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Abstract. In this work, we initiate a study of K-NIKE protocols in the fine-grained setting,
in which there is a polynomial gap between the running time of the honest parties and that of
the adversary. Our goal is to show the possibility, or impossibility, of basing such protocols on
weaker assumptions than those of K-NIKE for K ≥ 3. Our contribution is threefold.

– We show that random oracles can be used to obtain fine-grained K-NIKE protocols for
every constant K. In particular, we show how to generalize Merkle’s two-party protocol to
K parties in such a way that the honest parties ask n queries each, while the adversary
needs nK/(K−1) queries to the random oracle to find the key.

– We then improve the security by further using algebraic structures, while avoiding pairings.
In particular, we show that there is a 4-party NIKE in Shoup’s generic group model with a
quadratic gap between the number of queries by the honest parties vs. that of the adversary.

– Finally, we show a limitation of using purely algebraic methods for obtaining 3-NIKE. In
particular, we show that any n-query 3-NIKE protocol in Maurer’s generic group model
can be broken by a O(n2)-query attacker. Maurer’s GGM is more limited compared with
Shoup’s both for the parties and the adversary, as there are no explicit labels for the group
elements. Despite being more limited, this model still captures the Diffie Hellman protocol.
Prior to our work, it was open to break 3-NIKE protocols in Maurer’s model with any
polynomial number of queries.
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1 Introduction

Non-interactive key exchange (NIKE), introduced in the seminal work of Diffie and Hellman [DH76],
is a primitive of fundamental interest in cryptography. It allows a group of parties P1, . . . ,Pk to simul-
taneously publish a single message each, such that any party can recover (without further interaction)
a common group key using their secret randomness and the common messages (mi)i∈[k], in a way that
the key remains hidden to any external observer who only gets to see (mi)i∈[k]. NIKE is an intriguing
cryptographic object: although the first construction of a 2-party NIKE was given in one of the very
first papers on public key cryptography, constructing NIKE for more parties is a notoriously hard
problem. Even in the two party setting, NIKE is known only from a restricted set of assumptions,
such as the Diffie-Hellman assumption [DH76], the LWE assumption with super-polynomial modulus-
to-noise ratio [GKRS22], and from assumptions related to the hardness of factoring [FHKP13]. In
the three-party setting, constructing NIKE was a major open problem until the breakthrough result
of Joux [Jou00] from the bilinear Diffie-Hellman assumption over pairing groups, which introduced
what remains to date the only known construction of 3-party NIKE under a standard assumption.
Furthermore, all known constructions ofK-party NIKE forK > 3 require much heavier cryptographic
machinery, such as indistinguishability obfuscation [BZ14]. Hence, as of today, K-party NIKE with
K > 3 belongs to the world of “obfustopia” primitives (alongside with primitives such as witness
encryption or functional encryption), in spite of being seemingly a much simpler primitive than ob-
fuscation.

Fine-grained cryptography. Traditional cryptography requires hardness of cryptographic primi-
tives to hold against arbitrary polynomial-time adversaries. In contrast, fine-grained cryptography
aims to study the feasibility of cryptographic primitives when the adversarial power is restricted,
for example, to some fixed polynomial bound. While the study of fine-grained cryptography can be
traced back to the seminal paper of Merkle [Mer74, Mer78] who constructed a 2-party NIKE from
idealized hash functions with security against subquadratic-time adversaries, this primitive has re-
cently spurred a renewed interest, leading to a collection of constructions [BGI08, BHK+11, DVV16,
BRSV17, BRSV18, CG18, LLW19, EWT21, DH21, WP22] and lower bounds [BM09, BC22] for fine-
grained cryptographic primitives.

A core motivation underlying the research on fine-grained cryptography is the hope that by relax-
ing the security to hold against less powerful adversaries, it might be possible to base the existence of
fine-grained primitives on assumptions which are weaker than those known to imply their full-fledged
counterpart. For some types of restrictions, this has been a fruitful endeavor so far; for example,
when restricting the adversary to be of constant depth (in the complexity classes AC0), this has led to
the construction of many standard cryptographic primitives (one-way functions, pseudorandom gen-
erators, pseudorandom functions, public key encryption), with unconditional security [DVV16]. For
adversaries of logarithmic depth (in the class NC1), this resulted in the construction of most traditional
cryptographic primitives under worst-case hardness assumptions [DVV16, CG18, EWT21, WP22].
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Perhaps more interestingly, some results have been achieved when restricting only the running
time of the adversary to be bounded by some fixed polynomial in the runtime of the honest parties
(the degree of the polynomial is typically called the security gap of the scheme). The work of [BGI08],
building upon [Mer78], showed that exponentially-secure one-way functions imply key exchange and
public key encryption with near-quadratic security gap. More recently, the work of [BC22] showed that
some strong forms of average-case hardness implies one-way functions with near-quadratic security
gap. At the other end of the hardness spectrum, the work of [BJK+18] showed the existence of
“quadratically efficient” witness encryption from the LWE assumption. In each of these examples,
the fine-grained primitive is built from an assumption which seems to be of a weaker nature compared
to the full-fledged version.

1.1 Our Contribution

In this work, we investigate multiparty non-interactive key-exchange in the setting of fine-grained
security. We focus on the setting where the adversarial runtime is restricted to be bounded by a
polynomial in the honest parties’ runtime. Our main motivation is to understand the possibility of
basing fine-grained multiparty NIKE on assumptions outside of the Obfustopia realm, and ideally
on some of the traditional assumptions known to imply 2-party NIKE, such as the Diffie-Hellman
assumption.

Below, we always denote by n the runtime of the honest participants, and write K-NIKE for
K-party NIKE. Our main results are threefold:

1. In the random oracle model, we prove the existence of a fine-grained 3-NIKE protocol with
security against o(n1.5)-time adversaries. Our result generalizes to K-NIKE with security against
o(n1+1/(K−1))-time adversaries. While this result is a relatively natural generalization of the
seminal protocol of Merkle, to the best of our knowledge, it has never been found before.

2. We demonstrate that larger security gaps can be achieved by additionally relying on algebraic
structure: in Shoup’s generic group model [Sho97], we prove the existence of a 4-NIKE with
security against o(n2)-time adversaries. Our result generalizes to 2K-NIKE with security against
o(n2)-time adversaries in the generic (K − 1)-linear group model. In particular, this also yields a
6-NIKE with near-quadratic hardness in the generic bilinear group model.

3. We complement our positive result by proving a limitation on the fine-grained security of K-NIKE
with K > 2 over generic groups. In particular, we prove that for K > 2 any K-NIKE protocol in
Maurer’s generic group model [Mau05] can be broken using O(n2) queries.5 Our result extends to
the setting of K-NIKE with imperfect correctness. An important point is that, even though our
impossibility result only applies to the MGGM, the Diffie-Hellman protocol for 2-NIKE can be
stated in the MGGM. Moreover, while it is indeed true that negative results in the MGGM are
generally weaker than those in the SGGM and should be interpreted cautiously [Zha22, DHH+21],
our result is a natural first step towards proving a stronger negative result for a basic question of
whether 3-NIKE can be based merely on simple algebraic assumptions without pairing.

Discussion. In our third contribution, we prove our lower bound in Maurer’s generic group model,
whereas our positive result holds in Shoup’s generic group model, which is more flexible: this leaves
a gap between our positive and negative results. We refer to [Zha22] for an in-depth discussion on
the differences between these two models. We view as an interesting question the goal of closing the
gap between our positive and negative results, either by building a 4-NIKE protocol with quadratic
security in Maurer’s generic group model, or by extending our impossibility result to Shoup’s generic
group model.

1.2 Technical Overview: Building NIKE in the ROM and GGM

We start by covering our positive results. Our starting point is the classical 2-party NIKE of Merkle
in the random oracle model, which works as follows: let H : [n2] 7→ {0, 1}λ (for security parameter λ)
be an injective random oracle. Alice and Bob sample (a1, · · · , an) $← [n2]n and (b1, · · · , bn) $← [n2]n

respectively, and exchange the hashes of these values: Alice sends (H(a1), · · · , H(an)), and Bob sends
(H(b1), · · · , H(bn)). By the birthday paradox, with some constant probability, there will be a collision

5 Our proof is for K = 3 which will directly imply the negative result for any K ≥ 3.
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ai = bj . Since H is injective, every hash collision corresponds to an input collision. Alice and Bob
can identify (say) the first such collision, and set key ← ai = bj to be their shared key. To find the
shared key, any adversary must essentially query the random oracle on Ω(n2) positions, hence the
protocol has fine-grained security with near-quadratic gap. More generally, any n2−ε-query adversary
has probability n−ε of querying the shared key; this probability can be reduced to negligible by letting
Alice and Bob send n · log n hashes instead, and identifying ℓ(n) = ω(log n) collisions, defining the
key as the XOR of the ℓ keys.

Fine-grained multiparty NIKE in the ROM. In this work, we show that the above protocol
can be directly generalized to the K-party setting, if we set the domain size of the random oracle to
n1+1/(K−1): this guarantees that K random n · log n-sized tuples will have ℓ(n) K-collision with some
constant probability. The security analysis essentially unchanged, and shows that n1+1/(K−1)−ε-query
adversaries have negligible probability of finding the final key. Correctness is slightly more technical,
as it requires proving that the number of K-collisions among K random n·log n-sized tuples is at least
ℓ(n) with overwhelming probability. It follows from a sequence of concentration bounds: we identify
some s1 such that with overwhelming probability, the number of collisions among the hashes of the
first two parties is at least s1 (s1 can be computed by a straightforward Chernoff bound). Then, we
identify s2 such that with overwhelming probability, for any fixed set of s1 values, there will be at
least s2 collisions between this set and the third party’s hashes. We proceed this way, using a sequence
of K Chernoff bounds to identify s1 > s2 > · · · > sK−1 = ℓ(n) such that the number of K-collisions
is at least sK−1 with overwhelming probability. From here, correctness follows immediately from the
injectivity of the oracle. Even though security against n1+1/(K−1)−ε-query adversaries gets worse as
K grows, for every constant K, it still shows a polynomial gap between the honest parties’ running
time and that of the adversary.

