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Abstract
There are lots of Random Key Generators, In this paper, we gave a new construction of

Randomized Bit Generator by using Algebraic number theory, which is quite easy to compute
and also we keep the security of this generator in our mind. we discussed its applications
as a secret key generator being a randomized bit generator in encryption schemes and hash
functions. We tried to make it Quantumly secure by randomizing it and extending its parameters
to see it as a Quantum Random key generator.
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1 Introduction
A Random generating function is a function or algorithm to generate a sequence of binary num-
bers. Numerous studies have been conducted on the question of generating a truly random binary
sequence [3, 4, 5, 6, 7, 8, 9, 10], i.e a generator that can be regarded as a quantumly safe generator,
which will give rise to quantumly safe encryption, a secure stream cipher, and many more. In these
studies they made pseudo-random generators using different-different ways like using one-way
function [3], using discrete log [4], Also, there is an improved version of pseudo-random generator
based on discrete log [5], there is a pseudo-random bit generator based on quantum chaotic map
[7] and generalized Henon map [8]. There is also a Pseudo- random generator based on a logistic
chaotic system. Further, there are various number theoretic constructions [9, 10, 11, 12] based on
logistic chaotic system [19] using Coppersmith’s methods [11] and Bernoulli’s map on Algebraic
integers [12]. The goal of the present article is to make a random number generator using Alge-
braic number theory and to make it secure and also tried to make a hash function using it. For this
purpose, we worked with our generator for an ordered set of number fields having 2 elements, then
generalized this concept to any natural number (n) giving a unique binary sequence, and tried to
make it secure. Also, we gave applications to our generating function as a hash function and as a
key generator for encryption schemes.

2 Some Mathematical Concepts
The following definitions are taken from [1, 2].
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2.1 Definition (Algebraic Numbers):-

A α ∈ C is said to be an Algebraic Number, if it is root of a non-zero polynomial with rational
coefficients. For example: 1

2
is a root of 2x − 1, which is a non-zero polynomial with rational

coefficients. Also, ι is also an Algebraic number being root of polynomial x2 + 1, which is a
non-zero polynomial with rational coefficients, we denote set of Algebraic numbers by letter A.

2.2 Definition (Algebraic Integers):-

A α ∈ C is said to be an Algebraic integer, if, it is a root of a monic polynomial with integer
coefficients. For example:

√
2, 2, and 1+

√
5

2
are Algebraic integers, but, 1

2
is not an Algebraic

integer, but it is an Algebraic number. We denote set of Algebraic Integers by B. Clearly, we have
B ⊂ A.

2.3 Definition (Transcendental number):-

A Complex number α which is not an algebraic number is called a transcendental number. For
example: exp . π,

∑∞
n=1

1
10n

are transcendental . We have A forms a subfield of C containing Q,
and B forms a subring of A, hence an Integral domain Containing Z.

2.4 Definition (Field of Algebraic Numbers):-

The set of all Complex numbers A which are algebraic over Q is a subfield of C containing Q,
called the field of Algebraic Numbers.

2.5 Definition (Algebraic Number Fields or Number Fields ):-

A subfield K of A is called an Algebraic number field, if K/Q is a finite extension (i.e [K:Q]<∞).
An Algebraic number field is a finite extension of Q.

2.6 Theorem (Primitive Element Theorem):-

Every finite separable extension is simple.
Remark: If K is a number field, i.e K/Q is a finite extension, then K/Q is a finite separable
extension. Hence by Primitive element theorem K/Q is a simple extension, i.e, ∃ some algebraic
number α ∈ K such that K = Q(α). Hence, all number fields are of the form K = Q(θ) for some
Algebraic number θ.

2.7 Theorem:-

Let K = Q(θ) be a number field of degree (n) over Q. Then there are exactly (n) distinct
monomorphisms (injective) σi(θ) = θi, are the distinct zeroes of the minimal polynomial p(t)
of θ over Q.

Proof: Let θ = θ1, θ2,
. . . , θn be the n− distinct zeroes of the minimal polynomial p(t) of θ over

Q in C (Since characteristic of Q is 0, So, p(t) will be separable polynomial (having all distinct
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roots)). By recall {1, θ, · · · , θn−1} forms a basis of the Q-vector space K = Q(θ), so, every
element of K is of the form.

