
Adding more parallelism to the AEGIS authenticated
encryption algorithms

Frank Denis

Fastly Inc.
fde@00f.net

Abstract. While the round function of the AEGIS authenticated encryption algorithms is
highly parallelizable, their mode of operation is not.

We introduce two new modes to overcome that limitation: AEGIS-128X and AEGIS-256X,
that require minimal changes to existing implementations and retain the security properties of
AEGIS-128L and AEGIS-256.

1 Introduction

AEGIS [WP14] is a family of three authenticated encryption algorithms, originally designed to lever-
age the AES-NI instructions set introduced by Intel in 2010 [ADF+10]. These instructions perform
several compute intensive parts of the AES algorithm, significantly improving the performance of
software AES implementations while minimizing the risks of side channel attacks.

However, concurrent AES round instructions are required to fully utilize the AES pipelines. The
AEGIS round function was specifically designed with this in mind, and allows up to 8 AES blocks
to be updated concurrently. Its design made it the fastest candidate of the CAESAR competition on
Intel CPUs with hardware AES acceleration [ARAR16].

Nonetheless, the mode of operation is similar to a duplex: after its initialization, the state is
recursively updated. That effectively limits the parallelism of the construction to the parallelism of
the round function.

In [BLT15], Bogdanov, Lauridsen, and Tischhauser made a similar observation regarding multiple
candidates of the CAESAR competition. They proposed a novel "comb scheduler" to process multiple
messages simultaneously.

The modes presented here also encrypt multiple messages simultaneously using the same cipher,
but assume that they are fragments of the same message, and share the same key, initialization vector
and length.

Given a parallelism degree ν, an input message is split into ν evenly distributed parts, that can be
encrypted concurrently. The resulting ciphertexts are then combined, as well as their authentication
tags.

The underlying encryption algorithms remain the existing AEGIS algorithms, with a minor addi-
tion to their initialization functions.

2 Operations, Variables and Functions

The operations, variables and functions used in this document are defined below.

mailto:fde@00f.net

2

2.1 Operations

|x| : Size of x in bits
x⊕ y : Bit-wise exclusive OR
F128L(S,m0,m1) : AEGIS-128L state update function
F256(S,m) : AEGIS-256 state update function
x∥y : Concatenation of x and y
Pad(x, ℓ) : Add trailing 0 bits to pad x to ℓ bits
Enc128L(CTX,K, IV,A,M) : AEGIS-128L encryption function with context sep-

aration
Enc256(CTX,K, IV,A,M) : AEGIS-256 encryption function with context sep-

aration
Enc128X [ν](K, IV,A,M) : AEGIS-128X[ν] parallel encryption function
Enc256X [ν](K, IV,A,M) : AEGIS-256X[ν] parallel encryption function
Trunc(x, ℓ) : Truncate x to the first ℓ bits

2.2 Variables and constants
AD : Associated data or {} if unspecified
ADi : 128-bit associated data block
ÂD : AD, padded to r · ν bits
ÂDi : 128-bit associated data block
ADi : ÂD fragment (|ÂD|

ν bits)
ADi,j : 128-bit ÂD fragment block
C : Ciphertext
Ĉ : C, padded to r · ν bits
Ĉi : A 128-bit ciphertext block
Ci : C fragment (|Ĉ|

ν bits)
Ci,j : 128-bit C fragment block
const0 : First half of the AEGIS constant (128 bits)
const1 : Second half of the AEGIS constant (128 bits)
CTX : Context separator
K128 : 128-bit encryption key (AEGIS-128, -128L)
K256 : 256-bit encryption key (AEGIS-256)
K256,0 : First half of a 256-bit key
K256,1 : Second half of a 256-bit key
P : Plaintext
P̂ : P , padded to r · ν bits
P̂i : 128-bit plaintext block
P : P fragment (|P̂ |

ν bits)
P i : 128-bit P fragment block
IV128 : 128-bit initialization vector (AEGIS-128, -128L)
IV256 : 256-bit initialization vector (AEGIS-256)
IV256,0 : First half of a 256-bit initialization vector
IV256,1 : Second half of a 256-bit initialization vector
ν : Parallelism degree (≥ 1)
r : Absorption rate (128 or 256 bits)
S : AEGIS state
Si : A 128-bit AEGIS state block
T : Authentication tag for C
T i : Authentication tag for Ci

3 Context separation

From an application perspective, new AEGIS variants should ideally share the same interface as
existing variants. Namely, they should accept a single message, optional associated data, a 128 or 256
bit key, and a 128 or 256 bit initialization vector.