Fine-grained 4-NIKE from Idealized 2-NIKE. The above protocol achieves K-NIKE, at the cost
of strongly restricting the adversarial runtime: even for K = 3, the protocol only withstands o(n1.5)-
time adversaries. However, since we only used a random oracle (i.e. an idealized hash function),
one could reasonably hope that a better gap can be achieved if we start from stronger ‘public key’
primitives. As a starting point, we describe a construction of a 4-party NIKE starting from an idealized
2-NIKE oracle. While this construction does not directly yield a candidate classical instantiation
(unlike ROM-based construction, which yield heuristic instantiation using a hash function), it captures
the core intuition of our next construction, while abstracting out some of the technicalities. Concretely,
we consider the following idealized 2-NIKE oracle with two procedures:

– Msg : [N ] 7→ {0, 1}∗ is an injective random oracle over the domain [N ].

– Key : [N ] × {0, 1}∗ 7→ {0, 1}λ, on input an element r of the domain [N ], and a bit-string s, it
checks whether s = Msg(r′) for some r′. If there is such an r′, it returns h(r0, r1), where (r0, r1) is
a lexicographic ordering of (r, r′) and h is a random function from [N ]× [N ] 7→ {0, 1}λ.

Relative to (Msg,Key), it is straightforward to see that there exists an ideally-secure 2-NIKE scheme
as follows: Alice and Bob broadcast mA = Msg(rA) and mB = Msg(rB) respectively, and obtain a
shared key key = h(rA, rB) = Key(rA,mB) = Key(rB,mA). Furthermore, interestingly there also exists
a 4-NIKE relative to (Msg,Key) over domain [N ] = [n2], with quadratic hardness gap (improving upon
the collision-based approach of our construction of K-NIKE in the ROM) as follows. Fix four parties
(P1,P2,P3,P4). At a high level, the protocol proceeds by (1) letting (P1,P2) agree on a common
randomness r12 with associated message m12 = Msg(r12) by looking for a randomness collision, (2)
letting (P3,P4) agree on (r34,m34) via the same collision-finding procedure, and (3) letting (P1,P2)
and (P3,P4) play the roles of Alice and Bob respectively and derive a shared key using the Key oracle.
More precisely:

1. Each party Pi samples n random elements (r
(i)
1 , · · · , r(i)n ) $← [n2] and broadcasts (m

(i)
1 , · · · ,m(i)

n ) =

(Msg(r
(i)
1 ), · · · ,Msg(r

(i)
n )).

2. With some constant probability, there exists two positions j0, j1 such that r
(1)
j0

= r
(2)
j1

, leading to
a hash collision. P1 and P2 identify this collision; let r12 denote the collision, and m12 denote the
corresponding message.

3. Similarly, P3 and P4 identify a collision r34 with message m34 among their vectors of messages.

4. P1 and P2 output Key(r12,m34), and P3 and P4 output Key(r34,m12).
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Correctness follows easily by inspection. For security, any adversary that manages to find the common
key key with non-negligible advantage must have queried Key on either (r34,m12) or (r12,m34). With-
out loss of generality, we can assume that the adversary always queries message with its first input
to Key: therefore, the adversary must have queried either r12 or r34 to Msg. By the same analysis
as for Merkle puzzles, an O(n2−ε)-query adversary can find such a query with probability at most
n−ε. As before, one can reduce the adversary’s advantage to negligible by generating ℓ(n) = ω(log n)
collisions per pair of party instead, and defining the shared keys to be the XOR of the ℓ(n) outputs
of Key.

Fine-grained 4-NIKE in the SGGM. With the above template in mind, a natural idea is to
replace the idealized oracle (Msg,Key) by a Diffie-Hellman key exchange, to get a 4-party NIKE over
Diffie-Hellman groups with quadratic security gap. Unfortunately, this does not work! To see the issue,
let us fix a cyclic group G of size n2, with a generator g. Replacing (Msg,Key) by a Diffie-Hellman
key exchange, we get the following (1st try) protocol:

1. Each party Pi samples n random elements (r
(i)
1 , · · · , r(i)n ) $← [n2] and broadcasts (m

(i)
1 , · · · ,m(i)

n ) =

(gr
(i)
1 , · · · , gr(i)n ).

2. With some constant probability, there exists two positions j0, j1 such that r
(1)
j0

= r
(2)
j1

, leading to a
collision between the group elements. P0 and P1 identify this collision; let r12 denote the collision,
and m12 denote the corresponding message.

3. Similarly, P3 and P4 identify a collision r34 with message m34 among their vectors of messages.
4. P1 and P2 output key← (m34)

r12 , and P3 and P4 output key← (m12)
r34 .

The above protocol, however, turns out to be completely broken! The adversary can compute the
discrete logarithm (in base g) of any group element in time

√
n2 = n, using a standard generic

algorithm (e.g. Shank’s baby-step giant-step algorithm [Sha71], or Pollard’s rho algorithm [Pol75]).
Hence, the adversary can recover r12 = dlogg(m12) in time n and recompute the shared key.

Above, the issue is that our 4-NIKE from an idealized 2-NIKE crucially relied on its optimal
security: it must be secure over a size-n2 domain, when the honest parties can run in time n. However,
over cryptographic groups, one can always get a quadratic speedup over naive brute-force. Fortunately,
there is a way around. Our key idea is the following: we increase the group size to |G| = n4, so that
generic discrete logarithm now takes Ω(n2)-time. Doing so, we strongly reduced the probability that
the honest parties can find a collision among length-n vectors of group elements. To get around this
issue, we make two important observations:

1. Although there will not be any full collision, we can guarantee that there will be a prefix-collision
with some constant probability: a pair of group elements whose exponent share the same first
half.

2. Assume that two parties identified a group element gx such that (a) one of the parties knows x,
and (b) the other party knows the first half of the bits of x. Then the second party can recover
x entirely in time O(n): there are only ≈ n2 possible exponents x consistent with the prefix
known to the party. Furthermore, known generic discrete logarithm algorithms actually run in
time square root of the search space when the exponent search space is an interval. Therefore, the
party can recover x using, e.g., Pollard’s rho algorithm in O(n) time.

At a high level, our protocol combines (1) a Merkle-style 2-NIKE to identify a prefix-collision
(hence using the ROM) and (2) a generic discrete logarithm computation running in time

√
T for

solving discrete logarithms with exponents in an interval of size T . Concretely, let H : [n] 7→ {0, 1}∗
be an injective random oracle, and let G be a cyclic group of prime order p with p ≈ n4 (we assume
that the order is exactly n4 below to simplify the description). Then, our actual protocol proceeds as
follows.

1. P1 samples n exponents (r1, · · · , rn) $← [n4]n. For each i ≤ n, write ri = ai + n2 · bi with
(ai, bi) ∈ [n2]× [n2]. P0 broadcasts (s1, · · · , sn)← (gr1 , · · · , grn) and (H(a1), · · · , H(an)).

2. P2 samples n values (a′1, · · · , a′n) $← [n2]n and broadcasts (H(a′1), · · · , H(a′n)). This lets P1 and
P2 identify a collision ai = a′j with a constant probability.

3. P2 computes gn
2·bi = si/g

a′
j . Note that bi ∈ [n2]. Hence, P2 recovers bi (and therefore ri =

a′j + bi · n2) in time O(n) by computing the discrete logarithm of gn
2·bi in base gn

2

using e.g.
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Pollard’s algorithm [Pol75]6. At this stage, P1 and P2 agree on a common pair (r, s) ← (ri, si)
(and i, si are public).

4. P3 and P4 do similarly, and agree on (r′, s′) where s′ is publicly known.
5. P1 and P2 output (s′)r, while P3 and P4 output mr′ .

Correctness follows easily by inspection. In the body of the paper, we prove security in Shoup’s
generic group model (SGGM) together with the injective random oracle model. Using the random
oracle, however, is merely for the ease of presentation, as the SGGM implies the existence of an
injective random oracle, hence we get a 4-party NIKE with quadratic security gap in the SGGM.

Above, there is nothing specific to the 4-party setting: given a generic group G equipped with a
(K − 1)-linear map e, K parties can agree on a common key by each broadcasting a random group
element gi = gri , and outputting key = e((gj)j ̸=i)

ri . Then, the above construction allows pairs of
parties to agree on a common input (ri, gi) to this K-NIKE with a group of size |G| = n4 using O(n)
communication in a single round of interaction. Therefore, this yields a 2K-NIKE with quadratic
security gap in the generic (K − 1)-linear group model. In particular, we can obtain a 6-NIKE with
quadratic security in the generic bilinear group model.

1.3 Technical Overview: Breaking 3-NIKE in Maurer’s GGM

We also prove a limitation of how much algebraic structure, without pairing, can help building K-
NIKE protocols for K > 2. In particular, we prove that in Maurer’s generic group model (MGGM),
where the access to the group is further limited through an oracle who does all the calculations,
one cannot achieve more than quadratic gap between the honest parties and the adversary’s query
complexity. Recall that in MGGM, each party P has an array ArrP that does the following operations:
(1) ArrP stores group elements from G, starting with 1 written at the beginning, (2) it adds them
(Add operation) when P asks ArrP to do so, and stores the result at the end of the array, and (3) it
can provide zero-tests (Zero operation) for all the stored group elements. We actually need to work
with a generalization of this model in which parties can exchange group elements directly through
their oracles (as group elements do not have an explicit representation). See Definition 14 for details.
Finally, when it comes to key-agreement in MGGM, without loss of generality, we ask the parties to
agree on a group element written in their oracle (see Remark 16.)

Here we highlight the key ideas in our attack on any 3-NIKE protocol Π in the MGGM. Our
proof can be best explained in two steps: (1) Breaking Π, assuming that the honest parties do not
ask any Zero queries. (2) Breaking Π, even if parties ask Zero queries by reducing this task to the
case of protocols without Zero queries. Below, we explain both of these steps and their corresponding
ideas.

