a fully homomorphic encryption scheme using the polynomial-solving
problem. In this paper, we hope to construct trapdoor polynomials trap1 and
trap0 through high-degree polynomials and then construct a fully homomorphic
encryption scheme about trap1 ×m + trap0. Our scheme is safe as long as the
quadratic congruence equation in Rabin’s algorithm is not successfully cracked.

2 Preliminaries

In this section, we define trap1, trap0, and give the basic definition of trap1×m.
We state that they are the basis of our fully homomorphic encryption, and they
are actually some polynomial mechanisms. In addition, we give the assump-
tion of our scheme, finding roots of a polynomial modulo n(n=p*q, p, q are
both private large primes), and prove it is difficult using the security of Rabin
algorithm[16]. We also give a simple method about how to realize trap1, trap0 by
using Lagrangian interpolation polynomial[18] and give the general expression
of trap1 ×m.
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2.1 Overview of Our Scheme

Our fully homomorphic encryption scheme is called Polynomial-based Fully Ho-
momorphic Encryption, as our encryption is performed with polynomial opera-
tions. During the encryption process, we let the Enc algorithm be expressed as
trap1×m+ trap0, and the Dec algorithm directly outputs the result in the form
of plaintext. We explain that trap1 and trap0 are the key encryption mechanism
of our scheme, and trap0 serves as an auxiliary item to assist trap1 for encryp-
tion. Here we give the simple definition of trap1 and trap0:

trap1 : A public cryptographic mechanism that allows the mechanism to out-
put 1 after bringing in secret information k. It satisfies trap1 × trap1 = trap1.
This mechanism guarantees the security of secret information k. It means that
the cryptographic mechanism trap1 can be obtained through k and output num-
ber 1, but the secret information k cannot be obtained through trap1. In this
paper, a polynomial with a high degree modulo n is used to realize trap1.

trap0 : This mechanism is similar to trap1, except that number 0 is output
after secret information k is brought in. It satisfies trap0×trap1 = trap0, trap0+
trap1 = trap1, trap0×else = trap0 and trap1−1 = trap0. We denote that trap0i
is a component of trap0 and it has the same property as trap0, which means
that trap0i(i is an index) can also exist as a trap0. The main role of mechanism
trap0 is to assist trap1 to ensure the security of plaintext message m and secret
information k.

We explain here that × is used to represent the multiplication calculation
of the mechanism trap1 and trap0, while ∗ represents the calculation of the
implementation method of trap1 and trap0. Since trap0 outputs 0 when it is
correctly decrypted, we use trap1 × m to represent our encryption scheme for
the convenience of expression. Then, we give a general representation method of
fully homomorphic encryption, trap1×m(Setup, Encrypt, Evaluate, Decryption)
here:

Setup(1λ): On input the security parameter λ, output the master public
encryption key mpk(mainly include trap1 and trap0), and secret key sk.

Encrypt(mpk,m): On input public encryption key mpk and message m,
output c=trap1 ×m + trap0.

Evaluate(mpk, C,[c1, c2, c3...]): On input public encryption key mpk, a
batch of ciphertexts [c1, c2, c3...], and an algorithm C that supports multiplication
and addition operations, output c′=Encrypt(mpk, C(m1,m2,m3, ...))=C(c1, c2, c3...).

Decryption(sk, c′): On input secret key sk and ciphertext c′, then output:
C(m1,m2,m3, ...).

Among them, the Setup algorithm generates mpk represented as trap1 and
trap0, and the Enc algorithm adds elements trap1 and trap0 to m for encryption.
Then a ciphertext c containing trap1 and trap0 is generated and can calculate
with other ciphertexts. Finally, the Dec algorithm removes trap1 and trap0 in
the final ciphertext c′ after evaluation and outputs the result of plaintext m′.
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We find that the existence of trap1 and trap0 in the whole process of en-
cryption and evaluation makes operations between different ciphertexts possible.
When decrypting, we can bring the decryption key sk in ciphertext to eliminate
trap1 and trap0 carried in ciphertext to get the final arithmetic plaintext because
trap1, trap0, and sk exist together. As long as the Setup party does not publish
sk, calculations in the entire process are performed in the form of ciphertext.
Anyone who doesn’t have the decryption key sk can’t get any useful information
about calculations and plaintexts. Therefore, the key point to realizing the en-
cryption scheme is how to realize trap1 and trap0, and the calculations between
ciphertexts.

The calculations between polynomials give us the idea to realize the scheme
we desire. We say if there is polynomial f(x) satisfying f(x0)=1 and f(x) is guar-
anteed to be complex enough that x0 cannot be solved, we can get the trap1
we want to construct trap1× m. The same is true for trap0, but the polynomial
needs to output 0 after bringing in x0.

2.2 Finding Roots of Polynomial Modulo n

Finding roots of polynomial modulo n(FROP-MN) was introduced as follows:

Assumption 1 FROP-MN. In the case of modulo n(n=p*q, p, q are both
private primes), the polynomial with a degree of at least 2 cannot be solved if
neither p nor q is known. That means that given a polynomial with a degree of
at least 2 such as the cubic polynomial, or quartic polynomial equation satisfying
P (x) = c, we cannot find even a root of P .

Through the Rabin encryption algorithm[16], we have known that quadratic
polynomials cannot be solved modulo n (n=p*q, p, q are both private large
primes). Then, we have the following theorem:

Theorem 1. In the case of modulo n(n=p*q, p, q are both private primes), a
quadratic equation P satisfying P (x) = c cannot be solved if neither p nor q is
known.

Proof. Suppose p, q are two large prime numbers satisfying n=p*q, and c is an
element in Zn. We want to solve the following equation:

x2 ≡ c(mod n)

This is a quadratic equation about the unknown element x in Zn. Decryption
requires finding the square root modulo n, equivalent to solving the following
congruence equations. {

x2 ≡ c(mod p)

x2 ≡ c(mod q)

Because p, q are unknowns, solving x2 ≡ c(mod n) is as difficult as factoring
a large integer n to get p, q and it is impossible as p and q are large enough. The
quadratic equation can be transformed into a quadratic congruence equation as
shown above, so a quadratic equation modulus n cannot be solved.
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Theorem 2. If two independent polynomials P1 and P2 are given at the same
time and P1(x1) = P2(x1) = 0, then the minimum order of solving equations can
be reduced by 1. But given two non-independent polynomials P1 and P2 satisfying
P1(x1) = P2(x1) = 0 at the same time, no effective information about x1 can be
obtained.

Proof. Here we take quadratic polynomials and cubic polynomials as an example.
Suppose there are two polynomials satisfying P2(x1) ≡ 0, P3(x1) ≡ 0(mod n,
n=p*q, and p, q are unknown) and P2, P3 are independent for each other, where
P2 and P3 are quadratic polynomial and cubic polynomial respectively.

Suppose we have P2 = x2 + ax+ b and P3 = x3 + a′x2 + b′x+ c′ satisfy:

P3 ≡0(mod n)

and

P2 ≡0(mod n)

To find intersection coordinate point x1, let us combine two polynomials to
get the following system of equations:{

P3 = x3 + a′x2 + b′x+ c′ ≡ 0(mod n)

P2 = x2 + ax+ b ≡ 0(mod n)

Then, we can change the solution of the above system of equations into
the solution of the following system of equations(convert P3 to the quadratic
equation) {

P3 = x3 + a′x2 + b′x+ c′ ≡ 0(mod n)

x2 = −ax− b ≡ 0(mod n)

Finally, we can compute the above system of equations to obtain a first-order
equation for x(convert P3 to a first-order equation by using x2). On the contrary,
if P2 and P3 are not independent of each other, P3 can not be calculated through
P2, and the result obtained through the above equation will be 0=0 instead of a
usable first-degree polynomial. This method is also applicable to higher-degree
equations.