3

However, AEGIS is meant to be used in a nonce-respecting scenario [VV18]. Clearly, reusing the
same key and IV to encrypt different parts of a message would violate that contract.

In order to avoid universal forgery and decryption attacks, we augment the AEGIS initial-
ization functions with a context, meant to provide domain separation. That is, for two different
values CTX0 ̸= CTX1, Enc·[·](CTX0, ·) and Enc·[·](CTX1, ·) act as two different functions of
{K, IV,A,M}.

3.1 Augmenting AEGIS-128L for context separation

AEGIS-128L defines the initial state S as a vector of eight AES blocks {S0, S1, . . . S7} set to:

Block Initial value
S0 K128 ⊕ IV128

S1 const1
S2 const0
S3 const1
S4 K128 ⊕ IV128

S5 K128 ⊕ const0
S6 K128 ⊕ const1
S7 K128 ⊕ const0

From this state, the original AEGIS-128L initialization function performs 10 updates as described
in algorithm 1.

Algorithm 1 Contextless AEGIS-128L initialization
function Initialize(K, IV)

S ← {K128 ⊕ IV128, const1, const0, const1,K128 ⊕ IV128,K128 ⊕ const0,K128 ⊕ const1,K128 ⊕ const0}
i← 0
while i < 10 do

S ← F128L(S, IV128,K128)
i← i+ 1

end while
end function

We augment this function to accept a context parameter CTX. Before each update, the context is
added to the blocks at indices 3 and 7 of the state, as described in algorithm 2

Note that when CTX = 0, the resulting state is exactly the same as AEGIS-128L, as originally
specified, without a context.

Algorithm 2 AEGIS-128L initialization with context
function Initialize(CTX, K, IV)

S ← {K128 ⊕ IV128, const1, const0, const1,K128 ⊕ IV128,K128 ⊕ const0,K128 ⊕ const1,K128 ⊕ const0}
i← 0
while i < 10 do

S3 ← S3 ⊕ Pad(CTX, 128)
S7 ← S7 ⊕ Pad(CTX, 128)
S ← F128L(S, IV128,K128)
i← i+ 1

end while
end function

4

3.2 Augmenting AEGIS-256 for context separation

AEGIS-256 accepts a 256-bit key K256 made of two AES blocks {K256,0,K256,1}, as well as 256-bit
initialization vector IV256 made of two AES blocks {IV256,0, IV256,1}.

The initial state S is a vector of six AES blocks {S0, S1, . . . S5} set to:

Block Initial value
S0 K256,0 ⊕ IV256,0

S1 K256,1 ⊕ IV256,1

S2 const0
S3 const1
S4 K256,0 ⊕ const1
S5 K256,11⊕ const0

From this state, the original AEGIS-256 initialization function performs 16 updates as described
in algorithm 3.

Algorithm 3 Contextless AEGIS-256 initialization
function Initialize(K, IV)

S ← {K256,0 ⊕ IV256,0,K256,1 ⊕ IV256,1, const0, const1,K256,0 ⊕ const1,K256,1 ⊕ const0}
i← 0
while i < 4 do

S ← F256(S,K256,0)
S ← F256(S,K256,1)
S ← F256(S, IV256,0)
S ← F256(S, IV256,1)
i← i+ 1

end while
end function

We augment this function to accept a context parameter CTX. Before each update, the context
is added to the blocks at indices 3 and 5 of the state, as described in algorithm 4

Note that when CTX = 0, the resulting state is exactly the same as AEGIS-256, as originally
specified, without a context.

