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Abstract. The universal thresholdizer, introduced at CRYPTO’18, is a
cryptographic scheme that transforms any cryptosystem into a threshold
variant, thereby enhancing its applicability in threshold cryptography. It
enables black-box construction of one-round threshold signature schemes
based on the Learning with Errors problem, and similarly, facilitates
one-round threshold ciphertext-attack secure public key encryption when
integrated with non-threshold schemes.

Current constructions of universal thresholdizer are fundamentally built
upon linear secret sharing schemes. One approach employs Shamir’s se-
cret sharing, which lacks compactness and results in ciphertext sizes
of O(Nlog N), and another approach uses {0, 1}-linear secret sharing
scheme ({0, 1}-LSSS), which is compact but induces high communica-
tion costs due to requiring O(N®?) secret shares.

In this work, we introduce a communication-efficient universal thresh-
oldizer by revising the linear secret sharing scheme. We propose a spe-
cialized linear secret sharing scheme, called TreeSSS, which reduces the
number of required secret shares O(N32:3/1081°e N)y while maintaining
the compactness of the universal thresholdizer.

TreeSSS can also serve as a subroutine for constructing lattice based
t-out-of-N threshold cryptographic primitives such as threshold fully ho-
momorphic encryptions and threshold signatures. In this context, TreeSSS
offers the advantage of lower communication overhead due to the reduced
number of secret shares involved.

Keywords: Threshold Cryptography, Threshold Fully Homomorphic
Encryption, Universal Thresholdizer, Shamir Secret Sharing

1 Introduction

A t-out-of-N threshold cryptography [25,26,28] is a public key cryptosystem
that enables the distribution of secret keys among N parties. To obtain the
plaintext from a ciphertext encrypted with this system, ¢ parties are required to
collaborate. However, even if ¢ — 1 parties are compromised, they cannot gain
any information about the plaintext.



The Universal Thresholdizer (UT) [14] is a tool for constructing threshold
cryptosystems. It acts as a compiler, taking an existing cryptosystem and con-
verting it into a threshold variant. UT provides simple constructions of threshold
cryptographic primitives such as threshold signatures, CCA threshold PKE, and
function secret sharing.

A black-box construction of UT was proposed that leverages compact thresh-
old fully homomorphic encryption (TFHE) from learning with errors (LWE),
non-interactive zero-knowledge proof with preprocessing (PZK) [39,47], and
a non-interactive commitment scheme [11]. This construction resolves a long-
standing open question in lattice-based cryptography by constructing a one-
round threshold signature using lattices.

There are two constructions of TFHE*: Shamir’s secret sharing-based TFHE
and {0, 1}-linear secret sharing scheme (LSSS) based TFHE. The Shamir-based
TFHE uses rational numbers, known as Lagrange coefficients, to distribute ho-
momorphic encryption. However, this leads to a large scaling factor, resulting in
a size of ¢ that is not compact. Note that the size of scaling factor is O(N!?), so
the bit-size of ¢ is O(Nlog N).?

The TFHE based on the {0,1}-LSSS solves the limitation by utilizing a
different approach to secret sharing. It adopts the monotone Boolean formula
secret sharing scheme, as established by Valiant in [34,51], which employs binary
coefficients to recover the secret from the distributed secret shares instead of the
Lagrange coefficients used in Shamir’s scheme. This allows compactness, with
log g = O(log N). However, this also leads to a high number of required secret
shares, which can result in substantial communication overhead with a cost of
O(N®>3log N).

1.1 This work

Our main contribution is to propose a communication-efficient UT by construct-
ing an efficient linear secret sharing scheme for t-out-of- N threshold access struc-
ture, called TreeSSS. This linear secret sharing scheme reduces the number of
shared keys compared to the standard {0, 1}-LSSS, leading to less secret shares
being shared in the setup algorithm of TFHE. This reduction in shared keys
also reduces communication costs during the partial decryption algorithm of
TFHE. Additionally, the compactness property of TFHE allows the primitive to
be used in constructing a compact UT. The reduced communication overhead
makes it a promising candidate for various applications. These include but are

4 [14, Section 8.4] additionally introduces a type of TFHE that requires additional com-
pilation steps. First, construct a non-compact TFHE from Shamir’s secret sharing.
Next, construct a non-compact UT from the non-compact TFHE. Then, construct
a compact TFHE by taking as input another compact non-threshold FHE into the
non-compact UT. Here, we will not consider this type of TFHE that requires further
compilation.

5 To put it simply, the property of compactness is maintained when the magnitude of
q is bounded by a polynomial function of V.



not limited to threshold signatures [2], threshold multi-key FHE schemes [5],
and decentralized Attribute-Based Encryption (ABE) [52].

TreeSSS is devised through the iterative application of s-out-of-2s—1 Shamir’s
secret sharing scheme, where s < N. Its results exactly match the optimal am-
plification employed for constructing the large input majority function using
small input majority functions [36]. The results are given in Table 1.

We note that the iterative construction is specially applicable to a t-out-of-IV
threshold access structure. Furthermore, only formulas consisting of AND/OR
gates are known to be transformed into linear secret sharing schemes [14]. No-
tably, methods that employ majority gates have been considered relatively inef-
ficient for constructing linear secret sharing schemes [34].

Last, we point out an overlooked probability issue that was not fully con-
sidered when constructing the share matrix M using {0, 1}-LSSS. This issue
originates from Valiant’s monotone Boolean formula in [51], which serves as the
foundation structure for {0, 1}-LSSS. According to Valiant’s formula Lemma A.3,
it guarantees that a generated circuit will corresponds to a majority circuit with
at least 1/2 probability. This implies that a matrix M, generated through {0, 1}-
LSSS, has at least 1/2 probability of being a (well-constructed) share matrix as
intended.

To address this, we adjust the construction, allowing for M to be obtained
with overwhelming probability while preserving the asymptotically same the
number of secret shares. Further details and modifications are discussed in Sec-
tion 2.3.

Secret Sharing Scheme ‘ Structure ‘ O(log q) ‘ # of keys
Previous Shamir 53 6 t-out-of-N O(Nlog N) N
{0,1}-LSSS O(log N) O(N®3)
SS(3,2) O(log N) ( 43)
TreeSSS SS(2s — 1, 5) t-out-of-N O(slog s - log N) O(N + o %)
SS(log(N?/2),log N) O((log N)? - loglog N) O(N3+loazl Ev)

Table 1: The comparison results between the previous TFHE and ours. The
column ‘structure’ indicates the access structure of secret sharing schemes. The
remaining columns carry the same meaning as those in the preceding table.
SS(N, t) indicates Shamir’s secret sharing scheme for t-out-of-N threshold. The
final row, which corresponds to SS(2s—1, s), represents the asymptotic behavior
as N tends to infinity, with s being constant and N being sufficiently large.
Communication cost is the product of the size of the ciphertext and the total
number of keys.

5 [14,38] propose the definition of {0,1}-LSSS for arbitrary access structure, but they
only instantiated {0, 1}-LSSS for t-out-of-N.
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Fig. 1: Comparison the number of secret shares: Ours, {0, 1}-LSSS, and Shamir
secret sharing. Log-size of the number of secret shares according to number of

parties N.
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scheme.

Comparison decryption error bound: Ours, {0,1}-LSSS, and Shamir

We briefly introduce related works of TFHE to present potential applications of

our TFHE.

Comparison between Concurrent Work. Our approach to construct effi-
cient TFHE is entirely distinct from that of the recent papers [6,15,23,40]. Our
focus is on directly improving {0, 1}-LSSS, while [15] uses it as is. We thus be-
lieve our TreeSSS and the technique in [15] can be combined to create an efficient



TFHE and UT construction. We further note that [40] improved the bootstrap-
ping technique of FHEW /TFHE to achieve threshold FHE, while [15,23] both
achieved a polynomial modulus-to-noise ratio TFHE from LWE using Renyi di-
vergence and the noise flooding technique. [23] was specialized for Torus-FHE
[22], while [15] can be built from any FHE scheme. These schemes are built
from {0,1}-LSSS, and require approximately N* ~ (]X ) operations during the
setup protocol. This adjustment is intended to boost practical performance, par-
ticularly when working with small N and ¢. In contrast, our algorithm focuses
on achieving asymptotic improvements for arbitrary N and t. Therefore, these
schemes are not within the scope of this paper. Nevertheless, in Figure 1, we
gave a graphical comparison of number of secret shares for ours, {0,1}-LSSS,
and Shamir secret sharing to indirectly support the superiority of TreeSSS for
arbitrary N and t.

Threshold Circuits. A majority circuit is equivalent to an N/2-out-of-N thresh-
old circuit. Research has shown how to create monotone Boolean formulas for
majority functions [34,36]. However, these constructions are not useful for thresh-
old circuits similar to TFHE. For example, [34] showed that the depth of a
three-variable majority function’s monotone Boolean formula is 3, leading to
a total number of secret shares close to O(N7), which is inefficient compared
to circuit representations [51]. A paper [6] introduces specialized fields with a
characteristic of 2, focusing specifically on the threshold structures of 2-out-of-INV
and (N — 1)-out-of-N. [37] improved upon the result in [51], which had a size of
O(n'+V2). However, [15] argued that it is unclear how to construct TFHE using
the improved result in [37] because of their circuit construction.

[36] found that the optimal formula for general majority can be expressed
with the (25— 1)-variable majority function in O(N3+0(1/1°89)) for some s, which
matches our main result.

Threshold Signature. The threshold signature is a protocol that uses the
threshold property in a signature scheme. There have been many efforts to build
this scheme [12,13,19, 24, 30-33, 42, 44, 50], but most of them are based on pre-
quantum objects like ECDSA. There have only been two round-optimal thresh-
old signature schemes from lattices [2,14]. The first one was built from UT via
compact TFHE [14], and the latter [2] improved efficiency through a concrete
signature scheme and optimal noise flooding, providing a stronger security level
using the random oracle model.

N-out-of-N TFHE. N-out-of-N TFHE is a special case of TFHE and falls
into the category of multikey FHE [4, 18,35, 43,45, 46]. It is a non-interactive
protocol that allows for homomorphic computations on encrypted data using
independently sampled keys, solving key management issues. It is considered a

good solution for round-optimal secure multi-party computations [45] and on-
the-fly MPC property [43].

Ramp secret sharing. Ramp secret sharing was first introduced in [10]. This
scheme differentiates between the number of reconstruction parties, 7., who can
recover the secret, and the number of privacy parties, 7,, who gain no information



about the secret. As such, ramp secret sharing serves as a more efficient, albeit
weaker, variant of traditional secret sharing schemes. Recently, there are several
studies using ramp setting such as weighted threshold cryptosystems [8,29] and
blackbox near-threshold secret sharing [3]. However, it’s crucial to acknowledge
that the ramp setting may not be applicable to all practical scenarios. This limi-
tation arises from the ‘gray area’ where the number of participating parties falls
within the interval (¢, 7,). In such cases, neither correctness nor reconstruction
can be guaranteed by the scheme.

2 Technical Overview

This section provides a technical overview of a new secret sharing scheme, called
TreeSSS. We further provide how to construct TFHE from TreeSSS.

