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Abstract. We will revisit recent techniques and results on the cryp-
toanalysis of local pseudorandom number generators (PRGs). By doing
so, we will achieve a new attack on PRGs whose time complexity only
depends on the algebraic degree of the PRG.

Concretely, against PRGs F : {0, 1}n → {0, 1}n
1+e

we will give an alge-
braic attack whose time complexity is bounded by

exp(O(log(n)degF/(degF−1) · n1−e/(degF−1)))

and whose advantage is at least 1− o(1) in the worst case.

To the best of the author’s knowledge, this attack outperforms current
attacks on the pseudorandomness of local random functions with guar-
anteed noticeable advantage and gives a new baseline algorithm for local
PRGs. Furthermore, this is the first subexponential attack that is appli-
cable to polynomial PRGs of constant degree over fields of any size with
a guaranteed noticeable advantage.

Keywords: PRGs · NC0 · Local Random Functions · Polynomial Equa-
tion Systems · Algebraic Attacks · Subexponential · Lower Bounds

1 Introduction

Pseudorandom Number Generators. A pseudorandom number generator (PRG)
is a deterministic algorithm F : {0, 1}n → {0, 1}m that stretches a seed consist-
ing of n bits to a longer string of m bits. Ideally, a PRG guarantees that, if the
seed has been sampled uniformly at random, then the bitstring output by the
PRG is indistinguishable from a truly random bitstring of length m for a cer-
tain class of algorithms. PRGs are part of the foundations of modern theoretical
cryptography [23,1]. In the real world, keystream generators (which can be seen
as a more advanced form of PRGs) are a popular method to construct fast and
reliable symmetric encryption between two clients.



Local PRGs. While it is widely accepted that PRGs do exist from a practical
point of view, it is in theory not clear which computational complexity a PRG
must have to be reasonably secure while maintaining a high (i.e. polynomial)
output length. The most simple but plausibly secure PRGs are so-called local
PRGs, which have been introduced by Goldreich [22] (also known as random
local functions, Goldreich’s PRGs and PRGs in NC0). For each of its output
bits, a local PRG only needs to look up a constant number of its input bits.
This makes local PRGs from a practical and a theoretical point of view highly
efficient. In fact, local PRGs have several applications in theory:

1. Ishai, Kushilevitz, Ostrovsky & Sahai [24] showed that local poly-stretch
PRGs (i.e. m ≥ n1+e for e > 0 constant) together with oblivious transfer
imply highly efficient secure communication protocols for two parties eval-
uating a circuit on private data. In the semi-honest model, where the users
abide to the protocol but try to learn as much about the other party’s data
as possible, the authors could construct a protocol where the computational
complexity for both parties is linear in the size of the circuit to be evalu-
ated. In the malicious model, where users may deviate from the protocol,
the authors constructed a protocol where the computational complexity of
both parties is slightly superlinear in the size of the circuit.
The first protocol has been extended to arithmetic circuits assuming local
poly-stretch PRGs F : kn → km over a field k [5].

2. Further, local PRGs are interesting for multiparty-computation (MPC) pro-
tocols and fully-homomorphic encryption (FHE) schemes. These primitives
suffer strongly from computing circuits of large depths. While the complex-
ity of MPC protocols rise with the depth of the to be evaluated circuit, the
noise of FHE ciphers grows substantially with the multiplicative depth of the
circuit that is to be evaluated on encrypted data. In the case of lattice-based
FHE, this forces one to weaken the underlying learning with errors (LWE)
assumption to support the evaluation of deeper circuits.

3. Another important application of local PRGs are indistinguishability obfus-
cation (iO) schemes. Jain, Lin & Sahai [25,26] gave recently new iO schemes
whose security is reduced to a number of assumptions, including local PRGs
of polynomial stretch.

Subexponential Security. In particular, the recent iO constructions of Jain, Lin
& Sahai [25,26] need that the local PRGs they use have stronger security guar-
antees than usual: the advantage of each poly-time adversary of distinguishing
the output of the PRG from uniform randomness must not only be negligible,
but smaller than the inverse of some subexponential functional. They dub this
subexponential security, and, in fact, require subexponential security of all as-
sumptions they use.

This raises the interest in attack algorithms on local PRGs whose runtime
are beyond poly-time and whose advantage is below negligible. While some ef-
ficient attacks on local PRGs have been known for quite some time, there has
been a recent interest in subexponential attacks on PRGs [33,7,9,39,16]. While
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efficient attacks are only applicable when a certain stretch of the PRG is given,
subexponential attacks are applicable even for small polynomial stretches, and
degrade gracefully with decreasing stretch of PRGs. Hence, when estimating the
concrete security of Goldreich’s PRGs, existing subexponential attacks must be
taken into consideration [16].

Faster Baselines for Local PRGs. In [39], the author gave new algebraic attacks
on local PRGs and PRGs of constant degree over large fields. In the initial
version of [39], he mistakenly claimed that his attacks would give new baselines
for local PRGs. This claim was erroneous as there are so-called shrinking-set
attacks [38,6] that provably break local PRGs of poly-stretch in subexponential
time and are by a log-factor in the exponent faster than the attacks given in
[39].

However, as we will show in this paper, by improving the techniques of [39]
we can improve substantially the time complexity of algebraic attacks on PRGs
s.t. their runtimes only depend on the degree of PRGs rather than their locality
and still retain a high advantage. Since the degree of a PRG must always be
smaller than its locality, this yields a new algebraic attack on local PRGs that
surpasses the shrinking-set attack.

1.1 Contribution

In this work, we will revisit and improve the techniques of [39]. On PRGs F :
{0, 1}n → {0, 1}m of constant degree d over Z2 and poly-stretch m ≥ n1+e, our
improvements will yield an attack algorithm of subexponential time complexity

2O(log(n)d/(d−1)·n1−e/(d−1)) and high advantage 1−O
(
(log(n)/ne)

1/(d−1)
)
.

We give a generalized version of this attack that works on constant-degree
PRGs F : kn → km over any field k.

To the best of the author’s knowledge, this is the first attack on binary
constant-degree poly-stretch PRGs that is provably subexponential and has a
provable non-negligible advantage, even in the worst case. Since the time com-
plexity of this attack is independent of the locality of the PRG, this attack
outperforms other subexponential attacks on local PRGs that have a provably
non-negligible advantage in the worst case and gives us new faster baseline for
distinguishing the output of random local functions from true randomness.

1.2 Technical Overview

For a PRG F , we will in the following denote by degF its (algebraic) degree
over its base field, and by locF its locality.

Note that the attacks against (local) PRGs in [39] are based on two simple
tricks: a basic algebraic attack and a hashing resp. reduction technique. The basic
algebraic attack has a subexponential runtime and works well against PRGs
F : kn → km of constant degree over a large field k, however it struggles with
PRGs over small fields, e.g. k = Z2 = {0, 1}.
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The hashing technique compensates this problem by turning a binary PRG
F : {0, 1}n → {0, 1}m into a PRG G : kn → km

′
with m′ ≈ m s.t. the degree of

G equals the locality of F .
We will revisit both techniques in more detail:

The Basic Algebraic Attack. This attack appears in [39] as well as in [38]. Assume
we are given a PRG F : kn → km of constant degree over a field k. Denote by
f1, . . . , fm ∈ k[X] := k[X1, . . . , Xn] the polynomials that compute the output
values of F .

Now assume that we were aware of an algebraic relationship h between
the polynomials f1, . . . , fm. I.e., a new polynomial h ∈ k[Y ] := k[Y1, . . . , Ym]
s.t. h(Y1, . . . , Ym) is not the zero polynomial, but h(f1(X), . . . , fm(X)) is the
zero polynomial in k[X]. The key observation is that we can use h to check if a
point y ∈ km lies in the image of F . Indeed, if y equals F (x) for some x ∈ kn,
then we must have

h(F (x)) = (h ◦ F )(x) = (h(f1, . . . , fm))(x) = (0)(x) = 0. (1)

On the other side, because of the famous Schwartz-Zippel Lemma we have for a
uniformly random y ← km

Pr
y←km

[h(y) ̸= 0] ≥ 1− deg h

#k
. (2)

A distinguisher that uses h to play the pseudorandomness game for the PRG F
would therefore have an advantage of 1− deg h

#k , which converges towards 1 if the
size of k grows faster than the degree of h.

Hence, an algebraic relationship of low degree among the output values of
F helps substantially in distinguishing the outputs of F from true randomness.
However, how can we compute such a relationship and, more importantly, how
can we bound the degree of h in the worst case?

