
Post-Quantum Public-key Authenticated Searchable
Encryption with Forward Security: General Construction,

Implementation, and Applications

Shiyuan Xu1, Yibo Cao2, Xue Chen1,3, Siu-Ming Yiu1⋆, and Yanmin Zhao1

1 Department of Computer Science, The University of Hong Kong, Pok Fu Lam, Hong Kong
{syxu2, smyiu, ymzhao}@cs.hku.hk

2 School of Cyberspace Security, Beijing University of Posts and Telecommunications, Beijing, China
a18613361692@163.com

3 Department of Computing, The Hong Kong Polytechnic University, Hung Hom, Hong Kong
xue-serena.chen@connect.polyu.hk

Abstract. Public-key encryption with keyword search was first proposed by Boneh et al.
(EUROCRYPT 2004), achieving the ability to search for ciphertext files. Nevertheless, this
scheme is vulnerable to inside keyword guessing attacks (IKGA). Public-key authenticated
encryption with keyword search (PAEKS), introduced by Huang et al. (Inf. Sci. 2017), on
the other hand, is secure against IKGA. Nonetheless, it is susceptible to quantum computing
attacks. Liu et al. and Cheng et al. addressed this problem by reducing to the lattice hardness
(AsiaCCS 2022, ESORICS 2022). Furthermore, several scholars pointed out that the threat
of secret key exposure delegates a severe and realistic concern, potentially leading to privacy
disclosure (EUROCRYPT 2003, Compt. J. 2022). As a result, research focusing on mitigating
key exposure and resisting quantum attacks for the PAEKS primitive is significant and far-
reaching.
In this work, we present the first instantiation of post-quantum PAEKS primitive that is
forward-secure and does not require trusted authorities, mitigating the secret key exposure
while ensuring quantum-safe properties. We extended the scheme of Liu et al. (AsiaCCS 2022),
and proposed a novel post-quantum PAEKS construction, namely FS-PAEKS. To begin with,
we introduce the binary tree structure to represent the time periods, along with a lattice basis
extension algorithm, and SamplePre algorithm to obtain the post-quantum one-way secret key
evolution, allowing users to update their secret keys periodically. Furthermore, our scheme is
proven to be IND-CKA, IND-IKGA, and IND-Multi-CKA in the quantum setting. In addition,
we also compare the security of our primitive in terms of computational complexity and
communication overhead with other top-tier schemes, and provide implementation details of
the ciphertext generation and test algorithms. The proposed FS-PAEKS is more efficient than
the FS-PEKS scheme (IEEE TDSC 2021). Lastly, we demonstrate three potential application
scenarios of FS-PAEKS.

Keywords: Public-key authenticated encryption with keyword search · Post-quantum cryp-
tography · Forward security · Multi-ciphertext indistinguishability · Trapdoor privacy · Generic
construction.

⋆ Corresponding author



2 S. Xu et al.

1 Introduction

Traditional public-key encryption with keyword search (PEKS) primitive contains three entities,
that is, data owner, data user, and cloud server [1]. PEKS scheme realizes that encrypted data can
easily be retrieved by the specific user through a specific trapdoor, which not only protects the
data privacy but also realizes the searchability. A fundamental security criterion for PEKS is to
against the chosen keywords attacks (CKA) [2]. Nevertheless, Byun et al. formalized the notation of
trapdoor privacy (TP) for the PEKS scheme since if it only considers the CKA, the protocol may be
threatened by the inside keyword guessing attacks (IKGA) [3]. To circumvent this problem, Huang
et al. initialized a novel variant of PEKS, namely, public-key authenticated encryption with keyword
search (PAEKS), combining the message authentication technique into the ciphertext generation
algorithm. In this way, the trapdoor can merely be valid to the authenticated ciphertext for a
specific sender. Numerous scholars commenced their research works on the PAEKS primitive due
to its high security [4–9].

However, the above-mentioned PAEKS protocols are totally on the basis of the discrete logarithm
assumption, which is vulnerable to quantum computing attacks. Liu et al. constructed a lattice-
based PAEKS primitive that offers both CKA and IKGA security while also being resistant to
quantum computing attacks [10].

Unfortunately, the security of ciphertext may be compromised if the secret key of a receiver is
leaked due to inadequate storage or malicious actions by adversaries. To address this issue, Bellare
et al. initially introduced the notation of forward security in digital signatures [11], which was later
adapted by Canetti et al. for use in a forward secure public key encryption scheme [12, 13]. This
protocol periodically updates the secret key, therefore even if it is compromised in one period, the
security of other periods remains intact.

1.1 Motivation

As inappropriate storage of secret keys may lead to their compromise by malicious attackers, it
is essential to update them within a certain period to ensure forward security. Zhang et al. have
formalized the FS-PEKS scheme, achieving forward security, nevertheless, one disadvantage of this
scheme is that a malicious attacker may acquire the keyword from the trapdoor [14]. In contrast,
Jiang et al. presented a forward secure scheme for PAEKS, without considering the quantum com-
puting attacks [15]. Among that, their constructions still need a trusted authority to calculate secret
keys, which will result in additional storage overhead.

Huang et al. subsequently presented a PAEKS primitive, which was reduced to be secure under
the discrete logarithm assumption [16]. However, with the advancement of quantum computers, Shor
generalized a quantum algorithm, demonstrating the feasibility of solving classical cryptographic
primitives in probabilistic polynomial times [17,18]. Consequently, classical PAEKS schemes are now
vulnerable. Hence, several scholars transformed the traditional PAEKS primitive into the quantum-
resistant PAEKS protocol and formalized the generic constructions based on lattice hardness [10,19].
Nevertheless, their schemes contain flaws due to the secret key leakage problem.

Therefore, with the aforementioned issues, it motivates the following question:

Can we construct and instantiate a generic post-quantum forward-secure PAEKS satisfied
CI, TP, MCI security without trusted settings to mitigate the secret key leakage problem?



Title Suppressed Due to Excessive Length 3

1.2 Our Contributions

The contributions of this work can be summarized as follows:

– We generalize the first PAEKS with forward security instantiation in the context of lattice
without trusted authorities, mitigating the secret key exposure while enjoying quantum-safe.
Our primitive extends Liu et al.’s scheme [10], and proposes a novel post-quantum PAEKS
construction, namely FS-PAEKS. In addition, we formalize the CI, TP, and MCI security of
the proposed FS-PAEKS primitive. Eventually, we give three potential application scenarios to
demonstrate the utility of the proposed primitive.

– The proposed FS-PAEKS scheme enjoys quantum-safe forward security. We introduce a binary
tree structure to update the receiver’s secret key with different time periods. This property
ensures that exposing the secret key corresponding to a specific time period does not enable
an adversary to "crack" the primitive for any previous time period due to its one-way nature.
Additionally, we further employ the minimal cover set technique to achieve secret key updating
periodically for the receiver based on the key evolution mechanism. Finally, we utilize the lattice
basis extension technique to maintain quantum-safe for updating secret keys.

– The proposed FS-PAEKS scheme can be proven secure in strong security models. Firstly, the
FS-PAEKS does not need a trusted setup assumption in the initial phase. Furthermore, we
guarantee that the trapdoor is valid from the receiver to prevent adversaries from adaptively
accessing oracles to obtain the ciphertext for any keyword. This is achieved by ensuring that
the ciphertext can only be obtained by a valid sender. Consequently, we introduce the pseudo-
random smooth projective hash function (SPHF) to achieve the above property and forward-
secure trapdoor privacy under IND-IKGA. In addition, the proposed scheme also achieves the
forward-secure multi-ciphertext indistinguishability under IND-Multi-CKA due to its probabil-
ity and IND-CKA of PAEKS.

– Ultimately, we give the security properties comparison with other PEKS and PAEKS primitives
to show the superiority of our proposed primitive. Besides, we compare with Behnia et al.’s
scheme [20], Zhang et al.’s scheme [14], and Liu et al.’s scheme [10] in terms of computational
complexity and communication overhead. Both the theoretical and practical results illustrate
that our proposed scheme outperforms others in terms of security (with little overheads than
PAEKS but efficient than FS-PEKS scheme). To further demonstrate the versatility of our
proposed primitive, we provide three potential application scenarios in which it can be effectively
utilized.

1.3 Overview of Technique

Technical Roadmap. Informally speaking, constructing a forward-secure PAEKS primitive in
the context of the lattice is a combination of PEKS scheme, public key encryption scheme, smooth
projective hash functions (SPHF), binary tree structure, and lattice basis extension algorithm. More
concretely, we begin by revisiting the post-quantum PAEKS primitive proposed by Liu et al. as
the basic structure [10]. Next, we employ the SPHF technique to transform the encryption scheme
into IND-CCA secure. We then take advantage of the hierarchical structure of the binary tree to
represent time periods and utilized node(t) to represent the smallest minimal cover set for the
secret key update periodically, following the approach outlined in Cash et al. [21]. To the best of
our knowledge, it is the most efficient mechanism to realize key updates and it serves as a stepping
stone toward our goal. Finally, we introduced the ExtBasis and SamplePre algorithms to facilitate
the post-quantum one-way secret key evolution.



4 S. Xu et al.

Smooth projective hash functions. Smooth projective hash functions (abb. SPHF), initially
proposed by Cramer et al. [22], are utilized to transform one encryption primitive from IND-CPA to
IND-CCA, which significantly enhanced the security level. Moreover, numerous scholars extended
the SPHF tool to realize password-authenticated key exchange protocols [23–28]. We use a variant
kind of SPHF, say "word-independent" SPHF, proposed by Katz et al. [29] for primitive construction.
Generally speaking, the "word-independent" SPHF scheme includes five algorithms defined for the
NP language L over one domain X . The formal definition specifies below.
We define a language family (LParal,Trapl

) indexed by the language parameter Paral and language
trapdoor Trapl. Besides, we consider an NP language family (L̃Paral

) with witness relation K̃Paral
,

s.t.
L̃Paral

:= {χ ∈ XParal
|∃ω, K̃Paral

(χ, ω) = 1} ⊆ LParal,Trapl
⊆ XParal

,

where XParal
is a family of sets. In addition, the membership in XParal

and K̃Paral
can be checked in

polynomial time with Paral, and LParal,Trapl
can be checked in polynomial time with Paral, T rapl.

We describe the approximate "word-independent" SPHF scheme below.

– Setup(1λ): Given λ as a security parameter, the PPT algorithm Setup(1λ) will output a language
parameter Paral.

– KeyGenHash(Paral): Given a language parameter Paral, the PPT algorithm KeyGenHash(Paral)
outputs hk as the hashing key.

– KeyGenProj(hk, Paral): Given hk and Paral, the PPT algorithm KeyGenProj(hk, Paral) outputs
the projection key pk.

