
Threshold Signatures from Inner Product Argument: Succinct,
Weighted, and Multi-threshold

Sourav Das
1

Philippe Camacho
2

Zhuolun Xiang
3

Javier Nieto
1

Benedikt Bünz
2

Ling Ren
1

1
University of Illinois at Urbana-Champaign,

2
Espresso Systems,

3
Aptos

{souravd2, jmnieto2, renling}@illinois.edu, xiangzhuolun@gmail.com, {benedikt, philippe}@espressosys.com

ABSTRACT
Threshold signatures protect the signing key by sharing it among

a group of signers so that an adversary must corrupt a threshold

number of signers to be able to forge signatures. Existing thresh-

old signatures with succinct signatures and constant verification

times do not work if signers have different weights. Such weighted

settings are seeing increasing importance in decentralized systems,

especially in the Proof-of-Stake blockchains. This paper presents

a new paradigm for threshold signatures for pairing- and discrete

logarithm-based cryptosystems. Our scheme has a compact veri-

fication key consisting of only 7 group elements, and a signature

consisting of 8 group elements. Verifying the signature requires

1 exponentiation and 13 bilinear pairings. Our scheme supports

arbitrary weight distributions among signers and arbitrary thresh-

olds. It requires non-interactive preprocessing after a universal

powers-of-tau setup. We prove the security of our scheme in the

Algebraic Group Model and implement it using golang. Our evalu-
ation shows that our scheme achieves a comparable signature size

and verification time to a standard (unweighted) threshold signa-

ture. Compared to existing multisignature schemes, our scheme

has a much smaller public verification key.

1 INTRODUCTION
The increasing demand for decentralized Byzantine Fault Toler-

ant (BFT) applications has resulted in a large scale adoption of

threshold signature schemes. Many state-of-the-art BFT proto-

cols utilize threshold signatures to lower communication costs [1,

32, 36, 43, 45, 50]. Furthermore, efforts to standardize threshold

cryptosystems are already underway [46]. A threshold signature

scheme [10, 34] enables distributing a secret signing key among

multiple signers such that each can generate a partial signature

over any message using its key share. Given sufficiently many par-

tial signatures, any untrusted aggregator can aggregate the partial

signatures into a threshold signature.

Traditionally, threshold signatures have been studied in the un-
weighted settingwhere each signer has equal weight; in other words,
the threshold is measured by the number of signers who signed.

However, this is not suitable for many applications. For instance,

in Proof-of-Stake (PoS)[28, 36] blockchains and Decentralized Au-

tonomous Organizations (DAO) [26] the weight of each signer is

determined by the amount of stake they own in the system, and

the threshold is measured by the combined stake among those who

signed. Another application that calls for the weighted setting is

off-chain voting where weighted votes are aggregated offline and

only the final aggregated vote is posted to the blockchain.

Existing approaches and their limitations. Existing (unweighted)
threshold signature schemes [10, 40] with 𝑛 signers and threshold

𝑡 use a (𝑛, 𝑡) Shamir secret sharing [47] so that each signer has one

share of the signing key. These schemes have constant signature

size, verification key size, and verification time in the unweighted

setting.

Here is a straightforward folklore approach to extend these

schemes to support arbitrary weight distributions. The signing

key is secret shared using a (∥𝒘 ∥1, 𝑡) Shamir secret sharing scheme,

where ∥𝒘 ∥1 is the total weight of all signers. A signer with weight

𝑤 then receives 𝑤 signing keys and plays the roles of 𝑤 virtual
signers. (Hence, this approach is also called virtualization.) With

this approach, a signer’s signing cost and partial signature size are

proportional to its weight, and the aggregator’s cost is proportional

to the total number of virtual signers or total weight ∥𝒘 ∥1. These
costs can be very expensive in many target applications. For exam-

ple, in Ethereum PoS, there are more than 500,000 validators (akin

to virtual signers in our context) and the count is still increasing.

Alternatively, multisignatures schemes [12] naturally supports

arbitrary weight distributions and only requires one signing key

per signer, regardless of its weight. However, its main downside is

that the verification key size and verification time increase linearly

in the number of signers.

Yet another approach to weighted threshold signature is to use

generic SNARKs. Here, each signer uses its signing key to compute a

partial signature and sends it to an aggregator. The aggregator then

generates a SNARK proof that it has seen valid partial signatures

from signers with a combined weight of at least 𝑡 . However, in spite

of recent progress, the SNARK proof generation at the aggregator

is still prohibitively expensive (§6).

Micali et al. [44] proposed a weighted threshold signature with

sublinear signature size and verification time. However, the con-

crete signature size of their scheme is large. Another drawback of

their scheme is that the aggregator needs to collect signatures with

combined weights significantly higher than the required threshold.

Our Results. In this paper, we present a new threshold signature

paradigm that supports arbitrary weight distribution among sign-

ers and offers several other advantages over existing schemes. We

summarize these properties and compare them with existing ap-

proaches in Table 1. Crucially, the signature size and the verification

time of our scheme are independent of the number of signers 𝑛,

their weight distributions, and the threshold 𝑡 . More precisely, our

scheme has a small signature size of only 8 elliptic curve group

elements, and efficient signature verification involving only 1 group

exponentiation and 13 pairings. Each signer’s signing key is a sin-

gle field element, and the signing cost for each signer is constant

(independent of its weight).

Our scheme offers another advantage over standard threshold

signatures: it supports all possible thresholds at the same time. In

contrast, standard threshold schemes must fix a single threshold

1

Table 1: Comparison of threshold signature schemes. We measure the computation cost in units of field operations and group exponentiations.
S
c
h
e
m
e
o
r

A
p
p
r
o
a
c
h
e
s

S
i
g
n
i
n
g
k
e
y

s
i
z
e

S
i
g
n
i
n
g
c
o
s
t

p
e
r
s
i
g
n
e
r

S
i
g
n
a
t
u
r
e

s
i
z
e

V
e
r
i
fi
c
a
t
i
o
n

k
e
y
s
i
z
e

V
e
r
i
fi
c
a
t
i
o
n

c
o
s
t

A
g
g
r
e
g
a
t
i
o
n

k
e
y
s
i
z
e

A
g
g
r
e
g
a
t
i
o
n

c
o
s
t

M
u
l
t
i
-
t
h
r
e
s
h
o
l
d

S
e
t
u
p

Virtualization 𝑤𝑖 F 𝑂(𝑤𝑖) 1 G 1 G 𝑂(1) 𝑂(∥𝒘 ∥1) 𝑂(∥𝒘 ∥1) ✗ DKG

Multisignature 1 F 𝑂(1) 𝑛 bits + 1 G 𝑛 G 𝑂(𝑛) 𝑂(𝑛) 𝑂(𝑛) ✓ PKI

SNARK [37] 1 F 𝑂(1) 3 G 7 G 𝑂(1) Large High ✓ MPC

CCoK [44] 2𝜅 𝑂(1) 𝑂(𝜅𝜆𝑠 log𝑛)
∗

2𝜅 𝑂(𝜆𝑠 log𝑛) 𝑂(𝑛) 𝑂(𝑛 + 𝜆𝑠 log𝑛)
† ✓ PKI

This work 1 F 𝑂(1) 8 G + 1 Z 7 G 𝑂(1) 𝑂(𝑛) 𝑂(𝑛) ✓ PKI, 𝑞-SDH

†
The comptuation cost are hashing.

∗
The 𝜆𝑠 is an soundness parameter.

a priori. We do not find any agreed-upon distinctions between

multisignature and threshold signature in the literature. But a main

difference seems to be that multisignature schemes support multiple

thresholds. If one views multisignatures as threshold signatures

with multiple thresholds (and no other requirements), then our

scheme is also a new succinct multisignature scheme.

A key component of our construction is a new efficient inner-

product argument (IPA) that proves the inner product between the

vector of public keys and the list of signers who have signed the

message. Our IPA uses bilinear pairing, is non-interactive in the

algebraic group model (AGM), and has a constant proof size and

verification time.

Our IPA also enables a new multiverse threshold signature [4]

with comparable efficiency and non-interactive preprocessing after

a universal powers-of-tau setup. We also present a modified IPA

for field elements in Appendix A. We believe these results might

be of independent interest.

Evaluation.We have implemented our threshold signature scheme

in golang using BLS signatures as the underlying signature scheme.