2.1 Current State of Threshold Fully Encryption Scheme from
Secret Sharing Scheme

We briefly introduce a core technique TFHE from current secret sharing schemes,
Shamir’s secret sharing scheme [48] and {0,1}-LSSS [14, 38], to describe the
improvement of new TFHE and UT induced by TreeSSS.

Assume a LWE based fully homomorphic encryption scheme FHE such as
[16, 17,20, 27] is given. Let ct be a ciphertext of a message m € {0,1} and
sk € Zqy be a secret key of FHE with respect to LWE parameters n and ¢. The
decryption algorithm of FHE takes ct and sk as input and returns a message via
computing an inner product (ct,sk) € Z, and returns a message m after some
modifications of the inner product.

Suppose that sk is distributed into shares sk; € Zj among parties. The shares
satisfy sk = ). ¢; - sk; for some coeflicient ¢; € Z,. Then, the decryption process
of FHE can be interpreted as follows:

(ct,sk) = (ct, Zci -sk;) = Zci - (ct, sk;) mod gq.

The linear secret sharing scheme enables us to compute a pair (¢;,sk;) and se-
curely share the secret share sk; to each party. Thus, through linear secret sharing
scheme, one can construct t-out-of-N threshold FHE. Unfortunately, it leaks the
information of the secret share sk; from (ct,sk;). To avoid this leakage, the de-
cryptor injects small noises e; to (ct, sk;}), so the decryption process is performed
as follows:

Zci(<ct,ski) + e;) mod g = {ct,sk) + Z ¢i - €; mod gq.

It is easy to confirm that ZZ ¢; - e; should be small for the correctness.
Under this circumstance, Shamir’s secret sharing scheme [48] generates a pair
(ci,sk;) such that the recovery coefficient ¢; is the Lagrange coefficient A; € Q.



Thus, in order to incorporate Shamir’s secret sharing scheme into FHE, one must
multiply N! by \; to ensure that c¢; - e; = A; - e; lies over Z,. This implies that
q should be at least bigger than N!- ;. Consequently, log ¢ should be set to
O(NlogN).

On the other hand, {0,1}-LSSS [14, 38] satisfies that the recovery coefficient
¢; is binary, so it achieves the compactness of threshold FHE. That is, log g sets
to O(log N). However, the {0,1}-LSSS requires a substantial number of secret
shares. In fact, for the correctness and privacy of the {0, 1}-LSSS, O(N®3) secret
shares are distributed. This is substantial compared to Shamir’s secret sharing
scheme, which shares only N secret shares.

2.2 TreeSSS: Tree Secret Sharing Scheme for t-out-of-N Threshold
Access Structure

This section primarily provides an overview of generating a tree secret sharing
scheme for the & ;‘ L_out-of-N threshold access structure, where N is an odd
number. Subsequently, we expand this concept to develop a tree secret sharing

scheme for an arbitrary threshold access structure (see Section 4.3).
Firstly, we observe that the %—ou‘c—of—N threshold circuit can be inter-

preted as an N-input majority function. Consequently, the formulation of a

secret sharing scheme for the N;‘ Lout-of-N threshold access structure could

conceivably correspond to the construction of an N-input majority function.
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sky sks skoo.,  ska skyx Sk(2571)L723+2 Sk<2571)L

Distribute level-L secret shares {skEL)} to each party *

Fig. 3: High-level Overview of TreeSSS

We observe that circuit compositions to generate N-input majority function
from (2s — 1)-input majority function, where s < N corresponds to repeatedly

" The method for distributing level-L secret shares is exactly the same as {0, 1}-LSSS.
Informally, the distributor randomly partitions the set 1,...,3% into N subsets, and
sends the level-L secret shares corresponding to the indices within these N subsets
to each respective party We leave the detailed method in Section 4.2.



using Shamir’s secret sharing for s-out-of-(2s—1) threshold structure as in Fig. 3.
This observation is in strict agreement with the preceding results for constructing
an N-input majority function proposed by Gupta and Mahajan [36]. They proved
that the (2s — 1)-input majority function can be repeatedly used to construct
N-input majority functions, even when s < N.

This approach generalizes {0,1}-LSSS in terms of the circuit representation
of threshold circuits. This is because {0,1}-LSSS can be also interpreted as
applying the iterative technique on specific circuits from the monotone Boolean
formula for threshold circuits proposed by Valiant [51].% To demonstrate this
concept, we present the following lemmas, which outlines the construction of
majority functions from a 3-input majority function.

The first lemma asserts that the utilization of small input majority functions
can increase the probability of each inputs.

Lemma 2.1 (Adaptation from [34,36]) Let X1, X5, X5 < {0,1} be three
independent identically distributed random variables, and p := Pr[X; = 1] for all
1. Then, the following holds:

1. p' :=Pr[MAJ3(X1, X0, X3) =1] =p> +3- (1 —p) - p*.

2. §:=p—0.5, it holds that p’ = 0.5+ (1.5 — 262) - J.

3. 1—p <3(1-p)2.

Intuitively, Lemma 2.1 says that we can increase the bias § = p—0.5 through
iterations of MAJs: it holds that &' = p’—0.5 > (1.5—262)-6 > 6 for any & < 0.5.
That is, the iteration technique yields the probability amplification. The proof
is deferred to Suppl. B.1.

Under the fact that majority circuits MAJs correspond to 2-out-of-3 Shamir’s
secret sharing scheme SS(3, 2), this lemma inspires the following design of TreeSSS:
Let sk be a secret key that we want to share. For the leveled secret sharing, we re-
gard sk as level-0 secret share skgo). Suppose that level-i secret shares {skg-i) }iels
|
(i 4+ 1) secret shares of the form {Sk§z+1)}je[3i+l] for priory defined parameter L.

) into (s skdit) iy,

By iteratively using SS(3,2), we obtain level-L secret shares {Sk;—L)}je[gL]. Last,
we distribute level-L secret shares {SkgL)}jE[gL] to N parties P = {Py,...,Py}.

As the perspective of secret sharing schemes, Lemma 2.1 reinterprets the
probability amplification of success probability of recovering sk from secret shares

are given. For each 0 < i < L, by applying SS(3,2) to each sk}, we obtain level-

More precisely, for every i, 7, SS(3, 2) can split sk

{sk;L)} : Given any S C P, we define a random variable X ; as follows:

. (2)
X, j(S) _ 1 if S can recover the secret share skj
’ 0 otherwise

8 In the supplementary material, we provide how to interpret {0,1}-LSSS as iteration
of small circuits. Goldreich [34] proved that representing threshold circuits by mono-
tone Boolean formula yields inefficient TFHE construction in terms of the number
of secret shares to each party. Indeed, it requires O(N 7) secret shares to construct
(compact) TFHE.



for every 0 < i < L and j € [3']. Note that for every j, it holds that Pr[X,, ; =

(L)

1] = Pr[S has a secret share sk; '] = %.9 Furthermore, it also satisfies that if

i < L, then skg-i) can be recovered whenever S can gather two or three level-(i+1)

secret shares in {skgjtlg , skéijtll, ské?rl)}. Hence, it holds that
Pr[X;; = 1] = Pr[MAJ3(Xi41,35-2, Xit1,3j-1, Xit1,35) = 1].

Lemma 2.1 posits that constructing the N-input majority function can be
accomplished through the application of the 3-input majority function in a tree
structure, thus reducing both the level of approximation and the size of the
formula. The following lemma describes the level required to construct a N-
input majority function with (2s — 1)-input majority function.

Lemma 2.2 (Adaptaion from [36]) Given an odd number N of parties, one
can construct the majority function MAJyN from small majority gates MAJog_1
with at least 1/2 success probability. This construction requires iteratively apply-

ing MAJas_1-gates up to levellog, (N)+log, N+O(1), where ¢, = Z=%-(*77).

Lemma 2.2 indicates that the construction of N-input majority functions is
possible through the use of a 3-input majority function with a size of O(N4-29)
or through a (2s — 1)-input majority function with a size of O(N3+0(1/logs)),
Indeed, we correspond a (2s — 1)-input majority circuit to SS(2s — 1, s), where
SS(2s — 1, s) is Shamir’s secret sharing scheme for s-out-of-(2s — 1) threshold
access structure. Fig. 3 indicates the high-level overview of TreeSSS. Working
backwards from the leaf nodes of the tree to root, we can combine the secret sk.
The detailed construction of TreeSSS will be presented in Section 4.2.

TreeSSS for t-out-of-N structures. We can easily extend our construction to
t-out-of-INV TreeSSS by slightly modifying the number of parties and the thresh-
old. The conversion process involves constructing a TreeSSS for a different ¢ and
N that satisfies the desired conditions. For instance, when ¢ > %, we start
by constructing a TreeSSS for t-out-of-(2t — 1). If 2t — 1 > N, we simply disre-
gard the extra secret shares. Similarly, if ¢t < %, we generate a TreeSSS for
(t + r)-out-of-(N 4 r) where r satisfies 2+ = ¢ 4 7. In the case where t = &,
and N is even, it suffices to construct a TreeSSS for (4 +1)-out-of-(N +1). The
detailed construction can be found in Section 4.3.

2.3 Previous Flaw: Concealed probability in {0,1}-LSSS

The {0, 1}-LSSS described in [14, 38] depends on the probabilistic construction
of monotone Boolean formulas. The core lemmas Lemma A.3 (for {0, 1}-LSSS)
and Lemma 2.2 argue that that the probability of constructing the circuits is at
least 1/2.

9 Assume that a dealer distributes level-L secret shares to each party P; for i € [N].
Then, the probability of each party P; having sk;-L) is equal to % for all 7, j. It means

that the probability of a subset S having skg.L) i8> pes == ‘—If]' .



This only ensures that we can construct {0,1}-LSSS with 1/2 probability
depending on the distribution of secret shares. Therefore, a dealer should re-
distribute the secret shares to the parties until constructing a proper secret
sharing scheme. Consequently, for usage of these schemes, it is necessary to verify
that the share algorithm functions as intended. Thus, it is necessary to verify
that the secret sharing scheme actually satisfies both correctness and privacy.
However, the time complexity for this verification is exponential in N rendering
it impractical for large IN. This verification step is present in our TreeSSS because
our scheme also relies on the construction of probabilistic circuits Lemma 2.2,
which yields the additional time costs.

The success probability (at least 1/2) of Lemma 2.2 is derived from Lemma 2.1
and Lemma 2.3.

Lemma 2.3 ([51]) Let F : {0,1}¥ — {0,1} be a randomized function, and
x € {0, 1}V be its input. The probability of F(x) is as follows:

Pr[F(z) =1 | wt(z) < N/2] <2~ N1

Pr[F(z) =0 | wt(x) > N/2] < 27V~1.

Then, it satisfies that Pr[F = MAJy] > 1/2.

To mitigate the extra computational overhead, we make a minor adjustment
to Lemma 2.3 and the iteration level L, it leads to increase success probability of
a threshold structure. More precisely, we add an additional parameter . If the
failure probability of each cases is less than 27V =%~1 a suitable formed share

matrix M can be acquired with a probability of 1 — 2% with an additional levels
log, K.
Secret Sharing Scheme ‘ Structure ‘ O(log q) ‘ # of keys
Previous Shamir S5 t-out-of-N O(Nlog N) 33 N 5
{0,1}-LSSS O(log N) O(N®* - (N +k))
SS(3,2) O(log N) O(N?*7 . (N + r)'5®)
2.34 1.28
TreeSSS SS(19, 10) tout-of.N O(log N) O(N2 . (N + K/)l 17)
SS(99, 50) O(log N) O(N***.(N+«k)"")
SS(2s — 1, ) O(slogs-log N) | O(N*T= . (N 4 x)'T=)*0

Table 2: The comparison results between the previous TFHE and ours after the
modification.

