
Secret Swapping: Two Party Fair Exchange

Alex Dalton1, David Thomas2, and Peter Cheung1

1 Imperial College London
{akd19,p.cheung}@ic.ac.uk
2 University of Southampton

d.b.thomas@southampton.ac.uk

Abstract. Consider two participants who wish to each reveal some se-
cret information to each other, but both will only reveal their secret
if there is a guarantee that the other will do so too. Conventionally,
whoever sends their secret first makes themselves vulnerable to the pos-
sibility that the other party will cheat and won’t send their secret in
reply. Fair Exchange (FE) protocols are a class of cryptographic con-
struction which allow an exchange like this to occur without either party
making themselves vulnerable. It is widely believed that a trusted third
party arbitrator is required to intervene in the case of a dispute. We
present a FE protocol that allows two parties to exchange secrets, safe
in the knowledge that either both secrets will be exchanged, or neither
will; without the involvement of a third party. This construction requires
that the parties run online interactive processes, with reasonable time-
liness requirements on the messages. In this work we provide a scheme
for swapping arbitrarily sized secrets with security that reduces to the
strength of an underlying symmetric authenticated encryption scheme.

1 Introduction

It’s common for two parties to want to trade secrets, but neither party wishes
to go first, as to do so would expose themselves to the possibility of the other
participant cheating. These types of transactions occur often in the wild: in
economic trades where both parties might exchange a cryptographic signature
approving the transfer of funds [13]; the output of executed programs could be
traded; or a combination of these, a payment for computational work conducted
in the cloud. Similarly, corporations or nation state allies may wish to trade
sensitive strategic information. Also, some cryptographic protocols end with the
assumption that one party will dutifully pass a result to the other. For example,
in Multi Party Computation (MPC) constructions[15] the circuit garbler is ex-
pected to dutifully reveal the decrypted results of joint calculations to the circuit
evaluator.

Currently, this problem is solved by using a third party to mediate the trans-
action. This third party might be a bank, mutual friend, or some blockchain-
backed protocol[9][10][6]. In the naive case the third party holds both secrets
until they have been validated, and then forwards them on to each party. Fair
Exchange protocols are a class of cryptographic construction improve over the



naive case, by reducing the involvement of a third party, and allow for two parties
to exchange secrets[1]. Current state-of-the-art Fair Exchange protocols require
an offline trusted authority that is only required to intervene in the case of a
dispute[2][12]. Reducing the involvement of the third party is one of the key
objectives of FE protocol research. It’s widely believed that a Fair Exchange
construction is not possible without a third party performing arbitration[14].

In this work we present a two party Fair Exchange protocol with security
that reduces to a standard assumption: the existence of an IND-CPA secure
authenticated encryption scheme.

1.1 Contributions

In this work we:

– Define Secret Swapping, a two party Fair Exchange scheme with security
relating to the IND-CPA property of an underlying symmetric authenticated
encryption scheme.

– Extend standard Fair Exchange definitions to include computational secu-
rity.

– Prove Secret Swapping has Computational Completeness and Computational
Strong Fairness.

1.2 Assumptions

We assume all parties send a secret which satisfies some property expected by
the other party. For example, the property could be that the secret is a valid
signature on a predetermined message. This can be enforced with zero knowl-
edge proofs on the ciphertexts as encryptions of expected data. Furthermore,
we assume all parties will follow the protocol honestly, up to the moment where
a secret is revealed, at which point a malicious party will do what they can to
avoid revealing their secret.

We make a non-standard assumption; that there is a “secure” λ and an
“insecure” λ′ such that the adversarial advantage against each is separated by a
factor M , and M is independent of λ′.

Assumption 1 There exists security parameter λ, λ′, and M such that

MAdvind-cpa
A (λ) = Advind-cpa

A (λ′) (1)

where M is independent of λ′ and λ is considered secure, but λ′ is considered
bruteforcible.

Consider an instantiation of a cryptosystem deemed “insecure” E(λ′) with a
key space bruteforcible within one month. There exists a corresponding instanti-
ation E(λ) with key space bruteforcible in 1000 years. In this case M ≈ 10, 000.
If λ and λ′ need to be updated because of algorithmic advances or hardware
improvements M is unaffected.