We measure the time costs for signing, aggregation and verifica-

tion, and compares them BLS threshold signature, multisignature,

generic SNARK, and the scheme of [44]. Our evaluation confirms

the concrete efficiency of our scheme. Using BLS12381 as the un-

derlying elliptic curve, our signature sizes are only 536 bytes, inde-

pendent of the number of signers. The verification time is also only

8.21 milliseconds. Also, with 4096 signers, the aggregator requires

only 690 milliseconds to compute the aggregated signature.

Paper organization. The rest of the paper is organized as follows.

We present an overview of our signature scheme in §2. We define

threshold signature schemes and give the required preliminaries

in §3.We describe our scheme in detail in §4, and analyze its security

and performance in §5. We present details of our implementation

and evaluation results in §6. We discuss related work in §7 and

conclude with a discussion in §8.

2 TECHNICAL OVERVIEW
LetG be an elliptic curve groupwith F as its scalar field. Let𝑔 ∈ G be

a generator. Our starting point will be the aforementioned weighted

multisignature scheme. To be concrete, throughout this paper, we

will use the pairing-based BLS multisignature [12], which roughly

works as follows.

Each signer samples its signing key independently at random.

Let 𝒔 = [𝑠1, 𝑠2, . . . , 𝑠𝑛] ∈ F𝑛 be the vector of signing keys. Also,

let 𝒑𝒌 = [𝑔𝑠1 , 𝑔𝑠2 , . . . , 𝑔𝑠𝑛] ∈ G𝑛 and 𝒘 = [𝑤1,𝑤2, . . . ,𝑤𝑛] ∈ F𝑛 be

the vectors of public keys and weights, respectively. To compute a

multisignature on a message𝑚, each signer 𝑖 uses its signing key

to compute the partial signature 𝜎𝑖 = H(𝑚)
𝑠𝑖 ∈ G, and sends it to

the aggregator P. Here, H(·) is a random oracle.

P validates the partial signatures it receives. Let 𝐼 ⊆ [𝑛] be the

subset of signers from whom the aggregator receives valid partial

signatures. Let 𝒃 = [𝑏1, 𝑏2, . . . , 𝑏𝑛] ∈ {0, 1}𝑛 be a bit vector where

𝑏𝑖 = 1 for each 𝑖 ∈ 𝐼 and 0 otherwise. The multisignature on 𝑚

is then the tuple (𝒃, 𝜎), where 𝜎 =

∏
𝑖∈𝐼 𝜎𝑖 . The threshold of the

multisignature is 𝑡 =

∑
𝑖∈𝐼 𝑤𝑖 .

Upon receiving the signature (𝒃, 𝜎) on a message 𝑚, the ver-

ifier V computes the aggregated public key 𝑔𝜇 =

∏
𝑖∈𝐼 𝑔𝑠𝑖 . V

then checks that 𝜎 is a valid signature with respect to the 𝑔𝜇 , i.e.,

𝑒(𝑔𝜇 ,H(𝑚)) = 𝑒(𝑔, 𝜎). If the check is successful,V accepts the signa-

ture as a weighted threshold signature with threshold 𝑡 =

∑
𝑖∈𝐼 𝑤𝑖 .

2.1 Multisignature to Inner Product Argument
As a stepping stone to our scheme, we formulate the aggregation

and verification of the above multisignature scheme as the relation

RTS as follows. Let 𝑐𝒑𝒌 and 𝑐𝒘 be the succinct commitments to

the vector 𝒑𝒌 and 𝒘 , respectively. For now, we assume that the

commitments to the 𝑐𝒑𝒌 and 𝑐𝒘 are computed honestly and are

known to the verifier. Moreover, we assume that the total weight

∥𝒘 ∥1=

∑
𝑖∈[𝑛]

𝑤𝑖 < |F|.
For any message𝑚, P computes the commitment 𝑐𝒃 to the bit

vector 𝒃 , the aggregated public key 𝑔𝜇 , the threshold 𝑡 , and the

aggregated signature 𝜎 . P then sends the tuple (𝑚,𝑐𝒃 , 𝑔𝜇 , 𝑡, 𝜎) toV
along with a proof 𝜋 that these values are computed correctly.V
upon receiving the tuple and the proof validates their correctness

with respect to𝑚,𝑐𝒑𝒌 , 𝑐𝒘 . We formalize these ideas in the relation

RTS below.

2

RTS :



{𝑐𝒃 , 𝑔𝜇 , 𝜎} ∈ G3

∧
𝑒(𝑔𝜇 ,H(𝑚)) = 𝑒(𝑔, 𝜎)

(𝝈 ,𝒑𝒌,𝒘, 𝒃)

𝒑𝒌 ∈ G𝑛 ; 𝑐𝒑𝒌 = com(𝒑𝒌)

𝒘 ∈ F𝑛, ∥𝒘 ∥1< |F|; 𝑐𝒘 = com(𝒘)

𝒃 ∈ {0, 1}𝑛 ; 𝑐𝒃 = com(𝒃)

𝝈 ∈ G𝑛 ; ⟨𝝈 , 𝒃⟩ = 𝜎

⟨𝒘, 𝒃⟩ ≥ 𝑡 ; ⟨𝒑𝒌, 𝒃⟩ = 𝑔𝜇


Here, 𝝈 = [𝜎1, 𝜎2, . . . , 𝜎𝑛] is the vector of partial signatures where

we use 𝜎𝑖 = 1G as default for each 𝑖 with 𝑏𝑖 = 0.

Note that a secure protocol for RTS implies a secure weighted

threshold signature scheme. Also, the signature scheme will inherit

the efficiency properties of the protocol for RTS. Hence, we can

now focus on designing an efficient protocol for RTS.

RTS as an inner product argument. Our next key idea is to

formulate RTS as an inner product argument (IPA) between P and

V . The constraints 𝑡 = ⟨𝒘, 𝒃⟩ and 𝑔𝜇 = ⟨𝒑𝒌, 𝒃⟩ are naturally inner

product constraints. There have also been recent works that use

IPA to prove that a committed vector is binary [17, 19]. However,

to achieve efficiency comparable to existing threshold signatures,

we need to address many challenges, both for ⟨𝒑𝒌, 𝒃⟩ and proving

that 𝒃 is a bit vector. We next discuss these challenges in §2.2 and

describe our solutions in §2.3.

2.2 Challenges with using existing IPA protocol
To get an efficient threshold signature scheme, the protocol for RTS

must be succinct, i.e., with sublinear proof size and sublinear veri-

fication time. For the inner product ⟨𝒘, 𝒃⟩, both vectors consist of

field elements. We can then use the existing IPA protocol from [42],

which has an 𝑂(1) proof size and verification time.

The main challenge is the inner product ⟨𝒑𝒌, 𝒃⟩. This is an inner

product between a vector of group elements 𝒑𝒌 and a vector of

field elements 𝒃 . The only known IPA schemes for group elements

are the structured key generalized inner product argument (GIPA)

from [19] and its transparent setup variant [41]. This approach has

logarithm proof size and logarithmic verification time, a moderate

cost asymptotically. Its concrete efficiency is much worse. In partic-

ular, the proof consists of elements in the target group, which are

much larger than the source group elements; similarly, signature

verification involves operations in the target group, which are more

expensive. Moreover, the prover time is also concretely inefficient

as the prover needs to perform 2𝑛 pairing operations.

The second challenge is that existing IPA schemes for proving

a vector binary require V to compute commitment to a random

vector [17, 19]. Computing this commitment requiresV to perform

𝑂(log𝑛) group operations. In §4.2, we will describe an approach

that obviates the need for additional random vectors and achieves

a 𝑂(1) verification cost.

For now, we focus on the main challenge of proving 𝑔𝜇 = ⟨𝒑𝒌, 𝒃⟩.

2.3 Our Approach
Note that the inner product ⟨𝒑𝒌, 𝒃⟩ is nothing but 𝑔⟨𝒔,𝒃 ⟩ . So we

want P to give IPA for ⟨𝒔, 𝒃⟩ in the exponent. The challenge is

that P does not know the secret key vector 𝒔. Fortunately, signers
collectively know 𝒔, and will assist P in producing the IPA.