Consequently, the number of shares can be expressed as O(N loge, (2s—1) .
(N + k)l8s(2s=1))) " which is asymptotically equivalent to the number of shares

10e=0(1/1ogs).

10



in Theorem 4.6. A comprehensive proof of the modification of L can be found
in Suppl. C. We also note that in case of {0,1}-LSSS, O(N®3) is changed into
O(N33 . (N + k)?). For detailed impacts of this modification, please refer to
Table 2

Certainly, for the sake of clearer exposition, we choose not to use x throughout
this paper, even though it has probabilistic limitations.

2.4 Toy Example of TreeSSS

Let N,t be positive integers and SS(IV,t) a t-out-of-N Shamir’s secret sharing
scheme. Let sk € Z, be a secret that we want to share. The purpose of this
section is to concretely provide how to construct SS(5,3) using SS(3,2). That
is, we will build a secret sharing scheme that sk should be only recovered when
three or more parties gather.

Given a secret sk, we splits sk into sk(ll), skél), skél) by applying SS(3, 2), where
two secret shares can be used to recover secret sk. Then, applying SS(3, 2) repeat-
edly, we divide sk( into {skgl 2 skg) 1, g)} and sk;z) into {skg‘(;.)i27 skg‘;) 15 skg;-)}.

Now, we distribute secret shares {skj }ieq1, 27y to 5 parties as follows!!

: {Sk(d) Sk(S) skg?i)75kg‘é)75ké31 ’Sk26} P2 {Sk (3) Skg?’ 18’ (3)}

Py : {sk$¥ ski® sk(¥ sk®) k() kD1, Py {sk(?’ k(?’) (sk{P s f‘;}, sk{¥3,
3 3 3

Ps {Sk5 7Sk50)’5k§5)v 20 )S ( )}

In this case, we observe that any three parties can recover the secret and any
two parties can not recover the secret sk.

For example, { P, Py, Ps} can reconstruct {sk(22)7 sk§2), skéQ), sk(72), skéz)} using
their own secret shares. Consequently, they can also derive {skgl), skél)}. Finally,
using {skgl), skél)}, they are able to recover the secret sk.

In contrast, {P;, P3} can only reconstruct {sk§2),sk(2) sk(2) 2)}, limiting
them to the recovery of {skgl)} only. Thus, they are unable to recover the secret
sk. Moreover, due to the privacy property of Shamir’s secret sharing, {P, Ps}
cannot get any information about the secret sk. This observation will be used
later in the proof of the privacy properties of our TreeSSS.

2.5 TreeSSS Meets Fully Homomorphic Encryption

We further remark that the simple replacement of a secret sharing scheme has
an unexpected impact on the simulation security proof of TFHE. We recall the

11 Tn this case, we define a specific partition that may not appear to be randomly
distributed. However, if we sufficiently repeat the process of secret key distribution,
Lemma 2.3 assures us that a linear secret sharing scheme for a threshold structure can
be successfully constructed, provided that the secret shares are distributed randomly
among parties.

11



concept of the partial decryption algorithm. The algorithm works by taking
the secret shares sk; and computing sk = >, ¢; - sk;, where ¢; are the recovery
coeflicients and sk is the master secret key. The decryption process is performed
as follows:

(ct,sk) = (ct, Z ci - ski) = ch-<ct,ski> mod ¢

Consequently, the partial decryption algorithm can be regarded as follows'?:

(ct,ski) = (c; ' mod q) - | (ct,sk) — Z(ct,skj> mod ¢ | mod q.
i#j

The observation is critical in the simulation security proof as it enables
the simulator to simulate the partial decryption algorithm without having any
knowledge of the secret shares sk;. This issue is not relevant in the case of {0, 1}-
LSSS, as the recovery coefficients ¢; and their inverse elements ci_1 are binary.
However, in the TreeSSS approach, the coefficients are product of Lagrange’s co-
efficients, which implies that there is no guarantee of the smallness of the inverse
elements of Lagrange’s coefficients.

Therefore, to adapt the simulation security proof for TFHE, it is necessary to
provide an upper bound on the inverse of the Lagrange’s coefficients. This enables
us to overcome the smallness issue, which is a major concern in the simulation
security proof of linear secret sharing schemes. It is worth mentioning that in
[38], the authors proposed the {0, 1}-LSSS to avoid the smallness issue, which is
one of the ways to overcome this challenge in the simulation security proof.

To conclude, we revisit and slightly modify the previous results of the La-
grange coefficients presented in [1,49]. The result is a new lemma which completes
the security proof for the proposed construction. The proof of the lemma can be
found in Suppl. B.2.

Lemma 2.4 ([14]) Let P = Py,--- , Py be a set of parties and A, a threshold
access structure on P with a threshold value t € [N]. Consider Shamir’s secret
sharing scheme SS over the secret space Zq, where q is a prime number such
that (N)2 < q. Then, for any set S C [N]U O with size t and for any indices
i,j € [N], the following properties hold:

— INTAS,| < (N2, ’N!-ﬁ < (N1)2,

S 1 ;
—_ NI. )\i)j, N!. pEn are integers

where )\fj is the Lagrange coefficient.

12 To prevent information leakage, the large error should be added. However, we omit
the error for simplicity.
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3 Preliminaries

Notations. We use bold uppercase letters for matrices and bold lowercase letters
for vectors. The set [n] = 1,2,--- ,n is used to denote a positive integer n. log
is used to represent the logarithm function base 2. The size of a finite set S is
represented by |S| and its power set is represented by P(S). a + S means that
a is randomly selected from the finite set S.

Vandermonde Matrix. We use the Vandermonde matrix, a special matrix
widely used in Shamir’s secret sharing scheme, and denote it as V ;, where it
is a N x t matrix. The entries in V ; are defined as:

11 12 ... 1071
12 22 ... 9t71
Vi =

1N N?2... N1
For convenience, we also use the shorthand notation Vg to refer to Vas_1 4.

Statistical Distance. The statistical distance between two distributions D;
and Dy over a countable support X is defined as

Pr (Di(e)) — Pr (Da(e))|.

e+D; e<D>

A(Dy, D) :%Z

eck

Dy =4 Dy means that the distribution D1 is statistically indistinguishable from
distribution Ds.

The noise flooding technique, also known as noise smudging, is commonly
used to mask information by adding a large error.

Lemma 3.1 (Noise Flooding Technique [4,7,45]) Let By, Bs be positive in-
tegers and ey be an integer in the interval [— By, B1]. Let U be a uniform distri-
bution over the interval [—Bg, Ba|. Then, it holds that A(U,U + e1) < %2'

Learning with Errors (LWE). The Learning with Errors (LWE) problem is a
fundamental problem in lattice-based cryptography, often used in the construc-
tion of fully homomorphic encryption schemes [17,20,22].

Given positive integers n,m, and ¢ and a noise distribution x over Z,, the
LWE(n, m, ¢, x) problem involves an adversary attempting to distinguish between
two distributions: (A, As+e) and (A, u). Here, A is chosen uniformly at random
over Z;”X", s is chosen from Zq, € is chosen from x™, and u is randomly chosen
from Zj".

We briefly introduce definitions and previous results for majority functions
which are equivalent to threshold functions.

13



Definition 3.2 (Majority Function/Gate) A majority function/gate MAJy :
{0,1}V — {0,1} is a function defined as follows:

1 wt(x) > N/2

0 otherwise,

MAJN(l‘) = {
where wt(z) is the number of nonzero bits in © = x1x2...TN

4 The Tree Secret Sharing Scheme for t-out-of-IN
threhold function

This section presents a key technical contribution of this paper, called the tree
secret sharing scheme (TreeSSS).

4.1 Preliminaries for Secret Sharing

This section provides several relevant definitions for secret sharing schemes as a
representative. For this purpose, we adopt definitions/notations from [14].

Definition 4.1 (Threshold Structure) Given a set of parties P = {Py,...,Pn}
and a threshold value t such that 1 <t < N, the t-out-of-N threshold structure
ANy C P(P) is defined as the collection of all subsets S € P(P) with a size of
at least t. The subsets in Ay, are referred to as “valid sets,” and the subsets in
P(P)\ An are referred to as “invalid sets.”

Now, we define the linear secret sharing scheme for the threshold structure.

Definition 4.2 (Linear Secret Sharing Scheme (LSSS)) Let KC be the se-
cret key space. The linear secret sharing scheme SS is defined as a pair of PPT
algorithms, (5S5.Share, SS.Combine):

o S5.Share(sk, An+): There exists a share matriz M € ngn with positive inte-
gers d,n and associate a partition T; of [d] to each party P;. For a given secret
sk € Zq, the sharing algorithm samples random values ra, - , 7y < Zq and
generates a vector (sharey,--- ,share;)T = M - (sk,ro,--- ,7,)T. The share
for P; is a set of entries sk; = {share;} e, .

e 5S5.Combine(B): For any S € Any, one can efficiently find the coefficient
{Cf}jEUp,.est‘ such that

> - M[j]=(1,0,---,0).

jEUP,;eS Ti

Then, S can recover a secret key sk by computing sk =" T cf-sharej,

jGUPieS
The coefficients {Cf } are called recovery coefficients.
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A linear secret sharing scheme must satisfy the following properties.

Definition 4.3 (Correctness) For every S € Ay, sk € K, and a set of shares
{ski}icn) obtained by the share algorithm which takes as input sk and Ay ¢, the
following holds without negligible probability:

sk for S €Ay,

SS.Combine({sk;}ics) = {J_ for S ¢ A
N,t

Definition 4.4 (Privacy) For all S ¢ Ay, and sko,sky € K, two sets of shares
(skp1,- -+ ,skp n) < SS.Share(sky, An ) for b € {0,1} follow the identical distri-
bution

{skoi}ics ~ {ski,i}ies-

Especially, we introduce a linear secret sharing scheme (or linear threshold
secret sharing scheme) to construct the threshold FHE.

4.2 TreeSSS from Shamir’s Secret Sharing

We propose the Tree Secret Sharing Scheme for t-out-of-N threshold structure
(TreeSSS), which is a novel linear secret sharing scheme designed to accommo-
date a large number of participants. TreeSSS is based on the well-known Shamir’s
secret sharing scheme, as well as classical results on threshold circuits from the
literature [34, 36].

This new method will allow us to construct t-out-of-N threshold access struc-
ture from Shamir’s secret sharing for s-out-of-¢ threshold functions, where s < IV
and £ = 2s — 1.

We first provide how to build TreeSSS for %—out—of—N threshold functions
and extend it to arbitrary t-out-of-IN threshold access structure. As in the stan-
dard syntax of secret sharing scheme Definition 4.2, TreeSSS consists of two
algorithms, called TreeSSS.Share and TreeSSS.Combine.

