
SPDH-Sign: towards Efficient, Post-quantum
Group-based Signatures

Christopher Battarbee1, Delaram Kahrobaei1,2,3,4, Ludovic Perret5, and
Siamak F. Shahandashti1

1 Department of Computer Science, University of York, UK
2 Departments of Computer Science and Mathematics, Queens College, City

University of New York, USA
3 Initiative for the Theoretical Sciences, Graduate Center, City University of New

York, USA
4 Department of Computer Science and Engineering, Tandon School of Engineering,

New York University, USA
5 Sorbonne University, CNRS, LIP6, PolSys, Paris, France

Abstract. In this paper, we present a new diverse class of post-quantum
group-based Digital Signature Schemes (DSS). The approach is signif-
icantly different from previous examples of group-based digital signa-
tures and adopts the framework of group action-based cryptography:
we show that each finite group defines a group action relative to the
semidirect product of the group by its automorphism group, and give
security bounds on the resulting signature scheme in terms of the group-
theoretic computational problem known as the Semidirect Discrete Log-
arithm Problem (SDLP). Crucially, we make progress towards being able
to efficiently compute the novel group action, and give an example of a
parameterised family of groups for which the group action can be com-
puted for any parameters, thereby negating the need for expensive offline
computation or inclusion of redundancy required in other schemes of this
type.

Keywords: Group-based Signature · Post-quantum Signature · Group Action
Based Cryptography · Post-quantum Group-based Cryptography

Introduction

Since the advent of Shor’s algorithm and related quantum cryptanalysis, it has
been a major concern to search for quantum-resistant alternatives to traditional
public-key cryptosystems. The resultant field of study is known today as Post-
Quantum Cryptography (PQC), and has received significant attention since the
announcement of the NIST standardisation.

One of the goals of PQC is to develop a quantum-resistant Digital Signature
Scheme (DSS), a widely applicable class of cryptographic scheme providing cer-
tain authenticity guarantees. Following multiple rounds of analysis, NIST have
selected three such schemes for standardisation, two of which are based on the
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popular algebraic notion of a lattice. Nevertheless, stressing the importance of
diversity amongst the post-quantum roster, a call for efficient DSS proposals not
based on lattices was issued in 2022 [25]. A potential source of post-quantum hard
computational problems come from group-based cryptography; for a comprehen-
sive survey of the field including examples of DSSs, see the work of Kahrobaei
et al in [17], [18].

Recall that a finite commutative group action consists of a finite abelian
group G, a finite set X, and a function mapping pairs in G×X into G. Another
promising framework for PQC has its origins in the so-called Hard Homoge-
nous Spaces of Couveignes6 [10]: one considers a family of group actions for
which all the ‘reasonable’ operations - for example, evaluating the group action
function, and sampling uniformly from the group - can be done efficiently, but
a natural analogue of the discrete logarithm problem called the Vectorisation
Problem is computationally difficult. Given such a group action, one can exploit
the commutativity of the group operation to construct a generalisation of the
Diffie-Hellman Key Exchange protocol based on the difficulty of the Vectorisa-
tion Problem, which is believed to be post-quantum hard.

As well as this analogue of Diffie-Hellman, the group action framework is
used to construct an interactive proof of identity, which is effectively a standard
three-pass identification scheme. In his doctoral thesis [29], Stolbunov uses this
identification scheme to obtain a signature scheme by applying the standard Fiat-
Shamir heuristic; we will here follow the convention of referring to this scheme
as the CRS7 Digital Signature Scheme (CRS-DSS). In order to specify a practical
signature scheme it remains to specify a group action: very roughly, CRS-DSS uses
the celebrated example, coming from the theory of isogenous elliptic curves, of
a finite abelian group called the ‘class group’ acting on a set of elliptic curves.

CRS-DSS did not recieve much attention for a number of years, for two key
reasons: first, it was demonstrated that the scheme admits an attack of quan-
tum subexponential complexity [7] (in fact, this attack applies to all group-action
based cryptography). This might in itself be tolerable; much more troubling is
that the original version of CRS-DSS is unacceptably slow. There has, however,
been a resurgence of interest in schemes similar to CRS-DSS following the dis-
covery in [6] of a much faster isogeny-based group action; on the other hand,
the computation of the class group is in general thought to be computationally
difficult. In fact this is quite a significant problem: without random sampling the
security proofs, which rely on group elements hiding secrets to have the appropri-
ate distribution, break down. Two approaches to solving this problem have been
suggested: in [12], one uses the ‘Fiat-Shamir with aborts’ technique developed by
Lyubashevsky [21], at the cost of rendering the scheme considerably less space
efficient; in [3], a state-of-the-art computation of a class group is performed and
the resulting group action is used as the platform for CRS-DSS. However, it is
important to note that here the computation of a class group is performed, and
so one is restricted in terms of tweaking parameters. In particular, the introduc-

6 Similar notions were arrived at independently by Rostovstev and Stolbunov [28].
7 Couveignes, Rostovstev and Stolbunov.



SPDHSign 3

tion of new parameters would require another extremely expensive offline class
group computation.

A potential third solution is to dispense with the isogeny-based group ac-
tion altogether, and search for different examples of group actions for which
computing the appropriate group - and therefore uniform sampling - is efficient.
Historically speaking, there has not been much research in this direction since
non-trivial examples of cryptographically interesting group actions have not been
available. In this paper we make an important step towards this goal; in par-
ticular we show that every finite group gives rise to a group action on which
CRS-DSS-type signatures can be constructed, and that the respective group is
cyclic and has order dividing a known quantity. These group actions arise from
a notion similar to the group-theoretic notion of the semidirect product, and
were first studied in the context of a generalisation of Diffie-Hellman [15] - note,
however, that it was not known at the time that the proposed framework was
an example of a group action. Indeed, this was only discovered rather recently
[2], and prompted the isogeny-style renaming of the key exchange in [15] as
Semidirect Product Diffie-Hellman, or SPDH (to be pronounced ‘spud’). With
this in mind, in this paper we propose a family of digital signature schemes which
we christen SPDH-Sign; and we give an example of a group action for which the
group can be efficiently computed.

1 Preliminaries

1.1 The Semidirect Product

The term ‘semidirect’ product refers, generally speaking, to a rather deep family
of notions describing the structure of one group with respect to two other groups.
For our purposes we are interested in a rather specific case of the semidirect
product, defined as follows:

Definition 1. Let G be a finite group and Aut(G) its automorphism group.
Suppose that the set G ×Aut(G) is endowed with the following operation:

(g, ϕ)(g′, ϕ′) = (ϕ′(g)g′, ϕ′ϕ)

where the multiplication is that of the underlying group G, and the automorphism
ϕ′ϕ is the automorphism obtained by first applying ϕ, and then ϕ′. We denote
this group G ⋉Aut(G).

A few facts about this construction are standard.

