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Abstract. In this paper we introduce a multistep generalization of the guess-

and-determine or hybrid strategy for solving a system of multivariate polyno-

mial equations over a finite field. In particular, we propose performing the
exhaustive evaluation of a subset of variables stepwise, that is, by increment-

ing the size of such subset each time that an evaluation leads to a polynomial

system which is possibly unfeasible to solve. The decision about which eval-
uation to extend is based on a preprocessing consisting in computing an in-

complete Gröbner basis after the current evaluation, which possibly generates

linear polynomials that are used to eliminate further variables. If the number
of remaining variables in the system is deemed still too high, the evaluation

is extended and the preprocessing is iterated. Otherwise, we solve the system
by a Gröbner basis computation.

Having in mind cryptanalytic applications, we present an implementation

of this strategy in an algorithm called MultiSolve which is designed for poly-
nomial systems having at most one solution. We prove explicit formulas for

its complexity which are based on probability distributions that can be easily

estimated by performing the proposed preprocessing on a testset of evalua-
tions for different subsets of variables. We prove that an optimal complexity

of MultiSolve is achieved by using a full multistep strategy with a maximum

number of steps and in turn the classical guess-and-determine strategy, which
essentially is a strategy consisting of a single step, is the worst choice. Fi-

nally, we extensively study the behaviour of MultiSolve when performing an

algebraic attack on the well-known stream cipher Trivium.

1. Introduction

One of the most challenging and useful tasks in Computational Algebra is solving
a non-linear system of multivariate polynomial equations over a finite field. Appli-
cations ranges from Discrete Logarithm Problem [2] to SAT Problem [28], from the
computation of Error Locator Polynomials [31] to the study of classical solutions of
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Quantum Designs [33]. The problem of solving a Multivariate Polynomial system
over a finite field is called “MP problem” and it is known to be NP-hard (see, for
instance, [19]). Therefore, determining the worst-case complexity of this problem
has become of great relevance within Complexity Theory. Furthermore, the as-
sumed difficulty of the MP problem has been exploited as the security backbone
for numerous cryptographic schemes, motivating further research on polynomial
system solving algorithms for both cryptanalytic and design purposes.

Among symbolic algorithms to solve the MP problem, Gröbner bases generally
represent one the most effective options. The current best-known methods include
Faugère’s F4, F5 algorithms [15, 16], as well as Courtois et al. XL algorithm [12].
Both these approaches essentially rely on performing Gaussian elimination over a
“Macaulay matrix” which is a natural way of represent polynomials as vectors with
respect to a monomial basis. Even in accordance with the classical Buchberger’s
algorithm (see, for instance, [1]), the complexity of such methods is then affected by
the size of the largest Macaulay matrix involved in the computations, which depends
on a parameter known as the “solving degree” of the polynomial system. The
difficulty in precisely determining this degree in advance has led to the introduction
of the concept of “semi-regular sequences” [5] which have theoretically-computable
solving degree. Alternative parameters to analyze the complexity of Gröbner bases
algorithms have been also considered and we refer the interested reader to [9] for
an overview on these parameters which form a still active area of research.

It should be mentioned that there are other effective symbolic methods available
for the MP problem such as characteristic (triangular) sets [36] and involutive bases
[20]. Among non-symbolic solvers for the binary field GF(2), we have well-developed
and widely used algorithms such as SAT solvers, besides new promising methods
as Quantum Annealing which are about to be fully exploited for the MP problem
[34]. Nevertheless, providing accurate estimates for the complexity of solving a
non-linear system over a finite field remains a problem largely open. In the present
paper we propose a reliable statistical way to estimate this complexity when the
polynomial system has at most one solution - a quite common case in cryptography.

When solving an instance of the MP problem, an upper bound for the complexity
is clearly provided by the exhaustive evaluation of all variables. In real-world appli-
cations, this approach is generally unfeasible because of a large number of variables,
as well as solving the given system by a single instance of any existing solver. A
standard approach is therefore to try a “guess-and-determine” or “hybrid” strategy
which consists in combining the exhaustive evaluation of a subset of variables with
the solving of all resulting polynomial systems. This sort of divide-and-conquer
strategy generally reduces an unfeasible MP problem to many feasible instances of
it and hence its complexity is essentially the number of such instances. Different
applications of this strategy in the cryptography context appear, for instance, in
the papers [6, 12, 24, 26, 27]. In all these applications, one assumes that for a
suitably large number of evaluated variables the corresponding systems can be all
solved in a reasonable time. Let us call this standard strategy a “one-step strat-
egy”. Note that, in order to enhance the impact of the evaluations in reducing the
number of variables, a kind of interreduction of the Gröbner bases theory is usually
performed after the evaluation which can give rise to some linear polynomials that
are used to eliminate further variables. This trick was introduced for the first time
in cryptanalysis by Curtois et al. [11] as the procedure ElimLin. A main drawback
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of a one-step strategy is that the number of required variables to provide that all
polynomial systems corresponding to their evaluations are feasibly solvable may be
quite large leading to a huge exponential number of solving instances.

In order to reduce the total number of polynomial systems to be solved, in this
paper we propose a “multistep strategy” where one starts with a limited number of
evaluated variables which is increased only if the number of remaining variables after
performing an evaluation and an incomplete Gröbner basis computation stopped at
some chosen degree D (including elimination via the linear polynomials obtained)
is strictly greater than a given bound B. Such algorithm terminates because there
is some final step where we have enough evaluated variables so that the number of
remaining variables is always smaller or equal than B. The multistep strategy we
propose is extremely flexible and optimizable by tuning the pararameters D and
B and the considered set of evaluated variables. Moreover, we are able to prove
that a multistep strategy with maximum number of steps, that is, where variables
are added for evaluation one by one, is optimal with respect to the total number of
systems to be solved. In other words, the standard one-step strategy is the worst
one with respect to this number.

As a proof-of-concept, we have implemented an algebraic attack on the well-
known stream cipher Trivium by means of the proposed multistep strategy. This
cipher was proposed by De Cannière and Preneel in 2005 as a submission to the
European project eSTREAM [13]. Indeed, Trivium was one of the winners of
the competition for the category of hardware-oriented ciphers. The register of this
cipher is a 288-bit string and the initial state consists of 80 bits as a private key
(i.e. the secret seed), further 80 bits are the initial vector and the remaining bits
are constant. Trivium is designed to generate up to 264 bits of keystream where
the first keystream bit outputs only after 4 · 288 = 1152 warm-up updates of the
initial state. Despite its simple and elegant design, Trivium has so far brilliantly
resisted all cryptanalytic attacks, none of which has a better complexity than brute
force over the private key only, that is, 280.

Amongst the algebraic cryptanalysis ofTrivium, one finds the attack of Raddum
[32] which aims at recovering an internal state rather than the initial one by applying
techniques from graph theory to solve a system of 954 multivariate polynomial
equations in 954 variables, obtained from the knowledge of 288 keystream bits.
The attack, further analysed in [7], has an estimated complexity of 2164.

Another algebraic attack to recover an internal state was proposed in [24]. This
attack exploits a standard one-step strategy which, after the evaluation of 115 vari-
ables, runs a kind of ElimLin procedure to further reduce the number of variables.
The obtained systems for a testset of different keys and evaluations have at most
33 remaining variables and they are all solvable with a variant of the characteristic
set method for finite fields, called MFCS [18]. In order to reduce the degree of
the equations, this attack uses only 190 bits from the keystream allowing possible
spurious solutions.

Among other kind of attacks, we mention the one by Maximov and Biryukov
[30] which guesses the value of some specific state bits (or the products of state
bits) leading, in some cases, to solve of a system of linear equations rather than a
system of quadratic equations. The complexity of this attack is O(c · 283.5), where
the constant c is O(216.2). Note that for the attack to be successful, a rather
prohibitive string of 261 keystream bits is required.
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Finally, in the cube attack proposed by Dinur and Shamir in [14], the adversary
determines special polynomials, called superpolies, whose variables involve key bits.
One computes superpolies by summing over a set of initial vectors which is called
a “cube”. In fact, in this attack the stream cipher is essentially treated as a black-
box that grants the opponent access to IVs and corresponding keystreams. Many
variations and improvements of such differential attack have targeted reduced vari-
ants of Trivium (see, for instance, [10] for an overview). By reduced we mean any
modification of Trivium which considers either a reduced number N of warm-up
updates (with the resulting scheme usually named N -round Trivium) or a smaller
register with simplified update equations. Among the most recent results of this
line of research is worth mentioning [23] where the superpolies are obtained for up
to 848-round Trivium.

