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Abstract—We propose hinTS — a new threshold signature
scheme built on top of the widely used BLS signatures.
Our scheme enjoys the following attractive features:

• A silent setup process where the joint public key of
the parties is computed as a deterministic function
of their locally computed public keys.

• Support for dynamic choice of thresholds and signers,
after the silent setup, without further interaction.

• Support for general access policies; in particular,
native support for weighted thresholds with zero
additional overhead over standard threshold setting.

• Strong security guarantees, including proactive secu-
rity and forward security.

We prove security of hinTS in the algebraic group model,
and also provide an open-source implementation. Our
scheme outperforms all prior proposals that avoid dis-
tributed key generation in terms of aggregation time,
signature size, and verification time (as well as other
qualitative measures). As an example, the aggregation
time in hinTS for 1000 signers is under 0.5 seconds, while
both signing and verification are constant time algorithms,
taking 1 ms and 17.5 ms, respectively.

The key technical contribution of our work involves
the design of special-purpose succinct proofs to efficiently
prove the well-formedness of aggregated public keys. Our
solution uses public “hints” released by the signers as part
of their public keys (hence the name hinTS).

1. Introduction

Threshold signatures [32], [33] allow for distribut-
ing the signing process among a group of (say) n parties
such that any subset of parties of size greater than a
threshold (say) t ⩽ n can create valid signatures on
any message. Furthermore, any subset of parties of size
at most t cannot forge signatures.

First introduced in the 1980s, threshold signa-
tures [32], [33] have found broad appeal in recent years
in decentralized systems such as blockchains, where
they are used in state proofs [34], [29], oracle net-
works [37], crypto-wallets [9], distributed randomness
services [8], cross-chain bridges [64], [62], [56], [58],
and even in scaling byzantine consensus protocols [65].
This is now a mature research area, with lots of known

constructions built on top of popular signature schemes
such as BLS [21], Schnorr [60] (and its variant Ed-
DSA [15]), and EC-DSA [28]. Moreover, attempts to
standardize threshold signature have already begun [24].

By and large, all known designs of threshold signa-
tures adopt the following schemata:
• First, a threshold t is chosen, and the parties run a

distributed key generation (DKG) protocol that gen-
erates a public key pk and signing key sk and outputs
a secret share ski of the signing key sk to party i.

• To sign a message, the parties run an (ideally, one-
round) protocol to produce partial signatures.

• Finally, an aggregator “combines” the partial signa-
tures into a “short” signature that can be verified with
respect to pk.

While this model has found success over the years,
in our experience, it is not well-equipped to handle the
demands of a growing, diverse set of scenarios where
threshold signatures are now being considered. The key
limitations stem from the need for DKG (which in-
volves an expensive multiparty protocol), the inability to
choose the signing threshold or the signers after system
setup (without a fresh DKG), and the lack of efficient
extensions to more expressive access structures.

Our Model. In what follows, we expand upon our
goals for threshold signatures. Some of these goals have
recently been investigated elsewhere (see Section 1.3 for
a discussion); our aim, however, is to achieve all of the
goals simultaneously while building concretely efficient
solutions with a low deployment barrier.

I. Silent Setup. A major hurdle in deploying threshold
signatures is DKG – a multiparty protocol that incurs
high computation and communication costs and uses
expensive resources such as broadcast channels. Indeed,
extensive literature is dedicated to optimizing DKG
protocols along various axis (see Section 1.3). Despite
many advances, DKG continues to be a major source of
engineering and deployment challenges (see, e.g., [36],
[30]) for threshold signatures.

Our work starts with a natural question: Can we
avoid DKG altogether and build threshold signatures
with a silent setup? In a silent setup, the parties do
not exchange any message with each other to generate



keys. Instead, each party uses a local key-generation
procedure to establish its key pair and the joint public
key of a set of signers is computed as a deterministic
function of their individual public keys.1 This allows
for an asynchronous setup, as parties join the system
and publish their public key without waiting for others.

II. Dynamism. The setup phase (realized by a DKG
protocol) in existing threshold systems fixes both the
threshold and the set of signers. This rules out appli-
cations that require a dynamic choice of thresholds or
signers (or both) at a later point (see Section 1.2).

This leads to our next question: Can we build a
threshold signature scheme that supports a dynamic
choice of thresholds and signers?2 A näive solution
is to simply run a fresh instance of a static threshold
signature scheme for each choice. This, however, is not
a scalable solution since the work and secret storage
required of each signer increases with every new choice.
We, instead, aim to achieve dynamism without increas-
ing the work of the signers (relative to the static model).

III. General Policies. Prior works primarily focus on
threshold access structures in that all signers are treated
as equals, and their cardinality determines an authorized
set of signers. However, in stake-based blockchains [51]
and oracle networks [37], all signers are not equal.
Instead, each signer has an associated weight, and the
access structure is defined by a weighted threshold.
More generally, each signer could have different “at-
tributes” and a circuit computed over the attributes
might define an access structure.

We ask: Can we build threshold signatures that
support general access structures? In principle, existing
schemes that rely on linear secret-sharing [61] can be
modified to support access structures for which linear
secret-sharing schemes exist. This, however, does not
(in general) result in efficient constructions, and limits
the access structures that can be realized. We devise an
alternative approach that is not limited by linear secret-
sharing and incurs low performance overhead relative
to the standard threshold setting. Motivated by the
aforementioned applications, we put a special emphasis
on native support for weighted thresholds such that
our scheme suffers no performance overhead from the
incorporation of high-precision (say 64-bit) weights.

IV. Enhanced Security. In addition to the standard
unforgeability security of threshold signatures, we aim
for two important and well-studied security properties
— proactive security [53] and forward security [14].

1. This is conceptually similar to multisignatures [19], the n-out-
of-n (i.e., full threshold) variant of threshold signatures, that do not
require a DKG. However, multi-signatures do not achieve liveness,
i.e., they do not support signature computation even if just one party
is absent. See Section 1.3 for further discussion.

2. While DKG fixes the threshold during system setup in existing
systems, getting rid of DKG does not automatically imply dynamism.
It might be possible to achieve silent setup (i.e., no DKG) without
dynamism. In this work we aim to achieve both properties.

Proactive security requires a periodic key refresh to
ensure that even an adversary with unlimited corruption
budget cannot compromise security as long as the total
number of corruptions in any period do not exceed the
threshold. On the other hand, forward security requires
that a key compromise does not violate past periods’
security. These properties are well-studied in the liter-
ature and are important for real-world deployments.

V. Concrete Efficiency. We aim for a one-round
signing procedure and disallow any additional pre-
processing rounds of interaction. Only threshold ver-
sions of the BLS scheme are known to satisfy this
property. As such, we set threshold BLS with a DKG
setup (such as [63]) as our baseline. We require that our
signing, aggregation, and verification algorithms have
comparable efficiency, concretely and asymptotically, to
threshold BLS.

1.1. Our Contributions

1) Silent Threshold Signatures. We propose the no-
tion of silent threshold signatures (STS) where the setup
phase requires no communication between the parties.
Each party runs a local key-generation and publishes
its public key and the joint public key of the signers is
deterministically derived from all of their public keys.

STS supports a dynamic choice of thresholds.
Namely, for every message m, it is possible to choose
a different security threshold t without modifying the
joint public key. Our main efficiency requirements are
that the joint public key size, the (aggregated) signature
size, and the verification time complexity should all be
constant (i.e., independent of the threshold and the num-
ber of parties), while the aggregation time complexity
is similar to that of standard threshold signatures.

2) hinTS — Our Construction of STS. We construct
hinTS — a silent threshold signature scheme in the
common reference string (CRS) model building on the
BLS signature scheme and Plonk argument system [40].
The CRS in our scheme is the same as in the widely-
used KZG commitment scheme [47].3 Our base scheme
natively supports weighted threshold access structures
at no additional cost over the standard threshold case.
We prove the unforgeability security of our scheme in
the algebraic group model [39].

We show that our base scheme can be readily ex-
tended to achieve several attractive features discussed
earlier: support for general access structures (described
by circuits), proactive security, and forward security, as
well as support for the recently introduced multiverse
model [12]; without significant performance penalty.

3) Implementation and Evaluation. We provide an
open-source implementation of hinTS, which we eval-
uate on networks with thousands of parties. Signing

3. Multiparty “ceremony” protocols for computing this reference
string are well-known and widely used in practice [52].
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is exactly the same as BLS, and takes roughly 1 ms
(regardless of the signer’s weight). For 1000 signers,
the aggregation time is under 0.5 seconds. Verification
time is constant, which we measure to be 17.5 ms.
When verifying signatures on-chain, we measure the
EVM gas cost to be 395K – roughly 2.5x compared to
threshold BLS. We find this moderate increase in gas
cost to be an acceptable trade-off considering the other
benefits offered by our scheme over threshold BLS. For
instance, with weights of precision 10 bits, aggregation
time in threshold BLS (using [63]) with 1000 signers
takes 46 seconds, and simply becomes infeasible for
higher precision weights.

1.2. Applications

Our wishlist of properties is inspired by the follow-
ing set of applications in the blockchain ecosystem.

State Proofs. In a byzantine fault tolerant system for
state machine replication, the parties participating in
consensus periodically “checkpoint” their latest state
as they reach consensus on new transactions. However,
for an external party or processor – such as a smart
contract running on another ledger – to safely act on
these state transitions (a feature often referred to as
interoperability), the consensus participants produce a
state proof, which is implemented on some blockchains
(e.g., Dfinity, Ethereum) as a threshold signature.4

Ethereum has over half a million validator nodes.
It is infeasible to perform a DKG protocol across them
all. Consequently, Ethereum 2.0 designed a protocol [1]
that periodically selects a randomly-sampled subset of
512 validators (called the sync committee) who compute
a threshold signature (with two-third threshold) for each
block that reaches consensus; however, they avoid a
DKG for even this subset, and instead use BLS multisig,
with the obvious downside that verifying this multisig
requires the verifer to learn all 512 public keys (see
Section 1.3 for further discussion on the multisignature
approach). Our proposed scheme hinTS targets this very
problem, as it allows state proofs to be generated with a
silent setup – which only uses the public key published
by each validator when it joined the Ethereum network
– and requires the verifier to only learn a compact verifi-
cation key comprising a few group elements. Moreover,
the threshold signature can be weighted, by assigning
each node a weight based on its stake.

