
Improved Universal Thresholdizer from
Threshold Fully Homomorphic Encryption

Jung Hee Cheon1,2, Wonhee Cho1, and Jiseung Kim3

1 Seoul National University, Republic of Korea.
{jhcheon,wony0404}@snu.ac.kr

2 Crypto Lab Inc., Seoul, Republic of Korea.
3 Jeonbuk National University, Republic of Korea.

{jiseungkim}@jbnu.ac.kr

Abstract. The Universal Thresholdizer (CRYPTO’18) is a cryptographic
scheme that facilitates the transformation of any cryptosystem into a
threshold cryptosystem, making it a versatile tool for threshold cryptog-
raphy. For instance, this primitive enables the black-box construction of a
one-round threshold signature scheme based on the Learning with Error
problem, as well as a one-round threshold chosen ciphertext attack-secure
public key encryption, by being combined with non-threshold schemes.
The compiler is constructed in a modular fashion and includes a com-
pact threshold fully homomorphic encryption, a non-interactive zero-
knowledge proof with preprocessing, and a non-interactive commitment.
An instantiation of the Universal Thresholdizer can be achieved through
the construction of a compact threshold fully homomorphic encryption.
Currently, there are two threshold fully homomorphic encryptions based
on linear secret sharing, with one using Shamir’s secret sharing and
the other using the {0, 1}-linear secret sharing scheme ({0, 1}-LSSS).
The former fails to achieve compactness as the size of its ciphertext is
O(N logN), where N is the number of participants in the distributed
system. Meanwhile, the latter provides compactness, with a ciphertext
size of O(logN), but requires O(N4.3) share keys on each party, leading
to high communication costs.
In this paper, we propose a communication-efficient Universal Thresh-
oldizer by revisiting the threshold fully homomorphic encryption. Our
scheme reduces the number of share keys required on each party to
O(N2+o(1)) while preserving the ciphertext size of O(logN). To achieve
this, we introduce a new linear secret sharing scheme called TreeSSS,
which requires a smaller number of shared keys and satisfies compactness.
As a result, the Threshold Fully Homomorphic Encryption underlying
our linear secret sharing scheme has fewer shared keys during the setup
algorithm and reduced communication costs during the partial decryp-
tion algorithm. Moreover, the construction of a Universal Thresholdizer
can be achieved through the use of TreeSSS, as it reduces the number of
shared keys compared to previous constructions. Additionally, TreeSSS
may be of independent interest, as it improves the efficiency in terms of
communication costs when used to replace {0, 1}-LSSS.
Keywords: Threshold Cryptography, Secret Sharing, Fully Homomor-
phic Encryption, Universal Thresholdizer



1 Introduction

A t-out-of-N threshold cryptography [19–21] is a public key cryptosystem that
enables the distribution of secret keys among N parties. To obtain the plaintext
from a ciphertext encrypted with this system, t parties are required to collab-
orate. However, even if t − 1 parties are compromised, they cannot gain any
information about the plaintext.

The Universal Thresholdizer (UT) [9] is a tool for constructing threshold
cryptosystems. It acts as a compiler, taking an existing cryptosystem and con-
verting it into a threshold variant. UT provides simple constructions of threshold
cryptographic primitives such as threshold signatures, CCA threshold PKE, and
function secret sharing.

A black-box construction of UT was proposed that leverages compact thresh-
old fully homomorphic encryption (TFHE) from learning with errors (LWE),
non-interactive zero-knowledge proof with preprocessing (PZK) [30, 37], and
a non-interactive commitment scheme [6]. This construction resolves a long-
standing open question in lattice-based cryptography by constructing a one-
round threshold signature using lattices.

There are two constructions of TFHE4: Shamir’s secret sharing-based TFHE
and {0, 1}-linear secret sharing scheme (LSSS) based TFHE. The Shamir-based
TFHE uses rational numbers, known as Lagrange coefficients, to distribute ho-
momorphic encryption. However, this leads to a large scaling factor, resulting in
a size of q that is not compact. Note that the size of scaling factor is O(N !2), so
the bit-size of q is O(N logN).5

The TFHE based on the {0, 1}-LSSS solves the limitation by utilizing a
different approach to secret sharing. It adopts the monotone Boolean formula
secret sharing scheme, as established by Valiant in [26,41], which employs binary
coefficients to recover the secret from the distributed secret keys instead of the
Lagrange coefficients used in Shamir’s scheme. This allows compactness, with
log q = O(logN). However, this also leads to a high number of required secret
keys, which can result in substantial communication overhead with a cost of
O(N4.3 logN).

1.1 This work

Our main contribution is to propose a communication-efficient UT by construct-
ing an efficient linear secret sharing scheme called TreeSSS. This new linear se-
cret sharing scheme reduces the number of shared keys compared to the standard

4 [9, Section 8.4] additionally introduces a type of TFHE that requires additional com-
pilation steps. First, construct a non-compact TFHE from Shamir’s secret sharing.
Next, construct a non-compact UT from the non-compact TFHE. Then, construct
a compact TFHE by taking as input another compact non-threshold FHE into the
non-compact UT. Here, we will not consider this type of TFHE that requires further
compilation.

5 To put it simply, the property of compactness is maintained when the magnitude of
q is bounded by a polynomial function of N .
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Secret sharing scheme O(log q) total # of keys Comm cost

Shamir O(N logN) N O(N logN)

{0, 1}-LSSS O(logN) O(N5.3) O(N4.3 logN)

Table 1: the state-of-the-art t-out-of-N TFHE.

{0, 1}-LSSS, leading to less secret keys being shared in the setup algorithm of
TFHE. This reduction in shared keys also reduces communication costs dur-
ing the partial decryption algorithm of TFHE. Additionally, the compactness
property of TFHE allows the primitive to be used in constructing UT.

For the purpose, we present a hybrid approach that integrates the {0, 1}-LSSS
and Shamir’s Secret Sharing Scheme. We reinterpret a concrete implementation
of the {0, 1}-LSSS for threshold functions found in [29] as an iterative linear
secret sharing method. The previous scheme utilized a well-known algorithm to
convert a monotone Boolean circuit into a matrix based on the entire thresh-
old circuit generated by monotone Boolean formulas. Instead of applying this
algorithm to the entire threshold circuit, we observe that applying it to small
matrices and iteratively multiplying these matrices can also generate the matrix
corresponding to a threshold function. Furthermore, we replace the unit matrix
used in the algorithm with the Vandermonde matrix used in Shamir’s Secret
Sharing, which leads to improve the efficiency in terms of communication costs.

This hybrid linear secret sharing scheme has the potential to decrease com-
munication costs and may be of interest in various applications, such as threshold
signatures [2], threshold multi-key FHE schemes [4], and decentralized ABE [42].

In conclusion, the hybrid approach to combining {0, 1}-LSSS and Shamir’s
Secret Sharing Scheme results in improved efficiency, as evidenced in Table 2.
Our findings align with the optimal formula for general majority functions built
from (2s−1)-variable majority functions, as proven in [28] for s ≥ 2. For further
details, please refer to Section 2 and Section 4.

1.2 Related work

We briefly introduce related works of TFHE to present potential applications of
our TFHE.

Comparison between Concurrent Work. Our approach to construct effi-
cient TFHE is entirely distinct from that of the recent papers [10, 17, 31]. Our
focus is on directly improving {0, 1}-LSSS, while [10] uses it as is. We thus be-
lieve our TreeSSS and the technique in [10] can be combined to create an efficient
TFHE and UT construction. We further note that [31] improved the bootstrap-
ping technique of FHEW/TFHE to achieve threshold FHE, while [10, 17] both
achieved a polynomial modulus-to-noise ratio TFHE from LWE using Rènyi di-
vergence and the noise flooding technique. [17] was specialized for Torus-FHE
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Secret Sharing Scheme O(log q) total # of keys Comm. cost

Previous
Shamir SS O(N logN) N O(N logN)

{0, 1}-LSSS O(logN) O(N5.3) O(N4.3 logN)

Ours

TreeSSS with V2 O(logN) O(N4.3) O(N3.3 logN)

TreeSSS with V10 O(logN) O(N3.62) O(N2.62 logN)

TreeSSS with V50 O(logN) O(N3.39) O(N2.39 logN)

TreeSSS with Vs O(logN) O(N3+o(1)) O(N2+o(1) logN)

Table 2: The comparison results between the previous TFHE and ours. The
size of ciphertexts is denoted by O(log q) and the number of keys required is
represented by the total # of keys. The communication costs indicate the amount
of information that each party must send for the partial decryption algorithm.
Vs is the Vandermonde matrix which corresponds to s-out-of-(2s− 1) threshold
structure. The last row shows the asymptotic behavior as N approaches infinity,
with s held constant and N being sufficiently large.

[16], while [10] can be built from any FHE scheme. It is our expectation that inte-
grating these techniques for optimizing the polynomial modulus-noise ratio with
our TreeSSS approach would lead to an improvement in the TFHE construction.

Threshold Circuits.Amajority circuit is equivalent to anN/2-out-of-N thresh-
old circuit. Research has shown how to create monotone Boolean formulas for
majority functions [26,28]. However, these constructions are not useful for thresh-
old circuits similar to TFHE. For example, [26] showed that the depth of a three-
variable majority function’s monotone Boolean formula is 3, leading to a total
number of secret shares close to O(N7), which is inefficient compared to circuit
representations [41].

[28] found that the optimal formula for general majority can be expressed
with the three-variable majority function in O(N3+O(1/ log s)) for some s, which
matches our main result.

Threshold Signature. The threshold signature is a protocol that uses the
threshold property in a signature scheme. There have been many efforts to build
this scheme [7, 8, 13, 18, 22–25, 32, 34, 40], but most of them are based on pre-
quantum objects like ECDSA. There have only been two round-optimal thresh-
old signature schemes from lattices [2, 9]. The first one was built from UT via
compact TFHE [9], and the latter [2] improved efficiency through a concrete
signature scheme and optimal noise flooding, providing a stronger security level
using the random oracle model.

N-out-of-N TFHE. N -out-of-N TFHE is a special case of TFHE and falls
into the category of multikey FHE [3, 12, 27, 33, 35, 36]. It is a non-interactive
protocol that allows for homomorphic computations on encrypted data using
independently sampled keys, solving key management issues. It is considered a
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good solution for round-optimal secure multi-party computations [35] and on-
the-fly MPC property [33].