In the rest of this overview, we will first describe the high-level

idea of a new IPA protocol for ⟨𝒔, 𝒃⟩ assuming P knows 𝒔. We

then describe how P, with assistance from the signers and without

knowing 𝒔, can efficiently compute the IPA for the inner product

⟨𝒔, 𝒃⟩ in the exponent. We note the IPA we describe below is not

secure as is. We present it only to demonstrate our main idea and

we refer readers to Appendix A for the complete protocol.

The IPA for field elements.The IPA protocol uses a powers-of-tau

of degree 𝑛, i.e., [𝑔,𝑔𝜏 , 𝑔𝜏
2

, . . . , 𝑔𝜏
𝑛

], as the CRS. Let 𝜇 be the claimed

inner product, i.e., P wants to convinceV that 𝜇 = ⟨𝒔, 𝒃⟩. Let 𝑠(·)
and𝑏(·) be the two polynomials of degree𝑛−1 with 𝑠(𝜔𝑖

) = 𝒔[𝑖], and
𝑏(𝜔𝑖

) = 𝒃[𝑖], respectively. Here, 𝜔 ∈ F is a 𝑛-th root of unity. Then,

let 𝑐𝒔 = 𝑔𝑠(𝜏)
and 𝑐𝒃 = 𝑔𝑏(𝜏)

be the commitments of the vectors 𝒔 and
𝒃 , respectively. We assume thatV has access to the commitments

𝑐𝒔 and 𝑐𝒃 . Our IPA uses the following polynomial identity:

𝑠(𝑥)𝑏(𝑥) = 𝑞(𝑥) · 𝑧𝐻 (𝑥) + 𝑥 · 𝑟 (𝑥) + ⟨𝒔, 𝒃⟩ · 𝑛−1

here 𝑧𝐻 (𝑥) is the degree 𝑛 polynomial that evaluates to zero at all

points 𝜔𝑖
for all 𝑖 ∈ [𝑛]. Also, 𝑞(𝑥) and 𝑟 (𝑥) are the unique quotient

and remainder polynomials, each of degree 𝑛 − 2 (cf. §3.6).

The IPA for ⟨𝒔, 𝒃⟩ is the tuple (𝑔𝑞, 𝑔𝑟) = (𝑔𝑞(𝜏), 𝑔𝑟 (𝜏)
). V upon

receiving (𝑔𝑞, 𝑔𝑟) accepts 𝜇 as the inner product if the following

check pass,

𝑒(𝑐𝒔 , 𝑐𝒃) = 𝑒

(
𝑔𝑞, 𝑔

𝑧𝐻 (𝜏)

)
· 𝑒

(
𝑔𝑟 , 𝑔

𝜏) · 𝑒 (
𝑔𝜇 , 𝑔1/𝑛

)
(1)

Our IPA protocol is non-interactive and has a constant proof

size and verification time. Also, P incurs a computation cost of

𝑂(𝑛 log𝑛) field operations and 𝑂(𝑛) group exponentiations.

With this approach,P needs to compute the tuple (𝑐𝒔 , 𝑐𝒃 , 𝑔
𝑞(𝜏), 𝑔𝑟 (𝜏)

).

Computing 𝑐𝒃 is easy as P knows 𝒃 . Computing the other three

would also have been easy had P known 𝒔. But in reality, P needs to

compute them only with access to the public keys and the powers-

of-tau CRS. We next describe how P can do so with one-time

assistance from all the signers.

Computing the commitment to 𝒔. In our scheme, each signer

𝑖 , besides publishing 𝑔𝑠𝑖 , also publishes 𝑔𝑠𝑖L𝑖 (𝜏)
. Here, L𝑖 (𝑥) is the

𝑖-th Lagrange polynomial defined over the set 𝐻 (cf. §3.6). Using

these additional values, P computes 𝑐𝒔 as:

𝑐𝒔 = 𝑔𝑠(𝜏)
=

∏
𝑖∈[𝑛]

𝑔𝑠𝑖L𝑖 (𝜏)

Here, we are assuming a canonical ordering between the signers.

Note that L𝑖 (𝑥) for each 𝑖 ∈ [𝑛] are polynomials of degree 𝑛 − 1,

and hence can be computed from powers-of-tau CRS using only

public operations. Also, given 𝑔𝑠𝑖 , the term 𝑔𝑠𝑖L𝑖 (𝜏)
is publicly veri-

fiable using a non-interactive zero-knowledge (NIZK) protocol for

equality of discrete logarithm.

Computing the IPA proof. Even with assistance from signers,

computing the IPA proof (𝑔𝑞(𝜏), 𝑔𝑟 (𝜏)
) seems to require P to perform

𝑂(𝑛2
) group exponentiations and store 𝑂(𝑛2

)-sized aggregation

keys. Both of these quickly become prohibitive for a moderate

number of signers. We give a method that performs a one-time

preprocessing that involves𝑂(𝑛2
) group exponentiations. After that,

the aggregator P stores a linear-sized aggregation key, and each

signature aggregation involves only 𝑂(𝑛) group exponentiations.

3

Table 2: Notations used in the paper

Notation Description

𝜅 Security parameter

𝑛, 𝑡 Total number of signers and signature threshold

[𝑛] The set {1, 2, 3, . . . , 𝑛}
G, F Elliptic curve group with scalar field F.

𝑔,ℎ, 𝑣 Random and independent generators of G

𝑤𝑖 , 𝑠𝑖 , 𝑔
𝑠𝑖 Weight, signing key and public key of signer 𝑖

𝒔 Vector [𝑠1, 𝑠2, . . . , 𝑠𝑛] of signing keys.

𝒘, ∥𝒘 ∥1 Vector of weights of all signers and total weight

𝑎𝑘, 𝑣𝑘 Public aggregation key and public verification key

𝑚 Message to be signed

𝜎𝑖 , 𝜎 Partial signature of signer 𝑖 and the aggregate signature

𝒃 Bit vector indicating the set of valid partial signatures

𝐻 Multiplicative subgroup {𝜔,𝜔2, . . . , 𝜔𝑛 } ⊆ F of order 𝑛.
𝐿 Subgroup of order ≥ 𝑛 − 1 with 𝐻 ∩ 𝐿 = 𝜙

L𝑖,𝐻 (𝑥) The Lagrange polynomial L𝜔𝑖 ,𝐻 (𝑥)

H,HFS,Hpop Random oracles

𝜏 The 𝑞-SDH trapdoor

𝑔𝑖 , ℎ𝑖 𝑔𝑖 = 𝑔L𝑖,𝐻 (𝜏)
and ℎ𝑖 = ℎL𝑖,𝐻 (𝜏)

Non-interactive and transferable preprocessing. Our prepro-
cessing step is non-interactive. Each signer can sample its sign-

ing key independently and publish the corresponding public key

along with necessary helper data . An aggregator can then use

these values to compute the linear-sized aggregation key and the

constant-sized verification key as the preprocessing step. We also

remark that although our preprocessing step costs 𝑂(𝑛2
) group

exponentiation, its output (aggregation key) is publicly verifiable

using only 𝑛 group exponentiations and 3 pairings. This makes the

aggregation key transferable, i.e., it is sufficient if one aggregator

performs the preprocessing and sends the provable results to other

potential aggregators in the system. We will present details in §4.4.

3 SYSTEM MODEL AND PRELIMINARIES
Notations. We use 𝜅 to denote the security parameter. We also

use 𝜅 to denote the size of a group element and the output size of

cryptographic objects, for example, the length of the random oracle

output. These objects may slightly differ in size in practice, but they

are roughly on the same order. Alternatively, one can interpret 𝜅 as

the largest among them. For any integer 𝑎, we use [𝑎] to denote the

ordered set {1, 2, . . . , 𝑎}. For two integers 𝑎 and 𝑏 where 𝑎 < 𝑏, we

use [𝑎, 𝑏] to denote the ordered set {𝑎, 𝑎 + 1, . . . , 𝑏}. A machine is

probabilistic polynomial time (PPT) if it is a probabilistic algorithm

that runs in poly(𝜅) time. We summarize the notations in Table 2.

3.1 Threshold Signature
Let there be 𝑛 signers, denoted with 1, 2, . . . , 𝑛 where the 𝑖-th signer

has weight𝑤𝑖 . Let𝒘 = [𝑤1,𝑤2, . . . ,𝑤𝑛] be the vector consisting of

weights of all the signers, with total weight ∥𝒘 ∥1< 𝑞. The constraint

∥𝒘 ∥1< 𝑞 guarantees that there is no wrap-around while computing

the signature threshold. The signers wish to sign a message𝑚 and

produce a aggregate signature 𝜎 , such that 𝜎 convinces a client

that signers with a combined weight of at least 𝑡 have signed the

message𝑚. We also assume that the client has access to the public

verification key of the signature scheme.