2



M is in fact a ratio between the time taken to attack security parameter λ
and security parameter λ′. In conventional security practice the security param-
eter is chosen to satisfy some idea of the time taken to attack the system. As
attack methods are developed, λ is adaptively increased. It is easy to see that
M is therefore not directly related to λ or λ′ and is instead dependent on the
relationship between the two. Therefore however M is chosen, it is constant as
λ and λ′ adaptively grow.

As a concrete example, consider two instantiation of AES and an adversary
with access to common commodity computer hardware. Suppose we select a
“secure” instantiation of AES bruteforcible in 1000 years. Obviously individual
ideas of security vary from setting to setting. But in FE the goal is for targets
to eventually exchange secrets, so a key space bruteforcible in 1000 years on
commodity hardware could very well be considered secure. With some back
of the envelope calculations this would result in a key length of λ ≈ 84 bits.
The complimentary “bruteforcible” instantiation, with key space bruteforcible
in a month, would have a key length of λ′ ≈ 58 bits. In this case we have
M ≈ 226. Note that as we adaptively change λ and λ′ to stay ahead of algorithmic
improvements M will stay fixed.

We also make the standard assumption that there exists a IND-CPA secure
symmetric authenticated encryption scheme.

1.3 Notation

Functions are denoted with a specific Function font.← indicates assignment. We
make use of standard cryptographic notation: k is an cryptographic key, symmet-
ric encryption schemes are defined as a set of functions
E = (KGen,Enc,Dec) and λ is a security parameter. Functions that grow negli-
gibly in the security parameter are denoted with negl(λ). At times we make use
of vectors to indicate an ordered set of data, these are denoted by a variable
in bold v. The ith element of the vector v is denoted by v[i]. [x;n] is used as
shorthand for an n length vector with the value x at every position.

We make black-box use of oblivious transfer[4]. Oblivious transfer allows a
sender to offer up a vector of data, y, and a receiver is able to access a single
element indexed at i without the sender learning which element the receiver
accessed, and without the receiver learning any of the unaccessed data in the
vector y. The use of oblivious transfer is noted with x

OT←−− y[i], where x is the
local variable of the recipient, y is an ordered vector of data stored on the sender,
and i is the index in y accessed as part of the oblivious transfer.

The two participants in our secret swapping scheme are referenced as party
X and party Y . Variables associated with either party are usually subscripted
with the appropriate letter. In the protocol description “X :” is a prefix used to
indicate the operation is executed by party X.

3



2 Background

Many references to underlying cryptographic building blocks are kept intention-
ally abstract. In this section we define the properties we make use of later in this
work.

2.1 Fair Exchange

These definitions are adapted from [12]. In a Fair Exchange protocol party X
holds one piece of data, dX , while party Y holds a different piece of data, dY .
The protocol is Complete if, with honest parties, X learns dY and Y learns dX .

Definition 1 (Complete). With honest parties X and Y , and respective data
dX and dY , when the protocol terminates X has learned dY and Y has learned
dX .

The difficulty arises from constructing a protocol in which a dishonest par-
ticipant is not able to discover the secret of the other participant without giving
up their own secret. There should be no way of X learning anything about dY

without offering up dX to Y . The same is true for Y in relation to dX . This
property is Strong Fairness.

Definition 2 (Strong Fairness). When the protocol has completed, either X
has dY or Y has gain no information about dX . Similarly, when the protocol has
completed either Y has learned dX or X has gained no information about dY .

Trivial Fair Exchange Protocol

X(dx) A Y (dY )

dx dy

Check(dx)
Check(dy)

dy dx

Fig. 1: Trivial Fair Exchange protocol with a trusted third party arbitrator, A.

A naive solution to the problem is to allow all messages to pass through a
trusted third party, A. This approach is shown in Figure 1. The current state-
of-the-art only requires the trusted third party to intervene in the case of a
dispute[12].

4



It’s widely believed that strong fairness is impossible without the use of a
trusted third party[14]. This belief stems from a result in which two party Fair
Exchange protocols can be used to construct consensus schemes, and as there
are no deterministic algorithms for consensus[8], there can be no deterministic
two-party Fair Exchange protocols. This result required that no timing restric-
tions are placed on the messages between parties. A close reading of this work
poses the question; can a non-deterministic two-party Fair Exchange protocol be
constructed with Strong Fairness if reasonable timeliness restrictions are placed
on the messages?