α = a0 + a1θ + · · ·+ an−1θ
n−1, ai ∈ Q

Now, for each ι ∈ {1, 2, · · · , n}, we define a map σi : K = Q(θ)→ C by

σi(α) = σi(a0 + a1θ + · · ·+ an−1θ
n−1)

.
σi(α) = a0 + a1θi + · · ·+ an−1θ

n−1
i

i.e σi maps θ to θi. Clearly σi is a monomorphism for each 1 ≤ i ≤ n. Since θi are all distinct,
therefore σ′is are also distinct.

Finally, if σ is any monomorphism from K → C, then, σ is identity on Q (since, Q is the prime
subfield of K). So, p(σ(θ)) = σ(p(θ)) = σ(0) = 0.

=⇒ σ(θ) is a zero of p(t)

.
=⇒ σ(θ) = θi for some i ∈ {1, 2, · · · , n}

. Hence, σ1, σ2, · · · , σn are the only possible n− distinct monomorphisms from K to C.

2.8 Definition (Conjugates):-

Let K = Q be a number field of degree with n− distinct monomorphisms σ1, σ2, · · · , σn. Then,
for any element α of K the Complex numbers σi(α), 1 ≤ i ≤ n, are called K− Conjugates of α.

2.9 Definition (Field Polynomial):-

Let K = Q(θ) be a number field of degree with (n), and, let σ1, σ2, · · · , σn be the n− distinct
monomorphism of K into C. For any α ∈ K, the field polynomial of α over K denoted by fα(t) is
defined as

fα(t) = πni=1(t− σi(α))

2.10 Theorem:-

Let K = Q(θ) be a number field of degree (n) with n− distinct monomorphisms σ1, σ2, · · · , σn
and let p(t) denote the minimal polynomial of θ over Q, then

(i) For any α ∈ K, the field polynomial fα(t) is a power of the minimal polynomial (say) pα(t) of
α over Q.

(ii) The K- Conjugates of α are zeroes of pα(t) in C each repeated n/m times, where m =
deg pα(t) is a divisor of n.

(iii) The element α ∈ Q iff all its K- Conjugates are equal.

(iv) Q(α) = Q(θ) iff all K− Conjugates are distinct.
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2.11 Definition (Discriminant of a basis):-

LetK be a number field of degree (n) with n distinct monomorphisms σ1, σ2, · · · , σn. Let {ω1, ω2, · · · , ωn}
be any basis of K over Q. Then the discriminant of {ω1, ω2, · · · , ωn} is defined as the square of the
determinant of the n×nmatrix whose ij−th entry is σi(ωj) and is denoted by ∆K/Q(ω1, ω2, · · · , ωn)
or just ∆(ω1, ω2, · · · , ωn).

i.eδK/Q(ω1, ω2, · · · , ωn) =

det


σ1(ω1) · · · σ1(ωn)
σ2(ω1) · · · σ2(ωn)

... . . . ...
σn(ω1) · · · σn(ωn)




2

2.12 Theorem:-

The discriminant of any basis for K = Q(θ) is a non-zero rational number. Moreover if all the K-
conjugates of θ are real, then the discriminant of any basis is positive.

2.13 Definition (Ring of algebraic integers of a number field K):-

Let K be a number field, then the set of all algebraic integers of K is a subring of K called the ring
of algebraic integers of K and is denoted by OK .

OK = K ∩ B = {α ∈ K|α is algebraic integer}

.

2.14 Definition (Integral Basis):-

Let K be a number field of degree n. A set of Algebraic integers α1, · · · , αn of K is said to be an
integral basis for K if every algebraic integer in K can be uniquely written as a1α1 + a2α2 + · · ·+
amαm, ai ∈ Z for 1 ≤ i ≤ m.

2.15 Theorem:-

Let K be a number field of degree (n) then K has an integral basis.

2.16 Definition (Discriminant of a Number field):-

The discriminant of a Number field K is the discriminant of an integral basis of K and is denoted
by dk.

2.17 Theorem (Brill’s Theorem):-

Let n = r1+2r2, where r1 denote the number of real isomorphisms of realK and 2r2 is the number
of complex isomorphisms of K, then,

Sgn dk = (−1)(r2) = (−1)(
n−r1

2 )
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i.e dk(−1)r2 > 0

Where Sgn is the sign of discriminant of a number field K.
Proof: Let ω1, ω2, · · · , ωn be an integral basis of K and let σ1, σ2, · · · , σn be isomorphisms of K
into C in which σ1, σ2, · · · , σn be isomorphisms of K into C in which σ1, σ2, · · · , σr1 are real and
σr1+1, σr1+2, · · · , σr1+r2 , σr1+r2+1, · · · , σr1+2r2 .