1.3 Future Work

Our work has reduced the number of total share keys and communication cost
in TFHE, but we believe that there still exists room for improvement. Our goal
is to reduce the total number of keys to N , as in Shamir’s secret sharing scheme,
while maintaining log q = O(logN).

2 Technical Overview

This section provides an overview of a new linear secret sharing scheme, called
TreeSSS, and its application in threshold fully homomorphic encryption.
⟨⟨ Kim: “Shamir Iterative 활용을 exact하게 보여준다” ⟩⟩

2.1 Attempt I: Regarding {0, 1}-LSSS as Iterative Secret Sharing

As the first attempt, we reinterpret a secret sharing algorithm for threshold func-
tions by utilizing the iterative steps of Boolean formula construction described
in [41]. This allows us to construct the share matrix M through iterative matrix
multiplications.

Observation. ?? describes the fact that the threshold circuit is an iterative
construction of the Boolean monotone formulas: For i, the level-(i+ 1) formula

φ(i+1) is generated from four level-i formulas, φ
(i)
1 , φ

(i)
2 , φ

(i)
3 and φ

(i)
4 . Specifically,

φ(i+1) = (φ
(i)
1 ∧ φ

(i)
2 ) ∨ (φ

(i)
3 ∧ φ

(i)
4 ).

We first observe that the relation between φ(i+1) and {φ(i)
j }j ∈ {1, 2, 3, 4}

can be represented as a binary tree of depth 2, as in the structure shown in
Figure 1. This tree is composed of AND and OR gates, allowing us to utilize
the folklore algorithm in the above section. There exists a small matrix D that

corresponds to this binary tree, with the leaf nodes being {φ(i)
j }j ∈ {1, 2, 3, 4}.

Here, D is a 4× 2 matrix defined as

D =


1 1

1 1

0 −1
0 −1

 ∈ Z4×2
q .

Furthermore, the correspondence between the binary tree and the matrix is
established through the relationship

sk
φ

(i)
1

sk
φ

(i)
2

sk
φ

(i)
3

sk
φ

(i)
4

 = D ·

[
skφ(i+1)

r

]

5



Fig. 1: Boolean formula corresponds to secret share

where r ∈ Zq is a random integer. Thus, the operation φ(i+1) = (φ
(i)
1 ∧ φ

(i)
2 ) ∨

(φ
(i)
3 ∧ φ

(i)
4 ) can be viewed as a matrix multiplication with D. Similarly, the

representation of the formula φ(i+1) from 16 φ(i−1) formulas can be represented
as a matrix I4 ⊗D ∈ Z16×8, where I4 is the 4-dimensional identity matrix and
A⊗B is the Kronecker tensor product of matrices A and B. Consequently, there
is a matrix M which corresponds to circuit representations of level-t formula φ(t)

from level-0 φ(0) formulas.
As a result, the matrix-vector product w = M ·v gives us the sharing of the

secret. Here, v = (skφ(t) , r2, . . . , rm)T and wi is the i-th coordinate of w which
is distributed to each party. The result is given by Proposition 2.1 and we defer
the proof in the Supplementary material A.1.

Proposition 2.1 Given a linear secret sharing scheme SS(1) with a share matrix
M(L) ∈ Zℓ×m

q and an iteration number L, the L-th iterative construction SS(L)

also provides a linear secret sharing scheme.

It should be noted that this iterative construction cannot reduce the size of
M, as it operates as a mapping between binary trees and small matrices. The
lesson from this observation is

– It is not necessary to apply the folklore algorithm to the entire threshold
circuit in order to obtain the {0, 1}-LSSS.

– The share matrix M of {0, 1}-LSSS can be constructed through simple ma-
trix multiplications of small size.

2.2 Attempt II: TreeSSS - change the underlying matrix into the
Vandermonde matrix

Valiant’s monotonic Boolean construction for majority functions consists exclu-
sively of AND and OR gates, which can be easily transformed into matrices
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through the application of the folklore algorithm. In contrast, alternative con-
structions for N -input majority functions have been proposed by Gupta and
Mahajan [28] and Goldreich [26], which are based on (2s − 1)-input majority
functions with s ≪ N . These alternative constructions depart from the tra-
ditional AND and OR gates by replacing them with (2s − 1)-input majority
functions. Our approach mirrors this shift, as we replace the matrix D with
the Vandermonde matrix to provide a matrix-based construction for majority
functions.

To demonstrate this concept, we present the following lemma, which outlines
the construction of majority functions from a 3-input majority function. The
lemma asserts that the utilization of small input majority functions can increase
the probability.

Lemma 2.2 ([26,28]) Let X1, X2, X3 ← {0, 1} be three independent identically
distributed random variables, and p := Pr[Xi = 1] for all i. Then, the following
holds:

1. p′ := Pr[MAJ3(X1, X2, X3) = 1] = p3 + 3 · (1− p) · p2.
2. δ := p− 0.5, it holds that p′ = 0.5 + (1.5− 2δ2) · δ.
3. p′ < 3p2.

The lemma posits that the generation of the N -input majority function can
be accomplished through the application of the 3-input majority function in a
tree structure, thus reducing both the level of approximation and the size of the
formula. A proof of this lemma can be found in the supplementary material A.2.
The findings of [28] indicate that the construction of majority functions with
N inputs is possible through the use of a trivariate majority function with a
size of O(N4.29) or through a (2s − 1)-input majority function with a size of
O(N3+O(1/ log s)).

However, the folklore algorithm that converts circuits into matrices cannot
be applied to the constructions proposed by [28] and [26]. This is because the
folklore algorithm is limited to circuits that consist only of AND and OR gates,
while the cost of converting the circuit using this algorithm becomes prohibitively
high when compared to converting Valiant’s circuit [26].

As a result, the findings of [26, 28] cannot be immediately utilized to create
an efficient linear secret sharing scheme for threshold functions. Our proposed
TreeSSS algorithm for threshold functions, presented in Section 2.1, represents
the start of matrix-based linear secret sharing. The central idea is to use a
different matrix V that corresponds to small input majority functions, which
has the potential to bypass the folklore algorithm in the creation of an efficient
scheme.

The utilization of the Vandermonde matrix Vs ∈ Z(2s−1)×s
q in our approach

offers a hybrid strategy that combines the features of Shamir’s secret sharing
and the iterative construction. The choice of this matrix is motivated by its
proven performance in the context of Shamir’s secret sharing, as demonstrated
in [38]. For a visual representation of this concept, refer to Figure 2. The results
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Fig. 2: Small input-Majority function corresponds to Shamir’s secret sharing

of our construction match the previously established results by [28]. The detailed
construction and findings are presented in Section 4.2.

We further remark that the simple replacement of the matrix has an unex-
pected impact on the simulation security proof of TFHE. We recall the concept
of the partial decryption algorithm. The algorithm works by taking the secret
shares ski and computing sk =

∑
i ci · ski, where ci are the recovery coefficients

and sk is the master secret key. The decryption process is performed as follows:

⟨ct, sk⟩ = ⟨ct,
∑
i

ci · ski⟩ =
∑
i

ci⟨ct, ski⟩ mod q

Consequently, the partial decryption algorithm can be regarded as follows6:

⟨ct, ski⟩ = (c−1i mod q) ·

⟨ct, sk⟩ −∑
i ̸=j

⟨ct, skj⟩ mod q

 mod q.

The observation is critical in the simulation security proof as it enables
the simulator to simulate the partial decryption algorithm without having any
knowledge of the secret shares ski. This issue is not relevant in the case of {0, 1}-
LSSS, as the recovery coefficients ci and their inverse elements c−1i are binary.
However, in the hybrid approach, the coefficients are Lagrange’s coefficients,
which implies that there is no guarantee of the smallness of the inverse elements
of Lagrange’s coefficients.

Therefore, to adapt the simulation security proof for TFHE, it is necessary to
provide an upper bound on the inverse of the Lagrange’s coefficients. This enables
us to overcome the smallness issue, which is a major concern in the simulation
security proof of linear secret sharing schemes. It is worth mentioning that in
[29], the authors proposed the {0, 1}-LSSS to avoid the smallness issue, which is
one of the ways to overcome this challenge in the simulation security proof.

6 To prevent information leakage, the large error should be added. However, we omit
the error for simplicity.
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To conclude, we revisit and slightly modify the previous results of the La-
grange coefficients presented in [1,39]. The result is a new lemma which completes
the security proof for the proposed construction. The proof of the lemma can be
found in the Supplementary material A.3.

Lemma 2.3 Let P = P1, · · · , PN be a set of parties and At a threshold access
structure on P with a threshold value t ∈ [N ]. Consider a Shamir’s secret sharing
scheme SS over the secret space Zq, where q is a prime number such that (N !)2 ≤
q. Then, for any set S ⊆ [N ] ∪ 0 with size t and for any indices i, j ∈ [N ], the
following properties hold:

– |N ! · λS
i,j | ≤ (N !)2,

∣∣∣N ! · 1
λS
i,j

∣∣∣ ≤ (N !)2,

– N ! · λS
i,j , N ! · 1

λS
i,j

are integers

where λS
i,j is the Lagrange coefficient.

TreeSSS for t-out-of-N structures. We can easily extend our construction to
t-out-of-N TreeSSS by slightly modifying the number of parties and the thresh-
old. The conversion process involves constructing a TreeSSS for a different t and
N that satisfies the desired conditions. For instance, when t > ⌈N2 ⌉, we start by
constructing a TreeSSS for t-out-of-(2t− 1). If 2t− 1 > N , we simply disregard
the extra secret shares. Similarly, if t < ⌈N2 ⌉, we generate a TreeSSS for (t+ r)-

out-of-(N + r) where r satisfies N+r+1
2 = t + r. In the case where t = N

2 , and

N is even, it suffices to construct a TreeSSS for (N2 + 1)-out-of-(N + 1). The
detailed construction can be found in Section 4.3.

2.3 Toy Example

3 Preliminary

Notations.We use bold uppercase letters for matrices and bold lowercase letters
for vectors. The set [n] = 1, 2, · · · , n is used to denote a positive integer n. log
is used to represent the logarithm function base 2. The size of a finite set S is
represented by |S| and its power set is represented by P(S). a← S means that a
is randomly selected from the finite set S. D1 ≈s D2 means that the distribution
D1 is statistically indistinguishable from distribution D2.