Proposition 1. Let G be a finite group and Φ ≤ Aut(G) (where Φ can be any
subgroup, including Aut(G) itself). One has the following:

1. G ⋉Φ is a finite group of size ∣G∣∣Φ∣
2. Let (g, ϕ) ∈ G ⋉Φ. One has

(g, ϕ)−1 = (ϕ−1(g−1), ϕ−1)
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1.2 Proofs of Knowledge and Identification Schemes

Roughly speaking, the idea of the Fiat-Shamir class of signatures is as follows: we
interactively convince an ‘honest’ party that we possess a certain secret. We can
then transform this interactive paradigm to a non-interactive digital signature
scheme by applying the Fiat-Shamir transform. A primary motivation for this
approach is that the resulting signature scheme inherits its security at rather
low cost from security properties of the underlying interactive scheme - as such,
it is necessary for us now to review some of these security notions.

First, let us define exactly what we mean by these interactive proof of knowl-
edge protocols. The idea of communicating a ‘secret’ is neatly captured by the
notion of a binary relation; that is, for two setsW and S, consider a setR ⊂W×S.
Given a pair (w, s) ∈R, we say s is the statement and w is the witness. In gen-
eral, for a given statement a party called the ‘prover’ wishes to demonstrate their
knowledge of a valid witness (that is, given s we wish to prove that we possess
a w such that (w, s) ∈ R) to a party called the verifier. Of course, one can do
this trivially by simply revealing the witness, so we add the crucial requirement
that no information about the witness is revealed.

We refer more or less to this idea when discussing identification schemes, with
the caveat that the prover should be able to compute an arbitrary pair of the
binary relation. If the prover cannot generate an an arbitrary pair of the binary
relation, and instead is to demonstrate his knowledge of some given element of
the binary relation, we have instead a ‘zero-knowledge proof’. A notable class of
zero-knowledge proofs are the so-called ‘sigma protocols’. One can always turn
a zero-knowledge proof into an identification scheme by providing the prover
with an algorithm capable of generating an arbitrary pair of the binary relation;
our definition of identification schemes in fact refers only to those arrived at by
transforming a sigma protocol into an identification scheme.

Notice that the idea of a binary relation serves as a neat generalisation of
the usual notion of a public and private key pair. The algorithm used by the
identification scheme to generate binary relation instances is therefore denoted
by KeyGen, and produces a pair (sk, pk). We also require, in some sense to be
made precise later, that recovering an appropriate witness from a statement is
computationally difficult.

Definition 2 (Identification Scheme). Let R ⊂ S × P be a binary relation.
An identification scheme is a triple of algorithms (KeyGen,P,V), where

– KeyGen takes as input a security parameter n and generates a pair (sk, pk) ∈
R, publishes pk, and passes sk to P

– P is an interactive algorithm initialised with a pair (sk, pk) ∈R
– V is an interactive algorithm initialised with a statement pk ∈ P. After the

interaction, V outputs a decision ‘Accept’ or ‘Reject’.

The interaction of P and V runs as follows:

1. P generates a random ‘commitment’ I from the space of all possible commit-
ments I and sends it to V
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2. Upon receipt of I, V chooses a ‘challenge’ c from the space of all possible
challenges C at random and sends it to P

3. P responds with a ‘response’ p
4. V calculates an ‘Accept’ or ‘Reject’ response as a function of (I, c, p) and the

statement pk.

The interaction of P and V is depicted in Figure 1.

P V

(pk, sk)←KeyGen()
I ←P(sk, pk)

I

c
$
←V(pk)

c

p←P((I, c), (sk, pk))
p

Accept/Reject←V((I, c, p), pk)

Fig. 1. An identification scheme.

Definition 3. Let (KeyGen,P,V) be an identification scheme. The triple (I, c, p)
of exchanged values between P and V is called a ‘transcript’; if a prover (resp.
verifier) generates I, p (resp c) with the algorithm P (resp. V), they are called
‘honest’. An identification scheme is ‘complete’ if a transcript generated by two
honest parties is always accepted by the verifier.

Turning our attention to the security of identification protocols, let us define
the framework we wish to work with. As we will see later, it suffices for signature
security to only consider identification schemes for which we have an honest
verifier - in other words, it suffices to consider only a cheating prover. Let us do
so in the form of the following attack games, which are [4, Attack Game 18.1]
and [4, Attack Game 18.2] respectively.

Definition 4 (Direct Attack Game). Let ID=(KeyGen,P,V) be an identifica-
tion scheme and A be an adversary. Consider the following game:

1. The challenger obtains (sk, pk)←KeyGen and passes pk to A.
2. The adversary interacts with the challenger who generates responses with V.

At the end, the challenger outputs ‘Accept/Reject’ as a function of the gen-
erated transcript and pk; the adversary wins the game if V outputs ‘Accept’.
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A

(sk, pk)← KeyGen()
pk

I∗

c←V(pk)
c

d←V((I∗, c, p∗), pk)
p∗

d

Fig. 2. The direct attack game.

The Direct Attack game is depicted in Figure 2. We denote the advantage of the
adversary in this game with ID as the challenger by dir-adv(A,ID).

Definition 5 (Eavesdropping Attack). Let ID=(KeyGen,P,V) be an identifi-
cation scheme and A be an adversary. Consider the following game:

1. The challenger obtains (sk, pk)←KeyGen and passes pk to A.
2. The adversary enters into an ‘eavesdropping’ phase, whereby they can request

honestly-generated transcripts from a transcript oracle T possessing the same
(sk, pk) pair generated in the previous step.

3. The adversary interacts with the challenger who generates responses with V.
At the end, the challenger outputs ‘Accept/Reject’ as a function of the gen-
erated transcript and pk; the adversary wins the game if V outputs ‘Accept’.

The Eavesdropping Attack game is depicted in Figure 3. We denote the advantage
of the adversary in this game with ID as the challenger by eav-adv(A,ID).

In practice, given a concrete identification scheme it is possible to bound the
advantage of an adversary in these games provided one can prove the following
two properties hold for the identification scheme:

Definition 6. Let (KeyGen,P,V) be an identification scheme.

– The scheme has ‘special soundness’ if two transcripts with the same com-
mitment and different challenges allow recovery of the witness sk; that is,
if (I, c, p), (I, c∗, p∗) are two transcripts generated with (sk, pk) ←KeyGen,
there is an efficient algorithm taking these transcripts as input that returns
sk.

– The scheme has ‘special honest verifier zero knowledge’ if, given a statement
pk and a challenge c, there is an efficient algorithm to generate a passing
transcript (I∗, c, p∗) with the same distribution as a legitimately generated
transcript.
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A

(sk, pk)← KeyGen()
pk

I∗

c←V(pk)
c

d←V((I∗, c, p∗), pk)
p∗

d

T

(sk, pk)

request

(Î , ĉ, p̂)

Fig. 3. The eavesdropping attack game.