Structure of the key. For simplicity suppose A,B,C, as part ofΠ, agree on a key key with probability
1. Let us focus on A and analyze the structure of the group element keyA that it produces as its key
(see Definition 14). This key is a function of Alice’s randomness rA, the transcript tran and the group
elements that Alice receives from Bob (qB = (qB,1, · · · , qB,γ)) and Charlie (qC = (qC,1, · · · , qC,γ)).
Since Alice’s algorithm is in the MGGM, the key key will, therefore, be a linear function of the
components of qB, qC with coefficients aB, aC that can arbitrarily depend on Alice’s randomness rA
and transcript tran (see Lemma 17). In particular, keyA = aB · qB + aC · qC, where · is inner product.
Breaking 3-NIKEs without zero tests: randomness switching lemma. Suppose E starts by
re-sampling Charlie’s randomness into r′C conditioned on the message mC. This change will lead to a
different set of group elements q′C = (q′C,1, · · · , q′C,γ) broadcast by C, and hence Alice’s key will change

as well into key′A = aB · qB + aC · q′C. However, a crucial point is that the component aB · qB in this
linear function stays the same. This important point is directly enabled by the fact that there are three
parties involved, and we would not have this property in the 2-NIKE setting. Now, our attack will
directly take advantage of this common part aB·qB in Alice’s key when Charlie switches its randomness
to r′C. In particular, suppose KeyA(r

′
A, r
′
C) be Alice’s key when Alice and Charlie use random seeds

r′A, r
′
C (that are compatible with the text messages sent by Alice and Bob), and Bob’s randomness

is fixed to its true randomness rB. Further using the same observation above about switching the

6 The seminal paper of Pollard describes two algorithms for solving discrete logarithms. The second, lesser
known algorithm, usually called Pollard’s kangaroo algorithm, solves discrete logarithms with exponents
over intervals [u, v] in time

√
v − u.
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randomness of a party, we show that when both Alice and Charlie resample their random seeds r′A, r
′
C,

conditioned on the shared text messages (ignoring the group elements that are encoded), the common
parts in Alice’s key across these new “executions” of the protocol will cancel out each other and we
obtain the following invariant,

KeyA(rA, rC) = KeyA(rA, r
′
C) + KeyA(r

′
A, rC)− KeyA(r

′
A, r
′
C),

which is formalized in Lemma 19 as the randomness switching lemma. Finally, the eavesdropper
attacker can directly use the above equality to use re-sampled keys r′A, r

′
B (which she obtains using

inverse sampling) to obtain all three fake keys on the right hand side, using which it can obtain the
true key.

Breaking 3-NIKEs with zero tests: learning useful linear tests. We now describe the extra
ideas needed to handle zero tests done by the parties. Firstly, we can assume without loss of generality
that all zero tests by A,B,C are asked after they receive the text messages and the group elements
(through their oracles). In particular, parties’ randomness will directly determine their messages and
the group elements they send. Eve, has direct access only to the text messages sent by the parties,
because the group elements are encoded. However, Eve can also perform zero-test queries over the
(vector of) group elements q = (qA, qB, qC). Eve’s goal here is to learn any useful zero-test query over
q such that the answer to the zero-test queries by A,B,C will follow. In particular, we say that a set of
linear constraints LinCon (containing both linear equalities and inequalities) over q are (1− ε)-useful
if the following two properties hold.

1. Pure restrictions. We say that LinCon is pure if all of its constraints are over an individual party.
Namely, for each constraint c in LinCon, there is a party P ∈ {A,B,C} such that c is a constraint
over qP.

2. Covering heavy zero tests. We say that (LinCon, tran) covers ε-heavy zero-tests, if for every zero
test query f (over the variables q = (qA, qB, qC)) whose answer is not implied by the equalities in
LinCon (f is not trivially positive or negative using the equalities in LinCon), the probability of
answering positively is at most ε over the randomness of the parties.

We first explain how we find useful sets of linear constraints. We then explain why finding them can
be used for a successful attack by reduction to the setting of protocols with no zero tests.
Finding a useful set. Finding a useful set is rather straight forward. Eve will iteratively pick any
pure zero test query (i.e., only dealing with one party’s shared group elements) over q that is both
ε-heavy to hold (positively) and that it is not in the span of the equalities already in LinCon. Since
the dimension of the linear constraints over LinCon is limited by 3γ (i.e., the total number of group
elements shared by the parties) this process will stop in about 3γ/ε steps. The proof is similar to the
proof of efficiency of the heavy-learner of [BMG07, BM17].
Using a useful set. If a set LinCon is useful, then by the first (pure restrictions) property, it imposes a
product distribution over the randomness of A,B,C. Therefore, one can define an imaginary protocol
with respect to the fixed text messages tran and LinCon, in which A,B,C will pick their random seeds
conditioned on (tran, LinCon) and run their key extraction algorithms to agree on a key. Furthermore,
by the second (light tests) property, assuming ε is sufficiently small, with high probability all of
the zero-test queries of A,B,C will be answered merely by LinCon, or that they will be answered
negatively. Therefore, all such queries could be removed from the protocol, and we will be back to
a protocol without any zero tests. This means that we are back to the simpler case of no zero tests,
which was resolved already.

To see why the zero test queries can be compiled out of the protocol (conditioned on (tran, LinCon)),
in the following for simplicity suppose Alice asks only one zero-test query. By the first (pure restric-
tions) property, one can fix this zero-test query without any further restriction on the distribution
of the random seeds of Bob or Charlie. Therefore, all we need to show is that the answer to this
(non-trivial) zero-test query will be negative with probability 1− ε. This would be the case if we had
learned all the ε-heavy linear constraints that deal with the variables in both of qB, qC, while our set
LinCon only contains heavy constraints that are pure. However, interestingly, one more application of
the purity property shows that what we have learned in LinCon is already enough. In particular, we
prove that, because of the independence of the distributions of rB, rC conditioned on (tran, LinCon),
the existence of any unlearned ε-heavy zero-test (not spanned by the equalities in LinCon) over qB, qC
will automatically imply the existence of an unlearned pure ε-heavy linear restriction on either of
qB, qC. But such heavy restrictions are already learned by Eve!
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2 Preliminaries

Definition 1 (K-Party Non-Interactive Key-Exchange (K-NIKE)). For a security parameter
λ, and a set of K parties {P1, · · · ,PK}, a K-party non-interactive key-exchange protocol for key space
KS consists of a pair of algorithms (Msg,Key) defined as follows:

• Msg(1λ, i, ri) → mi: The message generation algorithm takes as input the security parameter
λ, an index i ∈ [K] indicating the party Pi, and a randomness ri ∈ {0, 1}λ, and outputs the
corresponding message mi ∈ {0, 1}λ. It is assumed that in the time of generating the messages,
each party generates its message with the algorithm Msg and broadcasts it.

• Key(i, ri, tran)→ keyi: The key generation algorithm takes as input the index i ∈ [K] indicating the
party Pi, Pi’s randomness ri and the transcript tran := (mj)j∈[K] consisting of all the broadcasted

messages from the time of message generation, and outputs a (shared) key keyi ∈ {0, 1}m.

A K-NIKE protocol satisfies the following properties:

– Correctness: We say the scheme has completeness error δ(λ), if for all security parameters
λ ∈ N, all indices i, j ∈ [K], and all choices of randomnesses ri and rj,

Pr
r1,...,rK

[Key(i, ri, tran) = Key(j, rj , tran)] ≥ 1− δ(λ),

where tran = (m1, . . . ,mK) for mi ← Msg(1λ, i, ri). We simply say the scheme is complete, if it
has completeness error δ(λ) ≤ negl(λ). We say the scheme has perfect completeness if δ(λ) = 0.

– Security: For all security parameters λ ∈ N, and all efficient adversaries A, we define the
advantage of A as follows:

AdvA(λ) :=

∣∣∣∣Pr [key1 = keyA]−
1

|KS|

∣∣∣∣
where keyA ← A(1λ, tran) and key1 ← Key(1, r1, tran), in which tran := (mi)i∈[K] for mi ←
Msg(1λ, i, ri) for all i ∈ [K]. A K-NIKE protocol is secure if AdvA(λ) ≤ negl(n).

Note that randomnesses, messages, and keys can be viewed as vectors in the above definition. We can
also define a fine-grained variant of K-NIKE as follows.

Definition 2 ((t, ε)-Secure K-NIKE). For functions t = t(·), ε = ε(·) a (fine-grained) (t, ε)-secure
K-NIKE has the same syntax as the subroutines Msg,Key in Definition 1, with the following additional
conditions on its correctness and security properties. There is a function n = n(λ), such that:

– Correctness: All parties (i.e., both Msg,Key algorithms) run in time Õ(n).
– Security: We only limit ourselves to adversaries who run in time t(n), and for all such adversary

their advantage shall be at most ε(n).

In other words, after changing the security parameter to n, honest parties run in quasi-linear time,
while the adversary needs time t to gain advantage ε. When the protocol is in an idealized model, we
use the number of queries by the algorithms to the oracle as the measure of their running time.

Definition 3 (Shoup’s Generic Group Model (SGGM)). Let p ∈ Z be a positive integer. For
such fixed p, in Shoup’s Generic Group Model (SGGM) all parties have access to an oracle with the
following queries.

– enc query. Suppose S is a label space of size |S| ≥ p, and let enc be a random injective function
from Zp to S.

– Add query. If z = c1 · x+ c2 · y, then Add(c1, c2, enc(x), enc(y)) = enc(z).

In this paper, for simplicity of presentation, we denote enc(x) by gx, even when we are in the generic
group model and gx is not an actual exponentiation.

Random Oracle Model. Recall that in the Random Oracle Model ROM, all parties have access to
a function H randomly sampled from the set H of all functions f : N → M, and the input/output
spaces N ,M are chosen differently in different contexts. These variants can simulate each other, but
when it comes to fine-grained efficiency and security properties, the choice of random oracle can be
more important. In this model, we primarily count the number of oracle queries as the substitute for
“running time.”
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Lemma 4 (Chernoff Bound). Let X = Σn
i=1Xi, where Xi = 1 with probability pi and Xi = 0 with

probability 1− pi, and all Xi are independent. Let µ = E[X] = Σn
i=1pi. Then

1. Upper Tail: Pr[X ≥ (1 + δ)µ] ≤ e−
δ2

2+δµ for all δ > 0;

2. Lower Tail: Pr[X ≤ (1− δ)µ] ≤ e−µ
δ2

2 for all 0 < δ < 1.

3 3-NIKE in the Random Oracle Model

In this section, we construct a 3-party non-interactive key-exchange protocol in the random oracle
model with non-trivial fine-grain security by generalizing Merkle Puzzles [Mer74]. To give a high-level
idea of how the protocol works, we start with a similar idea of the classical 2-party NIKE of Merkle
in random oracle model. Namely, for a security parameter λ and a given random oracle H, each of
the three parties samples a set of secret values ri of size λ2ℓ(λ), computes H (ri), which is the output
of the random oracle on each value of the set, and broadcasts it. It can be shown that with high
probability, there will be a set of collisions of size at least ℓ(λ). Then, without any further interaction,
the parties pick the first lexicographic ℓ(λ) collisions, or any other natural way of pre-agreeing on
which subset to pick, and compute the shared key similar to the 2-party NIKE protocol of Merkle.