Prior to introducing the TreeSSS, we first examine the SS.Share as outlined
in Definition 4.2. The final step of this algorithm involves generating a vector

(shareq, ... ,share))T =M - (sk, 7, ... ,rn)T

)

where M € ZgX”. Each party P; receives a secret share comprised of the set
{share; };er,, where T is partition of the index set [d] corresponding to party P;.

It should be noted that a party P; has the set {share;};c7, can be regarded
such that d secret shares are uniformly distributed to each party via a specific
distribution scheme, without any overlapping of the shares share;. In light of this,
throughout the remainder of this paper, we will commonly employ the phrase
‘uniformly distribute secret shares’ or ’distribute secret shares’.

We now turn our attention to TreeSSS. The algorithm TreeSSS.Share consists
of two primary steps:

1. For a predefined parameter L and the secret sk that wants to share, run the
TreeSS algorithm (Algorithm 1) to generate level-L secret shares, and
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2. Distribute all level-L secret shares among the parties. Here, distribute refers
to conducting ¢L(= poly(INV)) experiments as follows: For i-th experiment
with i € [¢(L], a distributor randomly (allowing repetition) samples k < [N]

and add a level-L secret share ShareEL) to a set skp, . After /- experiments, a

distributor forwards the set of shares skp, = {shareEL)}i to each correspond-
ing party Pg.

The TreeSS algorithm works by applying the secret sharing scheme repeatedly in
a tree-like manner. It starts by considering the secret key sk as the unique level-0
secret share, denoted by sharego). For each 0 < ¢ < L, one can generates level-i
secret shares from level-(i — 1) secret shares as follows: The level-(i — 1) secret

1)

shares, Shareg-i_ , are split into level-i secret shares, {shareg)}ke{g.(j_l)_s_l,... 25}

This process is repeated until level-L secret shares, {shareg-L)} jeler], are obtained
and distributed randomly to each party. The details of the TreeSS algorithm is
provided in Algorithm 1.

The other algorithm, TreeSSS.Combine, is to repeatedly reconstruct level-i
secret shares from level-(i 4+ 1) secret shares. This process is repeated until we
obtain the level-0 share sk. The correctness of TreeSSS.Combine is described in
Theorem 4.6.

Algorithm 1: L-TreeSS Algorithm

Input : Parties P = {P,..., Py} associated with a partition 7; C [¢*] with
{=2s—1and s> 3,
Shamir’s secret sharing scheme for s-out-of-¢ threshold access
structure SS(¥, s),
Secret key sk,
Output: Output the set of secret shares {share;} .,z
(sharegl)7 e ,sharegl)) + SS(¢, s)(sk)
fori=2,.---,L do
forj=1,--- ¢! do
‘ (sharegzjil)ﬂ, e ,shareg?%ﬁl)%) + SS(¢, s)(sharey*l))
end for

end for
return A set of secret shares {share;};c(or)-

i I =TS SNV VI

Construction 4.5 (L-TreeSSS) Let N be an odd integer and s be a small
positive integer such that s < N. Let £ =2s — 1. Let P = {P;,--- ,Px} be a
set of parties and sk € Z, be a secret key. Given Shamir’s secret sharing scheme
SS(¥, s) and iteration number L, a tree secret sharing scheme for iteration number
L is a tuple of PPT algorithms L-TreeSSS = (TreeSSS.Share, TreeSSS.Combine)
that satisfies the following properties:
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e The share algorithm TreeSSS.Share(sk,SS(¢,s), L) takes as input a secret
key sk, an Shamir’s secret sharing SS(¢, s) and an iteration number L, and
construct a new secret sharing scheme TreeSSSy, by TreeSS algorithm. Then,
algorithm outputs (ski,--- ,sky), where (sky,--- ,sky) is a family of secret
shares obtained by TreeSS algorithm.

e The combine algorithm TreeSSS.Combine(B) takes as input a set of shares
B = {Shareg'L)}jGUpiesTw where T; = {j | P; has a secret share share;L)}.
()

Then, combine algorithm computes T = {j | share;” can be recovered by B}

for index sets for 0 < i < L, and sk as follows:

. s SE=D (L)
_ Jjio, ., JL—-1 | irL (L)
sk = E A A oL Ay - sharey)
jLeTE)
s(H gE=2  gL=1) 1
= Z A A A 'Sharegpl)
jL—1€TE-1)
st @
_ P P (2)
= E >‘j1 )\j2 sharej2
j2€T(2)
s
_ i1, (1)
= E >‘j1 sharej1
j1e€T®

= sharego) =sk

. . . L
where ji is an index of level-k secret shares which uses shareg-L) to recover
(k)

itself, Sj(f) is a set of level-k secret shares including share; * which recover a

(k)
;’:j), and the Lagrange coefficient )\jljk are

obtained from the Lagrange polynomial of Shamir’s secret sharing SS(¢, s).
If a set of share B can not recover a level-0 secret share, then the combine
algorithm outputs L.

level-(k — 1) secret share share

Through Lemma 2.2, we prove that L-TreeSSS is a linear secret sharing
scheme for %—out—of—N threshold structure, where L is sufficiently large.

Theorem 4.6 Let N be an odd number and P = {Py,---, Py} be a set of
parties. Let s be a small positive integer such that s < N, and £ = 2s —1. Given
Shamir’s secret sharing SS(¢, s) and the iteration number L > log, N +log, N+
O(1) where cs = ﬂ%-(ﬁj), L-TreeSSS satisfies the correctness and privacy with
%-out-of-N threshold structure with at least 1/2 success probability and the

number of secret shares is % = O(N'8e. FHlog £y,
Proof. First, we will prove L-TreeSSS satisfies the correctness with ¥+L-out-of-

N threshold structure and the number of secret shares is O(N'es 108 £),
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Correctness. The correctness automatically holds underlying the following fact:

e The large-input majority circuit MAJy : {0,1} — {0,1} can be built
from the small-input majority circuit MAJ, when the iteration number L >
log. N +log, N + O(1) where ¢, = 24% . (ﬁj) (Lemma 2.2).

o MAJ, corresponds to Shamir’s secret sharing SS(¢, s) for s-out-of-¢ threshold

access structure.

On top of the above facts, the total number of secret shares in the TreeSSS
would be £F = O(N'08c, (H108: £y 5 O(N3+2:3/logs) 13

Privacy. Now, we demonstrate that the privacy of secret sharing (as defined
in Definition 4.4) is held in L-TreeSSS. Given a subset S C P with |S] < &
and two secret keys skg, ski, we consider the following pairs of shares obtained
by executing TreeSSS.share(sky, SS(4, s), L) — (skp1,- - ,sky n) for b € 0,1:

{sko,i}ics and {skii}ics

Our goal is to prove that these two pairs of shares are drawn from the same
distribution.

In order to establish the privacy of TreeSSS, we will employ mathematical
induction on the level L. For the base case of L = 1, we observe that TreeSSS is
equivalent to Shamir’s secret sharing scheme, which is known to satisfy the pri-
vacy of secret sharing. Hence, the two sets of secret shares {sko;}ies, {Sk1,}ics
follow the same distribution.

To continue the proof, we assume that a (k+1)-level TreeSSS, with each sub-
tree corresponding to a k-level TreeSSS, satisfies the privacy of secret sharing.
Our goal is to demonstrate that this property extends to the (k+1)-level TreeSSS.

For easy explanation, we define a family of level-i secret shares S}EZ) by

I {share,()f; | sharei()f; can be recovered by S}
for every i € [k + 1]. By definition, {sky;}ics = Slgkﬂ), so we want to prove
that S(()kﬂ) and S}kﬂ) are indistinguishable. Since TreeSSS is iteratively con-
structed, the level-k secret shares S(gk),Sﬁk) can be viewed as the output of
k-TreeSSS. Therefore, the assumption would be restated as S((Jk), ka) having the
same distribution.

To this end, SékH) can be divided into two subsets:

- Slgk; 1): a set of secret shares which can be used to recover Sék) secret shares.

- Sék;rl): a set of secret shares which cannot be used to recover S}Ek) secret
shares.

Note that by definition, level-(k 4 1) secret shares Slgfc; Y come from level-k

secret shares in Sék) by using Shamir’s secret sharing for every b. Since nobody

13 The detailed computation of approximations will be given by Suppl. E.
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), kalfl) also follow

can distinguish between S(()k), Sik) by the assumption, S(() b
the identical distribution. ,
Moreover, Sé?—l), SECIH) comes from Shamir’s secret sharing and cannot re-
cover level-k secret shares. Therefore they also follow the identical distribution
because Shamir’s secret sharing satisfies the privacy of secret sharing. Thus,
(k + 1)-TreeSSS satisfies the privacy because of Sékﬂ) = Séfc;l) U SzE,k1+1)~
As a result, by the mathematical induction, we can conclude that L-TreeSSS
satisfies the privacy for all positive integer L.
(|

4.3 TreeSSS for t-out-of-N for arbitrary ¢

Construction 4.5 indicates that there is TreeSSS for N;‘ L_out-of-N threshold
access structure for an odd N. In this section, we generate TreeSSS for ¢-out-of-
N threshold access structure, for any integers ¢ and N.

For simple description, we denote TreeSSS for t-out-of-IV threshold access
structure by TreeSSS(N,t). Assume that there exists TreeSSS(N, 2L) for an

odd integer N.

Case 1) TreeSSS(N, t) for t > 2! and odd N. According to Construction 4.5,
one first generates TreeSSS(2t — 1,¢). Since 2t — 1 > N, we disregard the secret
shares beyond those distributed to the N parties.

Case 2) TreeSSS(N,t) for t < &+ and odd N. Let r = N — 2t + 1. Then,
N +r is always odd and satisfies % =t+r. According to Construction 4.5,
one can make TreeSSS(N + r,t 4+ r) where r satisfies % =t + r. We then
distribute the secret shares to N parties and make the remaining r secret shares
public. This can be treated as a TreeSSS for a t-out-of-N threshold structure.

Case 3) TreeSSS(N, t) for any ¢ and N is even. According to Construction 4.5,
one can generate TreeSSS(IN + 1,¢ + 1), which automatically achieves the goal.

Remark that for each case, the total number of parties is less than 2N.
Therefore, the number of secret shares is still O(N'8e. ©+1o8:£) with constant
integer s and £ = 2s—1. As a result, we can generate TreeSSS(N, t) for arbitrary
t and N while preserving the number of secret shares.

5 Theshold Fully Homomorphic Encryption

5.1 Definitions

This section presents the definitions and properties of the threshold fully homo-
morphic encryption. We follow presentations of the original paper [14].

Definition 5.1 (Threshold Fully Homomorphic Encryption (TFHE)) Let
X be the security parameter and d be a depth bound. Let P = {Py,--- ,Pn}
be a set of parties, and let Ay+ be a threshold structures on P. A threshold
fully homomorphic encryption scheme for An: is a tuple of PPT algorithms
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TFHE = (TFHE.Setup, TFHE.Enc, TFHE.Eval, TFHE.PartDec, TFHE.FinDec) that
satisfies the following properties:

e The setup algorithm TFHE.Setup(1*,1¢, AN ;) takes as input the security
parameter X, a depth bound d, and a threshold structure A, and outputs (pk,
ski, -+ ,skn), where pk is a public key and {sk;} is a set of secret shares.

e The encryption algorithm TFHE.Enc(pk, i) takes as input a public key pk
and a message p € {0,1}, and outputs ciphertext ct.

e The evaluation algorithm TFHE.Eval(C,cty,--- , ct;, pk) takes as input a cir-
cuit of which depth is less than or equal d, a tuple of ciphertexts cty, -+ , ct
and a public key pk, and outputs an evaluated ciphertext ct.

e The partial decryption algorithm TFHE.PartDec(pk, sk;, ct) takes as input a
public key pk, a secret key share sk; and the ciphertext ct and outputs a
partial decryption p; related to the party P;.

e The final decryption algorithm TFHE.FinDec(pk, B) take as input a public
key pk, and a set B = {p;}ics for some S C P, and outputs a message
ae{0,1,1}.