The present paper is organized as follows. In Section 2 we present basic facts and
techniques for polynomial system solving over any finite field F. In particular, we
recall a polynomial bound for the solving degree of such polynomial systems and we
derive a single exponential asymptotic complexity formula for the computation of a
DegRevLex-Gröbner basis in terms of the number of variables and the cardinality
of the field F. Finally, we prove an elimination theorem for polynomial systems
containing a set of explicit equations. In Section 3, we introduce the MultiSolve
algorithm able to compute the F-solution set VF(J) of a polynomial ideal J such
that VF(J) ≤ 1. This algorithm implements the multistep strategy we propose
and we discuss how its parameters can modify the behaviour of the algorithm. In
Section 4 we study the complexity of the algorithm MultiSolve in terms of the
number of calls to its core subroutines GBElimLin (generation of linear polyno-
mials and elimination by means of them) and GrobnerBasis. These numbers
are obtained by explicit formulas that include some probability distributions which
can be reliably estimated by applying GBElimLin on suitably large testsets for
different numbers of evaluated variables. We prove that a minimum number of
calls to GrobnerBasis (or other polynomial system solvers) is obtained for a full
multistep strategy, that is, a strategy which consists in adding a single variable to
the evaluation set. In Section 5 we recall the notion of difference stream cipher
[26, 27] as a suitable formalization of stream ciphers based on feedback shift reg-
isters and in Section 6 we discuss possible algebraic attacks on such ciphers. In
Section 7 we describe the stream cipher Trivium as a difference stream cipher and
we compute the inverse of its state transition map which allows an internal state
attack. In Section 8 we present an extensive experimental study of the complex-
ity of performing such an algebraic attack on Trivium by means of the algorithm
MultiSolve. We obtain an average complexity of 2106.2 calls to GrobnerBasis
solver which improves any other previous algebraic attack but which is still worse
than brute force over the 80-bit private key only. However, recall that Trivium
has also a 80-bit initial vector which, together with the private key, actually define
a string of 160 unknown bits in the 288-bit register. Finally, some conclusions are
drawn in Section 9.

2. Solving polynomial systems over finite fields

In this section we briefly review some basic results about solving a polynomial
system with coefficients and solutions over a finite field, having a low number of
such solutions. This situation is quite natural in algebraic attacks on cryptosystems
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where the key is generally determined in a unique way by the given data. We start
fixing some notations. Let F = GF(q) be a finite field and consider the polynomial
algebra R = F[x1, . . . , xn] and the ideal L = ⟨xq1 − x1, . . . , x

q
n − xn⟩ ⊂ R. If J ⊂ R

is an ideal and F̄ is the algebraic closure of the field F, we denote

V (J) = {(a1, . . . , an) ∈ F̄n | f(a1, . . . , an) = 0 for all f ∈ J}.
and VF(J) = V (J) ∩ Fn.

The Nullstellensatz over finite fields (see, for instance, [22]) implies immediately
the following result.

Proposition 2.1. Let J ⊂ R be an ideal. We have that V (L) = Fn and VF(J) =
V (J + L) where J + L is a radical ideal of R.

Since V (L) = Fn, the generators of the ideal L are called field equations. An
immediate consequence of the above result and the Nullstellsatz is the following
result which provides a method to solve a polynomial system with at most one
solution over the base field F.

Proposition 2.2. Let J ⊂ R be an ideal such that #VF(J) ≤ 1. Then, the (reduced)
universal Gröbner basis G of the ideal J +L, that is, its Gröbner basis with respect
to any monomial ordering of R is

G =

{
{x1 − a1, . . . , xn − an} if VF(J) = {(a1, . . . , an)},

{1} otherwise.

Indeed, as a consequence of Proposition 2.2, we can choose the most efficient
monomial orderings as DegRevLex to solve a polynomial system with a single or
no solutions. Moreover, when VF(J) consists of few solutions, note that the cost for
obtaining them is again essentially that of computing a DegRevLex-Gröbner basis
of J + L. In fact, for computing VF(J) = V (J + L) one needs to convert such a
basis into a Lex-Gröbner basis by means of the FGLM-algorithm [17] which has
complexity O(nk3) where k = #VF(J) = dimFR/(J +L). If the integer k is small,
such complexity is dominated by the cost of computing the DegRevLex-Gröbner
basis.

A precise estimation of such cost is generally difficult but it is known that the
worst case is doubly exponential for fields of characteristic zero. If F = GF(q)
and hence VF(J) = V (J + L) is a finite set, algorithms for computing DegRevLex-
Gröbner bases using linear algebra have a complexity formula [4, 6] of the form

(1) O
((

n+ ds
ds

)ω)
where 2 < ω ≤ 3 is the linear algebra exponent, that is, O(nω) is the complexity for
solving a linear system in n variables and ds is the solving degree, that is, the highest
degree of the S-polynomials involved in a complete Gröbner basis computation.

Note that
(
n+ds

ds

)
is the number of monomials in n variables of degree ≤ ds.

It refers to the number of columns of the so-called “Macaulay matrices” where
polynomials are viewed as vectors of their coefficients with respect to the monomial
basis.

If ds is constant with respect to the number of variables n, one obtains clearly
a polynomial complexity. In general, the solving degree ds is bounded by a linear
function of n, as established in the following consequence of the Macaulay bound
for finite fields (see, for instance, Theorem 11 in [9]).
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Proposition 2.3. Let J = ⟨f1, . . . , fm⟩ be an ideal of R = F[x1, . . . , xn] (F =
GF(q)) and consider L = ⟨xq1 − x1, . . . , x

q
n − xn⟩ ⊂ R. Put d = max{d1, . . . , dm, q}

where di = deg(fi). Then, the solving degree ds for computing a DegRevLex-
Gröbner basis of J + L is bounded as follows

(2) ds ≤ (n+ 1)(d− 1) + 1.

By assuming that the generators of J are in normal form modulo L, it holds that
d ≤ n(q − 1) (n ≥ 2) and one has also the following bound

(3) ds ≤ n2(q − 1) + n(q − 2).

We remark that, in many concrete instances, the above bounds are not at all
tight. However, they are a fundamental tool in showing that DegRevLex-Gröbner
bases algorithms over finite fields have a single-exponential complexity.

Proposition 2.4. Let n ≥ max{2, q − 1}. A (linear algebra) algorithm for com-
puting a DegRevLex-Gröbner basis of an ideal J + L ⊂ R satisfies the following
complexity

(4) O(kkω) where k = n2q.

Proof. We start by applying the Stirling’s formula to the factorials occurring in the
binomial complexity (1). Recall this formula is

√
2πn · e

1
12n+1 · (n/e)n ≤ n! ≤

√
2πn · e 1

12n · (n/e)n.
By applying the above estimate also to (n+ ds)! and ds!, we obtain(

n+ ds
ds

)
=

(n+ ds)!

n!ds!
≤

√
n+ ds
2πnds

· e
1

12(n+ds)+1
− 1

12n+1−
1

12ds+1 · (n+ ds)
n+ds

nndds
s

.

The first factor ((n + ds)/(2πnds))
1/2 is a non-increasing function bounded above

by 1, while the second factor e
1

12(n+ds)
− 1

12n+1−
1

12ds+1 is bounded above by e. Hence,
we further obtain (

n+ ds
ds

)
≤ e

(n+ ds)
n+ds

nndds
s

≤ e(n+ ds)
n+ds .

Let us consider now the bound (3) for the solving degree. We obtain

n+ ds ≤ n+ n2(q − 1) + n(q − 2) = (n2 + n)(q − 1).

By observing that (n2 + n)(q − 1) ≤ n2q when n ≥ q − 1, we conclude(
n+ ds
ds

)
≤ e(n+ ds)

n+ds ≤ e(n2q)n
2q.

□

Note that better estimates of the solving degree ds are used within cryptography
when the generators of the ideal J = ⟨f1, . . . , fm⟩ are considered randomly gener-
ated semi-regular sequences (see, for instance, [4, 5]). By means of such estimates
and the complexity (1) for a DegRevLex-Gröbner basis, an approximation of the
computational effort for obtaining the solution set VF(J) is provided and used to
assess cryptosystem security.

In the following sections, we make use of the idea that having linear equations
in a polynomial system, or more generally explicit equations, provides a method
to eliminate variables which preserving solutions. Since solving complexity heavily
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depends on the number of variables, such an elimination can significantly improve
the search for solutions. The following results provide a formalization of this idea
and its effectiveness. Till the end of this section, we assume that F is any base field.

Let R = F[x1, . . . , xn], R′ = F[x1, . . . , xm] be polynomial algebras with n ≥ m.
Let f1, . . . , fn−m ∈ R′ and consider the algebra homomorphism ψ : R → R′ such
that

xi 7→
{

xi if i ≤ m,
fi−m otherwise.

We have clearly that Kerψ = I = ⟨xm+1 − f1, . . . , xn − fn−m⟩ and Imψ = R′. In
other words, we have that the quotient algebra R/I is isomorphic to the subalgebra
R′ ⊂ R by the mapping f + I 7→ ψ(f).

Proposition 2.5. Let I ⊂ J ⊂ R be an ideal. We have that the elimination ideal
J ∩R′ is equal to ψ(J).