σr1+j = σr1+r2+j for1 ≤ j ≤ r2

. Now, To Prove It is enough to prove dk(−1)r2 > 0.

dk = det


σ1(ω1) σ1(ω2) · · · σ1(ωn)
σ2(ω1) σ2(ω2) · · · σ2(ωn)

...
...

...
...

σn(ω1) σn(ω2) · · · σn(ωn)


2

Now, Consider the matrix

detM = det



σ1(ω1) σ1(ω2) · · · σ1(ωn)
σ2(ω1) σ2(ω2) · · · σ2(ωn)
σr1(ω1) σr1(ω2) · · · σr1(ωn)
σr1+1(ω1) σr1+1(ω2) · · · σr1+1(ωn)

...
...

...
...

σr1+r2(ω1) σr1+r2(ω2) · · · σr1+r2(ωn)
σr1+r2+1(ω1) σr1+r2+1(ω2) · · · σr1+r2+1(ωn)
σr1+2r2(ω1) σr1+2r2(ω2) · · · σr1+2r2(ωn)



detM = det



ω
(1)
1 ω

(1)
2 · · · ω

(1)
n

...
...

...
...

ω
(r1)
1 ω

(r1)
2 · · · ω

(r1)
n

a
(r1+1)
1 + ιb

(r1+1)
1 a

(r1+1)
2 + ιb

(r1+1)
2 · · · a

(r1+1)
n + ιb

(r1+1)
n

...
...

...
...

a
(r1+r2)
1 + ιb

(r1+r2)
1 a

(r1+r2)
2 + ιb

(r1+r2)
2 · · · a

(r1+r2)
n + ιb

(r1+r2)
n

a
(r1+1)
1 − ιb(r1+1)

1 a
(r1+1)
2 − ιb(r1+1)

2 · · · a
(r1+1)
n − ιb(r1+1)

n

...
...

...
...

a
(r1+r2)
1 − ιb(r1+r2)1 a

(r1+r2)
2 − ιb(r1+r2)2 · · · a

(r1+r2)
n − ιb(r1+r2)n


= d1 + ιd2, whered1, d2 ∈ R

Interchanging ι→ −ι (i.e det(M) = det(M))

det(M) = d1 − ιd2
Now, Rr1+j ↔ Rr1+r2+j ∀ 1 ≤ j ≤ r2 (r2 operations)

=⇒ det((M)) = detM = (−1)r2 detM
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d1 − ιd2 = (−1)r2(d1 + ιd2)

Therefore we have two cases:

(i) If r2 is even then

d1 − ιd2 = d1 + ιd2

=⇒ d2 = 0

=⇒ dk = (det(σi(ωj)))
2

= (d1 + ιd2)
2

= d21 > 0

=⇒ dk(−1)r2 = d21(−1)r2 > 0

(ii) If r2 is odd

d1 − ιd2 = (−1)(d1 + ιd2)

=⇒ d1 = 0

=⇒ dk = (det(σi(ωj)))
2

= (d1 + ιd2)
2

= (ιd2)
2

= −d22 < 0

=⇒ (−1)r2dk = (−1)r2(−d22) < 0

=⇒ (−1)r2dk > 0

=⇒ Sign(dk) = (−1)r2

3 A brief about some Pseudo Random Generators:

3.1 RSA pseudo random bit generator
Under the supposition of the Intractibility of RSA problem the RSA bit generator [13] is a Crypto-
graphically secure bit generator.
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Algorithm.

• Input: A y0 a random integer (seed) in [1,m-1].

• Output: A pseudo random bit sequence s1, . . . , sk of length k is generated

1. Generate two primes p1 and q1 as in RSA (secretly) and compute m = p1q1 and ψ =
(p1 − 1)(q1 − 1). Select f a random integer 1 < f < ψ, such that gcd(f, ψ) = 1.

2. Select y0 a random integer (seed) in [1,n-1]

3. For j from 1 to k do:
yj ← yej−1mod m
sj ← lsb of yj

4. s1, s2, . . . , sk is the output sequence.