Algorithm 4 AEGIS-256 initialization with context
function Initialize(CTX, K, IV)

S ← {K256,0 ⊕ IV256,0,K256,1 ⊕ IV256,1, const0, const1,K256,0 ⊕ const1,K256,1 ⊕ const0}
i← 0
while i < 4 do

S3 ← S3 ⊕ Pad(CTX, 128)
S5 ← S5 ⊕ Pad(CTX, 128)
S ← F256(S,K256,0)
S3 ← S3 ⊕ Pad(CTX, 128)
S5 ← S5 ⊕ Pad(CTX, 128)
S ← F256(S,K256,1)
S3 ← S3 ⊕ Pad(CTX, 128)
S5 ← S5 ⊕ Pad(CTX, 128)
S ← F256(S, IV256,0)
S3 ← S3 ⊕ Pad(CTX, 128)
S5 ← S5 ⊕ Pad(CTX, 128)
S ← F256(S, IV256,1)
i← i+ 1

end while
end function

5

4 The AEGIS-128X and AEGIS-256X modes

AEGIS absorbs the associated data and message with a rate r with r = 256 for AEGIS-128L and
r = 128 for AEGIS-128 and AEGIS-256.

We define two new modes: AEGIS-128X[ν] and AEGIS-256X[ν], that absorb r · ν bits per state
update, spread over ν concurrent instances of the AEGIS-128L or AEGIS-256 encryption functions.

The associated data AD and plaintext P are split into interleaved blocks with a stride of r · ν bits
as they arrive. The last blocks are padded if necessary.

We first pad AD and P by adding trailing zero bits until they match the stride length:

ÂD = Pad(AD, r · ν)
P̂ = Pad(P, r · ν)

ÂD is split into 128-bit blocks {ÂD0, ÂD1, . . . ÂD |ÂD|
128 −1

}.

These blocks are interleaved to produce ν independent |ÂD|
ν bit messages {AD0, AD1, . . . ADν−1}.

AD0 = ÂD0∥ÂDν∥ÂD2ν∥ÂD3ν∥ . . .
AD1 = ÂD1∥ÂDν+1∥ÂD2ν+1∥ÂD3ν+1∥ . . .
AD2 = ÂD2∥ÂDν+2∥ÂD2ν+2∥ÂD3ν+2∥ . . .
...
ADν−1 = ÂDν−1∥ÂDν+(nu−1)∥ÂD2ν+(ν−1)∥ÂD3ν+(ν−1)∥ . . .

Similarly, P̂ is split into ν independent |P̂ |
ν bit messages {P 0, P 1, . . . P ν−1}.

4.1 AEGIS-128X

AEGIS-128X[ν] first encrypts and authenticates the plaintext and associated data fragments inde-
pendently, producing ν ciphertexts {C0, C1, . . . Cν−1} and authentication tags {T 0, T 1, . . . T ν−1}.

{C0, T 0} = Enc128L(CTX ← 0,K, IV,A0,M0)
{C1, T 1} = Enc128L(CTX ← 1,K, IV,A1,M1)
{C2, T 2} = Enc128L(CTX ← 2,K, IV,A2,M2)
...
{Cν−1, T ν−1} = Enc128L(CTX ← ν − 1,K, IV,Aν−1,Mν−1)

{C0, C1, . . . Cν−1} are deinterleaved to produce the final ciphertext:

Ĉ =
C0,0∥C1,0∥C2,0∥ . . . ∥C(ν−1),0∥
C0,1∥C1,1∥C2,1∥ . . . ∥C(ν−1),1∥
C0,2∥C1,2∥C2,2∥ . . . ∥C(ν−1),2∥ . . .

C = Trunc(Ĉ, |P |)

Finally, the AEGIS-128X[ν] authentication tag is the bit-wise exclusive OR of the AEGIS-128L
authentication tags:

T = T 0 ⊕ T 1 ⊕ . . .⊕ T ν−1

Note that AEGIS-128L and AEGIS-128X[1] are equivalent.

4.2 AEGIS-256X

AEGIS-256X[ν] uses the exact same interleaving technique as AEGIS-128X[ν] in order to process r ·ν
bits per state update.

The only difference being that fragments are encrypted and authenticated using the AEGIS-256
encryption function instead of the AEGIS-128L one.