Oracle Networks. Oracles enable smart contracts to
perform transactions based on off-chain data, such as
issuing DeFi transactions based on the exchange rate
of tokens. In Chainlink [37], [25], whenever the data
feed’s value (e.g., MKR/ETH exchange rate) fluctuates

4. For blockchains that do not implement state proofs, there are
several intermediary networks, called bridges [64], [62], [56], [58],
who forward checkpointed state (hashes) across chains – these bridges
commonly compute threshold signatures amongst the bridge nodes.

beyond a limit, the oracle nodes collectively agree on
a new value to submit on-chain along with a threshold
signature. As discussed in [12], smart contracts have
the ability to configure the subset of oracle nodes they
will accept the threshold signature from (based on rep-
utation scores, for instance), and the signing threshold
– for instance, security-critical applications such as
automated collateral auditing (via proof-of-reserve) can
set different thresholds compared to gaming contracts.

It is unreasonable for the oracle nodes to perform
a fresh DKG for each downstream smart contract. It
increases complexity – nodes would have to store a
secret key from each DKG, and sign messages with
each of those keys – and is prohibitively expensive
in terms of bandwidth over a peer-to-peer network, as
evaluated in [12]. hinTS addresses this shortcoming by
only requiring the oracle nodes to publish their public
keys once, yet allowing for any smart contract developer
to later choose their own subset of oracle nodes that
they trust (along with reputation-based weights and a
signing threshold) and compute a verification key for
the smart contract using those nodes’ public keys; the
oracle nodes are not involved at all, and they sign data
feeds independent of the downstream smart contracts.

Off-chain DAO Voting. A decentralized autonomous
organization (DAO) enables governance of assets based
on smart-contracts, where decisions are made by mem-
bers voting on proposals or decisions. Voting systems
for DAOs come in two flavors: 1) on-chain voting:
DAO members cast votes on-chain; 2) off-chain vot-
ing: DAO members submit votes to one or more off-
chain aggregator nodes, but the DAO’s leadership team,
who controls a multisig wallet, casts a single on-chain
transaction with the decision. The latter option is clearly
more efficient in terms of gas cost, but it comes at the
cost of increased trust assumptions. To address this gap,
there is a general interest in the blockchain ecosystem
(e.g., [2], [7], [6]) to study SNARK-based aggregation
of votes, which would be a best-of-both-worlds solution
enabling off-chain voting without centralized trust.

Unfortunately, as proving statements about signature
verification require expensive encoding of group oper-
ations within a SNARK circuit, off-the-shelf SNARKs
simply do not scale (see [6], [2]), as the aggregation
time for a few thousand votes is on the order of hours
and requires a machine with 100s of GB of RAM. Look-
ing beyond off-the-shelf SNARKs, it is unimaginable to
expect thousands of DAO members to come online at
the same time and perform a DKG ceremony; this is
especially problematic because DAOs allow a rolling
membership where parties join or leave at will. Not
only does hinTS enable a silent setup, but it also allows
the proposal to dynamically set the threshold after the
voting period has commenced.5 Most importantly, the

5. DAO proposals typically only get votes from a small fraction
of the members, so it is typical for the DAOs to choose different
thresholds for different proposals based on their importance.
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voters get assigned a weight based on their stake or
token allocation in the DAO, and more complex poli-
cies (based on leadership roles or other attributes, for
example) can also be enforced by hinTS.

1.3. Related Work

DKG Protocols. There is a large literature on DKG
protocols spanning four decades. Despite the recent
advancements, DKG protocols have high computation
and / or communication complexity. The Joint-Feldman
style DKG protocols [42] require O(n2) computation
per party when parties behave honestly, but balloons
up to O(n3) computation in the event of complaints –
Tomescu et al. [63] improve these costs to O(n log(n))
and O(n2 log(n)) respectively. Recent works – Abra-
ham et al. [10], Kokoris et al. [48], and Das et al. [31]
– have made DKG operate under asynchrony, but they
nevertheless require O(n2) or O(n3) computation –
more importantly, they only support corruption thresh-
old of t < n/3, which is quite restrictive for many appli-
cations. These DKGs also require a broadcast channel,
which needs several rounds of communication.6

A very recent line of work [45], [46], [43] has
started investigating one-round DKG protocols where
each party only sends one message to everyone else.
This round of interaction requires an initial PKI setup
and fixes the security threshold. In other words, in order
to change the threshold, the parties must communicate
again. In contrast, our scheme achieves a silent setup
(in the CRS model) where the parties only publish their
locally computed public key (i.e., they only setup a
PKI), and the threshold can be decided dynamically
without any interaction from the parties.

Prior approaches to avoiding DKG. We now discuss
known approaches to build threshold signatures without
DKG – all of them achieve silent setup and support
dynamic thresholds. The first approach (abbrev. Multi-
sig) relies on multisignatures [13], [18], a variant of
threshold signatures that supports non-interactive key
aggregation in the n-out-of-n (i.e., full threshold) set-
ting. In order to support thresholds t strictly less than
n, one can simply offload the task of public-key aggre-
gation to the verifier. More specifically, the signature
aggregator now outputs a signature that includes the
list of all signers and the verifier aggregates the public
keys of the signers in the list on-the-fly. While simple,
this approach results in signature size and verification
time linear in the number of signers. This can be
prohibitively expensive in many applications, e.g., to
setup a smart contract for 2000 signers, this approach
requires around 60 million gas (see Table 5 in Section 7
for detailed comparison).

6. The exception here is Abraham et al. [10], but their scheme
produces a group element rather than a field element as the secret,
making it incompatible with known threshold signature constructions.

Approach Signature Size & Verifier Time Policy

MultiSig O(ns) Weighted
Comp-Cert [50] O(poly(log(ns))) Weighted

hinTS O(1) General

TABLE 1: Comparison between our scheme and other two ap-
proaches that achieve silent setup and dynamism and has comparable
efficiency (the general SNARK approach has prohibitively high ag-
gregation time and hence is excluded). ns denotes number of signers.
For a more detailed comparison and concrete efficiency, see Section 7.

A natural idea to avoid the linear complexity of the
previous approach is to offload the public-key aggre-
gation work to the signature aggregator. That is, the
signature aggregator now also computes the aggregated
public key of the threshold number of signers who
participated in the signing process, and outputs this key
as part of the signature. But how do we know that the
aggregated public key is honestly computed? To solve
this dilemma, we require the aggregator to output a suc-
cinct non-interactive argument of knowledge (SNARK)
[17], [16] that establishes the well-formedness of the
aggregated public key. This approach yields an STS
scheme, but in general, incurs prohibitively high con-
crete aggregation costs. For example, even using state-
of-the-art SNARKs (such as PLONK [40]) and the
most efficient signature schemes such as EdDSA [15]
results in aggregation time in the order of a few minutes
for modest choices of parameters – in comparison our
aggregation requires less than a second (see Table 2 in
Section 7). Moreover, even such performance numbers
are only possible when we instantiate EdDSA with
SNARK-friendly hash functions such as MiMc [11],
whose security is not well-understood.

A recent work of Micali et. al. [50] (Comp-Cert for
short) devises a customized instantiation of the above
SNARK-based approach to achieve smaller aggregation
times – they call it compact certificates. Similar to our
work, they support the weighted-threshold setting.We
highlight a few drawbacks of their scheme relative
to ours: first, their scheme requires a larger signature
size (logarithmic in the number of signers) and higher
verification cost (also logarithmic), which is undesirable
for blockchain applications (see Table 3 and Table 4
in Section 7 for comparison). Second, their scheme
requires a gap between tsig and treal, where treal is the
total weight of signers who released partial signatures
and tsig is the weight guaranteed by the aggregated
signature. The smaller the gap, the larger the size of
their aggregated signature. Third, they do not provide
an extension to general access structures.

We provide a comparison of our work with these
three approaches in Table 1.

Multiverse Threshold Signatures. A very recent work
of [12] proposes the notion of Multiverse Threshold
Signature (MTS), where different verifiers may trust dif-
ferent (but potentially overlapping) subsets of signers.
Each such subset of signers is referred to as a universe,
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and the collection of all universes is the multiverse. The
key requirement is that each signer’s secret state and the
signing time should be independent of the number of
universes. [12] constructs an MTS scheme in the generic
group model where each universe can be setup using
a one-round protocol. While our scheme also extends
to the multiverse setting, we enjoy several additional
advantages over [12]: first, our scheme does not re-
quire a per universe setup (instead, the parties simply
publish their public keys once and for all). Second, the
partial signature size in our scheme is independent of
the parties’ weights; in contrast, [12] incurs a linear
dependence. Finally, unlike [12], our scheme supports
dynamic thresholds (even in the single universe setting)
and general access structures.

2. Technical Overview

The starting point of our construction is the BLS
multisignature scheme [19]. BLS multisignature enjoys
the great benefit that parties can pick their own secret
keys; in particular, no DKG is required. During the sign-
ing phase, parties simply sign the message using their
own secret keys to produce a partial signature σi. The
aggregated signature is σ =

∏n
i=1 σi, which should ver-

ify under the aggregated public key aPK =
∏n

i=1 pki.
7

However, BLS multisignature is only an n-out-of-n
threshold signature scheme. If one wants to use BLS
multisignature as a threshold signature, the following
changes are necessary. Suppose a subset of parties
B ⊆ [n] signed the message, the aggregated signature
shall be (B, σ =

∏
i∈B σi). For verification, the verifier

needs to compute aPK as
∏

i∈B pki and verfies σ
under aPK. This approach is highly undesirable: (1)
The signature (B, σ) is asymptotically large as it needs
to encode the information about B. (2) More crucially,
the verification cost is high, e.g., the verifier needs to do
t group operations to compute aPK. Additionally, the
verifier needs to remember all the public keys, making
the gas cost to store the verification key prohibitively
high in the blockchain setting (refer to Section 7).

Alternatively, the aggregator can also compute aPK
on behalf of the verifier, but then the validity of aPK
must still be verified to prevent forgery attacks. Then,
the key question we ask is:

Can the aggregator compute a succinct proof to
convince the verifier that aPK is computed correctly?

If this is feasible, then the verifier can just accept aPK
and verify σ under it.