Proof. Since ψ is the identity map on R′, we have that J ∩R′ = ψ(J ∩R′) ⊂ ψ(J).
Let f ∈ J and consider f ′ = ψ(f) ∈ ψ(J) ⊂ R′. We want to prove that f ′ ∈ J .
Since f ′ ∈ R′ we have that ψ(f ′) = f ′ = ψ(f) and hence f − f ′ ∈ I ⊂ J . Because
f ∈ J we conclude that f ′ ∈ J and therefore ψ(J) ⊂ J ∩R′. □

Consider the map φ : Fm → Fn such that

(a1, . . . , am) 7→ (a1, . . . , am, f1(a1, . . . , am), . . . , fn−m(a1, . . . , am)).

Note that φ is the injective polynomial map corresponding to the surjective algebra
homomorphism ψ, that is, ψ(g)(a1, . . . , am) = g(φ(a1, . . . , am)) for all g ∈ R and
(a1, . . . , am) ∈ Fm. Consider now the solution set V (J) = {(a1, . . . , an) ∈ F̄n |
f(a1, . . . , an) = 0 for all f ∈ J} where F̄ is the algebraic closure of the field F.

Proposition 2.6. Let I ⊂ J ⊂ R be an ideal. We have that V (J) = φ(V (J∩R′)) =
φ(V (ψ(J))).

Proof. Let α = (a1, . . . , an) ∈ V (J), that is, f(α) = 0 for all f ∈ J . If α′ =
(a1, . . . , am), it is clear that f(α′) = 0 for all f ′ ∈ J ∩ R′, that is, one has that
α′ ∈ V (J ∩ R′). Since I = ⟨xm+1 − f1, . . . , xn − fn−m⟩ ⊂ J , it holds that am+1 =
f1(α

′), . . . , an = fn−m(α′) and we conclude that V (J) ⊂ φ(V (J ∩R′)).
Assume now that α′ = (a1, . . . , am) ∈ V (J ∩R′) and consider α = (a1, . . . , an) =

φ(α′). Let f ∈ J and denote f ′ = ψ(f) ∈ ψ(J). By Proposition 2.5, we have that
f ′ ∈ J ∩R′ and since ψ(f ′) = f ′ = ψ(f) it holds that f − f ′ ∈ I. This implies that
f ′(α′) = 0 and f = f ′ + g with g ∈ I. Since α = φ(α′) we have that f(α) = 0.
In fact, it holds that g(α) = g(φ(α′)) = ψ(g)(α′) = 0 because g ∈ I = Kerψ. We
conclude that φ(V (J ∩R′)) ⊂ V (J). Finally, because J ∩R′ = ψ(J) by Proposition
2.5, it holds that V (J) = φ(V (J ∩R′)) = φ(V (ψ(J))). □

Informally, the above proposition states that the solutions of a polynomial system
containing some explicit equations xm+i = fi can be all computed by extending
the solutions of the polynomial system obtained by eliminating the variables xm+i.
Observe that if deg(fi) > 1, the advantage of eliminating variables from equations is
partially reduced by the growth of their degrees which may affect the solving degree
of the system. It is not the case when we eliminate via linear equations, which is
therefore the preferable situation. We elaborate and explore this viewpoint in the
next section.
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3. Solving by a multistep strategy

The complexities in the previous section show that computing a Gröbner basis for
a quite large number of variables may be a hard task. The amount of computation
does not change significantly if we substitute Gröbner bases with other solvers like
SAT, BDD, etc. (see, for instance, [26]). Indeed, it is well-know that the problem
of solving multivariate polynomial systems over finite fields is an NP-hard one [19].
A useful technique consists therefore in substituting an unfeasible Gröbner basis
computation with many feasible ones for polynomial systems obtained from the
given one by evaluating a subset of variables over the base finite field. Of course, the
exponential complexity is hidden here in such exhaustive evaluation. This approach
is usually called a guess-and-determine or hybrid strategy, where the latter name is
especially used for polynomial systems that are randomly generated [5, 6]. In this
case, by evaluating some variables one essentially obtains again a random system
whose complexity can be estimated in a theoretical way. The computation of the
total complexity may show that in some cases the hybrid approach is faster than a
single Gröbner basis computation [6].

In this section, we essentially introduce a variant of this technique where given
polynomial systems are generally not random and hence the evaluation of a subset
of their variables may lead to systems with different behaviours. In particular,
the main property we analyze for the resulting systems is the number of linear
equations that can be obtained by an incomplete Gröbner basis computation which
is stopped at some chosen degree D. In fact, the presence of these linear equations
allows the elimination of a further amount of variables, without increasing the
degrees of the system equations, with respect to the set of evaluated variables. The
number of remaining variables, NRV in short, in these systems gives us an idea of
the complexity we will face in solving them completely. Given a bound 0 ≤ B ≤ n,
we decide to compute a complete Gröbner basis only if NRV ≤ B. Otherwise,
we evaluate some additional amount of variables and we compute again the NRV
which is then compared to B. Proceeding in this way, we are able to solve the
given polynomial system with Gröbner bases over a number of variables which is
always bounded by B. Assuming that each of these Gröbner basis computations
can be performed in a reasonable time, the complexity is essentially the number of
them. We will show how to estimate in practice this number by means of explicit
formulas and simple statistics and how to optimize it by choosing appropriate steps
when adding new variables to evaluate. We call this approach a multistep strategy
because of such steps and because Gröbner bases are also computed stepwise. After
the above high-level description of the strategy, in the following we formally describe
it.

Let R = F[x1, . . . , xn] be a polynomial algebra over the finite field F = GF(q).
Consider an ideal J = ⟨f1, . . . , fm⟩ ⊂ R and assume that #VF(J) ≤ 1. De-
note as usual L = ⟨xq1 − x1, . . . , x

q
n − xn⟩ and put H = {fi} ∪ {xqi − xi} which

is a generating set of the ideal J + L. Let D > 0 be an integer and denote
by GrobnerBasis(H,D) the algorithm performing an incomplete Gröbner ba-
sis computation which is stopped when all S-polynomials of degree ≤ D have been
consider at a current step. This algorithm corresponds to put a bound on the
size of the Macaulay matrix when using linear algebra methods. If D is suitably
large, that is, it is a solving degree we have that G = GrobnerBasis(H,D) is
a complete Gröbner basis of J + L. In the considered case that #VF(J) ≤ 1,
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the complete Gröbner basis G contains only linear polynomials, namely G = {1}
or G = {x1 − a1, . . . , xn − an} (see Proposition 2.2). Of course, computing the
complete Gröbner basis is generally expensive because of the complexity (1) and
to know linear polynomials belonging to the ideal J + L is useful for eliminating
variables, without increasing degrees, according to Proposition 2.6. It is reasonable
therefore to compute G = GrobnerBasis(H,D), for a quite low degree D in or-
der to have a fast computation, and use the linear polynomials that we possibly
found in G to eliminate variables from the generators of J + L. If G = {1} or
G = {x1 − a1, . . . , xn − an}, no further computation is needed. Otherwise, such a
preprocessing will generally ease the task of computing VF(J). We formalize it as
the Algorithm 3.1.

Algorithm 3.1 GBElimLin

Input: a generating set H of an ideal J + L (#VF(J) ≤ 1) and an integer
D > 0;

Output: either a Gröbner basis of J + L or a generating set of an ideal
obtained by eliminating some variables, via linear equations, from
J + L.

G := GrobnerBasis(H,D);
if max{deg(g) | g ∈ G} ≤ 1 then

return G;
end if ;
G1 := {g ∈ G | deg(g) = 1};
G2 := G \G1;
S := {xqi − xi | xi occurs in G};
G := Reduce(G2, G1 ∪ S);
S := {xqi − xi | xi occurs in G};
G := G ∪ S;
return G;

In the algorithmGBElimLin we assume that the linear polynomials of the setG1

are completely interreduced, that is, they are obtained in reduced echelon form in
the Macaulay matrix. The procedure Reduce is the complete reduction algorithm
of Gröbner bases theory (see, for instance, [1]). If it holds that max{deg(g) |
g ∈ G} ≤ 1, namely G = {1} or G = {x1 − a1, . . . , xn − an}, then GBElimLin
provides immediately VF(J) = V (J + L) because it happens that D is a solving
degree. Otherwise, we have that the solution set of the ideal J ′ + L′ = ⟨G⟩ (G =
GBElimLin(H,D)) is immediately related to V (J + L) according to Proposition
2.6. In this case, we define NRV > 0 as the number of variables occurring in G.