– Hash(hk, Paral, χ): Given hk, Paral and a word χ ∈ XParal
, the deterministic algorithm

Hash(hk, Paral, χ) outputs Hash ∈ {0, 1}δ as a hash value, where δ ∈ N.
– ProjHash(pk, Paral, χ, ω): Given pk, Paral, χ ∈ L̃Paral

and a witness ω, the deterministic
algorithm ProjHash(pk, Paral, χ, ω) outputs ProjHash ∈ {0, 1}δ as a projected hash value, where
δ ∈ N.

Informally speaking, an approximate "word-independent" SPHF protocol should satisfies the two
attributes:

– ϵ-approximate correctness: Given one word χ ∈ L̃Paral
as well as the corresponding witness ω,

the SPHF scheme is ϵ-approximate correct when:

Pr[HD(Hash(hk, Paral, χ),ProjHash(pk, Paral, χ, ω)) > ϵ · δ] ≈ 0,

where HD(a, b) means the hamming distance between two elements a and b.
– Pseudo-randomness: For some δ ∈ N, if one word χ ∈ L̃Paral

, its hash value Hash is indis-
tinguishable from a random element in {0, 1}δ; otherwise, its hash value Hash is statistically
indistinguishable from one random element chosen in {0, 1}δ.

Binary tree for representing time periods. We use binary tree encryption primitive for en-
rolling time periods [13]. Informally, we define numerous time periods t ∈ {0, 1, · · · , 2d − 1}, where
d is the depth of the binary from the root node to the deepest leaf. In this paper, the time period
t will be described in binary expression t = (t1t2 · · · td). For example, if the depth is three and the
last leaf can be described as t = (111).
On each time period, it only has one path from the root node to the current leaf node and we



Title Suppressed Due to Excessive Length 5

define Θ(i) = (θ(1)θ(2) · · · θ(i)), i ∈ [1, d] as the path, where θ(i) = 0 if the i-th level node is the
left leaf and θ(i) = 1 if the i-th level node is the right leaf. We also define node(t) to represent the
smallest minimal cover set containing one ancestor of all leaves on the time period t and after the
time period t, say including {t, t+ 1, · · · , 2d − 1}.
For simple understanding, we give one example in Fig.1, describing a d = 4 binary tree with 16 time
periods in total. In this figure, we show the meaning of node(t) as: node(0000) = {root}, node(0001) =
{0001, 001, 01, 1}, node(0010) = {001, 01, 1}, node(0011) = {0011, 01, 1}, node(0100) = {01, 1}, node
(0101) = {0101, 011, 1}, node(0110) = {011, 1}, node(0111) = {0111, 1}, node(1000) = {1}, node(10
01) = {1001, 101, 11}, node(1010) = {101, 11}, node(1011) = {1011, 11}, node(1100) = {11}, node(11
01) = {1101, 111}, node(1110) = {111}, node(1111) = {1111}.

root

0010 0011 0100 0101 0110 0111 1000 1001 1010 1011 1100 1101 1110 111100010000

000 001 010 011 100 101 110 111

00 01 10 11

0 1 Level 1

Level 2

Level 3

Level 4

Fig. 1. Binary Tree of depth d = 4 with binary expression time period (node).

Lattice basis extension. We use the lattice basis extension primitive to realize the secret key one-
way evolutionary mechanism (See Lemma 5 in Section 2.3). More concretely, we discretize the time
period to 2d segments, where d means the total depth of a binary tree. The matrix MR is the public
key for receiver and the matrix SΘ(i) is the trapdoor, where Θ(i) := (θ1, θ2, · · · , θj , θj+1, · · · , θi).
Consequently, the updated trapdoor can be calculated by its any ancestor’s trapdoor, and root node
is the trapdoor of the original ancestor.

We first define FΘ(i) := [MR ∥ A(θ1)
1 ∥ A(θ2)

2 ∥ · · · ∥ A(θi)
i ] as the corresponding matrix of Θ(i).

For any depth j < i, where j, i ∈ [1, d], given the trapdoor SΘ(j) on time j, we have:

SΘ(i) ← ExtBasis(FΘ(i) ,SΘ(j))

After that, we specify the secret key update process as below.

skR(t) := (hR, {rR,1}, {rR,2}, · · · , {rR,κ},SΘ(i)),

where Θ(i) ∈ node(t) as the receiver’s secret key on time t. Each node has the corresponding secret
key in a binary tree. Receiver will update skR(t) to skR(t+ 1) through processing

skR(t+ 1) := (hR, {rR,1}, {rR,2}, · · · , {rR,κ},SΘ(i)),



6 S. Xu et al.

where Θ(i) ∈ node(t+ 1).

1.4 Additional Related Works

Lattice-based PAEKS. Boneh et al. constructed the concept of public-key encryption with key-
word search in 2004 [1]. Zhang et al. argued that the initial security model for keyword privacy
is not complete and then defined a new security model to solve it [30]. However, the basic PEKS
primitive cannot resist the IKGA since an inside adversary may deduce the keyword from a specific
trapdoor. Huang et al. formalized the PAEKS protocol to solve this problem by combining keyword
authentication with PEKS [16]. Nevertheless, Liu et al. and Cheng et al. introduced lattice-based
PAEKS primitive to achieve quantum-safe [10, 31]. Many researchers utilized the PAEKS scheme
to preserve privacy for the Internet of Things [7, 32,33].

Forward Security. Forward security in the public-key cryptosystem was initialized by [12, 13].
Zeng et al. introduced the forward-security notation into the PEKS scheme for cloud computing
[34]. Zhang et al. formalized the first lattice-based PEKS primitive with forward security [14].
After that, Yang et al. extended the FS-PEKS and then constructed a lattice-based forward secure
identity-based encryption with PEKS, namely, FS-IBEKS [35]. Recently, Jiang et al. proposed
a forward secure public-key authenticated encryption with conjunctive keyword search [15], but
without considering the quantum computing attacks.

1.5 Outline of this paper

The rest of this paper is structured as follows. Section 2 covers the preliminary knowledge. In
section 3, we present the syntax of forward-secure PAEKS primitive and its security models. Our
proposed construction will be elaborated in Section 4, while the general instantiation of our FS-
PAEKS scheme will be specified in Section 5. In Section 6, we give the parameters setting and the
correctness proof. The security analysis and implementation with comparison are in Sections 6 and
7, respectively. Section 9 shows the applications of FS-PAEKS. Finally, we conclude this paper in
Section 10.

2 Preliminaries

We hereby introduce the notations used in this paper and some fundamental knowledge of PEKS
and lattice cryptographic primitives in this section.

2.1 Public-key Encryption with Keyword Search scheme

Public-key encryption with keyword search (abb. PEKS) was initially proposed by Boneh et al. [1].
A standard PEKS scheme consists of four algorithms:

– (pkPEKS, skPEKS) ← KeyGen(λ): Given one security parameter λ, this probabilistic-polynomial
time (PPT) algorithm outputs pkPEKS and skPEKS as the public key and secret key for encryption
and decryption, respectively.

– ctPEKS,kw ← PEKS(pkPEKS, kw): After input the public key pkPEKS and the keyword kw, this
PPT algorithm will output the ciphertext ctPEKS,kw.



Title Suppressed Due to Excessive Length 7

– TrapPEKS,kw′ ← Trapdoor(skPEKS, kw
′): Having input the secret key skPEKS and the keyword

kw′, this PPT algorithm outputs the trapdoor TrapPEKS,kw′ .
– (1 or 0) ← Test(ctPEKS,kw,TrapPEKS,kw′): Having input the ciphertext ctPEKS,kw and the trap-

door TrapPEKS,kw′ , this deterministic algorithm outputs 1 if kw = kw′; Otherwise, this deter-
ministic algorithm outputs 0.

Security Models. A secure PEKS scheme must satisfy the following properties:

– Correctness of PEKS: Given a security parameter pp, any valid public-secret key pairs (pkPEKS, skPEKS),
any keywords kw, kw′, any ciphertexts generated by PEKS(pkPEKS, kw), and any trapdoors gen-
erated by Trapdoor(skPEKS, kw

′), the PEKS scheme is correct if it satisfies:

If kw = kw’,Pr[Test(ct,Trap) = 1] ≈ 1; and

if kw ̸= kw’,Pr[Test(ct,Trap) = 0] ≈ 1.

– Ciphertext Indistinguiability of PEKS: If it does not exist an adversary A can obtain any key-
word information of the challenge ciphertext ctPEKS,kw, this PEKS scheme has indistinguisha-
bility against chosen keyword attacks (IND-CKA).

2.2 Labelled Public-key Encryption scheme

Labelled public-key encryption (abb. Labelled PKE) is one of the variants of public-key encryption
[36]. In the remainder of this paper, we employ the Labelled PKE scheme for our construction and
refer to it as PKE for brevity. A standard PKE scheme consists of three algorithms:

– (pkPKE, skPKE)← KeyExt(λ): Given one security parameter λ, this PPT algorithm outputs pkPKE
and skPKE as the public key and secret key for encryption and decryption, respectively.

– ctPKE ← Encrypt(pkPKE, label, ptPKE, ρ): After input the public key pkPKE, one label label, the
plaintext ptPKE, and a randomness ρ, this PPT algorithm will output the ciphertext ctPKE.

– (ptPKE or ⊥) ← Decrypt(skPKE, label, ctPKE): Having input the secret key skPKE, one label label,
the ciphertext ctPKE and a randomness ρ, this deterministic algorithm outputs the plaintext
(ptPKE or ⊥).

Security Models. A secure PKE scheme must satisfy the following security properties:

– Correctness of PKE: Given a security parameter λ, the public key and security key generated
through (pkPKE, skPKE)← KeyExt(λ), one label label, the randomness ρ, one ciphertext generated
by ctPKE ← Encrypt(pkPKE, label, ptPKE, ρ), the PKE scheme is correct if

Pr[Decrypt(skPKE, label, ctPKE) = ptPKE] ≈ 1.

– IND-CPA/IND-CCA security of PKE: One secure PKE protocol needs to satisfy the indistin-
guishability against chosen-plaintext attacks (IND-CPA) if there does not exist one adversary
A can obtain any information of a challenge plaintext ptPKE. In addition, we say one primi-
tive realizes indistinguishability against chosen-ciphertext attacks (IND-CCA) if A is permitted
to access the decryption query for any ciphertext ctPKE excepting for querying the challenge
ciphertext.



8 S. Xu et al.

2.3 Basic Knowledge of Lattice and Trapdoors

Definition 1 (Lattice). [37] Suppose that b1,b2, · · · ,bn ∈ Rm are n linearly independent vectors.
The m-dimensional lattice Λ is generated by a set of linear combinations, denoted as Λ = Λ(B) =
{x1 · b1 + x2 · b2 + · · ·+ xn · bn|xi ∈ Z}, where B = {b1,b2, · · · ,bn} ∈ Rm×n is the basis of Λ.