Succinct Non-interactive Argument (SNARK) is by
now a standard and concretely efficient technique for
proving any NP statements. Can we use SNARKs to

7. To prevent the rogue key attack, the multisignature scheme
of [19] uses a random oracle to sample a random linear combination to
aggregate the public keys. We note that one could also use a Proof-
of-Possession [59] approach to prevent such attacks. We implicitly
assume a PoP proof is given for the public keys.

prove the validity of aPK? Unfortunately, SNARKs are
not well-suited for proving statements involving group
operations as they involve many expensive non-native
arithmetics. For example, given some succinct encoding
of all the public keys {pki}ni=1 and certain set B,
we currently do not have a concretely-efficient way
of proving aPK is the product of pki for all i ∈ B.
However, we can efficiently compute a succinct proof
for the secret statement aSK =

∑
i∈B ski. Therefore,

we ask the following question.

Can the aggregator provide a SNARK proof for the
secret statement aSK =

∑
i∈B ski instead?

The aggregator cannot directly do this as it involves
the secret keys of the parties that the aggregator does
not possess. Our key idea to enable this is as follows.
At setup time, each party publishes a “hint”, dependent
just on its secret key, which facilitates the aggregator
to prove this secret statement without affecting unforge-
ability.

In more detail, the aggregator proves well-
formedness of aPK in the following manner. Let SK(x)
be the polynomial that encodes all the secret keys
(sk1, . . . , skn). The verification key will simply be the
polynomial commitment of SK(x), which can be com-
puted given appropriate hints from each party. Now, the
aggregator will use a polynomial commitment scheme
to commit to a polynomial B(x), which encodes the set
B as the binary vector (b1, . . . , bn) (i.e., bi = 1 if and
only if i ∈ B). The prover needs to prove two things:
(1) the Hamming weight of (b1, . . . , bn) is ⩾ T ; (2) the
inner product between (sk1, . . . , skn) and (b1, . . . , bn)
is aSK. The first statement is easier to prove as the
aggregator knows the witness (b1, . . . , bn). Therefore,
by using a standard SNARK (e.g., PLONK [40]), the
aggregator can generate a proof for this.

To prove the second statement, we utilized the gen-
eralized sumcheck argument of [57] (refer to Lemma 1)

SK(x) ·B(x) = aSK+Qx(x) · x+QZ(x) · Z(x)

as follows.8 The verifier shall accept that aSK is a
correctly aggregated secret key as long as the aggregator
can provide two quotient polynomials Qx and QZ that
satisfy the polynomial identity. Note that, we shall
verify this polynomial identity in the exponent using
pairing. Therefore, the verifier could verify this state-
ment using only aPK. Again, to compute Qx and QZ

honestly, the aggregator will need parties to broadcast
appropriate hints.

This summarizes our scheme. The final signature
consists of the aggregated public key aPK, aggregated
signature σ, commitment to B(x), and two proofs π1

and π2. The proof π1 proves the Hamming weight of
B(x) is ⩾ T , and the proof π2 consists of commitments
to Qx(x) and QZ(x), which proves the validity of aSK.

8. More precisely, the lemma states that aSK is a constant factor
of the sum

∑
i bi · ski, which is also an acceptable aggregated key.
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Efficiency. By appropriately designing the hints sent by
each party, we achieve the following efficiency. Parties
publish hints of size O(n). The aggregator, taking all
the hints as input, applies a one-time (deterministic)
preprocessing algorithm to generate a linear-size (i.e.,
O(n)) aggregation key AK and a constant-size verifi-
cation key vk. This one-time preprocessing step takes
quadratic time. Later on, during the online phase, the
aggregator, which takes AK and partial signatures as
input, performs only O(n) group operations to generate
an aggregated signature. Concretely, our aggregation
time is comparable to threshold BLS.

Security. We provide a high-level overview of why
unforgeability holds. By invoking the security of stan-
dard SNARK, one can be convinced that if proof π1

verifies, B(x) must encode a vector (b1, . . . , bn) for a
subset B ⊆ [n] such that |B| ⩾ T . Our objective is to
prove: the adversary cannot generate a valid signature
if it does not get the partial signature from all parties in
B. This naturally reduces to that the adversary cannot
make the verifier accept an aSK such that it does not
depend on ski for some i ∈ B.9 Now, the verifier only
accepts aSK if the aggregator can compute Qx(x) and
QZ(x) such that

SK(x) ·B(x) = aSK+Qx(x) · x+QZ(x) · Z(x).

Note that, there is also the “honest” Q′
x(x) and Q′

Z(x),
which testifies the “honest” aSK′ =

∑
i∈B ski as

SK(x) ·B(x) = aSK′ +Q′
x(x) · x+Q′

Z(x) · Z(x).

Taking the difference gives us

aSK′ − aSK = ∆x(x) · x+∆Z(x) · Z(x).

Now, we shall argue that the adversary can never find
∆x(x) and ∆Z(x) such that the above polynomial
identity holds. This is because all the group elements
(including the hints) that the adversary sees (in the
exponent) all satisfy ski · f(x) for a sufficiently low
degree polynomial f(x). In such cases, the adversary
cannot make, for instance,

ski = ∆x(x) · x+∆Z(x) · Z(x)

hold. However, we already established that, to launch
a successful attack, it must be the case that aSK′ −
aSK depend on some ski where i ∈ B. This essentially
completes the security proof.

We stress that we never claim: aSK is the cor-
rectly aggregated secret key.10 We simply argue that
the forgery attack can never succeed. To summarize:

Even though the adversary may convince the verifier
of an incorrect aPK, these incorrect aPK do not help

the adversary launch forgery attacks.

9. This reduction is essentially due to the security of multisignature.
10. In fact, we utilize this to allow the aggregator to add a random

group element to aSK to achieve anonymity (See Section 6.2).

Extensions. Finally, we highlight that our scheme
enjoys several extensions: 1) general policy, 2)
post-compromise security and forward security, 3)
anonymity, and 4) multiverse threshold signature. We
refer the readers to Section 6.2 for discussions on this.

3. Preliminaries

We use κ for the security parameter. We use negl(κ)
for a negligible function, which means that for all
polynomial f(κ), negl(κ) < 1/f(κ) for large enough
κ. We write [n] for the set {1, 2, . . . , n}.

Notations for Polynomials. Throughout the paper,
we use the following notations for polynomials over
finite fields. Let H ⊂ F be a multiplicative subgroup
of a finite field F. Let ω be the generater of H =
{ω, ω2, . . . , ω|H| = 1}. Let L1(x), L2(x), . . . , L|H|(x)
be the Lagrange basis polynomial. That is, Li is the
unique degree |H| − 1 polynomial defined by: Li(ω

j)
is 1 when i = j and 0 when i ̸= j. Let Z(x) =∏|H|

i=1(x−ωi) be the vanishing polynomial on H. Since
H is a multiplicative subgroup, Z(x) = x|H| − 1 and
Li(x) =

ωi

|H| ·
x|H|−1
x−ωi . Note that Li(0) = |H|−1. In our

construction, we use |H| = n+1, where n is the number
of parties.

Generalized Sumcheck. Our construction relies on the
following lemma known as generalized sumcheck. We
refer the readers to Theorem 1 of [57] for proof.

Lemma 1 (Generalized Sumcheck [57]). Let A(x) =∑|H|
i=1 ai ·Li(x), B(x) =

∑|H|
i=1 bi ·Li(x). It holds that

A(x) ·B(x) =

∑
i ai · bi
|H|

+Qx(x) · x+QZ(x) · Z(x),

where both Qx and QZ are polynomials with degree
⩽ |H| − 2 defined as

Qx(x) =
∑
i

ai · bi ·
Li(x)− Li(0)

x
,

QZ(x) =
∑
i

ai · bi ·
L2

i (x)− Li(x)

Z(x)
+

∑
i̸=j

ai · bj ·
Li(x) · Lj(x)

Z(x)
.

Due to space constraints, we defer the preliminaries
on Algebraic Group Model, BLS signature, and KZG
polynomial commitment scheme to Appendix A.

4. Definition of Silent Threshold Signature

This section formally defines the primitive silent
threshold signature (STS). In an STS scheme, parties
will publish some “hints” together with their public key
in a silent manner. Given all the hints, a public algo-
rithm will verify the validity of the hints. Furthermore, a
succinct verification key will be deterministically com-
puted from the hints. Formally, we have the following.
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Definition 1 (STS). A Silent Threshold Signature con-
sists of the following algorithms Σ = (Setup,KGen,
HintGen,Preprocess,Sign,SignAggr,Verify):

• crs← Setup(1κ): On input the security parameter
κ, the Setup algorithm outputs a common refer-
ence string crs.

• (pk, sk) ← KGen(1κ): On input the security pa-
rameter κ, the KGen algorithm outputs a pub-
lic/secret key pair (pk, sk).

• hint ← HintGen(crs, sk, n): On input the crs, the
secret key sk, and the number of parties n, the
HintGen algorithm outputs a hint hint.

• (AK, vk) ← Preprocess(crs, {hinti, pki}i∈[n]): On
input the crs, all pairs {hinti, pki}i∈[n], the
Preprocess algorithm computes an aggregation key
AK and a (succinct) verification key vk.

• σ ← Sign(sk,msg) : On input some secret key sk,
and some message msg, the Sign algorithm outputs
a partial signature σ.

• 1/0← PartialVerify(msg, σ, pk) : On input a mes-
sage msg, a partial signature σ, and a public key
pk, it returns 1 if and only if the partial signature
is verified correctly.

• σ ← SignAggr(crs,AK, {σi}i∈S) : On input the
crs, an aggregation key AK, and a set of signa-
tures {σi}i∈S , the SignAggr algorithm outputs a
(succinct) signature σ.

• b ← Verify(msg, σ, T, vk) : On input a message
msg, a signature σ, a threshold T , and the verifi-
cation key vk, it verifies the signature.

Moreover, STS must have the following efficiency re-
quirements:

• The aggregated verification key vk and the aggre-
gated signature σ should be constant size.

• The verification time Verify should be constant.

Remark 1 (Extended Public Key). We note that
HintGen does not take other parties’ pki’s as input.
It solely depends on the CRS and parties can publish
(pki, hinti) in one shot. In other words, (pki, hinti) can
be viewed as the (extended) public key of party i.

The standard definition of correctness and unforge-
ability is deferred to Appendix B. We highlight that we
define correctness and unforgeability in the malicious
setting. That is, we consider a malicious adversary who
may send arbitrary messages (for the hints and partial
signatures) on behalf of the corrupted parties, whereas
the honest parties are controlled by the challenger. In
particular, this subsumes correctness and security in the
semi-honest setting.