Before moving on there is one final security notion to explore. Notice that if
the underlying binary relation of an identification scheme is such that one can
easily recover a valid witness from the public statement, an adversary can easily
succeed in either of the above games simply by honestly generating the proof
p with the appropriate value of sk. We have loosely discussed the notion that
recovering a witness should therefore be difficult; it is nevertheless so far not clear
how precisely this difficulty is accounted for. In fact, there are a number of ways
to get round this. For our purposes, and in our application of the Fiat-Shamir
transform, we will invoke the system outlined in [4, Section 19.6]. The idea is
basically thus: provided the properties in Definition 6 hold, it is possible to set
up the security proof such that all the difficulty of recovering a witness is ‘priced
in’ to the key generation algorithm. Again, we will need a precise definition to
make this rigorous later on: the following is [4, Attack Game 19.2]

Definition 7 (Inversion Attack Game). Let KeyGen be a key generation
algorithm for a binary relation R ⊂ S × P and A be an adversary. Consider
the following game:

1. A pair (sk, pk) is generated by running KeyGen, and the value pk is passed
to the adversary A.

2. A outputs some ŝk ∈ S. The adversary wins if (ŝk, pk) ∈R.

We denote the advantage of the adversary in this game with kg as the challenger
by inv-adv(A,kg).

1.3 Signature Schemes

Recall that a ‘signature scheme’ is a triple of algorithms (KeyGen, Sg, Vf),
where KeyGen() outputs a private-public key pair (sk, pk) upon input of a secu-
rity parameter. For some space of messagesM, Sg takes as input sk and some
m ∈M, producing a ‘signature’ σ. Vf takes as input pk and a pair (m,σ), and
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outputs either ‘Accept’ or ‘Reject’. We have the obvious correctness requirement
that for a key pair (sk, pk) generated by KeyGen we can expect, for any m ∈M,
that one has

Vf(pk, (m,Sg(sk,m))) = Accept

The security of a signature scheme is defined with respect to the following
attack game, which is [4, Attack Game 13.1] (but is widely available).

Definition 8 (Chosen Message Attack). Let S=(KeyGen,Sg,Vf) be a signa-
ture scheme and A be an adversary. Consider the following game:

1. The challenger obtains (sk, pk)←KeyGen and passes pk to A.
2. The adversary enters into an ‘querying’ phase, whereby they can obtain sig-

natures σi = Sg(sk,mi) from the challenger, for the adversary’s choice of
message mi. The total number of messages queried is denoted Q.

3. The adversary submits their attempted forgery - a message-signature pair
(m∗, σ∗) - to the challenger. The challenger outputs Vf(pk, (m∗, σ∗)); the
adversary wins if this output is ‘Accept’.

The Chosen Message Attack game is depicted in Figure 4. We denote the advan-
tage of the adversary in this game with S as the challenger by cma-adv(A,S).

A

(sk, pk)←KeyGen

for 1 ≤ i ≤ Q

pk

mi

σi ←Sg(sk,mi)
σi

d←Vf(pk, (m∗, σ∗))
(m∗, σ∗)

d

Fig. 4. The chosen message attack game.

A signature scheme S for which cma-adv(A,S) is bounded favourably8 from
above for any efficient adversary A is sometimes called euf-cma secure, or ‘ex-
istentially unforgeable under chosen message attacks’.

It remains to briefly define the well-known notion of the Fiat-Shamir trans-
form, initially presented in [14]:

8 ‘Favourably’ here usually means as a negligible function of a security parameter.
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Definition 9 (Fiat-Shamir). Let ID=(KeyGen,P,V) be an identity scheme with
commitment space I and C. We define a signature scheme FS(ID)=(KeyGen,Sg,Vf)
on the message spaceM given access to a public function H ∶M × I → C:

1. KeyGen is exactly the key generation algorithm of ID and outputs a pair
(sk, pk), where pk is made public

2. Sg takes as input m ∈M and the key pair (pk, sk) and outputs a signature
(σ1, σ2):

I ←P((sk, pk))
c←H(m,I)
p←P((I, c), (sk, pk))
(σ1, σ2)← (I, p)
return (σ1, σ2)

3. Vf takes as input a message-signature pair (m, (σ1, σ2)) and outputs a deci-
sion d, which is ‘Accept’ or ‘Reject’:

c←H(I, σ1)
d←V((σ1, c, σ2), pk)
return d

Intuitively, we can see that Sg is simulating an interactive protocol non-
interact-ively with a call to the function H; in order to inherit the security
properties of the identification scheme, this function H should have randomly
distributed outputs on fresh queries and should be computationally binding -
that is, it should be difficult to find a value I ′ ≠ I such that H(m,I) =H(m,I ′);
and given a commitment c ∈ C it should be difficult to find a message m and
commitment I ∈ I such that H(m,I) = c. On the other hand, for correctness
we need H to be deterministic on previously queried inputs. Such a function is
modelled by a hash function under the random oracle model: in this model, it
was famously demonstrated in [1] that a relatively modest security notion for
the underlying identification scheme gives strong security proofs for the resulting
signature scheme. In our own security proof we use the slightly more textbook
exposition presented in [4].

2 A Novel Group Action

Our first task is to demonstrate the existence of the claimed group action, for
any finite group. A very similar structure was outlined in [2] - with the important
distinction that semigroups are insisted upon. Indeed, it turns out that allowing
invertibility changes the structure in a way that we shall outline below.

Definition 10. Let G be a finite group, and Φ ≤ Aut(G). Fix some (g, ϕ) ∈ G⋉Φ.
For any x ∈ Z, the function sg,ϕ ∶ Z → G is defined as the group element such
that

(g, ϕ)x = (sg,ϕ(x), ϕx)
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The group action of interest arises from the study of the set {sg,ϕ(i) ∶ i ∈ Z}.
Certainly 1 ∈ {sg,ϕ(i) ∶ i ∈ Z}, since there is some n ∈ N such that (sg,ϕ(n), ϕn) =
(g, ϕ)n = (1, id), but one cannot immediately deduce that this is the smallest
integer for which sg,ϕ is 1. Indeed, even if the order n of (g, ϕ) is the smallest
integer such that sg,ϕ(n) = 1, we are not necessarily guaranteed that every integer
up to n is mapped to a distinct elements of G by sg,ϕ. Before resolving these
questions let us introduce some terminology.

Definition 11. Let G be a finite group, and Φ ≤ Aut(G). Fix some (g, ϕ) ∈ G⋉Φ.
The set

Xg,ϕ ∶= {sg,ϕ(i) ∶ i ∈ Z}
is called the cycle of (g, ϕ), and its size is called the period of (g, ϕ).