2.2 Symmetric IND-CPA Secure Authenticated Encryption
Schemes

A symmetric encryption scheme E = (KGen,Enc,Dec) is an authenticated en-
cryption scheme if, along with confidentiality of data, it provides integrity and
authenticity. The authenticated encryption scheme is defined by the following
functions:

– KGen(λ)→ k; generate key k.
– Enck(m)→ c; encrypt message m to ciphertext c.
– Deck(c)→ m or ⊥; decrypt ciphertext c to message m, with an invalid com-

bination of c and k decrypting to ⊥.

In the case a ciphertext has been tampered with, or does not originate from the
expected sender Dec outputs ⊥. Authenticated encryption schemes are usually
composed from encryption schemes and message authentication codes.

INDCPAGame1(λ)

1 : k← KGen(λ), b←$ {0, 1}
2 : m0,m1 ← AOEnck ()
3 : c← Enck(mb)
4 : b′ ← AOEnck (c)
5 : if b = b′ then return 1
6 : else return 0

Fig. 2: IND-CPA security game. A key is generated, k as well as random bit b.
There is an implicit adversary state maintained between the two calls to the
adversary A. The adversary wins if they can differentiate an encryption of one
of two messages of their choice. They are given access to an encryption oracle
OEnck which is able to provide valid encryptions interactively to the adversary.

A scheme is IND-CPA secure if it is indistinguishable under a chosen plaintext
attack[3]. Consider the security game detailed in Figure 2 and the following
definition.

5



Definition 3 (Symmetric IND-CPA Secure Authenticated Encryption
Scheme). Consider symmetric authenticated encryption scheme E = (KGen,Enc,Dec).
The advantage of an adversary A is the IND-CCA security game, detailed in
Figure 2, as:

Advind-cpa
A (λ) = 2 Pr[INDCPAGame(λ) = 1]− 1 (2)

A cryptosystem E is IND-CPA secure if for any probabilistic polynomial time
adversary A

Advind-cpa
A (λ) ≤ negl(λ) (3)

2.3 Oblivious Transfer

An oblivious transfer protocol allows one person to send another a single piece
of information from a set of information, without the Sender knowing which was
element from the set was sent, and without the Receiver learning any of the
other pieces of information from the set. There are existing constructions for
fully generalised k-in-n oblivious transfer[4]. We make black box use of oblivious
transfer in our construction.

3 Extended Definitions for Fair Exchange

In this section we extend known FE definitions to be more suitable for the
work presented in this paper. The extensions adapt existing FE definitions from
the domain of perfect security to computational security. To extend the Fair
Exchange notion of Completeness we provide a definition for Computational
Completeness.
Definition 4 (Computational Completeness). Given X with data dX and
Y with data dY . If both X and Y act honestly, X learns dY and Y learns dX

with probability
Pr[X(dY ) ∧ Y (dX)] ≈ 1 (4)

Similarly, we provide a definition for Computational Strong Fairness.

Definition 5 (Computational Strong Fairness). For arbitrary parties P
and Q define the advantage in the fairness game of adversarial party P as

Advfairness
AP

(λ) = Pr[FairnessGame(λ) = 1] (5)

Consider protocol transcript δ. For a given δ, if the ability of party Y to
extract dX from δ is computationally intractable, then for any probabilistic poly-
nomial time adversary AX

Advfairness
AX

(λ) ≤ negl(λ) (6)

Similarly, if the ability of X to extract dY from δ is computationally in-
tractable, for any probabilistic polynomial time adversary AY

Advfairness
AY

(λ) ≤ negl(λ) (7)

6



FairnessGame1(λ)

1 : δ←$∆

2 : d′Q ← AP (δ)
3 : if dQ = d′Q then return 1
4 : else return 0

Fig. 3: Fairness security game for a Fair Exchange protocol. For a complete or
partial protocol transcript δ randomly sampled from the space of possible tran-
scripts ∆, and adversary acting as party P given by AP . If the adversary is able
to extract the data of the other participant, dQ, they win. We use P and Q to
indicate the different parties and separate them from the specific roles X and Y
have in our scheme.