5. Construction of hinTS

We present our hinTS construction. We start by de-
scribing the construction of the (unweighted) threshold
access structure. Next, we describe the minor modifica-
tions needed for the weighted setting.

Construction. Each algorithm is specified as follows.
• Setup(1κ): it samples a random τ ← F, a hash

function H : {0, 1}∗ → G2 and set

crs = (H, [τ ]1, [τ2]1, . . . , [τM ]1, [τ ]2, . . . , [τ
M ]2).

Here, M is an upper bound on the maximum
universe size. In particular, it holds that M ⩾ n+1.

• KGen(1κ) : This is the same as BLS.Gen. That is,
it samples sk← F and output (pk = [sk]1, sk).

• HintGen(crs, ski, n) : Party Pi computes the fol-
lowing things as hinti.

[ski · Li(τ)]1,[
ski ·

L2
i (τ)− Li(τ)

Z(τ)

]
1

,

{[
ski ·

Li(τ) · Lj(τ)

Z(τ)

]
1

}
j ̸=i

,[
ski ·

Li(τ)− Li(0)

τ

]
1

,
[
ski · (Li(τ)− Li(0))

]
1
.

• Preprocess(crs, {hinti, pki}i∈[n]): It first verifies
the validity of the hints through pairings. For in-
stance, the [ski · Li(τ)]1 term should satisfy

e([ski · Li(τ)]1, [1]2) = e([ski]1, [Li(τ)]2).

The rest of the terms in hinti could be verified
similarly.11 Let E be the set of parties whose
hints do not verify. It proceeds to compute AK as
follows.
– It set pki = [0]1 for all i ∈ E . (Note that this

effectively sets ski = 0.)
– It set wi = 0 if i ∈ E and wi = 1 if i ∈ [n] \ E .
The aggregation key AK consists of the following.

E , {wi, pki}i,{[
ski ·

L2
i (τ)− Li(τ)

Z(τ)

]
1

}
i

,
∑

j ̸=i

skj ·
Li(τ) · Lj(τ)

Z(τ)


1


i

,

{[
ski ·

Li(τ)− Li(0)

τ

]
1

}
i

,{[
ski · (Li(τ)− Li(0))

]
1

}
i
.

Note that the size of the AK is O(n). For the
verification key vk, compute the following.

SK(τ) =
∑
i∈[n]

ski · Li(τ), W (τ) =
∑
i∈[n]

wi · Li(τ),

Z(τ) =
∏

i∈[n+1]

(τ − ωi).

The verification key is

vk =
(
[SK(τ)]1, [W (τ)]1, [Z(τ)]2

)
.

11. We note that all verifications on party Pi can be done by first
taking a random linear combination over hinti and one pairing check.
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• Sign(sk,msg): This is the same as BLS.Sign. That
is, σ = H(msg)sk.

• PartialVerify(msg, σ, pk): Same as BLS.Verify, it
outputs the result of e(pk,H(msg))

?
= e(g1, σ).

• SignAggr(crs,AK, {σi}i∈S): It first set S = S \
E . That is, no party whose hint is erroneous will
be considered. Next, it computes the aggregated
public key and signature as

aPK =
(∏

i∈S

pki

)|H|−1

, σ′ =
(∏

i∈S

σi

)|H|−1

.

The final signature is

σ = (aPK, σ′, π) ,

where π is a succinct proof proving the correct
aggregation of aPK. For all i, let bi = 1 iff i ∈ S.
The proof π consists of the following.

1) The claimed threshold w = |S|.
2) A commitment to the vector of signers

[B(τ)]2 =

[∑
i∈S

Li(τ)

]
2

.

3) The commitments to the quotient polynomial
Qx(x) and QZ(x) satisfying

SK(x)·B(x)−aSK = QZ(x)·Z(x)+Qx(x)·x, (1)

where aSK = (
∑

i∈S ski)/|H|. Due to
Lemma 1, they could be computed as

QZ(τ) =
∑
i∈[n]

bi ·
(
ski ·

Li(τ) · Li(τ)− Li(τ)

Z(τ)

)

+
∑
i∈[n]

bi ·

∑
j ̸=i

skj ·
Li(τ) · Lj(τ)

Z(τ)


and

Qx(τ) =
∑
i∈[n]

bi ·
(
ski ·

Li(τ)− Li(0)

τ

)
.

Note that the quantities in the bracket are
precomputed as AK. Therefore, computing
[QZ(τ)]1 and [Qx(τ)]1 takes only O(n) group
operations.

4) Compute

[Qx(τ) · τ ]1 =
∏
i∈S

[ski · (Li(τ)− Li(0))]1,

which will be used for degree check on Qx(τ).
5) Commit to the following partial sum polynomial

ParSum(x) =
∑

i∈[n+1]

(
i−1∑
j=1

bj · wj

)
· Li(x).

That is, one computes [ParSum(τ)]1.

6) Compute quotient polynomials Q1(x) and
Q2(x) for the following polynomial identities

ParSum(x · ω)− ParSum(x)−
(W (x)− w · Ln+1(x)) ·B(x) = Z(x) ·Q1(x) (2)

and

B(x) · (1−B(x)) = Z(x) ·Q2(x). (3)

Intuitively, the first identity checks the well-
formedness of ParSum.12 The second identity
checks that B(x) is 0 or 1 at x ∈ H. It commits
to them by computing [Q1(τ)]1, [Q2(τ)]1.

7) A random challenge r is generated using a ran-
dom oracle O : {0, 1}∗ → F.

r = O
(
w, [B(τ)]2, [QZ(τ)]1, [Qx(τ)]1, [Qx(τ) · τ ]1,

[ParSum(τ)]1, [Q1(τ)]1, [Q2(τ)]1
)
.

It computes the following opening and batch
opening proof of the committed polynomials.
– Open and prove ParSum(ω) = 0.
– Open and prove B(ωn+1) = 1.

(Refer to Footnote 12.)
– Open and prove the following at x = r.{

ParSum(x),W (x), B(x),

Q1(x), Q2(x)

}
.

– Open and prove ParSum(x) at x = r · ω.
We note that Step (5)-(7) is exactly a Plonk-style
SNARK for proving B(x) has sufficient weight.

• Verify(msg, σ, T, vk): Parse σ as above. The veri-
fier checks the following things.
– Verify the proof π.

1) Verify all opening proof of the polynomials.
2) Check that Equation 2 and 3 hold at the

evaluation point r.13

3) Check that Equation 1 holds using pairing

e([SK(τ)]1, [B(τ)]2) · e(aPK, [1]1)−1

= e([QZ(τ)1, [Z(τ)]2)·e([Qx(τ)]1, [τ ]2).

4) Run the degree check on Qx(τ) as

e([Qx(τ)]1, [τ ]2)
?
= e([Qx(τ) · τ ]1, [1]2).

– Verify the aggregated signature σ′.
This is the same as BLS.Verify. Check if
e(aPK,H(msg))

?
= e([1]1, σ

′)

12. Note that ParSum(ω ·x)−ParSum(x) is bi ·wi at everywhere
except for x = ωn+1, in which case, ParSum(ω · x)− ParSum(x)
= 0 − w. Therefore, we add −w · Ln+1(x) to W (x) and further
require that B(ωn+1) = 1.

13. Here, we assume that the verifier will evaluate Z(x) = x|H|−1
at x = r, which takes logn field operations. In practice, this is
insignificant compared to the other constant number of pairings and
group operations that the verifier computes. However, if one wishes to
strictly enforce that the verifier is constant time (i.e., also performs
a constant number of field operations), then one can also ask the
aggregator to compute Z(r) along with a KZG opening proof.
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– Check the claimed threshold. Finally, it checks
if T ⩽ w, i.e., the total number w of parties
signed (proven by π) is no less than the claimed
threshold T .

Construction for Weighted STS. We highlight that the
construction of the weighted silent threshold signature
is almost identical to our construction above. The only
difference is that, instead of using w = (1, 1, . . . , 1)
as the weight vector, we use the predefined weights
w = (w1, w2, . . . , wn).14 The other changes follow
naturally. For instance, the aggregated signature claims
w =

∑
i∈S wi as the total weight instead of w = |S|.

Now, we directly prove the correctness and un-
forgeability of our construction for the weighted STS
according to definitions in Section 4.

Proof of Correctness. Note that any hints and partial
signatures sent by the malicious parties must be correct
if they pass verification. Therefore, correctness in the
malicious setting essentially reduces to the correctness
in the semi-honest setting, which trivially holds. We
defer the proof to Appendix C.

Proof of Unforgeability. We only give a sketch of the
proof here. The full proof is deferred to Appendix D.

Since we are in the AGM model, we shall first
extract the polynomials associated with each group
element that the adversary outputs. These polynomials
are multivariate polynomial on τ , honest parties’ secret
key {ski}i, and (the discrete log of) H(msgi). Since the
signature verifies, the polynomial identities must hold
except for a negligible probability (Lemma 2).

Our proof proceeds as follows. First, we check the
“Plonk” part of the signature. We argue that, if these
polynomial identities hold, B(x) must be a polynomial
that encodes a subset B of weight w (This is proven
by Lemma 3 and 5).

Next, we argue that, since the adversary only re-
ceives the partial signature from honest parties S∗,
the only aPK that the adversary may compute a valid
aggregated signature for is some linear combination of
pki’s in S∗ (This is proven by Lemma 6).

Finally, based on these two observations, we argue
that the adversary can never compute Qx and QZ that
pass the polynomial identity

SK(x) ·B(x) = aSK+Qx · x+QZ · Z(x).

Assume otherwise. Now, let aSK′ = (
∑

i∈B ski)/|H|.
The adversary can also compute Q′

x and Q′
Z for this

honest aggregated secret key as

SK(x) ·B(x) = aSK′ +Q′
x · x+Q′

Z · Z(x).

Taking the difference gives

aSK′ − aSK = ∆Qx · x+∆QZ · Z(x).

14. Malicious parties who send erroneous hints are still set to have
wi = 0 during preprocessing.

If the adversary successfully launches a forgery attack,
aSK, and aSK′ must differ by some honest party’s secret
key skj . However, the adversary can never find ∆Qx

and ∆QZ to make the above identity hold if aSK and
aSK′ differ by some skj (due to a careful degree check).
This essentially concludes the proof.