6

{C0, T 0} = Enc256(CTX ← 0,K, IV,A0,M0)
{C1, T 1} = Enc256(CTX ← 1,K, IV,A1,M1)
{C2, T 2} = Enc256(CTX ← 2,K, IV,A2,M2)
...
{Cν−1, T ν−1} = Enc256(CTX ← ν − 1,K, IV,Aν−1,Mν−1)

{C0, C1, . . . Cν−1} are deinterleaved to produce the AEGIS-256X[ν] ciphertext:

Ĉ =
C0,0∥C1,0∥C2,0∥ . . . ∥C(ν−1),0∥
C0,1∥C1,1∥C2,1∥ . . . ∥C(ν−1),1∥
C0,2∥C1,2∥C2,2∥ . . . ∥C(ν−1),2∥ . . .

C = Trunc(Ĉ, |P |)

Finally, the AEGIS-256X[ν] authentication tag is the bit-wise exclusive OR of the AEGIS-256
authentication tags:

T = T 0 ⊕ T 1 ⊕ . . .⊕ T ν−1

Note that AEGIS-256 and AEGIS-256X[1] are equivalent.

5 Rationale

The AEGIS security claims have the following requirements:

– Each key should be generated uniformly at random.
– Each key and IV pair should not be used to protect more than one message; and each key and

IV pair should not be used with two different tag sizes.
– If verification fails, the decrypted plaintext and the wrong authentication tag should not be given

as output.

AEGIS-128X[ν] and AEGIS-256X[ν] have the same requirements.

We’d like to emphasize that AEGIS-128X[ν] and AEGIS-256 are not new algorithms. They are modes,
built on top of AEGIS-128L and AEGIS-256. designed to preserve the same security guarantees and
requirements. Keys must be generated uniformly at random, key and IV pairs must not be reused,
and for both variants the success rate of a forgery attack remains 2−|T |.

We did not include a parallel variant of AEGIS-128, as opposed to AEGIS-128L. AEGIS-128 trades
performance for a smaller state size. But given that performance is the main justification for AEGIS-
128X, AEGIS-128L feels like a more natural choice.

5.1 Implications of the AEGIS-128L context addition

Enc128X [ν](K, IV,A,M) can be seen as ν evaluations of AEGIS-128L, on ν independent messages of
the same length.

One way to satisfy the AEGIS-128L contract while reusing the key is to use distinct initialization
vectors for each of the message fragments.

The parallelism degree ν, and thus the bounds of CTX, are limited by the hardware, and guaranteed
to be small.

We could limit the AEGIS-128X[ν] IV size to 128− log2(ν) bits (instead of 128 for AEGIS-128L),
encoding the context in the remaining bits to create the IV used by the underlying AEGIS-128L
function. That would be effectively AEGIS-128L, evaluated with independent messages, and distinct
(K, IV) pairs. However, from an application perspective, a 128−log2(ν) bit initialization vector would
be unusual, and at odds with AEGIS-128L.

7

Ideally, we’d like AEGIS-128L to internally support 128+ log2(ν)-bit initialization vectors: AEGIS-
128X[ν] applications would use 128 bit initialization vectors, but the context could still be encoded
to separate the parallel AEGIS-128L instances. To put it differently, we need to introduce a context
with the same differential properties as the initialization vector.

In the proposed tweak to the initialization function, the context is added to the constants in blocks
3 and 7 AEGIS-128L of the initial state. The purpose of the constants (simply derived from the
Fibonacci sequence) is to resist attacks exploiting the symmetry of the AES round function and of
the overall AEGIS state.

Given its limited range, adding ν cannot turn them into weak constants, and doesn’t alter any of
the AEGIS-128L properties. Also note that ν is expected to be a hyperparameter, that an adversary
cannot have control of.

Differential attacks could be a concern with the same (K, IV) pair used in different contexts. But
in AEGIS-128L, there are 80 AES round functions (10 update steps) in the initialization function.
In [STSI23], Shiraya at al. showed that the initialization phase of AEGIS-128L is secure against
differential attacks after 3 update steps.