3.2 Blum-Blum-Shub pseudo random bit generator
Under the supposition of the intratibility of integer factorization the Blum-Blum-Shub pseudoran-
dom bit generator [13] is a cryptographically secure pseudo random bit generator.

Algorithm.

• Input: A z a random integer (seed) in [1,m-1] such that gcd(z,m)=1 and compute y0 ←
z2 mod m.

• Output: A pseudo random bit sequence s1, . . . , sk of length k is generated

1. Generate two primes p1 and q1 two secretly choosen distinct primes both congruent to
3 mod 4 and, calculate m = p1q1.

2. Select z a random integer (seed) in [1,m-1] such that gcd(z,m) = 1 and compute
y0 ← z2 mod m.

3. For j from 1 to k do:
yj ← y2j−1mod m
si ← lsb of xj

4. s1, s2, . . . , sk is the output sequence.

3.3 Linear Feedback Shift Registers[14]
For LFSR we have to define sequence of inner states (i0, i1, . . .) which is defined via recurrence
relation io = k and ik = f(Ik−1). It is fairly desirable to choose the sequence (I0, I1, . . .) such that
the least period of sequence is 2l, i.e, I2l = I0 and Ij 6= I0 for 0 < j < 2l. One can define a linear
recursion by a matrix P via Ik = MIk−1. So, For LFSRs, Let Ik = (ik0, . . . , i

k
l−1) for arbitrary

k ≥ 1. Consider a recursion which is linear by the operation.
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
ik0
ik1
...
ikl−2
ikl−1

 =


0 1 0 · · · 0
0 0 1 · · · 0
...

...
... . . . ...

0 0 0 · · · 1
a0 a1 a2 · · · al−1




ik−10

ik−11
...

ik−1l−2
ik−1l−1


3.4 The Modified Chaotic Henon Congruential Generator (MCHCG)
After improving uniformly and independency of the CHCG [15], the Modified chaoric Henon Con-
gruential Generator was obtained. this was made possible by regulating the distribution of Pseudo
Random Numbers, which are generated by chaotic Linear Congruential Generator (CHGH). In this
generator the desired interval in which one has to generate random number which is divided into
number of subintervals, In this at each step of the algorithm they choose a sub intervsl randomly and
to generate PRN at this interval BBS(Blum-Blum-Shub pseudo random bit generator) is recalled

4 Construction for Pseudo Random Generator

In this generator, we took two sets to deal with first the ordered set of Algebraic number fields(In
particular Quadratic) and another is the ordered set of Irrational numbers. By seeing the first el-
ement in the ordered set of irrational numbers we see its digit representation and corresponding
to each digit starting from the digit which lies left to the decimal and going right to the digits of
the irrational number taken. Then we reduce that number by modulo (n), where n is the number
of elements in the ordered set consisting of number fields. After calculating the reduction if we
get the number n1 we assign that reduced value to sign. of discriminant(by Brill’s theorem) of the
corresponding element in the n1 + 1th position of the set of Algebraic number fields (Identifying
Sign. of discriminant -1 by 0 and 1 by 1). Continuing like this we get a binary sequence whcih will
be distinct every time we select a digit of an Irrational number. If we have to take n ≥ 11 to 100,
we must have to take two digits at a time of the irrational numbers we are working and for n ≥ 101
to 1000 we have to take 3 digits at atime of the Irrational number we are working with.

Example 1: Let us consider first ordered set(fixing order of the elements) consisting of two
number fields and another set of Irrational number

S = {Q(
√

2),Q(
√
−1 = ι)} (Fixing order of elements)

Monomorphisms corresponding to first number field are σ1 :
√

2 →
√

2 and σ2 :
√

2 → −
√

2.
While monomorphisms corresponding to second number field are σ1 : ι → ι and σ2 : ι → −ι.
So, Signature of discriminant for the first number field will be (−1)r2=(−1)0 = 1 by brill’s theorem
(where r2 are the half of the number of complex monomorphism of the number field) and for the
second number field, it is given by (−1)1 = −1. Identifying -1 by 0. Now, for another set consisting
of only one element say Π = 3.141592653589793238......

Considering digits of Π, for a = 3 in digits of Π, we calculate a mod 2. If a mod 2 is 0
then output Signdk of the first ((a mod 2) + 1) element of S. If a mod 2 is 1, output Sgndk of
the second element of S. So, from Irrational number Π = 3.141592653589793238....., we get the
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sequence 0010001100010000101...... If we change the order of elements of S we get the sequence
1101110011101111010......