6. Extensions and Optimizations

6.1. Optimizations

Signature Size. For ease of presentation, our construc-
tion omits a few optimizations that one could use to
reduce the signature size. This optimization is similar
to the optimization in Plonk [40].

• Instead of verifying ParSum(ω) = 0, one could
verify L1(x)·ParSum(x) = Q3(x)·Z(x) at random
location x = r.

• Similarly, instead of verifying B(ωn+1) = 1, one
verifies Ln+1(x) · (1 − B(x)) = Q4(x) · Z(x) at
random location x = r.

• We can now batch Q1(x), Q2(x), Q3(x), Q4(x)
into just one quotient polynomials. In particular,
a random challenge v is sampled by the random
oracle, the prover only sends

Q(x) = Q1(x)+v ·Q2(x)+v2 ·Q3(x)+v3 ·Q4(x).

• As we mentioned, all the KZG opening proofs at
the same location x = r can also be batched into
a single group element openr.

The final signature consists of the following
aPK, σ′, w,

[B(τ)]2, [Qx(τ)]1, [QZ(τ)]1, [ParSum(τ)]1, [Q(τ)]1,

B(r),ParSum(r),ParSum(r · ω),W (r), Q(r),

openr, openr·ω.

 .

Except for the claim threshold w ∈ N, the rest of the
signature consists of 9 group and 5 field elements.

HintGen without size n and index i. In our basic
construction, HintGen takes as input n and implicitly
the index i. In practice, parties may not know the size
of the universe or its index. This can be fixed as follows.

Parties could easily generate their hints without n
by assuming the n = M , where M is the maximum
universe size. However, this is not an efficient solution
as the efficiency of the aggregation now depends on
M instead of n. What parties could do is to publish
a set of hints for every n ∈ {2, 22, . . . , 2logM}. Later,
whenever one wants to set up a universe with size 2t ⩽
n < 2t+1, the aggregator can use the corresponding
hints from every party. The total size of the published
hints is O(M).

The above approach has a subtle security issue as
our security relies on the adversary not being able
to compute ski · f(τ) for a high degree polynomial
f(τ). But if the same τ is used for universes with
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various sizes, the adversary might be able to break this
guarantee. One way to fix this is to use a different τ
for universes with different sizes. Note that this only
increases the CRS size by a factor of 2.

We present two ways for parties to generate hints
without knowing i. First, parties could simply publish
ski · τ, ski · τ2, . . . , ski · τn. This would allow the aggre-
gator to compute any degree n polynomial for ski; in
particular, it can compute the hints for this party with
respect to any index j. The aggregator, however, will
need to do more work in the preprocessing phase.

The second solution is to use hashing. In particular,
parties could use some hash function hash(pk) to find a
set S = {i1, i2, . . .} of candidate indices. Then, parties
generate hints with respect to every index in S. Later,
to set up a universe, parties are assigned an index inside
their respective candidate set such that there is no colli-
sion among all parties. The efficiency depends on how
large the set S needs to be to avoid the collision. Cuckoo
hashing [54], for instance, only requires a constant-size
candidate set to avoid the collision.

6.2. Extensions

General Policy Aggregatable Signature. Our basic
scheme already gives a construction for the weighted
access structure. One could further consider a general
access structure Λ ⊆ 2[n], which defines all authorized
subsets. The objective here is the following: if an au-
thorized subset of parties signed msg, the aggregator
should be able to aggregate these partial signatures into
σ. The validity of σ will convince the verifier that some
authorized subset of parties all signed the message.

Our basic scheme can be easily adapted to support a
general policy as follows. The aggregator still computes
the polynomial B(x), which encodes the subset of
signed parties. It still sends aPK, Qx(x), and QZ(x) to
convince the verifier that aPK is a correct aggregation
of the public keys from parties encoded in B(x). This
is identical to the basic scheme.

Now, the different part is: the aggregator will use a
Plonk-style Snark to generically prove that the witness
encoded in B(x) satisfies the access structure Λ. For in-
stance, if Λ can be described by a circuit C : {0, 1}n →
{0, 1}, one can prove that C

(
B(ω), . . . , B(ωn)

)
= 1

using Plonk. In order to facilitate verification of the
proof, the preprocessing algorithm needs to compute a
Snark verification key for the circuit C. The efficiency
for generating this proof depends linearly on the size
of the circuit |C|.

Forward Security. Forward security [14] is another
highly desirable feature, which aims to prevent adver-
saries from forging signatures in the past. To achieve
this security notion, parties would regularly update their
secret key (while retaining the same public key). This
notion is inspired, in particular, by the so-called long-

range attack [27] in the proof-of-stake blockchain ap-
plications.

Recently, Drijvers et al. [35] proposed a forward-
secure multisignature scheme based on BLS multisig-
nature. Their scheme maintains the original BLS public
key structure and only modifies the secret keys. In
particular, the aggregated signature is still verified under
the aggregated public key aPK, which is a linear com-
bination of each party’s BLS public keys. Our construc-
tion enables the verifier to succinctly verify whether an
aggregated public key aPK is a correct aggregation of
sufficient many public keys. Thus, our construction can
be directly combined with the method proposed by [35]
to create a forward-secure threshold signature scheme.

Proactive Security. Another desirable security require-
ment for threshold signature is proactive security [53]
(a.k.a., post-compromise security). It deals with scenar-
ios where a party’s secret key is leaked to an adversary,
and the party wishes to send an update to refresh the
secret keys to restore security. Crucially, the update
should not alter the public key to ensure continuity.

In our scheme, this can be achieved as follows. If
a party i wants to update his signing key, he simply
samples a new polynomial ∆SK(x) and informs the
jth party to shift his secret key by ∆SK(ωj). He
also shifts his own secret key by ∆SK(ωi). He will
also send the updated aggregation key to the aggre-
gator. This effectively changes the encoding of the
secret key polynomial to SK(x) + ∆SK(x). However,
we do not need to update the verification key from
[SK(τ)]1 to [SK(τ) +∆SK(τ)]1. Instead, the signature
itself could contain [∆SK(τ)]1 to facilitate the verifi-
cation process. As there are more and more updates
[∆SK1(τ)]1, [∆SK2(τ)]1, . . ., the aggregator may sim-
ply add them up and append it to the signature as
[∆SK1(τ)+∆SK2(τ)+ · · · ]1. Thus, the signature size
will not grow in terms of the number of updates.

There is still a security issue. An adversary may
intentionally choose a polynomial ∆SK(x) that he does
not know the evaluation to launch attacks. For instance,
the adversary may choose ∆SK(x) = −SK(x). In order
to avoid this, the party who is updating the secret
key polynomial must prove that he knows polynomial
∆SK(x) entirely. This can be easily fixed as follows.
In the CRS, we embed a hidden challenge [a]2 and
publish [a ·τ ]1, [a ·τ2]1, . . .. Whenever the party publish
[∆SK(τ)]1, we also require it to publish [a ·∆SK(τ)]1,
which should pass the pairing check using [a]2.

Anonymizing the Signers. Threshold signature is
anonymous as the signature hides the set of signers. We
stress that one could also make our aggregated signature
anonymous. First, the zero-knowledge property can be
added to Plonk-style proof easily. All the polynomials
involved in the Plonk proof are padded with a random
multiple of the vanishing polynomial, e.g., f(x) ·Z(x).
Particular to our scheme, we need to mask B(x) and
ParSum(x). The degree of f(x) used in the mask

10



depends on how many points one needs to open the
polynomial at. For instance, we are only going to open
B(x) at one location; hence, we only need to mask
B(x) by c ·Z(x) for a random constant c. On the other
hand, we open ParSum(x) at two locations; hence, we
need to mask it by (c1 ·x+c0) ·Z(x) for random c1, c0.

This shows how we can make B(x) and the proof
of it zero-knowledge. However, the aggregated public
key aPK still leaks information. Therefore, we need to
sample a random mask c and pad aPK with gc. To
fix the generalized sumcheck polynomial identity, we
need to calculate the quotient polynomials ∆Q′

x(x) and
∆Q′

Z(x) such that

c = ∆Q′
x(x) · x+∆Q′

Z(x) · Z(x).

The aggregator can compute this as Z(x) and x are
coprime.15 Now, the aggregator can convince the veri-
fier that aPK · gc is the aggregated public key. Clearly,
aPK · gc hides the identities of the signer.

Multiverse Threshold Signature (MTS). Recently,
Baird et al. [12] proposed the notion of multiverse
threshold signature. An MTS scheme enables a group
of parties to create multiple universes, each allowing a
specific subset of parties to perform threshold signature
based on a universe-specific threshold. As a crucial effi-
ciency requirement, a party’s secret state should remain
succinct; in particular, it should not grow linearly in the
number of universes it belongs to. Thus, a naı̈ve solution
of running a separate DKG for each universe is not a
viable solution. Our construction directly gives a so-
lution for MTS. Furthermore, it significantly improves
the construction of Baird et al. [12]. In our solution,
parties could publish the hints once and for all. For any
subset of parties who wants to form a universe with
any threshold, the aggregation key and the verification
key can be computed in a transparent manner from
the published hints.16 In comparison, the solution of
Baird et al. [12] still requires involving parties to engage
in a one-round setup protocol for each universe.

7. Implementation and Evaluation

We implement our hinTS construction in Rust and
release it open-source at https://github.com/hintsrepo/
hints. We use the BLS12-381 pairing-based curve [20],
and the hashing to elliptic curve method defined
in [38] – we rely on the arkworks libraries for their
implementation. For efficiency, we implement multi-
exponentiation of group elements (within the aggrega-
tor) using Pippenger’s method [55], [22], which, for n
group elements, requires O(n / log(n)) running time
as opposed to O(n).

15. Note that our degree-check only ensure that the part of Qx(x)
related to ski has degree ⩽ |H| − 2. The part of Qx(x) that is
independent of the secret keys could potentially have a higher degree.

16. In particular, our earlier discussion on generating hints without
knowing n and i is highly relevant to this setting.

For a fair comparison of all schemes, we only im-
plement the single-threaded version of the algorithms,
though there are obvious opportunities for parallelism.
All experiments are run on a Macbook Pro with M1 Pro
chip and 32 GB RAM. We also report EVM gas costs17

for publishing and verifying signatures on-chain.
We now compare our hinTS construction to some

alternative threshold signature schemes. These include:
1) generic SNARK approach; 2) compact certificates in
Micali et. al. [50]; 3) threshold BLS signatures [18];
and, 4) multisignature based on BLS [49], [19]. These
schemes are described below.