Vandermonde Matrix. We use the Vandermonde matrix, a special matrix
widely used in Shamir’s secret sharing scheme, and denote it as VN,t, where it
is a N × t matrix. The entries in VN,t are defined as:

VN,t =



1 1 12 · · · 1t−1

1 2 22 · · · 2t−1

1 3 32 · · · 3t−1
...
...

...
. . .

...

1 N N2 · · · N t−1

 .
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For convenience, we also use the shorthand notation Vs to refer to V2s−1,s.

Kronecker Tensor Product. Given two matrices A ∈ Zm×n
q and B ∈ Zr×s

q ,
the Kronecker tensor product, denoted as A⊗B, is defined as:

a1,1 ·B a1,2 ·B · · · a1,n ·B
a2,1 ·B a2,2 ·B · · · a2,n ·B

...
...

. . .
...

am,1 ·B am,2 ·B · · · am,n ·B

 ∈ Zmr×ns
q

Statistical Distance. he distance between two distributions D1 and D2 over a
countable support X is defined as

∆(D1, D2) =
1

2

∑
e∈E

∣∣∣∣ Pr
e←D1

(D1(e))− Pr
e←D2

(D2(e))

∣∣∣∣ .
The noise flooding technique, also known as noise smudging, is commonly

used to mask information by adding a large error.

Lemma 3.1 (Noise Flooding Technique [3, 35]) Let B1, B2 be positive in-
tegers and e1 be an integer in the interval [−B1, B1]. Let U be a uniform distri-
bution over the interval [−B2, B2]. Then, it holds that ∆(U,U + e1) ≤ B1

B2
.

Learning with Errors (LWE). The Learning with Errors (LWE) problem is a
fundamental problem in lattice-based cryptography, often used in the construc-
tion of fully homomorphic encryption schemes [11,14,16].

Given positive integers n,m, and q and a noise distribution χ over Zq, the
LWE(n,m, q, χ) problem involves an adversary attempting to distinguish between
two distributions: (A,As + e) and (A,u). Here, A is chosen from Zm×n

q , s is
chosen from Zn

q , e is chosen from χm, and u is randomly chosen from Zm
q .

3.1 Majority Circuits

we briefly introduce definitions and previous results for majority functions which
are equivalent to threshold functions.

Definition 3.2 (Monotone Boolean formula [9]) A Boolean circuit C : {0, 1}N →
{0, 1} is called a monotone Boolean formula if it satisfies the following condi-
tions:

• It has a single output gate.
• Each gate is either an AND or an OR gate with a fan-in of 2 and a fan-out
of 1.
• The input wires may have multiple connections to other gates
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Definition 3.3 (Majority Function/Gate) A majority function/gate MAJN :
{0, 1}N → {0, 1} is a function defined as follows:

MAJN (x) =

{
1 wt(x) ≥ N/2

0 otherwise,

where wt(x) is the number of nonzero bits in x = x1x2 . . . xN

We now provide a summary of results that demonstrate the construction of
majority functions from monotone Boolean formulas, as proven by [26, 28, 41].
However, please refer to the original papers for a full understanding and proof
of these results.

Lemma 3.4 ([41]) Let F : {0, 1}N → {0, 1} be a randomized function, and
x ∈ {0, 1}N be its input. The probability of F (x) is as follows:

Pr[F (x) = 1 | wt(x) < N/2] < 2−N−1

Pr[F (x) = 0 | wt(x) ≥ N/2] < 2−N−1.

Then, it satisfies that Pr[F ≡ MAJN ] ≥ 1/2.

Using Lemma 3.4, Valiant proposed a (recursive) construction of monotone
Boolean formula for computing the majority function. The unit circuit φ(i+1) =

(φ
(i)
1 ∧φ

(i)
2 )∨ (φ(i)

3 ∧φ(i)))4 is repeated to construct the majority function for N .
[41] showed that repeating the unit circuit up to level-2.65 logN can construct
the majority function for N .

Lemma 3.5 ([41]) Let γ = 2(3 −
√
5) ≈ 1.52, and N be an even number of

parties. If the unit circuit φ = (φ1∧φ2)∨(φ3∧φ4) is iteratively constructed with
an iteration number L ≥ logγ N+logN+O(1), then there exists an O(N5.3)-size
monotone formula for computing the majority function MAJN .

Note that the construction presented in Lemma 3.6 involves converting the
MAJ3 gate into a formula consisting only of AND/OR gates, which results in a
larger formula compared to the construction in [41]. The conversion of the MAJ3
gate into AND/OR gates involves replacing MAJ3(F1, F2, F3) with (F1 ∧ F2) ∨
(F2∧F3)∨(F3∧F1). However, this conversion is necessary as there is currently no
known way to convert majority gates in circuits into matrices, unlike AND/OR
gates, which can be converted via the folklore algorithm.

Lemma 3.6 ([26]) Let N be the number of parties with odd value. Then, there
exists a construction of the majority function MAJN using the small majority
gate MAJ3. Specifically, MAJN can be constructed from MAJ3 with a total of
L ≥ log1.5(N) + log2 N + O(1) iterations. As a result, there exists a monotone
Boolean formula for computing MAJN of size O(N7).
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In [28], the authors studied the construction of majority functions from small
majority gates. They leveraged the technique of amplifying the probability of
majority gate applications. This lemma states that given an odd number of
parties N , a construction of the majority function MAJN from MAJ2s−1-gates is
possible.

Lemma 3.7 ([28]) Given an odd number N of parties, there exists a construc-
tion of the majority function MAJN from small majority gates MAJ2s−1. This
construction requires iteratively applying MAJ2s−1-gates up to level logcs(N) +

logs N +O(1), where cs =
2s−1
22s−2 ·

(
2s−2
s−1

)
.

In our analysis, we will demonstrate a new secret sharing approach that
utilizes Shamir’s secret sharing and the above lemma, bypassing the need for
the folklore lemma. This will be presented in section 4

3.2 Fully Homomorphic Encryption

We recall the definition of fully homomorphic encryption and its properties.

Definition 3.8 (Fully homomorphic encryption) An FHE scheme is de-
scribed by a set of algorithms with the following properties:

• The setup algorithm FHE.Setup(1λ, 1d) takes as input the security parameter
λ, and a depth bound d, and outputs a pair of the public key pk and secret
key sk.

• The encryption algorithm FHE.Enc(pk, µ) takes as input pk and a message
µ ∈ {0, 1}, and outputs a ciphertext ct.

• The evaluation algorithm FHE.Eval(C, ct1, · · · , ctl, pk) takes as input l-input
circuit C with less than or equal depth d, a bunch of ciphertexts ct1, · · · , ctl
and pk, and outputs an evaluated ciphertext ĉt.

• The decryption algorithm FHE.Dec(pk, sk, ĉt) takes as input pk, sk and ĉt,
and outputs a message µ ∈ {0, 1}.

Hereafter, we use notations from Definition 3.8.

Definition 3.9 (Evaluation Correctness) We say FHE scheme is correct if
for any evaluated ciphertext ĉt generated by FHE.Eval(C, ct1, · · · , ctl, pk) satisfies

Pr[FHE.Dec(pk, sk, ĉt) = C(µ1, · · · , µl)] = 1− negl(λ)

Definition 3.10 (Compactness) We say FHE scheme is compact if for any
ciphertext ct generated from the algorithm of FHE.Enc, there is a polynomial poly
such that |ct| ≤ poly(λ, d).

Definition 3.11 (Semantic security) We say that FHE is secure if for all
security parameter λ and depth bound d, the following holds: for any PPT ad-
versary A, the experiment ExptA,FHE(1

λ, 1d) outputs 1 except for negligible prob-
ability:
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ExptA,FHE(1
λ, 1d) :

1. Given (λ, d), the challenger runs (pk, sk) ← FHE.Setup(1λ, 1d) and ct ←
FHE.Enc(pk, b) for b← {0, 1}.

2. The challenger sends (pk, ct) to A.
3. A outputs a guess b′.

4. The experiment outputs 1 if b = b′.

Definition 3.12 (Special FHE) We say FHE is a special FHE if it satisfies the
following properties:

• The setup algorithm Setup(1λ, 1d) takes as input the security parameter λ
and a depth bound d, and outputs (pk, sk), where pk contains a prime q, and
sk ∈ Zn

q for some n = poly(λ, d).

• The decryption algorithm Dec consists of two functions (Dec0,Dec1) defined
as follows:
• p ← Dec0(sk, ct): p is of the form µ · ⌊ q2⌉ + e for a noise e ∈ [−cB, cB]

with the noise bound B = B(λ, d, q). Here, e is an integer multiple of c.

• µ← Dec1(p): Given p, return µ =

{
0 if p ∈ [−⌊ q4⌉, ⌊

q
4⌉]

1 otherwise.

• Dec0 is a linear function over Zq such as inner product and matrix multipli-
cation in the secret key sk.

The constant c in Definition 3.12 is called the multiplicative constant.

3.3 Non-interactive Zero Knowledge Proof and Commitments

This section introduces the building blocks for constructing the universal thresh-
oldizer, which are not defined in the main body of this paper. The descriptions
of these schemes are based on [9].

These building blocks have been utilized in the construction of a universal
thresholdizer in a black-box manner.

Definition 3.13 (Non-interactive Zero Knowledge Proof with pre-processing)
A non-iterative zero-knowledge proof with pre-processing (PZK) for a language L
with a relation R is a tuple of PPT algorithms PZK = (PZK.Pre,PZK.Prove,PZK.Verify).
The output of the pre-processing algorithm PZK.Pre(1λ) is a pair of systems
(σP , σV ). The PZK scheme must satisfy the following properties:

• Completeness: For every (x,w) ∈ R, the probability that the verifier will
accept a proof generated by the prover is 1, i.e.

Pr[PZK.Verify(σV , x, π) = 1 : π ← PZK.Prove(σP , x, w)] = 1

• Soundness: For every x /∈ L, the probability of the existence of a proof
π ← PZK.Prove(σP , x, w) such that Pr[PZK.Verify(σV , x, π) = 1] is negligible
in λ.
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• Zero knowledge: There is a PPT simulator S such that for any (x,w) ∈ R,
no one can computationally distinguish two distributions:

{σV ,PZK.Prove(σP , x, w)} ≈ {S(x)}

Lemma 3.14 ([30,37]) PZK can be constructed from one-way functions.