A (weighted) threshold signature scheme roughly works as fol-

lows. A key generation algorithm takes as input the number of

signers 𝑛, and a vector of weights 𝒘 . The key generation algo-

rithm generates the public verification key 𝑣𝑘 and 𝑛 signing keys

𝒔 = [𝑠1, 𝑠2, . . . , 𝑠𝑛], one for each signer. The key generation algo-

rithm additionally outputs a public aggregation key 𝑎𝑘 . For any

given message𝑚, the signers use their signing keys to create par-

tial signatures and send them to an aggregator denoted as P. P,
using the aggregation key 𝑎𝑘 , aggregates valid partial signatures

corresponding to a total weight of 𝑡 , and computes the aggregate

signature 𝜎 . Any verifier V with access to 𝑣𝑘 uses the signature

verification algorithm to verify that 𝜎 is a valid aggregate signature

on message𝑚 with respect to the public verification key 𝑣𝑘 , and is

signed by signers of a total weight of at least 𝑡 .

Definition 3.1 (Weighted Threshold Signature). Let {1, 2, 3, . . . , 𝑛}
be a set of 𝑛 signers. Let𝒘 = [𝑤1,𝑤2, . . . ,𝑤𝑛] be the set of weights

where 𝑤𝑖 represents the weight of signer 𝑖 . Let ∥𝒘 ∥1=

∑
𝑖∈[𝑛]

𝑤𝑖 .

Each signer 𝑖 has a signing and public key 𝑠𝑖 and 𝑝𝑘𝑖 , respectively.

Let 𝑎𝑘 and 𝑣𝑘 be the public aggregation key and verification key, re-

spectively. With this setup, a weighted threshold signature scheme

has the following interfaces.

• Setup(1
𝜅

)→ 𝑝𝑝 . The setup algorithm Setup takes the security

parameter as input and outputs the public parameters 𝑝𝑝 of the

signature scheme.

• KeyGen(𝑝𝑝, 𝑛,𝒘) → 𝑣𝑘, 𝑎𝑘, [𝑠1, . . . , 𝑠𝑛], [𝑝𝑘1, . . . , 𝑝𝑘𝑛]. The key

generation algorithm KeyGen takes as input the public parame-

ters 𝑝𝑝 , the total number of nodes 𝑛 and a vector of weights 𝒘 .
The algorithm outputs the global verification key 𝑣𝑘 , aggregation

key 𝑎𝑘 , and per signer signing and public key (𝑠𝑖 , 𝑝𝑘𝑖).

• PSign(𝑠𝑖 ,𝑚) → 𝜎𝑖 : Signer 𝑖 uses the PSign algorithm with its

signing key 𝑠𝑖 to generate a partial signature 𝜎𝑖 .

• PVerify(𝑚,𝜎𝑖 , 𝑝𝑘𝑖)→ 0/1: The verify algorithm takes a message

𝑚, public key 𝑝𝑘𝑖 , and a potential signature 𝜎𝑖 checks whether

𝜎𝑖 is generated using the signing key 𝑠𝑖 .

• Combine({𝜎𝑖 }, 𝑡, 𝑎𝑘)→ 𝜎 : On input a set of valid partial signa-

tures of sum total weight of at least 𝑡 ≤ ∥𝒘 ∥1, and the public

aggregation key 𝑎𝑘 , the Combine algorithm generates a aggre-

gate signature 𝜎 .

• Verify(𝑚,𝜎, 𝑣𝑘, 𝑡) → 0/1: Outputs 1 only if the message 𝑚 is

signed by signers with total weight of at least 𝑡 .

The WTS scheme should satisfy the following correctness, secu-

rity and efficiency properties.

Correctness. For any 𝑛, weights 𝒘 with ∥𝒘 ∥1< 𝑞, and threshold

𝑡 ≤ ∥𝒘 ∥1, an honestly generated partial signature should always

pass the partial verification, and an honestly generated aggregate

signature should always pass the final verification. Formally,

Pr[PVerify(𝑚, PSign(𝑚, 𝑠𝑖), 𝑝𝑘𝑖) = 1] = 1,

Pr[Verify(𝑚,Combine({𝜎𝑖 }, 𝑡, 𝑎𝑘), 𝑣𝑘, 𝑡 ′) = 1] = 1

where 𝑡 ′ < 𝑡 , and 𝑠𝑖 , 𝑝𝑘𝑖 for all 𝑖 ∈ [𝑛], 𝑣𝑘 and 𝑎𝑘 are generated

from the Setup and KeyGen algorithms.

Unforgeability. We define the unforgeability game as follows. We

consider an adaptive adversary A that initially corrupts a subset

𝐹0 ⊂ [𝑛] of signers. A interacts with a challenger C to receive

arbitrarily many partial signatures on any messages of its choice.

4

During its interaction with C, A can corrupt additional signers.

Let 𝐹 ⊆ [𝑛] be the subset of signers A eventually corrupts. Also,

let𝑤𝐹 =

∑
𝑖∈𝐹 𝑤𝑖 be the total weight of the corrupt signers. Then,

A outputs a message signature pair (𝜎,𝑚∗, 𝑡).
The forgery is considered non-trivial if Verify(𝜎,𝑚∗, 𝑡, 𝑣𝑘) = 1,

and A has queried partial signatures of weight less than 𝑡 −𝑤𝐹 on

the message𝑚∗. We describe the unforgeability game in Figure 1.

Unforgeability game

𝑝𝑝 ← Setup(1
𝜅

)

(𝑛,𝒘, 𝐹0)← A0(𝑝𝑝) // 𝐹 is the set of corrupt nodes

(𝑣𝑘, {𝑝𝑘𝑖 }, {𝑠𝑖 }, 𝑎𝑘)← KeyGen(𝑝𝑝, 𝑛,𝒘)

(𝑚∗, 𝜎, 𝑡)← AOsign(·,·),Ocur(·)
(𝑣𝑘, {𝑝𝑘𝑖 }𝑖∈[𝑛]

, 𝑎𝑘)

where Osign(𝑆 ′,𝑚′) returns partial signature on the message

𝑚′ from each signer in 𝑆 ′ and Ocur(·) lets A to corrupt addi-

tional signers.

Winning condition: Output 1 if Verify(𝑝𝑝,𝑚∗, 𝜎, 𝑣𝑘, 𝑡) = 1

and A has queried Osign(𝑆,𝑚∗) and𝑤𝑆 < 𝑡 −𝑤𝐹 . Here, 𝐹 is

the set of signers A eventually corrupts. Also,𝑤𝑆 and𝑤𝐹 is

the sum total of weights of signers in 𝑆 and 𝐹 , respectively.

Figure 1: Game defining the advantage of an PPT adversary A to
produce a valid forgery against the threshold signature scheme with
respect to a security parameter 𝜅.

3.2 Bilinear Pairing and Assumptions
Definition 3.2 (Bilinear Pairing). Let G1,G2 and G𝑇 be three

prime order cyclic groups with scalar field F. Let 𝑔1 ∈ G1 and

𝑔2 ∈ G2 be the generators. A pairing is an efficiently computable

function 𝑒 : G1 × G2 → G𝑇 satisfying the following properties.

(1) bilinear: For all 𝑢,𝑢′ ∈ G1 and 𝑣, 𝑣 ′ ∈ G1 we have

𝑒(𝑢 · 𝑢′, 𝑣) = 𝑒(𝑢, 𝑣) · 𝑒(𝑢′, 𝑣), and

𝑒(𝑢, 𝑣 · 𝑣 ′) = 𝑒(𝑢, 𝑣) · 𝑒(𝑢, 𝑣 ′)

(2) non-degenerate: 𝑔𝑇 := 𝑒(𝑔1, 𝑔2) is a generator of G𝑇 .

We refer to G1 and G2 as the pairing groups or source groups, and

refer to G𝑇 as the target group.