In [39], it was shown that h will be sublinear if F is of poly-stretch and
of constant degree. In fact, we have deg h ∈ O(n(1 − e

d−1 )) if m ≥ n1+e and
d = degF . This was shown by considering the morphism of rings

ϕ : k[Y1, . . . , Ym] −→ k[X1, . . . , Xn] (3)

g(Y1, . . . , Ym) 7−→ g(f1(X), . . . , fm(X)) (4)

that substitutes each variable Yi by the polynomial fi. Now, h is a non-zero
kernel element of ϕ of minimal degree. To estimate the degree of h, we restrict
ϕ to the subspace of

k[Y ]≤D := k[Y1, . . . , Ym]≤D := {g ∈ k[Y ] | deg g ≤ D} (5)

of polynomials of degree ≤ D. When restricted to k[Y ]≤D, the image of ϕ is
contained in

k[X]≤dD := k[X1, . . . , Xn]
≤dD := {g ∈ k[X] | deg g ≤ dD} . (6)
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In fact, when we plug the degree-d polynomials in g(Y1, . . . , Ym) the degree of
the resulting polynomial ϕ(g) = g(f1(X), . . . , fm(X)) will be stretched a factor
of d at most. This means, by restricting ϕ to k[Y ]≤D we get a linear map

ϕD : k[Y1, . . . , Ym]≤D −→ k[X1, . . . , Xn]
≤dD (7)

of spaces of finite dimensions. According to the dimension formula for linear
maps we now have

dimkerϕD ≥dim k[Y1, . . . , Ym]≤D − dim k[X1, . . . , Xn]
≤dD (8)

=

(
m+D

D

)
−
(
n+ dD

dD

)
. (9)

I.e., we can guarantee the existence of an algebraic relationship of degree ≤ D
whenever

(
m+D
D

)
>

(
n+dD
dD

)
.

In [39], it was shown that Eq. (9) does hold for some sublinear D. In fact, it
has been shown:

Lemma 1 ([39] Lemma 7). Let d ∈ N, d ≥ 2. Let m : N → N be a function
with m(n) ≥ 22d−1 · dd−1 · n.

Then, we have for all integers n ≥ 2d(
m(n) +D(n)

D(n)

)
>

(
n+ dD(n)

dD(n)

)
(10)

where D(n) =

⌈(
(2n)d

m

) 1
d−1

⌉
. For m(n) ≥ n1+e, we in particular have for n

large enough

D(n) =
⌈
2

d
d−1 · n1−

e
d−1

⌉
∈ O(n1−

e
d−1 ). (11)

Now, how do we find h ∈ kerϕ of degree ≤ D ∈ O(n1−
e

d−1 )? Since we know that
h is a non-zero element of kerϕD, it suffices to write down a matrix representation
M of ϕD : k[Y ]≤D → k[X]≤dD. M is a matrix of shape

(
m+D
D

)
×

(
n+dD
dD

)
over

k. The algebraic relation h corresponds to non-zero kernel vector of M . Hence,
we can use Gaussian elimination to find h. Eliminating the rows of M costs

O(
(
m+D
D

)2 · (n+dD
dD

)
) arithmetic operations. Therefore, the memory complexity

of finding h is
(
m+D
D

)
·
(
n+dD
dD

)
∈ nO(D) = 2O(log(n)·n1−e/(d−1)) and the time

complexity lies in O(
(
m+D
D

)2 · (n+dD
dD

)
) ⊂ 2O(log(n)·n1−e/(d−1)). Now, evaluating

h on a point y ∈ km costs deg h ·
(
m+deg h

m

)
∈ 2O(log(n)·n1−e/(d−1)) arithmetic

operations in k.
In total, we get an attack algorithm with space and time complexities in

2O(log(n)·n1−e/(d−1)) and noticeable advantage for fields k of size ≥ n. Formally,
it was shown:

Theorem 1 ([39] Theorem 2). Let m ∈ ω(n). Let F : kn → km be a PRG
of constant degree degF over k.
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Then, there is an algebraic attack on F whose time and space complexities

are bounded from above by nO((ndeg F /m)
1

deg F−1 ). Further, the advantage of this
attack in the pseudorandomness game of F (Definition 4) is lower bounded by

advF (A) ≥ 1−O
((
ndegF /m

) 1
deg F−1 · 1

#k

)
. (12)

For m ≥ n1+e and #k ≥ n, the attack is a subexponential algorithm with

time and space complexities in 2O(log(n)·n1−e/deg F−1) and high advantage ≥ 1 −
O(n−e/(degF−1)).

Hashing to Larger Fields. Note that the above attack does not fare well against
PRGs of constant degree over small fields. In the reign of, let’s say, Z2 = {0, 1},
one can alter the above algorithm to find an algebraic relationship h that is
reduced modulo the field equations Y 2

1 − Y1, . . . , Y 2
m − Ym and prove that the

probability of h vanishing on a random point y ← {0, 1}m is bounded by

Pr
y←{0,1}m

[h(y) = 0] ≤ 1− 2− deg h. (13)

However, this will only yield a distinguishing attack with advantage ≥ 2− deg h.
Since the degree of h will be sublinear in the worst case, we can only guarantee
a subexponentially small advantage of this attack, which is very unsatisfactory.

To solve this problem for local PRGs, a simple hashing resp. reduction tech-
nique was introduced in [39]: if we are given a PRG F : {0, 1}n → {0, 1}m and a
point y ∈ {0, 1}m, the idea is to convert F and y to a new PRG G : {0, 1}n → km

′

and a new point y ∈ km′
s.t. the following things hold:

1. The size of the field k is large enough i.e. #k ≥ n.
2. m′ is only by a small factor smaller than m.
3. y′ lies in the image of G if y lies in the image of F .
4. y′ is close to being uniformly random over km

′
if y is sampled uniformly

random from {0, 1}m.

To achieve this, the field k = Zp for a prime p ≥ n was considered in [39]. Set
m′ := ⌊m/(3 ⌈log p⌉)⌋ ∈ O(m/ log n) and note that the distribution of random
matrices A ← Zm×m′

p gives us a universal family of hash functions of type

{0, 1}m → Zm′

p . According to the leftover hash lemma, the matrix-vector product
A ·y is statistically close to being uniform for y ← {0, 1}m. In fact, we can bound
its statistical distance from z ← Zm′

p by

∆ ((A,Ay), (A, z)) ≤ 2−n. (14)

This justifies to set y′ := A · y ∈ Zm′

p .

Now, we define G : {0, 1}n → Zm′

p as the concatenation G := A ◦ F . I.e.,
G first evaluates F normally on its seed and then applies the matrix A to the
binary output of F (over Zp). It is clear that y

′ = A · y must lie in G({0, 1}n) =
A · F ({0, 1}n) if y lies in F ({0, 1}n).
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We are now in a situation where we can apply the algorithm of Theorem 1
on G and y′ to decide if y is an image of F or uniformly random. However,
to bound the advantage and runtime of this algorithm, we need to know the
algebraic degree of G or, more formally, of a representation of G by constant-
degree polynomials. It can be shown that G can be computed by polynomials
of degree d when F is of locality d. I.e., the degree of G (which influences the
performance of our algorithm) equals the locality of F , in general.

In total, we get a distinguishing algorithm for the PRG F : {0, 1}n → {0, 1}m,

m ≥ n1+e, with time and space complexities in 2O(log(n)locF/(locF−1)·n1−e/(locF−1))

and advantage ≥ 1−O
(
(log(n)/ne)

1/(locF−1)
)
where locF is the locality of F

(the additional log(n)1/(locF−1) factor in the time complexity and the advantage
of our attack stems from the fact that m′ is by a logarithmic factor smaller than
m).

A Bad Trade-Off. Note, that this attack has a high advantage, since ne/(locF−1)

grows substantially faster than log(n)1/(locF−1). However, the runtime of our
attack worsened: while the time and space complexities of the attack in Theo-
rem 1 only depend on the degree of the PRG, the complexities of the new attack
depend on its locality. In particular, the attack that uses the old hashing tech-
nique in [39] is not applicable to PRGs that are computed by dense polynomials
of constant degree over the binary numbers.

In the following, we will improve the hashing technique and, as a result, gain
a new subexponential attack algorithm whose runtime is independent of the
locality of the PRG.

The New Extension Technique. The problem when hashing from Z2 to Zp is
that the embedding Z2 ↪→ Zp that maps zero to zero and one to one is not
homomorphic. While this inclusion preserves multiplication, it does not preserve
addition. Indeed, we have 1 + 1 = 0 in Z2 but not in Zp if p > 2. To get a
homomorphic inclusion we need to consider extension fields of Z2.

Set N := 2⌈logn⌉ and denote by FN the Galois field that has N elements. Up
to isomorphism, FN is uniquely determined by the number of its elements and
there exists a natural homomorphic ring homomorphism Z2 ↪→ FN .