Aggregation using SNARKs Assuming a public key
infrastructure (PKI), an aggregator, on receiving sig-
natures from a set of parties, can produce a SNARK
proof that convinces a verifier that the prover knows (as
witness) a set of valid signatures, each verifiable under
a distinct public key in the PKI – the prover also proves
that the number or the aggregate weight of the signers
exceeds a threshold. To set up the experiment, we use
the gnark library [3] to create a circuit composing
multiple instances of the signature verification circuit.18

For what seems like a fair comparison, we choose the
most SNARK-friendly signature scheme available in the
gnark library, which is EdDSA signatures – with the
gnark frontend, a single EdDSA verification produces
roughly 6.2K constraints in the Groth16 system [44] and
13.1K constraints in the PLONK system [40]. Further-
more, we will assume that the verifier stores the table
that maps nodes to their public keys; alternatively, the
proof can be constructed with respect to a commitment
to this table, but that only adds to the prover (aggrega-
tor) running time that we report. For hashing, which
is used in the signature scheme as a random oracle
and must take place inside the SNARK circuit, we use
the MiMc [11] hash function. As we show later, the
aggregator’s running time is prohibitively expensive for
hundreds of nodes, even if its efficiency is asymptoti-
cally identical to hinTS.

Compact Certificates Micali et. al. [50] introduce
compact certificates, based on non-interactive proofs of
knowledge in the random oracle model. The certificate
proves that signers have a sufficient total weight, while
only including a logarithmic number of individual sig-
natures. As we show later, the certificate size is an order
of magnitude larger than ours, incurring a heavy gas
cost to not only submit the certificate on chain but also
for the smart contract to verify a logarithmic number of
partial signatures and Merkle paths (each of log size).

17. Our calculation uses the pre-compiled gas costs for the BLS12-
381 curve as defined in EIP-2537 [4]: ECADD costs 600, ECMUL
costs 12000, and k pairings cost 115000 + k · 23000. The gas cost
for each 32-byte storage slot is 20000.

18. Alternatively, we could have produced k independent Groth16
proofs, and aggregated them using Bunz et. al. [26] (implemented
in [41]), that results in O(log(k)) sized proofs. Recursive composi-
tion techniques also exist [23], but they are relatively inefficient.
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Threshold BLS The (standard) threshold BLS [18]
system uses a BLS scheme that is set up by a distributed
key generation (DKG) protocol, such as Gennaro et
al. [42] or with the recent improvements in [63]. The
only known technique for dealing with weights in this
scheme is virtualization, where each party is given as
many shares as its weight. Not surprisingly, as we show
later, signing is linear in the weight, and aggregation is
linear in the total weight of all parties (specifically, the
threshold weight) – this becomes prohibitively expen-
sive for modest precision (e.g., 32-bit) weights.

BLS Multisignature We also study BLS multisigna-
tures [49], [19], where rogue key attacks are addressed
via proofs-of-possession in a setup phase (i.e., each
party will include the proof when publishing the public
key). This scheme has the following properties: 1) the
aggregated signature contains the identity of each signer
(in a bitmap of size n bits); and 2) the aggregated public
key is computed by the verifier (e.g., smart contract)
by aggregating the public keys of all signers. As we
show later, this scheme has expensive (on-chain) costs,
both in setup cost (storing linear public keys) and the
verification cost (adding linear group elements).

7.1. Aggregation Time

TABLE 2: Aggregation Time (secs)

Parties SNARK Thr. BLS Mul. BLS hinTS
Groth16/PLONK W = {1, 210}

128 11.2 / 6.9 0.011, 2.87 0.00029 0.06

256 24.5 / 14.6 0.019, 5.72 0.00057 0.13

512 71.14 / 39.2 0.057, 11.4 0.0015 0.23

1024 186.3 / 126.3 0.126, 24.16 0.0029 0.47

2048 484.3 / 302.9 0.282, 46.26 0.0058 1.02

In Table 2, we compare the aggregation time for
various schemes, and measure how the runtime grows
with the number of parties. The aggregation time is in-
dependent of the signers’ weights in all these schemes,
with the exception of threshold BLS for which we report
the running time for 10-bit weights (higher precision,
such as 64-bits is simply infeasible to even evaluate with
a handful of parties) – as it is the state-of-the-art, we
use the implementation from [63] to report the running
time for threshold BLS. Clearly, threshold BLS is not
a scalable solution, even with a low precision of 10-bit
weights – running time is exponential in the precision.

As proving statements about group operations is ex-
pensive in generic SNARKs, we find that the SNARK-
based approach – we experiment with both the Groth16
and PLONK provers – is untenable for networks be-
yond a few hundred parties. Multisig BLS has the
most efficient aggregation (comprising at most n group
additions). That said, for the various applications of
threshold signatures that we discussed, we find that
hinTS is efficient for networks of practical sizes.

7.2. Signature Size

TABLE 3: Size of Partial and Aggregated Signatures

Scheme Partial Size Aggregate Size

SNARK (Groth16) 1 G1, 1 F 2 G1, 1 G2 (192 B)
SNARK (PLONK) 1 G1, 1 F 9 G1, 6 F (624 B)

Compact Cert. 1 G1, 1 F > 200 G1 and F (> 15 KB)

Threshold BLS W G1 1 G1 (48 B)

Multisig BLS 1 G1 1 G2, n bits (176 B, n = 210)

hinTS 1 G1 9 G1, 5 F (592 B)

We report the signature sizes in Table 3, where n
denotes the number of parties and W is the weight per
party (e.g., 0 < W < 232 for 32-bit weights). Depend-
ing on the scheme, a signature has several elements: G1

and G2 denote group elements (of size 48 and 96 bytes,
respectively) from the source groups of the pairings
curve and F denotes field elements (of size 32 bytes).

The size of the partial signature is important to study
not only because it affects the amount of computation
and bandwidth required of each signer, but also the
inbound bandwidth required of the aggregator. Except
for the threshold BLS scheme, where weights are han-
dled via virtualization, all schemes require each party
to output a constant-size signature (one or two group
elements) that is verifiable under that party’s public key.

Aggregated Signatures are constant-size in hinTS,
Threshold BLS, and SNARK-based schemes. Among
these, hinTS is the largest with 896 bytes (of which
848 bytes are for the proof); that said, we opine that
the improvement in aggregation time compared to the
other two schemes is an acceptable tradeoff in practice.

Compact certificates use logarithmic size proofs;
for 128-bit security, soundness requires them to output
a certificate of size 7.5-12 KB for 100 parties, and
roughly 40-250 KB for 10K parties – Table 3 includes a
data point for the threshold that is 80% of total weight,
and the signature is even larger for lower thresholds.19

In fact, for a few hundred nodes, the certificate is
larger than simply outputting all signatures, due to
the overheads of the Merkle paths – their approach
is targeted toward networks with millions of nodes.
Compact certificates are impractical for our use case,
especially since the aggregated signature is published
and verified on-chain.

BLS multisig produces a linear size aggregated sig-
nature (1 G1 element and n bits), as the verifier must
know which parties have signed. Though asymptotically
worse, it fares better in practice compared to hinTS; for
reasonable values of n, say 1024, we get a 176-byte
signature. Despite the smaller size, multisigs impose a
high compute cost on the verifier (discussed below), so
we opine that hinTS has an acceptable tradeoff here too.

19. Irrespective of the number of nodes and weights, the certificate
contains the following number of signatures (in addition to the Merkle
path hashes) for 128-bit security: 1343 for T = 0.55W, 702 for T =
0.6 W, 380 for T = 0.7 W, 272 for T = 0.8W, and 217 for T = 0.9W.
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7.3. Verification

TABLE 4: Verification Time and Gas Cost

Scheme Verifier Ops CPU Time / EVM Gas

SNARK (Groth16) 3 P , 1 G1 mul 13 ms / 196K
SNARK (PLONK) 2 P , 18 G1 mul 7 ms / 377K

816 G1 add
Compact Cert. 544 G1 mul 190 ms / > 672K

272 H

Threshold BLS 2 P 3.51 ms / 160K

Multisig BLS n G1 add, 2 P 2.5 ms / 774K (n = 210)

hinTS 10 P , 1 G1 mul 17.5 ms / 395K

Table 4 reports the verification complexity of all
schemes, in terms of algebraic operations, CPU time,
and EVM gas cost (computed using [4]) – here, we
only report the incremental gas cost for verifying each
signature, and the fixed cost for setting up the smart
contract is deferred to section 7.4. Algebraic operations
are of several types: H denotes hash functions, P
denotes pairing operations, while group operations in
G1 are either additions or multiplications.

Again, with the exception of compact certificates
and BLS multisig, all schemes have constant time. Due
to the linear number of group additions, BLS multisig
has the highest gas cost for n > 210. The number of
partial signatures in a compact certificate is logarithmic
asymptotically, but for values of n ≈ 210 includes sev-
eral hundred signatures (depending on the ratio between
the threshold and total weight of all parties) – each
EdDSA (over Curve25519) signature costs 2000 gas [5].

In terms of gas cost, hinTS is not as competitive
as threshold BLS or the Groth16 SNARK (although
PLONK has a similar gas cost as hinTS). We contend
that applications that are prioritizing gas cost can use
the common recursive approach for compressing proofs,
wherein the hinTS proof is checked within a SNARK
circuit of a Groth16 scheme – as opposed to checking
n signatures, the Groth16 prover in this recursive ap-
proach would be evaluating 10 P and 1 G1 operation,
which we measure to take approximately 30 seconds.

7.4. Setup Cost

TABLE 5: Setup Protocol Complexity and Gas Cost

Scheme Setup Protocol EVM Gas

SNARK (Groth16) circuit-specific setup 300K
SNARK (PLONK) powers-of-tau ceremony

Compact Cert. none 20K

Threshold BLS O(n log(n)) DKG 60K
(AMT DKG [63]) (O(n2 log(n)) complaints)

Multisig BLS none 60M (n = 210)

hinTS O(n log(n)) silent setup 390K
46.3s for n = 210

We measure the fixed costs associated with each
scheme in Table 5. The setup protocol column measures
the cost of running any protocol amongst the parties
prior to signing; this includes interactive protocols or
silent setup phases for generating the verification key,
and optionally, a protocol for generating the signing
keys (e.g., DKG for generating shares in threshold
BLS). The gas cost column measures the cost of storing
the verification key material on a smart contract that will
later be verifying the threshold signatures.