Assumption 1 (co-CDH). A pairing group (G1,G2) with generator

(𝑔1, 𝑔2) and a bilinear pairing 𝑒 : G1×G2 → G𝑇 satisfies the co-CDH

assumption if, for all PPT adversary A, it holds that

Pr[A(𝑔1, 𝑔2, 𝑔
𝑠
1
, 𝑔𝑠

2
, 𝑔𝑟

2
) = 𝑔𝑠𝑟

2
: 𝑠, 𝑟 ← F] = negl(𝜅) (2)

Remark. Our threshold signature scheme is secure even with sym-

metric pairing groups, i.e., G1 = G2. Thus, here on, we describe our

protocol using only a symmetric group G = G1 = G2.

Assumption 2 (𝑞-Strong Diffie-Hellman [11]). The 𝑞-Strong Diffie-

Hellman (𝑞-SDH) assumption states that for every efficient adver-

sary A and degree bound 𝑛 ∈ N, the following probability is negli-

gible in the security parameter 𝜅:

Pr


𝑔𝑐 = 𝑔1/(𝜏+𝑐)

(𝑔, F,G) = Setup(1
𝜅

)

𝜏 ← F

𝑝𝑝 ←
{
𝑔,𝑔𝜏 , 𝑔𝜏

2

, . . . , 𝑔𝜏
𝑛
}

(𝑐, 𝑔𝑐)← A((𝑔, F,G), 𝑝𝑝)


3.3 Algebraic Group Model (AGM)
Weprove security of our protocol in the Algebraic GroupModel [29].

In the AGM, all algorithms are modeled as algebraic, i.e., whenever

the algorithm outputs a group elementℎ, the algorithm also outputs

an representation of ℎ with respect to all the group elements it has

seen so far.

Definition 3.3 (Algebraic Algorithm). LetG be a prime order cyclic

group with scalar field F. LetA
Alg

be a probabilistic algorithm run

on initial inputs including the description (F,G). During its exe-

cution A
Alg

receive further inputs including obliviously sampled

group elements (which it can not sample directly). Let 𝒈 ∈ G𝑛 be

the list of all group elements A
Alg

has been given so far such that

any other inputsA
Alg

has received do not depend on the input. We

callA
Alg

algebraic, if wheneverA
Alg

outputs a new group element

ℎ ∈ G, it also outputs a vector 𝒂 = [𝑎1, 𝑎2, . . . , 𝑎𝑛] ∈ F𝑛 such that

ℎ =

∏
𝑖∈[𝑛]

𝑔
𝑎𝑖
𝑖
. The coefficients 𝒂 are called the representation of ℎ

with respect to ℎ = ⟨𝒂,𝒈⟩.

3.4 Pairing based Multisignature
Let 𝒑𝒌 = [𝑔𝑠1 , 𝑔𝑠2 , . . . , 𝑔𝑠𝑛] be the list of public keys of signers

and let 𝒘 be the corresponding weight vector. The pairing based

multisignature on a message𝑚 with claimed weight 𝑡 , is the tuple

(𝜎, 𝒃) ∈ G × {0, 1}𝑛 that satisfy the following:

⟨𝒘, 𝒃⟩ ≥ 𝑡 and 𝑒(𝑔𝜇 ,H(𝑚)) = 𝑒(𝑔, 𝜎); where 𝑔𝜇 =

∏
𝑖∈[𝑛]

(
𝑔𝑠𝑖

)𝒃[𝑖]

Here H(·) is the random oracle and 𝜎 is the aggregated signature

defined as:

𝜎 =

∏
𝑖∈[𝑛];𝑏𝑖=1

𝜎𝑖 ; where 𝜎𝑖 = H(𝑚)
𝑠𝑖

(3)

The signing algorithm in the multisignature works as follows.

For any given message𝑚, each signer 𝑖 computes its partial signa-

ture 𝜎𝑖 = H(𝑚)
𝑠𝑖
and sends it to the aggregator P. P upon receiving

validates them by checking that 𝑒(𝑔𝑠𝑖 ,H(𝑚)) = 𝑒(𝑔, 𝜎𝑖). Upon receiv-

ing valid signatures from signers for total weight 𝑡 , P computes

the bit vector 𝒃 ∈ {0, 1}𝑛 , where 𝒃[𝑖] = 1 whenever 𝜎𝑖 is valid,

otherwise 𝒃[𝑖] = 0. P then computes the aggregate signature 𝜎 as

in equation (3).

3.5 Inner Product Argument
An inner product argument (IPA) is a protocol between a PPT prover

P and an efficient verifier V . Given two vectors 𝒂 and 𝒃 , an IPA

enables the P to convinceV that ⟨𝒂, 𝒃⟩ = 𝜇, where the verifier only

have access to the commitment 𝑐𝒂 and 𝑐𝒃 of 𝒂 and 𝒃 , respectively.

5

IPA has been studied extensively in the recent years [7, 15, 17–

19, 41, 42] and has been used repeatedly to design more efficient

argument systems, especially SNARKs. Most of these IPA schemes

focus on the case where both 𝒂 and 𝒃 consists of field elements, i.e.,

𝒂, 𝒃 ∈ F𝑛 . The most efficient IPA scheme when both 𝒂, 𝒃 ∈ F𝑛 has

a constant proof size and constant verification time assuming the

powers-of-tau as the underlying CRS [42].

As we describe in §2, we require an IPA scheme with succinct

proof size and verification time that supports inner product be-

tween a vector group and field elements. Known constructions of

IPA schemes for inner-product between vector of group and field el-

ements, also known as generalized inner-product arguments (GIPA),

are concretely inefficient [19, 41]. In particular, the proof consists of

2 log𝑛 G𝑇 elements, and verifying the signature requires 2 log𝑛 G𝑇
and 7 pairing operations. Moreover, prover time is also concretely

inefficient as the prover needs to perform 2𝑛 pairing operations.

3.6 Polynomial Identities
For any given set𝑀 ⊆ F, we define the Lagrange polynomial with

respect to𝑀 as:

L𝑎,𝑀 (𝑥) =

∏
𝑏∈𝑀 ;𝑏 ̸=𝑎(𝑥 − 𝑏)∏
𝑏∈𝑀 ;𝑏 ̸=𝑎(𝑎 − 𝑏)

(4)

When |𝑀 |= 𝑑 , each L𝑎,𝑀 (·) is a degree 𝑑 − 1 polynomial. Also,

we can write any polynomial 𝑝(𝑥) of degree at most 𝑑 − 1 as

𝑝(𝑥) =

∑︁
𝑎∈𝑀
L𝑎,𝑀 (𝑥)𝑝(𝑎) (5)

Our threshold signature scheme uses the following two identities

about univariate polynomials.

Lemma 3.4 (Polynomial Remainder Lemma). For any given
polynomial 𝑝(·) ∈ F[𝑥] of degree 𝑑 , there exists an unique quotient
polynomial 𝑞(𝑥) ∈ F[𝑥] of degree 𝑑 − 1 such that for any 𝑎 ∈ F

𝑝(𝑥) = 𝑞(𝑥)(𝑥 − 𝑎) + 𝑝(𝑎) (6)

Lemma 3.5 (Univariate Sumcheck [7]). Let𝐻 = {𝜔,𝜔2, . . . , 𝜔𝑑 }
be a multiplicative subgroup of F of order 𝑑 . Given two polynomi-
als 𝑎(·), 𝑏(·) ∈ F[𝑥] of degree 𝑑 − 1 each, then there exists unique
polynomials 𝑞(·) and 𝑟 (·) such that

𝑎(𝑥)𝑏(𝑥) = 𝑞(𝑥)𝑧𝐻 (𝑥) + 𝑟 (𝑥)𝑥 + 𝑛−1 ·
∑︁
𝑖∈[𝑑]

𝑎(𝜔𝑖
)𝑏(𝜔𝑖

) (7)

here 𝑧𝐻 (𝑥) is the vanishing polynomial over the set𝐻 , i.e., 𝑧𝐻 (𝜔𝑖
) = 0

for each 𝑖 ∈ [𝑑]. Also, we can write 𝑧𝐻 (𝑥) as

𝑧𝐻 (𝑥) =

∏
𝑖∈[𝑑]

(𝑥 − 𝜔𝑖
) (8)

4 THRESHOLD SIGNATURE USING IPA
Aswe describe in the overview (§2), our approach is to formulate the

threshold signature scheme as the relation RTS and then present

an efficient protocol for RTS using an inner product argument.

Formally, the RTS relation is given as below and we refer the reader

to §2 for the intuitive explanation.