We now introduce a new component for the universal thresholdizer, as described
in [5, 9].

Definition 3.15 (Non-interactive Commitment [6]) We say that C = (C.Com)
is a non-interactive commitment scheme if the following holds: Let com be a
string in {0, 1}∗ outputted by C.Com(x; r) for a message x ∈ {0, 1}∗ with ran-
domness r ∈ {0, 1}λ. Then,

• Perfect binding: For any security parameter λ ∈ N, and randomness
r0, r1 ∈ {0, 1}λ, if C.Com(x0; r0) = C.Com(x1; r1), then it holds that x0 =
x1.

• Computational hiding: For any security parameter λ ∈ N and x0,x1 ∈
{0, 1}poly(λ), no PPT adversary can distinguish the following distributions:

{com0 : r← {0, 1}λ, com0 ← C.Com(x0; r)}
≈ {com1 : r← {0, 1}λ, com1 ← C.Com(x1; r)}

Lemma 3.16 ([6]) A non-interactive commitment can be built from injective
one-way functions.

4 The Tree Secret Sharing algorithm for majority
function

This section presents a key technical contribution of this paper, the tree secret
sharing scheme (TreeSSS).

4.1 Preliminaries for Secret Sharing

This section provides several relevant definitions for secret sharing schemes and
Shamir’s secret sharing scheme as a representative. For this purpose, we adopt
definitions/notations from [9].

Definition 4.1 (Threshold Structure) Given a set of parties P = P1, . . . , PN

and a threshold value t such that 1 ≤ t ≤ N , the t-out-of-N threshold structure
At ⊆ P(P ) is defined as the collection of all subsets S ∈ P(P ) with a size of
at least t. The subsets in At are referred to as ”valid sets,” and the subsets in
P(P ) \ At are referred to as ”invalid sets.”

Now, we define the secret sharing scheme for the threshold structure.
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Definition 4.2 (Secret Sharing Scheme) Let K be the secret key space. The
secret sharing scheme SS is defined as a pair of PPT algorithms, (SS.Share,SS.Combine):

• The share algorithm SS.Share(sk,At) takes input a secret key sk ∈ K and
threshold structure At on P and returns a family of secret shares sk1, · · · , skN
for each party.

• The combine algorithm SS.Combine(B) takes input a set of shares B =⋃
Pi∈S{ski} and returns ŝk.

A secret sharing scheme must satisfy the following properties.

Definition 4.3 (Correctness) For every S ∈ At, sk ∈ K, and a set of shares
{ski}i∈[N ] obtained by the share algorithm which takes as input sk and At, the
following holds without negligible probability:

SS.Combine({ski}i∈S) =

{
sk for S ∈ At

⊥ for S /∈ At

Definition 4.4 (Privacy) For all S /∈ A and sk0, sk1 ∈ K, two sets of shares
(skb,1, · · · , skb,N )← SS.Share(skb,At) for b ∈ {0, 1} follow the identical distribu-
tion

{sk0,i}i∈S ≈ {sk1,i}i∈S .

Especially, we introduce a linear secret sharing scheme (or linear threshold
secret sharing scheme) to construct the threshold FHE.

Definition 4.5 (Linear Secret Sharing Scheme (LSSS)) A secret sharing
scheme SS with secret space K = Zq is called a linear secret sharing scheme if
the following properties are satisfied:

• SS.Share(sk,At): There exists a share matrix M ∈ Zℓ×n
q with positive integers

ℓ,m and associate a partition Ti of [ℓ] to each party Pi. For a given secret
sk ∈ Zq, the sharing algorithm samples random values r2, · · · , rn ← Zq and
generates a vector (share1, · · · , shareℓ)T = M · (sk, r2, · · · , rn)T . The share
for Pi is a set of entries ski = {sharej}j∈Ti

.

• SS.Combine(B): For any S ∈ At, one can efficiently find the coefficient
{cSj }j∈⋃Pi∈S Ti

such that∑
j∈

⋃
Pi∈S Ti

cSj ·M [j] = (1, 0, · · · , 0).

Then,S can recover a secret key sk by computing sk =
∑

j∈
⋃

Pi∈S Ti
cSj ·sharej.

The coefficients {cSj } are called recovery coefficients.

Shamir’s secret sharing scheme. Shamir’s secret sharing scheme is a linear
secret sharing scheme whose share matrix is a Vandermonde matrix.
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Definition 4.6 (Shamir’s secret sharing [38]) Let P = {P1, · · · , PN} be a
set of parties and let At be the t-out-of-N threshold structure on P . The Shamir’s
secret sharing scheme SS for a secret key space K = Zq is a tuple of PPT
algorithms SS = (SS.Share,SS.Combine) defined as follows:

• SS.Share(sk,At) → (sk1, · · · , skN ): There exists a vandermonde matrix VN,t

for t-out-of-N threshold structure. On input a secret sk ∈ K and threshold
structure At on P , the sharing algorithm samples random values r2, · · · , rt ←
Zq and computes a secret share vector (sk1, · · · , skN )T = VN,t·(sk, r2, · · · , rt)T
and distributes a set of shares sk1, · · · , skN for each party.
• SS.Combine(B) → ŝk: On input a set of shares B =

⋃
Pi∈S{ski}, the La-

grange coefficients obtained from the Lagrange polynomial satisfies following
equality:

λS
i :=

∏
Pj∈S\{Pi}

−j
i− j

,
∑
Pi∈S

λS
i ·VN,t[i] = (1, 0, · · · , 0).

Then, the combining algorithm outputs ŝk =
∑

Pi∈S λS
i · ski which is equal to

sk.

Theorem 4.7 ([38]) Let P = {P1, · · · , PN} be a set of parties and let At be
the t-out-of-N threshold structure on P . Then, Shamir’s secret sharing SS with
secret space K = Zq for some prime q satisfies the following properties:

1. For any sk ∈ Zq and t ∈ [N ], each share for party Pi consists of a single
partial secret key wi ∈ Zq. We denote w0 = sk.

2. For every set S ⊂ [N ] with |S| = t, there exists an efficiently computable
Lagrange coefficients λS

i ∈ Zq such that

w0 =
∑
i∈S

λS
i · wi.

4.2 TreeSSS from Shamir’s Secret Sharing

In this section, we present the Tree Secret Sharing Scheme (TreeSSS), which is a
novel linear secret sharing scheme designed to accommodate a large number of
participants. TreeSSS is based on the well-known Shamir’s secret sharing scheme,
as well as classical results on threshold circuits from the literature [26,28].

This new method will allow us to construct t-out-of-N threshold functions
from Shamir’s secret sharing for s-out-of-(2s − 1) threshold functions, where
s≪ N .

We will describe an iterative algorithm, called TreeSS algorithm, for con-
structing TreeSSS and explain the key components that make it work. The
TreeSS algorithm inputs Shamir’s secret sharing scheme SS(1) for s-out-of-(2s−1)
threshold functions, with s ≪ N and outputs ℓ = 2s − 1 secret shares. It also
returns the iteration number L and the secret key sk and a set of secret shares.
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Fig. 3: High-level Overview of the TreeSS algorithm

The TreeSS algorithm works by applying the secret sharing scheme repeat-
edly in a tree-like manner. It starts by considering the secret key sk as a level-L

secret share, share
(L)
1 . At each iteration, L ≥ i ≥ 1, the level-i secret shares,

share
(i)
j , are split into level-(i − 1) secret shares, {share(i−1)k }k∈{ℓ·(j−1)+1,··· ,ℓ·j}.

This process is repeated until level-0 secret shares, {share(0)j }j∈[ℓL], are obtained
and distributed randomly to the parties. The detailed implementation of the
TreeSS algorithm is provided in Algorithm 1.

Algorithm 1: TreeSS Algorithm

Input : Shamir’s secret sharing scheme for s-out-of-(2s− 1) threshold
functions SS(1), ℓ = (2s− 1),
The number of iterations L, secret key sk

Output: Output the secret share for each Pi, {share(0)j }j∈Ti

1 (share
(L−1)
1 , · · · , share(L−1)

ℓ )← SS(1)(sk)
2 for i = L− 1, · · · , 1 do
3 for j = 1, · · · , ℓL−i do

4 (share
(i−1)

ℓ·(j−1)+1, · · · , share
(i−1)

ℓ·(j−1)+ℓ)← SS(1)(share
(i)
j )

5 end for

6 end for

7 Distribute randomly {share(0)j }j∈[ℓL] to each party Pi

8 return The secret shares for each party Pi, {share(0)j }j∈Ti

Now, we introducing our new secret sharing scheme, the Tree Secret Sharing
Scheme (TreeSSS), generated by the TreeSS algorithm. The basic unit secret
sharing scheme used in the TreeSS algorithm is Shamir’s secret sharing scheme
SS(1).
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Definition 4.8 (L-TreeSSS) Let P = {P1, · · · , PN} be a set of parties and

sk ∈ Zq be a secret key. Given a Shamir’s secret sharing scheme SS(1) and
iteration number L, a tree secret sharing scheme for iteration number L is a
tuple of PPT algorithms L-TreeSSS = (TreeSSS.Share,TreeSSS.Combine) that
satisfies the following properties:

• The share algorithm TreeSSS.Share(sk,SS(1), L) takes as input a secret key sk,

an Shamir’s secret sharing SS(1) and an iteration number L, and construct a
new secret sharing scheme SS(L) by TreeSS algorithm. Then, algorithm out-
puts (sk1, · · · , skN ), where (sk1, · · · , skN ) is a family of secret shares obtained
by TreeSS algorithm.

• The combine algorithm TreeSSS.Combine(B) takes as input a set of shares

B = {share(0)j }j∈⋃Pi∈S Ti
, where Ti = {j | Pi has a secret share share

(0)
j }.

Then, combine algorithm computes T (i) = {j | share(i)j can be recovered by B}
for index sets for 0 ≤ i ≤ L, and ŝk as follows:

ŝk =
∑

j∈T (0)

λ
S

(L−1)
jL−1

jL−1
· · ·λ

S
(1)
j1

j1
· λS

(0)
j

j · share(0)j

=
∑

j1∈T (1)

λ
S

(L−1)
jL−1

jL−1
· · ·λ

S
(2)
j2

j2
· λ

S
(1)
j1

j1
· share(1)j1

...