In algebra, it is well known that finite fields are perfect, i.e. each extension
of finite fields is separable. The primitive element theorem postulates that each
finite separable field extension k ⊂ k is generated by one element. I.e., there is
one ζ ∈ k s.t. k has the basis 1, ζ, . . . , ζr−1 as k-vector space (where r = dimk k
is the dimension of k as k-vector space). In particular, we have

k = k[ζ]
∼
= k ⊕ ζ · k ⊕ ζ2 · k ⊕ . . .⊕ ζr−1 · k ∼= kr (15)

where the second and third equalities are isomorphisms of vector spaces (⊕
denotes the direct sum of vector fields).

Since the extension Z2 ⊂ FN is separable, it is also generated by one element.
Let’s call this element ζ, too. Eq. (15) implies that the linear map

ψ : Z⌈logn⌉
2 −→ FN (16)
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(b1, . . . , b⌈logn⌉) 7−→ b1 + b2 · ζ + . . .+ b⌈logn⌉ · ζ⌈logn⌉−1 (17)

is an isomorphism of vector spaces. This leads to the following two observations:

1. Since ψ is bijective, i.e. one-to-one and onto, it maps uniformly random

vectors in Z⌈logn⌉
2 to uniformly random elements in FN . I.e., if we sample

b← Z⌈logn⌉
2 then ψ(b) is identically distributed as c← FN .

2. The natural inclusion Z2 ↪→ FN extends to a natural inclusion of polynomial
rings

Z2[X1, . . . , Xn] ↪→ FN [X1, . . . , Xn]. (18)

In fact, we can consider Z2[X1, . . . , Xn] to be a subring of FN [X1, . . . , Xn].
This inclusion preserves functionality and degree: if we have a polynomial f ∈
Z2[X1, . . . , Xn] we can – via the inclusion Z2[X1, . . . , Xn] ⊂ FN [X1, . . . , Xn]
– consider f to be a polynomial in FN [X1, . . . , Xn]. Interpreted as a poly-
nomial in FN [X1, . . . , Xn], f will evaluate on {0, 1}n to the same values as
before. Further, f – interpreted as element in FN [X1, . . . , Xn] – has the same
degree as f ∈ Z2[X1, . . . , Xn]. This comes from the fact that – when we go
from Z2[X1, . . . , Xn] to FN [X1, . . . , Xn] – we only “change” the coefficients
of f .
ψ now extends to an isomorphism of vector spaces

ψ : (Z2[X1, . . . , Xn])
⌈logn⌉ −→ FN [X1, . . . , Xn] (19)

(f1, . . . , f⌈logn⌉) 7−→ f1 + ζ · f2 + . . .+ ζ⌈logn⌉−1 · f⌈logn⌉. (20)

This isomorphism is degree-preserving: if f1, f2, . . . , f⌈logn⌉ are all of degree

≤ d, then so are their scaled versions f1, ζ · f2, . . . , ζ⌈logn⌉−1 · f⌈logn⌉ and the

linear combination ψ(f1, . . . , f⌈logn⌉) = f1 + ζ · f2 + . . .+ ζ⌈logn⌉−1 · f⌈logn⌉.

Now, given a PRG F : {0, 1}n → {0, 1}m of degree d and a point y ∈ {0, 1}m,
we want to apply ψ on blocks of length ⌈log n⌉ of F and y. Assume for the
simplicity of this exposition that m is a multiple of ⌈log n⌉ i.e. there is an m′ ∈ N
s.t. m = ⌈log n⌉ ·m. Further, consider the following matrix 1 of shape m′ ×m
that applies the linear map ψ block-wise on its input:

A := Im′ ⊗
(
1 ζ . . . ζ⌈logn⌉−1) =

1 ζ . . . ζ⌈logn⌉−1

. . .

1 ζ . . . ζ⌈logn⌉−1

 (21)

where Im′ denotes identity matrix of shapem′×m′ and⊗ the Kronecker product.
Just as before, we can apply A via matrix-vector multiplication on F and y. I.e.,
we set

y′ :=A · y ∈ Fm′

N , (22)

1 It is easy to note the resemblance of A to the gadget matrix of Micciancio & Peikert
[30] in the setting of lattice-based cryptography.
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G(x) :=A · F (x). (23)

Then, y lies in the image of F iff y′ lies in the image of G. Further, y is uniformly
random from {0, 1}m iff y′ is uniformly distributed in Fm′

N . Note that for this
property we do not need to sample A uniformly random as before, and we do not
need to invoke the leftover hash lemma. However, more importantly, the degree
of the PRG G : {0, 1}n → Fm′

N , which computes F (x) and then applies A, equals
the degree of F over Z2. This comes from the fact that ψ preserves the algebraic
degree of polynomials and A applies ψ block-wise to the polynomials computing
F .

It follows that we can invoke the attack from Theorem 1 on G and y′, if we

want to decide if y lies in the image of F . If m ≥ n1+e, then m′ ≥ n1+e

⌈logn⌉ and

the attack from Theorem 1 has a time of space complexity of

2O(log(n)deg G/(deg G−1)·n1−e/(deg G−1)) = 2O(log(n)deg F/(deg F−1)·n1−e/(deg F−1)) (24)

and an advantage of

≥1−O
(
log(n)1/(degG−1) · n1−e/(degG−1)

N

)
(25)

≥1−O
(
log(n)1/(degG−1) · n1−e/(degG−1)

n

)
(26)

=1−O
(
log(n)1/(degG−1)

ne/(degG−1)

)
(27)

=1−O
(
log(n)1/(degF−1)

ne/(degF−1)

)
. (28)

This gives us a subexponential attack algorithm on poly-stretch PRGs F :
{0, 1}n → {0, 1}m whose runtime is independent of the locality of F . I.e., this
attack algorithm is even applicable on PRGs computed by dense polynomials of
constant degree.

While we only handled the case of binary PRGs here, the extension technique
can naturally be used for PRGs F : kn → km that are polynomial over any small
field k.

We can summarize our result as follows:

Theorem 2 (Main Result). Let F : kn → km be a PRG of constant degree
degF over some field k. Set r := max (log(n)/log(#k), 1) and assume m ∈
ω(r · n).

Then, there is an algebraic attack on F whose time and space complexities

are bounded from above by nO(( r·ndeg F

m )
1

deg F−1 ). Further, the advantage of this
attack in the pseudorandomness game of F (Definition 4) is lower bounded by

advF (A) ≥ 1−O
(r · n
m

)1/(degF−1)
≥ 1− o(1). (29)
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For m ≥ n1+e, the attack is a subexponential algorithm with time and space

complexities in 2O(log(n)·r1/(deg F−1)·n1−e/(deg F−1)) and noticeable advantage ≥ 1−
O((r/ne)1/(degF−1)).

Remark 1. The hashing technique in [39] did indeed hash from {0, 1}m to

Z⌊m/(3⌈log p⌉)⌋
p via a random matrix which induced inevitable information loss.

However, the new “extension technique” works via a bijection that maps
{0, 1}⌈logn⌉·m′

to Fm′

N without any information loss. In fact, this technique is
actually just a change in how we view the PRG F : {0, 1}n → {0, 1}m and
is reversible: a PRG G : Fn

N → Fm
N of degree d over F can be seen as a

PRG G′ : {0, 1}⌈log(n)⌉·n → {0, 1}⌈log(n)⌉·m of degree d over Z2 and a PRG
H : {0, 1}n → Fm

N of degree d over F can be seen as a PRG H ′ : {0, 1}n →
{0, 1}⌈log(n)⌉·m of degree d over Z2. We explain this further in Remark 3.

1.3 Related Work

To better understand our result we will present here existing attacks on PRGs
of constant degree and constant locality, and finally compare their performance.

Attacks on PRGs of Constant Degree.

Relinearization Attacks. Each known attack on PRGs of constant degree over
some field is of algebraic nature. A first approach is to understand the equation
F (X) = y as a polynomial equation system with n variables X1, . . . , Xn and m
polynomial equations f1(X) = y1, . . . , fm(X) = ym. By relinearizing this equa-
tion system one can generate a linear equation system, on which one can apply
Gaussian elimination. If we have enough equations, i.e.m ≥

(
n+degF
degF

)
, then with

high probability this linear equation system can be solved for a possible seed x,
or at least the satisfiability of the linear equation system can be checked. This
leads to a basic attack on polynomial PRGs that is efficient and very reliable (its
advantage is provably noticeable). This attack can already be improved: we don’t
need that m is greater than

(
n+degF
degF

)
, in fact, it suffices that m ∈ Ω(ndegF ).

If m is smaller than
(
n+degF
degF

)
, but has the same asymptotic complexity then it

suffices to populate the linear equation system with more polynomial equations
that can be generated from F (X) = y up to some constant degree.