In the case of SNARK-based schemes, we need a
setup phase that only depends on the (max) size of the
network, but need not be repeated for each subset of
parties up to that max size – this is either a circuit-
specific setup in Groth16 (where the circuit verifies up
to max size number of EdDSA signatures, or a powers-
of-tau ceremony for the KZG commitment scheme in
Plonk. The verification key output by this setup phase
must be stored on-chain, incurring a modest gas cost.

Compact certificates do not need a trusted setup
(beyond the broadcasting of public keys), and only store
commitments to the public keys and weights on-chain.

Threshold BLS uses a DKG protocol, for which
several schemes have been developed in recent years.
Protocols in the vein of Joint-Feldman DKG, such as
Tomescu et al. [63], require each party to perform
O(n log(n)) work (O(n2 log(n)) in the event of com-
plaints). On the other hand, the non-interactive DKG
protocols [45], [46], [43] require parties to compute
expensive NIZKs (but they do not require a complaint
phase). In either case, the setup is expensive and must
be repeated whenever the access structure changes:
parties joining or leaving, changes to weights, or the
threshold. On the plus side, threshold BLS only requires
the verifier to store a single group element that is the
public key, so the gas cost for setup is low.

Multisig BLS does not have any setup phase beyond
broadcasting of the public keys, but requires the verifier
to store the public key of each party. For any reasonable
n, this becomes expensive – for instance, for n = 210,
we need 60 million gas ($1450 at the time of writing).

hinTS uses a silent setup (based on some maximum
number of signers n), where each party broadcasts a
public key that contains auxiliary material of linear size,
whose computation requires n group multiplications
and O(n log(n)) field operations (for the inverse FFT) –
as an example, for n = 210, the computation takes 46.3
seconds. The setup need not be repeated for changes in
the access structure and can be performed once consid-
ering networks of different powers-of-two sizes. hinTS
has a modest gas cost, representing the cost for storing
the verification key, some group elements from the
CRS, and some pre-processed polynomial commitments
(e.g., vanishing polynomial) on the smart contract.
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8. Conclusion

We propose hinTS, a novel threshold signature
scheme with silent setup. Our scheme avoids a DKG,
allows dynamic thresholds and signers, and supports
general access structures. Empirical evaluation shows
that our scheme is efficient and has applications in state
proofs, oracle networks, and off-chain DAO voting.
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Appendix

1. Additional Preliminaries

We use (F,G1,G2,GT , e, g1, g2, gT ) for a pairing-
friendly group, where F is a prime field of order p =
exp(Ω(κ)); G1,G2,GT are groups of order p with a
non-degenerate pairing e : G1 × G2 → GT ; g1 ∈ G2

and g2 ∈ G2 are uniformly sampled generators such
that gT = e(g1, g2). For a field element x ∈ F, we shall
write [x]1, [x]2, and [x]T for gx1 , gx2 and gxT , respectively.

Algebraic Group Model. We work in the Algebraic
Group Model (AGM), introduced by [39]. In such a
model, adversaries are considered algebraic. That is,
for any b ∈ {0, 1}, whenever the adversary outputs a
group element hb ∈ Gb, it must also output a vector
v⃗ that explains hb. In particular, it must hold that
hb = ⟨v⃗, inpb⟩, where inpb stands for the vector of
group elements from Gb that the adversary takes as
input. Similar to [39], we also assume the following
q-DLOG problem is hard for algebraic adversaries.

Definition 2 (q-DLOG Assumption). For any positive
integer q and algebraic adversary A, it holds that

Pr

x′ = x

∣∣∣∣∣∣
x← F

x′ = A
(
[1]1, [x]1, . . . , [x

q]1,

[1]2, [x]2, . . . , [x
q]2

) = negl(κ).

Assuming the q-DLOG assumption, the following
lemma [39] simplifies the security analysis in AGM.

Lemma 2. Let [f1(x1, . . . , xℓ)], . . . , [ft(x1, . . . , xℓ)] be
a sequence of group elements (in either G1 or G2)
given to an algebraic adversary A as input, where
x1, . . . , xℓ ← F. Let (g1, g2, h1, h2) be the output
of A. If it holds that e(g1, h1) = e(g2, h2), with
1−negl(κ) probability, the adversary A must know the
corresponding polynomials g1(x1, . . . , xℓ) =

∑t
i=1 αi ·

fi, h1(x1, . . . , xℓ) =
∑t

i=1 βi · fi, g2(x1, . . . , xℓ) =∑t
i=1 γi · fi, h2(x1, . . . , xℓ) =

∑t
i=1 θi · fi such that

g1(x1, . . . , xℓ) · h1(x1, . . . , xℓ) =

g2(x1, . . . , xℓ) · h2(x1, . . . , xℓ)

holds as a multivariate polynomial identity.

Our construction of the threshold signature is based
on the BLS signature [21] defined as follows.

Definition 3 (BLS Signature). Let H : {0, 1}∗ → G2

be a random oracle. The BLS signature consists of the
following algorithms.

• BLS.Gen: It samples a random sk← F and output
a public/secret key pair as (pk = [sk]1, sk).

• BLS.Sign(msg): It outputs a signature σ =
H(msg)sk.

• BLS.Verify(pk,msg, σ): It verifies the validity
of the signature by checking e(pk,H(msg))

?
=

e([1]1, σ).

Polynomial Commitment. We use the KZG poly-
nomial commitment [47]. In this scheme, the CRS is
([1]1, [τ ]1, . . . , [τ

D]1, [τ ]2) for some random τ and a
maximum degree D. The commitment to a polynomial
f(x) = a0 + a1 · x + · · · + an · xn is σ = [f(τ)]1,
which can be computed by

∏n
i=0[τ

i]ai
1 . To open the

polynomial at x∗, one computes the quotient polynomial
Q(x) = f(x)−x∗

x−x∗ . The opening proof is π = [Q(τ)]1. To

verify the proof, one checks e(σ, [1]2)
?
= e(π, [τ−x∗]2).

If the prover wants to open ℓ commitment
σ1, . . . , σℓ at the same place x = x∗, we have
the following batching optimization. Let π1, . . . , πℓ

be the corresponding opening proof. The verifier can
pick a random r and check e(σr

1σ
r2

2 · · ·σrℓ

ℓ , [1]2)
?
=

e(πr
1π

r2

2 · · ·πrℓ

ℓ , [τ − x∗]2). In particular, the random
challenge r can be picked non-interactively by the Fiat-
Shamir heuristic, and the prover only needs to send one
group element π = πr

1π
r2

2 · · ·πrℓ

ℓ as the batched proof.

2. Correctness and Unforgeability Definition

Definition 4 (Correctness). The STS scheme Σ satisfies
correctness if, for any adversary A, the output of the
Correctness − Game defined in Figure 1 is 1 with
probability ⩾ 1− negl(κ).

1) The challenger runs crs ← Setup(1κ) and
gives crs to A.

2) The adversary picks n and a subset A of
corrupt parties such that A ⊆ [n].

3) For all i ∈ [n] \ A, the public key and hint
are sampled honestly (pki, ski)← KGen(1κ)
and hinti = HintGen(crs, ski, n).

4) For all i ∈ A, the adversary returns a public
key pki and a hint hinti to the challenger.

5) The public pre-processing is invoked
by the challenger as (AK, vk) ←
Preprocess(crs, {hinti, pki}i∈[n]) and the
output are given to A.

6) The adversary picks a message msg and pre-
pare the partial signatures {σi}i∈S1

for some
subset of malicious parties S1 ⊆ A. Let S′

1 ⊆
S1 be the subset of maliciously generated
signatures that verifies under PartialVerify.

7) The adversary may also request a subset
of honest parties S2 ⊆ [n] \ A for partial
signatures, which are returned by computing
σi ← Sign(ski,msg) on a given message for
all i ∈ S2. This process is run as many times
as desired by the adversary.

8) The challenger computes the aggregated sig-
nature as σ ← SignAggr(crs,AK, {σi}i∈S),
where S = S′

1 ∪ S2 is the set of all partial
signatures that verifies.

9) The output of this game is 1 if, for all T ⩽ |S|,
we have Verify(msg, σ, T, vk) = 1.20
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Figure 1: Correctness− Game

Definition 5 (Unforgeability). The STS scheme Σ sat-
isfies unforgeability if, for any adversary A, the output
of the game in Figure 2 is 1 with probability ⩽ negl(κ).

1) The challenger runs crs ← Setup(1κ) and
gives crs to A.

2) The adversary picks n and a subset of parties
to corrupt A← A(crs).

3) For all honest parties i ∈ [n] \ A, the pub-
lic key and hint are sampled honestly by
the challenger (pki, ski) ← KGen(1κ) and
hinti = HintGen(crs, ski, n).

4) For all i ∈ A, the adversary picks a public
key pki and the corresponding hint hinti.

5) The challenger preprocess {hinti, pki}i∈[n] as
(AK, vk)← Preprocess(crs, {hinti, pki}i∈[n])
which are given to A.

6) The adversary may make a partial signature
query with a message msg and an honest
party i ∈ [n] \ A – the query is returned by
computing σi = Sign(sk,msg). This is run as
many times as desired by A.

7) Finally, the adversary shall output a chal-
lenge message msg∗ and an aggregated sig-
nature σ∗. Let S∗ be the subset of honest par-
ties queried by the adversary to sign msg∗.

8) The adversary wins the forgery game if there
exists a threshold T > |S∗ ∪A| such that
Verify(msg∗, σ∗, T, vk) = 1, in which case,
the output of the game is 1.

Figure 2: Forgery − Game

Silent Weighted Threshold Signature. Weighted
access structure is similar to threshold structure
except that there is a predefined weight vector
(w1, w2, . . . , wn) associated with all the parties. For
every message msg and an aggregated signature σ
aggregating from {σi}i∈S , one claims that a subset of
parties with cumulative weight

∑
i∈S wi have signed

the message. The formal definition is essentially analo-
gous to the definition for the threshold case except for
the last step of the correctness and forgery game.

• Correctness: The output of this game is 1 if
and only if, for all T ⩽

∑
i∈S wi, we have

Verify(msg, σ, T, vk) = 1.
• Forgery: The adversary wins the forgery game if

there exists a threshold T >
∑

i∈S∗∪A wi such
that Verify(msg, σ, T, vk) = 1, in which case, the
output of the game is 1.