Definition 2 (q-ary Lattices). [38] Given n,m, q ∈ Z, and A ∈ Zn×m
q , we define the following

q-ary Lattices and a coset:

Λq(A) := {e ∈ Zm|∃s ∈ Zn
q ,A

⊤s = e mod q}.

Λ⊥
q (A) := {e ∈ Zm|Ae = 0 mod q}.

Λq(A
u) := {e ∈ Zm|Ae = u mod q}.

Definition 3 (Gaussian Distribution). Given one positive parameter σ ∈ R+, one center c ∈ Zm

and any x ∈ Zm, we define Dσ,c =
ρσ,c(x)

ρσ,c(Λ)
for ∀x ∈ Λ as the Discrete Gaussian Distribution over Λ

with a center c, where ρσ,c(x) = exp(−π ∥x−c∥2

σ2 ) and ρσ,c(Λ) = Σx∈Λρσ,c(x). Specially, we say Dσ,0

abbreviated as Dσ when c = 0.

Definition 4. [39] We define Ψα as the probability distribution over Zq for the random variable
⌊qx⌉ by selecting x ∈ R from the normal distribution with mean 0 and the standard deviation α√

2π
.

Lemma 1 (TrapGen(n,m, q)). [40] Taking n,m, q ∈ Z as input, this PPT algorithm returns A ∈
Zn×m
q and TA ∈ Zm×m

q , where TA is a basis of Λ⊥
q (A) s.t. {A : (A,TA) ← TrapGen(1n, 1m, q)}

is statistically close to {A : A
$← Zn×m

q }. In this way, we say TA is a trapdoor of A.

Lemma 2 (SamplePre(A,TA,u, σ)). [41] Given a matrix A ∈ Zn×m
q and its trapdoor TA ∈

Zm×m
q , a vector u ∈ Zn

q , and the parameter σ ≤ ∥T̃A∥·ω(
√

log(m)), where m ≥ 2n⌈log q⌉, this PPT
algorithm publishes one sample e ∈ Zm

q statistically distributed in DΛu
q (A),σ s.t. Ae = u mod q.

Lemma 3 (NewBasisDel(A,R,TA, σ)). [39] Taking a parameter σ ∈ R, a matrix A ∈ Zn×m
q ,

one Zq-invertible matrix R sampled from the distribution Dm×m, and trapdoor TA as input, this
PPT algorithm will output one short lattice basis TB of Λ⊥

q (B), where B = AR−1.

Lemma 4 (SampleLeft(A,M,TA,u, σ)). [42] After input one matrix A ∈ Zn×m
q and its cor-

responding trapdoor TA ∈ Zm×m
q , one matrix M ∈ Zn×m1

q , one vector u ∈ Zn
q , and one parameter

σ ≤ ∥T̃A∥ · ω(
√

log(m+m1)), this PPT algorithm will output a sample t ∈ Zm+m1 from the
distribution statistically close to DΛu

q ([A|M]),σ s.t. [A|M] · t = u mod q.

Lemma 5 (ExtBasis(A′′,S)). [21] For an input matrix A ∈ Zn×m
q , one basis S ∈ Zm×m

q of
Λ⊥(A), and a matrix A′ ∈ Zn×m′

q , this deterministic algorithm outputs a basis S′′ of Λ⊥(A′′) ⊆
Zm×m′′

q s.t. ∥S̃∥ = ∥S̃′′∥, and A′′ = A||A′, m′′ = m+m′.

3 Syntax of Forward-Secure PAEKS and Security Models

Public-key authenticated encryption with keyword search (PAEKS) was initially proposed by Huang
et al. [16] as a variant of the traditional PEKS scheme [1], with the added benefit of satisfying the
trapdoor privacy. Subsequently, Jiang et al. introduced the concept of forward security into the
PAEKS primitive [15].



Title Suppressed Due to Excessive Length 9

3.1 Syntax of FS-PAEKS scheme

We reviewed the FS-PAEKS scheme based on the discrete logarithm [15] and formalized the defi-
nition of forward-secure PAEKS primitive (including six PPT algorithms) as below.

– Setup(1λ): After input one security parameter λ, this algorithm returns one system parameter
pp.

– KeyGenS(pp): Taking one system parameter pp as input, this algorithm publishes a public-secret
key pair for a sender (pkS , skS).

– KeyGenR(pp): Taking one system parameter pp as input, this algorithm outputs a public-secret
key pair for a receiver (pkR, skR).

– FS− PAEKS(pkR, skS , kw): Given a public key of one receiver pkR, a secret key of one sender
skR, and any keyword kw, this algorithm returns a ciphertext ct of kw with time t as output.

– Trapdoor(pkS , skR, kw
′): Given a public key of one sender pkS , a secret key of one receiver skR,

and a keyword kw′, this algorithm outputs a trapdoor Trap of kw′ with time t′.
– Test(ct,Trap): After input a ciphertext ct and a trapdoor Trap, this algorithm returns 1 if the

ct and Trap is related to one same keyword, that is, kw = kw′ holds; otherwise, it returns 0.

3.2 Core Technique

We leverage various lattice trapdoor algorithms to convert the DL-based public-secret keys and
trapdoor generations to their lattice-based counterparts. To mitigate the risk of secret key leakage,
we employ a binary tree architecture to represent the time period. Specifically, we use node(t) to
represent the smallest minimal cover set for the secret key update periodically, and we utilize the
lattice basis extension algorithm ExtBasis to realize the one-way key evolution mechanism.

3.3 Security Models

This chapter outlines the security models of our proposed primitive. Specifically, we establish secu-
rity criteria that ensure that any probabilistic polynomial-time (PPT) adversary cannot obtain any
keyword information from the ciphertext [1] and any (inside) PPT attacker cannot acquire any key-
word information from the trapdoor [3,43]. We hereby define three key security parameters, namely
ciphertext indistinguishability (CI) for forward-secure PAEKS under indistinguishability against
chosen keywords attack (IND-CKA), the trapdoor privacy for forward-secure PAEKS under indis-
tinguishability against inside keyword guessing attack (IND-IKGA), and the multi-ciphertext indis-
tinguishability (MCI) for forward-secure PAEKS under indistinguishability against chosen multi-
keywords attack (IND-Multi-CKA).

IND-CKA Game of FS-PAEKS

– Setup: After input one security parameter λ, the challenger C calls the Setup algorithm to
obtain the public parameter pp. After that, C processes the KeyGenS and KeyGenR algorithms
to compute the sender’s and receiver’s public-secret key pair, that is, (pkS , skS) and (pkR, skR).
Ultimately, C sends pp, pkS and pkR to the adversary A and keeps the initial secret key skR
secret.

– Query 1: In this query, A is permitted to adaptively access three oracles in some polynomial
times.



10 S. Xu et al.

• KeyUpdate Oracle OKU : If the time period t < T − 1, C will updates the time period
from t to t + 1; If the time period t = T − 1, which means the current period is the last
period, C will return an empty string skT .

• Ciphertext Oracle OC : A requires that the time period t is larger than the target time
period t∗. Given any keyword kw, C calls the FS− PAEKS(pp, pkS , skS , pkR, kw, t, d) algo-
rithm to obtain the ciphertext ct at time period t and returns it to A.

• Trapdoor Oracle OT : A requires that the time period t is larger than the target time
period t∗. Given any keyword kw, C calls the Trapdoor(pp, pkS , pkR, skR(t), kw

′) algorithm
to obtain the trapdoor Trap in time period t and transmits it to A.

– Challenge: In time period t∗, which has not been querried the OT , A selects two challenge
keywords kw∗

0 and kw∗
1 and sends them to C. This phase restricts that A never accesses the

three oracles (OKU ,OC and OT ) for the challenge keywords kw∗
0 and kw∗

1 . After that, C selects
a bit b ∈ {0, 1} at random and calls the FS− PAEKS(pp, pkS , skS , pkR, kw

∗
b , t

∗, d) algorithm to
calculate the challenge ciphertext ct∗. Finally, C sends ct∗ to A.

– Query 2: A has the ability to continue those queries as similar as Query 1 with one limitation
that A is not allowed to query the challenge keywords (kw∗

0 , kw
∗
1).

– Guess: After finished the above phases, A will output a guess bit b′ ∈ {0, 1}. Therefore, we say
that A wins the game if and only if b = b′.

We hereby define the advantage of A wins the above game as

AdvIND−CKA
A (λ) := |Pr[b = b′]− 1

2
|.

Definition 5 (IND-CKA secure of FS-PAEKS). We say that an FS-PAEKS scheme satisfies
forward-secure ciphertext indistinguishability (CI) under IND-CKA, if for any PPT adversary A,
the advantage AdvIND−CKA

A (λ) is negligible.

IND-IKGA Game of FS-PAEKS

– Setup: This process is same as the IND-IKGA Game of FS-PAEKS.
– Query 1: In this query, A is permitted to adaptively access three oracles (OKU ,OC and OT ,

are same as the IND-IKGA Game of FS-PAEKS) in some polynomial times.
– Challenge: In time period t∗, which has not been querried the OT , A selects two challenge

keywords kw∗
0 and kw∗

1 and transmits them to C. This phase restricts that A never accesses
the three oracles (OKU ,OC and OT ) for the challenge keywords kw∗

0 and kw∗
1 . After that, C

selects a bit b ∈ {0, 1} at random and calls the Trapdoor(pp, pkS , pkR, skR(t
t), kw′

b) algorithm
to calculate the challenge trapdoor Trap∗. Finally, C sends Trap∗ to A.

– Query 2: A has the ability to continue those queries as similar as Query 1 with the limitation
that A is not allowed to query the challenge keywords (kw∗

0 , kw
∗
1).

– Guess: After finished the above phases, A publishes a guess bit b′ ∈ {0, 1}. Thus, we say that
A wins the game if and only if b = b′.

We define the advantage of A wins the above game as

AdvIND−IKGA
A (λ) := |Pr[b = b′]− 1

2
|.

Definition 6 (IND-IKGA secure of FS-PAEKS). We say that an FS-PAEKS scheme satisfies
forward-secure trapdoor privacy (TP) under IND-IKGA, if for any PPT adversary A, the advantage
AdvIND−IKGA

A (λ) is negligible.



Title Suppressed Due to Excessive Length 11

IND-Multi-CKA Game of FS-PAEKS

– Setup: This process is same as the IND-IKGA Game of FS-PAEKS.
– Query 1: In this query, A is permitted to adaptively access three oracles (OKU ,OC and OT ,

same as the IND-IKGA Game of FS-PAEKS) in some polynomial times.
– Challenge: Given two tuples of challenge keywords (kw∗

0,1, · · · , kw∗
0,n), C firstly selects a tuple

(kw∗
0,i, kw

∗
1,i) for some i s.t. kw∗

0,i ̸= kw∗
1,i. After that, C selects a bit b ∈ {0, 1} randomly

and calls the FS− PAEKS(pp, pkS , skS , pkR, kw
∗
b,i, t

∗, d) algorithm to calculate the challenge
ciphertext ct∗. Moreover, C selects n − 1 ciphertexts from the output space of FS− PAEKS
algorithm, namely as, (ct1, ct2, · · · , cti−1, cti+1, cti+2, · · · , ctn).