Since NRV is generally less than the number of variables in H and the degrees
in these generating sets remain the same, the task of computing the solution set
VF(J

′) is easier than computing VF(J). This simplification is obtained at the price
of performing GBElimLin which may be quite cheap whenever D is a low degree.
This happens, for instance, when D = max{deg(g) | g ∈ H} and q is a small
integer. Note that in this case, the procedure GrobnerBasis(H,D) is essentially
a kind of interreduction of Gröbner bases theory and the procedure GBElimLin
practically coincides with linear algebra based algorithm ElimLin [3, 11].
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Fix now a bound 0 ≤ B ≤ n and assume that a complete Gröbner basis over
a number of variables less or equal than B can be computed in a reasonable time.
If the number of variables n is quite large as in polynomial systems arising in
cryptography, we cannot immediately apply GBElimLin(H,D). Then, we add
to the generating set H of J + L a set of evaluations of some suitable amount of
variables, say

E = {x1 − a1, . . . , xk − ak} (ai ∈ F)

and compute G = GBElimLin(H∪E,D). As a result of the (incomplete) Gröbner
basis computation in GBElimLin, one obtains that the corresponding NRV is gen-
erally less than n − k. This suggests to moderate the number k which determines
an exponential complexity qk corresponding to the exhaustive evaluation of k vari-
ables over the field F = GF(q). If NRV ≤ B, we proceed with the compution of
GrobnerBasis(G). Otherwise, we extend the evaluation set E to

E′ = {x1 − a1, . . . , xl − al} (k < l)

and compute G′ = GBElimLin(H ∪ E′, D). By iterating the above steps, the
solution set VF(J) (#VF(J) ≤ 1) is obtained by adding each time a small amount
of variables to evaluate, till either all considered evaluations are exhausted or the
output of GBElimLin or GrobnerBasis (NRV ≤ B) is a Gröbner basis G such
that max{deg(g) | g ∈ G} = 1. The Algorithm 3.3 implement this multistep strat-
egy together with a suitable management of the exhaustive evaluation of different
amounts of variables. A fundamental subroutine is the Algorithm 3.2.

Note that StepSolve may output a Gröbner basis G ̸= {1} of an ideal obtained
by eliminating some variables from the input ideal J+L by means of GBElimLin.
By Proposition 2.6, one obtains the actual Gröbner basis G′ = {x1 − a1, . . . , xn −
an} of J + L, or equivalently VF(J) = {(a1, . . . , an)}, simply by extending the
coordinates in G via linear equations.

Moreover, the algorithm MultiSolve provides the intended output under the
condition that after the call to StepSolve at the final step kr, we have A2 = ∅
when A1 = wild− set. In fact, we are assuming that 1 ≤ kr ≤ n is the least
integer such that this holds. Of course, such an integer exists because for kr = n
we have the evaluation of all variables.

We remark that MultiSolve generalizes the standard guess-and-determine (or
hybrid) strategy in the case that we have a single iteration, namely for r = 1 and
kr = k1. The only difference with the standard strategy is that MultiSolve com-
pute the Gröbner bases for all evaluations (a1, . . . , ak) ∈ Fk (k = kr = k1) in two
steps, first executing GBElimLin and then by GrobnerBasis. If NRV(≤ B) is
fairly smaller than n− k, this approach can reduce computing times, especially for
Gröbner bases algorithms based on Macaulay matrices and linear algebra. Indeed,
this improvement of the standard strategy already appeared in the algorithm Elim-
Lin [3, 11]. In the next section we will show that the algorithm MultiSolve for
r > 1 outperforms the standard strategy by reducing the total number of Gröbner
bases required to compute the solution set VF(J).

Observe that if B = 0 the algorithm MultiSolve computes the output only by
applying GBElimLin, that is, by Gröbner bases computations which are stopped
at degree D. This is possible because for a sufficiently large final step kr ≤ n, the
solving degree of all obtained systems becomes lower or equal than D.
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Algorithm 3.2 StepSolve

Input: a generating set H of an ideal J + L (#VF(J) ≤ 1), a subset W ⊂ Fk

(0 ≤ k ≤ n) and three integers k < l ≤ n, 0 ≤ B ≤ n,D > 0;
Output: either a pair (solution, G) where solution is a character string and

G ̸= {1} is a Gröbner basis of J + L or a Gröbner basis of an ideal
obtained by eliminating some variables from J + L, or the pair
(wild-set, W ′) where wild-set is a character string and W ′ is a
subset of Fl.

if W = {∅} then
W := Fl;

else
W :=W × Fl−k;

end if ;
W ′ := ∅;
for all (a1, . . . , al) ∈W do

E := {x1 − a1, . . . , xl − al};
G := GBElimLin(H ∪ E,D);
if max{deg(g) | g ∈ G} = 1 then

return (solution, G);
end if ;
if G ̸= {1} then

NRV := number of variables in G;
if NRV ≤ B then

G := GrobnerBasis(G);
if max{deg(g) | g ∈ G} = 1 then

return (solution, G);
end if ;

else
W ′ :=W ′ ∪ {(a1, . . . , al)};

end if ;
end if ;

end for;
return (wild-set, W ′);

Before applying MultiSolve, it would be helpful to run GBElimLin on the
generating set H of the ideal J + L. Indeed, this is generally unfeasible if H has
a large number of variables. Nevertheless, if there are given linear polynomials
in H, a good practice consists in initially eliminating variables by means of these
generators. We finally remark that beside the choice of the integers D and B, a
fundamental issue in the optimization of the algorithm MultiSolve consists in the
choice of the subsets

{x1, . . . , xk1
} ⊂ {x1, . . . , xk2

} ⊂ . . . ⊂ {x1, . . . , xkr
}.

In the next section, we will show that an optimal choice for the steps ki is to put
ki−1 = ki − 1. The main issue is therefore to single out the subset {x1, . . . , xkr}
which can have the most favorable impact on the total running time of Mul-
tiSolve. We suggest that in the search for an optimal subset of variables to
evaluate, one can use as objective function the average value of the NRV numbers
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Algorithm 3.3 MultiSolve

Input: a generating set H of an ideal J + L (VF(J) ≤ 1), a sequence of
integers 1 ≤ k1 < . . . < kr ≤ n and two integers 0 ≤ B ≤ n,D > 0;

Output: either a Gröbner basis of J + L or a Gröbner basis of an ideal
obtained by eliminating some variables, via linear equations, from
the ideal J + L.

W := {∅};
for all i ∈ {1, . . . , r} do

(A1, A2) := StepSolve(H,W, ki, D,B);
if A1 = solution then

return A2;
end if ;
W := A2;

end for;
return {1};

obtained by GBElimLin for the evaluations of {x1, . . . , xkr
} on a suitably large

testset T ⊂ Fkr . Of course, if the number of such subsets of the set of all variables
is huge, such an optimization cannot be performed by brute force. In this case, we
can possibly search among a restricted amount of subsets which appear to be good
candidates due to the specific form of the given system. Devising more effective
optimization strategies remains an open problem which we defer to future work.

4. MultiSolve complexity

In this section we analyze the complexity of the algorithm MultiSolve which
essentially corresponds to the number of calls to the subroutines GBElimLin and
GrobnerBasis. In fact, both these procedures can be executed in a reasonable
time for suitable values of the parameters D > 0 and 0 ≤ B ≤ n.

We call k-guess an evaluation of the first k variables of the polynomial algebra
R = F[x1, . . . , xn] (F = GF(q)), that is, to make a guess (a1, . . . , ak) ∈ Fk means
that we are computing modulo the ideal generated by the set

E = {x1 − a1, . . . , xk − ak}.

A guess is called wild if the procedure GBElimLin(H∪E,D) (H is a generating set
of the ideal J+L) outputs a set of generators G such that max{deg(g) | g ∈ G} > 1
and its corresponding NRV is strictly greater than B. Otherwise, we say that the
guess is tamed. Note that the latter includes the case that GBElimLin outputs a
complete Gröbner basis, that is, max{deg(g) | g ∈ G} ≤ 1 because VF(J) ≤ 1.

Denote pB(k) the probability of wild k-guesses in the set Fk of all k-guesses,
that is, pB(k)q

k is the number of wild k-guesses that the algorithm GBElimLin
determines in the set Fk. In practice, such probability is estimated on some random
testset T ⊂ Fk of reasonable large size.

The results about the complexity of MultiSolve we are going to present, are
all based on the safe assumption that extending a tamed k-guess to an l-guess
(k < l) we always obtain again a tamed l-guess. This can be explained because
reducing the number of variables in an ideal by evaluation also reduces its solving
degree and the incomplete Gröbner basis computed by GBElimLin approaches the
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complete one which is full linear. A first consequence is that the map k 7→ pB(k)
is a decreasing function.

Proposition 4.1. Let 1 ≤ k1 ≤ . . . ≤ kr ≤ n. One has that 1 ≥ pB(k1) ≥ . . . ≥
pB(kr) ≥ 0 where pB(n) = 0.

Proof. Let 1 ≤ k ≤ l ≤ n. The number of all l-guesses extending wild k-guesses is

p(k)qkql−k = p(k)ql.

Since restricting a wild l-guess we always obtain a wild k-guess for the assumption
discussed above, we have that all wild l-guesses in the set Fl are obtained by ex-
tending some wild k-guess. This implies that p(k)ql ≥ p(l)ql and hence p(k) ≥ p(l).
Notice that some extensions of a wild k-guess may become tamed l-guesses. In
particular, it is clear that pB(n) = 0 since we have the evaluation of all variables of
R. □

Starting from now, we denote

k′′ = min{1 ≤ k ≤ n | pB(k) = 0}.
Given a sequence of steps 1 ≤ k1 ≤ . . . ≤ kr = k′′, we want to compute the
total number of guesses that are considered in the algorithm MultiSolve which
coincides with the number of calls to the subroutine GBElimLin. We show that
this number only depends on the probabilities pB(k1) ≥ . . . ≥ pB(kr−1) that can
be estimated on a testset without actually performing MultiSolve.