Construction 5 (3-NIKE ROM-Based Protocol) For a security parameter λ, let H : [λ3] →
{0, 1}λ be a random oracle, and ℓ(λ) = log2(λ) a minimal intersection size parameter. The 3-NIKE
protocol between parties {P1,P2,P3} would be as follows:

– Msg(1λ, i, ri)→ mi : For each party Pi, on input the security parameter λ and Pi’s randomnesses
ri, which is viewed as a set ri ⊂ [λ3] of size λ2 · log(λ), the message generation algorithm proceeds
as follows:
1. View ri as {rij}j∈λ2·log(λ), and compute H (ri) := {H (rij)}j∈λ2·log(λ).
2. Output and broadcast the set of messages as mi := H (ri).

– Key(i, ri, tran) → keyi : On input an index i ∈ [3], the party Pi’s randomnesses ri, and the
transcript tran := (mj)j∈[3]/{i}, the key generation algorithm proceeds as follow:

1. Invoke the message generation algorithm to obtain mi ← Msg(1λ, i, ri). If | ∩j∈[3] mj | < ℓ(λ),
the algorithm outputs 0 and aborts.

2. Let c1, · · · , cℓ(λ) be the first ℓ(λ) lexicographic common outputs of ∩j∈[3]mj.
3. All parties P1,P2,P3 are able to find the common inputs s1, · · · , sℓ(λ) ∈ ∩j∈[3]rj such that

H(si) = ci.

4. The shared (output) key will be keyi :=
⊕ℓ(λ)

i=1 si.

In this section, we prove the following theorem.

Theorem 6. Construction 5 is a (t, ε) 3-NIKE, where t = n1.5, ε = negl(n).

Proof. Let n = λ2. The proofs of correctness and security are as follows.

Correctness. Due to n = λ2, it holds that the algorithms running in Õ(n).
We have three sets m1, m2, and m3 of size λ2 log(λ) chosen randomly from the set [λ3]. It is

easy to see that since we are in the random oracle model, if the Key algorithm does not abort, all
three parties will receive the same key with probability 1. Therefore, for ℓ(λ) = log2(λ), in order to
show that the parties will successfully obtain one shared key with high probability after running the
algorithms properly, it suffices to show that the probability of the Key algorithm aborts is negligible.
More formally, we want to show

Pr
[
| ∩j∈[3] mj | ≤ ℓ(λ)

]
= Pr[|m1 ∩m2 ∩m3| ≤ ℓ(λ)] ≤ negl(λ).

In order to prove this, we adopt the ideas used in [BGI08] in a similar context/goal (about amplifying
security in a two-party key agreement) and use a chain of Chernoff bounds. We know

Pr[|m1 ∩m2 ∩m3| ≤ ℓ(λ)] ≤ 1− Pr[|m1 ∩m2 ∩m3| > ℓ(λ)] (1)

As a first step, it is easy to see that for every choice of s ∈ [λ2 log(λ)], we have

Pr[|m1 ∩m2 ∩m3| > ℓ(λ)] ≥ Pr[|m1 ∩m2 ∩m3| > ℓ(λ) ∧ |m1 ∩m2| ≥ s]
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= Pr[|m1 ∩m2 ∩m3| > ℓ(λ) | |m1 ∩m2| ≥ s] · Pr[|m1 ∩m2| ≥ s]. (2)

Now we can analyze Pr[|m1 ∩ m2| ≥ s] for some s ∈ [λ2 log(λ)], using a Chernoff bound similar to
[BGI08]. Then viewing m1 ∩m2 as a set, we can use the same idea for analyzing Pr[|m1 ∩m2 ∩m3| >
ℓ(λ) | |m1 ∩m2| ≥ s]. Let

m1 = {a1, · · · , aλ2 log(λ)},m2 = {b1, · · · , bλ2 log(λ)},m3 = {c1, · · · , cλ2 log(λ)}.

Now for analyzing the second probability in Equation 2 (i.e. Pr[|m1 ∩m2| ≥ s],) let Xi be the event
that bi ∈ m1 (i.e. bi ∈ m1 ∩m2.) Therefore,

µ := E

λ2 log(λ)∑
i=1

Xi

 =
λ2 log(λ)

λ3
· λ2 log(λ) = λ · log2(λ).

Based on the way the event Xi is defined, we can view |m1 ∩m2| as
∑λ2 log(λ)

i=1 Xi,

Pr [|m1 ∩m2| ≥ s] = 1− Pr[

λ2 log(λ)∑
i=1

Xi < s].

By lower tail of Chernoff bound in Lemma 4,

Pr

λ2 log(λ)∑
i=1

Xi < (1− δ)λ log2(λ)

 ≤ e−
δ2

2 λ log2(λ).

This concludes that

Pr [|m1 ∩m2| ≥ s] ≥ 1− e−
δ2

2 λ log2(λ). (3)

For analyzing the first probability in Equation 2, we first simplify the probability as follows. Let
m := m1 ∩m2,

Pr[|m1 ∩m2 ∩m3| > ℓ(λ) | |m1 ∩m2| ≥ s] = Pr[|m ∩m3| > ℓ(λ) | |m| ≥ s]

≥ Pr[|m ∩m3| > ℓ(λ) | |m| = s]. (4)

Now, using a similar approach as before, we can find a lower bound for the complement of the
above probability which will give us an upper bound for the first part of Equation 2. Namely,

1− Pr[|m1 ∩m2 ∩m3| > ℓ(λ) | |m1 ∩m2| = s] = 1− Pr[|m ∩m3| > ℓ(λ) | |m| = s]

Now, letting m = {m1, . . . ,ms} and Yi be the event that ci ∈ m (i.e. ci ∈ m ∩m3), we will have

µ′ := E

λ2 log(λ)∑
i=1

Yi

 =
s

λ3
(λ2 log(λ)).

Using another Chernoff bound from Lemma 4,

Pr

λ2 log(λ)∑
i=1

Yi ≤ (1− δ′)
s

λ3
(λ2 log(λ))

 ≤ e−
δ′2
2

s log(λ)
λ ,

which results in

1− Pr[|m ∩m3| > ℓ(λ) | |m| = s] ≤ e−
δ′2
2

s log(λ)
λ . (5)

Using the above in Equation 4 give us

Pr[|m1 ∩m2 ∩m3| > ℓ(λ) | |m1 ∩m2| ≥ s] ≥ 1− e−
δ′2
2

s log(λ)
λ . (6)
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Set δ = δ′ = 1
2 and s = λ

2 log2(λ). Using equations 3 and 6 in Equation 2, we get

Pr[|m1 ∩m2 ∩m3| > ℓ(λ)] ≥ (1− e−
λ
8 log2(λ))(1− e−

log3(λ)
16 )

≥ 1− 2e−
log3(λ)

16 = 1− negl(λ).

which concludes the proof.

Security. We need to show that adversaries who ask o(λ3) queries have negl(λ) advantage of finding
the shared key based on the transcript. In particular, we want to show that, any such adversary A will
likely not query at least one of intersection points used by the key generation algorithm to compute
the key.

Let k = λ3/3 be the number of queries that the adversary A makes to the oracle, and assume
w.l.o.g. that A does not repeat queries. Denote adversary’s i’th query by qi and let Xij be the event
that H(qi) = cj for some j ∈ [ℓ(λ)]. For any i ≤ λ3/3 and any qi /∈ {q1, · · · , qi−1}, H(qi) is distributed
uniformly within the set {0, 1}λ \ {H(q1), · · ·H(qi−1)} from the view of A prior to qi. Hence, for all

i, j, Pr[Xij = 1] ≤ 1
2λ−k , and letting k′ = 2λ − k and Xi =

∑ℓ(λ)
j=1 Xij , for all i ≤ k, Pr[Xi = 1] ≤ ℓ(λ)

k′

regardless of other Xi’s. Let p = ℓ(λ)
k′ , and assume Xi’s are independent and Pr[Xi = 1] = p. By using

the upper tail of a Chernoff bound from Lemma 4 and letting µ := E
[∑k

i=1 Xi

]
= kp, we have,

Pr

[
k∑

i=1

Xi ≥ ℓ(λ)

]
= Pr

[
k∑

i=1

Xi ≥
k′

k
· (k · ℓ(λ)

k′
)

]
= Pr

[
k∑

i=1

Xi ≥
k′

k
· µ

]

where for large enough λ, the probability that A queries the oracle for all the common inputs (i.e.
finding the shared key) will be bounded by:

Pr

[
k∑

i=1

Xi ≥ ℓ(λ)

]
≤ e−Ω(ℓ(λ)) = negl(λ)

where the last equality comes from ℓ(λ) = log2(λ). In the event that A did not query some si to the

oracle, A’s output is wrong with probability 1
2 since from its point of view, the value of

⊕ℓ(λ)
i=1 si is 0

or 1 with equal probability. In other words, letting Y be the event that
∑k

i=1 Xi ≥ ℓ(λ),

AdvA(λ) :=

∣∣∣∣Pr [key1 = keyA
]
− 1

2

∣∣∣∣
=

∣∣∣∣Pr [key1 = keyA | Y
]
+ Pr

[
key1 = keyA | ¬Y

]
− 1

2

∣∣∣∣
≤ e−Ω(ℓ(λ)) +

1

2
− 1

2
= negl(λ).

Therefore, for any d < 3, an O(λd)-bounded adversary cannot make more than λ3

3 queries for large
enough λ.
All in all, for any d < 3, any O(λd)-bounded adversary A, when the probability is taken over the
possibilities for the random function, A can guess the key only with negligible advantage. ⊓⊔

Remark 7. Construction 5 can be generalized into a k-NIKE with Ω(λk/(k−1)) security. The protocol
will be similar to the above 3-NIKE protocol with a few changes. It will use a random oracle H :
[λk] → {0, 1}λ, and the randomness of each party should be from the set [λk] and of size õ(λk−1).
The rest of the construction and the proofs will be similar with minor changes (e.g. there is a need
for more applications of Chernoff bounds.)

Remark 8. We believe that with a similar approach to the one in [BGI08], one should be able to
extend this result to getting a 3-NIKE similar to our Construction 5 from an “almost 1-1 OWF”
instead of using a random oracle. We leave such studies for future work.
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4 4-NIKE in Shoup’s Generic Group Model

In this section, we construct a 4-NIKE protocol with quadratic security in Shoup’s generic group
model. As explained in the introduction, our construction can be interpreted as first constructing a
4-NIKE using an ideal 2-NIKE oracle, and then “substituting” the 2-NIKE ideal oracle with Shoup’s
GGM.