Proof of Assumption 1. We perform a generous condition to this assumption.
We use the polynomial intersection problem to prove it: Given multiple poly-
nomials passing through the same point at the same time, we can reduce the
intersection problem to the problem of solving polynomials with a lower degree.
Suppose we have a polynomial P1 of degree s-1(s is an integer) that satisfies
P1(x1) = 0. In order to solve intersection point x1, we generously give another
s-3 polynomials satisfying P2(x1) = 0, P3(x1) = 0, ..., Ps−2(x1) = 0.
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We know that given two polynomials passing through the same point, the
minimum degree of polynomials to be solved can be reduced by 1(Reference to
Theorem 2). In this proof process, we have generously given s-2 polynomials
P1(x1) = 0, P2(x1) = 0, P3(x1) = 0, ..., Ps−2(x1) = 0 and we can combine these
polynomials to get a quadratic polynomial P through point x1 satisfying P (x1) =
0. For example, we can first combine P1, P2 through Theorem 2 to obtain a
polynomial of degree s-2, and then combine the new polynomial with P3 to
obtain a polynomial of degree s-3. In this way, we can finally get a quadratic
polynomial P through the point x1 satisfying P (x1) = 0 by combing these s-2
polynomials. Then, according to Theorem 1, we have known that the second-
degree polynomial modulo n is unsolvable, so we say higher-degree polynomials
are also unsolvable.

In other words, assuming that there exists an algorithm F that can solve the
roots of high-degree polynomials modulo n in polynomial time, then the theorem
1 is incorrect and the quadratic polynomial can also be solved. We already know
that the security of the Rabin algorithm is based on the quadratic congruence
equation under modulo n. If F exists, then Rabin’s security is compromised.
Therefore, we have successfully reduced the security of higher-degree equations
to quadratic congruence equations. Therefore, as long as the Rabin algorithm
is still safe, the higher-order congruence equations modulo n are unsolvable and
Assumption 1 is correct.

2.3 Lagrangian Interpolation Polynomial and trap1 × m

According to Assumption 1, if we can construct sufficiently complex polynomials
of at least second-degree modulo n, we can successfully implement trap1 and
trap0. Therefore, we intend to use polynomials with high-degree to represent
trap1 and trap0 and the encryption scheme trap1 ×m. As for how to construct
complex polynomials of more than two-degree, the realization of the Lagrangian
interpolation polynomial effectively solves this problem.

The Lagrange interpolation formula refers to a node basis function given on
the nodes of a two-dimensional coordinate system. Then a linear combination of
this basis function is made, and the combination coefficient is an interpolation
polynomial of the node function value. In simple words, a polynomial function
with the degree of s-1 can be determined by s coordinate points (xi, yi)(1 ≤
i ≤ s) in a two-dimensional rectangular coordinate system. As shown in Fig. 1,
a curve can be determined according to s (s is an integer and s≥2) points that
are different from each other in the rectangular coordinate system. For this
curve, there is only one definite polynomial corresponding to it. Similarly, if a
polynomial function expression (polynomial coefficient) of this curve is known, as
long as any abscissa value xi can be given, its ordinate value yi can be obtained.
Therefore, if we can give s coordinate points, we can also construct a polynomial
with polynomial degree s-1.

Suppose there are s pairs of coordinate points, the generalized definition of
the Lagrangian interpolation formula is shown in equation (1).
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x

y

A(x1, y1)

B(x2, y2)

C(x3, y3)

D(x4, y4)

Fig. 1. Lagrangian interpolation polynomial

p(x) =

s∑
i=1

s∏
j ̸=i

(x− xj)

(xi − xj)
∗ yi

=
(x− x2). . . (x− xs)

(x1 − x2). . . (x1 − xs)
∗ y1+

(x− x1)(x− x3). . . (x− xs)

(x2 − x1). . . (x2 − xs)
∗ y2+

... +

(x− x1). . . (x− xs−1)

(xs − x1). . . (xs − xs−1)
∗ ys

=Ps−1 ∗ xs−1 + Ps−2 ∗ xs−2 + ...+ P0 ∗ x0

(1)

We extract the coefficients of each term and give the following definition:

Ri =

s∏
j ̸=i

(x− xj)

(xi − xj)

then Ri(xi) = 1 and Ri(xj) = 0 j ̸= i satisfy 1 ≤ i, j ≤ s

Ri(xl) = else s < l

(2)

(We ignore the case where values of two coordinate points are equal.)

To facilitate the construction of our encryption scheme, we denote x above
as k, y as m, and approximately denote Ri as a candidate encryption key, ki as a

decryption key. Therefore, according to equation (2) we have Ri =
∏s

j ̸=i
(k−kj)
(ki−kj)

and Ri(ki) = 1, Ri(kj) = 0, Ri(kl) = else(1 ≤ i, j ≤ s < l, j ̸= i). Then we

have R1 =
∏s

j ̸=1
(k−kj)
(k1−kj)

and R1(k1) = 1, R1(kj) = 0, R1(kl) = else(1 < j ≤
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s < l, j ̸= i). We can find that for users with k1, he can calculate R1 = 1 and
Rj = 0(1 ≤ j ≤ s < l, j ̸= 1). But other users without k1 get nothing from
these polynomials. We already know that high-order congruence equations are
unsolvable modulo n (p, q are unknown) according to Assumption 1. So, we put
R1 modulo n as our desired trap1, Rj(1 < j ≤ s) modulo n as the components
of trap0, and k1 as the secret information to let R1 = 1 and Rj = 0. If there are
no special instructions, we use R1 as the master encryption key trap1 and k1 as
the decryption key later. Then, according to the particularity of the Lagrange
interpolation polynomials, we can get the following theorem:

Theorem 3. According to equation (1) and (2), given s k, the s-coefficient poly-
nomials R1, R2, ..., Rs composed of Lagrange interpolation polynomial are inde-
pendent of each other. In other words, {R1, R2, ..., Rs} is a set of linearly inde-
pendent vectors.

Proof. According to equation (2), we know that polynomial Ri(1 ≤ i ≤ s)
satisfies following property:

R1[k1, k2, ..., ks] = [1, 0, ..., 0, ..., 0]

R2[k1, k2, ..., ks] = [0, 1, ..., 0, ..., 0]

......

Ri[k1, k2, ..., ks] = [0, 0, ..., 1, ..., 0]

Rs[k1, k2, ..., ks] = [0, 0, ..., 0, ..., 1]

According to the above equations, we can get the matrix:
1 0 ... 0 ... 0
0 1 ... 0 ... 0

... ...
0 0 ... 1 ... 0
0 0 ... 0 ... 1


According to the matrix, we know that R1, R2...Rs is a set of linearly indepen-

dent vectors, and the polynomials they represent are also linearly independent.

Through the implementation of Rabin encryption algorithm[16] and Assump-
tion 1, we know that k1 cannot be obtained according to polynomial R1 in equa-
tion (2) if s is equal to at least 3 when modulo n(n = p*q, p,q are both large
private primes). If no special instruction exists, the following Ri in equation (2)
are all calculated modulo n. Therefore, we can use R1 as the public encryption
key and k1 as the decryption key to construct the fully homomorphic encryption
we want. Then, we can get the following algorithm to represent trap1 ×m:

Enc(ek = trap1 = R1,m) = trap1 ×m+ trap0 = R1 ∗m+ trap0

Dec(sk = k1, c) = R1(k1) ∗m+ 0 = m
(3)
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Since the existence of trap1(R1) and trap0, we find that ciphertext obtained
by equation (3) is fully homomorphic. Because for users who have decryption
key k1, trap1(k1) = R1(k1) is equal to 1, and trap0(k1) is equal to 0. So during
decryption, all R1 and trap0 elements of the operation between ciphertexts can
be removed, and the result of m′ can be obtained from the final ciphertext. For
example, c′ = ((c1+c2)∗c3+c4) = (trap1)

2×(m1+m2)∗m3+trap1×m4+trap0 =
R2

1 ∗ (m1+m2)∗m3+R1 ∗m4+ trap0, and then Dec(sk = k1) = R1(k1)
2 ∗ (m1+

m2)∗m3+R1(k1)∗m4+0 = 12∗(m1+m2)∗m3+1∗m4 = (m1+m2)∗m3+m4).
The problem now is how to construct a safe and reasonable fully homomorphic
encryption scheme through these contents.