RTS :



{𝑐𝒃 , 𝑔𝜇 , 𝜎} ∈ G3

∧
𝑒(𝑔𝜇 ,H(𝑚)) = 𝑒(𝑔, 𝜎)

(𝝈 ,𝒑𝒌,𝒘, 𝒃)

𝒑𝒌 ∈ G𝑛 ; 𝑐𝒑𝒌 = com(𝒑𝒌)

𝒘 ∈ F𝑛, ∥𝒘 ∥1< |F|; 𝑐𝒘 = com(𝒘)

𝒃 ∈ {0, 1}𝑛 ; 𝑐𝒃 = com(𝒃)

𝝈 ∈ G𝑛 ; ⟨𝝈 , 𝒃⟩ = 𝜎

⟨𝒘, 𝒃⟩ ≥ 𝑡 ; ⟨𝒑𝒌, 𝒃⟩ = 𝑔𝜇


Handling rogue-key attacks. Although, our signature scheme is

agnostic to the specifics of a rogue key attack handling mechanism,

for concreteness, we consider the approach used in Boneh et al. [12,

§6]. Briefly for any claimed public key 𝑔𝑠 , the signer computes the

Proof-of-Possession (PoP) as 𝜋 = Hpop(𝑔𝑠)
𝑠
. Here Hpop : {0, 1}∗ →

G is a hash function modeled as a random oracle, that could be

constructed fromH(·) using domain separation. The PoP verification

procedure accepts if 𝑒(𝑔𝑠 ,Hpop(𝑔𝑠)) = 𝑒(𝑔, 𝜋).

4.1 Setup and Public Parameters
CRS. Let G be a elliptic curve group with F as its scalar field. For
any given number of signers 𝑛, the CRS consists of{[

𝑔,𝑔𝜏 , 𝑔𝜏
2

, . . . , 𝑔𝜏
𝑛
]

;

[
ℎ,ℎ𝜏 , ℎ𝜏

2

, . . . , ℎ𝜏
𝑛−1

]
; 𝑣

}
(9)

for uniformly random generators 𝑔, ℎ, 𝑣 ∈ G, and for uniformly

random field element 𝜏 ∈ F.
The CRS also consists of descriptions of two subgroups 𝐻, 𝐿 ⊆ F.

Here 𝐻 is a multiplicative subgroup of order 𝑛, and 𝐿 is a subgroup

of order 𝑛 − 1 such that 𝐻 ∩ 𝐿 = 𝜙 , i.e., their intersection is empty.

Throughout this paper we will work with 𝐻 = {𝜔,𝜔2, . . . , 𝜔𝑛},
where 𝜔 ∈ F is a 𝑛-th root of unity. Also, for 𝐿, we use a coset of 𝐻 .

CRS pre-processing.Our scheme uses a CRS that can be computed

from the CRS in equation (9) using public operations.More precisely,

the pre-processed CRS is:{[
𝑔L1(𝜏), . . . , 𝑔L𝑛 (𝜏)

]
;

[
ℎL1(𝜏), . . . , ℎL𝑛 (𝜏)

]
; 𝑣 ;𝑔𝜂

}
(10)

here we use L𝑖 (𝑥) to denote the Lagrange polynomial L𝜔𝑖 ,𝐻 as per

equation (4). Also, let 𝜂 =

∑
𝑖∈[𝑛]

L𝑖 (𝜏)/𝜔𝑖
.

Note that the CRS in equation (10) is publicly computable from

the CRS in equation (9). The computation requires𝑂(𝑛 log𝑛) group

exponentiations using number theoretic transform in the exponent.

The CRS also consists of

𝒖 = [𝑢ℓ]ℓ∈𝐿 ; where 𝑢ℓ = 𝑔Lℓ,𝐿 (𝜏), ∀ℓ ∈ 𝐿 (11)

Here on we will use the following notations.

∀𝑖 ∈ [𝑛] 𝑔𝑖 = 𝑔L𝑖 (𝜏)
and ℎ𝑖 = ℎL𝑖 (𝜏)

Verification and aggregation keys. Each signers 𝑖 samples its

signing key 𝑠𝑖 ∈ F, uniformly at random. Let 𝒔 = [𝑠1, 𝑠2, . . . , 𝑠𝑛]

and𝒘 = [𝑤1,𝑤2, . . . ,𝑤𝑛] be the vector of signing keys and weights,

respectively. Let 𝑠(·) and 𝑤 (·) be the two polynomials of degree

𝑛 − 1 each where 𝑠(𝜔𝑖
) = 𝑠𝑖 , and𝑤 (𝜔𝑖

) = 𝑤𝑖 , respectively. Then the

public verification key 𝑣𝑘 is the tuple:

𝑣𝑘 =

{
𝑔, ℎ, 𝑣, 𝑔𝑠(𝜏), 𝑔𝑤(𝜏), 𝑔𝜏 , 𝑔𝑧𝐻 (𝜏)

}
6

The aggregation key 𝑎𝑘 is:

𝑎𝑘 =

{[
𝑔
𝑠𝑖
𝑖

]
𝑖∈[𝑛]

;

[
ℎ
𝑠𝑖
𝑖

]
𝑖∈[𝑛]

;

[
𝑔𝑞𝑖 (𝜏)

]
𝑖∈[𝑛]

;

[
𝑔𝜂𝑠𝑖

]
𝑖∈[𝑛]

}
where 𝑞𝑖 (𝑥) is the polynomial of degree 𝑛 − 1 defined as:

𝑠(𝑥)𝐿𝑖 (𝑥) = 𝑞𝑖 (𝑥)𝑧𝐻 (𝑥) + 𝑠𝑖L𝑖 (𝑥)

here 𝑧𝐻 (𝑥) is the degree 𝑛 polynomial that evaluates to zero at all

points in 𝐻 . In particular,

𝑧𝐻 (𝑥) =

∏
𝑖∈[𝑛]

(𝑥 − 𝜔𝑖
) = 𝑥𝑛 − 1

To assist P in computing 𝑎𝑘 , each signer 𝑖 sends the following

tuple 𝑎𝑘𝑖 to P

𝑎𝑘𝑖 =

{
𝑔𝑠𝑖 , 𝑔

𝑠𝑖
𝑖
, ℎ

𝑠𝑖
𝑖
, 𝑣𝑠𝑖 , 𝑔𝜂𝑠𝑖 ,

[
𝑢
𝑠𝑖
𝑘

]
𝑘∈[𝑛]

}
(12)

Note that only P needs to read the linear size 𝑎𝑘𝑖 from each

signer 𝑖 . Also, 𝑎𝑘𝑖 for each signer 𝑖 is publicly verifiable using the

CRS and 𝑔𝑠𝑖 . Finally, to compute 𝑣𝑘 , only the element 𝑔
𝑠𝑖
𝑖
for each

signer 𝑖 is sufficient.

𝑔𝑠(𝜏)
=

∏
𝑖∈[𝑛]

𝑔
𝑠𝑖
𝑖

Similarly, P computes 𝑔𝑤(𝜏)
=

∏
𝑖∈[𝑛]

𝑔
𝑤𝑖

𝑖
. We will describe in §4.4

on how P computes the terms [𝑔𝑞𝑖 (𝜏)
]𝑖∈[𝑛]

.

Remark. A very nice property of our scheme is that, assuming

signers and the aggregator are semi-honest, the setup phase is non-

interactive. Handling Byzantine signers and a Byzantine aggregator

during the setup phase needs special care. We leave robust setup

protocol to future work.

4.2 Proving that the committed vector is binary
Let 𝑏(𝑥) be the polynomial of degree 𝑛 − 1 such that 𝑏(𝜔𝑖

) = 𝒃[𝑖].

Then, if indeed 𝒃 is binary then the polynomial 𝑏(𝑥)(1 − 𝑏(𝑥)) eval-

uates to 0 for every 𝑥 ∈ 𝐻 . Thus, using the polynomial remainder

lemma, we get:

𝑏(𝑥)(1 − 𝑏(𝑥)) = 𝑞𝑏 (𝑥) · 𝑧𝐻 (𝑥)

Given 𝑔𝑏(𝜏)
, the commitment to 𝒃 , P proves that 𝒃 ∈ {0, 1}𝑛 , by

sending 𝜋𝑏 = 𝑔𝑞𝑏 (𝜏)
toV .V upon receiving the proof 𝜋𝑏 , accepts

the proof if the following checks pass.