4 Secret Swapping

The intuition behind the secret Swapping Scheme is that we can produce a
protocol in which there is a single success state in which both parties learn about
each other’s secrets, and many failure states. This way if a party terminates early
when they successfully receive the other party’s secret, the spurned party can
infer some information to help derive their secret.

4.1 Description

Both parties negotiate a λ and λ′ such that λ is not reasonably bruteforcible,
perhaps with an expected time-to-bruteforce of 1000 years, but λ′ is considered
bruteforcible in some long, but reasonable, time-frame; say one month. We de-
note the expected time to attack E(λ) as T , and the expected time to bruteforce
E(λ′) as T ′.

T ′ � T (8)

Messages in the protocol are the expected to have a timeliness of t such that

t� T ′ (9)

With the above example time frames t could be set to one hour. Messages that
do not maintain this timeliness cause the protocol to fail. Both parties then
blacklist the exchange, and do not allow it to be restarted.

Given λ and λ′ both parties then derive, derive value M , such that

MAdvind-cpa
A (λ) = Advind-cpa

A (λ′) (10)

Another way of expressing M is as the ratio between the time expected to
bruteforce both instantiation of E .

M = T

T ′
(11)

7



X and Y generate two keys each for a symmetric IND-CPA authenticated
encryption scheme E .

X : kX0 ← E .KGen(λ) Y : kY 0 ← E .KGen(λ) (12)
X : kX1 ← E .KGen(λ) Y : kY 1 ← E .KGen(λ) (13)

They then select one of the keys at random, and encrypt their data under
this key. As both keys are indistinguishable, we’ll assume both parties selected
key 0.

X : cX ← E .EnckX0(dX) Y : cY ← E .EnckY 0(dY ) (14)

Both parties then freely exchange the ciphertexts. Party Y then generates a
blinding value b. b is a bit-vector of size λ′. They use this value to blind the least
significant bits of the key they used.

Y : b← E .KGen(λ′) (15)
Y : k′Y 0 ← kY 0 ⊕ b (16)

Both parties randomly sample m such that 0 ≤ m ≤M and construct large
M -sized vector k, where k1 is in every position except index m. k0 is at index
m in the vector k. Party Y uses k′Y 0 instead of kY 0.

X : mX ←$ {0, . . . ,M} Y : mY ←$ {0, . . . ,M} (17)
X : kX ← [kX1;M ] Y : kY ← [kY 1;M ] (18)
X : kX [mX ]← kX0 Y : kY [mY ]← k′Y 0 (19)

X then uses oblivious transfer to learn the element at position mX in Y ’s
vector kY .

X : kY
OT←−− kY [mX ] (20)

X can bruteforce the key they received, but not in a timely manner. Nor do
they know if they managed to hit the correct element in Y ’s vector. They must
continue the protocol because of the timeliness restriction.

Y then uses oblivious transfer to learn the element at position mY in X’s
vector kX

Y : kX
OT←−− kX [mY ] (21)

Y can use the key they received to attempt to decrypt cX .

Y : dX or ⊥ ← E .Dec(cX) (22)

If Y succeeds they can let X know, and release b to X in good faith. Otherwise
the protocol failed and both parties need to restart. Y can prove the failure to
X by revealing their value for kX .

This protocol is shown diagrammatically in Figure 4.

8



Secret Swapping Protocol

X(E , λ, dX , B,M) Y (E , λ, dY , B,M)

kX0 ← E .KGen(λ) kY 0 ← E .KGen(λ)
kX1 ← E .KGen(λ) kY 1 ← E .KGen(λ)
cX ← E .EnckX0 (dX) cY ← E .EnckY 0 (dY )

cY

cX

b←$ {0, . . . , B}
k′Y 0 ← kY 0 ⊕ b

mX ←$ {0, . . . ,M} mY ←$ {0, . . . ,M}
kX ← [kX1;M ] kY ← [kY 1;M ]
kX [mX ]← kX0 kY [mY ]← k′Y 0

k′Y
OT←−− kY [mX ]

kX

OT←−− kX [mY ]

o← E .DeckX
(cX)

if o = ⊥ then r ← kX

else r ← b

r

if r = kX1 then return ⊥ if o = ⊥ then return ⊥
else return E .Deck′

Y
⊕r(cY ) else return o

Fig. 4: Secret swapping protocol overview.