Through Assumption 1, we already know that a high-degree equation, i.e.
quadratic polynomial is unsolvable modulo n(n=p*q, p, q are both private large
primes). It shows that it is impossible to find a root of quartic polynomials
modulo n(n=p*q, p, q are all both large primes). We say that our constructions
of the FHE scheme covered in this paper are all computed in Zn[x](n=p*q,
p, q are both private large primes). And the calculation of ciphertexts is the
calculation of polynomials with the degree of at least 4. It means that s is at
least 5 and there are at least R1, R2, R3, R4, R5 in equation (3)(a portion is used
in actual use). The ciphertext obtained using trap1 ×m is often represented by
a quartic polynomial, such as c = a ∗ k4 + bk3 + ck2 + dk + e = [a, b, c, d, e].

In the following sections, we give a construction of the sing-key polynomial-
based fully homomorphic encryption(P-FHE), Construction 1, and we also give
the corresponding security proof. In this encryption, different encryption parties
always use the same encryption public parameters to encrypt ciphertext, which
is suitable for large public domains such as voting systems. Then, we give a
construction of multi-key polynomial-based fully homomorphic encryption(P-
FHEs) Construction 2. Different from Construction 1, this encryption scheme
allows different encryption parties to have their own unique encryption keys
for encryption. Finally, to maximize efficiency, we proposed a method for fixing
the length of ciphertext by assigning a safe quintic polynomial to restrict all
computations to quartic polynomials. We say these two encryption constructions
are all implementations of our trap1×m encryption scheme since their encryption
and decryption processes all rely on trap1 ×m+ trap0.

3 Single-Key Polynomial-based Fully Homomorphic
Encryption

Through the introduction in the previous part, we know that ciphertext con-
structed by equation (3) satisfies the property of full homomorphism. We have
known that a quadratic polynomial is unsolvable when modulo n(n=p*q, p, q
are both private large primes), and the same is true for a quartic polynomial.
So we use quartic polynomial to build a general fully homomorphic encryption
scheme trap1 ×m+ trap0 = trap1 ×m. We donate the polynomials in equation
2 except R1 as the components of trap0, because the values of these polynomi-
als are all 0 after the secret information k1 is brought in. In addition, because
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trap1 − 1 = trap0, we also use R1 − 1 as a composition of trap0, where R1 − 1
is expressed as the constant term of R1 minus 1. It should be noted that the
composition of trap0 has the same properties as trap0, and the composition of
trap0 can also exist as trap0.

3.1 Construction of P-FHE

Construction 1 Let P-FHE = (Setup, Encrypt, Evaluate, Decrypt) be a highly
efficient Single-Key Polynomial-based Fully Homomorphic Encryption. We con-
struct P-FHE as follows:

Setup(1λ): On input security parameter λ include s=5, the setup algorithm
does following process:

1.Generate large prime numbers p, q according to λ and compute n=p*q.
2.Randomly select k1, k2, k3, k4, k5, r̂1, r̂2, r̂3, r̂4 ← Zn.
3.Use k1, k2, k3, k4, k5 to generate R1, R2, R3 according to equation (2) and

check whether R1, R2, R3 are linear independent. If not, come back to process
2, else continue.

4.Use R1, R2, R3, r̂1, r̂2, r̂3, r̂4 and p, q to generate R′
1 = R2∗p+(R1−1)∗ r̂1,

R′
2 = R2 ∗q+(R1−1)∗ r̂2, R′

3 = R3 ∗p+(R1−1)∗ r̂3, R′
4 = R3 ∗q+(R1−1)∗ r̂4.

Output sk= msk= k1, mpk={n,R1, R
′
1, R

′
2, R

′
3, R

′
4}.

Encrypt(m, ek=mpk): On input message m and ek=mpk, sample random
element r⃗ = [r0, r1, r2, r3, r4 ← Zn] and output:

c = trap1×m+trap0×r⃗ = R1∗m+(R1−1)∗r0+R′
1∗r1+R′

2∗r2+R′
3∗r3+R′

4∗r4

Evaluate(mpk, C, (c1, c2, ...)): On input public key mpk, an algorithm C
that supports multiply and adds operations(calculations of polynomial multipli-
cation and addition), a set of input ciphertext (c1, c2, ...) and then output:

c′ = C(c1, c2, ...) mod n, which is equal to Encrypt(C(m1,m2, ...),mpk)

Decrypt(c′, sk=k1): On input secret key sk, and a cipher-text c′=C( c1,
c2,...), output:

m′ = c′(sk) = c′(k1) = 1 ∗ C(m1,m2, ...) = C(m1,m2, ...)
Because R1(k1) is equal to 1 but (R1 − 1)(k1), R2(k1) and R3(k1) are all

equal to 0.

Correctness. We show that the correctness of the above fully homomorphic
encryption holds. Ciphertext in this encryption is encrypted in the form of
c=trap1 ×m+ trap0 × r⃗ = trap1 ×m+

∑4
i=0 trap0i × ri = R1 ∗m+ (R1 − 1) ∗

r0 + R′
1 ∗ r1 + R′

2 ∗ r2 + R′
3 ∗ r3 + R′

4 ∗ r4(we express R1 as trap1, (R1 − 1) as
trap00 and R′

1, R
′
2, R

′
3, R

′
4 as trap01, trap02, trap03, trap04 respectively). When

decrypting, trap1=R1 →1, trap0 =
∑4

i=0 trap0i × ri →
∑4

i=0 0 ∗ ri = 0 can be
made to get message m=m+0=m from ciphertext c.

According to equation (2) and equation (3), we can know that the ciphertext
of the entire encryption process exists in the form of trap1×m+ trap0. For users
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without k1, because they have no secret key k1, they can only get a ciphertext
that participated in the operation but get nothing information about message
m. However, for a user who has the decryption key k1, R1 in the ciphertext is
equal to 1, and (R1 − 1) and R′

i(1 ≤ i ≤ 4) are equal to 0. He can easily use
the key to remove R1, (R1 − 1), R′

i(0 ≤ i ≤ 4), and other polynomials in the
final ciphertext to obtain the calculated plaintext m′. For example, we say for
c′ = (c1+ c2)∗ c3+ c4, we have c

′ = R2
1 ∗ (m1+m2)∗m3+R1 ∗m4+ trap0. With

the help of sk=k1 we can get Dec(sk = k1) = R1(k1)
2∗(m1+m2)∗m3+R1(k1)∗

m4 + trap0(k1) = 12 ∗ (m1 +m2) ∗m3 + 1 ∗m4 + 0 = (m1 +m2) ∗m3 +m4).
But for others who have no sk=k1, since the polynomials of ciphertext cannot
be removed, they cannot successfully decrypt.

3.2 Homomorphic Operations of Ciphertexts

Let’s review the ciphertext generated by the encryption algorithm. When en-
crypting, the ciphertext is generated in the form of c = R1∗m+(R1−1)∗r0+R′

1∗
r1+R′

2∗r2+R′
3∗r3+R′

4∗r4, which is equal to trap1×m+trap0 since R1(k1) = 1
and R2(k1) = R3(k1) = 0. When two ciphertexts are added, the coefficients of
the same polynomial term between the ciphertexts c0 and c1 will be combined.
The newly generated ciphertext is c′ = R1∗(m1+m2)+(R1−1)∗(r00+r10)+R′

1∗
(r01+r11)+R′

2∗(r02+r12)+R′
3∗(r03+r13)+R′

4∗(r04+r14), which is still equal to
c = trap1× (m0 +m1)+ trap0 = Encrypt(m0 +m1, ek = mpk). When perform-
ing multiplication between ciphertexts, we have trap0 × trap1 = trap0, trap0 ×
trap0 = trap0, trap1 × trap1 = trap1 since trap1(k1) = 1, trap0(k1) = 0.
Suppose there are two ciphertexts c0, c1 for multiplication calculation, where
c0 = trap1 × m0 + trap0, c1 = trap1 × m1 + trap0(trap1 and trap0 may be
different). We have c0 ∗ c1 = trap1

2×m1 ∗m2+ trap0 = trap1×m1 ∗m2+ trap0,
where trap1 and trap0 have changed. Therefore, we say that our encryption
scheme satisfies the fully homomorphic property.