In the interest of brevity we will also assume henceforth that by (g, ϕ) we
mean some pair occurring in a semidirect product group as described above. For
any such pair (g, ϕ), note that Xg,ϕ is not necessarily closed under the group
operation - we can, nevertheless, implement addition in the argument of sg,ϕ as
follows:

Theorem 1. Let i, j ∈ Z and suppose (g, ϕ) ∈ G ⋉ Φ in the usual way. One has
that

ϕj(sg,ϕ(i))sg,ϕ(j) = sg,ϕ(i + j)

Proof. Following the definitions one has

(sg,ϕ(i + j), ϕi+j) = (g, ϕ)i+j

= (g, ϕ)i(g, ϕ)j

= (sg,ϕ(i), ϕi)(sg,ϕ(j), ϕj)
= (ϕj(sg,ϕ(i))sg,ϕ(j), ϕi+j)

⊓⊔

Put another way, we can use integers to map Xg,ϕ to itself. This idea is
sufficiently important to earn its own notation:

Definition 12. Let i ∈ Z. The function ∗ ∶ Z ×Xg,ϕ → Xg,ϕ is given by

i ∗ sg,ϕ(j) ∶= ϕj(sg,ϕ(i))sg,ϕ(j)

We have seen that i ∗ sg,ϕ(j) = sg,ϕ(i + j); accordingly, we pronounce the ∗
symbol as ‘step’. An immediate consequence is the presence of some degree of
‘looping’ behaviour; that is, supposing sg,ϕ(n) = 1 for some n ∈ Z, one has

sg,ϕ(n + 1) = 1 ∗ sg,ϕ(n) = 1 ∗ 1
= ϕ(1)sg,ϕ(1)
= sg,ϕ(1)

Generalising this idea we get a more complete picture of the structure of the
cycle.
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Theorem 2. Let G be a finite group and Φ ≤ Aut(G) an automorphism sub-
group. Fix (g, ϕ) ∈ G ⋉ Aut(G), and let n be the smallest positive integer for
which sg,ϕ(n) = 1. One has that ∣Xg,ϕ∣ = n, and

Xg,ϕ = {1, g, ..., sg,ϕ(n − 1)}

Proof. First, let us demonstrate that the values 1 = sg,ϕ(0), sg,ϕ(1), ..., sg,ϕ(n−1)
are all distinct. Suppose to the contrary that there exists 0 ≤ i < j ≤ n − 1 such
that sg,ϕ(i) = sg,ϕ(j); then some positive k < n must be such that i + k = j. In
other words:

i ∗ sg,ϕ(k) = sg,ϕ(j)⇒ ϕi(sg,ϕ(k))sg,ϕ(i) = sg,ϕ(j)
⇒ ϕi(sg,ϕ(k)) = 1
⇒ sg,ϕ(k) = 1

which is a contradiction, since k < n. It remains to show that every integer is
mapped by sg,ϕ to one of these n distinct values - but this is trivial, since we
can write any integer i as kn+ j for some integer k and 0 ≤ j < n. It follows that

sg,ϕ(i) = sg,ϕ(j)

where sg,ϕ(j) is one of the n distinct values. ⊓⊔

It follows that we can write i∗ sg,ϕ(j) = sg,ϕ(i+ j mod n). In fact, the latter
part of the above argument demonstrates something slightly stronger: not only
is every integer mapped to one of n distinct values by sg,ϕ, but every member
of a distinct residue class modulo n is mapped to the same distinct value. It is
this basic idea that gives us our group action.

Theorem 3. Let G be a finite group and Φ ≤ Aut(G). Fix a pair (g, ϕ) ∈ G ⋉
Aut(G), and let n be the smallest positive integer such that sg,ϕ(n) = 1. Define
the function as

⊛ ∶ Zn ×Xg,ϕ → Xg,ϕ

[i]n ⊛ sg,ϕ(j) = i ∗ sg,ϕ(j)

The tuple (Zn,Xg,ϕ,⊛) is a free, transitive group action.

Proof. First, let us see that ⊛ is well-defined. Suppose i ≅ j mod n, then i = j+kn
for some k ∈ Z. For some arbitrary Xg,ϕ, say sg,ϕ(l) for 0 ≤ l < n, one has

i ∗ sg,ϕ(l) = (j + kn) ∗ sg,ϕ(l)
= j ∗ sg,ϕ(l + kn)
= j ∗ sg,ϕ(l)

We also need to verify that the claimed tuple is indeed a group action. In order
to check that the identity in Zn fixes each Xg,ϕ, by the well-definedness just
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demonstrated, it suffices to check that 0 ∗ sg,ϕ(l) = sg,ϕ(l) for each 0 ≤ l < n
- which indeed is the case. For the compatibility of the action with modular
addition, note that for 0 ≤ i, j, k < n − 1 one has

[k]n ⊛ ([j]n ∗ sg,ϕ(i)) = [k]n ⊛ sg,ϕ(i + j mod n)
= sg,ϕ(i + j + k mod n)
= [j + k]n ⊛ sg,ϕ(i)

as required. It remains to check that the action is free and transitive. First,
suppose [i]n ∈ Zn fixes each sg,ϕ(j) ∈ Xg,ϕ. By the above we can assume without
loss of generality that 0 ≤ i < n − 1, and we have ϕj(sg,ϕ(i))sg,ϕ(j) = sg,ϕ(j). It
follows that sg,ϕ(i) = 1, so we must have i = 0 as required. For transitivity, for
any pair sg,ϕ(i), sg,ϕ(j) we have [j − i]n⊛ sg,ϕ(i) = sg,ϕ(j), and we are done. ⊓⊔

Recalling that the set Xg,ϕ and the period n are a function of the pair (g, ϕ),
we have actually shown the existence of a large family of group actions. Never-
theless, we have only really shown the existence of the crucial parameter n - it
is not necessarily clear how this value should be calculated. With this in mind
let us conclude the section with a step in this direction:

Theorem 4. Fix a pair (g, ϕ) ∈ G ⋉Aut(G). Let n be the smallest integer such
that sg,ϕ(n) = 1, then n divides the order of the pair (g, ϕ) as a group element
in G ⋉Aut(G).

Proof. Suppose m = ord((g, ϕ)). Certainly sg,ϕ(m) = 1, and by definition one
has m ≥ n. We can therefore write m = kn + l, for k ∈ N and 0 ≤ l < n. It is not
too difficult to verify that sg,ϕ(x) = ϕx−1(g)...ϕ(g)g for any x ∈ N. It follows that

sg,ϕ(m) = ϕkn(sg,ϕ(l))ϕ(k−1)n(sg,ϕ(n))...ϕn(sg,ϕ(n))sg,ϕ(n)

Since sg,ϕ(m) = sg,ϕ(n) = 1, we must have sg,ϕ(l) = 1. But l < n and so l = 0 by
the minimality of n, which in turn implies that n∣m as required. ⊓⊔

2.1 Semidirect Discrete Logarithm Problem

Given a group G and a pair (g, ϕ) ∈ G⋉Aut(G), observe that as a consequence of
Theorem 1 and Definition 12, for any two integers i, j ∈ N we have that sg,ϕ(i +
j) = j ∗ sg,ϕ(i) = i ∗ sg,ϕ(j). A Diffie-Hellman style key exchange immediately
follows9; indeed, a key exchange based on this idea first appears in [15], and is
known as Semidirect Product Key Exchange. In the same way that the security of
Diffie-Hellman key exchange is related to the security of the Discrete Logarithm
Problem, to understand the security of Semidirect Product Key Exchange we
should like to study the difficulty of the following task:

9 Historically speaking, the key exchange predates the more abstract treatment in this
paper.
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Definition 13 (Semidirect Discrete Logarithm Problem). Let G be a fi-
nite group, and let (g, ϕ) ∈ G × Aut(G). Suppose, for some x ∈ N, that one is
given (g, ϕ), sg,ϕ(x); the Semidirect Discrete Logarithm Problem (SDLP) with
respect to (g, ϕ) is to recover the integer x.