If we consider the ordered set of set of Irrational number to be the only element consisting of
exp = 2.718281828459045..... by the process done above we get the sequence 1001110111100110.......
If we change the order of elements of S we get the sequence 0110001000011001.....

Example 2: If S contains more than two elements say S = {Q(
√

2),Q(ι),Q(
√

3)}. After
calculating Sign of their discriminant we get +1,-1 and 1 respectively. Again if the ordered set of
irrational numbers consists of Π = 3.141592653589793238...... Now we consider digits of Π. For
a in digits of Π Consider a mod 3 (3 is number of elements in the set S). If a mod 3 is 0 then
output Signdk of the first element of S.If a mod 3 is 1 then output Signdk of the second element
of S. If a mod 3 is 2 then output Signdk pf the third element of S.Continuing like this we get the
binary sequence 1000111111111101111......

Again for exp = 2.718281828459045..... we get the sequence 1001110111011101......

5 Generalizing the Concept
Let us consider an ordered set S consisting as n elements with Number Fields (Quadratic number
fields consisting of both real and complex quadratic number fields, i.e number fields of degree 2 in
the same proportion if possible). Also we can consider an ordered set T of (r) distinct irrational
numbers.

Let S = {Q(
√
d1),Q(

√
d2). · · · ,Q(

√
dn)}

T = {Π1,Π2, · · · ,Πr}

For each irrational number we get a new binary sequence by the process we have done in the above
examples, combining them all we can again make a big binary sequence. If we take single digits of
the irrational numbers then we would try to keep our set S with 10 elements atmost. If we have to
increase n ≥ 11 to 100 then we will also increase the digit count (i.e we will take then two digits
of the irrational number at a time ).Also, If one wants to further increase the n ≥ 101 to 1000 then,
we have to consider 3 digits at a time of the Irrational numbers.

Algorithm.

• Input: An Ordered Set S= {Q(
√
d1),Q(

√
d2),Q(

√
d3), · · · ,Q(

√
dn)} and ordered set T =

{Π1,Π2, · · · ,Πr} (n ≤ 10) .

• Output: A random binary sequences a1a2a3a4a5a6.............

1. For i from set N Consider zi the ith digit of Πj (jth element of the set T ) .

2. Calculate zi mod n.

3. If zi mod n is gi, then consider (gi + 1)th element of set S.

4. Calculate sign. of Discriminant of number field in the (gi + 1)th position.
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5. If sign is -1 output 0 as the sequence element and if sign is +1 output +1.

6. contuining this manner we get r distinct binary sequences.

6 Applications

6.1 As a key generator for Encryption Schemes
This generator we made using Algebraic number theory can be used as a key-generator for various
encryption schemes in both symmetric and asymmetric cryptosystems.

6.2 As a Hash function
This key-generator can made as a Hash function from a set S and T to a set of binary sequences.
We can define h : S × T → zN

2 , where N is the desired length of the binary sequence we want to
compute.

7 Security of the Generator
For security, we always keep in mind to consist of ordered set S of quadratic number fields with
a possibly equal ratio of the real and complex number fields. We can further increase the security
by increasing the number of elements n in the set S (this time we also have to consider 2 digit at a
time for n ≤ 100 and so on). For further security, we can take permutations of Sn applying on the
set S and T giving an increase in the randomness of the binary sequence. Also, we can increase the
security by increasing the size of the ordered set T , and after getting the sequence corresponding
to each irrational number we can take their XORs to make it further secure.

Note:- For a key of length (n) there are as many options available for generating unique se-
quences by taking unique irrational number each time which are infinitely many.

8 Scope and Future Work
In this present article, we have discussed about a Pseudo Random Key Generator discussed its secu-
rity and Applications as a Key Generator for Encryption schemes and hash functions. In the future,
we will discuss more applications to this key generator and would like to extend it Quantumly as a
Quantum key Generator. Also, we would like to apply this generator to LWE, RLWE, NTRU, and
any other cryptographic problems. We would also like to generalize it to any set of general number
fields. Also, the Key idea of this generator was to make a Quantumly Secure generator. Also, we
would like to make this generator as secure as possible and try to enlighten it up to the highest.
Also we would like to prove all NIST security assumtions for a random bit generator.
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