– Query 2: A can continue the queries as in the Query 1 with the restriction that A is not
allowed to query the challenge keywords kw∗

i,j , where i ∈ {0, 1} and j ∈ {1, 2, · · · , n}.
– Guess: After finished the above phases, A outputs a guess bit b′ ∈ {0, 1} and C uses it as its

output. We say that A wins the game if and only if b = b′.

Definition 7 (IND-Multi-CKA secure of FS-PAEKS). We say that an FS-PAEKS scheme
satisfies forward-secure multi-ciphertext under IND-Multi-CKA, if it satisfies CI under IND-CKA
and it is a probabilistic algorithm.

4 Our Proposed Construction

In this part, we illustrate the first generic construction of post-quantum FS-PAEKS based on the
prototype of PEKS primitive, labelled PKE scheme, SPHF protocol, and binary tree architecture. To
begin with, we define KSPEKS as the keyword space and one standard PEKS scheme icnludes four
algorithms (PEKS.KeyGen, PEKS.PEKS, PEKS.Trapdoor,PEKS.Test). Moreover, we define PKSPKE
and PSPKE as the public key space and plaintext space, respectively. A labelled PKE scheme consists
of three algorithms (PKE.KeyGen, PKE.Encrypt, PKE.Decrypt). We introduce the SPHF scheme, in-
cluding four algorithms, that is, (SPHF.KeyGenHash,SPHF.KeyGenProjHash,SPHF.Hash,SPHF.ProjHash).
Finally, we utilize the binary tree structure and the smallest minimal cover set to achieve the secret
key update for the receiver. We also employ the ExtBasis algorithm to realize one-way secret key
evolution, which ensures the security of the secret keys.
We first define the language of ciphertext as (Paral, T rapl) = (pkPKE, skPKE), where pkPKE ∈
PKSPKE, L̃ := {(label, ctPKE,mPKE)|∃ρ, ctPKE ← Encrypt(pkPKE, label,mPKE, ρ)}, and L := {(label,
ctPKE,mPKE)|Decrypt(skPKE, label, ctPKE) = mPKE}. Besides, we also define the witness relation K̃((label,
ctPKE,mPKE), ρ) = 1 if and only if we have ctPKE ← Encrypt(pkPKE, label,mPKE, ρ)}.

– Setup(1λ, d): Given one security parameter λ, the Setup algorithm processes following operations
as below:
• Calculates (pkPKE, skPKE)← PKE.KeyExt(λ).
• Selects one plaintext mPKE

$← PKSPKE and one label label $← {0, 1}∗ randomly.
• Selects two hash functions:

H1 : PKSPKE × PSPKE × {0, 1}∗ → PKSPKE; H2 : KSPEKS × {0, 1}∗ → KSPEKS.

• Selects 2d matrices from Zn×m
q as Matrices.

• Outputs pp := (λ,mpk, pkPKE,mPKE, label, H1, H2,Matrices) as the public parameter.



12 S. Xu et al.

– KeyGenS(pp): Inputting one public parameter pp, the KeyGenS algorithm processes these oper-
ations:
• Calculates hS ← SPHF.KeyGenHash(mpk) and pS ← SPHF.KeyGenProj(hS,mpk).
• Calculates ctPKE,S ← PKE.Encrypt(mpk, label,mPKE, ρS), where ρS is a randomly selected

witness s.t. K̃((label, ctPKE,S ,mPKE), ρS) = 1.
• Outputs pkS := (pS , ctPKE,S) and skS := (hS , ρS) as the public key and secret key of the

sender, respectively.
– KeyGenR(pp): Given a public parameter pp, the KeyGenR algorithm processes the following

operations:
• Calculates hR ← SPHF.KeyGenHash(mpk) and pR ← SPHF.KeyGenProj(hR,mpk).
• Calculates ctPKE,R ← PKE.Encrypt(mpk, label,mPKE, ρR), where ρR is a randomly selected

witness s.t. K̃((label, ctPKE,R,mPKE), ρR) = 1.
• Calculates (pkPEKS, skPEKS)← PEKS.KeyGen(1λ).
• Outputs pkR := (pR, ctPKE,R, pkPEKS) and skR := (hR, ρR, skPEKS) as the public key and

secret key of the receiver, respectively.
– KeyUpdate(pp, pkR, skR, t, d): Given a public parameter pp, a public key pkR and a secret key

skR of the initial receiver, a time period t, and a depth d, the KeyUpdate algorithm processes
the following operations:
• Defines FΘ(i) as the corresponding matrix of Θ(i).
• For any j < i where j, i ∈ [1, d], calculates SΘ(i) ← ExtBasis(FΘ(i) ,SΘ(j)), where SΘ(j) is

the trapdoor on time period j.
• Defines skR(t) := (skR,SΘ(i)), where Θ(i) ∈ node(t).
• Defines and outputs skR(t+ 1) := (skR,SΘ(i)), where Θ(i) ∈ node(t+ 1).

– FS− PAEKS(pp, pkS , skS , pkR, kw, t, d): Given a public parameter pp, a public key pkS and a
secret key skS of one sender, a public key pkR of one receiver, one keyword kw ∈ KSFS−PAEKS the
time period t, and the depth d, the FS− PAEKS algorithm processes the following operations:
• Calculates HashS ← SPHF.Hash(hS ,mpk, (ctPKE,R,mPKE)).
• Calculates ProjHashS ← SPHF.ProjHash(pR,mpk, (ctPKE,S ,mPKE), ρS).
• Calculates kwS ← H2(kw,HashS ⊕ ProjHashS)
• Calculates and outputs ct← PEKS.PEKS(pkPEKS, kwS).

– Trapdoor(pp, pkS , pkR, skR(t), kw
′): After input a public parameter pp, a public key pkS of one

sender, a public key pkR and a secret key skR(t) of one receiver, one keyword kw′ ∈ KSFS−PAEKS,
the Trapdoor algorithm processes the following operations:
• Calculates HashR ← SPHF.Hash(hR,mpk, (ctPKE,S ,mPKE)).
• Calculates ProjHashR ← SPHF.ProjHash(pR,mpk, (ctPKE,R,mPKE), ρR).
• Calculates kw′

R ← H2(kw
′,HashR ⊕ ProjHashR).

• Calculates Trap1 ← PEKS.Trapdoor(skPEKS, kw
′
R).

• Calculates Trap2 ← SamplePre(SΘ(t) , H3(kw
′), σ3).

• Defines and outputs Trap := (Trap1,Trap2).
– Test(pp, ct,Trap): Taking one public parameter pp, one ciphertext ct, and the trapdoor Trap

as input, the Test algorithm outputs PEKS.Test(ct,Trap).

5 Instantiation of Our Construction

In this section, we construct the first post-quantum PAEKS with forward security instantiation
based on the lattice hardness, FS-PAEKS, including seven algorithms.



Title Suppressed Due to Excessive Length 13

– Setup(1λ, d): After inputs a security parameter λ, the depth d of one binary tree, system param-
eters q, n,m, σ1, σ2, α, σ3, T , where q is a prime, σ1, σ2 and σ3 is the preimage sample parameter,
α is the gaussian distribution parameter, and T = 2d as the total number of time periods, this
algorithm executes the following operations.
• Calls κ, ρ, ℓ← poly(n) and selects m = m1m2 · · ·mκ

$← {0, 1}κ randomly.
• Selects matrices A

(0)
1 , A

(1)
1 , A

(0)
2 , A

(1)
2 , · · · , A(0)

d , A
(1)
d ∈ Zn×m

q .
• Calls TrapGen(n,m, q) algorithm to generate a matrix A0 and the basis TA0 of Λ⊥(A0).
• Sets A0 as a public key of PKE and TA0 as a secret key of PKE.
• Selects one element u

$← U randomly as the label of PKE.
• Selects three Hash functions

H1 : Zn×m × {0, 1}κ × U → Zn×m
q ;

H2 : {1,−1}ℓ × {0, 1}κ → {1,−1}ℓ;

H3 : {1,−1}ℓ → Zn
q .

Selects one Injective function H4 : R → Zn×n
q .

• Calculates
A← H1(TA0 ,m, u) ∈ Zn×m (1)

as the master public key of PKE.
• Ultimately, this algorithm returns a public parameter as

pp := (λ, q, n,m, σ1, σ2, σ3, κ, ρ, ℓ,TA0 , A
(0)
1 , A

(1)
1 , A

(0)
2 , A

(1)
2 , · · · , A(0)

d , A
(1)
d ,A,m, u,H1, H2, H3, H4).

– KeyGenS(pp): Taking a public parameter pp as input, this algorithm will execute the following
steps to generate the public key and secret key of the sender.
• Sets gadget matrix G := In ⊗ g⊤, g⊤ = [1, 2, · · · , 2k], k = ⌈logq⌉ − 1.
• Calculates

Alabel = A+

[
0

GH4(u)

]
= A+

[
0

(In ⊗ g⊤)H4(u)

]
. (2)

• Selects one matrix hS
$← Dm

Z,s at random.
• Calculates the matrix pS = A⊤

label · hS ∈ Zn
q .

• For i = 1, 2, · · · , κ, selects vectors si
$← Zq and vectors eS,i

$← Dm
Z,t randomly s.t. ∥eS,i∥ ≤

2t
√
m and then calculates

cS,i = A⊤
label · si + eS,i +mi[0, 0, · · · , 0, ⌈

q

2
⌉]

⊤
mod q. (3)

• Outputs pkS := (pS , {cS,1}, {cS,2}, · · · , {cS,κ}) and skS := (hS , {s1}, {s2}, · · · , {sκ)}as a
public key and a secret key of one sender, respectively.

– KeyGenR(pp): Taking a public parameter pp as input, it executes the following steps to compute
the initial public key and initial secret key for one receiver.
• Calls TrapGen(n,m, q) algorithm to generate a matrix MR and the basis SR of Λ⊥(MR).
• For i = 1, 2, · · · , ℓ, selects matrices MR,i

$← Zn×m
q randomly.



14 S. Xu et al.

• Selects a matrix CR
$← Zn×m

q and a vector rR
$← Zn

q at random.
• Sets gadget matrix G := In ⊗ g⊤, g⊤ = [1, 2, · · · , 2k], k = ⌈logq⌉ − 1.
• Calculates

Alabel = A+

[
0

GH4(u)

]
= A+

[
0

(In ⊗ g⊤)H4(u)

]
. (4)

• Selects one matrix hR
$← Dm

Z,s at random.
• Calculates the matrix pR = A⊤

label · hR ∈ Zn
q .