The complexity of SDLP is relatively well understood, in large part due to
the connection with group actions highlighted above. We will see later on that
the security game advantages for our identification and signature schemes can
be bounded in terms of the advantage of an adversary in solving SDLP; indeed,
for the SDLP attack game defined in the obvious way, we write the advantage
of an adversary sdlp-adv(A,(g, ϕ)).

3 SPDH-Sign

3.1 An Identification Scheme

Recall that our strategy is to set up an honest-verifier identification scheme,
to which we can apply the well-known Fiat-Shamir heuristic and obtain strong
security guarantees in the ROM. The central idea of this identification scheme
is as follows: suppose we wish to prove knowledge of some secret Zn element,
say [s]n. We can select an arbitrary element of Xg,ϕ, say X0, and publish the
pair X0,X1 ∶= [s]n ⊛X0. An honest party wishing to verify our knowledge of
the secret [s]n might invite us to commit to some group element [t]n, for [t]n
sampled uniformly at random from Zn. We can do this by sending the element
I = [t]n ⊛X0 - note that as a consequence of the free and transitive properties,
[t]n is the unique group element such that I = [t]n ⊛ X0. However, with our
knowledge of the secret [s]n and the commitment [t]n, we can calculate the
element [p]n = [t− s]n such that [p]n⊛X1 = I, where this equation holds by the
group action axioms: one has [t − s]n ⊛ ([s]n ⊛X0) = [t]n ⊛X0 = I.

X0

X1

I

[s]n⊛

[t]n⊛

[t − s]n⊛

Fig. 5. Paths to the commitment.

Interpreted graph-theoretically (as depicted in Figure 5), an honest verifier
can ask to see one of two paths to the commitment value. Consider a dishonest
party attempting to convince the verifier that they possess the secret [s]n. In
attempting to impersonate the honest prover, our dishonest party can generate
their own value of [t]n, and so can certainly provide the correct path in one



14 C. Battarbee, D. Kahrobaei, L. Perret and S. F. Shahandashti

of the two scenarios. Assuming, however, that recovering the appropriate group
element is difficult, without knowledge of the secret [s]n this party succeeds in
their deception with low probability.

This intuition gives us the following non-rigorous argument of security in the
framework described in Section 1.2. First, recall that we are in the honest verifier
scenario, and so a challenge bit c will be 0 with probability 1/2, in which case a
cheating prover succeeds with probability 1. Supposing that ε is the probability
of successfully recovering the value [t − s]n, it follows that a cheating prover
succeeds with probability (1 + ε)/2 - that is, with probability larger than 1/2.
We can quite easily counter this by requiring that N instances are run at the
same time. In this case, if N zeroes are selected the prover wins with probability
1 by revealing their dishonestly generated values of [t]n - otherwise, they are
required to recover at least 1 value of [t − s]n. Assuming for simplicity that
the probability of doing so remains consistent regardless of the number of times
such a value is to be recovered, since the honest verifier selects their challenges
uniformly at random the cheating prover succeeds with probability

1

2N
+

2N−1
∑
i=1

ε

2N
= 1

2N
+ ε2

N − 1
2N

which tends to ε as N →∞.
The actual proof of security operates within the security games defined in

the preliminaries. As a step towards this formalisation, we need to specify the
binary relation our identification scheme is based on. Choose some finite group
G: given a fixed pair (g, ϕ) ∈ G × Aut(G) we are interested, by Theorem 3, in
a subset R of Zn,Xg,ϕ, where n is the smallest integer such that sg,ϕ(n) = 1.
In fact, legislating for N parallel executions of the proof of knowledge, to each
tuple (X1, ...,XN) is associated a binary relation

R ⊂ ZN
n ×XN

g,ϕ

where (([s1]n, ..., [sN ]n), (Y1, ..., YN)) ∈ R exactly when (Y1, ..., YN) = ([s1]n ∗
X1, ..., [sN ]n ∗XN).

With all this in mind let us define our identification scheme. The more rig-
orous presentation should not distract from the intuition that we describe N
parallel executions of the game in Figure 5.

Protocol 1. Let G be a finite group and (g, ϕ) ∈ G ⋉ Aut(G). Suppose also
that n ∈ N is the smallest integer such that sg,ϕ(n). The identification scheme
SPDH-IDg,ϕ(N) is a triple of algorithms

(KeyGeng,ϕ,Pg,ϕ,Vg,ϕ)

such that

1. KeyGeng,ϕ takes as input some N ∈ N.
(X1, ...,XN)← XN

g,ϕ
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([s1]n, ..., [sN ]n)← ZN
n

(Y1, ..., YN)← ([s1]n ⊛X1, ..., [sN ]n ⊛XN)
KeyGeng,ϕ outputs the public key ((X1, ...,XN), (Y1, ..., YN)) and passes the
secret key ([s1]n, ..., [sN ]n) to the prover Pg,ϕ. The public key and the value
of N used is published.

2. Pg,ϕ and Vg,ϕ are interactive algorithms that work as depicted in Figure 6:

Security In this section we demonstrate that SPDH-ID is secure against eaves-
dropping attacks in the following sense: the advantage of an adversary in the
eavesdropping attack game can be bounded by that of the adversary in the
SDLP game. First, let us check that the desirable properties of an identification
scheme hold:

Theorem 5. SPDH-ID has the following properties:

1. Completeness
2. Special soundness
3. Special honest-verifier zero knowledge.

Proof. Note that in order to prove each of these properties on the N -tuples
comprising the transcripts generated by SPDH-ID, we need to prove that the
properties hold for each component of the tuple; but since each component is
independent of all the others, it suffices to demonstrate the stated properties for
a single arbitrary component. In other words, we show that the stated properties
hold when N = 1, and the general case immediately follows.

1. If b = 0 then [p]n = [t]n, and trivially we are done. If b = 1 then [p]n = [t−s]n;
doing the bookkeeping we get that

[p]n ⊛ S1 = [p]n ⊛ ([s]n ⊛ S0)
= ([t − s]n[s]n)⊛ S0

= ([s]n ⊛ S0) = I

2. Two passing transcripts with the same commitment are (I,0, [t]n) and
(I,1, [t − s]n). Labelling the two responses xp1 , xp2 , we recover the secret
as (xp2)−1(xp1)−1.