𝑒

(
𝑔𝑏(𝜏), 𝑔1−𝑏(𝜏)

)
= 𝑒

(
𝜋𝑏 , 𝑔

𝑧𝐻 (𝜏)

)
Remark. Note that our approach to proving 𝒃 a bit vector is not

an IPA. Nevertheless, since it shares similarities with our IPA, we

sometimes refer to it as an IPA for ease of exposition.

Analysis. Completeness is clear. We will prove its soundness in §5.

The proof is a single group element and verification requires one

group operation and two pairings. P performs𝑂(𝑛 log𝑛) field oper-

ations to compute 𝑞(𝑥) using Number Theoretic Transform (NTT).

P then computes 𝑔𝑞𝑏 (𝜏)
using 𝑂(𝑛) group exponentiations.

4.3 IPA between public keys and bit vector
Let 𝜇 = ⟨𝒔, 𝒃⟩ and let 𝒑𝒌 = [𝑔𝑠1 , 𝑔𝑠2 , . . . , 𝑔𝑠𝑛]. We use the following

polynomial identity for the inner product 𝑔𝜇 = ⟨𝒑𝒌, 𝒃⟩.

𝑠(𝑥)𝑏(𝑥) = 𝑞(𝑥)𝑧𝐻 (𝑥) + 𝑟 (𝑥)𝑥 + 𝜇 · 𝑛−1
(13)

Let 𝑝(𝑥) = 𝑟 (𝑥)𝑥 + 𝜇 ·𝑛−1
. Then for each 𝑖 ∈ [𝑛], 𝑝(𝜔𝑖

) = 𝑠𝑖𝑏𝑖 . Let

𝑐𝒃 = 𝑔𝑏(𝜏)
be the commitment to the vector 𝒃 . Then, the proof 𝜋 for

𝑔𝜇 = ⟨𝒑𝒌, 𝒃⟩ is the tuple:

𝜋 =

(
𝑔𝑞(𝜏), 𝑔𝑟 (𝜏), ℎ𝑝(𝜏), 𝑣𝜇

)
(14)

V accepts the proof 𝜋 = (𝑔𝑞, 𝑔𝑟 , ℎ𝑝 , 𝑣𝜇) and the corresponding

inner product 𝑔𝜇 , if the following checks pass

𝑒

(
𝑔𝑠(𝜏), 𝑐𝒃

)
= 𝑒

(
𝑔𝑞, 𝑔

𝑧𝐻 (𝜏)

)
· 𝑒

(
𝑔𝑟 , 𝑔

𝜏) · 𝑒 (
𝑔𝜇 , 𝑔1/𝑛

)
(15)

𝑒(ℎ𝑝 , 𝑔) = 𝑒(𝑔𝑟 , ℎ
𝜏
) · 𝑒

(
𝑔𝜇 , ℎ1/𝑛

)
(16)

𝑒
(
𝑣𝜇 , 𝑔

)
= 𝑒

(
𝑔𝜇 , 𝑣

)
(17)

Intuitively, equation (15) checks that the polynomial identity

specified in (13) holds with respect to the proof 𝜋 at 𝜏 . The equa-

tion (16) and equation (17), checks that 𝑔𝑟 and 𝑔
𝜇
are commitment

to a polynomial of degree 𝑛 − 2 and a constant, respectively. We

elaborate on these checks in Lemma 5.5 and 5.4, respectively.

4.4 Computing the IPA proof 𝜋
In this section we will describe how P computes the IPA proof

𝜋 =

(
𝑔𝑞(𝜏), 𝑔𝑟 (𝜏), ℎ𝑝(𝜏), 𝑣𝜇

)
(equation (14)) using 𝑂(𝑛) group expo-

nentiations. Recall from §2, the difficulty arises because P needs to

compute 𝜋 having only access to the aggregation public key. We

want to note that to compute 𝜋 , P does one-time pre-processing

that requires 𝑂(𝑛2
) computation costs. We elaborate on the pre-

processing cost in §4.4.

Computing 𝑔𝑞(𝜏).Weuse the following polynomial identity from [25].

For completeness, we derive it in Appendix C.

𝑞(𝑥) =

∑︁
𝑖∈[𝑛]

𝑏𝑖 · 𝑞𝑖 (𝑥) ⇒ 𝑞(𝜏) =

∑︁
𝑖∈[𝑛]

𝑏𝑖 · 𝑞𝑖 (𝜏) (18)

where the polynomials 𝑞𝑖 (𝑥) are defined as:

L𝑖,𝐻 (𝑥)𝑠(𝑥) = 𝑠𝑖 · L𝑖,𝐻 (𝑥) + 𝑧𝐻 (𝑥)𝑞𝑖 (𝑥) (19)

The important observation in equation (19) is that the polynomial

𝑞𝑖 (𝑥) depends on 𝐻 and the set of all signers and not on the set of

signers who signed a message. This is unlike 𝑏𝑖 , whose values gets

decided only during the signature aggregation.

In our scheme, P pre-computes 𝑔𝑞𝑖 (𝜏)
for each 𝑖 ∈ [𝑛]. Then,

during signature aggregation, P computes 𝑔𝑞(𝜏)
using 𝑂(𝑛) group

operations as:

𝑔𝑞(𝜏)
=

∏
𝑖∈[𝑛]

(
𝑔𝑞𝑖 (𝜏)

)𝑏𝑖
(20)

Computing ℎ𝑝(𝜏). Similar to the above, we use the following iden-

tity from [25].

𝑝(𝑥) = 𝑥 · 𝑟 (𝑥) + 𝑝(0) =

∑︁
𝑖∈[𝑛]

𝑏𝑖𝑠𝑖L𝑖 (𝑥) (21)

7

Equation (21) immediately implies that ℎ𝑝(𝜏)
is:

ℎ𝑝(𝜏)
=

∏
𝑖∈[𝑛]

(
ℎ
𝑠𝑖
𝑖

)𝑏𝑖
(22)

Computing 𝑔𝑟 (𝜏). Using equation (5), we can write 𝑟 (𝑥) as:

𝑟 (𝑥) =

∑︁
𝑖∈[𝑛]

𝑟 (𝜔𝑖
)L𝑖 (𝑥)

Also for each 𝑖 ∈ [𝑛], we can write 𝑟 (𝜔𝑖
) as:

𝑟 (𝜔𝑖
) =

𝑝(𝜔𝑖
) − 𝑝(0)

𝜔𝑖

=

𝑏𝑖𝑠𝑖 − 𝑝(0)

𝜔𝑖
(since 𝑝(𝜔𝑖

) = 𝑏𝑖𝑠𝑖 ∀𝑖 ∈ [𝑛])

⇒
∑︁
𝑖∈[𝑛]

𝑟 (𝜔𝑖
)L𝑖 (𝜏) =

∑︁
𝑖∈[𝑛]

𝑏𝑖𝑠𝑖 − 𝑝(0)

𝜔𝑖
L𝑖 (𝜏)

=

∑︁
𝑖∈[𝑛]

𝑏𝑖𝑠𝑖L𝑖 (𝜏)

𝜔𝑖
−

∑︁
𝑖∈[𝑛]

𝑝(0)L𝑖 (𝜏)

𝜔𝑖
(23)

Let 𝑟1 be the first term in the RHS of equation (23). Then,

𝑟1 =

∑︁
𝑖∈[𝑛]

𝑠𝑖L𝑖 (𝜏) · 𝑏𝑖
𝜔𝑖

⇒ 𝑔𝑟1
=

∏
𝑖∈[𝑛]

(
𝑔
𝑠𝑖
𝑖

)𝑏𝑖/𝜔𝑖

Let 𝑟2 be the second term in equation (23). Then,

𝑟2 =

∑︁
𝑖∈[𝑛]

𝑝(0)L𝑖 (𝜏)

𝜔𝑖
= 𝑝(0)

∑︁
𝑖∈[𝑛]

L𝑖 (𝜏)

𝜔𝑖

= 𝑝(0) · 𝜂 where 𝜂 =

∑︁
𝑖∈[𝑛]

L𝑖 (𝜏)

𝜔𝑖

= 𝜂 ·
∑︁
𝑘∈[𝑛]

𝑝(𝜔𝑘
)L𝑘 (0)

= 𝜂 ·
∑︁
𝑘∈[𝑛]

𝑠𝑘𝑏𝑘L𝑘 (0)

⇒ 𝑔𝑟2
=

∏
𝑘∈[𝑛]

(
𝑔𝜂𝑠𝑘

)𝑏𝑘L𝑘 (0)

Finally, combining the above, we get that 𝑔𝑟 (𝜏)
= 𝑔𝑟1/𝑔𝑟2

.