=
∑

jL−2∈T (L−2)

λ
S

(L−1)
jL−1

jL−1
· λ

S
(L−2)
jL−2

jL−2
· share(L−2)jL−2

=
∑

jL−1∈T (L−1)

λ
S

(L−1)
jL−1

jL−1
· share(L−1)jL−1

= share(L) = sk

where jk is an index of level-k secret shares which uses share
(0)
j to recover

itself , S
(k)
jk

is a set of level-k secret shares including share
(k)
jk

which recover

a level-(k+1) secret share share
(k+1)
jk+1

, and the Lagrange coefficient λ
S

(k)
jk

jk
are

obtained from the Lagrange polynomial of Shamir’s secret sharing SS(1).
If a set of share B can not recover a level-L secret share, then the combine
algorithm output ⊥.

Our scheme can be used to construct an N -input majority function, just
like the small-input majority gates studied in [28]. We make this connection by
showing that Shamir’s secret sharing can serve as a majority gate, and that
iterative secret sharing can be seen as a form of secret sharing, as discussed in
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Section 2. Through the use of Lemma 3.7, we can prove that our scheme has a
threshold structure of ⌈N2 ⌉-out-of-N with appropriate iteration number L.

Theorem 4.9 Let P = {P1, · · · , PN} be a set of parties and N be odd number.

Given a Shamir’s secret sharing SS(1) with share matrix Vs and iteration number
L ≥ logcs N+logs N+O(1) where cs =

2s−1
22s−2 ·

(
2s−2
s−1

)
, the L-TreeSSS satisfies the

correctness and privacy with ⌈N2 ⌉-out-of-N threshold structure and the number

of secret shares is (2s− 1)L = O(N logcs
(2s−1)+logs(2s−1)).

Proof. First, we will prove L-TreeSSS satisfies the correctness with ⌈N2 ⌉-out-of-N
threshold structure and the number of secret shares is O(N logcs

(2s−1)+logs(2s−1)).

Correctness. The correctness automatically holds underlying the following fact:

– As discussed in Section 2, the large input majority circuit MAJN : {0, 1}N →
{0, 1} can be built from the small-input majority circuit MAJ2s−1 when the
iteration number L ≥ ge logcs N + logs N + O(1) where cs = 2s−1

22s−2 ·
(
2s−2
s−1

)
(Lemma 3.7).

– Shamir’s secret sharing says that MAJ2s−1 corresponds to the share matrix
MAJ2s−1.

Therefore, the majority function constructed by using the majority gate
MAJ2s−1 can be converted to a secret sharing scheme which satisfies the cor-
rectness of majority-threshold structure.

Furthermore, we conclude that Shamir’s secret sharing with Vs distributes
the secret value into 2s− 1 secret shares, and the total number of secret shares
in the TreeSSS scheme would be (2s − 1)L = O(N logcs

(2s−1)+logs(2s−1)) ≈
O(N3+2.3/ log s).

Privacy. Now, we demonstrate that the privacy of secret sharing (as defined in
Definition 4.4) is held in our L-TreeSSS. Given a subset S ⊂ P with |S| < ⌈N2 ⌉
and two secret keys sk0, sk1, we consider the following pairs of shares obtained
by executing TreeSSS.share(skb,SS

(1), L)→ (skb,1, · · · , skb,N ) for b ∈ 0, 1:

{sk0,i}i∈S and {sk1,i}i∈S

Our objective is to prove that these two pairs of shares are drawn from the same
distribution.

In order to establish the privacy of TreeSSS, we will employ mathematical
induction on the level L. For the base case of L = 1, we observe that TreeSSS is
equivalent to Shamir’s secret sharing scheme, which is known to satisfy the pri-
vacy of secret sharing. Hence, the two sets of secret shares {sk0,i}i∈S , {sk1,i}i∈S
follow the same distribution.

To continue the proof, we assume that a k+1-level TreeSSS, with each sub-
tree corresponding to a k-level TreeSSS, satisfies the privacy of secret sharing.
Our goal is to demonstrate that this property extends to the (k+1)-level TreeSSS.

For easy explanation, we define a family of level-i secret shares S
(i)
b by

S
(i)
b = {share(i)b,j | share

(i)
b,j can be recovered by S}
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for every i ∈ [L]. By definition, {skb,i}i∈S = S
(0)
b , so we want to prove that

S
(0)
0 and S

(0)
1 are indistinguishable. Since TreeSSS is iteratively constructed, we

the level-1 secret shares S
(1)
0 , S

(1)
1 can be viewed as the output of k-TreeSSS.

Therefore, the assumption would be restated as S
(1)
0 , S

(1)
1 having the same dis-

tribution.
To this end, S

(0)
b can be divided into two subsets:

– S
(0)
b,P : a set of secret shares which can be used to recover S

(1)
b secret shares.

– S
(0)
b,I : a set of secret shares which cannot be used to recover S

(1)
b secret shares.

Note that by definition, level-0 secret shares S
(0)
b,P come from level-1 secret

shares in S
(1)
b by using Shamir’s secret sharing for every b. Since nobody can dis-

tinguish between S
(1)
0 , S

(1)
1 by the assumption, S

(k)
0,P , S

(k)
1,P also follow the identical

distribution.
Moreover, S

(0)
0,I , S

(0)
1,I comes from Shamir’s secret sharing and cannot recover

level-1 secret shares. Therefore they also follow the identical distribution because
Shamir’s secret sharing satisfies the privacy of secret sharing. Thus, (k + 1)-

TreeSSS satisfies the privacy because of S
(0)
b = S

(0)
b,P

⋃
S
(0)
b,I .

As a result, by the mathematical induction, we can conclude that L-TreeSSS
satisfies the privacy for all positive integer L.

⊓⊔

Remark 1. Our TreeSSS can use any other secret sharing scheme. Especially, if

one use a basic unit secret sharing with the share matrixD =

[
1 1 0 0

1 1 −1 −1

]T

, one

can construct the {0, 1}-LSSS in [9]. We replace it with Shamir’s secret sharing
to make an efficient threshold FHE.

4.3 TreeSSS for t-out-of-N for arbitrary t

In this subsection, we explain the process of extending an ⌈N2 ⌉-out-of-N TreeSSS

to a t-out-of-N TreeSSS for any value of t. For odd values of N , ⌈N2 ⌉-out-of-N
TreeSSS can be generated using the TreeSS algorithm discussed in the previous
section. To construct a TreeSSS for a t-out-of-N threshold function, we modify
the number of parties N and the threshold t by following the iterative Shamir
theorem outlined in Theorem 4.9.

Case 1) t > ⌈N2 ⌉. According to Theorem 4.9, a TreeSSS for a t-out-of-(2t− 1)
threshold structure can be constructed for any value of t. However, since 2t−1 >
N , we disregard the secret shares beyond those distributed to the N parties.

Case 2) t < ⌈N2 ⌉. To achieve this, we construct a TreeSSS for (t + r)-out-of-

(N + r), where r satisfies N+r+1
2 = t + r. In this case, r = N − 2t + 1 and

N + r is always odd. Using Theorem 4.9, we obtain a TreeSSS for (t + r)-out-
of-(N + r) similar to the previous example. We then distribute the secret shares
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to N parties and make the remaining r secret shares public. This can be treated
as a TreeSSS for a t-out-of-N threshold structure.

Case 3) t = N
2 and N is even. It suffices to construct a TreeSSS for (N2 +1)-out-

of-N +1 threshold structure. As we observed in the previous case, the existence
of such a construction can be guaranteed by Theorem 4.9.

Remark that for each case, the total number of parties is less than 2N .
Therefore, the number of secret shares is still O(N logcs

(2s−1)+logs(2s−1)) with
constant integer s.

5 Theshold Fully Homomorphic Encryption

5.1 Definitions

This section presents the definitions and properties of the threshold fully homo-
morphic encryption. We follow presentations of the original paper [9].

Definition 5.1 (Threshold Fully Homomorphic Encryption (TFHE)) Let
λ be the security parameter and d be a depth bound. Let P = {P1, · · · , PN} be
a set of parties, and let At be a threshold structures on P . A threshold fully
homomorphic encryption scheme for At is a tuple of PPT algorithms TFHE =
(TFHE.Setup,TFHE.Enc,TFHE.Eval,TFHE.PartDec,TFHE.FinDec) that satisfies
the following properties:

• The setup algorithm TFHE.Setup(1λ, 1d,At) takes as input the security pa-
rameter λ, a depth bound d, and a threshold structure A, and outputs (pk,
sk1, · · · , skN ), where pk is a public key and {ski} is a set of secret shares.

• The encryption algorithm TFHE.Enc(pk, µ) takes as input a public key pk
and a message µ ∈ {0, 1}, and outputs ciphertext ct.

• The evaluation algorithm TFHE.Eval(C, ct1, · · · , ctl, pk) takes as input a cir-
cuit of which depth is less than or equal d, a tuple of ciphertexts ct1, · · · , ctl
and a public key pk, and outputs an evaluated ciphertext ĉt.

• The partial decryption algorithm TFHE.PartDec(pk, ski, ĉt) takes as input a
public key pk, a secret key share ski and the ciphertext ĉt and outputs a
partial decryption pi related to the party Pi.

• The final decryption algorithm TFHE.FinDec(pk, B) take as input a public
key pk, and a set B = {pi}i∈S for some S ⊂ P , and outputs a message
µ̂ ∈ {0, 1,⊥}.

Hereafter, we use notations from Definition 5.1.

Definition 5.2 (Correctness of Evaluation) We say TFHE scheme is cor-
rect if for any evaluated ciphertext ĉt generated by TFHE.Eval(C, ct1, · · · , ctl, pk)
satisfies

Pr[FinDec(pk, {TFHE.PartDec(pk, ski, ĉt)}i∈S) = C(µ1, · · · , µl)] = 1− negl(λ).
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Definition 5.3 (Compactness) We say TFHE scheme is compact if for any
ciphertext ct generated from the algorithm of TFHE.Enc and the partial decryp-
tion pi obtained by TFHE.PartDec, there are polynomials poly1, poly2 such that
for any j ∈ [N ], it holds that

|ct| ≤ poly1(λ, d) and |pi| ≤ poly2(λ, d,N).