• For i = 1, 2, · · · , κ, selects vectors ri
$← Zq and vectors eR,i

$← Dm
Z,t randomly s.t. ∥eR,i∥ ≤

2t
√
m and then calculates

cR,i = A⊤
label · ri + eR,i +mi[0, 0, · · · , 0, ⌈

q

2
⌉]

⊤
mod q. (5)

• Outputs pkR := (pR, {cR,1}, {cR,2}, · · · , {cR,κ},MR,MR,1,MR,2, · · · ,MR,ℓ,CR, rR) and
skR := (hR, {r1}, {r2}, · · · , {rκ}) as the initial (root node) public key and secret key of the
receiver, respectively.

– KeyUpdate(pp, pkR, skR, t, d): Having input a public parameter pp, time t, initial public key pkR,
and initial secret key skR, this algorithm will process the following steps.
• Defines t := (t1t2 · · · ti), where t means the binary representation of time and i ∈ [1, d],
ti ∈ {0, 1}, d is the depth of the binary tree.
• Defines Θ(i) := (θ1, θ2, · · · , θi) ∈ node(t), where i ∈ [1, d], θi ∈ {0, 1} as the path from the
root to the current node.
• Defines FΘ(i) := [MR ∥ A(θ1)

1 ∥ A(θ2)
2 ∥ · · · ∥ A(θi)

i ] as the corresponding matrix of Θ(i). For
example, F0100 = [MR ∥ A0

1 ∥ A1
2 ∥ A0

3 ∥ A0
4], F101 = [MR ∥ A1

1 ∥ A0
2 ∥ A1

3].
• For any j < i, where j, i ∈ [1, d], given the trapdoor SΘ(j) on time j, calls ExtBasis(FΘ(i) ,SΘ(j))

to generate SΘ(i) , where Θ(i) := (θ1, θ2, · · · , θj , θj+1, · · · , θi). Thus, the updated trapdoor
can be calculated by its any ancestor’s trapdoor.
• Define skR(t) := (hR, {rR,1}, {rR,2}, · · · , {rR,κ},SΘ(i)), where Θ(i) ∈ node(t) as the re-

ceiver’s secret key on time t. Each node has the corresponding secret key in a binary tree.
• Receiver updates skR(t) to skR(t+1) through calculating skR(t+1) := (hR, {rR,1}, {rR,2},
· · · , {rR,κ},SΘ(i)), where Θ(i) ∈ node(t+1). We show one example here, supposing that re-
ceiver updates skR(1010) to skR(1011). Given skR(1010) = (hR, {rR,1}, {rR,2}, · · · , {rR,κ},
S101,S11), the updated secret key is skR(1011) = (hR, {rR,1}, {rR,2}, · · · , {rR,κ},S1011,S11).

– FS− PAEKS(pp, pkS , skS , pkR, kw, t, d): Given the public parameter pp, the sender’s public key
and secret key pkS , skS , the receiver’s public key pkR, one keyword kw ∈ {1,−1}ℓ, the time
period t, and the depth of the binary tree d, this algorithm executes the following procedures.
• For i = 1, 2, · · · , κ, calculates

hS,i ← ⌊
2(c⊤R,i · hS(modq))

q
⌉, (6)

pS,i ← ⌊
2(s⊤i · pR(modq))

q
⌉, (7)

and defines yS,i = hS,i · pS,i.



Title Suppressed Due to Excessive Length 15

• Defines and calculates
yS = yS,1yS,2 · · · yS,κ ∈ {0, 1}κ. (8)

• Calculates

dkS = dkS,1dkS,2 · · · dkS,ℓ ← H2(kw,yS) ∈ {1,−1}ℓ. (9)

• Defines and calculates

Mdk = CR +

ℓ∑
i=1

dkS,iMR,i. (10)

• Calculates

Fdk = [MR ∥Mdk] = [MR ∥ CR +

ℓ∑
i=1

dkS,iMR,i]. (11)

• Defines Ft := [MR ∥ At1
1 ∥ A

t2
2 ∥ · · · ∥ A

td
d ].

• For j = 1, 2, · · · , ρ, processes the following operations as below:
∗ Selects bj

$← {0, 1} and sj
$← Zn

q randomly;

∗ For i = 1, 2, · · · , ℓ, selects Rij
$← {1,−1}

(d+3)m
2 × (d+3)m

2 ;
∗ Defines and calculates

R̄j =

ℓ∑
i=1

dkS,iRij ∈ {−ℓ,−ℓ+ 1, · · · , ℓ}
(d+3)m

2 × (d+3)m
2 ; (12)

∗ Selects xj ← Ψα ∈ Zq and yj ← Ψ
(d+3)m

2
α ∈ Z

(d+3)m
2

q as noise vectors;
∗ Calculates

zj ← R̄⊤
j yj ∈ Z

(d+3)m
2

q ; (13)

c0j = (r⊤R +H3(kw)
⊤)sj + xj + bj⌊

q

2
⌋ ∈ Zq; (14)

c1j
= (Fdk ∥ Ft)

⊤sj +

[
yj

zj

]
∈ Z(d+3)m

q . (15)

• Outputs the forward-secure searchable ciphertext ct := ({c0j , c1j
, bj}ρj=1).

– Trapdoor(pp, pkS , pkR, skR(t), kw
′): After input the public parameter pp, the public key of the

sender pkS , the public key of the receiver pkR, the secret key of the receiver skR(t) with time t
and one keyword kw′ ∈ {1,−1}ℓ, this algorithm will process the following steps.
• For i = 1, 2, · · · , κ, calculates

hR,i ← ⌊
2(c⊤S,i · hR(modq))

q
⌉, (16)

pR,i ← ⌊
2(s⊤R,i · pS(modq))

q
⌉, (17)

and defines yR,i = hR,i · pR,i.
• Defines yR = yR,1yR,2 · · · yR,κ ∈ {0, 1}κ.



16 S. Xu et al.

• Calculates
dkR = dkR,1dkR,2 · · · dkR,ℓ ← H2(kw

′,yR) (18)

• Defines and calculates

Mdk = CR +

ℓ∑
i=1

dkR,iMR,i (19)

• Calls SampleLeft(MR,Mdk,SR, rR, σ2) algorithm to generate Trap1 ∈ Z2m
q .

• If skR(t) includes the basis SΘ(t) , this algorithm will continue the remainder procedures;
If skR(t) does not include the basis SΘ(t) , this algorithm will call ExtBasis(FΘ(t) ,SΘ(i)) to
generate it and then continue the remainder procedures.
• Calls SamplePre(SΘ(t) , H3(kw

′), σ3) algorithm to generate Trap2 ∈ Z(d+1)m
q .

• Outputs Trap := (Trap1,Trap2).
– Test(pp, ct,Trap):
• For j = 1, 2, · · · , ρ, calculates

vj = c0j −
(
Trap1

Trap2

)⊤

c1j . (20)

• Checks whether it satisfies ⌊vj − ⌊ q2⌋⌋:
If the inequality holds, sets vj = 1;
Otherwise, sets vj = 0.

• This algorithm outputs 1 if and only if for ∀j = 1, 2, · · · , ρ, it satisfies vj = bj , which implies
the Test(pp, ct,Trap) algorithm succeeds;
Otherwise, it outputs 0, which implies the Test(pp, ct,Trap) algorithm fails.

6 Parameters and Correctness

6.1 Parameters Setting

Here, we illustrate the following restrictions of parameters choosing to guarantee the rationality
and correctness of our scheme [40], [42], [44], [45].

1. m ≥ 6n log q to make TrapGen(n,m, q) algorithm process properly.
2. s ≥ ηϵ(Λ

⊥(Alabel)) for some ϵ = negl(n) and t = σ1
√
m · (

√
log n) to make KeyGenS(pp) and

KeyGenR(pp) run properly.
3. σ1 = 2

√
n and q > 2

√
n

α to make the lattice reduction algorithm is correct.
4. σ2 > ℓ ·m · ω(

√
log n) to make SampleLeft(A,M,TA,u, σ) algorithm execute properly.

5. m ≥ 2n⌈log q⌉ and σ3 ≥∥ B̃ ∥ ·ω(
√
log n) to make SamplePre(A,TA,u, σ) algorithm operate

properly.
6. (d+3)m

2 is an integer to make FS− PAEKS(pp, pkS , skS , pkR, kw, t, d) algorithm work properly.
7. q > σ1m

3
2ω(
√
log n) to make first error term is bounded legitimately and yS = yR.

8. α < [σ2ℓmω(
√
log n)]

−1 and q = Ω(σ2m
3
2 ) to make second error term is bounded legitimately.



Title Suppressed Due to Excessive Length 17

6.2 Correctness Proof

Our cryptographic primitive comprises two error terms, and we demonstrate that if both of these
terms are bounded legitimately, the entire scheme is correct. The correctness proof is presented via
the following two theorems.

Theorem 1. If the keywords holds kw = kw′ and the first error term (r⊤R,i · hS,i and e⊤S,i · hR,i) is
less than ϵ·q

8 , then we obtain the equality dkS = dkR.

Proof. For i = 1, 2, · · · , κ, calculates:

hS,i = ⌊
2(c⊤R,i · hS(modq))

q
⌉

= ⌊2(r
⊤
i ·Alabel) · hS(modq)

q
+

2r⊤R,i · hS(modq)

q
⌉︸ ︷︷ ︸

first error term

= ⌊2((r
⊤
i ·Alabel) · hS(modq))

q
⌉

= pR,i;

(21)

For i = 1, 2, · · · , κ, calculates:

hR,i = ⌊
2(c⊤S,i · hR(modq))

q
⌉

= ⌊2(s
⊤
i ·Alabel) · hR(modq)

q
+

2r⊤S,i · hR(modq)

q
⌉︸ ︷︷ ︸

first error term

= ⌊2((r
⊤
i ·Alabel) · hR(modq))

q
⌉

= pS,i

(22)

For i = 1, 2, · · · , κ, we have the following equalities: yS,i = hS,i · pS,i = pR,i · pS,i = pS,i · pR,i =
hR,i · pR,i = yR,i. Therefore, we can say that yS = yR. In addition, because of kw = kw′, we obtain
that dkS = H2(kw,yS) = H2(kw

′,yS) = H2(kw
′,yR) = dkR.

Theorem 2. If the second error term (xj −
(
Trap1

Trap2

)⊤[
yj

zj

]
) has been bounded by ((q · σ2 · ℓ ·m ·

α · ω(
√
logm) + O(ℓσ2m

3
2 )) ≤ q

5 ), then the Test(pp, ct,Trap) algorithm outputs the correct result,
that is, bj is correct.