Groebner Bases. Extending the idea of the relinearization-and-elimination al-
gorithm above leads to Groebner basis-based attacks. Groebner bases together
with a first algorithm for computing them have been introduced by Buchberger
[10]. Faster algorithms have been given by Faugère [20,19], these algorithms are
based on Macaulay matrices [28,27]. Additionally, the XL-algorithm with a lot
of variations [15,14,17,31,37] have been introduced, which also aim to compute
something that is similar to a Groebner basis. The core idea of those algorithms
is to solve the polynomial equation system F (X) = y by computing a Groebner
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basis for the ideal (f1(X)−y1, . . . , fm(X)−ym) ⊂ k[X] for some monomial order-
ing. Most algorithms do this by computing a Macaulay matrix for an increasing
degree and applying Gaussian elimination on it: the Macaulay matrix for de-
gree D is the matrix where each row represents a polynomial XI · (fi(X)− yi),
for a multi-index I with |I| ≤ D − deg fi, and where each column represents
a monomial of k[X] up to degree D. I.e., the rows of the Macaulay matrix are
the coefficient vectors of polynomials XI · (fi(X) − yi). The columns are or-
dered according to the monomial ordering. By applying Gaussian elimination
to the Macaulay matrix of degree D one can extract a Groebner basis from
it, if D is high enough. In most cases, the Groebner basis will be of the shape
{X1−x1, . . . , Xn−xn}, which allows to directly read off the solution X = x ∈ kn
of the polynomial equation system F (X) = y. Hence, Groebner basis-based at-
tacks are usually inversion attacks that try to extract the seed X = x from the
PRG problem F (X) = y.

While Groebner basis-based algorithms perform well in reality, it is hard
to give formal guarantees for them. In the worst case, the highest degree of
polynomials of a reduced Groebner basis for an equation system F (X) = y is
doubly exponential [18]. However, the doubly exponential degree only occurs in
extreme cases. On average, the maximum degree for which a Macaulay matrix
must be computed is suspected to be upper-bounded by the degree of regularity
(in the case of graded anti-lexicographic monomial orders [11,12]). The degree of
regularity is a popular heuristic for Groebner basis-based algorithms, it has been
shown to be smaller than O(n1−e/(d−1)) for a system of m ≥ n1+e equations of
degree d [39]. This would yield an inversion attack of suspected time complexity

nO(n1−e/(deg F−1)).

In the case of refutation, better bounds can be given: a Groebner basis-based
algorithm for refutation problems only checks if the equation 1 = 0 can be
deduced from a Macaulay matrix of sufficiently high degree (so the monomial
ordering does not matter, those algorithms are actually just Macaulay matrix-
based). If up to some degree the span of the rows of the Macaulay matrix does not
contain a vector that corresponds to a constant non-zero polynomial, then the
algorithm assumes that the system F (X) = y is solvable and decides that y lies
in the image of the PRG F . Otherwise, the algorithm could prove that F (X) = y
is unsatisfiable and refutes y. It has been shown [39] that such algorithms only
need to compute the Macaulay matrix up to some degree in O(n1−e/(degF−1)).
If the base field k is large enough (#k ≥ n e.g.), then this approach will provably
have an advantage of 1−o(1). Otherwise, for small fields, the advantage can still
be lower bounded by an inverse of a subexponential function. Our results here
extend to this algebraic refutation approach: according to Remark 3, it suffices
to compute the Macaulay matrix up to some degree in O(log(n)1/(degF−1) ·
n1−e/(degF−1)) for this algorithm to have a provable advantage of 1− o(1).

However, we want to point out that extending a PRG F : kn → km to

G : kn → k
m′

, m′ ≈ m/(log(n)/ log(#k)), will not improve the performance of
a Groebner basis resp. Macaulay matrix-based algorithm (i.e. solving G(x) = y′

will not be simpler than solving F (x) = y for such algorithms). The reason is that
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– simply put – the field extension technique here will already be implicitly used
when computing Macaulay matrices, even when all computations happen over
the small base field k (as Remark 3 explains one polynomial over k inm′ variables
corresponds to many polynomials over k in m variables of the same degree).
Therefore, to use the results here on Groebner basis resp. Macaulay matrix-
based algorithms it suffices to increase the degree up to which the Macaulay
matrix is computed by a small factor of log(n)1/(degF−1).

New Algebraic Attacks. In his master thesis, Zichron [38], gave a new algebraic
attack on polynomial PRGs of constant degree over any field. The new idea is
to find an algebraic relationship 2 among the polynomials computing the output
values of the PRG. The author proved that the time complexity of this algorithm
is subexponential and gave lower bounds for the advantage of this algorithm
[39]. In the case of small base fields (like k = Z2), the author gave a hashing
technique that improves the advantage substantially by hashing from Z2 values
to Zp values.

On a PRG F : kn → kn
1+e

, the algorithm of Zichron and the author has

a time complexity of nO(n1−e/(deg F−1)) and a noticeable advantage if k is large.
If k is small, the advantage of this algorithm can only be lower-bounded by a
subexponentially small function.

Using the hashing technique of [39] on PRGs F : {0, 1}n → {0, 1}n1+e

yields

an algorithm of time complexity nO(log(n)1/(locF−1)·n1−e/(locF−1)) and advantage
1− o(1). However, note that in this case the complexity depends on the locality
of the PRG, which makes this algorithm with hashing technique only applicable
to binary PRGs of constant locality.

Barrier of Applebaum and Lovett. Unfortunately, the time complexity of al-
gebraic algorithms must be subexponential in general. In fact, Applebaum &
Lovett proved that the time complexity of an algebraic algorithm deciding if y ∈
{0, 1}n1+e

lies in the image of a random local function F : {0, 1}n → {0, 1}n1+e

is lower-bounded by nO(n1−16·e/(d−1)) where d is the rational degree 3 of the pred-
icate of F [8, Theorem 5.4].

It is an interesting open problem to construct new algebraic algorithms that
perform provably faster than the barrier of Applebaum and Lovett and have
non-negligible advantage. Note that such new algorithms must avoid computing
Macaulay matrices.

2 Note that such a relationship h(Y ) corresponds to a non-trivial element of the elim-
ination ideal (f1(X) − Y1, . . . , fm(X) − Ym) ∩ k[Y ]. Since a generating set of this
elimination ideal can be computed by a Groebner basis (via an elimination order)
we see that algebraic relationships and Macaulay matrices are related. See [39] for a
detailed discussion of parallels.

3 The rational degree of a predicate P : {0, 1}locF → {0, 1} is defined as the smallest
number e s.t. there exist polynomials Q,R ∈ Z2[X1, . . . , XlocF ] of degree e s.t. we
have P (X) · Q(X) = R(X) mod (X2

1 − X1, . . . , X
2
locF − X2) and Q ̸= 0. In other

words, P can be written as the rational function P (X) = R(X)
Q(X)

of degree e whenever
Q does not evaluate to zero.
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Attacks on PRGs of Constant Locality. Local PRGs [22] have been subject
to cryptoanalysis for a long time. Good surveys on some attacks and on their
security can be found In [2,16].

We will try to give here an overview on the most important attacks on local
PRGs F : {0, 1}n → {0, 1}m of polynomial stretch m ≥ n1+e over Z2. For
simplicity, we will assume that F is a random local function, i.e. for computing
each output bit it evaluates the same predicate P : {0, 1}locF → {0, 1} on a
constant set of input bits. The set of input bits depends on the corresponding
output bit. The security of random local functions has been extensively discussed
by Applebaum [2].

Linear Tests as Sanity Checks. A linear test is a degree-1 polynomial L ∈
Z2[Y1, . . . , Ym] that gets evaluated on the potential output y of a PRG. If
y ← {0, 1}m is uniformly random, then the output L(y) is balanced. However,
for an image y = F (x), the output L(y) may be biased towards zero or one. In
fact, the bias of a PRG F : {0, 1}n → {0, 1}m is defined to be the maximum of
distinguishing advantages of linear tests of F , and one strives to construct PRGs
of negligible bias.

It has been shown that the bias of F depends mainly on the predicate P that
is used by F [4]. Further, for random local functions linear tests are a good first
check to probe their security: if a random local function has a low bias, it is also
secure against a large corpus of other attacks [4,2]. Further, we know of random
local functions that have a provably negligible bias: in fact, [32] constructed a
predicate of locality 5 and a local PRG F : {0, 1}n → {0, 1}cn that uses this

predicate s.t. the bias of F is provably 2−n/O(c4) (for small choices of c > 1).
Further, Viola [36] showed that one can generically create PRGs that are

secure against low-degree tests by using PRGs of low bias.

Correlation-Based Attacks. A predicate P : {0, 1}locF → {0, 1} is called c-
correlated if there are c different input variables Xi1 , . . . , Xic s.t. P (X)⊕Xi1 ⊕
. . .⊕Xic is unbalanced (i.e. its probability to evaluate to zero on a random input
x← {0, 1}locF is not 1/2). A predicate that has a high correlation is also called
resilient (when we say “high correlation” we mean it is only c-correlated for
large values of c).