3. It suffices to show that one can produce passing transcripts with the same
distribution as legitimate transcripts, but without knowledge of [s]n. We
have already discussed how to produce these transcripts; if a simulator sam-
ples [t]n uniformly at random, then the transcript ([t]n⊛Sb, b, [t]n) is valid
regardless of the value of b. Moreover, if b = 0, trivially the transcripts have
the same distribution; if b = 1, since [s]n is fixed and [t]n is sampled uni-
formly at random, the distribution of a legitimate passing transcript is also
uniformly random.

⊓⊔

We are now ready to bound on the security of our identification scheme.
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Pg,ϕ Vg,ϕ

for i← 1,N do

[ti]n
$
← Zn

Ii ← [ti]n ⊛Xi

end for
I ← (I1, ..., IN)

I

for i← 1,N do

ci
$
← {0,1}

end for
c← (c1, ..., cN)

c

for i← 1,N do
if ci = 0 then
[pi]n ← [ti]n

else
[pi]n ← [ti − si]n

end if
end for
p← ([p1]n, ..., [pN ]n)

p

for i← 1,N do
if ci = 0 then

Vi ← [pi]n ⊛Xi

else
Vi ← [pi]n ⊛ Yi

end if
end for
V ← (V1, ..., VN)

d← I
?
= V

return d

Fig. 6. SPDH-ID
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Theorem 6. Let G be a finite abelian group and let (g, ϕ) ∈ G ⋉ Aut(G). For
some N ∈ N, consider the identification scheme SPDH-IDg,ϕ(N) and an efficient
adversary A. There exists an efficient adversary B with A as a subroutine, such
that with ε = sdlp-adv(B, (g, ϕ)), we have

eav-adv(A,SPDH-IDg,ϕ(N)) ≤
√
ε + 1

2N

Proof. This is just a straightforward application of two results in [4]. By [4,
Theorem 19.14], since SPDH-IDg,ϕ(N) has honest verifier zero knowledge, there
exists an efficient adversary B′ with A as a subroutine such that

eav-adv(A,SPDH-IDg,ϕ(N)) = dir-adv(B′,SPDH-IDg,ϕ(N))

Moreover, let
δ = inv-adv(B′,KeyGeng,ϕ)

Since SPDH-IDg,ϕ(N) has special soundness, [4, Theorem 19.13] gives

dir-adv(B,SPDH-IDg,ϕ(N)) ≤
√
δ + 1

M

where M is the size of the challenge space. It is easy to see that M = 2N ;
it remains to relate the quantities ε and δ. We do so eschewing some of the
detail since the argument is straightforward; note that by definition of the binary
relation underpinning KeyGeng,ϕ, we can think of the inversion attack game as a
security game in which one solvesN independent SDLP instances in parallel. Call
the advantage in this game N-sdlp-adv(B′, (g, ϕ)), and suppose an adversary
B in the standard SDLP attack game runs B′ as an adversary. B can simply
provide B′ with N copies of its challenge SDLP instance, and succeeds whenever
B′ does. It follows that δ ≤ ε, and we are done. ⊓⊔

3.2 A Digital Signature Scheme

It remains now to apply the Fiat-Shamir transform to our identification scheme.
Doing so yields the signature scheme claimed in the title of this paper.

Protocol 2 (SPDH-Sign). Let G be a finite group and let (g, ϕ) ∈ G×Aut(G)
be such that n is the smallest integer for which sg,ϕ(n)=1. For any N ∈ N and
message space M, suppose we are provided a hash function H ∶ XN

g,ϕ ×M →
{0,1}N . We define the signature scheme

SPDH-Signg,ϕ(N) = (KeyGen, Sg, Vf)

as in Figure 7.

It is easy to see that given the identification scheme SPDH-IDg,ϕ(N), the sig-
nature scheme SPDH-Signg,ϕ(N) is exactly FS(SPDH-IDg,ϕ(N)). A small tech-
nical obstacle remains before we can use this fact to prove the security of the
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KeyGen(N):

for i← 1,N do

Xi
$
← Xg,ϕ

[si]n
$
← Zn

Yi ← [si]n ⊛Xi

end for
sk ← ([s1]n, ..., [sN ]n)
pk ← ((X1, ...,XN), (Y1, ..., YN))

return (sk, pk)

Sg(m, (sk, pk)):

for i← 1,N do

[ti]n
$
← Zn

Ii ← [ti]n ⊛Xi

end for
I ← (I1, ..., IN)
c←H(I,m)
for i← 1,N do

if ci = 0 then
pi ← [ti]n

else
pi ← [ti − si]n

end if
end for
p← (p1, ..., pN)
(σ1, σ2)← (I, p)
return (σ1, σ2)

Vf(m, (σ1, σ2), pk):

c←H(σ1,m)
for i← 1,N do

if ci = 0 then
Vi ← pi ⊛Xi

else
Vi ← pi ⊛ Yi

end if
end for
V ← (V1, ..., VN)

d← V
?
= I

return d

Fig. 7. SPDH-Sign

signature; that is, we require that the hash function gives outputs distributed at
‘random’, in some sense. This is accounted for by the ‘Random Oracle Model’:
every time we wish to compute the hash function H, we suppose that an oracle
function of the appropriate dimension selected at random is queried. Any party
can query the random oracle at any time, and the number of these queries is
kept track of.

With this heuristic in place we can prove the security of our signature scheme
relative to SDLP with a simple application of [4, Theorem 19.15] and its corol-
laries:

Theorem 7. Let G be a finite group; (g, ϕ) ∈ G ⋉ Aut(G); and n ∈ N be the
smallest integer such that sg,ϕ(n) = 1. Consider the chosen message attack game
in the random oracle model, where Qs is the number of signing queries made
and Qro is the number of random oracle queries. For any efficient adversary A
and N ∈ N, there exists an efficient adversary B running A as a subroutine such
that the signature scheme SPDH-Signg,ϕ(N) has

δ ≤ Qs

n
(Qs +Qro + 1) +

Qro

2N
+
√
(Qro + 1)sdlp-adv(B, (g, ϕ))

where δ = cma-advro(SPDH-Signg,ϕ(N),A) is the advantage of the signature
scheme in the random oracle model version of the chosen message attack game.