18 S. Xu et al.

Proof.

vj = c0j −
(
Trap1

Trap2

)⊤

c1j

= (r⊤R +H3(kw)
⊤)sj + xj + bj⌊

q

2
⌋ −

(
Trap1

Trap2

)⊤

c1j

= r⊤Rsj + xj + bj⌊
q

2
⌋+H3(kw)

⊤sj −
(
Trap1

Trap2

)⊤

c1j

= r⊤Rsj + xj + bj⌊
q

2
⌋+H3(kw)

⊤sj −
(
Trap1

Trap2

)⊤

[(Fdk ∥ Ft)
⊤sj +

[
yj

zj

]
]

= r⊤Rsj + xj + bj⌊
q

2
⌋+H3(kw)

⊤sj − (Trap1Fdk +Trap1Ft)sj −
(
Trap1

Trap2

)⊤[
yj

zj

]
= bj⌊

q

2
⌋+ xj −

(
Trap1

Trap2

)⊤[
yj

zj

]
︸ ︷︷ ︸

second error term

(23)

Therefore, as mentioned in Lemma 22 of reference [42], for j = 1, 2, · · · , ρ, if the given keywords
are absolutely identical, we can conclude that vj = bj .

7 Security Analysis

This section shows two theorems and one corollary to show that the proposed FS-PAEKS primitive
satisfies CI under IND-CKA, TP under IND-IKGA, and MCI under IND-Multi-CKA. We illustrate
the proofs of the two theorems through the sequence-of-games tool, proposed by Shoup [46] and
give the analysis of the corollary.

Theorem 3. The proposed FS− PAEKS scheme satisfies CI under IND− CKA if the SPHF protocol
satisfies pseudo-randomness and the hash function H2 is a random oracle.

Proof. We finished the security analysis through four games as below.
̂Game 0: We simulate a real security game for the adversary A and define Adv

̂Game 0
A (λ) := ϵ.

A has the ability to perform three oracle queries and the challenger C will reply to the following
responses after receiving some keyword kw from A.

– OKU : If the time period t < T − 1, C updates skR(t + 1) ← KeyUpdate(pp, pkR, skR, t, d) and
returns skR(t+ 1) to A; If the time period t = T − 1, C returns an empty string skT to A.

– OC : Given keyword kw, C calculates ct ← FS− PAEKS(pp, pkS , skS , pkR, kw, t, d) and returns
ct to A.

– OT : Given keyword kw, C calculates Trap ← Trapdoor(pp, pkS , pkR, skR(t), kw) and returns
Trap to A.



Title Suppressed Due to Excessive Length 19

Oracle OKU

1 : if t < T − 1

2 : updates skR(t) to skR(t+ 1)

3 : returns skR(t+ 1) to A
4 : else if t = T − 1

5 : returns empty string skT to A

Oracle OC

1 : given keyword kw

2 : calculates ct

3 : returns ct to A

Oracle OT

1 : given keyword kw

2 : calculates Trap

3 : returns Trap to A

̂Game 1: This game is identical to ̂Game 0, except changing the calculation method of ct∗ in the
Challenge query. To be more specific, C selects hS,i

$← OShS,i
randomly (OShS,i

is the output

space of hS,i) instead of calculating hS,i ← ⌊
2(c⊤

R,i·hS( mod q))

q ⌉, where i = 1, 2, · · · , κ. For the view

of A, ̂Game 1 and ̂Game 0 are statistically indistinguishable due to the fact that the output of
hS,i satisfies pseudo-randomness. Hence, we acquire:

|Adv
̂Game 1

A (λ)−Adv
̂Game 0

A (λ)| ≤ negl(λ).

̂Game 1 :

C randomly selects hS,i
$← OShS,i

Game 1 and Game 0 are statistically indistinguishable

̂Game 2: This game is identical to ̂Game 1, except changing one more time of the calculation
method for ct∗ in the Challenge query. In detail, A sends kw∗

0 and kw∗
1 to C, C then selects a bit

b ∈ {0, 1} randomly and samples dkS
$← KSFS−PAEKS randomly (KSFS−PAEKS is the keyword space

of FS− PAEKS(pp, pkS , skS , pkR, kw, t, d) algorithm), instead of calculating dkS ← H2(kw
∗
b ,yS),

where yS = yS,1yS,1 · · · yS,κ. In this way, the output of H2(kw
∗
b ,yS) is random since hS,i satisfies

pseudo-randomness and H2 is also a random oracle. Accordingly, inA’s view, ̂Game 2 and ̂Game 1
are statistically indistinguishable. Thus, we can say:

|Adv
̂Game 2

A (λ)−Adv
̂Game 1

A (λ)| ≤ negl(λ).

̂Game 2 :

A sends kw∗
0 and kw∗

1 to C
C randomly selects b ∈ {0, 1}

C samples dkS
$← KSFS−PAEKS

Game 2 and Game 1 are statistically indistinguishable

̂Game 3: Till now, the keyword is generated by dkS
$← KSFS−PAEKS at random, the challenge ci-

phertext ct∗ = ({c∗0j , c
∗
1j
, b∗j}

ρ
j=1) is generated through calling FS− PAEKS(pp, pkS , skS , pkR, kw

∗
b , t

∗, d)

algorithm, where c∗0j = (r⊤R + H3(kw
∗
b )

⊤)sj + xj + bj⌊ q2⌋, c∗1j
= (Fdk ∥ Ft∗)

⊤sj +

[
yj

zj

]
, and

b∗j
$← {0, 1} randomly. Therefore, ct∗ does not divulge any information regarding to the challenge



20 S. Xu et al.

keywords (kw∗
0 , kw

∗
1). As for A, the only way to acquire the keyword is by guessing absolutely.

Consequently, we obtain the following:

|Adv
̂Game 3

A (λ)| = 0.

̂Game 3 :

dkS
$← KSFS−PAEKS randomly

ct∗ = ({c∗0j , c
∗
1j
, b∗j}ρj=1)← FS− PAEKS(pp, pkS , skS , pkR, kw

∗
b , t

∗, d)

c∗0j = (r⊤R +H3(kw
∗
b )

⊤)sj + xj + bj⌊
q

2
⌋

c∗1j
= (Fdk ∥ Ft∗)

⊤sj +

[
yj

zj

]
b∗j

$← {0, 1}

Theorem 4. The proposed FS− PAEKS scheme satisfies TP under IND− IKGA if the SPHF protocol
satisfies pseudo-randomness and the hash function H2 is a random oracle.

Proof. We finished the security analysis through four games as below.
̂Game 0: We simulate a real security game for the adversary A and define Adv

̂Game 0
A (λ) := ϵ.

A has the ability to perform three oracle queries and the challenger C will reply to the responses
(same as the proof of the former theorem) after receiving some keyword kw from A.

̂Game 0 :

defines Adv
̂Game 0

A (λ) := ϵ

C reply to the responses after receiving keyword kw from A

̂Game 1: This game is identical to ̂Game 0, except changing the calculation method of Trap∗ in
the Challenge query. To be more specific, C selects hR,i

$← OShR,i
randomly (OShR,i

is the output

space of hR,i) instead of calculating hR,i ← ⌊
2(c⊤

S,i·hR( mod q))

q ⌉, where i = 1, 2, · · · , κ. For the view

of A, ̂Game 1 and ̂Game 0 are statistically indistinguishable due to the fact that the output of
hR,i satisfies pseudo-randomness. Hence, we acquire:

|Adv
̂Game 1

A (λ)−Adv
̂Game 0

A (λ)| ≤ negl(λ).

̂Game 1 :

C randomly selects hR,i
$← OShR,i

Game 1 and Game 0 are statistically indistinguishable

̂Game 2: This game is identical to ̂Game 1, except changing one more time of the calculation
method for Trap∗ in the Challenge query. In detail, A sends kw∗

0 and kw∗
1 to C, C then selects a

bit b ∈ {0, 1} randomly and samples dkR
$← KSFS−PAEKS randomly, instead of calculating dkR ←



Title Suppressed Due to Excessive Length 21

H2(kw
∗
b ,yR), where yR = yR,1yR,1 · · · yR,κ. In this way, the output of H2(kw

∗
b ,yR) is random since

hR,i satisfies pseudo-randomness and H2 is also a random oracle. Accordingly, in A’s view, ̂Game 2
and ̂Game 1 are statistically indistinguishable. Thus, we can say:

|Adv
̂Game 2

A (λ)−Adv
̂Game 1

A (λ)| ≤ negl(λ).

̂Game 2 :

A sends kw∗
0 and kw∗

1 to C
C selects b ∈ {0, 1} randomly

C samples dkR
$← KSFS−PAEKS randomly

Game 2 and Game 1 are statistically indistinguishable

̂Game 3: Till now, the keyword is generated by dkR
$← KSFS−PAEKS at random, the challenge trap-

door Trap∗ = (Trap1
∗,Trap2

∗) is generated through calling Trapdoor(pp, pkS , pkR, skR(t
∗), kw∗

b )
algorithm. Therefore, Trap∗ does not divulge any information regarding to the challenge keywords
(kw∗

0 , kw
∗
1). As for A, the only way to acquire the keyword is by guessing absolutely. Consequently,

we obtain:
|Adv

̂Game 3
A (λ)| = 0.

̂Game 3 :

dkR
$← KSFS−PAEKS randomly

Trap∗ = (Trap1
∗,Trap2

∗)← Trapdoor(pp, pkS , pkR, skR(t
∗), kw∗

b )

Corollary 1. The proposed FS− PAEKS scheme satisfies MCI under IND−Multi− CKA if it sat-
isfies CI under IND− CKA and the PEKS.PEKS algorithm in our FS− PAEKS algorithm is proba-
bilistic.

Analysis. Our FS− PAEKS algorithm involved PEKS.PEKS algorithm. To the best of our knowl-
edge, the existing PEKS.PEKS algorithm satisfies probabilistic [1,20]. Thus, our FS− PAEKS scheme
is also probabilistic. In addition, we have proved that our scheme satisfies CI under IND− CKA.
Consequently, the proposed FS− PAEKS scheme satisfies MCI under IND−Multi− CKA.

8 Implementation and Comparison

In this section, we present a comprehensive performance evaluation and give a comparison with other
existing top-tier PEKS and PAEKS schemes (including Boneh et al. [1], Huang et al. [16], Behnia et
al. [20], Zhang et al. [47], Zhang et al. [14], Liu et al. [10], Emura [48], Cheng et al. [31]) with regards
to the security properties, computation overhead, communication overhead, and computational
complexity, respectively.

We reviewed and cryptanalyzed eight PEKS and PAEKS schemes and illustrate the six security
properties comparison in terms of FS, CI, MCI, TP, PQ, and WTA in Table. 1. To begin with, there
is only one scheme [14] that satisfies the FS property. Moreover, although several schemes satisfy
CI and MCI properties, their primitives may be tampered with by generating ciphertexts to guess



22 S. Xu et al.

keywords and performing tests adaptively, which significantly reduced the feasibility and security
( [1], [16], [20], [47], [14]). In addition, some schemes have not taken post-quantum or without
trusted settings into consideration ( [1], [16], [47]). In a nutshell, to achieve a higher security level
and a practical utility, we not only consider the fundamental security properties (CI, MCI, and
TP), but also take post-quantum, forward security, and without trusted authority into account to
show the security superiority of our proposed primitive.