3.3 IND-CPA Security

We indicate that our encryption algorithm satisfies IND-CPA security. To prove
this, we only need to prove the security of the Encrypt algorithm in Construction
1 since the Evaluate algorithm can be expressed as a computation of ciphertexts
generated by Encrypt algorithm.

Assuming that an adversary wants to recover the plaintext information m,
he needs to solve the following equation:

c = R1 ∗m+ (R1 − 1) ∗ r0 +R′
1 ∗ r1 +R′

2 ∗ r2 +R′
3 ∗ r3 +R′

4 ∗ r4

We know that the purpose of (R1 − 1) R′
j(1 ≤ j ≤ 4) is to introduce more

random unknowns in the encryption process, so as to protect message m from
being leaked. In this way, the number of unknowns is s+1(s=5 here) and it is
greater than s for the attacker in the process of encryption, where unknowns
include (R1 − 1), coefficients of R′

j , and m. Because R′
1, R

′
2, R

′
3, R

′
4 cannot be
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mutually calculated(prove later), any of them cannot be represented by other
polynomials including R1 − 1. So it is a solving equations problem with 6 un-
knowns and 5 equations if an adversary wants to solve m from c. Normally, the
adversary cannot know any of the unknowns of m, r0, r1, r2, r3, r4, and then he
cannot solve the above equation to get m.

Definition 1 IND-CPA. Consider the following game between a challenger C
and a stateful adversary A.

Game Definition Oracle Definition

1.(mpk, msk)←Setup(1λ); OG(∗) :
2.(m0,m1)← AOG(∗),OE(∗)(mpk); 1.Output k ← Zn;
3.b← {0, 1};
4.c← Enc(mpk,mb); OE(∗) :
5.b′ ← AOG(∗),OE(∗)(c); 1.Output c← Enc(mpk,m);

We say that A wins IND-CPA game if b = b′, |m0| = |m1| and the following
holds:

For all queries to OG(∗) with k, it holds that:

k /∈Setup

This definition restricts the adversary from obtaining the k used in the Setup
algorithm, thus ensuring the security of the encryption process.

We state that the encryption proposed above is secure if for any PPT adver-
sary A, it holds that:

Pr[advA]= |Pr[A wins the IND-CPA Game]− 1
2 | ≤ negl(κ)

Proof. We define the general IND-CPA adversary-challenger game. The chal-
lenger C initializes the encryption system in Construction 1. Then he sends the
public parameters of the system to adversary A. We assume that A is polynomi-
ally conditional, and he can choose the plaintext pair (m0,m1) to be encrypted
at will. At the same time, A also has access to encryption oracle and key oracle.

During the process of Encrypt algorithm, the composition of ciphertext c is
R1 ∗m+(R1−1)∗ r0+R′

1 ∗ r1+R′
2 ∗ r2+R′

3 ∗ r3+R′
4 ∗ r4. Suppose adversary A

choosesm0,m1 and sends them to challenger C. C generates different ciphertexts
c0, c1 satisfying c0 = R1∗m0+(R1−1)r00+R′

1∗r01+R′
2∗r02+R′

3∗r03+R′
4∗r04,

c1 = R1∗m1+(R1−1)r10+R′
1∗r11+R′

2∗r12+R′
3∗r13+R′

4∗r14. Then C randomly
selects b← 0, 1 and gives cb to A. Since R1 and R2, R3 cannot be eliminated as
A doesn’t know k1 and different unknowns in ciphertext cannot be converted to
each other, the random factor r⃗b in cb can’t be eliminated. Therefore, A cannot
distinguish ciphertext cb from c0 and c1 and our scheme satisfies the IND-CPA
security.
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3.4 Security

To prove the security of Construction 1, we give the following definitions(We
express that all propositions in this paper are valid modulo n.):

Theorem 4. Suppose we have two quartic polynomials R1, R2. It is impossible
to solve R2 only given R1 and R2 +R1 ∗ r

Proof. We assumeR1 = [a, b, c, d, e], R2 = [a′, b′, c′, d′, e′], R2+R1∗r = [â, b̂, ĉ, d̂, ê],
in order to solve R2 we can get following equations by R2 +R1 ∗ r and R1:

a′ + a ∗ r = â

b′ + b ∗ r = b̂

c′ + c ∗ r = ĉ

d′ + d ∗ r = d̂

e′ + e ∗ r = ê

In the above equations, we can see that six unknowns are a′, b′, c′, d′, e′,
r. If we want to solve R2, we need at least six equations to solve the system of
equations above. But there are only give five equations we have, and we can’t
get new equations, so we say that R2 is safe and can’t be solved.

Proposition 1 According to polynomials R1, R
′
1, R

′
2, R

′
3, R

′
4, sk=k1 cannot be

solved. In addition, users other than Setup cannot get sk=k1.

Proposition 2 If a polynomial Ri cannot be solved for point (ki, 1) correspond-
ing to ki, then the new point corresponding to ki cannot be solved after Ri is
multiplied or added by a random element r. In other words, given an unsolvable
quartic equation, it is still unsolvable after multiplying or adding a certain value.
It means that the equation is still unsolvable after calculations such as addition
and multiplication.

Proposition 3 If a polynomial Ri cannot solve the point corresponding to ki,
then the point corresponding to ki cannot be solved after multiplying or adding
an unsolvable polynomial Rj. Obtaining information about ki points of two poly-
nomials before the calculation is impossible.

Proposition 4 Given polynomials R1, R
′
1, R

′
2, R

′
3, R

′
4 in Construction 1, we can-

not solve for R2, R3 by these polynomials.

Proposition 5 In Construction 1, R1, R2, R3 are linearly independent, and
cannot calculate each other, so is it to R1 − 1, R′

1, R
′
2, R

′
3, R

′
4. That means we

can’t use a part of them to calculate others, such as R′
2 ̸= R′

1∗a+(R1−1)∗b and
R′

3 ̸= R′
2∗a+R′

1∗b+(R1−1)∗c+R′
4∗d. In addition, if given two polynomials are

calculated by the same polynomial and their multiplied coefficients are relatively
prime, we consider them to be linearly independent in our scheme. For example,
although R′

1 and R′
2 given above are all calculated by the same polynomial, R′

1

and R′
2 are linearly independent since their coefficients are mutually prime.
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Proof. According to the given theorems, we prove that the above propositions
are correct, and correspondingly prove that our scheme is safe and efficient.

First, we prove that Proposition 1 is reasonable. We say that if an adversary
wants to crack sk = k1, he must attack from R1, R

′
1, R

′
2, R

′
3, R

′
4. We think it

is impossible because the length of n we set is generally at least 2048 bits and
longer.

Through Assumption 1, we know that it is difficult to crack a polynomial
of the second degree or more in the case of modulo n. So we say it is im-
possible to get sk by cracking R1, such as letting R1 = 1 get sk=k1. The
same is true for R′

1, R
′
2, R

′
3, R

′
4 respectively. Of course, if we want to combine

R1, R
′
1, R

′
2, R

′
3, R

′
4 to solve k1, we say it is impossible. We express that the com-

bination of R1, R
′
1, R

′
2, R

′
3, R

′
4 is equivalent to the combination of R1, R2, R3,

because R′
1, R

′
2, R

′
3, R

′
4 are all Calculated by R1, R2, R3. In Construction 1, be-

cause s is equal to 5, R1, R2, R3, and other polynomials are all quartic polyno-
mials. According to the polynomial intersection problem, we can get a quadratic
polynomial R satisfying R(k1) = 0 by combining the above polynomials, and we
know it is unsolvable. Therefore, we say that sk=k1 is unsolvable by adversary,
meaning Proposition 1 is correct. But it needs to be noted that if we give a new
polynomial R4 satisfying equation (2) in Construction 1, then k1 can be solved
by combining R1, R2, R3 and R4 because the first-degree polynomial can be
solved. This also means that we need to control the number of given indepen-
dent polynomials to be less than the degree of polynomials of Construction 1 to
ensure the scheme we built is safe.