TFHE requires two types of security notions. One is the semantic security for
encryption algorithm, and the simulation security is needed for partial decryp-
tion.

Definition 5.4 (Semantic security) Given the security parameter λ and a
depth bound d, for any PPT adversary A, the following experiment ExptA,TFHE(1

λ, 1d)
outputs 1 with 1

2 probability except for negligible probability:

ExptA,TFHE(1
λ, 1d) :

1. For every security parameter λ and a depth bound d, the adversary A
outputs a threshold structure At where 1 ≤ t ≤ N .

2. The challenger C runs TFHE.Setup(1λ, 1d,At) → (pk, sk1, · · · , skN ), and
gives pk to A.

3. A outputs a set S ⊂ {P1, · · · , PN} such that S /∈ At.
4. The challenger runs TFHE.Enc(pk, b) → ct and provides {ct, {ski}i∈S} to
A .

5. A outputs a guess b′.
6. The experiment outputs 1 if b = b′.

Definition 5.5 (Simulation Security) For any security parameter λ, a depth
bound d, and a threshold structure At, the following holds. There exists a stateful
PPT algorithm S = (S1,S2) such that for any PPT adversary A, the following
experiments ExptA,Real(1

λ, 1d) and ExptA,Ideal(1
λ, 1d) are indistinguishable:

ExptA,Real(1
λ, 1d) :

1. For every security parameter λ and a depth bound d, the adversary A
outputs a threshold structure At where 1 ≤ t ≤ N .

2. The challenger C runs TFHE.Setup(1λ, 1d,At) → (pk, sk1, · · · , skN ), and
gives pk to A

3. A outputs a maximal invalid set S∗ ⊂ {P1, · · · , PN} and messages µ1, · · · , µk ∈
{0, 1}.

4. C provides a family of key shares and ciphertexts {{ski}i∈S∗ , {TFHE.Enc(pk, µi)}i∈[k]}
to A.

5. A issues a polynomial number of adaptive queries of the form (S ⊂ {P1, · · · , PN}, C)
for circuits C : {0, 1}k → {0, 1} of depth at most d. For each query, C com-
putes ĉt← TFHE.Eval(pk, C, ct1, · · · , ctk) and provides {TFHE.PartDec(pk, ski, ĉt)}i∈S
to A.

6. At the end of the experiment, A outputs a distinguishing bit b.

ExptA,Ideal(1
λ, 1d) :

1. Same as the first step of ExptA,Real(1
λ, 1d)
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2. The challenger C runs S1(1λ, 1d,At)→ (pk, sk1, · · · , skN , st), and gives pk
to A.

3. Same as the 3rd step of ExptA,Real(1
λ, 1d)

4. Same as the 4th step of ExptA,Real(1
λ, 1d)

5. A issues a polynomial number of adaptive queries of the form (S ⊂ {P1, · · · , PN}, C),
where C : {0, 1}k → {0, 1} is a circuit of depth at most d. For each query,
C runs the simulator

{S2(C, {ct1, · · · , ctk}, C(µ1, · · · , µk), S, st)→ {pi}i∈S

and sends {pi}i∈S to A.
6. At the end of the experiment, A outputs a distinguishing bit b.

5.2 TFHE using TreeSSS

Let P = {P1, · · · , PN} be a set of parties. Then, the communication efficient
TFHE can be built from the following primitives:

• Let FHE be a special fully homomorphic encryption scheme (Definition 3.12)
with noise bound B and multiplicative constant ((2s − 1)!)L where L ≥
logcs N + logs N +O(1) and cs is 2s−1

4s−1 ·
(
2s−2
s−1

)
for a positive integer s ≥ 2.

• Let SS be a L-TreeSSS with Vandermonde matrix Vs ∈ Z(2s−1)×s
q (Sec-

tion 4.2).

The construction presented in this paper is similar to the one in [9], except
that we utilize a TreeSSS with a Vandermonde matrix as opposed to a {0, 1}-
LSSS instantiated by [29]. As a result, most of the security proofs are similar
in both cases, with the exception of Theorem 5.10, which forms the core of this
paper. Consequently, we only include the proof for this theorem in the main
text, while the remaining proofs can be found in the Supplementary material.

Construction 5.6 We can construct a tuple of PPT algorithms as follows:

• (pk, sk1, · · · , skN )← TFHE.Setup(1λ, 1d,At) :
1. Sample (fhepk, fhesk)← FHE.Setup(1λ, 1d).

2. Compute (share
(0)
1 , · · · , share(0)

(2s−1)L) ← SS.Share(fhesk,At) where SS a

L-TreeSSS with Vs in Section 4.2.
3. Distribute secret shares uniform randomly to each party and define a

index set of each party Ti := {j | Pi has share
(0)
j }.

4. Return pk = fhepk and ski = {share(0)j }j∈Ti for i ∈ [N ].
• ct← TFHE.Enc(pk, µ): Sample ct← FHE.Enc(pk, µ) and return ct.
• ĉt← TFHE.Eval(C, ct1, · · · , ctk, pk): Compute ĉt← FHE.Eval(C, ct1, · · · , ctk, pk)
and return ĉt.
• pi ← TFHE.PartDec(pk, ski, ĉt):

1. Sample a noise flooding error error ej ← [−Bsm, Bsm] and compute

p̂
(0)
j = FHE.Dec0(share

(0)
j , ct) + ((2s− 1)!)Lej ∈ Zq

for every j ∈ Ti.
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2. Return pi = {p̂(0)
j }j∈Ti

as its partial decryption.

• µ̂← TFHE.FinDec(pk, B):

1. Check if S ∈ At or not: If S /∈ At, return ⊥.
2. If S ∈ At, compute a minimal valid share set T ⊂ ∪i∈STi and µ ←

FHE.Dec1(
∑

j∈T cSj p̂
(0)
j ).

3. Return µ̂.

Theorem 5.7 ([9]) Suppose FHE is a compact fully homomorphic encryption
scheme. Then, the TFHE scheme from Construction 5.6 satisfies compactness.

Theorem 5.8 Suppose FHE is a special fully homomorphic encryption scheme
that satisfies correctness with noise bound B and SS is a level-is Shamir’s secret
sharing scheme that satisfies correctness. Then, the TFHE scheme from Con-
struction 5.6 with parameter Bsm such that B+((2s−1)!)2L ·(2s−1)L ·Bsm ≤ ⌊ q4⌉
satisfies correctness where L ≥ logcs N + logs N +O(1).

Theorem 5.9 ([9]) Suppose FHE is a fully homomorphic encryption scheme
that satisfies security and SS is a secret sharing scheme that satisfies privacy.
Then, the TFHE scheme from Construction 5.6 satisfies semantic security.

Theorem 5.10 Suppose FHE is a fully homomorphic encryption scheme that
satisfies security and SS is a secret sharing scheme that satisfies correctness and
privacy. Then, the TFHE scheme from Construction 5.6 with parameter Bsm

such that B · ((2s − 1)!)L/Bsm = negl(λ) satisfies simulation security where
L ≥ logcs N + logs N +O(1).

Proof (of Theorem 5.10). We adapt the security proof in [9] according to the our
construction. We define a series of the hybrid experiments between an adversary
A and a challenger C.

• H0: This is a real experiment ExptA,Real(1
λ, 1d) of TFHE in Definition 5.5.

• H1: Same as H0 except for C simulates the partial decryption for A’ss
queries. More precisely, C first computes the maximal invalid secret shares
{sharej}j∈T∗ where T ∗ is the union of all Ti for i ∈ S∗. Then, C can obtain the
partial decryption TFHE.PartDec(pk, ĉt, ski) for i ∈ S by using {sharej}j∈T∗

and C(µ1, · · · , µk) for each query (S,C). The partial decryption algorithm

takes in (pk, ĉt, ski) and outputs pi = {p̂(0)
j }j∈Ti

, based on the following
conditions:

(Case 1) j ∈ T ∗: In this case, C already has sharej , so C can compute

p̂
(0)
j as follows:

p̂
(0)
j = FHE.Dec0(sharej , ĉt) + ((2s− 1)!)L · ej ,

where ej is uniformly sampled from [−Bsm, Bsm].
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(Case 2) j /∈ T ∗: By definition of T ∗ that is a maximal invalid secret
shares, T̄ = T ∗ ∪ {j} should be a set of valid shares. Hence, there are
multiples of Lagrange coefficients for each k ∈ T̄ such that

∑
k∈T̄ ck ·

sharek = fhesk. Then, C returns

p̂
(0)
j = (cj)

−1·C(µ1, · · · , µk)·
q

2
−

∑
j′∈T∗

(cj)
−1·FHE.Dec0(sharej′ , ĉt)+((2s−1)!)L·ej

where ej is uniformly sampled from [−Bsm, Bsm].
• H2: Same as H1 except that C randomly samples ski. This is an ideal exper-

iment ExptA,ideal(1
λ, 1d) of TFHE in Definition 5.5.

Now, we will prove that hybrid experiments, H0,H1,H2, are statistical in-
distinguishable.

Lemma 5.11 H0 ≈s H1

Proof (of Lemma 5.11). The only difference between H0 and H1 is an algorithm

of partial decryption p̂
(0)
j for j /∈ T ∗. Due to the correctness of FHE and definition

of special FHE, it holds that q
2 · C(µ1, · · · , µk) = FHE.Dec0(sk, ĉt) + ẽ where an

error ẽ is sampled uniformly at random in [−cB, cB] and c = ((2s− 1)!)L.

As a result, we can reinterpret p̂
(0)
j

p̂
(0)
j = (cj)

−1C(µ1, · · · , µk) ·
q

2
−

∑
j′∈T∗

(cj)
−1FHE.Dec0(sharej′ , ĉt) + c · ej

= (cj)
−1(FHE.Dec0(sk, ĉt) + ẽ)−

∑
j′∈T∗

(cj)
−1FHE.Dec0(sharej′ , ĉt) + c · ej

= FHE.Dec0

(cj)
−1 ·

sk−
∑

j′∈T∗

sharej′

 , ĉt

+ (cj)
−1 · ẽ+ c · ej

= FHE.Dec0(sharej , ĉt) + (cj)
−1 · ẽ+ c · ej .