Local random functions of low correlation can be efficiently inverted if they
have sufficient stretch [2,3,32,9]. In fact, if F : {0, 1}n → {0, 1}m stems from a
predicate of correlation c, and we have m ∈ Ω(nc/2) + ω(n) then we can deduce
from Ω(nc/2) equations of the system F (X) = y a new system of Ω(n) noisy
equations of the shape Xi⊕Xj = y′l. By using an SDP algorithm [13,21] on this
noisy system of locality 2, we can extract an approximation of x. By using this
approximation and ω(n) fresh equations of F (X) = y we can efficiently deduce
the correct solution x [9].

Siegenthaler showed that a predicate can either have a high algebraic de-
gree or a high correlation, but not both [35]. In fact, a balanced predicate
P : {0, 1}locF → {0, 1} must be c-correlated for c ≤ locF − degF − 1. This
leads to the following important attack: Given a PRG F : {0, 1}n → {0, 1}m
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of locality d = locF and stretch m ∈ ω(n⌊2d/3⌋/2) that stems from a predi-
cate P : {0, 1}d → {0, 1}, we can distinguish two cases: First case, we have
degF ≤ ⌊d/3⌋ ≤ ⌊2d/3⌋ /2. In this case, we can invert F by using relineariza-
tion (with high probability), since we have m ∈ ω(n⌊2d/3⌋/2) many equations.
Second case, we have degF > ⌊d/3⌋. In this case, we have for the correla-
tion c ≤ d − ⌊d/3⌋ − 1 and, hence, c ≤ ⌊2d/3⌋. In this case, the correlation-
based attack can be applied to efficiently invert F (x). It follows that a PRG
F : {0, 1}n → {0, 1}m of stretch m ∈ ω(n⌊2d/3⌋/2) and locality d cannot be
secure, at all.

O’Donnell and Witmer [33] showed that we really need a stretch of m ∈
ω(n⌊2d/3⌋/2) and that the correlation-based attack does not degrade gracefully for
smaller stretchesm. I.e., if the stretchm lies in o(n⌊2d/3⌋/2) the above attack does
not yield a subexponential attack, since the SDP algorithms have a minimum
number of equations they need to use.

Approximation-Based Attacks. Bogdanov and Qiao [9] showed that sufficiently
close approximations x′ of the seed x can help to invert the function F (x) ef-
ficiently. This leads to a subexponential inversion attack on local PRGs F :

{0, 1}n → {0, 1}n1+e

. This attack iterates over a set of 2O(n− e
2 locF ) bitstrings x′

of length n. With good probability one of those bitstrings x′ will be very close
to the correct solution x. By using this approximate solution x′ one can then
invert F (x) = y efficiently and check if the yielded solution is correct.

This leads to an inversion attack with time complexity 2O(n1− e
2 locF ).

Guess-and-Determine Attacks. Couteau, Dupin, Méaux, Rossi & Rotella [16]

gave multiple new attacks on PRGs F : {0, 1}n → {0, 1}n1+e

that they call
guesss-and-determine attacks. Their attacks are subexponential inversion at-
tacks.

The PRG they attack does not need to be local, but it needs to use a predicate
P : {0, 1}d+ℓ → {0, 1} of the following form

P (X) =M(X1, . . . , Xd)⊕Xd+1 ⊕ . . .⊕Xd+ℓ (30)

for some unbalanced predicate M : {0, 1}d → {0, 1}. Note that we have degF ≤
d < locF if F is not to be trivially broken. This is important, since d determines
the time complexity of their attack.

Their first attack proceeds as follows: In a so-called selection phase, their at-
tack chooses (intelligent and greedily) n1−e/(d−1) input bits s.t. sufficiently many
equations of F (X) = y will become linear once these input bits are fixed to con-
stant values. In a second phase, the algorithm iterates over all possible values
for these input bits. For each assignment, the algorithm gets a linear equation
system in the remaining variables with at least n equations. At this point, the
algorithm distinguish two cases: if the resulting matrix has full rank, the algo-
rithm solves the linear equation system and receives a possible assignment for
the remaining inputs. Given such a candidate seed x′, the algorithm can check
if x′ is a correct solution for F (X) = y. Otherwise, if the yield matrix does
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not have full rank, the algorithm can deduce multiple linear equations that does
have to hold over y = F (x). If all of these equations do hold over y, then the
algorithm knows that with noticeable probability y must lie in the image of F .

The runtime of this algorithm is 2O(n1−e/(d−1)). Couteau, Dupin, Méaux, Rossi
& Rotella could show that this attack has a noticeable advantage at distinguish-
ing the output of F from uniform randomness for predicates P =M⊕

⊕ℓ
i=1X2+i

with M = X1X2. For other choices of M : {0, 1}d → {0, 1}, they can only prove
a high advantage of their algorithm assuming a specially tailored assumptions
which depends on locF .

Further, they use the notion of bit fixing algebraic immunity [29] and show
that the selection phase of their algorithm can be used to exploit low bit fixing
algebraic immunity of predicates. In fact, if the algebraic immunity of a predi-
cate M deteriorates fast, then instead of trying to extract a linear system the
algorithm tries to fix less input bits to extract a polynomial equation system
of low degree. This polynomial equation system can then be subexponentially
solved by a Groebner basis-based algorithm.

Shrinking-Set Attacks. A shrinking set for a local PRG F : {0, 1}n → {0, 1}n1+e

is a subset Tx ⊂ [n] of input bit positions s.t. the set

Ty = {j ∈ [m] | fj only depends on input bits in Tx} (31)

of output bits that only depend on the input bits specified by Tx is truly larger
than Tx, i.e. #Ty > #Tx. Zichron [38] showed that F must have a shrinking set
Tx of size #Tx ∈ Θ(n1−e/(locF−1)). It can be easily shown that, when we sample
Tx ⊂ [n] uniformly random of size Θ(n1−e/(locF−1)), Ty will have more elements
than Tx with non-negligible probability.

This leads to the following distinguishing attack [6] on F : sample Tx ⊂ [n]
uniformly at random of size Θ(n1−e/(locF−1)). If Ty is larger than Tx, we basically
have a smaller PRG

F ′ : {0, 1}#Tx −→ {0, 1}#Ty (32)

that maps the input bits chosen by Tx to the output bits specified by Ty. Given

a string y ∈ {0, 1}n1+e

and the task to decide if y lies in the image of F , we can
instead consider the substring y′ := (yj)j∈Ty

and check if y′ lies in the image of
F ′. Indeed, if y = F (x) then y′ = F ′(x′) (for a substring x′ of x). Otherwise, if y
is uniformly random, then y′ will not lie in image of F ′ with probability at least
1/2 (since #Ty > #Tx). Therefore, it suffices to check if y′ lies in the image of
F ′. This can be done by brute-force: we iterate over all possible assignments for
the input bits chosen by Tx and see if y′ is a possible output of F ′.

Since the size of Tx lies in O(n1−e/(locF−1)), this yields a distinguishing attack

of time complexity O(2n
1−e/(locF−1)

).

Comparing Runtimes. We will now consider the problem of distinguishing
the outputs of a local PRG F : {0, 1}n → {0, 1}m of poly-stretch m ≥ n1+e from
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true randomness. Remember that the attack that we present in this work has a
time complexity upper-bounded by

nO(log(n)1/(deg F−1)·n1−e/(deg F−1)) = 2O(log(n)deg F/(deg F−1)·n1−e/(deg F−1)) (33)

and an advantage lower-bounded by

1−O(log(n)1/ degF /ne/(degF−1)) ≥ 1− o(1). (34)

From all attacks listed in this overview, only three have a (potentially) faster
runtime for small values of e than this attack, since the runtimes all other at-
tacks depend on the locality of d. Those attacks are the basic algebraic at-
tack that is based on algebraic relationships [39,38], the Groebner basis-based
resp. Macaualay matrix-based attacks [20,19,15,14,17,31,37] and the guess-and-
determine attacks of Couteau, Dupin, Méaux, Rossi & Rotella [16]. We will
compare each of those attacks individually with our attack:

1. The basic algebraic attack [39,38] from Theorem 1 works by finding an al-
gebraic relationship among the polynomials f1, . . . , fm ∈ Z2[X] (without
going from Z2 to a larger field). The runtime of this algorithm is upper-

bounded by nO(n1−e/(deg F−1)) = 2O(log(n)·n1−e/(deg F−1)) which is by the factor
log(n)1/(degF−1) in the exponent smaller than the algorithm of Theorem 2.
However, in the case of binary PRGs, the advantage of this algorithm is
only known to be lower-bounded by a subexponentially small function (note,
that for this case the algorithm must be slightly adapted s.t. it retrieves an
algebraic relationship that is reduced modulo the field equations of Z2, the
details are described in [39]).
Hence, while the basic algebraic algorithm is faster than the algorithm of
Theorem 2, it only gives an unsatisfactory advantage for breaking the pseu-
dorandomness of binary PRGs.