9



4.2 Proofs

Theorem 1 (Computational Completeness). For honest X and Y the prob-
ability of successfully swapping their secrets is

Pr[X(dY ) ∧ Y (dX)] ≈ 1 (23)

Proof. On a single run of the secret swapping protocol, X and Y successfully
exchanging data if mX = mY . This value is the index at which X and Y store
the keys they used in the vector k and it is also the element they access via
oblivious transform from the other party’s vector k.

m is a value between 0 and M . Therefore the probability of exchanging data
is on a single run of the protocol is:

Pr[X(dY ) ∧ Y (dX)] = 1
M

(24)

By Assumption 1, M is a constant. It follows that the protocol can be reexe-
cute as many times as required for the probability of a successful data exchange
to be arbitrarily close to 1.

∴ Pr[X(dY ) ∧ Y (dX)] ≈ 1 (25)

The following Lemmas prove qualities about the fairness of the system after
each message is sent. In each subsequent Lemma the protocol transcript δ is
extended with the next message, and the adversary A takes on the role of the
recipient of the latest message, party X or Y .

Lemma 1. When δ = {cY }

Advfairness
AX

(λ) ≤ Advind−cpa
A (λ) (26)

m0 ←$ {0, 1}n,m1 ←$ {0, 1}n

δ ← {c}
m′ ← AX(δ)
if m′ = m1 then b′ ← 0
else b′ ← 1

B
m0,m1

c

b′

Fig. 5: Adversary B; capable of winning the IND-CPA security game given the
existence of adversary AX .

Proof. Consider adversary AX capable of extracting dY from δ. This could easily
be used to construct B, in Figure 5, such that it forwards ciphertexts to AX to
provide a decryption.

10



∴ Advfairness
AX

(λ) ≤ Advind−cpa
A (λ) (27)

Lemma 2. When δ = {cY , cX}

Advfairness
AY

(λ) ≤ Advind−cpa
A (λ) (28)

This proof is omitted for brevity. It follows the same outline as the proof
for Lemma 1 but with party Y and X swapped, and B randomly samples a
placeholder cY in the construction of the transcript δ.

Lemma 3. When δ =
{
cY , cX , k′Y

}
Advfairness

AX
(λ) = Advind−cpa

A (λ) (29)

Proof. There are two possible situations; the first one is that k′Y is a blinded
version of the key used to encrypt ciphertext cY , the other is that they are
unrelated. In the latter case this proof is trivial.

The former case occurs with probability 1
M . This relationship is reflected

in the security parameter λ′ which is defined as the security parameter of an
instantiation of E which is bruteforcible in a long but reasonable time-frame.

The advantage of AX in the FairnessGame is therefore

Advfairness
AX

(λ) = 1
M

Advind-cpa
B (λ′) (30)

for some adversary B which can make calls to AX .
The definition of the constant M in the protocol is given by

MAdvind-cpa
B (λ) = Advind-cpa

B (λ′) (31)

It follows that the advantage of AX in the FairnessGame is

∴ Advfairness
AX

(λ) = 1
M

Advind-cpa
B (λ′) (32)

= Advind-cpa
B (λ) (33)

Lemma 4. When δ =
{
cY , cX , k′Y , k

′
X

}
and, given a long but reasonable amount

of time, X is unable to mount a bruteforce attack against cY

Advfairness
AY

(λ) ≤ Advind−cpa
A (λ) (34)

Proof. As, given k′Y , X is unable to mount a bruteforce attack against cY in any
reasonable amount of time, it must be the case that mX 6= mY . Because of this,
k′X is completely unrelated to cX and so is no help for decrypting it. The rest of
the proof follows from Lemma 2.