Hereafter, we use notations from Definition 5.1.

Definition 5.2 (Correctness of Evaluation) We say TFHE scheme is cor-
rect if for any evaluated ciphertext ct generated by TFHE.Eval(C,cty,--- , ct;, pk)
satisfies

Pr[FinDec(pk, { TFHE.PartDec(pk, sk;, ct) }ics) = C(p1, -+ , )] = 1 — negl(\).

Definition 5.3 (Compactness) We say TFHE scheme is compact if for any
ciphertext ct generated from the algorithm of TFHE.Enc and the partial decryp-
tion p; obtained by TFHE.PartDec, there are polynomials poly,, poly, such that
for any j € [N], it holds that

[ct| < poly; (A, d) and |p;| < polyy (X, d, N).

TFHE requires two types of security notions. One is the semantic security for
encryption algorithm, and the simulation security is needed for partial decryp-
tion.

Definition 5.4 (Semantic security) Given the security parameter A and a
depth bound d, for any PPT adversary A, the following experiment Expt 4 1rre(1*,19)
outputs 1 with % probability except for negligible probability:

Expt g mrre(1*,19) :
1. For every security parameter A and a depth bound d, the adversary A
outputs a threshold structure Ay, where 1 <t < N.
2. The challenger C runs TFHE.Setup(1*, 1%, Ay ) — (pk, ski, -, skn), and
gives pk to A.
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3.
/.

.
6.

A outputs a set S C {P1,---,Pn} such that S ¢ An .

The challenger runs TFHE.Enc(pk,b) — ct and provides {ct,{sk;}ics} to
A .

A outputs a guess .

The experiment outputs 1 if b=1"V".

Definition 5.5 (Simulation Security) For any security parameter A, a depth
bound d, and a threshold structure Ay, the following holds. There exists a state-
ful PPT algorithm S = (81, S2) such that for any PPT adversary A, the following
experiments Ea:ptA,Real(l)‘, 1%) and ExptA’[deal(l/\, 19) are indistinguishable:

Eapt g, pear(1*,17) :

1.

2.

3.

6.

For every security parameter A and a depth bound d, the adversary A
outputs a threshold structure An,; where 1 <t < N.

The challenger C runs TFHE.Setup(1*,1¢, Ay ;) — (pk, sky, - -+ ,sky), and
gives pk to A

A outputs a mazimal invalid set S* C {Py,--- , Pn} and messages j1,- -+ , pi; €

{0,1}.

. C provides a family of key shares and ciphertexts {{sk; }scs+,{ TFHE.Enc(pk, 1;) }ic[i }

to A.

. A issues a polynomial number of adaptive queries of the form (S C {Py,--- ,Pn},C)

for circuits C : {0,1}* — {0,1} of depth at most d. For each query, C com-

putes ct < TFHE.Eval(pk,C, cty,--- , ct) and provides { TFHE.PartDec(pk, sk;, ct)}ics
to A.

At the end of the experiment, A outputs a distinguishing bit b.

Expt A rgear (1, 1%) :

1. Same as the first step of Expt s pear(1*,1%)
2. The challenger C runs Sy(1*,14, An ;) — (pk,ski,- -+ ,skn,st), and gives
pk to A.
3. Same as the 3rd step of Expt s gea(1*,1¢)
4. Same as the 4th step of Expt s pear(1*,1%)
5. A issues a polynomial number of adaptive queries of the form (S C {Py,---,Pn},C),
where C : {0,1}* — {0,1} is a circuit of depth at most d. For each query,
C runs the simulator
{82(07 {Ct17 T Ctk}a C(:U/la o 7/’“€)a S? St) - {pi}iES
and sends {p;}ics to A.
6. At the end of the experiment, A outputs a distinguishing bit b.
5.2 TFHE using TreeSSS
Let P = {P1,---,Pn} be a set of parties. Then, the communication efficient

TFHE can be built from the following primitives:

e Let FHE be a special fully homomorphic encryption scheme (Definition A.11)
with noise bound B and multiplicative constant ((2s — 1)!)f where L >
log. N +log, N +O(1) and ¢, is 2s—1, (2572) for a positive integer s > 2.

4s5—1 s—1
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e Let TreeSSS be a level-L tree secret sharing scheme built from s-out-of-2s —1
Shamir’s secret sharing scheme (Section 4.2).

The construction presented in this paper is similar to the one in [14], except
that we utilize a TreeSSS as opposed to a {0, 1}-LSSS instantiated by [38]. As a
result, most of the security proofs are similar in both cases, with the exception of
Theorem 5.10, which forms the core of this paper. Consequently, we only include
the proof for this theorem in the main text, while the remaining proofs can be
found in the supplementary material.

Construction 5.6 We can construct a tuple of PPT algorithms as follows:

e (pk,ski, -+ ,sky) < TFHE.Setup(1*, 1%, Ay ) :
1. Sample (fhepk, fhesk) «+— FHE.Setup(1*,19).
2. Compute (sharegL)7 e ,shareg‘s)il)L) < TreeSSS.Share(fhesk, Ay ;).
3. Distribute the secret shares to each party P; and define a index set of
each party T; := {j | P; has shareg-L)}.
4. Return pk = fhepk and sk; = {shareg-L)}jeTi for i € [N].
ct <~ TFHE.Enc(pk, p): Sample ct <— FHE.Enc(pk, ) and return ct.
ct « TFHE.Eval(C,cty,- -, cty, pk): Compute ct <~ FHE.Eval(C,cty, - - - , cty, pk)
and return ct.
p; + TFHE.PartDec(pk, sk;, ct):
1. Sample a noise flooding error error e; <— [— By, Bsy| and compute

f)g.L) = FHE.Dch(shareg-L)7 ct) + ((2s — ))le; € 2,

for every j € T;.

2. Return p; = {f);L)}jeTi as its partial decryption.

fi < TFHE.FinDec(pk, B):
1. Check if S € Ay or not: If S ¢ Ay ¢, return L.
2. If § € Ay, compute a minimal valid share set T' C U;esT; and p
FHE.Decl(EjET C}S . I3§-L))~
3. Return f.

Theorem 5.7 ([14]) Suppose FHE is a compact fully homomorphic encryption
scheme. Then, the TFHE scheme in Construction 5.6 satisfies compactness.

Theorem 5.8 Suppose FHE is a special fully homomorphic encryption scheme
that satisfies correctness with noise bound B and TreeSSS is a level-L tree secret
sharing scheme, where L > log, N +log, N +O(1), in Section 4.2 that satisfies
the correctness. Then, TFHE scheme in Construction 5.6 with respect to param-
eter regime By, such that B+ ((2s — 1)1)2F - (2s — 1)L - By, < | 4] satisfies the
correctness.

Theorem 5.9 (Adopt from [14]) Suppose FHE is a fully homomorphic en-
cryption scheme that satisfies security and TreeSSS is a tree secret sharing
scheme that satisfies the correctness. Then, TFHE scheme from Construction 5.6
satisfies semantic security.
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Theorem 5.10 Suppose FHE is a fully homomorphic encryption scheme that
satisfies security and TreeSSS is a tree secret sharing scheme that satisfies cor-
rectness and privacy. Then, TFHE scheme from Construction 5.6 with parameter
Bgsm such that B - ((2s —1)1)* /By, = negl()\) satisfies simulation security where
L >log, N +log, N + O(1).

Proof (of Theorem 5.10). We adapt the security proof in [14] according to the our
construction. We define a series of the hybrid experiments between an adversary
A and a challenger C.

e Hy: This is a real experiment Expt A gear(1*,1%) of TFHE in Definition 5.5.

e H;: Same as Hy except for C simulates the partial decryption for A’ss
queries. More precisely, C first computes the maximal invalid secret shares
{sharegL)}jeT* where T is the union of all T; for ¢ € S*. Then, C can
obtain the partial decryption TFHE.PartDec(pk, ct,sk;) for i € S by using
{shareg.L)}jeT* and C(py,- -, ug) for each query (S, C). The partial decryp-
tion algorithm takes in (pk,ct,sk;) and outputs p; = {f)g.L)}jeTi, based on
the following conditions:

(L)

(Case 1) j € T*: In this case, C already has share;”, so C can compute

f)g-L) as follows:

< (L)

') = FHE.Decy(share"), ct) + ((2s — 1))T - ;,

where e; is uniformly sampled from [—Bgy,, Bsm].

(Case 2) j ¢ T*: By definition of T* that is a maximal invalid secret

shares, T' = T* U {j} should be a set of valid shares. Hence, there are
multiples of Lagrange coefficients for each k € T such that », 7 cy -

sharech) = fhesk. Then, C returns

. _ q
pE'L) = (Cj) . C(lu’lv T nu’k) : 5
- Z (Cj)_l(jj/ . FHE.Deco(share§,L), Et) + ((28 - 1)!)L ‘€5,
jreT*
where e; is uniformly sampled from [—Bgy,, Bsm].

e H,: Same as H; except that C randomly samples sk;. This is an ideal exper-
iment Expt 4 igear(1*,1¢) of TFHE in Definition 5.5.

Now, we will prove that hybrid experiments, Ho, H;, Hs, are statistical in-
distinguishable.

Lemma 5.11 Hy =, H;

Proof (of Lemma 5.11). The only difference between Hy and Hj is an algorithm

of partial decryption f)ﬁm for j ¢ T™*. Due to the correctness of FHE and definition
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of special FHE, it holds that 4 - C(u1,--- , ux) = FHE.Deco(sk, ct) + € where an
error € is sampled uniformly at random in [~cB,cB] and ¢ = ((2s — 1)!)%.

As a result, we can reinterpret IA);L)

- (L - q - L) ~
pg ) = (c;)rC(uas - s ) - 5~ Z (¢5) 1cj/FHE.Dec0(share§-, ),ct) +c-ej
j’ET*
= (c;) " (FHE.Decg(sk, ct) + &) — Z (C]‘)_lcj/FHE.DeCQ(Share_g%), ct)+c-ej
jreT*

= FHE.Decy | (¢;)™" - [ sk — Z cjr-sharey | ¢t | +(¢;)™t - é+c-ey
jeT™

= FHE.Decg(share;, ct) + (¢;) ™' -é+c-ej.

In partial decryption in H;, there is an extra error term (cj)_1 - €. Since
¢ is a multiple of ((2s — 1)) and ¢; is a multiple of Lagrange coefficient, it
follows from Lemma 2.4 that |(c;)71 - € < ((2s — 1)!)2L - B. The bound By,
satisfies (B - ((2s — 1)))1) /By = negl()\), making the experiments Hy and H;
indistinguishable due to the noise flooding technique (Lemma 3.1).