Then we prove that a polynomial multiplied by a number or adding a num-
ber is still unsolvable, meaning Proposition 2 is correct. We know that for a
polynomial, no matter how many times it is expanded or numbers added, the
solution to its equation remains unchanged. So if the polynomial in Proposition
1 cannot be solved, Proposition 2 is correct.

Likewise, we prove that Proposition 3 is correct. Suppose there are three
polynomials P1, P2, P3 satisfying P1 = P2 ∗ P3, and P2, P3 are unsolvable poly-
nomials. If P1 is solvable, then at least one of P2 and P3 participating in the
calculation is solvable according to the principle of polynomial calculation. But
P2, P3 are all unsolvable polynomials, so P1 is also an unsolvable polynomial.
The main purpose of this proposition is to prove that the calculation between
ciphertexts in the encryption process is legal and safe. Because ciphertexts in
our scheme are all in the form of polynomials, we need to ensure the calculation
security of polynomial ciphertext.

For Proposition 4, we have known that R1, R2, R3 are linearly independent
according to Theorem 3. Then according to Theorem 4, we know that R2 cannot
be obtained according to R1 − 1 and R′

1, or R1 − 1 and R′
2. If an attacker

wants to solve R2 or p, q by combining R1 − 1, R′
1 and R′

2, it is necessary to
combine the elements R2 in R′

1 and R′
2 to construct a system of equations such

as bringing R′
1 into R

′
2∗q. Whatever method is used if we want to calculate R2 by

combining R1 − 1, R′
1 and R′

2, the unknown polynomial R2 is used to combine
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two polynomial equations as a bridge. Then the truly meaningful unknowns
are p, r̂1 and q, r̂2, and R′

1, R
′
2 both have only two equations to use(R2 in the

equation can be temporarily regarded as a known number when combining R′
1

and R′
2). However, if two equations of R′

1 are brought into R′
2 for combination,

then a system of equations can be obtained and it cannot be solved since R′
2 has

only two equations available but the constructed equations with 4 unknowns.
Therefore, it is impossible to solve R2 by combining R1 − 1, R′

1 and R′
2 and it

is also held for R1, R
′
3, R

′
4. Thus, given polynomials of R1, R

′
1, R

′
2, R

′
3, R

′
4 in

Construction 1, we cannot solve for R2, R3. The purpose of this proposition
is to prevent the adversary from obtaining plaintext by calculating equations
after obtaining R2, R3. Let’s look at the form of ciphertext c = R1 ∗m+ (R1 −
1) ∗ r0 + R′

1 ∗ r1 + R′
2 ∗ r2 + R′

3 ∗ r3 + R′
4 ∗ r4. It including 6 unknowns, and

they are m, r0, r1, r2, r3, r4 respectively. Because the calculated ciphertext is
related to s, the ciphertext is a quartic polynomial in Construction 1. If we solve
polynomials through equation problems, then we can get five equations, but we
have m, r0, r1, r2, r3, r4 six unknowns. We mean that the adversary cannot
solve the equations to obtain m. But if R2, R3 can be calculated, then R′

1, R
′
2,

R′
3, R

′
4 can be replaced by R2, R3, and the number of unknowns will be reduced

so that equations can be solved to get message m finally.

For Proposition 5, we first know that R1, R2, R3 are linearly independent
according to Theorem 3. For the convenience of expression, we first express that
R1−1, R2, R3 are also linearly independent. Because Ri(ki) = 1, Ri(kj) = 0(0 ≤
i, j < s, i ̸= j), in order to guarantee R′

l(k1) = 0(0 ≤ l ≤ 4), we have R1 −
1(k1, k2, k3, k4, k5) = [0,−1,−1,−1,−1], R2(k1, k2, k3, k4, k5) = [0, 1, 0, 0, 0], R3(
k1, k2, k3, k4, k5)=[0, 0, 1, 0, 0]. If we can find a, b satisfies R3 = (R1 − 1) ∗
a + R2 ∗ b, then R3(k1, k2, k3, k4, k5) = [0, b − a,−a,−a,−a] = [0, 0, 1, 0, 0]. Of
course, we cannot find corresponding a, b satisfied, so R1−1, R2, R3 are linearly
independent. Then, to prove the second half of the proposition, let us review
the linear relationship between vectors in general. First, suppose there is a basic
vector a⃗ and given two vectors a⃗0 = a⃗ ∗ b, a⃗1 = a⃗ ∗ c, we can easily know that a⃗0
and a⃗1 are linearly related because we can easily calculate a⃗1(a⃗0) by multiplying
a⃗0(a⃗1) and a coefficient b−1c(c−1b). Because in general, we can easily calculate
b−1 or c−1, and then we can multiply one of the vectors by a certain coefficient
to calculate another vector. But under the condition of modulo n, we know that
p−1 and q−1 do not exist, so the above condition is not valid. In other words,
because p and q are mutually prime and p−1, q−1 do not exist modulo n, we
cannot find a, b satisfy R′

2 ≡ R′
1 ∗ a+ (R1 − 1) ∗ b(mod n), or find a’, b’ satisfy

R′
4 ≡ R′

3 ∗a′+(R1−1)∗ b′(mod) since p∗a ̸= q(mod n) when a is not a multiple
of q. That is to say, R′

i composed of coefficients p and q cannot be calculated
mutually, such as R′

1 and R′
2, R

′
3 and R′

4 cannot be calculated mutually. Then
because R1 − 1, R2, R3 are independent of each other, and R′

i with the same
calculation polynomial but different coefficients cannot be calculated mutually,
R1 − 1, R′

1, R
′
2, R

′
3, R

′
4 are linearly independent. The purpose of Proposition 5

is also to prevent R1 − 1, R′
1, R

′
2, R

′
3, R

′
4 from being interchangeable, so that

the attacker can solve polynomial equations of ciphertext to obtain m. In other
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words, if any of R1− 1, R′
1, R

′
2, R

′
3, R

′
4 can be represented by other polynomials,

one or more unknowns in the ciphertext can be ignored for the attacker. In this
case, the plaintext information m contained in the ciphertext can be deciphered
by attacker.

It should be noted the prerequisite for the establishment of Construction 1
is that none of r1, r2, r3, and r4 are multiples of p and q. In fact, we only need
that the multiplier r1 of R′

1 is not a multiple of q, and the multiplier r2 of R′
2

is not a multiple of p. The same goes for r3, r4. In addition, since p and q are
unknown to any participant, for convenience, we assume that r1, r2, r3, and r4
are not multiples of p and q. The meaning of this is to make R2 and R3 between
the calculations of R′

1 and R′
2, R

′
3 and R′

4 do not overlap. On the contrary, if
any of r1, r3 is a multiple of p, or any of r2, r4 is a multiple of q, our encryption
scheme would not hold. In this case, R′

1 ∗ r1 ≡ 0 + (R1 − 1) ∗ r1(mod n) will
destroy the security of the ciphertext. The attacker can easily discard a random
number in the ciphertext, and then solve m by solving the equation. But this
case is so trivial that we do not consider it since it is equivalent to decomposing
a large integer n.

In summary, above theorems and propositions are all satisfied in Construc-
tion 1 proposed in this section. For example, Theorems 1, 2 and Propositions
1, 2, 3 guarantee the security of the encryption system key, so that the at-
tacker cannot crack the decryption key k1 through public parameters or other
information. Theorems 3, 4 and Propositions 4, 5 guarantee the security of the
encryption process. Thus, combined with the above security definition, we prove
that Construction 1 is secure.