In partial decryption in H1, there is an extra error term (cj)
−1 · ẽ. Since

ẽ is a multiple of ((2s − 1)!)L and cj is a multiple of Lagrange coefficient, it
follows from Lemma 2.3 that |(cj)−1 · ẽ| ≤ ((2s − 1)!)2L · B. The bound Bsm

satisfies (B · ((2s − 1)!)L)/Bsm = negl(λ), making the experiments H0 and H1

indistinguishable due to the noise flooding technique (Lemma 3.1).
⊓⊔

Lemma 5.12 H1 ≈s H2

Proof (of Lemma 5.12). The difference between H1 and H2 lies in the method
of sampling the secret keys {ski}i∈S∗ , where S∗ is an invalid set. The privacy of
the secret sharing scheme ensures that no party can distinguish between the two
distributions of secret keys for any invalid set. Therefore, an adversary cannot
distinguish between H1 and H2 if the secret sharing scheme provides the desired
privacy. ⊓⊔

Lemma 5.11 and Lemma 5.12 says that H0 is also statistically indistinguish-
able to H2. As a result, Construction 5.6 achieves the simulation security. ⊓⊔
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6 Communication Efficient Universal Thresholdizer

As shown in Table 2, our TFHE shows superiority over previous compact TFHE
in terms of small share key sizes. This translates to lower communication costs
during partial decryption.

Building a communication-efficient universal thresholdizer can then be achieved
by combining our TFHE with other primitives, as proven by [9] through the fol-
lowing theorems. Throughout this section, we adopt the definitions and theorems
from [9] that provides the concept of UT and the first construction.

6.1 Definition

This section presents definitions and properties of the universal thresholdizer.
We basically follow presentations of the original paper [9].

Definition 6.1 (Universal Thresholdizer [9]) Let P = {P1, · · · , PN} be a
set of parties and At be a threshold structures on P . A universal thresholdizer
scheme for At is a tuple of PPT algorithms UT = (UT.Setup, UT.Eval, UT.Verify,
UT.Combine) such that

• The setup algorithm of UT, UT.Setup(1λ, d,At,x) takes as input the security
parameter λ, a depth bound d, a threshold structure At and a message x ∈
{0, 1}k and returns a public parameter pp and a family of shares {ski}i∈[N ].

• The evaluation algorithm of UT, UT.Eval(pp, ski, C) takes as input the public
parameter pp, a share ski, and a depth d circuit C : {0, 1}k → {0, 1}, and
outputs a partial evaluation, say yi.

• The verification algorithm of UT, UT.Verify(pp, yi, C) takes as input the pub-
lic parameter pp, a partial evaluation yi, and a circuit C and returns 0 (ac-
cept) or 1 (reject).

• The combining algorithm of UT, UT.Combine(pp, {yi}i∈S) takes as input the
public parameter, and a set of partial evaluations yi, and returns the final
evaluation y.

Hereafter, we use notations from Definition 6.1.

Definition 6.2 (Compactness) We say that UT scheme is compact if there
is a polynomial poly such that for any i ∈ [N ], |yi| ≤ poly(λ, d,N), where yi ←
UT.Eval(pp, ski, C).

Definition 6.3 (Evaluation Correctness) We say UT scheme satisfies the
correct of evaluation if the following holds:

Pr[UT.Combine(pp, {UT.Eval(pp, ski, C)}i∈S) = C(x)] = 1− negl(λ)

for any (pp, sk1, · · · , skN )← UT.Setup(1λ, 1d,At,x).
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Definition 6.4 (Verification Correctness) We say UT scheme satisfies the
correct of verification if the following holds

Pr[UT.Verify(pp, yi, C) = 1] = 1

for any (pp, sk1, · · · , skN )← UT.Setup(1λ, 1d,At,x) and yi ← UT.Eval(pp, ski, C).

Definition 6.5 (Robustness) A UT holds robustness if for any λ and d, the
following satisfies: for any PPT adversary A, the experiment

ExptA,UT,robustness(1
λ, 1d) :

1. Given λ and d, the adversary A returns a message x ∈ {0, 1}k and a
threshold structure At

2. The challenger C runs (pp, sk1, . . . , skN ) ← UT.Setup(1λ, 1d,At,x) and
provides (pp, sk1, . . . , skN ) to A.

3. A a fake partial evaluation y∗i .
4. C returns 1 if y∗i ̸= UT.Eval(pp, ski, C) and UT.Verify(pp, y∗i , C) = 1.

Definition 6.6 (Security) Given the security parameter λ, a depth bound d,
and threshold structure At, the following holds. There exists a stateful PPT algo-
rithm S = (S1,S2) such that for any PPT adversary A, the following experiments
ExptA,Real(1

λ, 1d) and ExptA,Ideal(1
λ, 1d) are distinguishable:

ExptA,Real(1
λ, 1d) :

1. On input the security parameter λ and a depth bound d, the adversary A
outputs a threshold structure At and a message x ∈ {0, 1}k.

2. The challenger runs UT.Setup(1λ, 1d,At,x)→ (pp, sk1, · · · , skN ), and pro-
vides pp to A

3. A outputs a maximal invalid set S∗ ⊂ {P1, · · · , PN}.
4. The challenger provides the key shares {ski}i∈S∗ to A.
5. The adversary A issues a polynomial number of adaptive queries of the

form (S ⊂ {P1, · · · , PN}, C) for circuits C : {0, 1}k → {0, 1} of depth
at most d. For each query, the challenger provides {UT.Eval(pp, ski, C)→
yi}i∈S to A.

6. At the end of the experiment, A outputs a distinguishing bit b.

ExptA,Ideal(1
λ, 1d) :

1. On input the security parameter λ and a depth bound d, the adversary A
outputs a threshold structure At and a message x ∈ {0, 1}k.

2. The challenger runs S1(1λ, 1d,At) → (pp, sk1, · · · , skN , st), and provides
pp to A.

3. A outputs a maximal invalid set S∗ ⊂ {P1, · · · , PN}.
4. The challenger provides the key shares {ski}i∈S∗ to A.
5. The adversary A issues a polynomial number of adaptive queries of the

form (S ⊂ {P1, · · · , PN}, C) for circuits C : {0, 1}k → {0, 1} of depth at
most d. For each query, the challenger runs the simulator {S2(pp, C, C(x), S, st)→
{yi}i∈S and sends {yi}i∈S to A.

6. At the end of the experiment, A outputs a distinguishing bit b.
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6.2 Construction

We recall the construction of universal thresholdizer from TFHE, and non-interactive
zero knowledge proof system with pre-processing (Definition 3.13) [30, 37] and
non-interactive commitment (Definition 3.15) scheme [6]. We again note that
the description is based on the original paper [9].

Construction 6.7 We can construct a tuple of PPT algorithms as follows:

• UT.Setup(1λ, d,At,x) :
1. Sample TFHE keys (tfhepk, {tfhesk}i∈[N ])← TFHE.Setup(1λ, 1d,At).
2. Sample cti ← TFHE.Enc(tfhepk, xi) for i = 1, . . . , k.
3. Generate reference strings (σV,i, σP,i)← PZK.Pre(1λ), commitment ran-

domness ri ← {0, 1}λ and commitments comi ← C.Com(tfheski, ri) for
i = 1, . . . , N .

4. Return pp and sk as follows:

pp =
(
tfhepk, {cti}i∈[k], {σV,i}i∈[N ], {comi}i∈[N ]

)
, ski = {tfheski, σP,i, ri}i∈[N ]

• UT.Eval(pp, ski, C) :
1. Compute ĉt← TFHE.Eval(tfhepk, C, ct1, ct2, . . . , ctk)
2. Compute pi ← TFHE.PartDec(tfhepk, ĉt, tfheski)
3. Construct a statement Ψi = Ψi(comi, ĉt,pi) that has the following rela-

tion

∃ (tfheski, ri) : comi = C.Com(tfheski; ri)∧pi = TFHE.PartDec(pp, ĉt, tfheski)

4. Generate a NIZK proof πi ← PZK.Prove(σP,i, Ψi, (tfheski, ri))
5. Return yi = (pi, πi)

• UT.Verify(pp, yi, C) : Parse yi = (pi, πi) and construct a statement Ψi =
Ψi(comi, ĉt,pi) and return the result of

PZK.Verify(σV,i, Ψi, πi).

• UT.Combine(pp, {yi}i∈S) : Parse yi = (pi, πi) and return the result of

TFHE.FinDec(tfhepk, {pi}i∈S).
Consequently, we directly apply the following theorem. For more details, we

refer [9].

Theorem 6.8 ([9]) Suppose that there are cryptographic schemes that satisfies
the following:

• threshold fully homomorhpic encryption that satisfies compactness (Defini-
tion 5.3), correctness of evaluation (Definition 5.2), semantic security (Def-
inition 5.4) and simulation security (Definition 5.5).
• zero knowledge proof system with pre-processing which satisfies zero-knowledge
and soundness.
• non-interactive commitment scheme that holds perfect binding and compu-
tational hiding.

Then, Construction 6.7 is an universal thresholdizer scheme such that com-
pactness (Definition 6.2), evaluation correctness (Definition 6.3), verification
correctness (Definition 6.4), robustness (Definition 6.5) and security (Defini-
tion 6.6).
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Supplementary material:
Deferred Proofs

A Proofs in Section 2

A.1 Proof of Proposition 2.1

Let S(L) = sk ∈ Zq be a secret key that we want to share andU(L) = D be a share

matrix. Let R(L) = (S(L), r(L))T ∈ Zm
q be a vector where r(L) = (r

(L)
2 , · · · , r(L)

m )

is a random vector and its elements are uniformly sampled, r
(L)
2 , · · · , r(L)

m ← Zq.
By repeated matrix multiplications, we can generalize that for an integer 1 ≤
i ≤ L, level-(L− i) secret shares S(L−i), share matrix U(L−i), and input vector
R(L−i) are as follows:

S(L−i) = U(L−i+1) ·R(L−i+1) ∈ Zℓi

q ,

U(L−i) = Iℓi ⊗D =


D 0 · · · 0
0 D · · · 0

0 0
. . .

...