O

Lemma 5.12 H; ~, H>

Proof (of Lemma 5.12). The difference between H; and Hj lies in the method
of sampling the secret keys {sk;};cs+, where S* is an invalid set. The privacy of
the secret sharing scheme ensures that no party can distinguish between the two
distributions of secret keys for any invalid set. Therefore, an adversary cannot
distinguish between H; and Hs if the secret sharing scheme provides the desired
privacy. a

Lemma 5.11 and Lemma 5.12 say that Hy is also statistically indistinguish-
able to Hy. As a result, Construction 5.6 achieves the simulation security. O

6 Communication Efficient Universal Thresholdizer

As shown in Table 2, our TFHE shows superiority over previous compact TFHE
in terms of small share key sizes. This translates to lower communication costs
during partial decryption.

Building a communication-efficient universal thresholdizer can then be achieved
by combining our TFHE with other primitives, as proven by [14] through the fol-
lowing theorems. Throughout this section, we adopt the definitions and theorems
from [14] that provides the concept of UT and the first construction.

6.1 Definitions

This section presents definitions and properties of the universal thresholdizer.
We basically follow presentations of the original paper [14].
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Definition 6.1 (Universal Thresholdizer [14]) Let P = {P;,--- ,Pn} be
a set of parties and Ay, be a threshold structures on P. A universal thresh-
oldizer scheme for An ¢ is a tuple of PPT algorithms UT = (UT.Setup, UT.Eval,
UT. Verify, UT.Combine) such that

e The setup algorithm of UT, UT.Setup(1*,d, AN, x) takes as input the se-
curity parameter X\, a depth bound d, a threshold structure Ay and a mes-
sage x € {0,1}* and returns a public parameter pp and a family of shares
{ski}ticin)-

o The evaluation algorithm of UT, UT.Eval(pp, sk;,C) takes as input the public
parameter pp, a share sk;, and a depth d circuit C : {0,1}* — {0,1}, and
outputs a partial evaluation, say y;.

o The verification algorithm of UT, UT. Verify(pp, y;, C) takes as input the pub-
lic parameter pp, a partial evaluation y;, and a circuit C' and returns 0 (ac-
cept) or 1 (reject).

e The combining algorithm of UT, UT.Combine(pp,{y;}ics) takes as input the
public parameter, and a set of partial evaluations y;, and returns the final
evaluation y.

Definition 6.2 (Compactness) We say that UT scheme is compact if there
is a polynomial poly such that for any i € [N], |y;| < poly(\,d, N), where y; +
UT.Eval(pp, sk;, C).

Definition 6.3 (Evaluation Correctness) We say UT scheme satisfies the
correct of evaluation if the following holds:

Pr[UT.Combine(pp, {UT.Eval(pp, ski, C) }ics) = C(x)] =1 — negl(\)
for any (pp, ski,- -+ ,skn) < UT.Setup(1*, 1%, A 4, %).

Definition 6.4 (Verification Correctness) We say UT scheme satisfies the
correct of verification if the following holds

Pr[UT. Verify(pp,y;,C) =1] =1
for any (pp, ski, - -+ ,sky) < UT.Setup(1*,14, Ay 4, x) and y; < UT.Eval(pp, sk;,C).

Definition 6.5 (Robustness) A UT holds robustness if for any X and d, the
following satisfies: for any PPT adversary A, the experiment

EIpt.A,UT,robustness(l)\a ld) :
1. Given X\ and d, the adversary A returns a message x € {0,1}* and a
threshold structure Ay +
2. The challenger C runs (pp,ski,...,sky) < UT.Setup(1*,1% An ¢+, x) and
provides (pp, ski,...,sky) to A.
3. A a fake partial evaluation y} .
4. C returns 1 if yi # UT.Eval(pp, sk;,C) and UT.Verify(pp,y;,C) = 1.
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Definition 6.6 (Security) Given the security parameter A, a depth bound d,
and threshold structure Ay, the following holds. There exists a stateful PPT
algorithm S = (81, 82) such that for any PPT adversary A, the following exper-
1ments EacptAﬁReal(l)‘, 1%) and ExptA’[deal(l/\, 1) are distinguishable:

EmptA,Real(:[)\, 1d) :

1. On input the security parameter A and a depth bound d, the adversary A
outputs a threshold structure Ay, and a message x € {0,1}F.

2. The challenger runs UT.Setup(1*,1%, Ay 4, x) — (pp,ski,--- ,skxn), and
provides pp to A

3. A outputs a maximal invalid set S* C {Py,--- ,Pn}.

. The challenger provides the key shares {sk;}ics+ to A.

. The adversary A issues a polynomial number of adaptive queries of the
form (S C {Py,---,Pn},C) for circuits C : {0,1}* — {0,1} of depth
at most d. For each query, the challenger provides {UT.Eval(pp, sk;,C') —
Yities to A.

6. At the end of the experiment, A outputs a distinguishing bit b.

Oy B

ExptA,Ideal(1>\> 1d) :

1. On input the security parameter \ and a depth bound d, the adversary A
outputs a threshold structure Ay, and a message x € {0,1}*.

2. The challenger runs Sy(1*,14, An ;) — (pp, ski, -+ , skn, st), and provides
pp to A.

3. A outputs a maximal invalid set S* C {Py,--- ,Pn}.

. The challenger provides the key shares {sk;};cs+ to A.

. The adversary A issues a polynomial number of adaptive queries of the
form (S C {Py,---,Pn},C) for circuits C : {0,1}* — {0,1} of depth at
most d. For each query, the challenger runs the simulator {S2(pp, C, C(x), S, st) —
{yi}ics and sends {y;}ics to A.

6. At the end of the experiment, A outputs a distinguishing bit b.

Oy B

6.2 Construction

We recall the construction of universal thresholdizer from TFHE, and non-interactive
zero knowledge proof system with pre-processing (Definition A.12) [39,47] and
non-interactive commitment (Definition A.14) scheme [11]. We again note that
the description is based on the original paper [14].

Construction 6.7 We can construct a tuple of PPT algorithms as follows:

e UT.Setup(1*,d, Ay 4,X) :
1. Sample TFHE keys (tfhepk, {tfhesk};c(n]) +— TFHE.Setup(1*,19, Ay ;).
2. Sample ct; + TFHE.Enc(tfhepk, ;) for i =1,... k.
3. Generate reference strings (ov.;, 0p;) < PZK.Pre(1"), commitment ran-
domness r; < {0,1}* and commitments com; < C.Com(tfhesk;,r;) for
i=1,...,N.
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4. Return pp and sk as follows:
pp = (tfhepk, {cti}ic), {oviitien), {comi}ie(n) s sk = {tfhesk;, opi, ri}tic ()

. UT EvaI(pp,skZ,C)
. Compute ct < TFHE.Eval(tfhepk, C, cty, cta, .., cty)
2. Compute p; < TFHE.PartDec(tfhepk, ct, tfhesk;)
3. Construct a statement ¥; = ¥;(com;, ct, p;) that has the following rela-
tion

3 (tfhesk;, r;) : com; = C.Com(tfhesk;;r;)Ap; = TFHE.PartDec(pp, ct, tfhesk;)

4. Generate a NIZK proof m; < PZK.Prove(op;, ¥;, (tfhesk;, r;))
5. Return y; = (pi, m;)

e UT. Verlfy(pp yi, C) : Parse y; = (pi, ™) and construct a statement ¥; =
¥;(com;, ct, p;) and return the result of

PZK Verify(ov., ;, ;).
e UT.Combine(pp, {¥; }ics) : Parse y; = (p;, m;) and return the result of
TFHE.FinDec(tfhepk, {p; }ics).

Consequently, we directly apply the following theorem. For more details, we
refer [14].

Theorem 6.8 ([14]) Suppose that there are cryptographic schemes that satis-
fies the following:

e Threshold fully homomorhpic encryption that satisfies compactness (Defini-
tion 5.8), correctness of evaluation (Definition 5.2), semantic security (Def-
inition 5.4) and simulation security (Definition 5.5).

o Zero knowledge proof system with pre-processing which satisfies zero-knowledge
and soundness.

e Non-interactive commitment scheme that holds perfect binding and compu-
tational hiding.

Then, Construction 6.7 is an universal thresholdizer scheme such that com-
pactness (Definition 6.2), evaluation correctness (Definition 6.3), verification
correctness (Definition 6.4), robustness (Definition 6.5) and security (Defini-
tion 6.6).
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Supplementary material

A Missing Preliminaries

A.1 Majority Circuits

we briefly introduce definitions and previous results for majority functions which
are equivalent to threshold functions.

Definition A.1 (Monotone Boolean formula [14]) A Boolean circuit C :
{0,1}" — {0, 1} is called a monotone Boolean formula if it satisfies the following
conditions:

e [t has a single output gate.
e Each gate is either an AND or an OR gate with a fan-in of 2 and a fan-out
of 1.

o The input wires may have multiple connections to other gates

Definition A.2 (Majority Function/Gate) A majority function/gate MAJy :
{0,1}V — {0,1} is a function defined as follows:

1 wt(x) > N/2
0 otherwise,

MA./N(JJ) = {

where wt(x) is the number of nonzero bits in x = 122 ... TN

We now provide a summary of results that demonstrate the construction of
majority functions from monotone Boolean formulas, as proven by [34, 36, 51].
However, please refer to the original papers for a full understanding and proof
of these results.

Using Lemma 2.3, Valiant proposed a (recursive) construction of monotone
Boolean formula for computing the majority function. The unit circuit (1) =
(ap(li) A @gi)) Y ((pgi) A @fli)) is repeated to construct the majority function for N.
[51] showed that repeating the unit circuit up to level-2.65log N can construct
the majority function for N.

Lemma A.3 ([51]) Let v = 2(3 — v/5) ~ 1.52, and N be an even number of
parties. If the unit circuit ¢ = (p1 A p2) V (@3 A @a) is iteratively constructed
with an iteration number L > log, N + log N + O(1), then one can create an
O(N?®3)-size monotone formula for computing the majority function MAJy with
at least 1/2 success probability.

Note that the construction presented in Lemma A.4 involves converting the
MAJ; gate into a formula consisting only of AND/OR gates, which results in a



larger formula compared to the construction in [51]. The conversion of the MAJ;
gate into AND/OR gates involves replacing MAJs(Fy, Fy, F3) with (Fy A Fy) V
(FyNF3)V(F3A\Fy). However, this conversion is necessary as there is currently no
known way to convert majority gates in circuits into matrices, unlike AND/OR
gates, which can be converted via the folklore algorithm.

Lemma A.4 ([34]) Let N be the number of parties with odd value. Then, there
exists a construction of the majority function MAJy using the small majority
gate MAJs. Specifically, MAJy can be constructed from MAJs with a total of
L > logy 5(N) + logy N + O(1) iterations. As a result, there exists a monotone
Boolean formula for computing MAJx of size O(NT).

A.2 Shamir’s secret sharing scheme

Shamir’s secret sharing scheme is a linear secret sharing scheme whose share
matrix is a Vandermonde matrix.