4 Multi-Key Polynomial-based Fully Homomorphic
Encryption

We have presented homomorphic encryption based on the same encryption key
and given the corresponding security proof. But considering real-life application
scenarios, we need to consider the use of different encryption keys for differ-
ent users as much as possible[19,20,21,22]. We hope that ciphertexts generated
by different users using their keys can perform various operations and still get
correct decryption information. Therefore, we improve Construction 1 to get a
new construction, so that each user has a different encryption key ek, and the
ciphertexts of different users can participate in the operation together.

4.1 Construction of P-FHEs

Construction 2 Let P-FHE = (Setup, Encrypt, Evaluate, Decrypt) be a highly
efficient Polynomial-based Fully Homomorphic Encryption in Construction 1.
We construct Polynomial-based Fully Homomorphic Encryption with different
ek, P-FHEs(Setup, Encrypt, Key-generate, Evaluate, Decrypt), as follows (Note
that s=5 here, Ri and ciphertext exist as quartic polynomials):
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Setup(1λ): On input security parameter λ include s=5, the setup algorithm
does following processes:

1.Generate large prime numbers p, q according to λ and compute n=p*q.
2.Randomly select k1, k2, k3, k4, k5 ← Zn.
3.Use k1, k2, k3, k4, k5 to generate R1, R2, R3 according to equation (2) and

check whether R1, R2, R3 are linear independent. If not, come back to process
2, else continue.

4.Use R1, R2, R3 and p, q to generate R̂1 = R2 ∗p, R̂2 = R2 ∗ q, R̂3 = R3 ∗p,
R̂4 = R3 ∗ q.

Output sk=k1, msk={R̂1, R̂2, R̂3, R̂4}, mpk={n,R1}.

KeyGen(msk, mpk): On input master secret key msk, public key mpk,
sample random r̂1, r̂2, r̂3, r̂4 ← Zn, output ek = {R′

1, R
′
2, R

′
3, R

′
4}:

R′
1 = R̂1 + (R1 − 1) ∗ r̂1, R′

2 = R̂2 + (R1 − 1) ∗ r̂2, R′
3R̂3 + (R1 − 1) ∗ r̂3,

R′
4 = R̂4 + (R1 − 1) ∗ r̂4

Encrypt(m, ek, mpk): On input message m, encryption key ek, public key
mpk, sample random r0, r1, r2, r3, r4 ← Zn, and output:

c = R1 ∗m+ (R1 − 1) ∗ r0 +R′
1 ∗ r1 +R′

2 ∗ r2 +R′
3 ∗ r3 +R′

4 ∗ r4

Evaluate(mpk, C,(c1, c2, ...)): On input the public key mpk, an algorithm
C that supports multiplication and addition operations(the calculations of poly-
nomial multiplication and addition), a set of input ciphertext (c1, c2, ...) and
then output:

c′ = Encrypt(C(m1,m2, ...),mpk) = C(c1, c2, ...) mod n.

Decrypt(c′, sk=k1): On input secret key sk, and a ciphertext c′=C(c1, c2,
...), output:

m′ = c′(sk) = c′(k1) = 1 ∗ C(m1,m2, ...) = C(m1,m2, ...)
R1(k1) is equal to 1 but (R1 − 1)(k1), R2(k1) and R3(k1) are all equal to 0.

4.2 Correctness and Security

Correctness:We say that the correctness of the above encryption is established.
We see that Construction 2 is a variant of Construction 1. We just convert the
random element R′

i(1≤ i ≤4) in the public parameter of Construction 1 into pri-
vate elements and none of trap1 and trap0 elements have changed. After bringing
sk = k1, R1 = 1, R2 = R3 = 0 is still satisfied. Therefore, the encryption and
decryption process is still correct.

Security. Compared with Construction 1, Construction 2 converts some pub-
lic parameters into private parameters. However, the encryption algorithm c =
R1 ∗m+(R1−1)∗r0+R′

1 ∗r1+R′
2 ∗r2+R′

3 ∗r3+R′
4 ∗r4 is still unchanged when

encrypting. Although everyone gets a different encryption key ek, they face the
same public parameter mpk={R1, n}, so they can generate ciphertexts in the
same homomorphic environment.
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Because different user gets different ek, it is more difficult for an attacker
to use ciphertext to crack the user’s plaintext. For example, suppose a user en-
crypts m by his ek to generate a ciphertext c, if an attacker wants to crack m
through c, he can only try to crack ciphertext c through his ek. However, we
know that the encryption keys of different users are different, so the attacker
must first find a way to obtain the encryption key of the encrypting party to
crack m. We say that the difficulty of cracking is more difficult than that of Con-
struction 1. In Construction 1, ek is directly told to the attacker, and everyone
uses the same encryption key to encrypt. But in Construction 2 attacker has
less information because he doesn’t even know the honest user’s encryption key.
Therefore, compared with Construction 1, Construction 2 proposed in this part
is more secure.

5 Making Ciphertexts of Our Scheme Constant Size

We have given the construction of polynomial-based fully homomorphic encryp-
tion with single-key and multi-key, and the ciphertexts of them are all based on
quartic polynomials. There is still a serious problem that we need to pay atten-
tion to. Because the calculation between ciphertexts is polynomials calculation,
the length of new ciphertext changes as multiplication occurs. For example, if
two ciphertexts are multiplied, the length of the calculated ciphertext is the sum
of two ciphertexts minus 1. However, if two ciphertexts are added, the result-
ing ciphertext length is the longest of them. In this way, an attacker can easily
infer whether there is a multiplication calculation involved and the calculation
efficiency between ciphertexts will also decrease with the multiplication. There-
fore, in this section, we will give a method to improve the fully homomorphic
encryption scheme given above based on the modulus calculation of polynomials
to make the length of ciphertexts fixed.

5.1 Overview

We know that the encryption constructions given above are constructed on basis
elements R1, R2, R3, and s = 5. Therefore, ciphertexts generated by Encrypt
are all ciphertexts represented by quartic polynomials. However, when different
ciphertexts are multiplied, the new ciphertext appears as a polynomial with a
higher degree. For example, multiplying two ciphertexts in the form of quartic
polynomials produces a ciphertext in the form of an octagonal polynomial.

In order to not limit the calculation of ciphertexts and make encryption
more efficient, we need to keep the calculation result of ciphertext to a quartic
polynomial and keep the length of ciphertext at s ∗ |n|. We use a high-degree
polynomial to limit the calculation of low-degree polynomials so that the re-
sult of the calculation of low-degree polynomials can be kept at a low level.
Therefore, we can use a quintic polynomial P satisfying P (k1) = 0 to limit
the generation of high-degree polynomials generated between ciphertexts during
evaluation. However, when we introduce P , we need to ensure that the newly
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introduced polynomial and random element satisfy the theorems and proposi-
tions proposed before. Therefore, we give the idea of how to improve the fully
homomorphic encryption constructions given above(P-FHE and P-FHEs) based
on the modulus calculation of polynomials to make the length of ciphertexts
fixed.

To ensure the normal progress of encryption, we cannot destroy the security
of the original scheme when introducing a new polynomial P . For example,
P must remain non-independent from the public polynomials that have been
used, and not affect the theorems and propositions that the encryption scheme
satisfies. Therefore, the simplest improvement is using trap0, (R1−1), used in the
encryption process, and combining it with the basic polynomial k to construct
P . We give a typical encryption with the constant size of ciphertext according
to Construction 1.

We already know that Construction 2 is a variant of Construction 1, so
we only use Construction 1 as an example to explain the method of ciphertext
fixing. But we declare that the method for improving Construction 1 is also valid
for Construction 2 and we can construct a new construction with constant-size
ciphertexts in the same way.

5.2 Constant-Size Ciphertexts of Polynomial-based Fully
Homomorphic Encryption

To make the ciphertexts of our encryption constant size, we use R1 in Con-
struction 1 and basic polynomial k to construct a quintic polynomial P (k) =
k∗(R1−1) that satisfies P (k1)=0(mod n) during the setup process. In this way,
we can use the high-order terms of P to convert terms with the degree over s-1
generated by ciphertexts into low-order terms during polynomial multiplication.