Proposition 4.2. The number of guesses in the algorithm MultiSolve for the
steps 1 ≤ k1 ≤ . . . ≤ kr = k′′ is

C1 = qk1 + pB(k1)q
k2 + . . .+ pB(kr−1)q

kr .

Proof. To simplify notations, let k < l < m < . . . be the steps of the algorithm
MultiSolve. In the first step k, we have to consider all k-guesses whose number
is qk. In the second step l, we have to extend to l-guesses all wild k-guesses whose
number is pB(k)q

k. The number of such extensions is therefore

pB(k)q
kql−k = pB(k)q

l.

For the third step m, in this subset of all l-guesses extending wild k-guesses we have
now to consider wild l-guesses to be extended to m-guesses. Since by restricting a
wild l-guess we always obtain a wild k-guess, this number is exactly the number
of all wild l-guesses in the set Fl which is pB(l)q

l. Then, the number of m-guesses
which extends wild l-guesses (extending wild k-guesses) is

pB(l)q
lqm−l = pB(l)q

m.

We deduce that up to the third step, the total number of guesses considered in the
algorithm MultiSolve is

qk + pB(k)q
l + pB(l)q

m.

Iterating for all steps of the algorithm, one obtains the complexity C1. □

Let us consider now the number of times the subroutine GrobnerBasis is exe-
cuted in the algorithm MultiSolve, which generally gives main contribution to its
total running time. By definition, this number is the cardinality of tamed guesses
considered in the algorithm.



14 R. LA SCALA, F. PINTORE, S.K. TIWARI, AND A. VISCONTI

Proposition 4.3. The number of tamed guesses in the algorithm MultiSolve is

C2 = (1− pB(k1))q
k1 + (pB(k1)− pB(k2))q

k2 + . . .

+(pB(kr−2)− pB(kr−1))q
kr−1 + pB(kr−1)q

kr .

Proof. As shown in the above results, the number of wild guesses in algorithmMul-
tiSolve only depends on the probability sequence 1 ≥ pB(k1) ≥ . . . ≥ pB(kr−1) ≥
pB(kr) = 0. This total number is

C = pB(k1)q
k1 + pB(k2)q

k2 + . . .+ pB(kr−1)q
kr−1 .

We conclude that the total number of tamed guesses is C2 = C1 − C. □

We can ask now if there is an optimal choice for the subset {k1, . . . , kr} ⊂
{1, . . . , n} with respect to the main complexity formula C2. Recall that in this
formula the last step is fixed as kr = k′′ = min{1 ≤ k ≤ n | pB(k) = 0}. In other
words, the step k′′ is the least integer such that GBElimLin(H ∪ E,D) (H is a
generating set of J + L and E = {x1 − a1, . . . , xk′′ − ak′′}) obtains NRV ≤ B for

all guesses (a1, . . . , ak′′) ∈ Fk′′
. We have then the following result.

Theorem 4.4. The minimum value of the complexity C2 is obtained for ki = i
(1 ≤ i ≤ k′′), that is, for the maximum number of steps.

Proof. To prove the statement is true, it is sufficient to show that each time we
add a new step between two steps or before all steps, the sum C2 decreases. Let
1 ≤ k < l < m ≤ k′′ be three consecutive steps in the algorithm MultiSolve. We
distinguish two cases.

Case 1. If all three steps occur and k is not the first one, the formula C2 contains
the following two summands

(pB(k)− pB(l))2
l + (pB(l)− pB(m))2m.

Otherwise, if step l is missing, we have a single corresponding summand in C2,
namely

(pB(k)− pB(m))2m.

Note that all remaining summands in C2 are the same in these two subcases. Now,
since

(pB(k)− pB(m))2m = (pB(k)− pB(l))2
m + (pB(l)− pB(m))2m

and (pB(k)− pB(l))2
m ≥ (pB(k)− pB(l))2

l because pB(k) ≥ pB(l) and m > l, we
conclude that

(pB(k)− pB(m))2m ≥ (pB(k)− pB(l))2
l + (pB(l)− pB(m))2m.

Case 2. Either the step k or l is the first one. If k is the first step, the formula
C2 contains the summands

(1− pB(k))2
k + (pB(k)− pB(l))2

l.

Otherwise, if the step l is the first one, that is, the step k is missing, we have a
single corresponding summand in C2, namely

(1− pB(l))2
l.

Similarly to case 1, one has that

(1− pB(l))2
l = (1− pB(k))2

l + (pB(k)− pB(l))2
l
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where (1 − pB(k))2
l ≥ (1 − pB(k))2

k because 1 ≥ pB(k) and l > k. We conclude
therefore that

(1− pB(l))2
l ≥ (1− pB(k))2

k + (pB(k)− pB(l))2
l.

□

Note that the above result shows in particular that the standard guess-and-
determine strategy which corresponds to apply MultiSolve for the single step k′′

is actually the worst one with respect to complexity C2. As for the first step, say k′,
the above result suggests that k′ = 1 but in practice k′ is the smallest integer such
that GBElimLin(H ∪E,D) (E = {x1 − a1, . . . , xk′ − ak′}) can be performed in a

reasonable time for the given parameter D > 0 and for all (a1, . . . , ak′) ∈ Fk′
. For

polynomial systems with many variables, such as the ones arising in cryptography,
the first step 1 ≤ k′ ≤ n will be a not so small integer. We call full multistep
strategy the one corresponding to the minimum value of C2 which has the following
complexity formulas

(5)

C1 =
∑

k′≤k≤k′′

pB(k − 1)qk;

C2 =
∑

k′≤k≤k′′

(pB(k − 1)− pB(k))q
k,

where pB(k
′′) = 0 and by convention pB(k

′ − 1) = 1.
Of course, each summand of the above complexity formulas should be multiplied

by suitable average timings in order to obtain running times. Indeed, we have the
following corresponding total running times

(6)

T1 =
∑

k′≤k≤k′′

σ(k − 1, k)pB(k − 1)qk;

T2 =
∑

k′≤k≤k′′

τ(k − 1, k)(pB(k − 1)− pB(k))q
k,

where σ(k − 1, k) is the average running time of GBElimLin for the extensions
of wild (k − 1)-guesses to k-guesses and τ(k − 1, k) is the average running time of
GrobnerBasis for the extensions of wild (k−1)-guesses to tamed k-guesses. Note
that for the first step k′ we have the timings σ(k′ − 1, k′) and τ(k′ − 1, k′) that, by
convention, correspond to all k′-guesses and all tamed k′-guesses, respectively. The
total execution time of MultiSolve is therefore T = T1 + T2.

We remark that in our experimental studies, which we will detail in the next
sections, we observe that the probabilities pB(k) (k′ ≤ k ≤ k′′) appear to be
a reliable statistical data about a multivariate polynomial system. These data
can be safely used therefore to estimate the complexity of solving a polynomial
system by the multistep algorithm MultiSolve, as well to tune it to an optimal
complexity by varying its main parameters, namely the integersD,B and the subset
of k′′ variables to evaluate. Note also that in the algorithm MultiSolve one can
possibly substitute GrobnerBasis solver with any other polynomial system solver
over finite fields, such as XL solvers, SAT solvers and so on. The only step where
an (incomplete) Gröbner basis computation is essential in MultiSolve is in the
subroutine GBElimLin where this is used to generate additional linear equations
starting from variable evaluations. An alternative way may be to use the linear
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algebra algorithm ElimLin [3, 11]. We also recall that the probabilities pB(k) and
hence the multistep complexities C1, C2 are obtained by performing GBElimLin
over some testset T ⊂ Fk, for all k′ ≤ k ≤ k′′.

We finally notice that if VF(J) ̸= ∅ and we can estimate that the solution is
found on the average by means of a tamed (correct) l-guess with l ≤ k < k′′, we
can essentially consider k as a final step for MultiSolve even if pB(k) ̸= 0. This
generally implies a consistent reduction of the complexities C1, C2 in this average
case. We may have such an estimation, for instance, when studying polynomial
systems arising from the algebraic cryptanalysis of a cryptosystem by using a testset
of many different keys.

To show that the algorithm MultiSolve can be practically used in the context
of cryptography, in the next sections we introduce and attack the well-known stream
cipher Trivium [13]. In particular, we present this cryptographic scheme and its
cryptanalysis in the general framework provided by the notion of “difference stream
cipher” that has been recently introduced in the papers [26, 27].

5. Stream ciphers

Stream ciphers are essentially practical realizations of pseudorandom functions
(see, for instance, [25, 29]). At a high level, on input of two fixed-length random
strings usually named seed and initialisation vector, a stream cipher produces a
random-looking string of arbitrary length which is called the keystream. The char-
acters in these strings are generally elements of a finite field and they are most
commonly bits. To obtain a symmetric cipher, the keystream can be used to en-
crypt a stream of plaintexts or decrypt a stream of ciphertexts simply by addition
or subtraction. In this case, the seed and the initialization vector are respectively
the key and the nonce of the cipher. A stream cipher is deemed secure if it is
indistinguishable from a proper random function.