Definition A.5 (Shamir’s secret sharing [48]) Let P = {Py,---,Pn} be
a set of parties and let Ay be the t-out-of-N threshold structure on P. The
Shamir’s secret sharing scheme SS for a secret key space K = Zq is a tuple of
PPT algorithms SS = (5S.Share, SS.Combine) defined as follows:

o S5S.Share(sk,An,) — (ski,--- ,sky): There exists a vandermonde matric
Vi for t-out-of-N threshold structure. On input a secret sk € K and
threshold structure An, on P, the sharing algorithm samples random val-

ues ro,- -,y < Lq and computes a secret share vector (ski,- - - ,sky)T =
V- (skre, - ,7¢)T and distributes a set of shares sky,--- ,sky for each
party.

e SS.Combine(B) — sk: On input a set of shares B = Up,esiski}, the La-
grange coefficients obtained from the Lagrange polynomial satisfies following
equality:

Z )\f.ski:(LO,w- ,0), where )\;»9 = H ;]
PeS P;eS\{P;} T

Then, the algorithm outputs sk = ZPI,GS A7 - sk; which equals to sk.

Theorem A.6 ([48]) Let P = {P1,---,Pn} be a set of parties and let Ay, be
the t-out-of-N threshold structure on P. Then, Shamir’s secret sharing SS with
secret space K = Z4 for some prime q satisfies the following properties:

1. For any sk € Z, and t € [N], each share for party P; consists of a single
partial secret key w; € Zy. We denote wg = sk.

2. For every set S C [N] with |S| = t, there exists an efficiently computable
Lagrange coefficients )xf € Zq such that

€S
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A.3 Fully Homomorphic Encryption

We recall the definition of fully homomorphic encryption and its properties.

Definition A.7 (Fully homomorphic encryption) An FHE scheme is de-
scribed by a set of algorithms with the following properties:

o The setup algorithm FHE.Setup(1*,1%) takes as input the security parameter
A, and a depth bound d, and outputs a pair of the public key pk and secret
key sk.

e The encryption algorithm FHE.Enc(pk, ) takes as input pk and a message
€ {0,1}, and outputs a ciphertext ct.

e The evaluation algorithm FHE.Eval(C,cty,-- - , ct;, pk) takes as input l-input
circuit C with less than or equal depth d, a bunch of ciphertexts cty, -+ , ct
and pk, and outputs an evaluated ciphertext Ct.

e The decryption algorithm FHE.Dec(pk, sk, ct) takes as input pk, sk and ct,
and outputs a message p € {0,1}.

Hereafter, we use notations from Definition A.7.

Definition A.8 (Evaluation Correctness) We say FHE scheme is correct if
for any evaluated ciphertext ct generated by FHE.Eval(C, cty,- -+ , ct;, pk) satisfies

Pr[FHE.Dec(pk, sk, ct) = C(u1,- -+ , )] = 1 — negl(\)

Definition A.9 (Compactness) We say FHE scheme is compact if for any
ciphertext ct generated from the algorithm of FHE.Enc, there is a polynomial
poly such that |ct| < poly(X,d).

Definition A.10 (Semantic security) We say that FHE is secure if for all
security parameter A and depth bound d, the following holds: for any PPT ad-
versary A, the experiment Ea:ptAFHE(lA, 19 outputs 1 except for negligible prob-
ability:

Expt_A,FHE“-)\a ].d) :
1. Given (\,d), the challenger runs (pk,sk) < FHE.Setup(1*,1%) and ct +
FHE.Enc(pk,b) for b <+ {0,1}.
2. The challenger sends (pk, ct) to A.
3. A outputs a quess b'.

4. The experiment outputs 1 if b=1V".

Definition A.11 (Special FHE [14]) We say that a FHE scheme is a special
FHE scheme if it satisfies the following properties:

o The setup algorithm Setup(1*,19) takes as input the security parameter \
and a depth bound d, and outputs (pk, sk), where pk contains a prime q, and
sk € Zy for some n = poly(\, d).
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e The decryption algorithm Dec consists of two functions (Decy, Decy) defined
as follows:
o p < Decy(sk, ct): p is of the form p - |1] + e for a noise e € [—cB, cB|
with the noise bound B = B(\,d,q). Here, e is an integer multiple of c.
This c is called the multiplicative constant.

0 ifpel-17], 1]

o 1 < Deci(p): Given p, return p = {1 wthempise

o Decy is a linear function over Zq such as inner product and matriz multipli-
cation in the secret key sk.

A.4 Non-interactive Zero Knowledge Proof and Commitments

This section introduces the building blocks for constructing the universal thresh-
oldizer, which are not defined in the main body of this paper. The descriptions
of these schemes are based on [14].

These building blocks have been utilized in the construction of a universal
thresholdizer in a black-box manner.

Definition A.12 (Non-interactive Zero Knowledge Proof with pre-processing)
A non-iterative zero-knowledge proof with pre-processing (PZK) for a language L

with a relation R is a tuple of PPT algorithms PZK = (PZK.Pre, PZK.Prove, PZK. Verify).
The output of the pre-processing algorithm PZK.Pre(1}) is a pair of systems
(op,ov). The PZK scheme must satisfy the following properties:

e Completeness: For every (x,w) € R, the probability that the verifier will
accept a proof generated by the prover is 1, i.e.

Pr[PZK.Verify(oy,z,7) = 1: 7 < PZK.Prove(op,z,w)| =1

e Soundness: For every x ¢ L, the probability of the existence of a proof
m < PZK.Prove(op,x,w) such that Pr[PZK.Verify(oy,x, ) = 1] is negligible
n A.

e Zero knowledge: There is a PPT simulator S such that for any (z,w) € R,
no one can computationally distinguish two distributions:

{ov, PZK.Prove(op,x,w)} = {S(x)}
Lemma A.13 ([39,47]) PZK can be constructed from one-way functions.

We now introduce a new component for the universal thresholdizer, as described
in [9,14].

Definition A.14 (Non-interactive Commitment [11]) We say that C =
(C.Com) is a non-interactive commitment scheme if the following holds: Let com
be a string in {0,1}* outputted by C.Com(x;r) for a message x € {0,1}* with
randomness r € {0,1}*. Then,
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e Perfect binding: For any security parameter A\ € N, and randomness
ro,r1 € {0,1}*, if C.Com(xg;ro) = C.Com(xy;r1), then it holds that xg =
X1.

e Computational hiding: For any security parameter A € N and xg,%x; €
{0, l}pOly(A), no PPT adversary can distinguish the following distributions:

{comq : r + {0,1}*, comy < C.Com(xp; )}
~ {com; : r + {0,1}*, com; + C.Com(xy;1)}

Lemma A.15 ([11]) A non-interactive commitment can be built from injective
one-way functions.

B Proofs in Section 2

B.1 Lemma for (2s — 1)-input majority function

Lemma B.1 ([36]) Let Xy, ,Xa5-1 < {0,1} be three independent identi-
cally distributed random variables, and p := Pr[X; = 1] for alli. Then, following
properties hold:

s—1
1. p/ = PI‘[MAJS(Xl, s ,X25_1) = 1} = Z (28]_ 1) -pQS_l_j(l —p)j.
2. §:=p— 05, it holds that p' =05+ (3= (272) = 0(9)) - 4.
3. 1—p < (*7H(1-p)e.
Proof. 1. PriMAJs(X1, -+ , Xos-1) =1 =Pr[X1+ -+ Xos—1 =8, ,25 —
s—1
25 —1 . )
1]:Z< , )-p25 (1 - p).

=0~/
2. Since p=0.5+4,

25 — 1 1 Zs=1= g J
j )'(z”) (z‘5>

J=0

]_0(
s—1
2s—1 1 . 1 ) 1 9
j=0
s—1
1 2s —1 25 — 2 25 — 2 1 9
Tt (( j )'5 (j—1>'223—2'5>+0(5)
1 2s — 1 2s — 2
_2+<451.(S—1>_O(6)>'6.
3.
/25— 1 -
l—p'=Z< . )-(l—p)Qs_l_JpJ
=0~ J
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S

= (255_11) -9 Z_é (S ; 1) (1=p) P

Jj=

25 —1
= 1 - S~
( .1 )( p)

By Lemma A.1, the iteration number i5; to construct an N-input majority
function is log, N + O(1) + log, N where ¢, = 2:=1 (2:__12). Then, the total
number of secret shares is O((2s — 1)%) & O(N'08e. (25— +log, (2s=1)),

In [21], the authors provide lower and upper bound of the size of c;.

1 2s -1 2s—1 (252) 1 2s5s-—1

VI fs—1/2 471 s—1 VTos—1

Therefore, log, (25 — 1) + log,(2s — 1) is a decreasing function for s and lower
bound is 3. O

B.2 Proof of Lemma 2.4

Proof. For j € [N] and SC[N]U {0} with the threshold value ¢, the Lagrange

coefficient )\fj can be represented by H ﬂ for all ¢ € S. Then, the
mes\giy L
numerator and denominator of Lagrange coefficient )\Z-S; ; have the following prop-

erties:

II G-m ] [T G-m]=E=)N5 (N =) N,
mes\{i} meN\{j}
II @-m) ’ [T G-m)| =)~ (v —d)| N

meS\{i} meN\{i}

Therefore, N!v\fj, and N!- /\é are both integers and their bound are (N!)2.
B

C Proofs in Section 4

C.1 Proof of Section 2.3

In Section 2.3, we argue that if L > log. N +log, (N + )+ O(1), the success
probability of constructing a share matrix is larger than or equal to 1 — 27%.
The failure probability of constructing a share matrix is at most

> Pr[F(z) # MAJ(x)],

z€{0,1}N

where the function F outputs 0 if the secret can not recover and 1 if the secret can
recover when parties of indexes 1 in input x are gathered. Similar to Lemma 2.3,
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if each probability Pr[F(z) # MAJ(x)] is less than 27V =%~1 then the success
probability of constructing a share matrix is larger than 1 — 27",

According to Theorem B.1, to make each probability Pr[F(z) # M AJ(zx)] be
less than 27V ~1_ the iteration number is log. N4+O(1)+log, N.If we replace the
last part of iteration number log, N with log, (N + &), each probability becomes
less than 2= NV—r—1, 0

D Proofs in Section 5

The proofs are almost the same as the original proofs in the full version of [14].

D.1 Proof of Theorem 5.7

It is obvious that the encryption (evaluation) of TFHE is equal to the encryption
of FHE. Thus, the compactness of TFHE automatically holds whenever FHE
satisfies the compactness. a

D.2 Proof of Theorem 5.8

By Construction 5.6, the following satisfies:

e Given the secret key of fully homomorphic encryption fhesk, it is splitted as
follows:

(sharegL)7 e ,sharegz_l)L) + TreeSSS.Share(fhesk, A;).
e The setup algorithm returns pk = fhepk and sk; = {share§L)}jeTi for i € [N].

e The partial decryption algorithm outputs p; = {ij(L)}jeT,” where
pg,L) = FHE.Deco(share§L)7ct) +(2s =1 -e; €2,
for every j € T, ={j | P; has shareg-L)} and any (valid) ciphertext ct.

Let T5) C U;esT; be the minimal valid share set for S € A;. Then, {share§L)}jeT<L)
can be recovered to the secret key sk using TreeSSS built from SS(2s — 1, s) pro-
posed by Section 4.2.