Table 1. Security properties comparison with other existing PEKS and PAEKS schemes

Schemes FS CI MCI TP PQ WTA

Boneh et al. [1] × ✓ ✓ × × ✓
Huang et al. [16] × × × × × ✓
Behnia et al. [20] × ✓ ✓ × ✓ ✓
Zhang et al. [47] × ✓ ✓ × ✓ ×
Zhang et al. [14] ✓ ✓ ✓ × ✓ ✓
Liu et al. [10] × ✓ ✓ ✓ ✓ ✓
Emura [48] × ✓ ✓ ✓ ✓ ✓
Cheng et al. [31] × ✓ ✓ ✓ ✓ ✓
Our scheme ✓ ✓ ✓ ✓ ✓ ✓

Notes. ✓: This scheme satisfies the corresponding property. ×: This scheme does not satisfy the corre-
sponding property. FS: Forward security. CI: Ciphertext indistinguishability. MCI : Multi-ciphertext
indistinguishability. TP: Trapdoor privacy. PQ: Post-quantum. WTA: Without trusted authority.

Besides, we subsequently compared the computational complexity and communication overhead
through theoretical analysis with other recent post-quantum PEKS and PAEKS schemes ( [20],
[14], [10]) in Table. 2, and Table. 3. As for the Table. 2, we just consider the most time-consuming
computational operations of each scheme, that is, multiplication (TMul), hash function (THF ),
SampleLeft(TSL) algorithm, SamplePre(TSP ) algorithm, and BasisDel(TBD) algorithm. We describe
the ciphertext generation, trapdoor generation, and test generation, respectively. With regard to
the Table. 3, we analyze the communication overhead in terms of ciphertext size and trapdoor size
of each scheme.

Table 2. Computational complexity comparison

Schemes Ciphertext Generation Trapdoor Generation Test Generation

Behnia et al. [20] ρ(m2 + 2nm + n + ℓ + 1)TMul ℓTMul + TSL 2ρmTMul

Zhang et al. [14] THF + (ρn + nm2 + ρ)TMul + TSP
THF + nm2TMul
+TBD + TSP

THF + (ℓm + nm)TM

Liu et al. [10]
THF + (κ(m + n + 1)
+ρ(m2 + 2nm + n + ℓ + 1))TMul

THF + (κ(m + n + 1)
+ℓ)TMul + TSL

2ρmTM

Our scheme
(ρ + 1)THF + (κ(m + n + 1)

+ρ(
(d+3)2m2

4 + (d + 3)nm
+2n+ℓ + 1))TMul

2THF + (κ(m + n + 1)
+ℓ)TMul + TSL + TSP

(d + 3)ρmTM

Notes. κ : This parameter is related to the security parameter λ. ρ : This parameter is related to the security parameter.
m : This parameter means the dimension. q : This parameter means modules. ℓ : This parameter means the length of
the keyword. d : This parameter means the depth of the binary tree.



Title Suppressed Due to Excessive Length 23

Table 3. Communication overhead comparison

Schemes Ciphertext Size Trapdoor Size

Behnia et al. [20] κ(|q|+ 2m|q|+ 1) 2m|q|
Zhang et al. [14] (ℓ+mℓ+m)|q| m|q|
Liu et al. [10] ρ(|q|+ 2m|q|+ 1) 2m|q|
Our scheme ρ(|q|+ (d+ 3)m|q|+ 1) (d+ 3)m|q|

Notes. κ : This parameter is related to the security parameter. ρ : This parameter is related to the
security parameter. m : This parameter means the dimension. q : This parameter means modules. ℓ :
This parameter means the length of the keyword. d : This parameter means the depth of the binary
tree.

Furthermore, we also implemented the computational overheads in terms of ciphertext genera-
tion and test algorithm (Fig. 2 and Fig. 3, respectively) through C++ language on Windows 10,
AMD Ryzen 7 5800H CPU with Radeon Graphics 3.20 GHz and 16 GB memory. We set the pa-
rameters as d = 3,m = 9753, n = 256, q = 4096, ℓ = 10, ρ = 10, κ = 10, σ1 = 8, σ2 = 8 to realize
the 80-bit security level, where d is the depth of the binary tree, ℓ is the length of the keyword kw,
ρ, κ are related to the security parameter. The SHA256 hash function was simulated by adopting
OpenSSL (https://www.openssl.org/source/).

9 Potential Applications of FS-PAEKS

– Combining with Electronic Medical Records (EMRs). Numerous scholars have utilized
PEKS primitive to search the EMRs and protect the EMRs’ privacy for patients [15, 49, 50].
However, a malicious attacker may recover the keyword kw from the previous search trap-
door Trap through keyword guessing attacks. Besides, if the secret keys of patients have been
compromised, their sensitive medical data may be disclosed by adversaries. Compared with
the existing schemes, our FS− PAEKS protocol completely avoids those problems and provides
better security.

– Combining with blockchain networks. Encrypting data for confidentiality purposes before
storing it on a blockchain is a widely adopted approach among researchers [51–53]. However,
conducting keyword searches on the blockchain has become increasingly challenging. To ad-
dress this issue, we presented the FS− PAEKS primitive, which effectively encrypts data while
simultaneously ensuring their privacy is maintained.

– Combining with Industrial Internet of Things (IIoTs). The PAKES protocol has been
employed by several scholars to safeguard the privacy of IIoTs while simultaneously achiev-
ing CI and TP security [33]. However, they have failed to account for the potential risks of
quantum computing attacks and the likelihood of secret key leakage during communication.
Our FS− PAEKS primitive not only satisfies the requirements outlined by these scholars but
also offers enhanced security features such as resistance to quantum attacks and elimination of
potential secret key leakage risks. Furthermore, our scheme addresses a previously unresolved
issue in its work by satisfying the MCI security requirement.



24 S. Xu et al.

0 10 20 30 40 50 60 70 80 90 100

Number of keywords

0

500

1000

1500

2000

2500

3000

3500

4000

O
p

er
at

in
g

 t
im

e 
o

f 
ci

p
h

er
te

x
t 

g
en

er
at

io
n

 (
s)

Behnia et al. [20]

Zhang et al. [14]

Liu et al. [10]

Our scheme

Fig. 2. Ciphertext generation comparison

10 20 30 40 50 60 70 80 90 100

Number of keywords

0

1

2

3

4

5

6

7

O
p

er
at

in
g

 t
im

e 
o
f 

T
es

t 
al

g
o

ri
th

m
 (

s)

Behnia et al. [20]

Zhang et al. [14]

Liu et al. [10]

Our scheme

Fig. 3. Test algorithm comparison



Title Suppressed Due to Excessive Length 25

10 Conclusions

In this paper, we generalized the first post-quantum public-key authenticated searchable encryption
with forward security primitive, namely FS-PAEKS. Our proposed primitive addresses the challenge
of secret key exposure while enjoying quantum-safe security without the need for trusted authorities.
Technically speaking, we introduced the binary tree structure, the minimal cover set, and ExtBasis
and SamplePre algorithms to achieve the post-quantum one-way secret key evolution. Moreover,
we demonstrate the proposed scheme satisfies IND-CKA, IND-IKGA, and IND-Multi-CKA in the
quantum setting. Besides, we elaborate on the security comparisons with other primitives and also
implemented the ciphertext generation and test algorithms. Our proposed primitive offers enhanced
efficiency compared to the FS-PEKS protocol. Ultimately, we show three practical applications for
FS-PAEKS to illustrate its feasibility and practicability.

We hereby address two open problems, that is, how to construct a post-quantum FS-PAEKS
scheme without a random oracle model and construct a post-quantum FS-PAEKS supporting
searching multi-keywords.

References

1. Dan Boneh, Giovanni Di Crescenzo, Rafail Ostrovsky, and Giuseppe Persiano. Public key encryption
with keyword search. In Advances in Cryptology-EUROCRYPT 2004: International Conference on
the Theory and Applications of Cryptographic Techniques, Interlaken, Switzerland, May 2-6, 2004.
Proceedings 23, pages 506–522. Springer, 2004.

2. Joonsang Baek, Reihaneh Safavi-Naini, and Willy Susilo. Public key encryption with keyword search
revisited. In Computational Science and Its Applications–ICCSA 2008: International Conference, Pe-
rugia, Italy, June 30–July 3, 2008, Proceedings, Part I 8, pages 1249–1259. Springer, 2008.

3. Jin Wook Byun, Hyun Suk Rhee, Hyun-A Park, and Dong Hoon Lee. Off-line keyword guessing attacks
on recent keyword search schemes over encrypted data. In Secure Data Management: Third VLDB
Workshop, SDM 2006, Seoul, Korea, September 10-11, 2006. Proceedings 3, pages 75–83. Springer,
2006.

4. Baodong Qin, Yu Chen, Qiong Huang, Ximeng Liu, and Dong Zheng. Public-key authenticated encryp-
tion with keyword search revisited: Security model and constructions. Information Sciences, 516:515–
528, 2020.

5. Mahnaz Noroozi and Ziba Eslami. Public key authenticated encryption with keyword search: revisited.
IET Information Security, 13(4):336–342, 2019.

6. Baodong Qin, Hui Cui, Xiaokun Zheng, and Dong Zheng. Improved security model for public-key au-
thenticated encryption with keyword search. In Provable and Practical Security: 15th International Con-
ference, ProvSec 2021, Guangzhou, China, November 5–8, 2021, Proceedings 15, pages 19–38. Springer,
2021.

7. Yang Lu and Jiguo Li. Lightweight public key authenticated encryption with keyword search against
adaptively-chosen-targets adversaries for mobile devices. IEEE Transactions on Mobile Computing,
21(12):4397–4409, 2021.

8. Xiangyu Pan and Fagen Li. Public-key authenticated encryption with keyword search achieving both
multi-ciphertext and multi-trapdoor indistinguishability. Journal of Systems Architecture, 115:102075,
2021.

9. Qiong Huang, Peisen Huang, Hongbo Li, Jianye Huang, and Hongyuan Lin. A more efficient public-key
authenticated encryption scheme with keyword search. Journal of Systems Architecture, 137:102839,
2023.



26 S. Xu et al.

10. Zi-Yuan Liu, Yi-Fan Tseng, Raylin Tso, Masahiro Mambo, and Yu-Chi Chen. Public-key authenticated
encryption with keyword search: Cryptanalysis, enhanced security, and quantum-resistant instantiation.
In Proceedings of the 2022 ACM on Asia Conference on Computer and Communications Security, pages
423–436, 2022.

11. Mihir Bellare and Sara K Miner. A forward-secure digital signature scheme. In Advances in Cryptol-
ogy—CRYPTO’99: 19th Annual International Cryptology Conference Santa Barbara, California, USA,
August 15–19, 1999 Proceedings 19, pages 431–448. Springer, 1999.