Based on Construction 1 and P , we can limit the computation of cipher-
texts to the quartic polynomial(shown in equation 4). Because in the process of
ciphertext calculation, once the result of calculations exceeds the quartic poly-
nomial, we can call P (k1)=0 to convert polynomials of more than the degree of
4 into a polynomial of less than 4(including 4). For example, multiplying two
ciphertexts of quartic polynomials can generate a new octave polynomial, and
we can convert coefficients of high-degree over 4 into coefficients of degree less
than or including 4. With the help of P = k ∗ (R1 − 1), we give the following
equations.

Suppose

P (k) = k5 + ak4 + bk3 + ck2 + dk + e(mod n) satisfy P (k1) = 0

Then, we have

k5 = −ak4 − bk3 − ck2 − dk − e
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Let

R1 ≡ k4 + bk3 + ck2 + dk + e(mod n)

P (k) = k ∗ (R1 − 1) = k5 + bk4 + ck3 + dk2 + ek

R2 = a′k4 + b′k3 + c′k2 + d′k + e′

R3 = âk4 + b̂k3 + ĉk2 + d̂k + ê

Then

R1 ∗R1 = R1 + (R1 − 1) ∗R1 = R1 + (R1 − 1) ∗ e
R1 ∗R2 = R2 + (R1 − 1) ∗R2 = R2 + (R1 − 1) ∗ e′

R1 ∗R3 = R3 + (R1 − 1) ∗R3 = R2 + (R1 − 1) ∗ ê
R2 ∗R3 = else but R2 ∗R3(k1) = 0

(4)

Through appropriate construction of P such as the second half of equation
(4), we can get the formula Rl

1 = R1+C∗(R1−1) = trap1+trap0 = trap1(l ≥ 2,
C is a number decided by l and the constant term of R1), making Rl

1(k1) =
R1(k1) = 1. Other multiplication operations between polynomials contain trap0
output 0. For easier explanation, we take quadratic polynomial ciphertext and
cubic polynomial P (k) as an example. Just like the calculation process shown in
equation (4), we give the following example:

Suppose R1 = k2 − 3k + 3, R1 − 1 = (k − 1)(k − 2) = k2 − 3k + 2, and
sk = k1 = 1.

We make P (k) = k ∗ (R1 − 1) = k3 − 3k2 + 2k and we have:

R2
1 = (k2 − 3k + 3)2

= k4 − 6k3 + 15k2 − 18k + 9

According to P (k1) = 0, we have k3 = 3k2 − 2k. Then, we can get the
following result:

R2
1 = 4k2 − 12k + 9

= (k2 − 3k + 3) + (3k2 − 9k + 6)

= (k2 − 3k + 3) + 3[(k2 − 3k + 3)−
= R1 + 3(R1 − 1)

The same is true if calculations of higher-order polynomials are involved. In
this way, we can limit the result of computation between ciphertexts to quartic
polynomials. We show that it is difficult to solve k1 with P (k) = 0 and it is more
difficult than solving k1 by R1 = 1. First, R1 = 1 is the problem of solving a
quadratic polynomial in Zn(k), while P (k) = 0 is the problem of solving a quintic
polynomial. Assumption 1 tells us that it is difficult to solve a polynomial of at
least second-degree modulo n. The length of ciphertext in our fully homomorphic
operation is the size of a quartic polynomial and our security parameter n can
be set long enough such as 2048bit, 4096bit, and so on. Therefore, the safety
of P (k) is guaranteed and we construct a constant size polynomial-based fully
homomorphic encryption, Construction 3 as follows.

22



Construction 3 Let P-FHE = (Setup, Encrypt, Evaluate, Decrypt) is a highly
efficient Polynomial-based Fully Homomorphic Encryption in Construction 1.
We construct constant-size P-FHE=(Setup, Enc, Evaluate, Dec) as follows:

Setup(1λ): On input security parameter λ include s=5, the setup algorithm
does following process:

1.Generate large prime numbers p, q according to λ and compute n=p*q.

2.Randomly select k1, k2, k3, k4, k5, r̂1, r̂2, r̂3, r̂4 ← Zn.

3.Use k1, k2, k3, k4, k5 to generate R1, R2, R3 according to equation (2) and
check whether R1, R2, R3 are linear independent. If not, come back to process
2, else continue.

4.Use R1, R2, R3, r̂1, r̂2, r̂3, r̂4 and p, q to generate R′
1 = R2∗p+(R1−1)∗ r̂1,

R′
2 = R2 ∗q+(R1−1)∗ r̂2, R′

3 = R3 ∗p+(R1−1)∗ r̂3, R′
4 = R3 ∗q+(R1−1)∗ r̂4.

5.Use R1 to generate P = P (k) = (R1 − 1) ∗ k according to equation (4).

Output sk= msk= k1, mpk={n, P,R1, R
′
1, R

′
2, R

′
3, R

′
4}.

Encrypt(m, ek=mpk): On input message m and ek=mpk, sample random
element r0, r1, r2, r3, r4 ← Zn and output:

c = R1 ∗m+ (R1 − 1) ∗ r0 +R′
1 ∗ r1 +R′

2 ∗ r2 +R′
3 ∗ r3 +R′

4 ∗ r4

Evaluate(mpk, C, (c1, c2, ...)): On input the public key mpk, an algo-
rithm C that supports multiplication and addition operations(the calculations
of polynomial multiplication and addition), a set of input ciphertext (c1, c2, ...)
and then output:

c′ = Encrypt(C(m1,m2, ...),mpk) = C(c1, c2, ...) mod P mod n, where with
the help of P , c′ is a quartic polynomial modulo n.

Decrypt(c′, sk=k1): On input the secret key sk, and a cipher-text c′=C(c1,
c2, ...), output:

m′ = c′(sk) = c′(k1) = 1 ∗ C(m1,m2, ...) = C(m1,m2, ...)

Because R1(k1) is equal to 1 but P (k1), (R1− 1)(k1), R2(k1) and R3(k1) are
all equal to 0.

Correctness. At the beginning of this section we have explained why P al-
lows the computation of polynomials to be restricted to quartic polynomials (see
equation (4)). Because P (k1)=0, it is feasible to use P to replace higher-order
polynomials with quartic polynomials. Other calculations including encryption,
ciphertext, and decryption calculation are the same as Construction 1. There-
fore, Construction 3 is also correct.

Security. Same as R1, the security of P (k) is also based on the difficulty of
finding roots of polynomial modulo large integer n since P (k) = k ∗ (R1 − 1).
Therefore, we denote that P (k) is secure, and an attacker cannot solve any use-
ful information about k1 through P (k). Considering the attacker may combine
P (k) and R1 to try to crack k1, we give the definition of Proposition 6.
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Proposition 6 Suppose there are two polynomials satisfying P4(k1) = 0, P5(k1) =
0 and P4, P5 are not independent. For example, P5 = P4∗k or P5 = P4∗(k−k′),
where P4 and P5 are quartic polynomial and quintic polynomial respectively. If P4

cannot be solved for k1 in the case of modulo n (n=p*q, and p, q are unknown),
then P5 cannot be solved for k1 and we can get nothing useful by combining them.

Proof. Suppose we have P4 = k4 + ak3 + bk2 + ck + d and P5 = k ∗ P4 =
k5 + ak4 + bk3 + ck2 + dk satisfy:

P5 ≡0(mod n)

and

P4 ≡0(mod n)

Then, in order to find intersection coordinate point k1, let us combine two
polynomials to get the following system of equations:{

P5 = k5 + ak4 + bk3 + ck2 + dk ≡ 0(mod n)

P4 = k4 + ak3 + bk2 + ck + d ≡ 0(mod n)

Then, we can change the solution of the above system of equations into the
solution of the following equations(convert P5 to lower equation by P4):{

P5 = k5 + ak4 + bk3 + ck2 + dk ≡ 0(mod n)

k4 = −ak3 − bk2 − ck − d(mod n)

Finally, we can get 0=0. Because P5 is just constructed by polynomials P4

and k, we cannot solve P5 by existing quartic polynomial P4. And according to
Proposition 1, P4 is unsolvable, we think that P5 is unsolvable too. This is why
in Construction 3 we construct quintic polynomial P (k) like this.

