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Abstract—This paper presents a dynamic, real-time approach
to detecting anomalous blockchain transactions. The proposed
tool, TXRANK, generates tracing representations of blockchain
activity and trains from scratch a large language model to act
as a real-time Intrusion Detection System. Unlike traditional
methods, TXRANK is designed to offer an unrestricted search
space and does not rely on predefined rules or patterns, enabling
it to detect a broader range of anomalies. We demonstrate
the effectiveness of TXRANK through its use as an anomaly
detection tool for Ethereum transactions. In our experiments,
it effectively identifies abnormal transactions among a dataset of
68M transactions and has a batched throughput of 2284 trans-
actions per second on average. Our results show that, TXRANK
identifies abnormal transactions by ranking 49 out of 124 attacks
among the top-3 most abnormal transactions interacting with
their victim contracts. This work makes contributions to the
field of blockchain transaction analysis by introducing a custom
data encoding compatible with the transformer architecture,
a domain-specific tokenization technique, and a tree encoding
method specifically crafted for the Ethereum Virtual Machine
(EVM) trace representation.

I. INTRODUCTION

With the increasing number of transactions per second
processed by blockchains, a rich real-world dataset of user
behavior and Decentralized Application (DApp) interactions
has become accessible across the globe. For the first time
in history, the information security community can access
a transparent, timestamped, and non-repudiable dataset of
transactions, including their dynamic smart contract execution
traces. This dataset also contains attack transactions that have
caused multi-million-dollar losses. Between April 30, 2018,
and April 30, 2022, users, liquidity providers, speculators,
and protocol operators in blockchain networks suffered a total
loss of at least 3.24 billion USD [1]. These significant losses
underscore the need for more generic, dynamic and scalable
approaches to detect anomalous blockchain transactions, es-
pecially as the volume of transaction data continues to grow.

Real-time Intrusion Detection System (IDS) for blockchain
transactions, however, remains challenging due to constraints
on the search space and the substantial manual engineering
efforts required. More specifically, State-of-the-Art (SOTA)
works predominantly employ either (i) reward-based ap-
proaches, which focus on identifying and exploiting transac-
tions that yield significant profits, or (ii) pattern-based tech-
niques that depend on custom heuristics to deduce blockchain
transaction intents and user address behavior (cf. Figure 7).
However, the reliance on predefined rules, patterns, or prof-
itable vulnerabilities may prevent these methods from captur-
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Fig. 1. High-level overview of the TXRANK defense mechanism, which
consists of the following four major steps. ❶ TXRANK is bootstrapped
by feeding in a dataset of historical transactions to train the model us-
ing unsupervised learning. ❷ Depending on the system and threat model,
TXRANK detects new block states, including already confirmed transactions,
and pending transactions (cf. Section III). ❸ TXRANK ranks transactions
based on how abnormal their execution traces are (cf. Section IV). ❹ If an
abnormal transaction is detected (cf. Section VI), TXRANK triggers a defense
mechanism such as a front-running emergency pause.

ing the full spectrum of anomalies. Consequently, there is an
urgent need for more versatile and adaptive techniques that can
effectively identify a wide range of anomalous transactions in
real-time, enhancing the security of blockchain networks.

When exploring the different means to perform anomaly
detection, it becomes apparent that a blockchain transactions’
trace outlines what a transaction does: the invoked smart
contracts, the corresponding parameters, the order of invoca-
tions and storage information. Given that an attack transaction
often executes a different path and exhibits different execution
behaviors than normal transactions, we conjecture that an
attack transaction portrays a different trace representation
than benign transactions. Thus, we hypothesize that it is
possible to train a model to learn representations of transaction
execution traces without any prior knowledge of vulnerability
patterns (e.g., reentrancy, price oracle manipulation, etc.) or
information on transaction profitability. Certainly, there may
also be limitations to such an approach, such as the number
of false positives — we will also explore the efficacy of this
approach with suitable detection or anomaly thresholds.

In this work, we leverage Ethereum as an open dataset
to train a transaction anomaly ranking tool, TXRANK. The
main objective of TXRANK is to elevate the art of blockchain
security analysis into a comprehensive and real-time endeavor.
By generating efficient trace representations of blockchain
activity, TXRANK trains a scalable large language model from
scratch using an extended and augmented dataset from a



previous study, covering attacks within a four-year timeframe.
This entire dataset comprises a total of 68M transactions, en-
compassing all transactions from 124 smart contracts that ex-
perienced an attack during the specified period. We then eval-
uate the effectiveness of TXRANK as a transaction anomaly
ranking tool on the same dataset, assessing its performance in
identifying anomalous transactions.

We evaluate TXRANK using two simple metrics: (i) a
percentage ranking alarm threshold; and (ii) an absolute
ranking alarm threshold. TXRANK successfully identifies ab-
normal transactions, ranking 49 out of the 124 attacks among
the top-3 most abnormal transactions interacting with their
corresponding victim contracts. Specifically, TXRANK detects
20 adversarial transactions as the most abnormal, 20 as the
second most abnormal, and 7 as the third most abnormal
transaction associated with their victim contracts.

Regarding the practicality of TXRANK, our analysis high-
lights its effectiveness when dealing with many transactions.
For example, in DeFi applications with over 10, 000 trans-
actions and a 0.01% alarm threshold, TXRANK successfully
detects 24% of the attacks and maintains an average False
Positive Rate (FPR) of 0.097% (cf. Figure 4). In the context of
popular Decentralized Finance (DeFi) applications processing
100 transactions per day, a 0.1% FPR generates one alert
approximately every 10 days. This demonstrates that TXRANK
is capable at providing a manageable number of alerts for
further investigation, making it particularly suitable for high-
volume transaction environments.

In terms of performance, TXRANK showcases its real-
time capabilities, achieving an average batched throughput of
2, 284±289 transactions per second, and on average 0.16±0.3
seconds to rank a single transaction. This rapid detection of
malicious blockchain transactions enables the triggering of
a smart contract pause mechanism to prevent an attack as
an Intrusion Prevention System. Approximately 50% of the
attacked contracts we investigate already have such a pause
mechanism deployed.

In summary, this work makes the following contributions to
the field of blockchain transaction analysis:
• To our knowledge, this paper is the first to apply

unsupervised/self-supervised learning for anomaly detection
in smart contract transaction execution traces. We develop
a large language model for Ethereum transaction anomaly
detection, employing custom data encoding, domain-specific
tokenization, and a tree encoding method tailored for EVM
trace tree representation, capturing calls, function names,
parameters, and storage modifications.

• We apply TXRANK as an anomaly detection tool for
Ethereum transactions to identify suspicious or malicious
activities on the blockchain. We evaluate TXRANK on
a dataset of 124 attacks, consisting of a total of 68M
transactions, spanning a period of 1, 523 days, starting
from block 5, 470, 817 (19th April, 2018) and ending at
block 15, 000, 000 (21st June, 2022). We analyze the model
across various dataset sizes and metrics, including two alarm
thresholds, F1-score, F10-score, and CID score, demonstrat-

ing TXRANK’s robustness and versatility. We benchmark
TXRANK against doc2vec and trace length heuristics, show-
casing the superior effectiveness of TXRANK.

• Evaluation results indicate TXRANK effectively identifies
abnormal transactions and can detect different types of
malicious activities, as shown through a flash loan attack
case study. With a throughput of 2284±289 transactions per
second, TXRANK is a viable real-time IDS for blockchains.

II. BACKGROUND

A. Blockchain and DeFi

1) Blockchain: Since the inception of blockchains with
Bitcoin in 2008 [2], it became apparent that their most well-
suited use case is the transfer or trade of financial assets
without trusted intermediaries [3]. A blockchain is considered
permissionless when entities can join and leave the network
at any time. Users authorize transactions through a public
key signature and a subsequent broadcast on the blockchain
peer-to-peer (P2P) network. Due to the openness of the P2P
network, the information about a transaction becomes public,
once a transaction is broadcast. For example, blockchain
participants can observe which smart contract a pending
transaction calls triggers along with the corresponding call
parameters. Miners accumulate unconfirmed transactions and
solve a Proof of Work (PoW) puzzle to append blocks to
the blockchain. Various alternatives to PoW, such as Proof
of Stake [4], [5] emerged. In addition to the block reward
and transaction fees, Blockchain Extractable Value is a new
miner reward source [6]. For a more thorough blockchain
background, we refer the reader to SoKs [7]–[9].

2) Smart Contracts: While Bitcoin supports basic smart
contracts through a stack-based scripting language, the addi-
tion of support for higher-level programming languages (e.g.,
Solidity) has resulted in widespread adoption. Note that SOTA
blockchains generally require transaction fees as in to prevent
Denial-of-Service attacks. Smart contracts are therefore only
quasi Turing-complete because their execution can suddenly
interrupt if the transaction fees exceed a predefined amount.
Notably, blockchains do not store the human-readable source
code, nor the application interface to interact with a smart
contract (i.e., Application Binary Interface). Instead, SOTA
blockchains only store the compiled bytecode on-chain.

The execution of a smart contract’s bytecode is triggered
by blockchain transactions, which are then carried out within
so-called virtual machines (e.g., EVM). Similar to traditional
programming languages such as Java, the execution of smart
contracts can be summarized with execution traces (also
known as logs), which record the state transition at each step
of the process. While full blockchain clients store the entirety
of the historical blocks, intermittent states and execution traces
are typically discarded due to excessive storage requirements.
So-called archive nodes, however, store and provide an indexed
database of historical smart contract executions.

3) DeFi: DeFi refers to an ecosystem of financial products
and services built on top of permissionless blockchains. DeFi
is currently experiencing a surge in popularity, with a peak
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Total Value Locked reaching 250B USD in December 2021.
Despite incorporating basic functions inspired by traditional
finance (e.g., lending, trading, derivatives and asset manage-
ment), DeFi also introduces more novel designs (e.g., flash
loans [10], automated market makers [11] and composable
trading [12]) enabled by a blockchain’s atomicity property
and DeFi’s composable nature. Understanding the semantics
of transactions that trigger these novel DeFi designs presents
a particular challenge because DeFi transactions typically are
intertwined with multiple financial DApps.

B. Natural Language Processing (NLP)

Natural language models are designed to process and gen-
erate human-like text. They are used in a wide range of ap-
plications, including language translation, text summarization,
language generation, and text classification.