2. When trying to solve the equation system F (X) = y, the algorithms of
Faugére [20,19] and the XL-algorithms [15,14,17,31,37] will aim to compute
a Groebner basis for the ideal (f1(X)−y1, . . . , fm(X)−ym). While this may
work well in praxis, in the theoretical very worst case, computing a Groebner
basis may have a doubly exponential time complexity.
In the simpler case of only checking the system of F (X) = y for satisfiability,
it suffices to consider algorithms that compute the Macaulay matrix up to
some degree D and inspect if they can deduce a contradiction from it. Our
results here show that there is some D ∈ O(log(n)1/(degF−1) ·n1−e/(degF−1))
s.t. it suffices to check the Macaulay matrix up to degree D to have a
high distinguishing advantage. It follows that for the Macaulay matrix-
based algorithm and the algorithm from Theorem 2, we can give the same

bound 2O(log(n)deg F/(deg F−1)·n1−e/(deg F−1)) on the time complexity and the
same bound 1 − o(1) on their advantages. However, following the discus-
sion in [39], while both algorithms have the same asymptotic bounds, it is
known that the hidden constants of the algorithm from Theorem 2 are bet-
ter in the non-uniform model: in fact, if the PRG F is known ahead, the
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algebraic relationship h can be computed in a preprocessing phase. In the
actual security game, the non-uniform adversary then gets the relationship
h as a hint and can solve the fresh challenge y by simply evaluating h on
it. This is faster than computing the Macaulay matrix of F (X) = y up to
degree D = degF · deg h.

3. The guess-and-determine attacks of Couteau, Dupin, Méaux, Rossi & Rotella

[16] have a time complexity of 2O(n1−e/(d−1)) for an integer d ∈ [degF, locF−
1] that depends on the predicate used by F . In the best cases, we have
d = degF and the algorithm performs by a factor of log(n)degF/(degF−1)

in the exponent faster than the algorithm from Theorem 2. However, in the
general case, d will be larger than the degree of the predicate of F (for
example the predicate P (X1, . . . , Xℓ) could be replaced by P (X1, . . . , Xℓ)⊕
P (Xℓ+1, . . . , X2ℓ)). Hence, in most cases the guess-and-determine attacks
will perform worse than the algorithm from Theorem 2.

Acknowledgements. Before writing this paper I presented its results in a talk
at the crypto seminar at NYU. I want to thank the audience for interesting
discussions we had while I gave my talk.

2 Preliminaries

2.1 Notation

Denote by N = {1, 2, 3, . . .} the set of natural numbers.

For a field k, we denote by k[X1, . . . , Xn] the ring of polynomials in n
variables over k. Sometimes, by abuse of notation, we will just write k[X] :=
k[X1, . . . , Xn]. For f ∈ k[X], we denote by deg f its degree, that is its total
degree.

For a prime p ∈ N, we denote by Zp := Z/pZ the field with p elements.
Further, for e ∈ N, we denote by Fpe the Galois field with pe elements. Up to
isomorphism, Fpe is uniquely determined by its size.

In this text, n will always denote the security parameter. An additional pa-
rameter is given by the stretch m = m(n) that depends on n. We will always
tacitly assume that m is time-constructible.

Let V be some vector space. Given subspaces V1, . . . , Vr ⊂ V that fulfil

Vi ∩

∑
j ̸=i

Vj

 = 0 (35)

for each i ∈ [r], we will denote by V1 ⊕ . . .⊕ Vr the smallest subspace of V that
contains each Vi. I.e., V1 ⊕ . . . ⊕ Vr equals V1 + . . . + Vr, but by using the ⊕
symbol we emphasize that the enumeration of basis vectors of V1, . . . , Vr stays
linearly independent.
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2.2 Mathematical Preliminaries

Definition 1. Let k, k be fields. If there exists a homomorphism of rings ι : k →
k, we will call the pair k, k a field extension. Note that each ring homomor-
phism must send 1 to 1, therefore each ring homomorphism must be injective on
fields. In particular, ι : k → k is one-to-one and – without loss of generality –
we can assume that k is a subset of k. By abuse of notation, we will denote field
extensions always as subset-relationships k ⊂ k.

We will repeat here a well-known fact from algebra and the theory of field
extensions.

Lemma 2. Let k ⊂ k be an extension of finite fields. Then, k ⊂ k is simple,
i.e., there exists an element ζ ∈ k s.t. k = k[ζ]. I.e., each element of k can be
written as f(ζ) where f ∈ k[Z] is a univariate polynomial.

Proof (Sketch). First note that the unit group k
×

= k \ {0} must be cyclic.
Otherwise, there would be a proper divisor d|(#k − 1) s.t. we have xd = 1 for

each x ∈ k×. However, the polynomial Xd−1 can have at most d < #(k
×
) roots

in k. Ergo, there must exist at least one element in k
×

of proper order #k − 1.

Let ζ ∈ k be a generator of k
×
. Then, we have k[ζ] = k. In fact, besides zero

each element of k can be written as a power of ζ.

Note that each simple and finite field extension k ⊂ k that is generated by one
element ζ can be written as

k[ζ] = k
∼
= k ⊕ ζ · k ⊕ . . .⊕ ζr−1 · k ∼= kr (36)

where r = [k : k] := dimk k is the degree of the extension k ⊂ k. I.e., as a
k-vector space k has the basis 1, . . . , ζr−1 and each element c ∈ k has a unique
representation

c = b1 + b2 · ζ + . . .+ br · ζr−1 (37)

for b1, . . . , br ∈ k.
We cite here the general Schwartz-Zippel lemma, which will be implicitly

used by Theorem 3.

Lemma 3 (Schwartz-Zippel [34]). Let k be any field and let S ⊂ k be a
finite set. Let h ∈ k[Y1, . . . , Ym] be a polynomial in m variables. We have

Pr
y←Sm

[h(y) = 0] ≤ deg h

#S
. (38)

2.3 Cryptographic Preliminaries

In the following, we will revisit the definitions and results from [39] for pseu-
dorandom number generators. For compactness, the definitions here will be less
detailed than in [39].
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Definition 2 (Pseudorandom Number Generators). Let k be a field. A
pseudorandom number generator (PRG) is a deterministic algorithm

F : kn −→ km (39)

that is parametrized by n.
We call m = m(n) the stretch of F . If m ≥ n1+e for some constant e > 0,

we call F a poly-stretch PRG.

Definition 3 (Locality and Degree of PRGs). Let F : kn → km be a
PRG. Let f1, . . . , fm : kn → k be the functions that compute the correspond-
ing output values of F . Note, that each fi can be computed by a polynomial
in k[X1, . . . , Xn]. In this text, we will always assume that each fi is in fact a
polynomial in k[X1, . . . , Xn] that is reduced modulo the field equations of k.

1. We define the (algebraic) degree of F as the maximum of all degrees of the
polynomials computing its output values. I.e.

degF := max
i∈[m]

(deg fi) (40)

2. We define the locality of a polynomial f ∈ k[X1, . . . , Xn] as the number of
variables that occur non-trivially in f . I.e.

loc f := min {#S | S ⊆ [n], f ∈ k[Xi | i ∈ S]} . (41)

We define the locality of F as the maximum of all localities of the polyno-
mials computing its output values. I.e.

locF := max
i∈[m]

(loc fi) (42)

Definition 4 (Security Game for PRGs). Let F : kn → km be a PRG over
a finite field k. The security-game for F with an adversary A is given by:

1. A challenger draws a bit b← {0, 1}. If b = 0, it samples a preimage x← kn

uniformly at random, computes F (x) and sends (F, F (x)) to A. If b = 1, it
samples y ← km and sends (F, y) to A.

2. A receives (F, y∗) for some y∗ ∈ km and must decide which bit b has been
drawn by the challenger. A makes some computations on its own and finally
sends a bit b′ to the challenger.

A wins an instance of this game iff b = b′ holds at the end. We define A’s
advantage against F by

advF (A) := 2 · Pr[A wins]− 1 (43)

= Pr
x←kn

[A(F, F (x)) = 0] + Pr
y←km

[A(F, y) = 1]− 1 (44)

where we take the probability over the randomness of A and the challenger.
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Definition 5. We say that an algorithm is subexponential if there is a con-
stant e ∈ [0, 1) s.t. its time complexity lies in 2O(ne).

Theorem 3 ([39] Theorem 2). Let m ∈ ω(n). Let F : kn → km be a PRG
of constant degree degF over k.