Construction 3 provides encryption of P-FHE based on P=k ∗ (R1 − 1), and
the purpose of P is to limit the change of ciphertext length during the calcu-
lation process between ciphertexts. Through Proposition 6, we know that the
attacker cannot solve useful information of k1 through P and R1. The security
of other polynomials computing is held through the definitions of Construction
1. Therefore we show that the encryption process of Construction 3 is secure.
The reason why P=k ∗ (R1 − 1) is because theorems and propositions must
be satisfied to ensure the security of encryption are given in Construction 1.
For example, Theorem 2, Proposition 3, and Proposition 4 need to ensure that
polynomials used cannot disclose decryption key k by collusion and message m
cannot be obtained by solving equations. Therefore, before introducing P , we
need to carefully consider whether P will cause trouble to other polynomials,
invalidate previous theorems and propositions, and destroy the security of the
encryption scheme. The introduction of P=k ∗ (R1 − 1) perfectly conforms to
these conditions, and we can restrict polynomials to quartic polynomials by mod-
ular multiplication without introducing a new independent polynomial. In other
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words, we limit the length of ciphertext to s=5, and it perfectly conforms to the
encryption in Construction 1. In addition, we have shown that Construction 2
is a variant of Construction 1. Therefore, the above method of fixing the length
of the ciphertext is also valid for Construction 2.

Many construction methods meet the requirements that can be used to con-
struct the polynomial P as long as the encryption security and efficiency can be
guaranteed. We explain here that the construction of P is not limited to R1 − 1
and k. We show that R′

1, R
′
2, R

′
3, R

′
4 in Construction 1 can all be used to construct

P , and the encryption constructed is the same as Construction 3. We say that
any complex polynomial of degree 5 that satisfies P (k1) = 0 used in Construction
1 will do, such as (k−k′)*(R1−1), (k−k′)∗R′

1, (k−k′)∗R2, (k−k′)∗R3 (where
k′ is a constant) and other polynomials satisfied P (k1) ≡ 0(mod n). But when
introducing the polynomial P , we must satisfy that the introduced polynomial
cannot affect the security of Construction 1. If we use high-degree polynomials
other than k ∗ (R1 − 1), we need to consider more complicated situations. (1)
Constructed P cannot be combined with previous polynomials to recover the
decryption key or message m; (2) The constructed polynomial P needs to ensure
that the encryption scheme satisfies theorems and propositions in Construction
1; (3) R2, R3 cannot be leaked. If we use R′

1, R
′
2, R

′
3, R

′
4 to construct P , obvi-

ously it meets the above conditions, and the encryption construction is similar
to Construction 3. But if we use R2, R3 to construct P , we must select a proper
element k′ to protect R2, R3 from disclosure. Here we give an example of the
encryption system Setup with P constructed by R2.

Setup(1λ):On input security parameter λ include s=5, the setup algorithm
does following process:

1.Generate large prime numbers p, q according to λ and compute n=p*q.

2.Randomly select k′, k1, k2, k3, k4, k5, r̂1, r̂2, r̂3, r̂4 ← Zn.

3.Use k1, k2, k3, k4, k5 to generate R1, R2, R3 according to equation (2) and
check whether R1, R2, R3 are linear independent. If not, come back to process
2, else continue.

4.Use R1, R2, R3, r̂1, r̂2, r̂3, r̂4 and p, q to generate R′
1 = R2∗p+(R1−1)∗ r̂1,

R′
2 = R2 ∗q+(R1−1)∗ r̂2, R′

3 = R3 ∗p+(R1−1)∗ r̂3, R′
4 = R3 ∗q+(R1−1)∗ r̂4.

5.Use R2, k
′ to generate P = P (k) = (k − k′) ∗R2.

Output sk= msk= k1, mpk={n, P,R1, R
′
1, R

′
2, R

′
3, R

′
4}

Security. We know that P = P (k) = (k − k′) ∗ R2 satisfies P (k1) = 0. The
security of the encryption system cannot be destroyed through P , because P is
composed of R2 and we have not introduced new independent polynomials. It can
be seen that compared with Construction 3, the second step of Setup generates
one more random element k′, and in the fifth step, P=(k-k′)* is generated by
R2 and k′ together. We said that if k′ is selected properly, at least similar to
k1, k2, k3, k4, k5, then it can be guaranteed that R2 cannot be solved through
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P , satisfying propositions 4 and 5. So the security can be guaranteed as P
constructed by (k − k′) ∗R2 doesn’t leak R2.

6 Conclusion

In this work, we innovatively use the polynomial-based operations to construct a
fully homomorphic encryption scheme, which we called trap1×m. The key point
of our scheme is to use high-order polynomials that are difficult to find roots to
realize the encryption parameter trap1 and trap0 we want. We have explained
how to realize trap1 and trap0 through the Lagrangian interpolation theorem,
making it easier for us to build the encryption scheme.

We mainly give two constructions of our scheme in this paper: using the single
encryption key(P-FHE) and using different encryption keys(P-FHEs). Compared
with P-FHEs, the P-FHE scheme is more suitable for public domains such as
voting systems and certificate systems because it is oriented to the same en-
crypted public parameters. Because the encryption key ek of each user is differ-
ent, P-FHEs are more suitable for personalization fields where different users are
different. We say that the construction of fully homomorphic encryption using
different encryption parameters(P-FHEs) has the highest security as it not only
conforms to theorems and propositions of the first construction P-FHE, but also
gives less information to an attacker when he wants to break the encryption sys-
tem. We also provide a method to constant the size of their ciphertext and give
details about the construction of P and precautions that need to be observed.
We also show the relationship between s and polynomials used in our scheme so
that we can build the encryption process more conveniently. For example, when
constructing an encryption system, we need to ensure that there are no more
than s-2 independent polynomials. Otherwise, the secret information k1 of the
encryption system will be leaked.

There is no doubt about the efficiency of our scheme because of the efficiency
of polynomials. When building an encryption system, we can use a sufficiently
large modulus n to make our encryption scheme more secure. In addition, it is
not difficult to see that those ciphertexts in our scheme can be directly used
for addition, subtraction, multiplication, and division calculations without any
key. Based on this property, our schemes can be used in various blind computing
application scenarios. For example, we can try them in the following application
scenarios:

– The stock market[23]. Assuming that the stock index of shareholder A has
risen by a certain percentage, he does not want others to know how much cap-
ital he has invested. He can encrypt his wallet, and then send the encrypted
ciphertext wallet to the stock center for new stock calculation directly. After
receiving the encrypted Wallet over evaluation, shareholder A can decrypt it
to obtain the final stock. But users except A cannot know how much amount
A owns because they do not have A’s decryption key.

– Encrypted digital wallet[24]. When conducting a transaction, user A en-
crypts his wallet and sends the encrypted wallet to the transaction partner.

26



Then transaction partner directly performs operations such as deduction and
payment on the received encrypted wallet and sends it to A in the form of
ciphertext. A can get his balance after decrypting the encrypted wallet as
the transaction closes. This idea is generally used in public domains such
as digital wallets. We can perform encrypted homomorphic calculations on
users’ wallets. Then users can use their encrypted wallets to perform any
transaction, but only the wallet’s owner can know the balance during the
transaction.

To facilitate the improvement of our scheme and propose a better fully ho-
momorphic encryption scheme, we give the prospect of future work:

1) Further analyze the feasibility and security of our scheme, and give a more
efficient fully homomorphic encryption scheme trap1 ×m.

2) Our encryption scheme uses Lagrange interpolation polynomials to realize
trap1. We know that there are many polynomials available in the Lagrange
interpolation theorem, and it can be considered whether our scheme can be
extended to realize the fully homomorphic encryption operation of batch
processing.

3) Find other techniques that are more suitable for constructing trap1 and trap0
to replace the Lagrangian interpolation polynomials, and try more efficient
methods to improve our scheme.
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