Most of the known constructions for stream ciphers rely on the use of feedback
shift registers - FSR, in short. An FSR is an array of memory cells, with each
cell storing a single element of a given finite field F = GF(q), which are updated
by means of some function f . More precisely, within an update the values of the
cells are shifted to the left while the right-most cell gets as a new value the image
under the function f of the current values of a given subset of cells of the same
register and possibly that of some other FSRs. For finite fields, the function f can
be always converted into a multivariate polynomial and it is called therefore update
polynomial. An FSR is called linear or non-linear is the polynomial f is linear or
not, respectively.

A stream cipher C can be obtained by combining a few FSRs F1, . . . ,Fn, their
corresponding update polynomials f1, . . . , fn and a further multivariate polynomial
g with coefficients in F which is called keystream polynomial. Indeed, the keystream
of C is obtained by evaluating the polynomial g over the current values of the
registers of the Fi. In particular, the memory cells of the FSRs are initially filled
with the elements of a seed, an initialisation vector and, possibly, a constant string.
Then, the Fi are updated in parallel (h+u)-times, where h is the intended length of
the keystream and u is the number of updates (including initialization) in the warm-
up stage. This stage places some distance between the initialization of the FSRs
and the output of the keystream in order to prevent attacks on the stream cipher
that are based on the knowledge of some amount of elements in the keystream.
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A natural language for describing stream ciphers obtained from FSRs is that
of explicit difference equations, as first observed in [27] where such stream ciphers
are called difference stream ciphers. For the sake of readability, we recall some
notations before their formal definition (see also [21]).

Given a finite field F = GF(q) and n ∈ N∗ = N \ {0}, we denote by R the
polynomial algebra F[X] in the infinite set of variables X =

⋃
t∈N{x1(t), . . . , xn(t)}.

The algebra endomorphism σ : R → R defined by putting σ(xi(t)) = xi(t + 1)
(1 ≤ i ≤ n, t ≥ 0) is called the shift map of R. For any r1, . . . , rn ∈ N, the following
subset of variables

X̄ = {x1(0), . . . , x1(r1 − 1), . . . , xn(0), . . . , xn(rn − 1))}
defines a (finitely generated) subalgebra R̄ = F[X̄] ⊂ R.

Definition 5.1. A difference stream cipher C is a system of (algebraic ordinary)
explicit difference equations of the form

(7)


x1(r1 + t) = σt(f1),

...
xn(rn + t) = σt(fn),

(t ∈ N)

together with a polynomial g ∈ R̄, where r1, . . . , rn ∈ N and f1, . . . , fn ∈ R̄.

An F-solution of the system (7) is a solution of all its explicit difference equa-
tions, that is, an n-tuple (a1, . . . , an) of maps from N to F such that, given v(t) =
(a1(t), . . . , a1(r1 − 1 + t), . . . , an(t), . . . , an(rn − 1 + t)), it holds that ai(ri + t) =
fi(v(t)), for every integer t ≥ 0. We call v(t) the t-state of (a1, . . . , an) and in
particular v(0) is the initial state. The system (7) has a unique F-solution once the
initial state is fixed [27, Thm. 2.4].

Remark 5.2. A difference stream cipher C defined by an explicit difference system
(7) and a polynomial g ∈ R̄ can be realized as a stream cipher obtained from a set
F1, . . . ,Fn of FSRs having update polynomials f1, . . . , fn and keystream polynomial
g. In particular, the variable xi(t) (1 ≤ i ≤ n) corresponds to the symbolic value
of the left-most cell of the register of Fi at the clock t ≥ 0. If (a1, . . . , an) is an
F-solution of (7), its initial state is composed by a seed, an initialisation vector
and, possibly, a constant string. If v(t) ∈ Fr (r = r1 + . . . + rn) is the t-state
of (a1, . . . , an), the function b : N → F such that b(t) = g(v(t)) for all t ≥ 0,
is called the keystream of (a1, . . . , an). By design, the j-th bit of the keystream
can be set equal to b(u + j − 1), with u being the number of warm-up updates of
the stream cipher. Vice versa, a stream cipher obtained from some FSRs can be
formally described as a difference stream cipher.

6. Algebraic attacks

As already mentioned, a secure stream cipher C can be used to construct a CPA-
secure symmetric encryption scheme Π = (Gen,Enc,Dec) where CPA stands for
Chosen Plaintext Attack (see [25]). In particular, the key-generation algorithm
Gen takes in input a security parameter λ ∈ N and returns a random seed s as the
key. The encryption algorithm Enc, on input of a seed s and a message m, samples
a uniform initialisation vector IV and outputs the ciphertext c = (IV,m+str(|m|)),
where str(|m|) denotes the keystream produced by C on input of s and IV which
is truncated after |m| elements (here m is a string of elements of the finite field F



18 R. LA SCALA, F. PINTORE, S.K. TIWARI, AND A. VISCONTI

and |m| denotes its length). Decryption is then performed by subtraction of the
keystream str(|m|).

CPA-security is assessed by means of a security game where the adversary is
granted access to an encryption oracle. Therefore, the adversary has access to a
polynomial number (in the security parameter λ) of strings (IV, str(|m|)) with the
seed s fixed and IV and m which vary. Such knowledge can then be used by the
adversary to pursue a key-recovery attack where he attempts to deduce information
about the secret seed s.

As a consequence, if C is a difference stream cipher, the adversary has access to
some string (b(u), . . . , b(u + h − 1)) where h ∈ N is polynomial in λ and b is the
keystream of a given F-solution (a1, . . . , an) of the system (7). This implies the
knowledge of the generators of the ideal

Ju,h =
∑

u≤t<u+h

⟨σt(g)− b(t)⟩ ⊂ R.

We denote by VF(Ju,h) the set of simultaneous F-solutions of the generators of Ju,h.
Given the subset S = {x1(r1)− f1, . . . , xn(rn)− fn} ⊂ R and the ideal

I = ⟨σt(f) | f ∈ S, t ≥ 0} ⊂ R

we consider VF(I+Ju,h) = VF(I)∩VF(Ju,h), where VF(I) is the set of all F-solutions
of the difference system (7). Since the function b is the keystream of a given F-
solution (a1, . . . , an) ∈ VF(I), we have that (a1, . . . , an) ∈ VF(I+Ju,h) ̸= ∅. Indeed,
for actual stream ciphers one has that #(VF(I + Ju,h)) = 1 for some sufficiently
large h ∈ N. In other words, there is a unique solution of (7) that is compatible
with a sufficiently long keystream.

Denote by V̄F(I + Ju,h) ⊂ Fr the set of the initial states of the F-solutions
(a1, . . . , an) ∈ VF(I + Ju,h). The following result is essentially a consequence of
Proposition 2.6.

Theorem 6.1. [27, Thm. 5.4] Let T̄ : R̄→ R̄ be the algebra endomorphism defined
for all 1 ≤ i ≤ n as follows

xi(0) 7→ xi(1),
...

xi(ri − 2) 7→ xi(ri − 1),
xi(ri − 1) 7→ fi.

Moreover, define the ideal

J ′
u,h =

∑
u≤t<u+h

⟨T̄t(g)− b(t)⟩ ⊂ R̄.

Then, it holds that V̄F(I + Ju,h) = VF(J
′
u,h).

Under the reasonable assumption that for a sufficiently large number h of key-
stream elements there is a unique F-solution (a1, . . . , an) compatible with them, any
attack which aims at determining the initial state of (a1, . . . , an), that is, VF(J

′
u,h)

is said to be an algebraic (key-recovery) attack. Note that the case in which we have
spurious solutions, that is, #VF(J

′
u,h) > 1 can be identified by means of a Gröbner

basis computation, namely by the linear dimension

#VF(J
′
u,h) = dimF R̄/(J

′
u,h + L)
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where L ⊂ R̄ is the field equation ideal corresponding to the polynomial algebra
R̄. Recall in fact that VF(J

′
u,h) = V (J ′

u,h + L). To compute this solution set, one
can use Gröbner bases according to Proposition 2.2 or any other kind of solver.
However, if the update polynomials fi are non-linear ones, the polynomial T̄t(g)
may have a high degree for large values of the clock t. Since t ≥ u in the definition
of J ′

u,h, this happens whenever the number u of warm-up updates of the stream
cipher C is large, as it is usually the case. High degrees surely affect the Gröbner
basis computation for J ′

u,h + L and hence a long warm-up stage is a good security
strategy also with respect to algebraic attacks.

Note that the initial state usually contains the seed, the initial vector and some
constant elements as well, and therefore it would seem desirable to attack it since
the actual unknown entries are less than the total length of the registers. However,
for the special class of invertible difference stream ciphers, the initial state can be
uniquely recovered by any internal state and hence it is more convenient to attack
the state at clock u where the keystream starts to output. Indeed, in this case we
can assume u = 0 and compute VF(J

′
0,h) where the generators of J ′

0,h have much

lower degrees than those of the generators of J ′
u,h. Of course, in this case all the

entries of the considered initial state are completely unknown.