1) NLP and Bytecode: There have been several approaches
to applying natural language models to code, assembly, and
bytecode. One approach is to treat the code or assembly as nat-
ural language text and input it into a natural language model.
This can be useful for tasks such as code summarization, code
generation, or code translation.

Another approach is to first convert the code or assembly
into a structured representation, such as an abstract syntax tree
(AST), and then input the AST into a natural language model.
This can allow the model to better understand the structure
and meaning of the code, and can be useful for tasks such as
code completion or code formatting.

Bytecode, which is a low-level representation of code that is
typically executed by a virtual machine, can also be processed
using natural language models. One approach is to convert the
bytecode into a higher-level representation, such as assembly
code, and then input it into a natural language model. Another
approach is to treat the bytecode as a sequence of tokens and
input it into a sequence-to-sequence natural language model,
which can be useful for tasks such as bytecode translation or
bytecode summarization.

2) Embeddings in NLP: An embedding is a dense,
continuous-valued vector representation of a word or token.
It is used to represent the meaning of the word or token in
a numerical form that can be input into a machine learning
model. Embeddings are commonly used in NLP to represent
words or tokens in a way that captures the semantic meaning
and relationships between the words.

There are several reasons why embeddings are useful in
NLP. One reason is that they allow the model to handle large
vocabularies more efficiently, as the model does not have to
learn separate weights for each word in the vocabulary. An-
other reason is that embeddings can capture the relationships
between words, such as synonymy and analogy, which can
be useful for tasks such as language generation or transla-
tion. Finally, embeddings can also improve the generalization
performance of the model by allowing it to handle out-of-
vocabulary words or words that were not seen during training.

III. TXRANK OVERVIEW

We begin by outlining the system and threat models before
providing an overview of the key components of our proposed
solution, which we refer to as TXRANK.

A. System Model

Our system model considers a blockchain ledger that em-
ploys smart contracts and cryptocurrency assets, enabling
traders and attackers to conduct transactions across various
DeFi platforms such as exchanges, lending, leveraging. In this
study, we specifically focus on EVM-based blockchains.
• Transaction and State Transition: A blockchain ledger

functions as a state machine replication, with its state
denoted by S. Users define financial operations within a
blockchain transaction, represented as tx, to request state
transitions on the blockchain. The transaction serves as a
state transition function that alters the ledger’s state from S
to S′. In other words, S′ = tx(S).

• Smart Contract: A smart contract is a piece of code that
translates into one or more state transition functions, which
can be activated by a transaction. Smart contracts can also
trigger functions of other contracts.

• Blockchain Nodes: A blockchain node may be assigned to
one or more tasks: (i) transaction sequencing, determining
the order of transactions within a block; (ii) block genera-
tion; (iii) data verification; and (iv) data propagation. The
two prevalent types of blockchain nodes are:
– Sequencer nodes, also referred to as miners in PoW

blockchains, validators in PoS blockchains, and block
builders in PBS, encompass all four responsibilities men-
tioned above. Sequencers can insert, omit, and reorder
transactions in the blocks they create within the bound-
aries set by the protocol.

– Ordinary nodes solely handle blockchain data propaga-
tion and might also perform data verification.

• Transaction Propagation: There are primarily two methods
for propagating transactions from the transaction generator
to the sequencer nodes:
– Public Propagation: Blockchain network protocols gen-

erally guide nodes on discovering and connecting to other
nodes within the peer-to-peer (P2P) network. Transactions
can be disseminated in the P2P network from the trans-
action generator, to the corresponding sequencer nodes,
through ordinary nodes.

– Private Propagation: Front-running as a Service (FaaS)
services enable DeFi traders to submit transactions di-
rectly to sequencer nodes, bypassing a broadcast on the
P2P network. FaaS may not be available on certain
blockchains (e.g., Binance Smart Chain and Avalanche)
and may be the only option on chains with a sole
sequencer (e.g., Optimism). Ethereum presently supports
both P2P and FaaS propagation.

• Transaction Execution Trace: A transaction execution
trace documents the sequence of actions and state changes
resulting from processing a transaction. Transaction traces
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can be represented in various ways, such as showcasing low-
level OP codes or high-level DeFi operations.

B. Threat Model

We consider a computationally bounded adversary (denoted
by A) which is capable of executing transactions (i.e., per-
forming actions) across a set of DeFi platforms. A may
exploit vulnerabilities, in an attempt to alter a DeFi protocol’s
designed, expected state transition. Our threat model captures
two different types of adversaries based on their capabilities:
• Observable Adversaries: These adversaries do not have the

capability to hide their pending transactions from TXRANK.
Their transactions are observable to our system either by (i)
broadcasting on P2P such that anyone can observe; or if
(ii) TXRANK is used by sequencer nodes, so even if the
adversary uses private propagation (FaaS), the sequencer
will still be able to observe adversarial transactions.

• Hidden Adversaries: These adversaries are capable of
hiding their transactions from TXRANK until the adversarial
transactions are finalized. Hidden adversaries achieve this by
using a FaaS system or similar method.

C. TXRANK Overview

TXRANK consists of three main components: a transaction
tracer, a training module, and a detection module. The intuition
behind this design choice is that normal transactions and attack
transactions have different execution paths, and a powerful
model can identify attack transactions based on their unusual
execution paths.
1) The transaction tracer captures the execution trace of a

transaction initiated by a user interacting with a DApps.
The trace includes the sequence of smart contract function
calls, the associated input and output data, and provides a
detailed view of the execution path. This trace is used as
input for the detection module.

2) The training module uses a dataset of historical transactions
to train a model using unsupervised or self-supervised
methods. The goal of the training phase is to learn a model
that can differentiate between normal and abnormal trans-
action execution traces. This allows TXRANK to identify
anomalies in real-time transactions.

3) The detection module applies the trained model to new
transaction traces to generate a score based on the log-
likelihood of the trace. A ranking or threshold-based
method is then used to raise alarms for transactions with
abnormal scores. This allows TXRANK to detect potential
attacks on the blockchain in real-time and prevent them
from causing harm to the DeFi platform.

D. Motivating Examples

We present two real-world examples that illustrate the
potential benefits of using TXRANK in the DeFi ecosystem.
• Motivating Example 1 (Observable Adversary): Consider

the attack on the Beanstalk project in April 2022. In a
single transaction, the attacker borrowed one billion USD in
cryptocurrency assets through Aave’s flash loan, exchanged

the borrowed assets for a 67% stake in the Beanstalk project,
and subsequently passed their proposal to withdraw the en-
tire treasury. Etherscan received the adversarial transaction
(0xcd31..3ad7) on the public P2P network approximately 30
seconds before its block confirmation, indicating that the
attacker was an observable adversary.
Table 5 shows that our evaluation ranks the adversarial
transaction as the most abnormal among all historical in-
teractions with the Beanstalk victim contract. This suggests
that, if Beanstalk had utilized TXRANK alongside a well-
connected blockchain node within the P2P network, it would
have had a 30-second window to detect and respond to
the attack. In reaction to such an attack, Beanstalk could
preemptively counter the adversary by initiating an emer-
gency withdrawal of user funds or enforcing an emergency
pause. This example demonstrates how TXRANK can enable
DeFi protocols to proactively detect and prevent malicious
activities, ensuring the security and integrity of users’ assets.

• Motivating Example 2 (Hidden Adversary): Consider
the attack on the Revest Protocol in March 2022, during
which approximately two million USD worth of tokens were
stolen in four transactions. The root cause of the attack
was a reentrancy vulnerability in a minting contract. The
attack comprised four transactions confirmed between block
14465357 and block 14465427, spanning roughly 70 blocks
over a period of about 17 minutes. All transactions were
propagated through a FaaS relayer, specifically Flashbots.
Suppose Revest Finance had deployed TXRANK as an or-
dinary blockchain node without colluding with sequencers.
Since the adversarial transactions were not visible on the
P2P network until they were confirmed, the attacker would
be considered a hidden adversary.
In this scenario, TXRANK could only act as a fast retro-
spective attack detection tool. If TXRANK detected the first
adversarial transaction upon receiving block 14465357, it
could have potentially prevented the other three attacks. Our
evaluation found that TXRANK ranked the first adversarial
transaction in Revest Finance as the most abnormal transac-
tion. This example underscores the importance of having a
tool like TXRANK, even if it is unable to observe pending
transactions.

IV. TXRANK DETAILS

We now proceed to elaborate on the details of TXRANK.

A. TXRANK Components

TXRANK generates transaction representations for anomaly
detection of blockchain transactions in real-time (cf. Figure 2).
As such, TXRANK takes as input a blockchain transaction
(e.g., from the transaction pool), transforms it into a vector,
extracts a vocabulary and applies a transformer in an effort
to learn a probability distribution on an entire transaction’s
blockchain trace. TXRANK’s design consists of the following
six components (cf. Section IV for details).
• 1⃝ Intermediate Trace Representation (ITR) Construction:

Given a transaction, we construct a tree structured trace.
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Fig. 2. TXRANK System Architecture. In step 1⃝ we extract the transaction trace from a blockchain archive node and augment the trace with additional data.
We then process the trace in a graph structure in step 2⃝ and apply a vocabulary embedding layer in step 3⃝. In step 4⃝ we apply a custom positional tree
encoding, coupled with a loop to minimize the model loss in step 5⃝.

This trace captures not only the smart contract function call
dependencies, but also finer granularity information such as
state accesses and event logs. Each node in the ITR tree can
be thought of as a step in a transaction execution process.
An ITR node may consist of a stream of bytes, which are
further split into ITR tokens in step 2⃝ (cf. 1 for an example
of an ITR construction).

• 2⃝ ITR Tokenization: Given domain specific heuristics, we
first split all ITR nodes into tokens, which then inform a
custom vocabulary, drawn by the frequency distribution of
those ITR tokens. An ITR token, for instance, can be a
function name, event name, parameter type, parameter value,
etc. To satisfy the requirements of step 3⃝ and 4⃝, we pre-
process the ITR trace according to our custom grammar.