Furthermore, in order to prevent the difference in the state being eliminated completely in the mid-
dle of the initialization, the context difference is repeatedly injected into the state. This is consistent
with how 128-bit initialization vectors are absorbed in AEGIS-128L.

The addition of a short context is thus unlikely to invalidate any of the current AEGIS-128L
security claims.

The above security claims require a key and IV pair not to be used with different tag sizes. The
AEGIS-128X[ν] construction guarantees that internal AEGIS-128L evaluations will always share the
same tag size.

Note that the addition of a context to the AEGIS-128L initialization function could also be used to
create a different initial state for different tag sizes, effectively increasing misuse resistance.

5.2 Implications of the AEGIS-256 context addition

The same observations apply to AEGIS-256X[ν] and its Enc256X [ν] encryption function.
AEGIS-256 has a large initialization vector (256 bits). Exposing a shorter IV to applications while

leveraging the remaining space for context separation would be reasonable. That would still allow
applications to use random nonces with a negligible collision probability.

However, the large initialization vector has practical benefits, such as the ability to include a
protocol-specific context with no overhead. In order to retain the same convenience as AEGIS-256
and for consistency with AEGIS-128X, our own context is added in a similar fashion.

In the AEGIS-256 initialization function, there are 96 round functions (16 update steps). According
to the MILP-based evaluation from [STSI23], AEGIS-256 is secure against differential attacks after
6 update steps.

6 Implementation notes

Implementing AEGIS-128X[ν] and AEGIS-256X[ν] only requires trivial modifications to existing
AEGIS-128L and AEGIS-256 implementations.

They apply the exact same operations as AEGIS-128L and AEGIS-256, to vectors of ν AES blocks
instead of single blocks.

For example, with 256-bit registers, two AEGIS-128L states S and S′ can be stored as:

{S0, S
′
0}, {S1, S

′
1}, {S2, S

′
2}, . . . {S7, S

′
7}

This perfectly matches the AEGIS-128X[2] interleaved representation. In addition to the forward
AES permutation, updating an AEGIS state only requires the bit-wise OR and AND operations.
Even with wide registers, such operations are very efficient on any CPU with vector instructions.

8

On CPUs that don’t implement vectorized versions of the AES permutation, AEGIS-128X[ν] and
AEGIS-256X[ν] can be implemented in different ways:

– by emulating AES vector instructions. This is the easiest option, keeping the code close to
hardware-accelerated versions.

– by evaluating {A0, A1, A2, . . . Aν−1} and {C0, C1, C2, . . . Cν−1} sequentially, with a periodic syn-
chronization, for example after every memory page. This reduces cache-locality but also register
pressure.

7 Performance evaluation

We implemented AEGIS-128X[2] and AEGIS-256X[2] using the Zig programming language. The code
[Den23] is nearly identical to the reference implementations from the AEGIS specification [DSL23],
with the AesBlock type extended to 2 AES blocks.

On Intel, AMD and ARM CPUs with vector registers but without AES vector instructions,
AEGIS-128L and AEGIS-256 have better or comparable performance.

And unsurprinsingly, on CPUS without vector registers, AEGIS-128L and AEGIS-256 are consis-
tently faster than their parallel counterparts.

However, on CPUs with the VAES instruction set such as an Intel Raptor Lake processor (table
1) or an AMD EPYC CPU (table 2, plot 7), AEGIS-128X[2] is almost twice as fast as AEGIS-128L
with medium to large inputs.

With short inputs, the overhead of the parallel versions is small (plot 7). AEGIS-128X[2] is faster
than AEGIS-128L as soon as the input size reaches 256 bytes, and AEGIS-256X[2] beats AEGIS-256
for inputs of size 128 or more.

Algorithm Throughput
AEGIS-128X[2] 318 Gbps
AEGIS-128L 190 Gbps
AES128-GCM 81 Gbps

Table 1. Intel Core i9-13900K benchmark numbers (single core)

Algorithm Throughput
AEGIS-128X[2] 239 Gbps
AEGIS-128L 118 Gbps
AES128-GCM 37 Gbps

Table 2. AMD EPYC 7543 benchmark numbers (single core)

The benchmarked AES128-GCM implementation is the one from OpenSSL 3.1.0, while the AEGIS
implementations are the reference code of the AEGIS specification, as well as our modified version to
support the 128X and 256X variants.