In this section, we introduce a candidate 4-NIKE protocol in the Shoup’s Generic Group Model.
To give a high-level intuition of the protocol, the idea of finding a shared key between four parties
{P1,P2,P3,P4} is as follows. All parties, similar to the previous section, will choose a secret set of
random values and broadcast some message as its corresponding public values (the broadcast messages
might differ for each party), such that after the interaction, P1 and P2 will be able to identify a single
secret value where its corresponding public message has already been broadcast, and the same will
hold for P3 and P4. From there, and without any further interaction, (P1,P2) will act as a single
party, and so as (P3,P4). Therefore, one can simply run a 2-party NIKE between these two parties
and without the need of an interaction.

Before going into details of the protocol, we should note that we use the fact that we can view
x ∈ [λ4] as (x1, x2) ∈ [λ2]× [λ2] for two isomorphic groups of size θ(λ4) and θ(λ2)× θ(λ2) throughout
our construction and proofs.

Construction 9 For a security parameter λ, let H : [λ2] → {0, 1}λ be a random oracle, G be a
generic group (in the sense of Shoup) of size θ(λ4) whose encodings are denoted by the “generator”
g. Let ℓ(λ) = log2(λ) be the minimal intersection size parameter. The NIKE protocol between parties
{P1,P2,P3,P4} is as follows:

• Msg(1λ, i, ri)→ mi: For each party Pi, on input the security parameter λ and Pi’s randomnesses
ri, which is a random set ri ⊂ [λ4] of size λ · ℓ(λ), the message generation algorithm proceeds as
follows:

1. View ri as {rij}j∈[λ·ℓ(λ)], and for j ∈ [λ · ℓ(λ)], view each element as rij := (r
(1)
ij , r

(2)
ij ) ⊂

[λ2]× [λ2], where r
(1)
ij and r

(2)
ij are the first and second half of the value rij, respectively.

2. Compute H(r
(1)
i ) :=

(
H(r

(1)
ij )

)
j∈[λ·ℓ(λ)]

, and gri := (grij )j∈[λ·ℓ(λ)].

3. Output and broadcast the messages as mi =
(
H(r

(1)
i ), gri

)
for i ∈ {1, 3}, and mi = H(r

(1)
i )

for i ∈ {2, 4}.
• Key(i, ri, tran) → keyi: On input an index i ∈ [4], the party Pi’s randomnesses ri, and the tran-
script tran := (mj)j∈[4]/{i}, the key generation algorithm proceeds as follows:

1. Invoke the message generation and obtain mi ← Msg(1λ, i, ri), and parse ml =
(
H(r

(1)
l ), grl

)
or ml = H(r

(1)
l ) based on whether l = 1, 3 or l = 2, 4.

2. If either |H(r
(1)
1 )∩H(r

(1)
2 )| = 0 or |H(r

(1)
3 )∩H(r

(1)
4 )| = 0, the algorithm outputs 0 and aborts.

3. Let c be the first lexicographic common output of the H(r
(1)
1 ) ∩ H(r

(1)
2 ), and c′ be the first

lexicographic common output of H(r
(1)
3 ) ∩H(r

(1)
4 ).

4. Parties P1 and P2 are able to find the common input s ∈ r
(1)
1 ∩ r

(1)
2 such that H(s) = c. And

similarly, P3 and P4 are able to find the common input s′ ∈ r
(1)
3 ∩ r

(1)
4 such that H(s′) = c′

(there is no need of further interaction between the parties.)
5. Note that s is the first half of the corresponding element in r1∩ r2. Having gr1 from party P1’s

message, party P2 is able to find the other half of the corresponding element in the set r1 from
s with a baby-step giant-step (BSGS) or Pollard’s rho algorithm. Similarly, having gr3 from
party P3’s message, party P4 is able to find the second half of the corresponding element in
the set r3 from s′.

6. Now, P1 and P2 have a common randomness in the set r1, and P3 and P4 have a common
randomness in r3. Let the common randomness of P1 and P2 be ŝ ⊂ r1, and the common
randomness of P3 and P4 be ŝ′ ⊂ r3.

7. View P1 and P2 as one party P12 = (P1,P2) with the randomness r12 := ŝ and their associated
message m12 := gr12 = gŝ. Similarly, view P3 and P4 as one party P34 = (P3,P4) with the
randomness r34 := ŝ′ and their associated message m34 := gr34 = gŝ

′
. P12 and P34 can reach

shared keys without any further interactions by a Diffie-Hellman Key-Exchange.
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8. The shared (output) key will be keyi = mr12
34 = mr34

12 := gŝŝ
′
.

Theorem 10. For any generic adversary A against the 4-party NIKE of Construction 9, which places
q queries in total to either H or to the group operations (as in Shoup’s GGM), the probability that A
outputs the right key is

O(q2/λ4 + q/λ2 + polylog(λ)/λ).

Before we proceed with the proof, we make two observations. First, we focus on bounding the proba-
bility that A finds the key, while K-NIKE requires that A cannot distinguish the key from random.
However, given the shared key, all four parties can use the standard Goldreich-Levin theorem to
extract a hardcore bit of the key, such that guessing this shared bit is as hard as finding the ini-
tial shared key. Hence, Theorem 10 actually implies the security of this modified 4-NIKE protocol.
Second, both the construction and the adversary are allowed to query H and the generic group. How-
ever, Shoup’s generic group model implies in particular the existence of an injective random oracle.
Therefore, Theorem 10 further implies the existence of a quadratically secure 4-NIKE protocol in the
‘bare’ generic group model of Shoup.

4.1 Correctness

Let us first clarify why the protocol works correctly with a single round of interaction. Based on
Theorem 10, after a single round of interaction (i.e. invoking the message generation algorithm once
for every party,) all parties will have the following values:

– m1 =
(
H

(
r
(1)
1

)
, gr1

)
and m2 = H

(
r
(1)
2

)
for parties P1 and P2.

– m3 =
(
H

(
r
(1)
3

)
, gr3

)
and m4 = H

(
r
(1)
4

)
for parties P3 and P4.

Therefore, with the help of the baby-step giant-step or Pollard’s rho algorithm, P2 and P4 can find
ŝ ⊂ r1 and ŝ′ ⊂ r3, having gr1 and gr3 respectively.

Since H(s) ⊂ H
(
r
(1)
1

)
and H(s′) ⊂ H

(
r
(1)
3

)
were public from the interaction phase (where s and

s′ are the first half of ŝ and ŝ′ resp.,) then all parties can find the corresponding values gŝ and gŝ
′

from gr1 and gr3 respectively. From there, it is easy to see that P12 and P34 (i.e. all parties,) can find
the shared key gŝŝ

′
from in steps 7 and 8 of the key generation algorithm.

Now to argue the correctness of the protocol, note that the Msg algorithm has 2 · λℓ(λ) compu-
tations, and the Key algorithm has constant number of computations along with running the Msg
and BSGS algorithms. Therefore, the running time of both algorithms are of Õ(λ). Moreover, the

Key algorithm aborts and outputs 0 only if either |H(r
(1)
1 ) ∩H(r

(1)
2 )| = 0 or |H(r

(1)
3 ) ∩H(r

(1)
4 )| = 0,

which by birthday paradox (and similar to [BGI08, Theorem 1]’s proof,) only happens with negl(λ)
probability.

In order to prove the correctness of the scheme, we need to show that with overwhelming prob-
ability, all parties will find the same key. By correctness of the BSGS algorithm, it will follow from
the construction that P1 and P2, as well as P3 and P4, will have the same and correct shared secret
key. By correctness of the Diffie-Hellman key-exchange protocol, it follows that P12 and P34 (i.e. all
the four parties) will agree on the same key. ⊓⊔

4.2 Security Analysis

We prove that a generic adversary A making q queries (either to the injective random oracle or to
the group) is able to output the shared key with probability at most O(q2/λ4+ q/λ2+ polylog(λ)/λ).
We start by analyzing the following simpler game G:

1. The adversary is given access to a generic group G of order p ≈ λ4, and to an injective random
oracle H. It can ask q queries in total to either of them.

2. The game samples (g, ga, gb) $← G3 and sends it to the adversary. Let us write a = a0||a1 and b =
b0||b1, where the ai, bi are 2 log(λ)-bit long. The game also computes (ha, hb) ← (H(a0), H(b0))
and sends it to A.

3. The adversary outputs a group element gc at the end of the game.
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At the end of the game, we say that A wins if either of the two following conditions is fulfilled:

1. c = a · b, or
2. the list L of all queries of A to H contains either a0 or b0.

Claim 11. Pr[A wins in game G] ≤ q2/λ4 + 2q/λ4 + 2q/λ2.

Proof. The proof follows closely to the blueprint of Shoup’s proof [Sho97] that the advantage of any
q-query adversary against the CDH problem is at most (q2 + 2q)/|G|. Recall that the generic oracle
works as follows: an encoding function enc : Zp 7→ S is defined, where S is a set of bit-string. A
sees group elements as encodings of integers: we identify ga, gb with enc(a), enc(b). Then, A can ask
addition queries, which on input (enc(x), enc(y)) and a sign + or −, outputs enc(x ± y). This more
“limited” variant of SGGM is equivalent to Definition 3.

Consider the following variant of the game described above. We simulate all accesses to the generic
group exactly as in Shoup’s proof: we maintain a list of linear bivariate polynomials (F1, · · · , Fk) ∈
Zp[X,Y ] (initialized with k = 3, F1 = 1, F2 = X, and F3 = Y ), and a list of distinct values
(enc1, · · · , enck) in S (initialized with three random distinct elements of S). For any addition query
(i, j), we set Fk+1 ← Fi±Fj . If Fk+1 matches a polynomial Ft already in the list, let enck+1 ← enct,
otherwise we set it to a uniformly random element in S.

Furthermore, we also simulate all queries to H as follows: we initially sample (ha, hb) uniformly
at random from {0, 1}λ. We maintain a list L of queries. Each time A queries i, we search if a tuple
(i, h) exists in L; if it does not, we sample h uniformly at random from {0, 1}λ, return h, and add
(i, h) to L.

At the end of the game, we sample (x, y) $← Z2
p and check if (1) Fi(x, y) = Fj(x, y) for some i ̸= y,

or (2) Fi(x, y) = xy for some i, or (3) writing x = x0||x1 and y = y0||y1, the list L contains a pair
(x0, h) or a pair (y0, h). By the Schwartz-Zippel lemma, the probability for a random (x, y) that (1) or
(2) is satisfied is at most q2/λ4 +2q/λ4 = O(q2/λ4). Furthermore, the probability to hit any entry of
the L (whose size is at most q) with x0 or y0 (which are uniform over [λ2]) is at most 2q/λ2. Overall,
the probability that either (1), (2), or (3) holds is at most q2/λ4 + 2q/λ4 + 2q/λ2.