• 3⃝ Vocabulary Embedding: Vocabulary embedding is a tech-
nique used to convert words or tokens in a text to numerical
vector representations. It is commonly used in NLP to input
text data into machine learning models.
To perform vocabulary embedding in the given process, a
one-hot encoding function is first applied to the ITR tokens,
which converts the tokens into a binary vector representation
where each position corresponds to a unique token and the
value is either 0 or 1.
The resulting vector representation of each token is the sum
of three different embeddings: Etok, Etree, and Ectx. Etok

is the unique embedding of the token, which represents
the token itself. Etree is an embedding that represents the
position of the function call involving the token in the call
graph, which forms a tree structure. Ectx is an embedding
that represents the context in which the token appears, such
as whether an address appears as a “from” or “to” address.
By combining these three embeddings, the vocabulary em-
bedding technique can capture both the unique character-
istics of the tokens, their context within the trace, and
their purpose. This can help the machine learning model
to better understand the meaning and relationships between
the tokens in the trace.

• 4⃝ Transformer Encoder: A processed transaction trace is
initially converted using the prior vocabulary embedding

layer, which associates the words or tokens in the trace with
a dense vector representation. This representation is then fed
into this step involving a transformer-based language model.
As transformer-based models employ attention mechanisms
to discern the relationships between input tokens, they
necessitate a positional encoding to comprehend the relative
location of each token in the input. It is important to
consider that the input here is a transaction trace, which
takes the form of a tree structure rather than a linear
sequence of characters. Consequently, the graph structure
is supplemented with positional tokens to preserve the tree
information while providing the encoding to the transformer
model. This enables the model to utilize its multi-head at-
tention mechanism to learn the intricate relationships among
the input tokens.

• 5⃝ Loss Minimization: We apply the following steps to
minimize the causal language modeling loss. We first define
a causal language model loss function, which measures
the difference between the predicted probability distribution
of the next trace token in the sequence and the actual
probability distribution of the next trace token. We then
compute the gradient of the loss function with respect to the
model parameters. We can then update the model parameters
using the gradients and a learning rate with gradient descent.
We repeat the above steps until the loss has reached a
satisfactory minimum or a maximum number of iterations
has been reached.

• 6⃝ Ranking-based intrusion detection We adopt a ranking-
based approach to intrusion detection. Given a DeFi appli-
cation, our IDS ranks all transactions involving the appli-
cation by the log-likelihood of their traces as computed by
TXRANK, and raises an alarm for the transactions with α%
lowest log-likelihood, i.e. the most abnormal transactions.
The cost of running the IDS can be adjusted by controlling
the parameter α. Out of 124 attacks in the dataset, TXRANK
identified 20 transactions as the most abnormal, 20 transac-
tions as the second most abnormal, and 7 transactions as the
third most abnormal.
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B. ITR Construction

It is difficult to develop a scalable, just-in-time security
system using the typical approach of performing execution
analysis directly with low-level opcode traces because of the
large space and time cost involved [13]. Call traces and other
high-level representations do not capture sufficient runtime
information to allow for the generation of precise trace em-
beddings [14]. By creating a new trace tree, which we refer
to as an ITR, we overcome the fundamental shortcomings of
past techniques. ITR is a high-level function that combines the
three traces that follow into a single tree structure.

1) During the execution of a transaction tx, the call trace
captures the function call dependencies that occur. When a
smart contract function calls into another function, the call
trace records such inter- and intra-contract calls within its
trace.
We use a directed tree Treecall(tx) = (Tcall, Ecall) to
represent a call trace. Each node t ∈ Tcall in Treecall(tx)
corresponds to an executed function call, including its
corresponding runtime encoded call data and return data in
bytes. We use the notation t1call

e−→ t2call, e ∈ Ecall to denote
the edges in Treecall(tx), where a function t2call (i.e., callee)
is triggered by another function t1call (i.e., caller).

2) Smart contracts can access and modify the volatile memory
and persistent storage of a blockchain. A state trace
records any read and write operations to the persistent
storage that may occur during the execution of a transaction
tx. In particular, a state trace consists of two sequences,
each of which captures state accesses and state changes
during the execution of tx.
We denote a state trace of a transaction tx with
Seqsstate(tx) = (Tstate, Estate). The first sequence Tstate =
[t1state, . . . , t

n
state] consists of state reads and writes details. If

tistate is a read operation, then it consists of a value tuple
[key, val], meaning that a function reads value val from
global storage (i.e., account storage) at position key during
tx’s execution. Similarly, if tistate is a write operation, then
it consists of a two value tuple [key, val], meaning that
a function overrides the value at global storage position
key with val during the execution of the function call. The
second sequence Estate = [t1call

e−→ t1state, . . . , t
n
call

e−→ tnstate]
captures which function call reads or writes the state.

3) A log trace is a sequence of variables that the smart
contract developer chooses to expose at runtime. Logs help
developers during contract debugging and extended data
analytic tasks.
Similar to the state trace, we use Seqslog(tx) = (T tx

log, E
tx
log)

to denote a log trace. The first sequence Tlog =
[t1log, . . . , t

n
log] contains all emitted smart contract events.

Each ttxlog = [Contract,Event Hash,Data (in bytes)] ∈ Tlog
consists of a contract address, an event’s hash identifier,
and the corresponding encoded data in bytes. The second
sequence Elog = [t1call

e−→ t1log, . . . , t
n
call

e−→ tnlog] captures
which function call emits each log.

Construction: We construct the ITR tree by traversing

Listing 1. An example of intermediate trace representation construction
CALL,from:0x99d...,to:0xe59...,data:c4f...
|- DELEGATECALL,from,0xe59...,to,0xe...,

data,f39...
| |- READ, 0x95c..., 0x67a
| |- LOG1, 0x0b8..., 0x699
...

Call trace

State trace

Log trace

ITR tree

Fig. 3. Abstract example of a Trace construction in TXRANK.

through state and log traces. We convert each state and log
trace element into a child leaf node, and append the leaf node
to Treecall(tx) (cf. Figure 3).

TreeITR(tx) = (TITR, EITR)

= (Tcall

⋃
Tstate

⋃
Tlog, Ecall

⋃
Estate

⋃
Elog)

C. ITR Tokenization

In NLP, tokenization is a common approach to identifying
words that constitute a natural language sentence. Similarly,
we apply tokenization to transform an ITR trace tree to token
sequences. We formally define an ITR token as a string
of arbitrary length. A token can, for example, represent a
blockchain address, a function name, a log message, a storage
key, a value, or a value type. We define our tokenization
function ftoken(·), taking as input either a call, state, or log
ITR node. In our grammar, the first two tokens of every node
must be [START] followed by either one of the following three
injected tokens: ([CALL], [STATE], [LOG]). The last token of
every node must be [END]. In addition, we differentiate the
start of input and output parameters with two added tokens
([INs], [OUTs]).
• ftoken(Tcall) = [START], [CALL], from, to, function hash,

gas, value, [INs], input1 type, input1 value, . . . , [OUTs],
output1 type, output1 value, . . . , [END]

• ftoken(Tstate) = [START], [STATE], read / write, key, val,
[END]

• ftoken(Tlog) = [START], [LOG], contract address, event
hash, value1 type, value1, . . . , [END]
We also choose to preprocess numerics to capture only the

first two significant figures and the scale of numbers rather
than the precise amounts (e.g., 1254 −→ 1300). This is nec-
essary to avoid vocabulary explosion because smart contracts
frequently operate with big integers beyond 18 decimals.

a) Break-Down of the Tokens: We construct a vocabulary
of 100k tokens, as further elaborated in the evaluation, out of
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which 93,233 are Ethereum addresses and 6,759 are smart
contract function signatures. Tokens which do not appear in
our vocabulary are replaced with the [OOV] token.

D. Local Token Embedding

A local token embedding is the sum of three embeddings
that respectively encode the identity, function call position, and
local context of a token. For example, TXRANK tokenizes
the function call addr1 -> addr2.func() at the root
of a call tree into three tokens: [addr1], [addr2] and
[func] (henceforth all tokens are enclosed by brackets). The
local embeddings of the tokens [addr1] and [addr2],
both blockchain addresses, are E[addr1] + Eroot + Esrc and
E[addr2] + Eroot + Edst respectively, where the embedding
Eroot indicates that the position of the function call is at the
root of the call tree, and the embedding Esrc and Edst are
two local context embeddings added to the local embeddings
of all source and destination addresses, without which the
transformer encoder cannot possibly distinguish the role of the
two addresses in the function call. The local embedding of the
token [func], a function signature, is E[func]+Eroot+Efunc.
The local context embedding Efunc is hardly necessary, as a
function signature in general can occur only in one place in
each function call. We can similarly generate local embeddings
for function call parameters. All embeddings so far are simply
vectors retrieved from a lookup table.

In the example above, we use the embedding Eroot from a
lookup table to indicate that a function call occurs at the root
of a call tree. To faithfully encode the position of each function
call, we need to associate a unique embedding to each function
call position in a call tree. Without loss of generality, we
binarize all call trees into binary trees, with each function call
being a node in the tree. As a binary tree of depth d has O(2d)
unique positions, it is infeasible to construct a lookup table that
stores the embedding of each function call position. However,
each node in a binary tree can be uniquely identified by the
path that leads to the node starting from the root of the tree,
which is equivalent to a sequence of binary actions whether to
visit the left (L) or right child (R). The embedding of a node
can thus be the sum of embeddings of the actions taken at each
step. Mathematically, the embedding of the action sequence
b1, . . . , bn ∈ {L,R}n is given by

∑n
i=1 Ei,bi , where

Ei,bi =

{
Ei,L bi = L

Ei,R bi = R

Intuitively, Ei,bi indicates that the action bi is taken at step
i. This approach only requires a lookup table consisting of
the embeddings E1,L, E1,R, . . . , ED,L, ED,R where D is the
maximum depth that we choose to permit. Empirically, we
did not observe the summation leading to any numerical
instability during training, likely due to layer normalization in
the transformer encoder. Notably, the maximum depth of call
trees that this embedding scheme can handle is not bounded
by the embedding dimension, which differs from prior works
[15].

E. Contextual Token Embedding and Generative Pre-Training

Given a collection of local token embeddings, a transformer
encoder can yield a collection of contextual embeddings for
each token, which can carry context-dependent meanings that
depend on the objective that they are tuned to optimize.
For a collection of tokens that is sequentially ordered as
x1, . . . , xn, we maximize as its objective the log-likelihood
of the collection that is factorized as log p(x1, . . . , xn) =∑n

i=1 log p(xi|x<i), where the context x<i is x1, . . . , xi−1 for
i > 1, and the context x<0 is a special symbol representing an
empty sequence. Assuming that the local embeddings encode
the position of each token, as is the case above, we can
designate the contextual embedding of the token xi−1 to
represent the context x<i, and transform it into a categorical
distribution over the vocabulary, which gives the probability
of the next token xi occurring.