Then, there is an algebraic attack on F whose time and space complexities

are bounded from above by nO((ndeg F /m)
1

deg F−1 ). Further, the advantage of this
attack in the pseudorandomness game of F (Definition 4) is lower bounded by

≥ 1−O
((
ndegF /m

) 1
deg F−1 · 1

#k

)
. (45)

Remark 2. In [39], Theorem 3 has only been stated for fields k = Zp, however,
it is clear that the attack and the proof of Theorem 3 work for any field k (in
fact, the algorithm B that is used as a subroutine of this attack is stated for any
field and the Schwartz-Zippel lemma works for any field, too).

While in Definition 4 we only define the security of PRGs with regard to the
uniform distribution over kn, the attack of Theorem 3 works for any distribution
of seeds in kn. The reason is that the attack will always correctly recognize image
points F (x) independent of the seed x. However, a random point y ← km will

only be refuted by the attack with probability ≥ 1−O(
(
ndegF /m

) 1
deg F−1 · 1

#k ).

3 The New Attack

We will prove here our main result:

Theorem 4. Let F : kn → km be a PRG of constant degree degF over some

field k. Set r := max
(⌈

logn
log#k

⌉
, 1
)
and assume m ∈ ω(r · n).

Then, there is an algebraic attack on F whose time and space complexities

are bounded from above by nO(( r·ndeg F

m )
1

deg F−1 ). Further, the advantage of this
attack in the game of Definition 4 against F is lower bounded by

≥ 1−O
((r · n

m

)1/(degF−1)
)
≥ 1− o(1). (46)

We will need the following lemma:

Lemma 4. Let k ⊂ k be a field extension generated by an element ζ ∈ k. Let
r = [k : k] = dimk k be the degree of this extension.

Then, the m′ × (rm′) matrix

A := Im′ ⊗
(
1 ζ . . . ζr−1

)
=

1 ζ . . . ζr−1

. . .

1 ζ . . . ζr−1

 (47)
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gives an isomorphism of k-vector spaces

A : krm
′
−→ k

m′

(48)

and a degree-preserving isomorphism of k-vector spaces

A : (k[X1, . . . , Xn])
rm′
−→ (k[X1, . . . , Xn])

m′
(49)

by left-multiplication.

Proof. Note, that 1, ζ, . . . , ζr−1 is a basis of k as a k-vector space. Indeed, since
ζ generates k over k, each element of k can be written as a polynomial g(ζ)
evaluated on ζ. Since the algebraic degree of ζ over k is r, there must exist a
non-zero polynomial h ∈ k[Z] of degree exactly r that has ζ as root. Therefore,
the polynomial representation g ∈ k[Z] of any element of k = k[ζ] can be reduced
modulo h to a polynomial of degree < r.

Since each element of c ∈ k has a unique representation as a linear combina-
tion

c = b1 + b2 · ζ + . . .+ br · ζr−1 (50)

for b1, . . . , br, A gives us a linear bijective map from krm
′
to k

m′

.

Now, if we are given polynomials f1, . . . , fr ∈ k[X1, . . . , Xn] of degree ≤ d,
then f1 + f2 · ζ + . . .+ fr · ζr−1 is an element of k[X1, . . . , Xn]. Since scaling and
adding polynomials does not increase their degree, the degree of f1+f2 ·ζ+ . . .+
fr · ζr−1 is at most d (in fact, it equals the maximum of degrees of f1, . . . , fr).
It follows, that for each d ∈ N, A gives us a bijective linear map

A : (k[X1, . . . , Xn]
≤d)rm

′
−→ (k[X1, . . . , Xn]

≤d)m
′
. (51)

Proof (Theorem 4). Denote by A the algorithm from Theorem 3. A is an al-

gorithm that – when given a PRG G : k
n → k

m′

of degree d and a point

y′ ∈ km
′

– will always output 0 if y′ ∈ G(kn) and will output 1 with probabil-

ity ≥ 1 − O(
(
nd/m′

) 1
d−1 · 1

#k
) for y′ ← k

m′

. The runtime of A is bounded by

≤ nO((nd/m′)1/(d−1)).

Let k be a field F : kn → km be a PRG of degree d := degF over k. We can
assume that #k < n, since otherwise the claim of the theorem follows directly

from Theorem 3. Set r :=
⌈

logn
log#k

⌉
=

⌈
log#k n

⌉
and m′ :=

⌊
m
r

⌋
.

We will attack the pseudorandomness of F by giving a reduction R that
transforms F to a PRG whose pseudorandomness can be broken by A with
noticeable advantage. On input F : kn → km and a point y ∈ km, R has to
decide if y lies in the image of F or has been sampled uniformly at random. We
assumed that the size of k is less than n, so k is finite. R now constructs an
extension field k of k s.t. k has at least (#k)r ≥ n elements. In particular, the
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algebraic degree of the extension k ⊂ k will be r. According to Lemma 2, there
is an element ζ ∈ k that generates k over k, i.e.

k = k[ζ]. (52)

R can find an extension field k together with a generator ζ by searching
for an irreducible polynomial g ∈ k[Z] of degree r, which can be done in poly-
time. When given g, k is isomorphic to k[Z]/(g(Z)) and the residue class of
Z corresponds to the generator ζ. Alternatively, if R already knows a suitable
extension field k of k, R can find a generator for this extension by searching

for an element ζ ∈ k× whose multiplicative order is exactly #k − 1. The time
complexity of searching for ζ is at most polynomial in the size of k.

Given k ⊂ k and ζ, R computes the matrix A ∈ km
′×(r·m′)

from Lemma 4.
Note that r · m′ ≤ m < (r + 1) · m′. Since rm′ may be smaller than m, R
constructs a new matrix B ∈ km

′×m

B =
(
A 0m′×(m−rm′)

)
=

1 ζ . . . ζ⌈logn⌉−1 0 . . . 0
. . .

...
...

1 ζ . . . ζ⌈logn⌉−1 0 . . . 0

 (53)

which consists of A and m−rm′ < r columns of zero. Multiplying A with F and
y is equivalent to truncating F and y to their first rm′ functions resp. outputs
and multiplying those with A. Lemma 4 therefore yields that the map

G := B · F : kn −→ k
m′

(54)

x 7−→ B · F (x) (55)

is polynomial of degree d = degF over k, and that y′ := B · y is uniformly

distributed in k
m′

if y ← km.
R therefore computes y′ = B ·y and polynomials representing G = B ·F and

submits both to A. We can now consider two cases:

1. If y equals F (x) for some x ∈ {0, 1}n, then y′ = B ·y equals G(x) = B ·F (x).
In this case, A will always output 0.

2. If y ← km has been sampled uniformly at random, then y′ = B · y is dis-

tributed uniformly in k
m′

. In this case, A will output 1 with probability

≥1−O(
(
nd/m′

) 1
d−1 · 1

#k
) ≥ 1−O(

(
r · nd/m

) 1
d−1 · 1

n
) (56)

≥1−O((r · n/m)
1

d−1 ) (57)

It follows that the advantage of R is lower-bounded by

advF (R) ≥1−O((r · n/m)
1

d−1 ) (58)

and hence noticeable.
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Further, the time complexity of A is upper-bounded by

≤ nO((nd/m′)1/(d−1)) ≤ nO((r·nd/m)1/(d−1)). (59)

Hence, R’s time complexity is bounded by ≤ nO((r·nd/m)1/(d−1)), too.

Remark 3. If one does not want to use extension fields k, one can modify the
algorithm from Theorem 3 s.t. one receives an algebraic algorithm over the base
field k that has the same runtime and advantage bounds as in Theorem 2.

Given a binary PRG F : {0, 1}n → {0, 1}m, m ≥ n1+e, the idea is – when
running the algorithm from Theorem 3 – to compute a basis for kerϕD where

ϕD : Z2[Y1, . . . , Ym] −→ Z2[X1, . . . , Xn] (60)

Yi 7−→ fi (61)

for D ∈ O((log n)1/(degF−1) · n1−e/(degF−1)) large enough.
When one needs to decide if a point y ∈ {0, 1}m lies in the image of F , one

evaluates all basis polynomials of kerϕD on y: if one polynomial in kerϕD does
not vanish on y, then we know that y cannot lie in the image of F . Otherwise, if
the whole space kerϕD vanishes on y, then we know that with high probability
y must lie in the image of F .

The reason for this is that the algebraic relationship h ∈ FN [Y ′1 , . . . , Y
′
m′ ],

N = 2⌈logn⌉, that is yield in the algorithm of Theorem 3 after we went from
F : {0, 1}n → {0, 1}m to G : {0, 1}n → Fm′

N can be interpreted as ⌈log n⌉
polynomials in Z2[Y1, . . . , Ym] of degree O((log n)1/(degF−1) · n1−e/(degF−1)).