Proof. Applying [4, Theorem 19.15] and [4, Equation 19.21], since the underly-
ing identification scheme has honest verifier zero knowledge there is an efficient
adversary B′ running A as a subroutine such that

δ ≤ γQs(Qs +Qro + 1) +
Qro

∣C∣ +
√
(Qro + 1)inv-adv(B,KeyGeng,ϕ)
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where γ is the probability that a given commitment value appears in a tran-
script, and KeyGeng,ϕ is the key generation algorithm of the underlying identi-
fication scheme. Since choosing a random group element corresponds to choos-
ing a random element of Xg,ϕ, each commitment value in Xg,ϕ has probability
1/∣Xg,ϕ∣ = 1/n of being selected. We have already seen in the proof of Theorem 6
that the advantage of an adversary in the inversion attack game against this key
generation algorithm is bounded by the advantage in an SDLP attack game, and
the result follows. ⊓⊔

The above theorem provides a concrete estimate on the advantage of an ad-
versary in the chosen message attack game; nevertheless, a plain English rephras-
ing is a useful reflection on these results. Essentially, we now know that the
euf-cma security of our signature scheme is reliant on the integer n correspond-
ing to the pair (g, ϕ), the size of N , and the difficulty of SDLP relative to the pair
(g, ϕ). We can discount the reliance on N , which can be ‘artificially’ inflated as
we please; note also that we can intuitively expect the size of n and the difficulty
of SDLP for (g, ϕ) to be at least somewhat correlated, since a small value of n
trivially renders the associated SDLP instance easy by brute force. In essence,
then, we have shown that we can expect the signature scheme corresponding to
(g, ϕ) to be secure provided the associated SDLP instance is difficult.

4 On the Difficulty of SDLP

For any finite group G, we have shown the existence of signature scheme for any
pair (g, ϕ) ∈ G × Aut(G). It is now clear from Theorem 7 that if the signature
is defined with respect to a pair (g, ϕ), SDLP with respect to (g, ϕ) should be
difficult. In this section we discuss sensible choices of G with respect to this
criterion.

As alluded to in the title of this paper we are interested post-quantum hard
instances of SDLP; that is, if an instance of SDLP has a known reduction to a
quantum-vulnerable problem we should consider it to be easy.

There are three key strategies in the literature for addressing SDLP. Two of
them, at face value, appear to solve a problem instead related to SDLP: let us
explore the gap between the problems below.

4.1 Dihedral Hidden Subgroup Problem

It should first be noted that, as with all group action-based cryptography, the
Dihredral Hidden Subgroup Problem will be highly relevant. Indeed, we can
bound the complexity of SDLP above by appealing to Kuperberg’s celebrated
quantum algorithm for the Abelian Hidden Shift Problem [20], defined as follows:

Definition 14. Let A be an abelian group and S be a set. Consider two injective
functions f, g ∶ A → S such that for some h ∈ A, we have f(a) = g(a + h) for
all a ∈ A. We say that the functions f, g ‘hide’ h, and the Abelian Hidden Shift
Problem is to recover h via queries to f, g.



20 C. Battarbee, D. Kahrobaei, L. Perret and S. F. Shahandashti

Adapting an argument seen throughout the literature, but first codified in
its modern sense in [7], gives us the following result.

Theorem 8. Let G be a finite group and let (g, ϕ) ∈ G ⋉Aut(G). Given (g, ϕ)
and a group element sg,ϕ(x), there is a quantum algorithm that recovers x in

time 2O(
√

logn).

Proof. If the relevant abelian group has size n we have the claimed complexity
for an abelian hidden shift problem by [20, Proposition 6.1]. It suffices to show
that one can solve SDLP provided one can solve the abelian hidden shift problem
- the argument goes as follows. Define f, g ∶ Zn → Xg,ϕ by

f([z]n) = [z]n ⊛ sg,ϕ(x) g([z]n) = [z]n ⊛ sg,ϕ(1)

We have for all [z]n ∈ Zn that

f([z]n) = [z]n ⊛ sg,ϕ(x)
= [z]n ⊛ ([x − 1]n ⊛ sg,ϕ(1))
= ([z]n + [x − 1]n)⊛ sg,ϕ(1)
= g([z]n + [x − 1]n)⊛ sg,ϕ(1)

so f and g hide [x − 1]n, from which x ∈ N can be recovered trivially. ⊓⊔

A small amount of detail is suppressed in the above proof: namely, that we
have tacitly assumed knowledge of the quantity n. Since the best algorithm for
the abelian hidden shift problem is quantum anyway, we need not be reticent to
compute n with a quantum algorithm - and since the function sg,ϕ is periodic
in n, certainly such Shor-like techniques are available, such as [8, Algorithm 5].
On the other hand, the ability to compute n efficiently and classically is both
desirable and addressed later in this paper.

4.2 Semidirect Computational Diffie-Hellman

The other major body of work related to the analysis of SDLP addresses the
following related problem:

Definition 15 (Semidirect Computational Diffie-Hellman). Let G be a
finite abelian group, and let (g, ϕ) ∈ G ⋉ Aut(G). Let x, y ∈ N and suppose we
are given the data (g, ϕ), sg,ϕ(x) and sg,ϕ(y). The Semidirect Computational
Diffie-Hellman problem (SCDH) is to compute the value sg,ϕ(x + y).

Recall our discussion of Semidirect Product Key Exchange in Section 2.1.
Notice that SCDH is, similarly to the role of the classic CDH, precisely the
problem of key recovery in Semidirect Product Key Exchange, and moreover
that the relationship between SCDH and SDLP is not immediately obvious. Of
course, one can solve SCDH if one can solve SDLP, but the converse does not
follow a priori.

There are two general approaches for solving SCDH:
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The Dimension Attack. The general form of this argument appears in [24]; we
prefer the slightly more purpose-built exposition of [27]. The idea is basically
that if our group G can be embedded as a multiplicative subgroup of a finite-
dimensional algebra over a field, and if the automorphism ϕ can be extended to
preserve addition on this algebra, we can solve SCDH for some pair (g, ϕ) using
Gaussian elimination.

The Telescoping Attack. In [5], it is noticed that 1∗sg,ϕ(x) = ϕx(g)sg,ϕ(x). Since
we know sg,ϕ(x) we can calculate 1 ∗ sg,ϕ(x) and solve for ϕx(g). In some cases
- notably, in the additive structure given in [26] - this suffices for recovery of
sg,ϕ(x + y).

We comment that a method of efficiently converting an SCDH solver to an
SDLP solver is not currently known. On the other hand, a recent result of Mont-
gomery and Zhandry [23] shows that a computational problem underpinning
SDLP and a computational problem underpinning SCDH10 are (surprisingly)
quantum equivalent. We therefore cautiously conjecture that there exists some
efficient quantum method of converting an SCDH solver to an SDLP solver.

5 A Candidate Group

We propose the following group of order p3, where p is an odd prime, for use
with SPDH-Sign.

Definition 16. Let p be an odd prime. The group Gp is defined by

Gp = {(
a b
0 1
) ∶ a, b ∈ Zp2 , a ≡ 1 mod p}

As discussed in [9], this group is one of two non-abelian groups of order p3

for an odd prime up to isomorphism. It has presentation

Gp⟨x, y ∶ yp = 1, [x, y] = xp =∶ z ∈ Z(Gp), zp = 1

as described in [22]; moreover, its automorphism group is known and has size
(p − 1)p3 by [11, Theorem 3.1].