One way to transform an embedding into a categorical
distribution over a vocabulary of size n is to apply a linear
transform followed by soft-max. Let A be a nd matrix, the
probability of a token [tok] occurring given the context x<i

is given by

s = Azi−1 ∈ Rn

p([tok]|x<i) = exp(s(#[tok]))/

n∑
j=1

exp(s(j))

where #[tok] is an integer between 1 and n that is uniquely
assigned to the token [tok]. The notation s(j) denotes the
jth component of the vector s, and s(#[tok]) thus denotes the
#[tok]th component of s.

The factorization, however, mandates the transformer en-
coder to derive the contextual embedding of each token from
a different context, namely, the token itself and all the tokens
that precede the token in the sequence. Fortunately, with
proper attention-masking, we can proceed as if computing the
contextual embedding of each token with the entire sequence
as context, which is crucial when applying transformers to
large-scale datasets.

Since a transformer works with any collection of tokens with
a sequential ordering, we can apply it to nodes in call trees
by linearizing call trees with breadth-first traversal. We leave
other linearization schemes for future work. It is worth em-
phasizing that linearization only generates sequential orderings
for log-likelihood factorization; the local token embeddings
represent the position of function calls in the actual, not the
linearized, call trees, as described above.

F. Transformer Encoder

We briefly describe in this section the architecture of
transformer encoder and the technique of attention masking,
and refer interested readers to the original paper [16].

On a high level, given a collection of vectors, a transformer
encoder outputs a collection of vectors of equal size. This
is done by applying n modules of identical architecture and
independent parameters. Each module is the composite of
two submodules: a multi-headed self-attention module and
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a position-wise feedforward module. Given a collection of
vectors z1, . . . , zn, a self-attention module generates a query
vector qi, key vector ki, and value vector vi for each vector
zi with linear transforms:

qi = Qzi ki = Kzi vi = V zi

The self-attention module then generates a vector ẑi for each
vector zi by aggregating all value vectors v1, . . . , vn, weighted
by the attention weights they receive from zi:

ẑi =

n∑
j=1

αi,jvj

The attention weights are the inner products between key and
query vectors, normalized by soft-max:

αi,j = exp(qTi kj)/

n∑
k=1

exp(qTi kk)

The soft-max normalization ensures that the attention weights
for any zi are summed to 1, i.e. forms a proper probability
distribution. A multi-head self-attention module repeats the
procedure multiple times with different parameters (Q, K, and
V ), and concatenates the resulting vectors into one.

The position-wise feedforward module applies a two layer
neural network to each ẑi. The neural network consists of two
linear layers interleaved with a nonlinear layer:

ẑi ← Aϕ(Cẑi + d) + b

where A and C are matrices, b and d are vectors, and ϕ is a
nonlinear function. The resultant embedding is added to the
original embedding:

zi ← norm(zi + FF (ẑi))

where norm is a normalization operation that ensures numer-
ical stability during training, and FF denotes the position-
wise feedforward network. The aforementioned operations are
iteratively applied 8 times with different parameters for each
layer.

G. Learning with stochastic gradient descent

Given a function f(θ), we can minimize it by gradient
descent by updating θ iteratively as follows:

θ ← θ − α∇θf(θ)

where α is a learning rate set as a hyperparameter. In the
case of generative pre-training, the function f(θ) is the joint
likelihood ∑

x∈X

log pθ(x) =
∑
x∈X

nx∑
i=1

log pθ(xi|x<i)

where X is the collection of transactions and θ is the param-
eters of the transformer encoder. In practice, however, it is
impractical to compute f(θ) exactly since the collection X ,

in our case, consists of nearly 68M transactions. We therefore
approximate f(θ) with∑

x∈X̂

log pθ(x) =
∑
x∈X̂

nx∑
i=1

log pθ(xi|x<i)

where X̂ is a mini-batch of transactions randomly sampled
from X . Notably, if the samples are drawn independently at
random from an identical distribution, the resulting approxi-
mation is an unbiased estimate of f(θ), thereby guaranteeing
the convergence of gradient descent. This technique is referred
to as stochastic gradient descent. The gradient of this approxi-
mation to f(θ) can be computed by deep learning frameworks
such as PyTorch [17].

We can also accelerate the convergence of the iterative pro-
cedure by using second-order information of f(θ) in addition
to its gradient by, for example,

θ ← θ − αHf (θ)
−1∇θf(θ)

where Hf (θ) is the Hessian matrix of f(θ). Although Hf (θ)
is impractical to evaluate in practice due to the large number
of parameters in transformer encoders, multiple approxima-
tion techniques exist that utilize some of the information
without prohibitive computation costs. In this paper, we use
the AdamW optimizer [18] with its default learning rate and
momentum.

V. DEFI INTRUSION/ANOMALY DETECTION SYSTEM

In this work, we focus on the task of automated and real-
time detection of abnormal transactions, such as DeFi attacks.
Previous works [6], [19] rely on costly and time-consuming
manual feature extraction and modeling, and then propose
custom heuristics to identify specific attacks. As a result,
without significant effort, existing approaches cannot be scaled
and generalized across different types of DApps protocol de-
signs on various blockchains. To overcome this limitation, we
propose to automate the IDS process by performing transaction
level anomaly detection. Intuitively, adversarial transactions
should be semantically distinguishable from benign transac-
tions within and across DApps.

A. Data

We extend a dataset comprised of all transactions that
involve 124 previously compromised DeFi applications on
Ethereum [1]. Our dataset shows an average increase in
incident frequency from 3.1/month in 2020 to 8.5/month in
2022 (2.74×). The most common incident causes are smart
contract Layer (42%, e.g., reentrancy attack), protocol layer
(40%, e.g., price oracle manipulation), and auxiliary layer
(30%, e.g., honeypot) vulnerabilities. Our dataset consists of
a total of 68M transactions, spanning a period of 1, 523 days,
starting from block 5, 470, 817 (19th April, 2018) and ending
at block 15, 000, 000 (21st June, 2022), and was constructed
as outlined in Section IV-B and Section IV-C. We chose to
use this dataset because it includes known instances of com-
promised DeFi applications, providing a ground truth for our
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analysis. Our approach is unsupervised/self-supervised learn-
ing, which allows us to evaluate the effectiveness of TXRANK
just using this dataset with previously exploited platforms. We
leave it as future work to enhance the dataset by including
transactions from non-compromised applications, and focus on
previously compromised applications in this paper.

We pre-trained the transformer encoder as in Section IV-E
to maximize the joint likelihood of the traces of the 68M
transactions. With the maximum likelihood as its sole objec-
tive, generative pre-training needs no other data apart from the
traces of the transactions in the dataset. For example, we do not
need labels of whether a transaction is benign or anomalous,
as in a supervised learning setting.

When evaluating the intrusion detection capability of the
pre-trained transformer encoder (the IDS), we used all trans-
actions in our dataset as the ground truth, assuming that only
transactions tagged as malicious were malicious, while the rest
of the transactions in the dataset are considered benign. It is
important to note that our dataset has a limitation in that it
is possible that other undiscovered attacks may have occurred
prior or after the known attacks, which may affect the overall
evaluation of the IDS performance. Additionally, it is worth
noting that each attack may involve more than one malicious
transaction, some of which may appear benign but in fact
prepare for the attack. Therefore, our approach may not be
able to identify any anomalies based on the transaction traces
of these transactions, which is another limitation of our study.

We evaluate the IDS for each smart contract independently,
as described below.

B. Detection Methodology

We adopt a ranking-based approach to intrusion detection.
Recall that given a linearized transaction trace x1, . . . , xn,
a transformer encoder coupled with a linear transform and
soft-max can yield a sequence of conditional log-likelihoods
log p(x1|x<0), . . . , p(xn|x<n), the sum of which is the log-
likelihood of the trace. Given a DeFi application, TXRANK
ranks all transactions involved with the application by the log-
likelihood of their traces, and raises an alarm for the α% most
abnormal transactions, where α is an adjustable parameter.
Intuitively, increasing α makes it more likely for the IDS to
detect attacks, but also raises the likelihood of false positives.

C. Implementation Details

We pack traces into min-batches to speed up training. Each
mini-batch consists of 32 traces, each with 512 tokens. The
mini-batch size is chosen to maximize GPU utilization (we use
an A100 SXM4 GPUs with 40 GB memory). As most traces
in the dataset yield far less than 512 tokens after tokenization,
we concatenate as many short traces as possible into one trace
that is no longer than 512, and apply proper attention masking
to ensure that the log-likelihood of each trace is computed as
if it is the only trace. Each mini-batch therefore contains a
variable number of traces.

The dataset contains 5M unique Ethereum addresses and
5M unique Ethereum function signatures. It is infeasible to

store all their embeddings on a GPU due to GPU memory
constraints. We therefore store the embeddings of the most
frequent 100K tokens in the GPU, and the embeddings of
the rest in RAM. Embeddings in the GPU are updated syn-
chronously as the rest of the parameters in the transformer
encoder. Embeddings in RAM are updated by a parameter
server [20] using asynchronous stochastic gradient descent.
This architecture enables us to store significantly more embed-
dings. This approach is highly efficient as the embeddings of
rare tokens are rarely accessed. Without further optimization,
the proposed IDS attains a batched throughput of 2284± 289
transactions per second on a single NVIDIA A100 GPU. We
use the AdamW optimizer [18] with its default learning rate
and momentum.

VI. EVALUATION

This section presents an evaluation of TXRANK as an IDS
for detecting DeFi attacks. We begin by analyzing TXRANK’s
performance under various alarm threshold configurations. We
then employ common evaluation metrics such as Precision,
Recall, and F-score to further assess the system’s effectiveness.
Additionally, we compare TXRANK against several benchmark
approaches to demonstrate its capability in detecting a diverse
range of attacks. For readers interested in a more advanced,
IDS-specific metric for comparison with related works, the In-
trusion Detection Capability Score is evaluated in the appendix
(cf. Appendix B).