11



Theorem 2 (Computational Strong Fairness). Given E, an IND-CPA se-
cure authenticated encryption scheme. Where Advind-cpa

A (λ) ≤ negl(λ). In the
Secret Swapping protocol, if the ability of Y to extract dX from transcript δ is
computationally intractable, then for any probabilistic polynomial time adversary
A:

Advfairness
AY

(λ) ≤ negl(λ) (35)
Similarly, if the ability of X to extract dY from transcript δ is computationally

intractable, then for any probabilistic polynomial time adversary A:

Advfairness
AX

(λ) ≤ negl(λ) (36)

Proof. In the first case, when party Y is acting maliciously, the transcript must
be either δ = {cY , cX} or δ =

{
cY , cX , k′Y , k

′
X

}
. The former case is proved in

Lemma 2 and the later is proved in Lemma 4. It follows that for all possible
situations, if the ability of X to extract dY from δ is intractable then

Advfairness
AY

(λ) ≤ Advind-cpa
A (λ) (37)

=⇒ Advfairness
AY

(λ) ≤ negl(λ) (38)

The second case, when partyX is acting maliciously, is slightly more complex.
Consider the timeliness restriction on the messages fromX as part of the protocol
definition. This restriction is much shorter than the expected time to bruteforce
E with security parameter λ′. The timeliness requirement hardens the protocol
against the ability of AX to preemptively “test” bruteforce the case when δ ={
cY , cX , k′Y

}
. Without this restriction the result from Lemma 3 would not apply,

as the 1
M factor would no longer be relevant in Equation 30, as the bruteforce

attack could be attempted, and on a failure X could pretend to be honest and
continue through repeat protocol executions until the bruteforce attack works.
As it is, with a reasonable timeliness restriction on messages this is not possible.

Given this restriction Lemmas 1 and 3 prove the advantage of AX must be

Advfairness
AX

(λ) ≤ Advind-cpa
A (λ) (39)

=⇒ Advfairness
AX

(λ) ≤ negl(λ) (40)

4.3 Evaluation
We have proved that Secret Swapping has both the Computational Completeness
and Computational Strong Fairness properties without the need for a trusted
third party arbitrator.

A glaring deficiency in our scheme is that as λ is made arbitrarily large,
M must grow exponentially to reflect the difference between λ and λ′. With
this, the probability of a successful data transfer per execution of the protocol
becomes vanishingly small. λ is therefore restricted to smaller values that are
deemed “secure enough”.

The massive failure rate of our scheme, M−1
M is mitigated by the fact M is a

constant, and so the protocol is expected to be run a constant M times before a
success. However, the multiple runs of the protocol cannot be parallelised, they
must be executed sequentially. If they were parallelised Lemma 3 would be false.

12



5 Related Work

All previous Fair Exchange protocols use a trusted third party in some way. The
previous state-of-the-art only required a third party to mediate in the case of a
dispute[12].

There is some notion of a naive two party Fair Exchange wherein X and Y
exchange ciphertexts and then alternately release individual bits of the secret
key. This obviously has some unfortunate qualities, namely that X and Y need
to be able to leverage a similar amount of computational power. If X terminates
early because the remaining key bits are bruteforcible, the remaining bits for Y
should also be bruteforcible.

There is a body of work solving the problem with financial incentives to
operate honestly[11]. In such work a misbehaving party must forfeit previously
posted financial assets. The advent of blockchain has allowed a decentralised
ledger to stand in for a trusted third party[9][10][6][7]. Etherium smart contracts
can encode the behaviour of a trusted third party, and release Etherium tokens
should certain conditions be met[5]. This is unfortunately very expensive to
implement, relies on the security of a blockchain and the honesty of it’s nodes,
and is restricted to the exchange of cryptocurrency tokens.

6 Conclusion

To the best of our knowledge this is the first Fair Exchange protocol not re-
quire any third party involvement. This result was previously assumed to be
impossible, but in fact it is only impossible for a specific configuration of the
problem. A widely cited impossibility result showed that no deterministic two
party Fair Exchange protocol existed without any timeliness restrictions on the
messages[14]. We demonstrate that a non-deterministic two party Fair Exchange
protocol can exist provided there are sensible timeliness restrictions messages.

Our protocol needs to be repeated a constant, but very large, number of times
in order for it to terminate successfully. It may therefore never be considered
practical to implement.

7 Further Work

There is clear value in two party Fair Exchange, which our construction shows is
possible. However, as highlighted in the Evaluation, this protocol is not without
flaws. The massive failure rate of M−1

M requires the protocol to be run an expected
M times. Depending on how cautiously M is selected and the security parameter
of the “secure” encryption scheme λ this can be very large. The bandwidth
requirements can be very large.