Furthermore, as in [Sho97], we observe that this simulated game differs from the real game exactly
when (1), (2), or (3) happens, and that the adversary wins in the real game exactly when this happens:
otherwise, the real and simulated game are perfectly indistinguishable. Therefore, the probability that
A wins in the real game is at most q2/λ4 + 2q/λ4 + 2q/λ2; this concludes the proof. ⊓⊔

The rest of the proof proceeds by reducing the existence of an adversary against Construction 9
to the existence of an adversary in the game G. Let A be a q-query adversary against Construction 9.
The reduction proceeds as follow: it receives a challenge (enc(a), enc(b), ha, hb) from the game G.
Then, it samples a random looking transcript of Construction 9, using Õ(λ) queries to the group and
to H to generate all group elements and hashes of prefixes, with the following difference: it replaces
the lexicographically first collision in the message of P1 by enc(a), and sets ha to be the corresponding
prefix hash. It also replaces the corresponding hash collision by ha in the message of P2. It does the
same with (enc(b), hb) with P3 and P4.

Observe that this simulated transcript is statistically indistinguishable from an honestly generated
transcript of Construction 9: the simulation fails only when the transcript does not contain any hash
collision between P1 and P2 or between P3 and P4. But the probability of not having a collision
between λ · ℓ(λ)-sized tuples of random elements from [λ2] is negligible by a straightforward Chernoff
bound, similar to the proof of Claim 6. Furthermore, by construction, the corresponding shared key
for the simulated transcript is exactly enc(ab).

Therefore, if there exists a q-query adversary against Construction 9 which finds the shared key
with probability ε, then there exists a (q + Õ(λ))-query adversary against game G which wins the
game with probability at least ε− negl(λ). This concludes the proof. ⊓⊔

5 Impossibility Results

5.1 Defining 3-NIKE in Maurer’s Generic Group Model

We first define the model and the problems. Then,we present our results.

Notation. We use bold font to represent random variables.
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Definition 12 (Maurer’s Generic Group Model (MGGM)). Let p ∈ Z be a positive integer.
Let ArrP be an array for party P initialized to null at all indices except index 1 where it is initialized
to be 1. Also, e is the last index of Arr that is not null (so, initially e = 1). Parties have access to
group elements only through the following operations.

– Add query: The party P submits query Add(i1, i2, c1, c2) where i1, i2 ∈ [e] and c1, c2 ∈ Zp. Then,
the value c1.ArrP[i1] + c2.ArrP[i2] will be written at ArrP[e+ 1] and e will be updated to e+ 1.

– Equal query: The party P submits query Equal(i1, i2) where i1, i2 ∈ [e]. The party receives 1 if
ArrP[i1] = ArrP[i2] and 0 otherwise.
The following two queries are optional, as they can be obtained from the above (see Remark 13)
but we define them as they sometimes help with a better presentation of algorithms in this model.

– Write query: The party P submits query Write(x) for a group element x ∈ Zq and then x is written
to Arr[e+ 1] followed by increasing e by one.

– Zero query: The party P submits query Zero(c1, . . . , ce) where c1, · · · , ce ∈ Zp. The party receives
1 if

∑
i∈[e] ciArrP[i] = 0 and 0 otherwise. When ArrP[1] = 1, this query can zero-test a general

affine function over ArrP[2], . . . ,ArrP[e].

Remark 13 (Comparing queries and the default model). Note that the Equal queries can be simulated
using a single call to an Zero query. Hence, Zero queries are as powerful. Conversely, an Zero query
can be simulated using e queries to the Add followed by a single query to Equal that compares the
result with a prepared encoding of zero. By default, we only allow Add,Zero queries, but sometimes
we state the availability of Write queries for a clearer presentation.

Definition 14 (3-NIKE in MGGM). In this model, there are three parties Alice A, Bob B, and
Charlie C. All parties receive a security parameter λ, and prime number p and a private randomness
as inputs. Let their internal randomness be rA, rB, and rC respectively. Each of the parties has access
to a private MGGM oracle, but all parties’ groups are defined over the same Zp. After making queries
to the oracle, party P for all P ∈ {A,B,C} will simultaneously perform the following actions:

– P sends a string mP to the other parties. Define transcript tran as tran = (mA,mB,mC). No-
message protocols are a special case where ∀P,mP = ∅.

– P submits query copy(γ). Upon such a query, the last γ indices of P’s array will be copied to the
end of the other parties’ arrays, for some publicly known value γ ≤ poly(λ) that is fixed in the
protocol and is the same for all three parties. Parties submit this operation at the same time,
however, it will be processed first for A, second for B and last for C. Let the vector of group
elements that P sends to others be qP = (qP,1, · · · , qP,γ). Additionally, let qrA,rB,rC = (qA, qB, qC)
in which if we run party P with internal randomness rP, they will copy qP.

Without loss of generality (by Lemma 17), the parties in the steps above only use Write queries to
their oracle, as they will know the content of their arrays fully.

In the second step, based on their private randomness rP, transcript tran, and their updated private
oracles continue to interact with their MGGM oracles and will write a group element keyP to their local
MGGM oracle.7 Moreover, we ask that all the parties are efficient (so, they submit at most poly(λ)
queries to the oracle). We enforce this by asking all parties to make a copy query with a fixed publicly
known parameter γ ≤ poly(λ) in their first step, and then (after receiving the exchanged messages)
ask exactly α Add queries, β Zero queries for publicly known and fixed values of α, β,≤ poly(λ).

Completeness: We say that parties agree on a key with probability 1 − δ (where δ is called
completeness error) if Pr[keyA = keyB = keyC] ≥ 1 − δ, where the probability is over the randomness
of the parties. We say that the protocol has perfect completeness if δ = 0.

Soundness: We say that Eve E breaks the protocol with advantage ρ, if she finds the key with
probability at least than 1/p + ρ in the following game. E will get the transcript tran and has access
to a private oracle ArrE that gets as input the result of the copy operations of the all three parties.
Namely, E’s MGGM oracle will contain 1 followed by 3γ group elements that are communicated by
the parties in a canonical order. The scheme is secure if the advantage of any poly(λ)-time E is at
most negl(λ).
7 This writing could be due to a direct write operation or deriving the group element from other array elements
(in which case the parties do not actually have direct access to the group element itself). However, note
that if the group elements are eventually encoded, a la Shoup’s model, the encoding of the group element
will be accessible to the parties.
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Remark 15. The Diffie-Hellman protocol is a 2-party protocol that can be stated in the MGGM with
perfect completeness, no (text) messages (in addition to the exchanged group elements), no zero-test
queries are asked (β = 0) and only one group element is sent by each party (γ = 1).

Remark 16 (Why agreeing on group element in the oracle?). Here we further justify why the key in
3-NIKE protocols in MGGM are written in the ArrP oracle, while the oracle’s content is not directly
accessible to the parties. Firstly, note that MGGM is an idealized model with an oracle Arr which
will be eventually substituted with actual encodings (like Shoup’s model). Therefore, if an MGGM
protocol leads party to an agreement on the same group element x written in their oracles, this will
imply an actual agreement when the oracle is substituted with actual encodings. Furthermore, if we
ask the parties to agree on a string (as the key) in the MGGM, then (1) without loss of generality we
can convert the protocol to agreeing on a key key ∈ Zp, one can always bootstrap even a binary key
from {0, 1} to a key from {0, 1}λ, and then round it to a secure key in Zp, and then (2) the parties
can write the secure key key ∈ Zp in their corresponding oracle without losing any security, in which
case they end up agreeing on a secure key as defined in Definition 14.

5.2 Breaking 3-NIKE in the MGGM without zero-test queries

Lemma 17 (Group Elements’ Structure in MGGM). Consider a party P who interacts with
an MGGM oracle. Suppose P receives an input input and when it starts to interact with its oracle,
there are already γ values written in ArrP (i.e., e = γ at the beginning).8 For a fixed k > γ, suppose
the algorithm P has just written (directly or through an Add query) in ArrP[k] (i.e., e has become k),
while we have the answer to all of its previous Aff queries encoded in a vector vec. Then, for any
such fixed choices of input, k, vec, there are constants f1, . . . , fγ ∈ Zp, such that

ArrP[k] =
∑
i∈[γ]

fi · ArrP[i].

In particular, if no Aff queries are asked, then for any fixed input, k, the value of ArrP[k] is a linear
function of the γ group elements that are written in its oracle at the beginning.

Proof. This observation is used in previous papers (e.g., [FKL17]). In particular, the proof follows by
a straightforward induction over k. ⊓⊔

Definition 18 (Compatibility in MGGM). For any S = {s1, · · · , sn} ⊆ {rP,mP, qP}P∈{A,B,C} in
a 3-NIKE problem, we say they are compatible if there are internal randomness rA, rB, and rC, using
which if we run the protocol, then all si ∈ S appears in the protocol. For example we say qA, mA, and
mB are compatible if there exists rA, rB, and rC using which if we run the protocol we have qA = qA,
mA = mA, and mB = mB.