A. Assumption

In the following we assume that for incidents involving
multiple adversarial transactions, it is sufficient for TXRANK
to detect just one transaction in the sequence, rather than all
of them. This is based on the premise that, upon detecting
an abnormal transaction, DeFi protocol operators can take
immediate action to prevent further harm, such as activating
an emergency pause on the entire protocol. Research indicates
that approximately 50% of attacked DeFi protocols already
have such a pause mechanism in place [1].

B. Alarm Threshold and Metrics

We assess the performance of TXRANK by analyzing var-
ious alarm threshold configurations. The alarm threshold is a
system parameter that users must select for TXRANK. It deter-
mines the sensitivity of an IDS and is defined as the likelihood
of a transaction being deemed abnormal. Transactions that fall
below this threshold will generate an alarm. As an example,
when the alarm threshold is set to 1%, the IDS will raise
alarms for the 1% least likely, or most abnormal, transactions
interacting with a smart contract.

We consider two different types of alarm thresholds in
this paper: (i) Percentage ranking alarm threshold, which is
expressed as a proportion of transactions in the dataset; and
(ii) Absolute ranking alarm threshold, which corresponds to a
fixed number of top-ranked transactions.

Note that the detection thresholds granularity depends on
the dataset sizes. For example, if a smart contract has 100

9



Dataset Size (the total number of transactions
interacting with the vulnerable smart contract)

Percentage Ranking Alarm Threshold (%) Absolute Ranking Alarm Threshold
≤ 0.01% ≤ 0.1% ≤ 0.5% ≤ 1% ≤ 10% top-1 top-2 top-3

0 - 99 txs (32 attacks, 28% of dataset) - - - - 5 (16%) 7 (22%) 20 (63%) 23 (72%)
Average false positive rate - - - - 8.18% 0% 14.8% 28.3%
Average number of false positives - - - - 5.1 0 1 2

100 - 999 txs (38 attacks, 33% of dataset) - - 8 (21%) 12 (32%) 28 (74%) 7 (18%) 12 (32%) 15 (39%)
Average false positive rate - - 0.24% 0.71% 9.65% 0% 0.46% 0.81%
Average number of false positives - - 1.5 3.5 39.4 0 1 2

1000 - 9999 txs (17 attacks, 15% of dataset) - 6 (35%) 9 (53%) 11 (65%) 13 (76%) 4 (24%) 7 (41%) 7 (41%)
Average false positive rate - 0.054% 0.45% 0.95% 9.96% 0% 0.049% 0.098%
Average number of false positives - 1.4 11.5 23.7 324.5 0 1 2

10000 + txs (29 attacks, 25% of dataset) 2 (7%) 7 (24%) 16 (55%) 18 (62%) 21 (72%) 2 (7%) 3 (10%) 4 (14%)
Average false positive rate 0.007% 0.097% 0.50% 1% 10% 0% 0.004% 0.008%
Average number of false positives 2.5 120.1 429.9 819.6 7302.1 0 1 2

Overall 2 (2%) 13 (11%) 33 (28%) 41 (35%) 67 (58%) 20 (17%) 42 (36%) 49 (42%)
Average false positive rate 0.007% 0.077% 0.42% 0.90% 9.71% 0% 7.19% 13.5%
Average number of false positives 2.5 65.3 211.9 367.2 2368.5 0 1 2

Fig. 4. This table presents the performance of TXRANK under various alarm threshold configurations, organized by the number of transactions interacting
with the vulnerable smart contracts. For example, with an alarm threshold of ≤ 0.01%, our method detects 24% of the attacks within the 10000+ transaction
range, with an average false positive rate of 0.097%. The results indicate that using a lower alarm threshold enables the detection of a higher percentage of
attacks, albeit at the cost of an increased false positive rate. Notably, the efficacy of the alarm threshold varies across different dataset sizes, emphasizing the
need to select a suitable threshold based on the specific attributes of the smart contract under investigation.

Victim Name
Victim

Contract
Application
Categories

Damage
(in USD)

Beanstalk 0xc1e0..24c5 Stablecoin 181,500,000
MonoX 0x66e7..ee63 DEX 31,133,333
PopsicleFinance 0xd63b..3546 Yield farming 20,700,000
PrimitiveFinance 0x9dae..f2f9 Derivatives 13,000,000
PunkProtocol 0x929c..49d6 Others 8,950,000
VisorFinance 0xc9f2..14ef Others 8,200,000
DAOMaker 0xd6c8..b1ec Others 4,000,000
DAOMaker 0x933f..2a13 Others 4,000,000
DODO 0x051e..a2b6 DEX 3,800,000
DODO 0x509e..41fb DEX 3,800,000
CheeseBank 0x833e..743d Digital Bank 3,300,000
dydx 0x5377..ba2c Derivatives 2,211,000
RevestFinance 0xe952..1659 Others 2,005,000
BTFinance 0x3ec4..8af0 Yield farming 1,600,000
VisorFinance 0x65bc..054f Others 975,720
WildCredit 0x7b3b..c6ca Lending 650,000
SharedStake 0xa231..7ef5 Others 500,000
88mph 0x2165..b0a6 Lending 100,000
SanshuInu 0x35c6..7810 Others 100,000
KlondikeFinance 0xacbd..e747 Synthetic assets 22,116

Fig. 5. The 20 attacks ranked by TXRANK IDS as the most abnormal
transaction that interacted with the respective victim contract. TXRANK
successfully identifies the most abnormal transaction for 18 unique DeFi
protocols across various application categories, with the total damage value
amounting to over 276 million USD.

interacting transactions, the alarm threshold would be 1% even
when inspecting a single transaction, which is the best possible
scenario. This limitation arises due to the inherent constraints
of the dataset size and should be considered when interpreting
the results in Figure 4.

C. Effectiveness
To provide a comprehensive analysis, we evaluate the effec-

tiveness of TXRANK across various alarm threshold settings
(i.e., 0.01%, 0.1%, 0.5%, 1%, 10% for percentage ranking
alarm threshold, and top-1, top-2, top-3 for absolute ranking
alarm threshold) and different dataset sizes (i.e., 0-99, 100-
999, 1000-9999, and 10000+ transactions). Figure 4 presents
the performance results for each alarm threshold level, includ-
ing the following metrics: (i) The number of detected attacks
(and the corresponding percentage of total attacks); (ii) The
average false positive rate; and (iii) The average number of
false positives.

As demonstrated in Figure 4, TXRANK is proficient at
identifying abnormal transactions, ranking 49 out of the 124
attacks (42%) among the top-3 most abnormal transactions
interacting with their respective victim contracts. In particu-
lar, the top-1 most abnormal transactions and the associated
damages incurred by their victims are displayed in Figure 5.
TXRANK effectively detects the most abnormal transaction
for 18 unique DeFi protocols across various application cat-
egories, with the total damage value exceeding 276 million
USD. In more detail, TXRANK ranked 20 adversarial transac-
tions as the most abnormal transactions involving their victim
contracts, 22 as the second least likely, and 7 as the third least
likely. The top-2 and top-3 most abnormal transactions can be
found in Appendix E.

Note that our data suggests that there is a trade-off between
the false positive rate and how many attacks TXRANK cap-
tures. For example, consider the case of smart contracts with
1000-9999 transactions. With an alarm threshold of 0.1%,
TXRANK detects 35% of attacks while maintaining a false
positive rate of 0.054%. Increasing the threshold to 0.5%
improves the detection rate to 53% with a corresponding false
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positive rate of 0.45%. Although the detection rate has in-
creased by 18 percentage points, the false positive rate has also
increased by approximately 8.33 times. This demonstrates that
there is a trade-off between improved detection capabilities
and higher false positive rates.

Our findings indicate that the performance of TXRANK
is positively correlated with the size of the dataset. For
instance, at the same alarm threshold of 0.5%, our model
demonstrates better performance on larger transaction sets.
It detects 55% of the attacks within the 10000+ transaction
range, 53% for the 1000 − 10000 range, and only 21% for
the 100−1000 range. This observation suggests that TXRANK
may benefit from larger datasets, as it allows for more accurate
identification of attacks while maintaining an acceptable false
positive rate.

D. Practicality
Our analysis highlights the practicality of TXRANK when

handling a large number of transactions. For instance,
TXRANK demonstrates its best performance on historical data
for DeFi applications with a transaction history ranging from
1, 000 to 9, 999. Using a 0.01% alarm threshold, TXRANK
captures 35% of the attacks while maintaining an average
false positive rate (FPR) of 0.054%, resulting in only 1.4
false positive transactions on average. Additionally, in DeFi
applications with over 10, 000 transactions and a 0.01% alarm
threshold, TXRANK successfully detects 24% of the attacks
with an average FPR of 0.097%, corresponding to 120.1 false
positive transactions on average.

In the context of popular DeFi applications processing
100 transactions per day, a 0.1% FPR generates one alert
approximately every 10 days. This showcases that TXRANK
can provide a manageable number of alerts for further in-
vestigation, making it particularly suitable for high-volume
transaction environments.

E. Performance
TXRANK exhibits real-time capabilities, achieving an aver-

age batch throughput of 2, 284± 289 transactions per second
and taking an average of 0.16± 0.3 seconds to rank a single
transaction.

F. Precision, Recall and F1 Scores
This section aims to visualize traditional machine learning

metrics for our tool, TXRANK, and provide insights into its
performance. We begin by providing definitions for the metrics
and key terms:
• True Positives (TP): Number of correctly identified adver-

sarial transactions.
• False Positives (FP): Number of non-adversarial transactions

incorrectly classified as adversarial.
• False Negatives (FN): Number of adversarial transactions

incorrectly classified as non-adversarial.
• Precision ( TP

TP+FP ) is the fraction of adversarial transactions
among alarms raised.

Prec =
number of adversarial txs TXRANK captures

number of alarms TXRANK raises
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Fig. 6. The figure presents a detailed evaluation of the performance of
the proposed TXRANK IDS by analyzing its F1 score for each previously
compromised DeFi application in our dataset. Each data point represents
the precision and recall achieved by the TXRANK IDS for a specific DeFi
application, thereby highlighting its effectiveness in detecting various types
of attacks. The contour lines depict the F1-score as a bivariate function of
the precision and recall of the IDS, offering a comprehensive view of the
model’s performance across different applications and showcasing its ability
to provide real-time intrusion detection for blockchains such as Ethereum.

• Recall ( TP
TP+FN ) is the fraction of attacks that are detected.

Recall =
number of adversarial txs TXRANK captures

total number of adversarial txs
• F1-score is the harmonic mean of precision and recall.