9

AMD EPYC 7543 benchmark (single core)

AMD EPYC 7543 benchmark (single core, short inputs)

References

ADF+10. K. D. Akdemir, M. G. Dixon, W. K. Feghali, P. G. Fay, V. Gopal, J. Guilford, E. Ozturk, G. Wol-
rich, and R. Zohar. Breakthrough AES Performance with Intel ® AES New Instructions. 2010.

ARAR16. Ankele, Ralph, Ankele, and Robin. Software Benchmarking of the 2nd round CAESAR Candidates.
Cryptology ePrint Archive, Report 2016/740, 2016. https://eprint.iacr.org/2016/740.

BLT15. A. Bogdanov, M. M. Lauridsen, and E. Tischhauser. Comb to Pipeline: Fast Software Encryption
Revisited. In FSE 2015, LNCS 9054, pages 150–171. Springer, Heidelberg, March 2015.

Den23. F. Denis. AEGIS-128X and AEGIS-256X implementations. GitHub, 2023. https://github.com/
jedisct1/aegis-128x.

https://eprint.iacr.org/2016/740
https://github.com/jedisct1/aegis-128x
https://github.com/jedisct1/aegis-128x

10

DSL23. F. Denis, F. E. R. Scotoni, and S. Lucas. The AEGIS family of authenticated encryption algo-
rithms. Internet-Draft draft-irtf-cfrg-aegis-aead-02, Internet Engineering Task Force, 2023. Work
in Progress.

STSI23. T. Shiraya, N. Takeuchi, K. Sakamoto, and T. Isobe. MILP-based security evaluation for
AEGIS/Tiaoxin-346/Rocca. IET Information Security, 2023.

VV18. S. Vaudenay and D. Vizár. Can Caesar Beat Galois? - Robustness of CAESAR Candidates Against
Nonce Reusing and High Data Complexity Attacks. In ACNS 18, LNCS 10892, pages 476–494.
Springer, Heidelberg, July 2018.

WP14. H. Wu and B. Preneel. AEGIS: A Fast Authenticated Encryption Algorithm. In SAC 2013, LNCS
8282, pages 185–201. Springer, Heidelberg, August 2014.

A Test vectors

Test vectors (in hexadecimal format) of AEGIS-128X and AEGIS-256X are given below.

A.1 AEGIS-128X[2]

Key : 000102030405060708090 a0b0c0d0e0f
IV : 101112131415161718191 a1b1c1d1e1f
AD: (empty)
P la in t ex t : (empty)
Ciphertext : (empty)
128−b i t tag : d180aa6a90f29dedd6825b8c053f599b

Key : 000102030405060708090 a0b0c0d0e0f
IV : 101112131415161718191 a1b1c1d1e1f
AD: 0102030401020304
P la in t ex t : 050607080506070805060708
Ciphertext : 985 bac76fe1cefaa0b24d4d2
128−b i t tag : 790 b9a7342ee72e8b45202cd9c6195cf

A.2 AEGIS-256X[2]

Key : 000102030405060708090 a0b0c0d0e0f
101112131415161718191 a1b1c1d1e1f

IV : 101112131415161718191 a1b1c1d1e1f
202122232425262728292 a2b2c2d2e2f

AD: (empty)
P la in t ex t : (empty)
Ciphertext : (empty)
128−b i t tag : ddbc7695b01623f82eee962f160bf267

Key : 000102030405060708090 a0b0c0d0e0f
101112131415161718191 a1b1c1d1e1f

IV : 101112131415161718191 a1b1c1d1e1f
202122232425262728292 a2b2c2d2e2f

AD: 0102030401020304
P la in t ex t : 050607080506070805060708
Ciphertext : a0b3f5b6b93db779c9d1b9de
128−b i t tag : fd2e93a6eb0b74dc30eb984fbec1d657

	Adding more parallelism to the AEGIS authenticated encryption algorithms