Lemma 19 (Randomness Switching). Consider a 3-NIKE protocol with no equality queries. Then
for any tran← trans, rA, r

′
A ← rA|tran, rB ← rB|tran, and rC, r

′
C ← rC|tran following holds:

KeyB(rB, tran, qrA,rB,rC) + KeyB(rB, tran, qr′A,rB,r′C)

= KeyB(rB, tran, qrA,rB,r′C) + KeyB(rB, tran, qr′A,rB,rC)
(7)

Additionally, with probability 1 − 4δ over the randomness of tran ← trans, rA, r
′
A ← rA|tran, rB ←

rB|tran, and rC, r
′
C ← rC|tran, following holds:

KeyA(rA, tran, qrA,rB,rC) + KeyA(r
′
A, tran, qr′A,rB,r′C)

= KeyC(r
′
C, tran, qrA,rB,r′C) + KeyA(r

′
A, tran, qr′A,rB,rC)

(8)

Proof. By Lemma 17, the final key of Bob is of the following form:

keyB = KeyB(rB, tran, qrA,rB,rC) = fB,B(rB, tran) +
∑d

i=1 fB,A,i(rB, tran)qA,i +
∑d

i=1 fB,C,i(rB, tran)qC,i

8 One special case is that ArrP[1] = 1, but this is not necessary in this Lemma 17.
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Therefore we have:

KeyB(rB, tran, qrA,rB,rC) + KeyB(rB, tran, qr′A,rB,r′C) =

(fB,B(rB, tran) +
d∑

i=1

fB,A,i(rB, tran)qA,i +
d∑

i=1

fB,C,i(rB, tran)qC,i)+

(fB,B(rB, tran) +
d∑

i=1

fB,A,i(rB, tran)q
′
A,i +

d∑
i=1

fB,C,i(rB, tran)q
′
C,i) =

(fB,B(rB, tran) +
d∑

i=1

fB,A,i(rB, tran)q
′
A,i +

d∑
i=1

fB,C,i(rB, tran)qC,i)+

(fB,B(rB, tran) +
d∑

i=1

fB,A,i(rB, tran)qA,i +
d∑

i=1

fB,C,i(rB, tran)q
′
C,i) =

KeyB(rB, tran, qr′A,rB,rC) + KeyB(rB, tran, qrA,rB,r′C)

This proves Equation 7.
We say event ErA,rB,rC holds if Alice, Bob and Charlie when executed using randomness rA , rB,

and rC, agree on a key. namely:

KeyA(rA, tran, qrA,rB,rC) = KeyB(rB, tran, qrA,rB,rC) = KeyC(rC, tran, qrA,rB,rC)

Note that by reverse sampling, the marginal distribution of (rA, rB, rC, tran) is the same as the marginal
distribution of (r′A, r

′
B, r
′
C, tran

′), where (rA, rB, rC) ← (rA, rB, rC), tran is the transcript when we run
the protocol with rA, rB, rC, tran

′ ← trans, and (r′A, r
′
B, r
′
C) ← (rA|tran′, rB|tran′, rC|tran′). Thus any

rA, rB, and rC where tran← trans, rA ← rA|tran, rB ← rB|tran, and rC ← rC|tran, agree on a key with
probability 1− δ. Let E∗ = ErA,rB,rC ∧ Er′A,rB,rC

∧ ErA,rB,r′C
∧ Er′A,rB,r

′
C
, then by a union bound over the

complements of the events on the right hand side of the equation, we have:

Pr
tran←trans,rA,r′A←rA|tran,rB←rB|tran,rC,r′C←rC|tran

[E∗] ≥ 1− 4δ (9)

We finally use Equation 9 to conclude the proof of Equation 8 by switching the corresponding
keys in Equation 7.

⊓⊔

Theorem 20 (Breaking 3-NIKE protocols without zero-test queries). Suppose Π is a 3-
NIKE protocol in the MGGM with no Equal or Zero queries (i.e., β = 0) and completeness error δ.
Then, there is an adversary Eve who, given the transcript tran and oracle access to the 3γ broadcast
group elements finds Alice’s key with probability 1− 4δ by asking O(α) queries to its Add oracle.

Proof. Note that in a 3-NIKE in MGGM, by sampling rP, {qP,mP} will also be sampled, and mP

only depends on rP; namely, we can sample a randomness rP such that (rP,mP) is compatible without
any query to the MGGM operators. Thus in Lemma 19, given a transcript tran, we can sample any
rP with out any additional queries to the oracle.

Now to break the original protocol where Alice, Bob, and Charlie’s respective internal randomness
are rA, rB, and rC, and their respective set of copied group elements and messages are (qA,mA),
(qB,mB), and (qC,mC), consider the following attack:

Eve samples a new Alice r′A ← (rA|tran) and a new Charlie r′C ← (rC|tran), and computes their
respective vector of copied group elements q′A, and q′C by running their algorithms. Then Eve finds
keyA as follows:

keyE = KeyE(r
′
A, r
′
C, qA, qB, qC, q

′
A, q
′
C, tran) =

KeyC(r
′
C, tran, qrA,rB,r′C) + KeyA(r

′
A, tran, qr′A,rB,rC)− KeyA(r

′
A, tran, qr′A,rB,r′C)

First note that Eve needs only O(α) queries to calculate the above formula. To prove that this is
the actual key, first note that by reverse sampling the distribution of (rA, rB, rC)← (rA, rB, rC) is the
same as the distribution of (rA, rB, rC)← (rA|tran, rB|tran, rC|tran) where tran← trans. Thus we can
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w.l.o.g. assume that first the transcript was sampled and then Alice, Bob, and Charlie were sampled
conditioned on the transcript. Now by Lemma 19, the following holds with probability at least 1−4δ:

keyE = KeyA(rA, tran, qrA,rB,rC)

So Eve finds the key with probability 1− 4δ with O(α) queries. ⊓⊔

5.3 Breaking 3-NIKE in the MGGM with zero-test queries

Theorem 21 (Breaking 3-NIKE protocols with equality queries). Suppose Π is a 3-NIKE
protocol in the MGGM with parameters α, β, γ ≤ poly(λ) and completeness error δ (see Definition 14).
Then, there is an adversary who, given the transcript tran and oracle access to the 3γ broadcast group
elements finds Alice’s key with probability 1− 4δ − δ′ by asking poly(λ) queries to its MGGM oracle.
In particular, E will ask an expected number of O(γβ/δ′) Zero queries and O(α) Add queries.

Corollary: quadratic attack in MGGM. If honest parities ask n parties to their oracle and agree
on a key with probability ≥ 0.99, then we have α, β, γ ≤ n. In this case, E can choose δ′ = 0.01, and
so it can find Alice’s key with probability at least 0.95 by asking O(n2) queries in total.

In the rest of this subsection, we prove Theorem 21.

Before presenting the attack, we go over some relevant definitions.

Definition 22 (Notation and notions for the attack). In the following, let fix γ to be known,
and let Affγ = Zγ+1

p . We interpret each f = (a0, . . . , aγ) ∈ Affγ as an affine function from Zγ to
Z that maps x = (x1, . . . , xγ) ∈ Zγ

p to f(x) = a0 +
∑

i∈[γ]ai
xi. Using any such f , we can obtain

two linear constraints: an equality f(x) = 0 and an inequality f(x) ̸= 0. We represent the former
constraint using (f, eql) and the latter as (f, nql). We call LinCon a set of linear constraints if LinCon
contains elements that are of the form (f, c) where f ∈ Affγ , c ∈ {eql, nql}. We say x satisfies the
linear constraint (f, c), if f(x) = 0 for c = eql and f(x) ̸= 0 for c = nql. We say that x satisfies a set
LinCon of linear constraints, if x satisfies all of the linear constraints in LinCon. For any party, let
LinEqP = {f | (f, eql) ∈ LinConP} be the set of linear equality constraints for party P. For two sets
LinEqB, LinEqC ⊆ Affγ interpreted as affine constraints over two different set of variables, we define
their combination LinEqB,C ⊂ Z2γ+1 as the set of all vectors (a0, aB,1, . . . , aB,γ , aC,1, . . . , aC,γ), such
that either

(a0, aB,1, . . . , aB,γ)LinEqB ∧ (aC,1, . . . , aC,γ) = (0, . . . , 0)

or

(a0, aC,1, . . . , aC,γ) ∈ LinEqC ∧ (aB,1, . . . , aB,γ) = (0, . . . , 0).

For a party P, a message mP (sent by that party), and set of linear constraints LinCon, we define
RP = RP(LinCon,mP) to be the set of random seeds for party P that are compatible with LinCon and
mP; namely, r ∈ RP if by using r, P outputs the message mP and group elements x = (x1, . . . , xγ)
(to be sent to other parties) such that x satisfies LinCon. For any distribution D over Zγ

p , we call
f ∈ Affγ (interpreted as an equality constraint) ε-heavy for D, if Prx←D[f(x) = 0] ≥ ε. We say
that f is ε-heavy for party P conditioned on (LinCon,mP), if f is ε-heavy for the uniform D that is
obtained by sampling r ← RP(LinCon,mP), and obtaining the γ shared group elements generated by
party P from r; namely, if we sample a random seed for the party P conditioned on its message mP

and the linear constraints in LinCon over its produced group elements x = (x1, . . . , xγ) (to be sent to
other parties), then x will satisfy f (as an equality) with probability at least ε. For any set of vectors
V of the same dimension, Span(V ) refers to their span using coefficients in Zp.

Construction 23 (Attack on protocols with zero tests) The adversary E attacks 3-NIKE pro-
tocols with zero test queries as follows.

– Inputs to E: The adversary has access to tran = (mA,mB,mC) and has oracle access to an array
that contains 1 + 3γ group elements: the first one being 1 followed by the 3γ group elements that
are broadcast by A,B,C. The adversary is also given an input parameter ε ∈ (0, 1).

The attack has two phases, a learning phase followed by a sample phase.
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– Learning phase: Originally let three sets of linear constraints LinConP,P ∈ {A,B,C} to be empty
sets, and define RP be the corresponding set of random seeds for the party P that is compatible
with mP and the linear constraints LinConP (see Definition 22).
Recall LinEqP = {f | (f, eql) ∈ LinConP}. Then, as long as there is any party P ∈ {A,B,C} and any
f ∈ Affγ such that (1) f ̸∈ Span(LinEqP), and (2) f (as a linear equality) is ε-heavy for party P
conditioned on (mP, LinConP), then pick (the first lexicographic such) f and ask the corresponding
Zero query from ArrE over the group elements shared by P to find out whether f(qP) = 0 or not.
If f(qP) = 0, then add (f, eql) to LinConP, and add (f, nql) to LinConP otherwise. Proceed to the
next phase when no ε-heavy remains.

– Sampling phase: For the 3-NIKE protocol (A′,B′,C′) defined below (in which no affine queries
are asked) use the attack of Theorem 20 to find a key keyA′ for A′ and output that key. For the
fixed values of (LinConP,mP),P ∈ {A,B,C}, A′,B′,C′, work as follows.

1. Party P ∈ {A′,B′,C′} uniformly will pick rP ∈ R(mP, LinConP). Then, P will send the cor-
responding message mP and group elements qP = (qP,1, · · · , qP,γ) that are uniquely produced
using rP. Note that the messages of the parties will remain the same as the one fixed in the
previous phase (e.g., mA′ = mA), but their broadcast group elements might change.
We explain the next step only for A′; algorithms for B′,C′ are similar.