F1 =
2 · Prec · Recall
Prec + Recall

Figure 6 presents the best F1-score that TXRANK can
achieve, and the corresponding precision and recall, for each
previously compromised DeFi application in our dataset. We
observe that 112 (96%) of our data exhibits a recall above 0.8,
while 64 (55%) has a precision of below 20%. The average
F1 score is only 37.6%. However, it is important to note that
while the traditional metrics may not appear as impressive, it
does not imply that our system is not useful. The discrepancy
can be attributed to the data imbalance issue and the so-called
base rate fallacy problem.

Consider a scenario with a dataset containing one million
transactions and only one adversarial transaction. An IDS with
an alarm triggering threshold of 0.01% (raises in total 100
alarms) can only attain a precision of 1%. In this case, the
recall would be 100% because the attack is detected. The
F1-score, which equally weighs precision and recall, would
be approximately 1.96%. Given that the cost of an attack is
tremendous, in such cases, a high detection rate is desirable as
it indicates that the IDS is better at detecting intrusions, even
if it comes at the cost of a higher false alarm rate.

An alternative approach for visualization is using the Fβ-
score to place greater emphasis on recall than precision (refer
to the F10 score in Appendix A). However, this approach
is subjective unless the value of β is thoroughly justified
quantitatively. For a more quantitative method to evaluate
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TXRANK, we recommend referring to Appendix B, where we
discuss the Intrusion Detection Capability Score (CID score).

G. Impact of Flash Loans on TXRANK’s Efficiency
We proceed to examine the effectiveness of TXRANK in de-

tecting specific attack types, particularly focusing on whether
the transaction utilizes a flash loan or not. Gaining a more
profound understanding of this aspect is crucial for assessing
the efficacy of TXRANK in identifying attacks employing
various strategies. We find that out of the 124 attacks in our
dataset, approximately 34 (27%) employed a flash loan. We
can break down TXRANK’s performance on these attacks as
follows:
1) In attacks involving a flash loan, TXRANK ranks the

adversarial transaction among the top-3 most abnormal
transactions for 16 out of 34 cases (47%).

2) In attacks without a flash loan, TXRANK ranks the adver-
sarial transaction among the top-3 most abnormal transac-
tions for 31 out of 90 cases (34%).

3) The current results indicate that TXRANK has a higher
success rate in detecting flash loan attacks while also
exhibiting its capability to detect non-flash loan attacks.

TXRANK performs slightly better on flash loan attacks (47%
vs 34%), suggesting it considers other factors in the trace, not
just naively classifying flash loans as attacks.

H. Benchmark 1 — Comparison with a Doc2Vec Model
To evaluate TXRANK against a naive baseline, we imple-

ment a transaction ranker using a combination of doc2vec
and Gaussian mixture models. The doc2vec model treats the
flattened transaction trace as a document for analysis. This
baseline ranks 8 attacks in our attack dataset as the most
abnormal transactions interacting with the victim contracts,
11 as the second least likely, and 5 as the third least likely.
In contrast, TXRANK ranks 20 attacks as the most abnormal
transactions, 22 as the second least likely, and 7 as the third
least likely, showcasing its superior performance. For a de-
tailed explanation of the technical aspects, we refer interested
readers to Appendix C, where the Gaussian mixture model
parameters are estimated using Expectation-Maximization, and
the number of clusters is chosen by minimizing the Bayesian
information criteria.

I. Benchmark 2 — Comparison with a Trace Length Heuristic
Based on the observation that malicious transactions often

have abnormally long traces, we develop a heuristic-based IDS
that ranks transactions interacting with a contract according to
their trace lengths and flags those with the longest traces. This
heuristic system identifies 20 attacks within the top-3 ranked
transactions in our dataset, among which 18 are also ranked in
the top-3 by TXRANK. Overall, TXRANK ranks 49 attacks in
our attack dataset as top-3 abnormal transactions, demonstrat-
ing enhanced performance compared to the heuristic-based
baseline. Importantly, TXRANK maintains its ability to detect
these attacks even if their traces are deliberately shortened to
evade the baseline system, as it only examines the first 512
elements of each trace.

J. Discussion

The effectiveness of TXRANK is influenced by the choice
of the detection threshold. Selecting an appropriate detection
threshold should consider not only the performance of the IDS,
but also the risk appetite and cost-benefit trade-off for the DeFi
protocol operator. In practice, DeFi protocol operators ought
to balance their risk tolerance and cost-benefit considerations
when choosing a suitable detection threshold. They may
also contemplate employing multiple thresholds for different
growth stages, such as implementing a higher threshold for
a contract’s initial transactions and a lower threshold for
transactions involving substantial asset amounts. We leave it to
future work to automatically suggest alarm thresholds based on
applications and growth stages. Furthermore, TXRANK can be
combined with orthogonal security measures, including smart
contract auditing and whitelisting, establishing a comprehen-
sive security framework for DeFi protocols.

VII. RELATED WORKS

A. Smart Contract Intrusion Prevention and Detection

Intrusion detection and prevention are essential components
in the realm of decentralized finance security research. Table 7
compares our proposed method with alternative approaches.
1) Qin et al. [6], [21] introduce two generalized imita-

tion attack methods utilizing dynamic program analysis
to automatically observe, copy, and synthesize profitable
transactions from the P2P network. While these methods
find profitable transactions, they do not determine whether
these profitable transactions are abnormal or not.

2) DeFiPoser [12] uses logical DeFi protocol models and
a theorem prover (e.g., Z3) or the Bellman-Ford-Moore
algorithm to create profitable DeFi transactions. It operates
in real-time or offline. However, it also does not distinguish
attacks and relies heavily on provided protocol models.

3) Fuzzing involves providing generated inputs to a smart
contract to uncover vulnerabilities. The idea is to test the
contract’s behavior in unexpected situations, which can
reveal potential security issues. Fuzzing has been shown to
be effective in detecting vulnerabilities in smart contracts,
but it has limitations, such as the lack of coverage of all
possible code paths [23]–[28].

4) Symbolic execution involves evaluating a smart contract’s
code with symbolic inputs, rather than concrete values.
The goal is to explore all possible code paths and uncover
potential vulnerabilities. Symbolic execution has been used
to detect various types of vulnerabilities, such as reentrancy
attacks and integer overflow/underflows [27], [29]–[39].

5) Formal verification involves using mathematical methods
to prove that a smart contract meets certain security prop-
erties [27], [48]–[50]. The idea is to formally prove that
the contract’s code is correct, which can provide a higher
level of assurance than testing.

6) Static analysis involves analyzing a smart contract’s code
without executing it. The goal is to uncover potential
vulnerabilities by examining the contract’s structure and
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Technique Assumed Prior Knowledge Searchspace Unrestricted
From Vulnerability Patterns

Real-Time
Capable

Application
Agnostic

Rank based – the goal is to find all unexpected execution patterns, implicitly capturing vulnerabilities

TXRANK (this paper) All historical transactions Unrestricted (0.16s)

Reward based – the goal is to extract financial revenue, implicitly capturing vulnerabilities

APE [21] N/A Only profitable patterns (0.07s)
Naive Imitation [6] N/A Only profitable patterns (0.01s)

DeFiPoser [12] DApp models
Only profitable patterns

+ Limited by the DApp models (5.93s)

Pattern based – the goal is to match / classify predefined known vulnerability patterns with rules (including machine learning methods)

Pattern based dynamic analysis [19], [22] Rule Limited by the rule
Pattern based fuzzing [23]–[28] Rule + ABI / DApp models Limited by the rule

Pattern based symbolic execution [27], [29]–[39] Rule + Source code / Bytecode Limited by the rule N/A
Pattern based static analysis [22], [34], [40]–[47] Rule + Source code / Bytecode Limited by the rule N/A

Proof based – the goal is to prove that a set of smart contracts meet specific security properties

Formal verification [27], [48]–[50]
Formal security properties

+ Source code / DApp models
Limited by the

security properties N/A

Fig. 7. Systematization of intrusion detection / prevention techniques. Unlike reward-based approaches, TXRANK employs an unrestricted search space,
enabling it to identify unexpected execution patterns instead of focusing solely on profitable vulnerabilities. In contrast to pattern-based techniques (dynamic
analysis, fuzzing, symbolic execution, and static analysis), TXRANK does not rely on predefined rules or patterns, which allows it to detect a broader range
of anomalies. Furthermore, TXRANK is capable of real-time analysis, a feature not present in pattern-based symbolic execution or static analysis methods.

control flow. Static analysis can be used to detect various
types of vulnerabilities, such as uninitialized variables and
unsafe function calls [22], [34], [40]–[47].

7) Dynamic analysis involves executing a smart contract and
monitoring its behavior. The goal is to uncover potential
vulnerabilities by observing the contract’s behavior in a
real-world environments [22].

While the aforementioned techniques are effective in iden-
tifying vulnerabilities, they are not typically considered as
real-time IDS / IPS due to performance limitations. Various
techniques and approaches have been proposed in the literature
to improve real-time smart contract security in the DeFi
ecosystem. One approach is the use of rule-based methods,
which rely on predefined rules and patterns to detect and
prevent smart contract vulnerabilities in real-time. Related
work explored a rule-based approach to detect and prevent
price oracle manipulation attacks [19] as well as machine
learning to detect reentrancy attacks [51].

It is worth noting that while the above-mentioned methods
are effective in identifying specific vulnerabilities, they may
not cover all possible types of vulnerabilities. Our proposed
work aims to detect any anomaly in transaction trace in real-
time while being protocol-agnostic.

B. Embedding Techniques In NLP

ELMo: ELMo [52] is a deep contextualized model that rep-
resents characteristics of word use (e.g., syntax and seman-
tics) across linguistic contexts and captures context-dependent
aspects of word meaning. ELMo takes the entire sentence
as the input of a bidirectional LSTM (biLSTM) model, thus
effectively encoding the contextualized sentence information.

BERT: By following ELMo, Devlin et al. [53] propose
a deep pre-trained embedding model called BERT, which
applies bidirectional training of Transformer with an attention
mechanism that learns contextual dependency between words.
Moreover, BERT can be fine-tuned for a wide variety of NLP
tasks by adding just one output layer to the core model.