0 0 · · · D

 ∈ Zℓi+1×m·ℓi
q ,

R(L−i) = (S(L−i)[1], r
(L−i)
2 , · · · , r(L−i)m ,S(L−i)[2], r

(L−i)
m+2 · · · , r

(L−i)
m·ℓi )T ∈ Zm·ℓi

q

= P(L−i) · (S(L−i)[1],S(L−i)[2], · · · ,S(L−i)[ℓi], r
(L−i)
2 , · · · , r(L−i)m·ℓi )T

= P(L−i) · (S(L−i), r(L−i))T ,

where P(L−i) is a permutation matrix and r
(L−i)
2 , · · · , r(L−i)m·ℓi ← Zq and r(L−i) =

(r
(L−i)
2 , · · · , r(L−i)m·ℓi ) ∈ Z(m−1)·ℓi

q .

Actually, the permutation matrix P(L−i) is defined to simply express the
share matrix of SS(L). Now, we can compute the share matrix M(L) such that
S(0) = M(L) · (sk, r(L), r(L−1), · · · , r(1)). Then we can express S(0) as follows.

S(0) = U(1) ·R(1) = U(1) ·P(1) ·

[
S(1)

r(1)

]

= U(1) ·P(1) ·

[
U(2) ·P(2) 0

0 I

]
·

S(2)

r(2)

r(1)





= U(1) ·P(1) · · ·


U(L) ·P(L) 0 · · · 0

0 I · · · 0
...

...
. . .

...

0 0 · · · I

 ·

S(L)

r(L)

...

r(1)



M(L) = U(1) ·P(1) ·

[
U(2) ·P(2) 0

0 I

]
· . . . ·


U(L) ·P(L) 0 · · · 0

0 I · · · 0
...

...
. . .

...

0 0 · · · I

 ,

where U(L) · P(L) = D. Then, we show that SS(L) is a linear secret sharing
scheme of sk for all positive integer L. ⊓⊔

A.2 Lemma for (2s − 1)-input majority function

Lemma A.1 ([28]) Let X1, · · · , X2s−1 ← {0, 1} be three independent identi-
cally distributed random variables, and p := Pr[Xi = 1] for all i. Then, following
properties hold:

1. p′ := Pr[MAJs(X1, · · · , X2s−1) = 1] =

s−1∑
j=0

(
2s− 1

j

)
· p2s−1−j(1− p)j.

2. δ := p− 0.5, it holds that p′ = 0.5 +
(

2s−1
4s−1 ·

(
2s−2
s−1

)
−O(δ)

)
· δ.

3. p′ <
(
2s−1

s

)
ps.

Proof. 1. Pr[MAJs(X1, · · · , X2s−1) = 1] = Pr[X1 + · · · +X2s−1 = s, · · · , 2s −

1] =

s−1∑
j=0

(
2s− 1

j

)
· p2s−1−j(1− p)j .

2. Since p = 0.5 + δ,

p′ =

s−1∑
j=0

(
2s− 1

j

)
·
(
1

2
+ δ

)2s−1−j (
1

2
− δ

)j

=

s−1∑
j=0

(
2s− 1

j

)
·
(

1

22s−1
+ (2s− 1− j) · 1

22s−2
· δ − j · 1

22s−2
· δ +O(δ2)

)

=
1

2
+

s−1∑
j=0

2s− 1

22s−2
·
((

2s− 2

j

)
· δ −

(
2s− 2

j − 1

)
· 1

22s−2
· δ
)
+O(δ2)

=
1

2
+

(
2s− 1

4s−1
·
(
2s− 2

s− 1

)
−O(δ)

)
· δ.

3.

p′ =

s−1∑
j=0

(
2s− 1

j

)
· p2s−1−j(1− p)j
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<

(
2s− 1

s− 1

)
ps ·

s−1∑
j=0

(
s− 1

j

)
· ps−1−j(1− p)j

=

(
2s− 1

s− 1

)
ps.

By Lemma A.1, the iteration number is to construct an N -input majority
function is logcs N + O(1) + logs N where cs = 2s−1

4s−1 ·
(
2s−2
s−1

)
. Then, the total

number of secret shares is O((2s− 1)is) ≈ O(N logcs
(2s−1)+logs(2s−1)).

In [15], the authors provide lower and upper bound of the size of cs.

1√
π
· 2s− 1√

s− 1/2
<

2s− 1

4s−1
·
(
2s− 2

s− 1

)
<

1√
π
· 2s− 1√

s− 1

Therefore, logcs(2s − 1) + logs(2s − 1) is a decreasing function for s and lower
bound is 3. ⊓⊔

A.3 Proof of Lemma 2.3

Proof. For j ∈ [N ] and S⊂[N ] ∪ {0} with the threshold value t, the Lagrange

coefficient λS
i,j can be represented by

∏
m∈S\{i}

j −m

i−m
for all i ∈ S. Then, the

numerator and denominator of Lagrange coefficient λS
i,j have the following prop-

erties: ∏
m∈S\{i}

(j −m)


 ∏

m∈N\{j}

(j −m)

 = (−1)N−jj! · (N − j)!

N !,

 ∏
m∈S\{i}

(i−m)


 ∏

m∈N\{i}

(i−m)

 = (−1)N−ii! · (N − i)!

N !.

Therefore, N ! ·λS
i,j , and N ! · 1

λS
i,j

are both integers and their bound are (N !)2.

B Proofs in Section 5

The proofs are almost the same as the original proofs in the full version of [9].

B.1 Proof of Theorem 5.7

It is obvious that the encryption (evaluation) of TFHE is equal to the encryption
of FHE. Thus, the compactness of TFHE automatically holds whenever FHE
satisfies the compactness. ⊓⊔
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B.2 Proof of Theorem 5.8

By Construction 5.6, the following satisfies:

• Given the secret key of fully homomorphic encryption fhesk, it is splitted as
follows:

(share
(0)
1 , · · · , share(0)

(2s−1)L)← SS.Share(fhesk,At)

where SS a level-L Shamir secret sharing scheme with Vs in Section 4.2.

• The setup algorithm returns pk = fhepk and ski = {share(0)j }j∈Ti
for i ∈ [N ].

• The partial decryption algorithm outputs pi = {p̂j
(0)}j∈Ti , where

p̂
(0)
j = FHE.Dec0(share

(0)
j , ct) + ((2s− 1)!)L · ej ∈ Zq

for every j ∈ Ti = {j | Pi has share
(0)
j } and any (valid) ciphertext ct.

Let T (0) ⊆ ∪i∈STi be the minimal valid share set for S ∈ At. Then, {share(0)j }j∈T (0)

can be recovered to the secret key sk using the iterative secret sharing on Vs in
Section 4.2.

Let T (i) be a family of indices such that T (i) = {k | share(i)k can be recovered by {share(0)j }j∈T (0)}
for 1 ≤ i ≤ L. Then, the correctness of TreeSSS, fhesk can be expressed as fol-
lows:

fhesk = share(L)

=
∑

jL−1∈T (L−1)

λ
S

(L−1)
jL−1

jL−1
· share(L−1)jL−1

=
∑

jL−2∈T (L−2)

λ
S

(L−1)
jL−1

jL−1
· λ

S
(L−2)
jL−2

jL−2
· share(L−2)jL−2

...

=
∑

j∈T (0)

λ
S

(L−1)
jL−1

jL−1
· · ·λ

S
(1)
j1

j1
· λS

(0)
j

j · share(0)j

where jk is an index of level-k secret shares which uses share
(0)
j to recover itself,

S
(k)
jk

is a set of level-k secret shares including share
(k)
jk

which recover a level-(k+1)

secret share share
(k+1)
jk+1

, and the Lagrange coefficient λ
S

(k)
jk

jk
are obtained from the

Lagrange polynomial of Shamir’s secret sharing SS(1).
On top of this construction, the linearity of FHE.Dec0 provides the following

relation:∑
j∈T (0)

λ
S

(L−1)
jL−1

jL−1
· · ·λ

S
(1)
j1

j1
· λS

(0)
j

j · p̂(0)
j
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=
∑

j∈T (0)

λ
S

(L−1)
jL−1

jL−1
· · ·λ

S
(1)
j1

j1
· λS

(0)
j

j · (FHE.Dec0(share(0)j , ct) + ((2s− 1)!)Lej)

= FHE.Dec0

 ∑
j∈T (0)

λ
S

(L−1)
jL−1

jL−1
· · ·λ

S
(1)
j1

j1
· λS

(0)
j

j · share(0)j , ct


+

∑
j∈T (0)

λ
S

(L−1)
jL−1

jL−1
· · ·λ

S
(1)
j1

j1
· λS

(0)
j

j · ((2s− 1)!)Lej

= FHE.Dec0(FHEsk, ct) +
∑

j∈T (0)

λ
S

(L−1)
jL−1

jL−1
· · ·λ

S
(1)
j1

j1
· λS

(0)
j

j · ((2s− 1)!)Lej

= µ⌊q
2
⌉+ e+

∑
j∈T (0)

λ
S

(L−1)
jL−1

jL−1
· · ·λ

S
(1)
j1

j1
· λS

(0)
j

j · ((2s− 1)!)Lej .

Consequently, FHE.Dec1(
∑

j∈T (0) λ
S

(L−1)
jL−1

jL−1
· · ·λ

S
(1)
j1

j1
· λS

(0)
j

j · p̂(0)
j ) returns the cor-

rect messages when the error term is appropriately bounded because of Defini-
tion 3.12.

Let esm be a noise smudging error of the form
∑

j∈T (0) λ
S

(L−1)
jL−1

jL−1
· · ·λ

S
(1)
j1

j1
·λS

(0)
j

j ·
((2s−1)!)Lej . By Lemma 2.3, it holds that |esm| ≤ ((2s−1)!)2L · (2s−1)L ·Bsm,
and it implies |e+ esm| ≤ B + ((2s− 1)!)2L · (2s− 1)L ·Bsm ≤ ⌊ q4⌉. Thus, FHE
satisfies the its correctness, which directly implies that TFHE also satisfies the
correctness. ⊓⊔

B.3 Proof of Theorem 5.9

The encryption in TFHE is equivalent to that in FHE. As per the privacy of secret
sharing, if a set of partial secret shares {ski}i∈S are kept confidential, then they
do not reveal any information about the secret key sk when S /∈ At. This means
that the security of FHE implies the semantic security of TFHE.

36


	Improved Universal Thresholdizer from Threshold Fully Homomorphic Encryption