Definition 6.2. We call an explicit difference system (7) invertible if the algebra
endomorphism T̄ defined in Theorem 6.1 is actually an automorphism. A difference
stream cipher C defined by an explicit difference system is said invertible accord-
ingly.

Note that the algebra endomorphism T̄ : R̄→ R̄ has a corresponding polynomial
map T : Fr → Fr (r = r1 + . . . + rn). If v(t) ∈ Fr is the t-state of a K-solution
(a1, . . . , an) of (7) we have that T(v(t)) = v(t + 1), for all clocks t ≥ 0. We call
T̄ the state transition endomorphism and T the state transition map of the explicit
difference system (7). If T̄ is an automorphism, the map T is also invertible and we
have that T−1(v(t + 1)) = v(t). This implies that for invertible difference stream
ciphers, we can uniquely obtain the initial state v(0) starting from any internal
state v(t) = Tt(v(0)).

To establish invertibility and compute the inverse of an algebra automorphism
one has the following general result based on Gröbner bases theory. For a com-
prehensive reference about automorphisms of polynomial algebras we refer to the
book [35].

Theorem 6.3. Let K be any field and let X = {x1, . . . , xr}, X ′ = {x′1, . . . , x′r} be
two disjoint variable sets. Define the polynomial algebras P = K[X], P ′ = K[X ′]
and Q = K[X∪X ′]. Consider an algebra endomorphism φ : P → P such that x1 7→
g1, . . . , xr 7→ gr (gi ∈ P ) and the corresponding ideal J ⊂ Q which is generated by
the set {x′1−g1, . . . , x′r−gr}. Moreover, endow the polynomial algebra Q by a product
monomial ordering such that X ≻ X ′. Then, the map φ is an automorphism of P
if and only if the reduced Gröbner basis of J is of the kind {x1 − g′1, . . . , xr − g′r}
where g′i ∈ P ′, for all 1 ≤ i ≤ r. In this case, if φ′ : P ′ → P ′ is the algebra
endomorphism such that x′1 7→ g′1, . . . , x

′
r 7→ g′r and ξ : P → P ′ is the isomorphism

x1 7→ x′1, . . . , xr 7→ x′r, we have that ξ φ−1 = φ′ ξ.

The invertibility property is satisfied, for instance, by the stream cipher Trivium
on which we will experiment our algorithmMultiSolve by performing an algebraic
attack. Note that the notion of inverse system of an invertible explicit difference
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system can be introduced in a natural way [27, Def. 3.6]. Moreover, invertible
systems (having independent subsystems) can be used to define block ciphers [27,
Def. 5.6].

7. Trivium

The stream cipher Trivium was proposed by De Cannière and Preneel in 2005.
It was submitted to the eSTREAM competition and therein selected as part of the
final portfolio. We recall that eSTREAM was an European project which aimed at
identifying new secure and efficient stream ciphers. Despite a wide cryptanalytic
effort, best known attacks against Trivium are still significantly slower than brute-
force attacks. Trivium is a difference stream cipher whose corresponding explicit
difference system consists only of three quadratic equations over the base field
F = GF(2), namely

(8)

 x(93 + t) = z(t) + x(24 + t) + z(45 + t) + z(1 + t)z(2 + t),
y(84 + t) = x(t) + y(6 + t) + x(27 + t) + x(1 + t)x(2 + t),
z(111 + t) = y(t) + y(15 + t) + z(24 + t) + y(1 + t)y(2 + t).

(t ∈ N)

Its keystream polynomial is the following homogeneous linear polynomial

(9) g = x(0) + x(27) + y(0) + y(15) + z(0) + z(45).

Consequently, a t-state is a string of 288 = 93 + 84 + 111 bits, for any t ≥ 0. The
number of warm-up updates is u = 4 · 288 = 1152. Seeds (i.e. private keys) and
initialisation vectors are 80-bit strings and together they form 160 bits of an initial
state. The remaining 128 bits are constants.

If R̄ = F[x(0), . . . , x(92), y(0), . . . , y(83), z(0), . . . , z(110)], the state transition
endomorphism T̄ : R̄→ R̄ of Trivium is therefore the following one

(10)
x(0) 7→ x(1), . . . , x(91) 7→ x(92), x(92) 7→ z(0) + x(24) + z(45) + z(1)z(2),
y(0) 7→ y(1), . . . , y(82) 7→ y(83), y(83) 7→ x(0) + y(6) + x(27) + x(1)x(2),
z(0) 7→ z(1), . . . , z(109) 7→ z(110), z(110) 7→ y(0) + y(15) + z(24) + y(1)y(2).

By means of Theorem 6.3 we obtain that T̄ is in fact an automorphism whose
inverse T̄−1 : R̄→ R̄ is defined as

(11)
x(92) 7→ x(91), . . . , x(1) 7→ x(0), x(0) 7→ y(5) + x(26) + y(83) + x(0)x(1),
y(83) 7→ y(82), . . . , y(1) 7→ y(0), y(0) 7→ y(14) + z(23) + z(110) + y(0)y(1),
z(110) 7→ z(109), . . . , z(1) 7→ z(0), z(0) 7→ x(23) + z(44) + x(92) + z(0)z(1).

The invertibility of the stream cipher Trivium allows therefore an algebraic attack
on its u-state that we have analyzed by means of the algorithm MultiSolve.
In fact, the high number of variables, namely 288, makes impossible to solve the
corresponding polynomial system by a single Gröbner basis computation. Our
multistep strategy divides instead this solving task in many subproblems, whose
number can be easily estimated, where the number of variables is bounded at will.

8. A multistep attack on Trivium

In this section we essentially introduce the reader to the practical use of the
complexity analysis of MultiSolve contained in Section 4. We make use to
this purpose of an algebraic attack on the stream cipher Trivium whose com-
putational cost we are able to estimate. This cryptanalysis is an instance of an
algebraic attack on an internal state of an invertible difference stream cipher as de-
scribed in Section 6. Recall that for Trivium we consider the polynomial algebra
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R̄ = F[x(0), . . . , x(92), y(0), . . . , y(83), z(0), . . . , z(110)] (F = GF(2)) and the corre-
sponding field equation ideal L ⊂ R̄. We apply MultiSolve to the generating set
H of the ideal J ′

0,h + L ⊂ R̄ where

J ′
0,h =

∑
0≤t<h

⟨T̄t(g)− b(t)⟩ ⊂ R̄.

Here T̄ : R̄ → R̄ is the state transition automorphism (10) of Trivium, g ∈ R̄ is
its keystream polynomial (9) and b(t) (0 ≤ t < u) is the portion of the keystream
that we assume to know for the attack. The goal of the attack is to compute
VF(J

′
0,h) = V (J ′

0,h + L), that is, the internal state of Trivium at the keystream

initial clock (see Section 6).
In our attack the length of the keystream is fixed to h = 240 because this

provides polynomials of quite low degree (≤ 5) in the generating set H and at most
one solution in all polynomial systems we computed to analyze MultiSolve.

A first useful observation is that the generators T̄t(g) − b(t) ∈ H (0 ≤ t ≤ 65)
are independent linear polynomials and hence we can eliminate immediately 66
variables by means of them. The remaining set of 222 variables we consider is

X̄ ′ = {x(0), . . . , x(92), y(0), . . . , y(83), z(0), . . . , z(44)}.

This set is still too large to actually perform GBElimLin and hence we decide to
fix a set of 116 variables to be stepwise evaluated, namely V = V ′ ∪ V ′′ where

V ′ = {x(2), y(2), z(2), x(5), y(5), z(5), x(8), y(8), z(8), x(11), y(11), z(11), x(14), y(14), z(14),
x(17), y(17), z(17), x(20), y(20), z(20), x(23), y(23), z(23), x(26), y(26), z(26), x(29), y(29), z(29),

x(32), y(32), z(32), x(35), y(35), z(35), x(38), y(38), z(38), x(41), y(41), z(41), x(44), y(44), z(44),

x(47), y(47), x(50), y(50), x(53), y(53), x(56), y(56), x(59), y(59), x(62), y(62), x(65), y(65), x(68),

y(68), x(71), y(71), x(74), y(74), x(77), y(77), x(80), y(80), x(83), x(86), x(89), x(92)};

V ′′ = {x(3), y(3), z(3), x(6), y(6), z(6), x(9), y(9), z(9), x(12), y(12), z(12), x(15), y(15), z(15),
x(18), y(18), z(18), x(21), y(21), z(21), x(24), y(24), z(24), x(27), y(27), z(27), x(30), y(30), z(30),

x(33), y(33), z(33), x(36), y(36), z(36), x(39), y(39), z(39), x(42), y(42), z(42), y(45)}.