VIII. CONCLUSION

In this work, we introduced TXRANK, an innovative trans-
action anomaly ranking tool for Ethereum-based blockchains.
By analyzing a rich dataset spanning four years, TXRANK
demonstrated its ability to accurately identify attack trans-
actions amidst a highly imbalanced dataset of benign and
adversarial transactions. Our results indicate that TXRANK
effectively detects abnormal transactions, ranking 49 out of
124 attacks among the top-3 most abnormal transactions
interacting with their corresponding victim contracts.

TXRANK showcases its real-time capabilities with an aver-
age batch throughput of 2, 284± 289 transactions per second,
making it a viable real-time intrusion detection system for
blockchain networks such as Ethereum. The proposed system
can trigger smart contract pause mechanisms in response to
malicious blockchain transactions, thus preventing attacks.

Our research contributes to the field of blockchain transac-
tion analysis by being the first to employ unsupervised/self-
supervised learning for anomaly detection of transactions. Ad-
ditionally, we constructed a large language model specifically
designed for this task, incorporating custom data encoding and
domain-specific tokenization techniques. This work lays the
foundation for further exploration of real-time, learning-based
security analysis tools for blockchain networks.
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intrusion detection capability: An information-theoretic approach,” in
Proceedings of the 2006 ACM Symposium on Information, computer
and communications security, 2006, pp. 90–101.

[57] T. Mikolov, K. Chen, G. Corrado, and J. Dean, “Efficient estimation of
word representations in vector space,” arXiv preprint arXiv:1301.3781,
2013.

[58] T. Mikolov, I. Sutskever, K. Chen, G. Corrado, and J. Dean, “Distributed
representations of words and phrases and their compositionality,” arXiv
preprint arXiv:1310.4546, 2013.

[59] Q. Le and T. Mikolov, “Distributed representations of sentences and
documents,” in International conference on machine learning. PMLR,
2014, pp. 1188–1196.

[60] A. P. Dempster, N. M. Laird, and D. B. Rubin, “Maximum likelihood
from incomplete data via the em algorithm,” Journal of the Royal
Statistical Society: Series B (Methodological), vol. 39, no. 1, pp. 1–22,
1977.

[61] A. A. Neath and J. E. Cavanaugh, “The bayesian information crite-
rion: background, derivation, and applications,” Wiley Interdisciplinary
Reviews: Computational Statistics, vol. 4, no. 2, pp. 199–203, 2012.

[62] J. L. Ba, J. R. Kiros, and G. E. Hinton, “Layer normalization,” arXiv
preprint arXiv:1607.06450, 2016.

APPENDIX A
Fbeta AND F10

Fβ-score is a generalization of the F1-score, which “mea-
sures the effectiveness of retrieval regarding a user who at-
taches β times as much importance to recall as precision” [54].
Figure 8 visualizes the best F10 score that TXRANK can
achieve and the corresponding precision and recall, which
attaches 10 times as much importance to recall as precision.

APPENDIX B
INTRUSION DETECTION CAPABILITY (CID)

Traditional metrics such as false alarm rate, detection rate,
and F-score may not provide a complete picture when the
dataset is imbalanced and the cost of false negatives is
high [55]. In such cases, a high detection rate is desirable
as it indicates that the IDS is better at detecting intrusions,
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Fig. 8. Identical to Fig. 6, except with the F1-score replaced with the F10

score (Fβ score with β = 10). Instead of weighing the precision and recall of
the IDS equally like the F1 score, the F10 score attaches 10 times as much
importance to recall as precision, reflecting the fact that an undetected attack
costs significantly more than a false alarm for DeFi applications.

even if it comes at the cost of a higher false alarm rate,
lower F1, and lower precision. To address this, researchers
have proposed advanced metrics such as CID [56], which
considers the operating environment and costs associated with
false alarms and missed intrusions. In this paper, we propose
to apply CID to evaluate the performance of our DeFi IDS,
considering the imbalanced nature of the dataset and the
high cost of false negatives. This aims to provide a more
comprehensive evaluation and improve decision-making for
the DeFi IDS’s deployment and maintenance.

On a high-level, the CID is defined as the ratio of the mutual
information between the IDS input and output to the entropy
of the input, where I and H respectively denote the mutual
information and the entropy.

CID =
I(X;Y )

H(X)

The entropy H(X) of a random variable X ∈ X is

H(X) = −
∑
x∈X

PX(x) logPX(x)

where PX denotes the distribution of X . Intuitively, the
entropy H(X) quantifies the uncertainty in X . The mutual in-
formation I(X;Y ) between discrete random variable X ∈ X
and Y ∈ Y is given by

I(X;Y ) =
∑
x∈X

∑
y∈Y

PX,Y (x, y) log
PX,Y (x, y)

PX(x)PY (y)

where PX,Y denotes the joint distribution of X and Y ,
and PX and PY denote the marginal distribution of X and
Y respectively. Intuitively, the mutual information I(X;Y )
quantifies the amount of information about Y that observing
X yields. The Intrusion Detection Capability CID, being the
ration between the mutual information and the entropy, thus
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quantifies the proportion of uncertainty in a transaction being
abnormal that is captured by the IDS.

Although the CID accounts for attack distributions by nor-
malizing the mutual information between attacks and alerts
with the entropy of attacks, it fails to incorporate the cost of
undetected attacks and false alarms. More generally, we can
associate a cost γx,y with each pair of outcomes (x, y) ∈
X × Y . The cost-aware mutual information between X and
Y is then

Iγ(X;Y ) =
1

γ

∑
x∈X

∑
y∈Y

γx,yPX,Y (x, y) log
PX,Y (x, y)

PX(x)PY (y)

γ =
∑
x∈X

∑
y∈Y

γx,y

is the total cost of all outcomes. Multiplying each term by
the cost associated with the outcome and dividing by the total
cost biases the mutual information towards outcomes with high
costs. With the entropy H(X) of X defined as above, the
cost-aware Intrusion Detection Capability C

(γ)
ID is given by

C
(γ)
ID =

Iγ(X;Y )

H(X)

The advantage of the cost-aware CID is that it only requires
cost estimates that are easy to calculate. For an IDS, both X
(if a pending transaction is an attack) and Y (if the IDS sends
an alert for a pending transaction) are binary variables. The
costs we need to estimate include:
1) X and Y are both positive: The IDS alerts the DeFi protocol

operator about a potential attack. After verifying it’s an
attack, the operator stops it. Assuming no cost to prevent
attacks, the cost of this outcome is the cost of the operator
inspecting a transaction.

2) X is negative, Y is positive (false positive): The IDS alerts
the operator about a possible attack, but it’s a benign
transaction. The operator lets it proceed. The cost of this
outcome is the cost of the operator inspecting a transaction.

3) X is positive, Y is negative (false negative): An attack
succeeds without the operator noticing, causing a loss to
the protocol. Our data shows that each attack costs around
ten million USD on average.

4) X and Y are both negative: The transaction goes through
with no cost.

To estimate the cost of a DeFi protocol operator inspecting
a transaction, we use the statistics from a recruitment firm
that DeFi security auditors can earn 400, 000 USD per year in
2022. We estimate that inspecting a false positive transaction
will take one hour or more, which is approximately 204 USD.
It should be noted that DeFi protocol operators can choose to
activate defense mechanisms such as emergency pause. These
defenses may have an impact on the user experience, resulting
in reputation damage and an implicit cost. We ignore the
reputation damage in this paper. We estimate the distribution
PX , PY , and PX,Y using the frequency estimator.

Figure 9 shows the distribution of CID for 124 attacks
in relation to the probability of false alarms (PFA) and the
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Fig. 9. The Intrusion Detection Capability (CID) of the proposed IDS. The
x-axis corresponds to PFA, the probability of the IDS raising false alarms
(FA), while the y-axis corresponds to PD , the fraction of attacks detected the
IDS. We also plotted the contour lines of CID as a bivariate function of PFA

and PD . For example, given a CID of 0.3, we find that if the false positive
rate is 0.4, then the probability of a true positive is 0.24.

fraction of detected attacks (PD). The figure allows for an easy
comparison of the performance of the IDS across different
smart contracts. By using an example of a CID of 0.3, we
can see that if the false positive rate is 0.4, the probability of
a true positive is 0.24. It is important to note that, despite a
high probability of false alarms, 117 out of the 124 attacks
achieved a CID score of more than 0.9. This is because the
cost of a false negative is much higher than the cost of a false
positive, which results in a higher weighting of PD.

APPENDIX C
BASELINE - DOC2VEC

To compare TXRANK to a naive baseline, as a proof of
concept, we prototyped a transaction ranker that estimates the
likelihood of transactions using doc2vec and Gaussian mix-
ture. The prototype ranks 8 as the least likely (most abnormal)
transaction that interacted with their victim contracts, 11 as
the second least likely, and 5 as the third least likely. Our
results show that TXRANK identifies abnormal transactions by
ranking 49 out of 124 attacks among the top-3 most abnormal
transactions interacting with their victim contracts.

1) Word2Vec: A prominent embedding approach to learn
the distributed representation of words is Word2Vec. Mikolov
et al. [57], [58] propose two models: the continuous bag-
of-words (CBOW) model that predicts the center word given
its surrounding context and the skip-gram (SG) model that
predicts the surrounding context given a center word.