20. Note that, since σ is the aggregation of |S| honest signatures,
it should verify for all threshold T ⩽ |S|.

3. Proof of Correctness

We start with two claims. These claims are easy to
see as the honest generated hinti and σi are the unique
group elements that may pass the pairing check on the
hints and the partial signature.

Claim 1. For all corrupted parties i ∈ A, let
(hinti, pki) be the public key and corresponding
hint provided by the adversary A. If hinti ̸=
HintGen(crs, ski, n), it must hold that i ∈ E .

Claim 2. For a message msg and the partial signatures
that verify (i.e., PartialVerify(msg, σi, pki) = 1), σi

must be the correctly generated partial signature.

Note that the hints and the partial signature are
the only messages that the adversary sent that may be
incorrect. As we have shown that these must be correct,
the correctness in the malicious setting reduces to the
correctness in the semi-honest setting, which trivially
holds.

4. Proofs of Unforgeability

To prove unforgeability, we start with a sequence of
lemmas.

Lemma 3. Suppose that at the end of the Forgery −
Game defined in Figure 2, the adversary A outputs
a message and signature pair (msg∗, σ∗) such that
Verify(msg∗, σ∗, T, vk) = 1. Then, with 1 − negl(κ)
probability, we can extract (multivariate) polynomi-
als ParSum(x), B(x), Q1(x), Q2(x), Qx(x, {ski}i),
Q∗

x(x, {ski}i), QZ(x, {ski}i), and aSK(x, {ski}i) from
A such that the following identities hold.21

ParSum(ω) = 0,

B(ωn+1) = 1,

ParSum(x · ω)− ParSum(x)−
(W (x)− w · Ln+1(x)) ·B(x) = Z(x) ·Q1(x),

B(x) · (1−B(x)) = Z(x) ·Q2(x),

SK(x) ·B(x)− aSK(x, {ski}i) = QZ(x, {ski}i) · Z(x)

+Qx(x, {ski}i) · x,
Qx(x, {ski}i) · x = Q∗

x(x, {ski}i).

Proof of Lemma 3. Parse σ∗ = (aPK, σ′, π). Let
(ParSum, B,Q1, Q2, Qx, Q

∗
x, QZ , aSK) group elements

contained in the proof π. Since A is an algebraic adver-
sary, these commitments must be a linear combination
of the group elements that A takes as input. Therefore,
the output of A are multivariate polynomials depending
on τ, {ski}i∈S∗ , and {H(msgi)}i.22 We first argue that
these polynomial identities must hold with respect to
τ . Next, we argue why ParSum, B, Q1, and Q2 must

21. Note that only ski from the honest parties are treated as vari-
ables. Secret keys from malicious parties are not treated as variables
as the adversary knows them in the clear.

22. To be precise, we mean the discrete log of H(msgi). For ease
of presentation, we abuse notation here.
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be single variate polynomial depending only on τ and
why Qx, Q∗

x, and QZ only depends on τ and {ski}i.
First, since the opening proof for the polynomial

commitment verifies, by Lemma 2, we know that, with
1− negl(κ) probability, A must know a set of polyno-
mials such that

• ParSum(ω) = 0,
• B(ωn+1) = 1,
• For a random r,

ParSum(r · ω)− ParSum(r)

−(W (r)− w · Ln+1(r)) ·B(r)
= Z(r) ·Q1(r),

B(r) · (1−B(r)) = Z(r) ·Q2(r).

By Schwarz-Zippel, with all but poly(κ)/|F| = negl(κ)
probability, the following polynomial identity holds.23

ParSum(x · ω)− ParSum(x)

−(W (x)− w · Ln+1(x)) ·B(x)
= Z(x) ·Q1(x),

B(x) · (1−B(x)) = Z(x) ·Q2(x).

Furthermore, observe that the following pairing
equations hold.

e([SK(τ)]1, [B(τ)]2) · e(aPK, [1]1)−1

= e([QZ(τ)1, [Z(τ)]2) · e([Qx(τ)]1, [τ ]2)

and

e([Qx(τ)]1, [τ ]2)=e([Qx(τ) · τ ]1, [1]2).

By Lemma 2, the adversary A must know polynomials
B(x), Qx(x), Q∗

x(x), and QZ(x), which satisfy the
polynomial identities

SK(x) ·B(x)− aSK = QZ(x) · Z(x) +Qx(x) · x,
Qx(x) · x = Q∗

x(x).

We now argue that why ParSum, B, Q1, and Q2 must
only depend on τ . In particular, they are independent
of ski and {H(msgi)}i. If otherwise, suppose B de-
pends on sk1. Then B · (1 − B) will have a quadratic
dependence on sk1. However, the group elements that
A takes as input are all linearly dependent on sk1.
Therefore, the adversary B(1 − B) = Z(x) · Q2 as a
multivariate polynomial identity will never hold. Hence,
with 1 − negl(κ) probability, both B(x) and Q2(x)
are single variate polynomials depending only on τ .
Similarly, if Q1 depends on, for instance, sk1, then
Z(x) ·Q1 will contains a term sk1 ·Z(x). However, all
inputs ofA that depend on sk1 only have degree ⩽ H−1
in terms of τ . Consequently, the polynomial identity
of the well-formedness check of ParSum will never
satisfy. Therefore, with 1 − negl(κ) probability, both
ParSum(x) and Q1(x) are single variate polynomials
depending only on τ . Finally, QZ and Qx will not

23. A polynomial adversary will query the random oracle poly(κ)
times. Each query gives a random challenge r. The adversary suc-
ceeds as long as one of the challenges is bad. By union bound, the
bad event happens with poly(κ)/|F|.

depend on {H(msgi)}i because the adversary never
sees H(msgi)

τ . Hence, QZ , Qx will only depends on
τ and ski, which implies the same for Q∗

x(x).

Lemma 4. The terms in polynomial Qx(x, {ski}i) that
depends on ski has degree ⩽ |H| − 2 in terms of x.

Proof of Lemma 4. By Lemma 3, we have Qx(x) ·x =
Q∗

x(x). Note that all the input to the adversary that
depends on ski have degree ⩽ H− 1 in terms of τ (for
instance, ski · Li(τ)). In particular, the terms in Q∗

x(x)
that depends on ski have degree ⩽ H−1 in terms of τ .
Therefore, the terms in Qx(x, {ski}i) that depends on
ski will have degree ⩽ |H| − 2 in terms of τ .

Lemma 5. For polynomial B(x), it must hold that∑n
i=1 B(ωi) · wi = w.

Proof of Lemma 5. Due to lemma 3, we have the poly-
nomial identity B(x)·(1−B(x)) = Z(x)·Q2(x). Thus,
B(x) must be either 0 or 1 on H. Furthermore, since
ParSum(ω) = 0 and ParSum(x · ω) − ParSum(x) −
(W (x)−w·Ln+1(x))·B(x) = Z(x)·Q1(x) hold, it must
be that ParSum(ωn+1) =

∑n
i=1 B(ωi) · wi = w.

Lemma 6. Let the set S∗ and A be as defined in
the unforgeability game, if the signature σ′ verifies
under aPK (i.e., e(aPK,H(msg))=e([1]1, σ

′)), then,
with 1 − negl(κ) probability, the polynomial identity
aSK({ski}i) =

∑
i∈S∗ ski · vi + v0 hold for some vi’s.

Proof of Lemma 6. Intuitively, this lemma states that
aSK will only depend on the ski’s that have signed
msg. In particular, it cannot depend on τ or other honest
parties’ ski.

Observe that e(aPK,H(msg))=e([1]1, σ
′), hence,

σ′ = H(msg)aSK. Now, the group elements that the
adversary sees and are related toH(msg) areH(msg)ski

for i ∈ S∗ andH(msg)ski . This lemma is, thus, a simple
consequence of Lemma 2.

Given these lemmas, we prove unforgeability as
follows. Suppose that the adversary A wins the un-
forgeability game. By definition, there exists a threshold
T > |S∗ ∪A| such that Verify(msg∗, σ∗, T, vk) = 1.
Since the adversary’s signature verifies, Lemma 3 states

SK(x)·B(x)−aSK = QZ(x, {ski}i)·Z(x)+Qx(x, {ski}i)·x.

Here, aSK =
∑

i∈S∗ ski · vi + v0 by Lemma 6.
Now, we extract the set S′ = {i ∈ [n] :

B(ωi) = 1} from B(x). Let aSK′ = (
∑

i∈S′ ski)/|H|.
There should also exist an honestly sampled quotient
polynomial Q′

x(x, {ski}i) and Q′
Z(x, {ski}i) (for aSK′)

satisfying

SK(x)·B(x)−aSK′ = Q′
Z(x, {ski}i)·Z(x)+Q′

x(x, {ski}i)·x.

Note that Q′
Z and Q′

x can be computed efficiently by
the adversary. Taking the difference gives

aSK′ − aSK = (QZ −Q′
Z) · Z(x) + (Qx −Q′

x) · x.
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Therefore, in order to forge a signature, the adversary
successfully computes two polynomials ∆x(x, {ski}i)
and ∆Z(x, {ski}i) such that

aSK′−aSK = ∆Z(x, {ski}i)·Z(x)+∆x(x, {ski}i)·x. (4)

Since the total weight in S′ is w (Lemma 5), which
satisfies w >

∑
i∈S∗∪A wi (definition of forgery), there

must exist some party with index j such that j ∈ S′

and j /∈ S∗. Therefore,

aSK′ − aSK =
( ∑

i∈S′

ski

)
/|H| −

( ∑
i∈S∗

ski · vi + v0
)

=skj/|H|+ L({ski}i̸=j).

where L(·) is affine combination of {ski}i ̸=j whose
coefficients depend on ({vi}i∈S∗ , v0).

We now argue that Equation 4 implies a contradic-
tion as follows: By Lemma 4, we observe that the terms
in ∆x(x) that depends on skj has degree ⩽ |H| − 2.
Therefore, the terms in ∆Z(x) · Z(x) + ∆x(x) · x that
depends on skj can never be c · skj for some constant
c. In particular, it can never equal skj/|H|. Thus, the
polynomial identity

aSK′− aSK = ∆Z(x, {ski}i) ·Z(x)+∆x(x, {ski}i) ·x

will not hold. This concludes that the adversary wins
the forgery game with probability ⩽ negl(κ).
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