Let T be a family of indices defined as follows: for any 1 < i < L,

T = {k | share,(j) can be recovered by {sharegL)}jeT(L) }. Then, the correctness
of TreeSSS, fhesk can be expressed as follows:

fhesk = share(®)
eN

s 1
= E )\jl“ -shareg-l)
J1ET)
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s g®
_ i1 iz | (2)
- Z )\jl )\j2 Sharej2

j2€T(2)
s SE-D g
_ d1 ..y 9L—1 | \Tip | (L)
= Z A A;JETN NP sharel
jreT ™)

(L)

where j is an index of level-k secret shares which uses sharej to recover itself,

SJ(»)]:) is a set of level-k secret shares including shareg.’:) which recover a level-(k—1)
()
secret share shareg-]:jll), and the Lagrange coefficient \ J:’” are obtained from the

Lagrange polynomial of Shamir’s secret sharing SS(2s — 1, s).
On top of this construction, the linearity of FHE.Decy provides the following
relation:

g SE-D ()
J JL—1 J ~ (L)
Z >\j11 .'.AjL—l ')\jLL "Pjp
JLETL)
S(l) S(_L—l) F.L)
= Z AT AT AT -(FHE.DecO(sharegf),ct)—l—((23—1)!)LejL)
JjLeT™)
s g(E=1) g I
=FHEDeco [ Y A% o A5 AE sharel et
jLeTE)
S(l) S(L—l) (L)
_ L
YA A A (@5 = )y,
jLEeTE)
S(l) S7('L71> S(L) L
JL—-1 J
— FHE.Deco(fhesk,ct) + 3 A0 A %0 A7 - (25 — 1)) ey,
JLeT®)
q s sy st L
=nl5l+et SOONT N TR (25 = DD ey,
JLeT®)
) STy S
( o (L
Consequently, FHE.Dec1 (3, ey Ayt -+ A "0 - A% - py,7) returns the cor-

rect messages when the error term is appropriately bounded because of Defini-
tion A.11.
Let e, be a noise smudging error of the form

s s gl I
J1 L—1 JL
DN N AT (25 = DD Eey,.
jreT @)

By Lemma 2.4, it holds that |esy,| < ((2s—1)1)2L- (25— 1)% - By, and it implies
le + esm| < B+ ((2s — )N?E - (25 — 1)L - By, < |4]. Thus, FHE satisfies the its
correctness, which directly implies that TFHE also satisfies the correctness. O
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D.3 Proof of Theorem 5.9

The encryption in TFHE is equivalent to that in FHE. As per the privacy of secret
sharing, if a set of partial secret shares {sk;};cs are kept confidential, then they
do not reveal any information about the secret key sk when S ¢ A;. This means
that the security of FHE implies the semantic security of TFHE.

E About Approximation

In [21] and Suppl. B, we observe that ¢, has the following property:

1 251 <2sfl (252)<1 25 — 1
VT fs—1/2 41 s—1 VT os—1

we can get following inequality:

log,. (25 — 1) +log,(2s — 1) < log2ﬁ(23 —1) + log,(2s)

<3+ 2loga(,_y9(7/2) +

log s
1.302
<34 30299 n 1
log s log s
2.
<34 30299
log s

where (s —1/2) > s (s > 2) and log, 3 = 0.65149612947.

F Observation of {0,1}-LSSS with [51] construction

The {0, 1}-LSSS is a family of linear secret sharing schemes that utilizes binary
coeflicients to recover the shared secret from partial secret shares, as defined in
[14]. The use of monotone Boolean formulas [41] was proposed as an instantiation
of {0,1}-LSSS. However, the polynomial-sized expression of threshold functions
was proven by Valiant and Goldreich [34,51]. Recently, [38] proposed using a
folklore algorithm to demonstrate that monotone Boolean formulas are a part
of {0,1}-LSSS. We briefly summarize the construction of threshold functions.

We focus on a threshold function with N/2-out-of-N parties, where N is
even, for simplicity. Let ¢ be a level-0 formula which takes N bit-strings as
input and returns one of the i-th input bits with some probability, where 7 is
randomly chosen, or returns 0. For each ¢ > 1, the level-(i + 1) formula is defined
as © = (o1 Aw2) V(w3 Aps), with 1, pa, 3, ps randomly selected from a family
of level-i formulas. Note that to maintain independence, the level-i formulas will
not be duplicated.
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In classic works [34,51], it was proved that with O(N°-3) level-0 formulas, a
N/2-out-of-N threshold function can be expressed with a level-t formula with
non-negligible probability, where ¢ = O(log N). Building upon this result, [38]
showed that this level-t formula can be converted into a {0, 1}-LSSS for threshold
functions.

To share a secret key sk € Z,, {0,1}-LSSS constructs a matrix M € ngm,
called the share matriz, with m,¢ > N, and distributes a subset of {w;}c[q
to each party. The vector w = (w;) = M - (sk, 7o, ...,7,)7 is computed using
randomly sampled 7; <— Z,. The size of ¢ is equal to the size of level-¢ formula,
O(N®3), and m is one more than the number of AND gates in level-¢ formula.
This results in a total of O(N®3) secret shares. The {0, 1}-LSSS for threshold
functions in [38] is constructed as follows:

1. Consider level-0 formulas ¢;, where i € [O(N5-3)].

2. Create a level-(i+1) formula ¢ by combining ¢1 A s and @3 A4 through an
OR operation, where @1, s, @3, 4 are randomly selected level-i formulas.

3. Repeat the process until ¢ reaches ¢, which results in a level-t formula that is
equivalent to the N/2-out-of-N threshold function with non-negligible prob-
ability.

4. Use the folklore algorithm to convert the level-t formula into a share matrix
M.

Note that throughout this paper, the folklore algorithm is considered a black-
box method that converts circuits consisting of only AND and OR gates into
matrices, except for this section. For more insightful discussion on the algorithm,
please refer to [14,38].

Input: A special monotone Boolean formula C : {0,1}" — {0, 1}.
Output: A share matrix M induced by C.

1. Assign the label (1) to the root node of the tree, which represents a vector of
length one.
2. Set a counter count = 1. Then, proceed to label each node m in the tree, starting
from the top and moving downwards.
3. For each non-leaf node m of the tree:
(a) If m is an OR gate, assign the same label to its children as that of node m.
(b) If m is an AND gate, first consider the labeled vector v on m. If required,
pad v with 0’s at the end to make it of the length count. Call the new vector
v’. Then label one child node with the vector (v’,1) and the other child node
with the vector (0, ...,0,—1) which has length count + 1.
4. Once all nodes in the tree are labeled, the vectors assigned to the leaf nodes form
the rows of the matrix M. If the lengths of these vectors differ, then pad the
shorter ones with zeros at the end to make them have the same length.

Fig. 4: Folklore Algorithm in [38].
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F.1 Regarding {0,1}-LSSS as Tree Secret Sharing

We reinterpret a secret sharing algorithm for threshold functions by utilizing the
iterative steps of Boolean formula construction described in [51]. This allows us
to construct the share matrix M through iterative matrix multiplications.

[51] proves that the threshold circuit is an iterative construction of the
Boolean monotone formulas: For i, the level-(i 4+ 1) formula ¢(+1) is gener-

ated from four level-i formulas, @gi),goéi),apg) and @fli). Specifically, (it =

(1) A )V (5) A of?). _

We first observe that the relation between ¢+ and {SD;Z)}J'E{LQBA} can be
represented as a binary tree of depth 2, as in the structure shown in Figure 5.
This tree is composed of AND and OR gates, allowing us to utilize the folklore
algorithm in the above section. There exists a small matrix D that corresponds

to this binary tree, with the leaf nodes being {@gi)}je{1,2,3,4}~ Here, Dis a 4 x 2
matrix defined as

(p(i+1) Skq‘,un)

AN

sk sk sk sk g
o0 Sk Skyp Sk

sk
0 @ .

1 1
Skcp{z‘} o 11 -ISkGP(H”]
0 @ W @ sk,ol 1o -1 T
0 -1

L2} (2 Pz @, <L
Q(‘i}

Fig. 5: Boolean formula corresponds to secret share

Furthermore, the correspondence between the binary tree and the matrix is
established through the relationship

sk
oV
sk ]
o . lsk ,(1+1)]
sk r
s

sk
o)
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where r € Z, is a random integer. Thus, the operation ¢(+1) = (gagz) A gaéz)) v
(gp:(,f) A (pé(f)) can be viewed as a matrix multiplication with D. Similarly, the
representation of the formula (1) from 16 ¢*~1) formulas can be represented
as a matrix Iy ® D € Z'5*8, where I, is the 4-dimensional identity matrix and
A ®B is the Kronecker tensor product of matrices A and B. Consequently, there
is a matrix M which corresponds to circuit representations of level-t formula o(*)
from level-0 ©(© formulas.

As a result, the matrix-vector product w = M - v gives us the sharing of the
secret. Here, v = (sk<p(t) .72, ..., Tm)L and w; is the i-th coordinate of w which
is distributed to each party. The result is given by Proposition F.1 and we defer
the proof in F.2.

Proposition F.1 Given a linear secret sharing scheme S with a share ma-
triz M(E) e ngm and an iteration number L, the L-th iterative construction

SSU) also provides a linear secret sharing scheme.

It should be noted that this iterative construction cannot reduce the size of
M, as it operates as a mapping between binary trees and small matrices. The
lesson from this observation is

— It is not necessary to apply the folklore algorithm to the entire threshold
circuit in order to obtain the {0, 1}-LSSS.

— The share matrix M of {0, 1}-LSSS can be constructed through simple ma-
trix multiplications of small size.

F.2 Proof of Proposition F.1

Let S(©) = sk € Z, be a secret key that we want to share and U(®) = D be a share

matrix. Let R(O) = (S r()T € 7™ be a vector where r(®) = (réo), . ,rfﬁ)) is
a random vector and its elements are uniformly sampled, réo), ceey r,(,?) < Zq. By

repeated matrix multiplications, we can generalize that for an integer 1 < i < L,
level-() secret shares S(*), share matrix U, and input vector R(*) are as follows:

g — yt-1) . RG-1 ¢ Z§i7

DO--0
U(l):I£1®D: ' ' GZE ><7rL€7
00 -.:
00---D
R = (s® [1],r§i), e 8 [2]’7"5&2 . 7’"7(7?ei)T c Zgﬂi
=PO . (s0[1],8D[2],-.. SO[i] ) ... O T

— PO . (8 T
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(@)

where P is a permutation matrix and rj

Z((mel)ﬂi '

,7'1(7?.41'  Zgq and r() = (Téi), e

R

Actually, the permutation matrix P(?) is defined to simply express the share
matrix of SS). Now, we can compute the share matrix M(®) such that S(%) =

M) - (sk, @ ¢ ... $(E=1) Then we can express S(©) as follows.
L-1
S0 _ -1 gE-1 _y-n . pe-y . ST
r(L_l)
u-» pu-zg] |S¢?
—y&-n . pl-1, o r(E—2)
0 I

Uu®.pO®g...0 s(0)

0 I---0 (0)
_ - . pE-n . AT

L—2) p(L-2 0 I---0
MWD = g-1)  pL-1), [U( )P ) O‘| e . .

0 1

where U©.P(© = D. Then, we show that SS'*) is a linear secret sharing scheme
of sk for all positive integer L. O
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