In fact, the matrix A from Lemma 4 maps the variables Y1, . . . , Ym (which
represents binary values) to the variables Y ′1 , . . . , Y

′
m′ , m′ = ⌊m/ ⌈log n⌉⌋, (which

represent extension field values) by

Y ′i = Y(i−1)·⌈logn⌉+1 + ζ · Y(i−1)·⌈logn⌉+2 + . . .+ ζ⌈logn⌉−1 · Yi·⌈logn⌉. (62)

Further, h ∈ FN [Y ′1 , . . . , Y
′
m′ ] can be written as

h(Y ′) =
∑

I⊂Nm′
0 ,|I|≤D

(cI,1 + ζ · cI,2 + . . .+ ζ⌈logn⌉−1 · cI,⌈logn⌉) · Y ′
I

(63)

for coefficients cI,i ∈ Z2. By substituting the Y ′-variables in h by Y -variables
according to Eq. (62) and by sorting the terms in h by powers of ζ, we see that
h can be written as

h(Y ′) = u1(Y ) + ζ · u2(Y ) + . . .+ ζ⌈logn⌉−1 · u⌈logn⌉(Y ) (64)

for polynomials u1, . . . , u⌈logn⌉ ∈ Z2[Y1, . . . , Ym]. The degree of the polynomials
u1, . . . , u⌈logn⌉ is bounded by the degree of h.

It follows that checking one polynomial over the extension field FN is equiva-
lent to checking ⌈log n⌉ polynomials over the base field Z2. Hence, if y ← {0, 1}m
is truly random, with probability 1−o(1) one polynomial in kerϕD will not van-
ish on y for D large enough.
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4 On the Security of Polynomial and Local PRGs

We will use here the liberty of the ePrint format to talk about the security
achievable by PRGs of constant locality and constant degree. By the attacks of
this work, we know that the number of security bits 4 of a PRG F : {0, 1}n →
{0, 1}n1+e

provably lies in

O(log(n)degF/(degF−1) · n1−e/(degF−1)). (65)

For simplicity, we will pretend that the number of security bits of F is upper-
bounded by

n1−e/(degF−1). (66)

From a theoretical point of view, this is a very pessimistic view, since we are
ignoring the factor log(n)degF/(degF−1) and all potentially hidden constants in
Eq. (65). However, if we compare the simple theoretical security estimations here
with the experimental estimations of Couteau, Dupin, Méaux, Rossi & Rotella
[16], we see that their results are far more pessimistic. Hence, we think that the
term in Eq. (66) is a justified upper-bound for the number of security bits of F .

While n denotes the number of bits of the seed of F , we will use λ to denote
the desired number of security bits. In this view, n gives the number of bits we
are ready to invest, while λ denotes the number of bits we are going to get in the
end. Optimally, n and λ would be close, however, in our case, it is more suitable
to relate them polynomially: by δ > 1 we will denote the security leverage and
relate λ and n by

λδ = n. (67)

I.e., to achieve a security of λ we will need to invest polynomially more bits.
Now, we upper-bound λ by the term in Eq. (66). This leads to the formula

1 ≤ δ ·
(
1− e

degF − 1

)
. (68)

By rearranging everything, we get the following lower bound for the degree of F

degF ≥ δ

δ − 1
· e+ 1. (69)

Eq. (69) tells us how high we need to set the algebraic degree of F if we want to
maintain a security leverage of δ and a stretch of e. Note that for δ → ∞, the
RHS of Eq. (69) converges against e+1. In fact, degF > e+1 is the trivial bound
that we always have for degF and e, since for degF ≤ e+ 1 the relinearization
attack on F is always efficient. In other words, the higher our security leverage

4 By “number of security bits” we mean the logarithm of the average of the concrete
number of bit operations a “strong” computational machine needs to run the fastest
attacks on PRGs of constant degree.
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δ becomes, the less important subexponential attacks on F get. Efficient attacks
like relinearization and correlation attacks, however, will always stay relevant
and give hard bounds for degree and locality of F .

If F is additionally supposed to have constant locality, we need to take
the correlation-based attack from Section 1.3 into account. If c denotes the
correlation of F , then it must hold e < c/2, since otherwise the correlation-
based attack becomes applicable. Since we have c ≤ locF − degF − 1, we get
e < (locF − degF − 1)/2 and have therefore the minimum bound

locF > degF + 2e+ 1 ≥
(

δ

δ − 1
+ 2

)
· e+ 2 (70)

for the locality of F .
Eq. (69) and Eq. (70) now relate the degree, the locality, the stretch and the

security leverage of F . In particular, they tell us lower bounds for the degree
and locality of F for given δ and e. For concrete values of δ, we can now list the
concrete bounds on degF and locF in Table 1.

δ degF locF

1.1 ≥ 10 · e+ 1 ≥ 12 · e+ 2
1.2 ≥ 4 · e+ 1 ≥ 6 · e+ 2
1.5 ≥ 3 · e+ 1 ≥ 5 · e+ 2
2 ≥ 2 · e+ 1 ≥ 4 · e+ 2
3 ≥ 1.5 · e+ 1 ≥ 3.5 · e+ 2
∞ > e+ 1 > 3 · e+ 2

Table 1. This table shows for some values of the security leverage δ = log(n)/ log(λ)
corresponding lower bounds for the degree and locality of the PRG F : {0, 1}n →
{0, 1}n

1+e

. Each row can be read as: “if we want a security of λ bits while our seeds
contain n = λδ bits, then the degree of the PRG needs to be at least δ

δ−1
· e + 1 and

the locality of F needs to be at least
(

δ
δ−1

+ 2
)
· e+ 2.”

If we want, for example, a PRG F : {0, 1}n → {0, 1}n2

of quadratic stretch,
i.e. e = 1, then it makes sense to pick a security leverage of δ = 2. The reason
is that in this case, the bounds degF ≥ 2e + 1 = 3 and locF ≥ 4e + 2 = 6 are
already implied by the trivial bounds degF > e+ 1 = 2 and locF > 3e+ 2 = 5
(since degF and locF need to be integers).

However, note that a typical security of λ = 128 security bits would – under
a security leverage of δ = 2 – imply a seed of 1282 bits, i.e. 2 kilobytes, and an
output size of F of 4 megabytes.
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nal on Computing 19(4), 750–773 (1990). https://doi.org/10.1137/0219053,
https://doi.org/10.1137/0219053

19. Faugère, J.C.: A new efficient algorithm for computing gröbner bases without re-
duction to zero (f5). In: Proceedings of the 2002 International Symposium on Sym-
bolic and Algebraic Computation. p. 75–83. ISSAC ’02, Association for Comput-
ing Machinery, New York, NY, USA (2002). https://doi.org/10.1145/780506.
780516, https://doi.org/10.1145/780506.780516
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(f4). Journal of Pure and Applied Algebra 139(1), 61–88 (1999).
https://doi.org/https://doi.org/10.1016/S0022-4049(99)00005-5,
https://www.sciencedirect.com/science/article/pii/S0022404999000055

21. Goemans, M.X., Williamson, D.P.: Improved approximation algorithms for max-
imum cut and satisfiability problems using semidefinite programming. J. ACM
42(6), 1115–1145 (nov 1995). https://doi.org/10.1145/227683.227684, https:
//doi.org/10.1145/227683.227684

22. Goldreich, O.: Candidate One-Way Functions Based on Expander Graphs, pp. 76–
87. Springer Berlin Heidelberg, Berlin, Heidelberg (2011). https://doi.org/10.
1007/978-3-642-22670-0_10, https://doi.org/10.1007/978-3-642-22670-0_

10
23. H̊astad, J., Impagliazzo, R., Levin, L.A., Luby, M.: A pseudorandom generator

from any one-way function. SIAM Journal on Computing 28(4), 1364–1396 (1999)
24. Ishai, Y., Kushilevitz, E., Ostrovsky, R., Sahai, A.: Cryptography with constant

computational overhead. In: Ladner, R.E., Dwork, C. (eds.) 40th ACM STOC. pp.
433–442. ACM Press (May 2008). https://doi.org/10.1145/1374376.1374438

25. Jain, A., Lin, H., Sahai, A.: Indistinguishability obfuscation from well-founded
assumptions. In: Proceedings of the 53rd Annual ACM SIGACT Symposium on
Theory of Computing. p. 60–73. STOC 2021, Association for Computing Machin-
ery, New York, NY, USA (2021). https://doi.org/10.1145/3406325.3451093,
https://doi.org/10.1145/3406325.3451093

26. Jain, A., Lin, H., Sahai, A.: Indistinguishability obfuscation from lpn over fp,
dlin, and prgs in nc0. In: Dunkelman, O., Dziembowski, S. (eds.) Advances in
Cryptology – EUROCRYPT 2022. pp. 670–699. Springer International Publishing,
Cham (2022)
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