With respect to the various matters discussed in this paper, we briefly present
the advantages of employing such a group.

Sampling. Recall that our security proof for SPDH-Sign relied heavily on the
underlying identification scheme being honest-verifier zero knowledge, which in
turn relied on the ‘fake’ transcripts to have the same distribution as honestly
generated transcripts. For a pair (g, ϕ), it is therefore important to be able to
sample uniformly at random from the group Zn, where n is the smallest integer
for which sg,ϕ(n) = 1 - in our case, to do so it clearly suffices to compute n.

10 More precisely, the Vectorisation and Parallelisation problems of Couveignes [10],
respectively.
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Here we recall Theorem 4, which tells us basically that, thinking of (g, ϕ) as
a member of the semidirect product group G⋉Aut(G), n must divide the order
of (g, ϕ). We therefore have the following

Theorem 9. Let (g, ϕ) ∈ Gp ×Aut(Gp), where p is an odd prime. Suppose n is
the smallest integer for which sg,ϕ(n) = 1. Then

n ∈ {p, p2, p3, p4, p5, p6, (p − 1), p(p − 1), p2(p − 1), p3(p − 1), p4(p − 1), p5(p − 1)}

Proof. By Theorem 4 we know that n∣ord((g, ϕ)), and it is standard that

ord((g, ϕ)) ∣ ∣Gp ⋉Aut(G)∣

. We know from the discussion at the outset of this section that ∣Gp∣ = p3 and
∣Aut(Gp)∣ = p3(p−1). It follows that n∣p3p3(p−1). Since p is prime, and assuming
that (g, ϕ) is not the identity, the claimed set is a complete list of divisors of
p6(p − 1) - excluding p6(p − 1) itself, since this would imply Gp ⋉ Aut(Gp) is
cyclic.

It follows that for an arbitrary pair (g, ϕ) in Gp ⋉ Aut(Gp), in order to
compute the smallest n for which sg,ϕ(n) = 1, and therefore the group Zn,
one has to compute sg,ϕ(i) for at most 12 values of i. Moreover, by square-
and-multiply each such computation requires O(log p) applications of the group
operation in the semidirect product group. In other words, we can compute a
complete description of Zn efficiently.

SDLP. By Theorem 8 and Theorem 9 we know SDLP in Gp ⋉ Aut(Gp) has

time complexity 2O(
√

log poly(p) = 2O(
√

log p). Taking the security parameter to
be the length of an input, we can represent a pair (g, ϕ) ∈ Gp ⋉ Aut(Gp) with
a bitstring of length O(log p2) = O(log p). Asymptotically, then, with k as the
security parameter we estimate the time complexity of the main quantum attack

on SDLP as 2O(
√
k). On the other hand, in order to derive a concrete estimate

for specific security parameters - say, those required by NIST - one would have
to check the associated constants much more carefully. Although this is outside
the scope of this paper, we refer the reader to [6, Section 7.2 ‘Subexponential
vs Practical’] for an idea of type of spirited research carried out in pursuit of
a satisfactory resolution to deriving concrete security estimates - one should
note, however, that this exposition deals with specific artefacts of the isogeny
framework.

The Dimension Attack. Supposing an efficient method of converting an SCDH
solver to an SDLP solver can be found, one solves SDLP efficiently provided one
can efficiently embed Gp in an algebra over a field. However, as argued in [19], the
following result of Janusz [16] limits the effectiveness of such an approach: the
smallest dimension of an algebra over a field in which a p-group with an element
of order pn can be embedded is 1+pn−1. In our case, certainly Gp has an element
of order p2, and so since the attack relies on Gaussian elimination we expect the
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dimension attack for Gp to have complexity polynomial in (p+1)3 = O(p3). Since
the Gp elements can be represented by a bitstring of order 4 log p2 = 8 log p, with
k the security parameter the dimension attack runs in time O(23k/8).

The Telescoping Attack. In general, the explicit method of deducing sg,ϕ(x+ y)
from sg,ϕ(y) and ϕx(g) relies on the group G being the abelian group of a matrix
alegbra over a field under addition. In particular, an extension outside of this
linear context is not known - we would expect, however, that such an extension
would rely on equation solving techniques available only in an algebra over a
field, rather than over a ring, and therefore that arguments on the efficiency of
a representation discussed above would also apply.

Efficiency. Multiplication in Gp consists of 8 multiplication operations and 4
addition operations in Zp2 , for a total of O(8 log p2) = O(log p) operations.
Assuming that applying an automorphism ϕ has about the same complexity
as multiplication11. It follows by standard square-and-multiply techniques that
calculating sg,ϕ and evaluating the group action is very roughly of complexity
O((log p)2).

The signatures are also rather short, consisting of N elements of Xg,ϕ and N
elements of Zn. Since Xg,ϕ ⊂ Gp we can represent Xg,ϕ elements as bitstrings of
length 4 log(p2) = 8 log p; and since n = pi(p−1)j for some 1 ≤ i ≤ 5 and 0 ≤ j ≤ 1,
Zn elements can be represented by bitstrings of length log pi(p − 1)j . It follows
that we get signatures of length

N((8 + i) log p + j log(p − 1))

6 Conclusion

We have given a constructive proof that a few elementary definitions give rise to
a free, transitive group action; such a group action naturally gives rise to an iden-
tification scheme and a signature scheme. Moreover, well-known tools allow us to
phrase the security of this signature scheme in terms of the semidirect discrete
logarithm problem, which is itself a special case of Couveignes’ Vectorisation
Problem.

Our main contributions are as follows: firstly, the generality of the construc-
tion gives an unusually diverse family of signature schemes - indeed, a signature
scheme of the SPDH-Sign type is defined for each finite group. Much further
study on the relative merits of different choices of finite group in different use
cases is required to fully realise the potential of this diversity.

Second, our Theorem 4 essentially gives us information about how to compute
the group in our group action. In Theorem 9, we saw one particular case where
the result was enough to completely describe how to efficiently compute the
group, thereby yielding an example of a group-action based key exchange in
which efficient sampling is possible from the whole group, without appealing to

11 This is indeed the case if the automorphism is inner.
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techniques inducing additional overhead, most notably the ‘Fiat-Shamir with
aborts’ technique of Lyubashevsky.

The paper notably does not address concrete security estimates or recom-
mend parameter sizes for a signature scheme. In order to do so we would need to
carefully check the constants in the asymptotic security estimates - we consider
the scale of this task, along with that of providing an implementation of the
scheme, as sufficient to merit a separate paper.

At a late stage of the preparation of this manuscript the authors were made
aware of work in [13] discussing the security of group action-induced computa-
tional problems, particularly in a quantum sense. The arguments therein should
be addressed when discussing the difficulty of SDLP in subsequent work.
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