The security of the scheme is forced to stay in the realm of “good enough”
as to keep M relatively small. There is potential for further work in hardening
the scheme in this regard.

13



References
1. Asokan, N., Schunter, M., Waidner, M.: Optimistic protocols for fair ex-

change. In: Proceedings of the 4th ACM Conference on Computer and Com-
munications Security. p. 7–17. CCS ’97, Association for Computing Ma-
chinery, New York, NY, USA (1997). https://doi.org/10.1145/266420.266426,
https://doi.org/10.1145/266420.266426

2. Bao, F., Deng, R., Mao, W.: Efficient and practical fair exchange protocols with
off-line ttp. In: Proceedings. 1998 IEEE Symposium on Security and Privacy (Cat.
No.98CB36186). pp. 77–85 (1998). https://doi.org/10.1109/SECPRI.1998.674825

3. Bellare, M., Rogaway, P.: Introduction to modern cryptography (2005)
4. Brassard, G., Crepeau, C., Robert, J.M.: All-or-nothing disclosure of secrets.

In: Odlyzko, A.M. (ed.) Advances in Cryptology — CRYPTO’ 86. pp. 234–238.
Springer Berlin Heidelberg, Berlin, Heidelberg (1987)

5. Buterin, V.: A next generation smart contract & decentralized application platform
(2013)

6. Campanelli, M., Gennaro, R., Goldfeder, S., Nizzardo, L.: Zero-knowledge con-
tingent payments revisited: Attacks and payments for services. In: Proceed-
ings of the 2017 ACM SIGSAC Conference on Computer and Communi-
cations Security. p. 229–243. CCS ’17, Association for Computing Machin-
ery, New York, NY, USA (2017). https://doi.org/10.1145/3133956.3134060,
https://doi.org/10.1145/3133956.3134060

7. Eckey, L., Faust, S., Schlosser, B.: Optiswap: Fast optimistic fair exchange. In:
Proceedings of the 15th ACM Asia Conference on Computer and Communi-
cations Security. p. 543–557. ASIA CCS ’20, Association for Computing Ma-
chinery, New York, NY, USA (2020). https://doi.org/10.1145/3320269.3384749,
https://doi.org/10.1145/3320269.3384749

8. Fischer, M.J., Lynch, N.A., Paterson, M.S.: Impossibility of distributed
consensus with one faulty process. J. ACM 32(2), 374–382 (apr 1985).
https://doi.org/10.1145/3149.214121, https://doi.org/10.1145/3149.214121

9. Goldfeder, S., Bonneau, J., Gennaro, R., Narayanan, A.: Escrow protocols for
cryptocurrencies: How to buy physical goods using bitcoin. In: Kiayias, A. (ed.)
Financial Cryptography and Data Security. pp. 321–339. Springer International
Publishing, Cham (2017)

10. Jakobsson, M.: Ripping coins for a fair exchange. In: Guillou, L.C., Quisquater,
J.J. (eds.) Advances in Cryptology — EUROCRYPT ’95. pp. 220–230. Springer
Berlin Heidelberg, Berlin, Heidelberg (1995)

11. Janin, S., Qin, K., Mamageishvili, A., Gervais, A.: Filebounty:
Fair data exchange. In: 2020 IEEE European Symposium on Se-
curity and Privacy Workshops (EuroS&PW). pp. 357–366 (2020).
https://doi.org/10.1109/EuroSPW51379.2020.00056

12. Küpçü, A., Lysyanskaya, A.: Usable optimistic fair ex-
change. Computer Networks 56(1), 50–63 (2012).
https://doi.org/https://doi.org/10.1016/j.comnet.2011.08.005,
https://www.sciencedirect.com/science/article/pii/S138912861100301X

13. Nakamoto, S.: Bitcoin: A peer-to-peer electronic cash system (2008)
14. Pagnia, H., Darmstadt, F.C.G.: On the impossibility of fair exchange without a

trusted third party (1999)
15. Yao, A.C.: Protocols for secure computations. In: 23rd Annual Sympo-

sium on Foundations of Computer Science (sfcs 1982). pp. 160–164 (1982).
https://doi.org/10.1109/SFCS.1982.38

14