12. Ran Canetti, Shai Halevi, and Jonathan Katz. A forward-secure public-key encryption scheme. In Ad-
vances in Cryptology—EUROCRYPT 2003: International Conference on the Theory and Applications
of Cryptographic Techniques, Warsaw, Poland, May 4–8, 2003 Proceedings 22, pages 255–271. Springer,
2003.

13. Ran Canetti, Shai Halevi, and Jonathan Katz. A forward-secure public-key encryption scheme. Journal
of Cryptology, 20:265–294, 2007.

14. Xiaojun Zhang, Chunxiang Xu, Huaxiong Wang, Yuan Zhang, and Shixiong Wang. Fs-peks: Lattice-
based forward secure public-key encryption with keyword search for cloud-assisted industrial internet
of things. IEEE Transactions on dependable and secure computing, 18(3):1019–1032, 2021.

15. Zhe Jiang, Kai Zhang, Liangliang Wang, and Jianting Ning. Forward secure public-key authenticated
encryption with conjunctive keyword search. The Computer Journal, 2022.

16. Qiong Huang and Hongbo Li. An efficient public-key searchable encryption scheme secure against inside
keyword guessing attacks. Information Sciences, 403:1–14, 2017.

17. Peter W Shor. Polynomial-time algorithms for prime factorization and discrete logarithms on a quantum
computer. SIAM review, 41(2):303–332, 1999.

18. Peter W Shor. Algorithms for quantum computation: discrete logarithms and factoring. In Proceedings
35th annual symposium on foundations of computer science, pages 124–134. Ieee, 1994.

19. Zi-Yuan Liu, Yi-Fan Tseng, Raylin Tso, Masahiro Mambo, and Yu-Chi Chen. Public-key authenticated
encryption with keyword search: A generic construction and its quantum-resistant instantiation. The
Computer Journal, 65(10):2828–2844, 2022.

20. Rouzbeh Behnia, Muslum Ozgur Ozmen, and Attila Altay Yavuz. Lattice-based public key searchable
encryption from experimental perspectives. IEEE Transactions on Dependable and Secure Computing,
17(6):1269–1282, 2020.

21. David Cash, Dennis Hofheinz, Eike Kiltz, and Chris Peikert. Bonsai trees, or how to delegate a lattice
basis. Journal of cryptology, 25:601–639, 2012.

22. Ronald Cramer and Victor Shoup. Universal hash proofs and a paradigm for adaptive chosen ciphertext
secure public-key encryption. In Advances in Cryptology—EUROCRYPT 2002: International Confer-
ence on the Theory and Applications of Cryptographic Techniques Amsterdam, The Netherlands, April
28–May 2, 2002 Proceedings 21, pages 45–64. Springer, 2002.

23. Jonathan Katz and Vinod Vaikuntanathan. Smooth projective hashing and password-based authenti-
cated key exchange from lattices. In Asiacrypt, volume 5912, pages 636–652. Springer, 2009.

24. Ran Canetti, Dana Dachman-Soled, Vinod Vaikuntanathan, and Hoeteck Wee. Efficient password
authenticated key exchange via oblivious transfer. In Public Key Cryptography–PKC 2012: 15th Inter-
national Conference on Practice and Theory in Public Key Cryptography, Darmstadt, Germany, May
21-23, 2012. Proceedings 15, pages 449–466. Springer, 2012.

25. Michel Abdalla, Fabrice Benhamouda, and Philip MacKenzie. Security of the j-pake password-
authenticated key exchange protocol. In 2015 IEEE Symposium on Security and Privacy, pages 571–587.
IEEE, 2015.

26. Stanislaw Jarecki, Hugo Krawczyk, and Jiayu Xu. Opaque: an asymmetric pake protocol secure against
pre-computation attacks. In Advances in Cryptology–EUROCRYPT 2018: 37th Annual International
Conference on the Theory and Applications of Cryptographic Techniques, Tel Aviv, Israel, April 29-May
3, 2018 Proceedings, Part III 37, pages 456–486. Springer, 2018.

27. Andreas Erwig, Julia Hesse, Maximilian Orlt, and Siavash Riahi. Fuzzy asymmetric password-
authenticated key exchange. In Advances in Cryptology–ASIACRYPT 2020: 26th International Con-



Title Suppressed Due to Excessive Length 27

ference on the Theory and Application of Cryptology and Information Security, Daejeon, South Korea,
December 7–11, 2020, Proceedings, Part II 26, pages 761–784. Springer, 2020.

28. Michel Abdalla, Thorsten Eisenhofer, Eike Kiltz, Sabrina Kunzweiler, and Doreen Riepel. Password-
authenticated key exchange from group actions. In Advances in Cryptology–CRYPTO 2022: 42nd
Annual International Cryptology Conference, CRYPTO 2022, Santa Barbara, CA, USA, August 15–
18, 2022, Proceedings, Part II, pages 699–728. Springer, 2022.

29. Jonathan Katz and Vinod Vaikuntanathan. Round-optimal password-based authenticated key ex-
change. Journal of Cryptology, 26:714–743, 2013.

30. Rui Zhang and Hideki Imai. Generic combination of public key encryption with keyword search and
public key encryption. In Cryptology and Network Security: 6th International Conference, CANS 2007,
Singapore, December 8-10, 2007. Proceedings 6, pages 159–174. Springer, 2007.

31. Leixiao Cheng and Fei Meng. Public key authenticated encryption with keyword search from lwe.
In Computer Security–ESORICS 2022: 27th European Symposium on Research in Computer Security,
Copenhagen, Denmark, September 26–30, 2022, Proceedings, Part I, pages 303–324. Springer, 2022.

32. Lisha Yao, Jian Weng, Anjia Yang, Xiaojian Liang, Zhenghao Wu, Zike Jiang, and Lin Hou. Scal-
able cca-secure public-key authenticated encryption with keyword search from ideal lattices in cloud
computing. Information Sciences, 624:777–795, 2023.

33. Lang Pu, Chao Lin, Biwen Chen, and Debiao He. User-friendly public-key authenticated encryption
with keyword search for industrial internet of things. IEEE Internet of Things Journal, 2023.

34. Ming Zeng, Haifeng Qian, Jie Chen, and Kai Zhang. Forward secure public key encryption with keyword
search for outsourced cloud storage. IEEE transactions on cloud computing, 10(1):426–438, 2019.

35. Xinmin Yang, Xinjian Chen, Jianye Huang, Hongbo Li, and Qiong Huang. Fs-ibeks: Forward se-
cure identity-based encryption with keyword search from lattice. Computer Standards & Interfaces,
86:103732, 2023.

36. Michel Abdalla, Fabrice Benhamouda, and David Pointcheval. Public-key encryption indistinguishable
under plaintext-checkable attacks. IET Information Security, 10(6):288–303, 2016.

37. Miklós Ajtai. Generating hard instances of lattice problems. In Proceedings of the twenty-eighth annual
ACM symposium on Theory of computing, pages 99–108, 1996.

38. Chris Peikert. An efficient and parallel gaussian sampler for lattices. In Advances in Cryptology–
CRYPTO 2010: 30th Annual Cryptology Conference, Santa Barbara, CA, USA, August 15-19, 2010.
Proceedings 30, pages 80–97. Springer, 2010.

39. Shweta Agrawal, Dan Boneh, and Xavier Boyen. Lattice basis delegation in fixed dimension and
shorter-ciphertext hierarchical ibe. In Advances in Cryptology–CRYPTO 2010: 30th Annual Cryptology
Conference, Santa Barbara, CA, USA, August 15-19, 2010. Proceedings 30, pages 98–115. Springer,
2010.

40. Daniele Micciancio and Chris Peikert. Trapdoors for lattices: Simpler, tighter, faster, smaller. In
Eurocrypt, volume 7237, pages 700–718. Springer, 2012.

41. Craig Gentry, Chris Peikert, and Vinod Vaikuntanathan. Trapdoors for hard lattices and new crypto-
graphic constructions. In Proceedings of the fortieth annual ACM symposium on Theory of computing,
pages 197–206, 2008.

42. Shweta Agrawal, Dan Boneh, and Xavier Boyen. Efficient lattice (h) ibe in the standard model. In
Eurocrypt, volume 6110, pages 553–572. Springer, 2010.

43. Hyun Sook Rhee, Jong Hwan Park, Willy Susilo, and Dong Hoon Lee. Trapdoor security in a searchable
public-key encryption scheme with a designated tester. Journal of Systems and Software, 83(5):763–771,
2010.

44. Oded Regev. On lattices, learning with errors, random linear codes, and cryptography. Journal of the
ACM (JACM), 56(6):1–40, 2009.

45. Zengpeng Li and Ding Wang. Achieving one-round password-based authenticated key exchange over
lattices. IEEE transactions on services computing, 15(1):308–321, 2019.

46. Victor Shoup. Sequences of games: a tool for taming complexity in security proofs. cryptology eprint
archive, 2004.



28 S. Xu et al.

47. Xiaojun Zhang, Yao Tang, Huaxiong Wang, Chunxiang Xu, Yinbin Miao, and Hang Cheng. Lattice-
based proxy-oriented identity-based encryption with keyword search for cloud storage. Information
Sciences, 494:193–207, 2019.

48. Keita Emura. Generic construction of public-key authenticated encryption with keyword search revis-
ited: stronger security and efficient construction. In Proceedings of the 9th ACM on ASIA Public-Key
Cryptography Workshop, pages 39–49, 2022.

49. Gang Xu, Shiyuan Xu, Yibo Cao, Ke Xiao, Xiu-Bo Chen, Mianxiong Dong, and Shui Yu. Aaq-peks:
An attribute-based anti-quantum public-key encryption scheme with keyword search for e-healthcare
scenarios. Cryptology ePrint Archive, 2023.

50. Hongbo Li, Qiong Huang, Jianye Huang, and Willy Susilo. Public-key authenticated encryption with
keyword search supporting constant trapdoor generation and fast search. IEEE Transactions on Infor-
mation Forensics and Security, 18:396–410, 2022.

51. Lanxiang Chen, Wai-Kong Lee, Chin-Chen Chang, Kim-Kwang Raymond Choo, and Nan Zhang.
Blockchain based searchable encryption for electronic health record sharing. Future generation computer
systems, 95:420–429, 2019.

52. Gang Xu, Shiyuan Xu, Yibo Cao, Fan Yun, Yu Cui, Yiying Yu, and Ke Xiao. Ppseb: a postquan-
tum public-key searchable encryption scheme on blockchain for e-healthcare scenarios. Security and
Communication Networks, 2022, 2022.

53. Mingyue Li, Chunfu Jia, Ruizhong Du, Wei Shao, and Guanxiong Ha. Dse-rb: A privacy-preserving
dynamic searchable encryption framework on redactable blockchain. IEEE Transactions on Cloud
Computing, 2022.


	Post-Quantum Public-key Authenticated Searchable Encryption with Forward Security: General Construction, Implementation, and Applications