2. Party A′ will run the same algorithm as A using rA′ , but when it comes to any Zero query t, P′

will not ask it from its oracle and instead will do the following. By Lemma 17, any Zero query t
by A′ is equivalent to asking a query t′ = (t0, tB′,1, . . . , tB′,γ , tC′,1, . . . , tC′,γ) ∈ Z2γ+1 over the 2γ
group elements qB′ , qC′ that are copied to the array of A′ by parties B′,C′. Informally speaking,
t′ will be answered 1 if and only if this can be concluded from the equality constraints for B,C.
More formally, let LinEqB,C ⊂ Z2γ+1 be the combination of LinEqB, LinEqC as in Definition 22,
and answer the Zero query t′ by 1 if and only if t′ ∈ Span(LinEqB,C). If t

′ ∈ Span(LinEqB,C),
we call t′ a trivial query. After emulating A, A′ will output the key keyA′ that A would output.

Lemma 24 (Efficiency). The expected number of zero-test queries asked by E in Construction 23
is ≤ 3γ/ε.

Proof. We prove that the expected number of the queries that E asks for each party P ∈ {A,B,C}
is at most γ/ε. Then, the lemma follows from the linearity of expectation. Now for a party P let
f1, f2, · · · be the sequence of the queries that E asks, and if a query is not asked we let it be ⊥. Let
pi = Pr[fi ̸= ⊥]. Let t be a random variable of the number of the zero-test queries that E ask over qP,
then E[t] =

∑
pi. Additionally define ZT to be the set of all zero-tests that pass over qP. Note that

ZT is a random variable determined by the randomness of Alice. Moreover, define random variables
Si = Span(fj | fj ∈ ZT for j ≤ i) di = dim(Si). Note that as dim(ZT) ≤ γ, di ≤ γ for all i. Now we
claim that

E[di]− E[di−1] ≥ pi · ε. (10)

Since di is either di−1 or di−1 +1, we have E[di]−E[di−1] = E[di − di−1] = Pr[di = di−1 +1]. By the
definition, if fi ̸= ⊥, then fi /∈ Si−1, thus we have:

Pr[di = di−1 + 1] = Ef1,...,fi−1
Pr[fi ̸= ⊥ ∧ fi ∈ ZT | f1, . . . , fi−1] =

Pr[fi ̸= ⊥ | f1, . . . , fi−1] · Pr[fi ∈ ZT | f1, . . . , fi−1, fi ̸= ⊥].

By the definition it holds that Pr[fi ∈ ZT | f1, . . . , fi−1, fi ̸= ⊥] ≥ ε, and so

Pr[di = di−1 + 1] ≥ ε · Ef1,...,fi−1
Pr[fi ̸= ⊥ | f1, . . . , fi−1] = ε · pi.

So we have proved the claim of Equation 10. Note that the total number of linear constraints over
γ variables is pγ+1. Thus using Equation 10 we have:

pγ+1∑
i=q

E[di] ≥
pγ+1∑
i=1

E[di−1] +
pγ+1∑
i=0

pi.ε.

→ γ ≥ E[dpγ+1 ] ≥
pγ+1∑
i=0

pi.ε.
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→ γ/ε ≥ E[dpγ+1 ] ≥
pγ+1∑
i=0

pi = E[t].

This concludes the proof. ⊓⊔

We will prove the following technical lemma, which will be useful for proving the success probability
of the adversary of Construction 23.

Lemma 25 (Heaviness of pure vs. impure constraints). Suppose we have

1. D1 and D2 are two distributions over Zγ
p .

2. D1,2 is the distribution over Z2γ
p that is obtained by independently sampling x = (x1, · · · , xγ) ←

D1, y = (y1, · · · , yγ)← D2 and outputting the vector (x, y) of dimension 2γ.
3. LinEq1, LinEq2 are subsets of Affγ = Zγ+1

p .
4. If P ∈ {1, 2} and f ∈ Affγ is ε-heavy for DP, then f ∈ Span(LinEqP).

Then, for every f ∈ Aff2γ that is ε-heavy for D1,2, it holds that f ∈ Span(LinEq1,2), where LinEq1,2
is the combination of LinEq1, LinEq2 as in Definition 22.

Proof. Let f = (a0, a1,1, · · · , a1,γ , a2,1, · · · , a2,γ) be ε-heavy for D1,2. For j ∈ [p] define ε1,j , and ε2,j
as follows:

Pr
x←D1

[
γ∑

i=1

a1,ixi + j = 0 mod p

]
= ε1,j ,

Pr
y←D2

[
γ∑

i=1

a2t,ixi + a0 − j = 0 mod p

]
= ε2,j .

Therefore, we have
p∑

j=1

ε1,j .ε2,j = Pr[f(x, y) = 0] ≥ ε.

Because
∑

j ε1,j =
∑

j ε2,j = 1, there are j1, j2 ∈ [p] such that ε1,j1 , ε2,j2 ≥ ε, and so f1 =
(j1, a1,1, · · · , a1,γ) is ε-heavy for D1 and f2 = (a0 − j2, a2,1, · · · , a2,γ) is ε-heavy for D2. Therefore,
by Item 4, f1 ∈ Span(LinEq1) and f2 ∈ Span(LinEq2), which means ε1,j1 = ε2,j2 = 1. Furthermore,∑p

j=1 ε1,j · ε2,j is 1 if j1 = j2 and is 0 otherwise. Since
∑p

j=1 ε1,j .ε2,j ≥ ε, then j1 = j2. This means
that f ∈ Span(LinEq1,2). ⊓⊔

For the next two lemmas, let LinCon = (LinConP)P∈{A,B,C} be the set of linear constraints discov-
ered by E at the end of the learning phase in Construction 23.

Lemma 26 (Independence of random seeds). For every fixed tran, LinCon at the end of learning
phase, the following two distributions are the same:

– The joint distribution over the randomness of A,B,C conditioned on being compatible with tran, LinCon.
– Independently sampling randomness of each party P conditioned on being compatible with (mP, LinConP)

(and putting them together).

Proof. The proof is similar to the observation that parties’ randomness in interactive protocols,
conditioned on the transcript, is always a product distribution.

If (rA, rB, rC) is compatible with tran, LinCon, then clearly rP is compatible with mP, LinConP for
all P ∈ {A,B,C} as well. The more interesting observation is the reverse: if rP is compatible with
mP, LinConP for all P ∈ {A,B,C}, then (rA, rB, rC) is compatible with tran, LinCon. That is because,
these local compatibilities will guarantee that the protocol will proceed consistently as a whole. ⊓⊔

Lemma 27 (Statistical closeness of two protocols). For every tran, LinCon at the end of learning
phase, sample rA, rB, rC, while rP,P ∈ {A,B,C} is sampled (only) conditioned on being compatible with
mP, LinConP. Then, do as follows.

1. Run the protocol Π (with zero-test queries) using the random seeds rA, rB, rC and output the keys
that the parties generate (keyA, keyB, keyC).
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2. Run the protocol Π ′ (without zero-test queries) using the random seeds rA, rB, rC and output the
keys that parties generate (keyA′ , keyB′ , keyC′).

Then, for every fixed tran, LinCon at the end of learning phase, with probability at least 1 − 3β · ε
over the randomness of sampling the random seeds, it holds that keyP = keyP′ for all P ∈ {A,B,C}
(simultaneously).

Proof. For the same set of tran, LinCon and random seeds rA, rB, rC the two protocols Π,Π ′ produce
the same keys for the same parties if all the non-trivial zero-test queries are answered negatively.

We now prove that this is indeed the case, by proving that the two games will proceed the same
with probability 1− 3β · ε.

We define 3β+1 games Π = Π0, . . . ,Π3β = Π ′ as follows. Let us imagine running A first, then B,
and then C. This means that we have a total order on the 3β queries asked by them. In Πi, the first
i zero-test queries are answered similarly to Π ′ (i.e., using canonical answers) and the rest of them
are answered similarly to how Π does answer them.

Let Ei be the event, defined in both Πi and Πi−1, that the answer to the ith query is not trivially
yes, but it is indeed answered to be yes if asked from the real oracle (as if we are in Πi−1). Note that
the probability of Ei is the same in both Πi and Πi−1, and Ei happening is the only way that these
experiments differ. All we have to do is to show that the probability of Ei is at most ε.

Suppose Pr[Ei] > ε, and for simplicity suppose ith query is asked by A. Then, due to the inde-
pendence of the random rA, rB, rC, there is a way to fix rA to r0A, such that Pr[Ei | r0A] > 0. Fixing r0A
will fix the coefficients of the ith zero test. This means that there will be an affine test over the group
elements shared by B,C that is zero with probability > ε. By Lemma 25, it means that for either of
P ∈ {B,C}, there is an affine test over the group elements shared by P that is ε heavy, while it is not
learned by E, which is a contradiction. ⊓⊔

Finally, we prove Theorem 21 using the lemmas above.

Proof (of Theorem 21). The efficiency of the attacker of Construction 23 follows directly from
Lemma 24. So, in the rest of the proof we focus on the success probability of the adversary in
guessing Alice’s key.

Let rA, rB, rC be the randomness of the parties, tran be the transcript, and LinCon = (LinConP)P∈{A,B,C}
be the result of the learning phase. Define δtran,LinCon to be the completeness error only conditioned on
(tran, LinCon). Then, we have Etran,LinCon[δtran,LinCon] = δ. We claim that for every fixed (tran, LinCon),
the adversary finds Alice’s true key with probability at least 1 − 4(3βε + δtran,LinCon) − 3βε. Below,
we prove this. By Lemma 26, sampling rA, rB, rC jointly conditioned on (tran, LinCon) (which itself
is equivalent to sampling everything according to the real protocol Π) is equivalent to sampling rP
independently only conditioned on (mP, LinConP) for all P ∈ {A,B,C}. By Lemma 27, if we use the
randomness rA, rB, rC to run protocols Π or Π ′, with probability at least 1−3βε, the same set of keys
will be produced.

Therefore, conditioned on (tran, LinCon), the protocol Π ′ (which is defined based on tran, LinCon)
has completeness error at most 3βε + δtran,LinCon. This means that the attacker of Construction 23
will find Alice’s key in Π ′ with probability at least 1− 4(3βε+ δtran,LinCon). By another application of
Lemma 27, this means that the same attacker is finding the true key of Alice (in Π) with probability
at least 1− 4(3βε+ δtran,LinCon)− 3βε.

Putting things together, E finds Alice’s true key with probability at least

Etran,LinCon[1− 15βε− 4δtran,LinCon] = 1− 15βε− 4Etran,LinCon[δtran,LinCon] = 1− 15βε− 4δ.

By choosing 15βε = δ′, the probability of not finding Alice’s key will be at most 4δ + δ′, while the
expected number of its queries during the learning phase will be 3γ/ε = 45γ · β/δ′. ⊓⊔
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