The set V is chosen by means of GBElimLin, as it has the lowest average value
of NRV, for a testset of different keys and evaluations, compared to many other
subsets of X̄ ′ of the same size. Of course, we could not consider all 116-subsets of
X̄ ′ and hence our search was restricted to a large group of candidates.

In our multistep strategy we start with the evaluation of 106 variables which
are obtained by deleting the last 10 variables from the set V ′′ and we proceed by
evaluating one further variable at each step. We label these steps by the corre-
sponding number of evaluated variables, say k, and so we fix 106 ≤ k ≤ 116 in our
experiments. We apply GBElimLin with parameter D set to the maximum input
degree which is generally equal to 3. This provides quite low average running time
for GBElimLin which is, for instance, 4.5 seconds for k = 106 in our experiments.

For the testing activities, we run our code on a server with the following hardware
configuration:

• CPU: 2 x AMD EPYC(TM) 7742;
• Number of CPU Cores/Threads: 2 x 64 Cores/2 x 128 Threads;
• Maximum CPU frequency achievable: 3.4GHz;
• L3 cache: 256Mb;
• RAM: 2 TB.
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On this server, we install a Linux distribution as operating system – Ubuntu 22.04
LTS – and Magma version 2.27, a software package designed to solve problems in
algebra and number theory [8]. We set Magma to use 16 threads when performing
parallel linear algebra. Our main testset consists of 216 different tests, namely
212 random guesses of variables for 24 keystreams obtained starting from a same
number of random initial states. We call this set a random testset. We also use
a testset of 216 different correct guesses corresponding to 216 random initial states
and we call it a correct testset. Recall that an initial state is here the internal state
of Trivium at the initial clock of the keystream.

The complexity of the algorithm MultiSolve strictly depends on the parameter
B which defines the tamed guesses, that is, the Gröbner bases that are actually
computed. In our experiments, we fix 32 ≤ B ≤ 38. One reason for this choice is
that we found p32(116) = 0, that is, k′′ = 116 is the possible last step for B = 32
where 116 is the maximum step considered. Moreover, we have that NRV ≤ B = 38
allows the computation of GrobnerBasis by Magma in few minutes at most
which is for us “a reasonable time” for quite large testsets. Indeed, the solving
degree we generally have in our tests is at most 5. For a number of variables
greater than 38, we also observed that some internal errors occur when performing
GrobnerBasis with the parameter “HFE”. By using this parameter, Magma runs
the algorithm F4 with parallel computations over dense Macaulay matrices which
generally imply a significant speedup.

The main statistics for computing the complexity of MultiSolve are the prob-
abilities pB(k) for B and k in the considered intervals. To this purpose, we actually
ran two independent random testsets on our server finding no significative differ-
ences between the two statistics obtained. Recall that these testsets consist each
of 212 random guesses for 24 random initial states.

Table 1. Probabilities pB(k) estimated on our random testsets.

k/B 32 33 34 35 36 37 38
106 0.63153 0.61703 0.60867 0.58736 0.55925 0.50848 0.44923
107 0.61670 0.60675 0.58188 0.55359 0.50471 0.44638 0.38121
108 0.57581 0.54169 0.49049 0.43468 0.37077 0.31258 0.23341
109 0.49127 0.43814 0.38190 0.29349 0.23219 0.16003 0.10303
110 0.43263 0.37582 0.28784 0.22722 0.15845 0.10179 0.04910
111 0.28415 0.22218 0.14967 0.09698 0.04762 0.02165 0.00670
112 0.14362 0.08954 0.04715 0.01627 0.00650 0.00053 0
113 0.08838 0.04610 0.01549 0.00650 0.00053 0 0
114 0.01498 0.00725 0.00053 0 0 0 0
115 0.00043 0 0 0 0 0 0
116 0 0 0 0 0 0 0

The Table 1 provide us with the possible final steps k′′ for each value of B, in
the worst case where the correct guess corresponding to the initial state becomes
tamed at such steps.

Note that the above final steps gives us essentially the complexity C = 2k
′′
of

the one-step strategy, that is, the standard guess-and-determine or hybrid strategy.
Assuming that the first step k′ of the full multistep strategy is set k′ = 106 for all
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Table 2. Final steps k′′ estimated on our random testsets (worst case).

B 32 33 34 35 36 37 38
k′′ 116 115 115 114 114 113 112

Figure 1
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B, we can compare C with main complexity of the algorithm MultiSolve, namely

C2 =
∑

k′≤k≤k′′

(pB(k − 1)− pB(k))2
k.

Recall that by convention pB(k
′−1) = 1 and Theorem 4.4 implies that C > C2. The

Table 3 and Figure 1 provide a comparison between the one-step and the multistep
strategy for our algebraic attack on Trivium.

Table 3. One-step complexity VS Multistep complexity (worst case).

B 32 33 34 35 36 37 38
log2(C) 116 115 115 114 114 113 112
log2(C2) 111.63 111.13 110.47 109.93 109.37 108.85 108.29

To obtain the complexity of MultiSolve in the average case, we need a second
statistics, namely the probabilities pB(k) in the case of the correct testset. In order
to prevent confusion, let us denote by p̄B(k) the probabilities obtained in this way.
For the following statistics, we make use of two independent testsets of 216 different
initial states each.

We use the above statistics to determine at which step k̄′′ one has probability
p̄B(k̄

′′) < 0.5, that is, at least half of the correct guesses become tamed in a step
l ≤ k̄′′ < k′′. In other words, this provides that with probability greater than or
equal to 0.5, the algorithm MultiSolve will stop at a final step l ≤ k̄′′.

By considering k′′ and k̄′′ as last steps for the algorithmMultiSolve, the follow-
ing Table 6 and Figure 2 provide a comparison between the worst case complexity
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Table 4. Probabilities p̄B(k) estimated on our correct testsets.

k/B 32 33 34 35 36 37 38
106 0.98145 0.96414 0.93700 0.89612 0.83978 0.76630 0.67615
107 0.96077 0.93288 0.89172 0.83521 0.76161 0.67128 0.56934
108 0.88625 0.82880 0.75348 0.66212 0.55914 0.44754 0.33824
109 0.75659 0.66649 0.56439 0.45430 0.34366 0.24200 0.15723
110 0.66171 0.56049 0.45132 0.34123 0.24028 0.15625 0.08948
111 0.44080 0.33250 0.23412 0.15137 0.08672 0.04370 0.01810
112 0.23505 0.15071 0.08466 0.04102 0.01611 0.00458 0.00078
113 0.14989 0.08432 0.04094 0.01608 0.00458 0.00078 0
114 0.03961 0.01570 0.00450 0.00075 0 0 0
115 0.00381 0.00056 0 0 0 0 0
116 0.00056 0 0 0 0 0 0

Table 5. Final steps k̄′′ estimated on our correct testsets (average case).

B 32 33 34 35 36 37 38

k̄′′ 111 111 110 109 109 108 108

C2 and the average case complexity

C̄2 =
∑

k′≤k≤k̄′′

(pB(k − 1)− pB(k))2
k.

Table 6. Multistep complexity (worst case) VS Multistep com-
plexity (average case).

B 32 33 34 35 36 37 38
log2(C2) 111.63 111.13 110.47 109.93 109.37 108.85 108.29

log2(C̄2) 108.79 108.88 107.67 107.06 107.13 106.20 106.35

We emphasize that the logarithm of our best complexity, namely log2(C̄2) =
106.2 for B = 37, is very close to the minimum number k′ = 106 of evaluated vari-
ables that we have chosen for our optimization. This happens with p37(106) = 0.5,
that is, with half of the Gröbner bases in the step 106 that are not computed be-
cause NRV > 37. Using our code in Magma running on our server, for this average
case complexity we estimate that an algebraic attack on Trivium by MultiSolve
takes approximately 2112 seconds. This estimation is obtained as T = T1 + T2
(see formulas (6)) where the running time of the Gröbner bases only is T2 = 2111.5

seconds.

9. Conclusions and further directions

In this paper we have shown that the multistep strategy is, in theory and in
practice, a viable way to estimate and improve the complexity of solving polyno-
mial systems over finite fields. Although the neat stream cipher Trivium remains
secure after our algebraic attack based on this solving strategy, we obtain a relevant
reduction to 2106.2 of the required complexity with respect to previous attacks of



A MULTISTEP STRATEGY FOR POLYNOMIAL SYSTEM SOLVING . . . 25

Figure 2
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the same kind. In fact, the experimentation of the proposed method is only at the
beginning and we believe that an extended optimization of the many parameters
of the multistep strategy together with possible advances in solving algorithms will
make this technique even more effective as a tool to evaluate the security level of
a cryptographic system. Of course, the multistep strategy is a general algorithm
that could also be useful outside the cryptographic context.

As a further direction in this line of research, we suggest that the limitation of the
number of remaining variables can be generalized to bounds involving other critical
indicators that a polynomial system could be difficult to solve, such as the degree of
its equations, their density, a theoretical value of the solving degree and so on. In
general, we believe that the concept of statistical evaluation of the complexity of a
polynomial system over a finite field is promising and requires further investigation.
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