2) Doc2Vec: Motivated by Word2Vec, Le et al. [59]
propose Doc2Vec that represents input documents as dense
vectors. Doc2Vec also has two models: the distributed memory
model of paragraph vectors (PV-DM) and distributed bag
of words version of paragraph vector (PV-DBOW). PV-DM
is technically similar to CBOW while PV-DBOW is similar
to SG. It is used to learn words’ representations of arbi-
trary length sequences. Concretely: Given a set of documents
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D = {d1, d2, d3, ...} and a sentense s(di) = {w1, w2, w3, ...}
composed of words from document di, it learns the embed-
dings d⃗i ∈ Rδ and w⃗i ∈ Rδ . This is done by considering
a word wi ∈ s(di) and maximizing

∑l
j=1 logPr(wi|di)

where the probability of wi occuring in the context di is
Pr(wi|di) = exp d⃗i.w⃗i∑

w∈V exp d⃗.w⃗
. The key computational challenge

to the approach is to compute the denominator
∑

w∈V exp d⃗.w⃗,
as the vocabulary size |V| can grow drastically as the corpus
size grows. [59] proposes two solutions:

• Hierarchical softmax. Given a binary tree with each leaf
associated with a word in the vocabulary, a hierarchical
softmax classifier assigns a vector to each node of the tree.
Let vn denote the vector assigned to node n. In the following
we omit the context for brevity. All probabilities should be
understood as conditional on the context. Given a word w
and a path n1, . . . , nk from the root of the tree to the leaf
associated with the word w, the log-likelihood of the word
occuring is given by

log Pr[w] = log Pr[n1, . . . , nk|w] = log

k∏
j=1

Pr[nj |w]

=

k∑
j=1

log Pr[nj |w] =
k∑

j=1

log σ(vTnj
w)

where σ is the sigmoid function given by

σ(x) =
expx

expx+ 1
∈ (0, 1)

• Negative sampling. Negative sampling reduces the com-
putation cost of the denominator

∑
w∈V exp d⃗.w⃗ by only

summing over a random sample of the vocabulary V.
Mathematically,

Pr(wi|di) =
exp d⃗i.w⃗i∑
w∈V′ exp d⃗.w⃗

where V ′ ⊂ V is chosen randomly. Clearly, the efficiency
of the solution depends on how to draw samples from
the vocabulary. [59] proposes to draw samples from the
vocabulary following the rule below:

P (w) = 1−

√
t

f(w)

where f(w) is the frequency of word w in a training
corpus, and t is a hyperparameter. Intuitively, the sampling
rule increases the likelihood of rare words being chosen
compared to uniform sampling, which makes sense as rare
words are more likely to be informative than frequent ones.

We experimented with both approaches and observed no
significant performance difference in our settings. The baseline
result reported in this paper was achieved using negative
sampling, which provided marginally better results.

3) Doc2Vec and gaussian mixture: Mathematically, the log-
likelihood of a trace with doc2vec embedding v ∈ Rd under
a Gaussian mixture model with parameters π1, . . . , πC ∈ R,
µ1, . . . , µC ∈ Rd, and Σ1,ΣC ∈ Rd×d is given by

log p(v|π, µ,Σ) = log

C∑
c=1

πCϕµc,Σc(v)

where ϕµ,Σ is the multidimensional Gaussian probability den-
sity function with mean µ and covariance Σ, given by

ϕµ,Σ(x) = (2π)−d/2(detΣ)
1
2 exp

(
−1

2
(x− µ)TΣ(x− µ)

)
where detΣ is the determinant of the covariance matrix Σ.

Gaussian mixture models can be interpreted as probabilistic
clustering of vector embeddings, with the parameter C inter-
preted as the number of clusters, the parameters π1, . . . , πC the
probability of the vector embedding belonging to each cluster,
and the parameters µ1, . . . , µC the centroid of each cluster.
The parameters π, µ, and Σ are estimated by maximizing the
log-likelihood of historical transactions:

max
π,µ,Σ

∑
v

log p(v|π, µ,Σ)

which is accomplished by an Expectation-Maximization (EM)
algorithm [60].

The EM algorithm alternates between an E (Expectation)
and M (Maximization) step until some convergence criterion
is met. The E step assigns each observation to the cluster
where its likelihood is maximized. Mathematically, the cluster
cx assigned to an observation x is given by

cx = argmax
c=1,...,C

log πc + log ϕµc,Σc(x)

The M step that follows then update the parameters
π1, . . . , πC , µ1, . . . , µC , and Σ1, . . . ,ΣC by maximizing the
likelihood of all observations. The likelihood of each cluster
π1, . . . , πC is simply given by the proportion of observations
that are assigned in the cluster. The mean and covariance of
each cluster are given by maximizing the log-likelihood:

log ϕµc,Σc({x : cx = c}) = log
∏

x:cx=c

ϕµc,Σc(x)

=
∑

x:cx=c

log ϕµc,Σc
(x)

In our experiments, we initialize the clusters with the K-
Means algorithm, and leave experimenting other initialization
methods for future work. More specifically, we first cluster the
embeddings of traces in our training corpus with K-Means, and
then set the cluster means µ1, . . . , µC to the centroids of the
clusters. The likelihood of each cluster π1, . . . , πC is set to the
proportion of observations that are assigned to the cluster, and
the covariance of each cluster is set to the sample covariance
of each cluster. The objective of the K-Means algorithm is

argmin
S

K∑
i=1

∑
x∈Si

|x− µi|2
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where S = (S1, . . . , SK) is a tuple of K disjoint sets (clusters)
such that ∪Ki=1Si = {xj}nj=1

Multiple parameterization schemes for the covariance ma-
trix exist. The one most expressive, yet most prone to overfit,
is to use a full covariance matrix. The least expressive one is
to reduce the covariance matrix to a single positive number.
An approach that attempts to strike a balance between these
extremes is to constrain the covariance matrix to be diagonal,
i.e.

Σ =

Σ1

. . .
Σd


To avoid overfitting while maintaining some expressive power,
we constrain the covariances Σ1, . . . ,ΣC to be diagonal.

The parameter C is chosen by minimizing the Bayesian
information criteria (BIC) [61]

min
C
−2

∑
v

log p(v|π, µ,Σ) + d(C) logN

where N is the number of historical transactions and d(C)
is the number of parameters of a Gaussian mixture model,
determined by the parameter C. Intuitively, the BIC consists
of two parts, a log-likelihood term and a regularization term∑

v

log p(v|π, µ,Σ), d(C) logN

which penalizes mixtures with large number of parameters,
e.g. mixtures with full covariance matrices. The regularization
term grows as the number of observations grows to keep up
with the scale of the log-likelihood term.

We find in preliminary experiments that diagonal covariance
matrices generally maximize the BIC, likely due to a balance
between their complexity and expressiveness. In our case,
where all covariance matrices are constrained to be diagonal,
the number of parameters d(C) is given by

d(C) = C + C · d+ C · d = C · (2d+ 1)

Without any constraint on the covariance matrices, the number
of parameters d(C) is given by

d(C) = C + C · d+ C · d2 = C · (d2 + d+ 1)

When all covariance matrices are reduced to a single positive
number, the number of parameters d(C) is given by

d(C) = C + C · d+ C = C · (d+ 2)

APPENDIX D
NORMALIZATION IN TRANSFORMER ENCODER

We find empirically that normalization is crucial to training
the transformer encoder, particularly given our unique posi-
tional encoding scheme. As the sum of many embeddings,
embeddings produced by our tree encoding can easily reach
numerical scales that destabilize training. We find Layer
Normalization (LayerNorm) [62] particularly helpful in this
case. Given a d-dimensional vector v, LayerNorm normalizes
the vector as v̂ = v−µ

σ , where µ is the mean of all components

Victim Name Victim Contract
Application
Categories

Damage
(in USD))

SorbetFinance 0x14e6..e4bd Others 27,000,000
InverseFinance 0x39b1..db15 Lending 15,600,000
WarpFinance 0xae46..c8cf Lending 7,800,000
DAOMaker 0xa43b..9289 Others 4,000,000
DAOMaker 0x2fd6..5940 Others 4,000,000
GemSwap 0x7755..4dab DEX 1,300,000
GemSwap 0xd361..11e1 DEX 1,300,000
GemSwap 0x4265..eab6 DEX 1,300,000
GemSwap 0xf3d1..0e12 DEX 1,300,000
GemSwap 0xa416..bdf6 DEX 1,300,000
GemSwap 0xefcb..5b8f DEX 1,300,000
GemSwap 0x748f..190d DEX 1,300,000
GemSwap 0x8770..fb90 DEX 1,300,000
GemSwap 0x8cc2..0a19 DEX 1,300,000
GemSwap 0xe777..b02d DEX 1,300,000
BasketDAO 0x4622..21b8 DAO 1,200,000
Li.Finance 0x5a9f..6ed1 DEX aggregator 600,000
BuildFinance 0x3157..e758 DAO 470,000
SashimiSwap 0xe4fe..9410 DEX 200,000
Formation.Fi 0xcb6a..a723 Yield farming 100,000

Fig. 10. The 20 attacks ranked by TXRANK IDS as the second most abnormal
transaction that interacted with the respective victim contract.

Victim Name Victim Contract
Application
Categories

Damage
(in USD))

IndexedFinance 0x5bd6..dee4 Others 16,000,000
ValueDeFi 0xddd7..1101 Yield farming 7,200,000
DAOMaker 0xdd57..2167 Others 4,000,000
DAOMaker 0x6e70..2e22 Others 4,000,000
GemSwap 0x8cc7..214e DEX 1,300,000
Vether 0x7557..1d8b Others 900,000
Chainswap 0xc518..647f Cross chain bridge 800,000

Fig. 11. The 7 attacks ranked by TXRANK IDS as the third most abnormal
transaction that interacted with the respective victim contract.

of v, given by µ = 1
d

∑d
i=1 vi and σ is the standard deviation

of all components of v, given by σ =
√

1
d

∑d
i=1(vi − µ)2.

Clearly, the normalized vector v̂ satisfies the conditions µ̂ =
1
d

∑d
i=1 v̂i = 0 and σ̂ =

√
1
d

∑d
i=1(v̂i − µ)2 = 1, which

contributes to more stable training of the transformer encoder.

APPENDIX E
SECOND AND THIRD MOST ABNORMAL TRANSACTIONS

We present the results of our analysis on the transactions
that TXRANK identified as the second and third most ab-
normal. Figure 10 showcases the 20 attacks ranked as the
second most abnormal transaction, while Figure 11 highlights
the 7 attacks that were ranked as the third most abnormal
transaction. These tables provide insights into the victim
names, victim contracts, application categories, and damages
(in USD) associated with each attack, further demonstrating
the effectiveness of TXRANK in detecting various types of
malicious activities on the Ethereum blockchain.
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https://etherscan.io/address/0x775541df8bd9a39ae9b15556628e6abe21074dab
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https://etherscan.io/address/0x5a9fd7c39a6c488e715437d7b1f3c823d5596ed1
https://etherscan.io/address/0x3157439c84260541003001129c42fb6aba57e758
https://etherscan.io/address/0xe4fe6a45f354e845f954cddee6084603cedb9410
https://etherscan.io/address/0xcb6afdc84e8949ddf49ab00b5b351a5b0f65a723
https://etherscan.io/address/0x5bd628141c62a901e0a83e630ce5fafa95bbdee4
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https://etherscan.io/address/0x75572098dc462f976127f59f8c97dfa291f81d8b
https://etherscan.io/address/0xc5185d2c68aaa7c5f0921948f8135d01510d647f
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