Computing the pre-processed elements. In this section, wewill
describe how the P precomputes 𝑔𝑞𝑖 (𝜏)

for each 𝑖 ∈ [𝑛] where 𝑞𝑖 (·)
is defined as:

L𝑖,𝐻 (𝑥)𝑠(𝑥) = 𝑠𝑖 · L𝑖,𝐻 (𝑥) + 𝑧𝐻 (𝑥)𝑞𝑖 (𝑥) (24)

Recall 𝐿 ⊆ F with |𝐿 |= 𝑛 − 1 and 𝐿 ∩𝐻 = 𝜙 . This implies that for

each ℓ ∈ 𝐿, 𝑧𝐻 (ℓ) ̸= 0. Then, we can write 𝑞𝑖 (𝑥) as:

𝑞𝑖 (𝑥) =

∑︁
ℓ∈𝐿

𝑞𝑖 (ℓ)Lℓ,𝐿(𝑥)

=

∑︁
ℓ∈𝐿

(L𝑖,𝐻 (ℓ)𝑠(ℓ) − 𝑠𝑖L𝑖,𝐻 (ℓ)

𝑧𝐻 (ℓ)

)
Lℓ,𝐿(𝑥)

⇒ 𝑞𝑖 (𝜏) =

∑︁
ℓ∈𝐿

(L𝑖,𝐻 (ℓ)𝑠(ℓ) − 𝑠𝑖L𝑖,𝐻 (ℓ)

𝑧𝐻 (ℓ)

)
Lℓ,𝐿(𝜏) (25)

Recall from §4.1, the CRS also includes 𝑢ℓ = 𝑔Lℓ,𝐿 (𝜏)
for each

ℓ ∈ 𝐿. Moreover, each signer 𝑖 also publishes [𝑢
𝑠𝑖
ℓ

] for each ℓ ∈ 𝐿.
P uses them to compute 𝑔𝑞𝑖 (𝜏)

for each 𝑖 ∈ [𝑛] as follows.

We can rewrite equation (25) as

𝑞𝑖 (𝜏) =

∑︁
ℓ∈𝐿

(L𝑖,𝐻 (ℓ)𝑠(ℓ)Lℓ,𝐿(𝜏)

𝑧𝐻 (ℓ)

)
−

∑︁
ℓ∈𝐿

(
𝑠𝑖L𝑖,𝐻 (ℓ)Lℓ,𝐿(𝜏)

𝑧𝐻 (ℓ)

)
(26)

Let 𝑞𝑖,2 be the second term of equation (26). Then, P computes

𝑔𝑞𝑖,2 using 𝑛 group exponentiations as:

𝑔𝑞𝑖,2 =

∏
ℓ∈𝐿

(
𝑢
𝑠𝑖
ℓ

)L𝑖,𝐻 (ℓ)/𝑧𝐻 (ℓ)

Let 𝑞𝑖,1 be the first term of equation (26). Let 𝛿ℓ be such that

𝛿ℓ =

𝑠(ℓ)Lℓ,𝐿(𝜏)

𝑧𝐻 (ℓ)
⇒ 𝑔𝑞𝑖,1 =

∏
ℓ∈𝐿

(
𝑔𝛿ℓ

)L𝑖,𝐻 (ℓ)

Note that given 𝑔𝛿ℓ , computing 𝑔𝑞𝑖,2 requires 𝑂(𝑛) group expo-

nentiations. Next, P computes 𝑔𝛿ℓ using the following equations.

𝛿ℓ =

Lℓ,𝐿(𝜏)

𝑧𝐻 (ℓ)
·

∑︁
𝑘∈[𝑛]

𝑠𝑘L𝑘,𝐻 (ℓ)

⇒ 𝑔𝛿ℓ =

∏
𝑘∈[𝑛]

(
𝑢
𝑠𝑘
ℓ

)L𝑘,𝐻 (ℓ)/𝑧𝐻 (ℓ)

Finally, 𝑔𝑞𝑖 (𝜏)
= 𝑔𝑞𝑖,1/𝑔𝑞𝑖,2 .

Verifying 𝑔𝑞𝑖 (𝜏). We now describe, how any external entity can

efficiently verify the correctness of 𝑔𝑞𝑖 (𝜏)
for each 𝑖 . Our idea is

to use the standard approach of random linear combination. Let

[𝑔𝑞,𝑖]𝑖∈[𝑛]
be the claimed values. For an uniformly random 𝛾 ∈ F,

let 𝜸 = [1, 𝛾, 𝛾2, . . . , 𝛾𝑛−1
]. Then, the entity computes

𝑔𝛾 = ⟨[𝑔𝑖]𝑖∈[𝑛]
,𝜸⟩; 𝑔𝑞,𝛾 = ⟨[𝑔𝑞,𝑖]𝑖∈[𝑛]

,𝜸⟩; 𝑔𝒔,𝛾 = ⟨[𝑔𝑠𝑖
𝑖

]𝑖∈[𝑛]
,𝜸⟩

and checks that the following check holds.

𝑒

(
𝑔𝑠(𝜏), 𝑔𝛾

)
= 𝑒

(
𝑔𝑧𝐻 (𝜏), 𝑔𝑞,𝛾

)
· 𝑒

(
𝑔𝒔,𝛾 , 𝑔

)
(27)

Intuitively, equation (27) batch checks the polynomial identity in

equation (19) at 𝜏 using the standard random linear combinations.

Hence, its soundness follows from the Schwartz-Zippel lemma.

4.5 Proving correctness of the threshold
P uses an IPA to convince V that 𝑡 = ⟨𝒘, 𝒃⟩, precisely the IPA

scheme from Appendix A. For completeness, we summarize it next.

Let 𝑞𝑤 (𝑥) and 𝑟𝑤 (𝑥) the polynomials such that:

𝑤 (𝑥)𝑏(𝑥) = 𝑞𝑤 (𝑥)𝑧𝐻 (𝑥) + 𝑥𝑟𝑤 (𝑥) + 𝑡 · 𝑛−1
(28)

Also, let 𝑝𝑤 (𝑥) = 𝑥𝑟𝑤 (𝑥) + 𝑡 · 𝑛−1
. Then, the IPA is the tuple

𝜋 =

{
𝑔𝑞𝑤 (𝜏), 𝑔𝑟𝑤 (𝜏), ℎ𝑝𝑤 (𝜏)

}
(29)

V upon receiving the tuple 𝜋 = (𝑔𝑞𝑤 , 𝑔𝑟𝑤 , ℎ𝑝𝑤) accepts 𝑡 as the

correct threshold if the following checks are successful.

𝑒

(
𝑔𝑤(𝜏), 𝑐𝒃

)
= 𝑒

(
𝑔𝑞𝑤 , 𝑔

𝑧𝐻 (𝜏)

)
· 𝑒

(
𝑔𝑟𝑤 , 𝑔

𝜏) · 𝑒 (
𝑔𝑡 , 𝑔1/𝑛

)
; and

𝑒
(
ℎ𝑝𝑤 , 𝑔

)
= 𝑒

(
𝑔𝑟𝑤 , ℎ

𝜏) · 𝑒 (
𝑔𝑡 , ℎ1/𝑛

)
Note that these verification checks are analogous to the verifi-

cation checks in equation (15) and (16) for the IPA for ⟨𝒑𝒌, 𝒃⟩. We

omit the check in equation (17), as Lemma 5.4 holds trivially for 𝑡 .

8

4.6 Merging IPA proofs
In our scheme so far, P produces two separate IPA proofs, one for

each inner product ⟨𝒑𝒌, 𝒃⟩ and ⟨𝒘, 𝒃⟩. Since, both of these proofs

have the same structure, we merge them by taking their random

linear combination as follows.

P computes 𝜉 = HFS(𝑔𝑠(𝜏), 𝑔𝑤(𝜏), 𝑔𝑏(𝜏), 𝑔𝜇 , 𝑡), where HFS is a ran-

dom oracle derived from H(·) using domain separation. Let 𝑜(𝑥) be

the polynomial defined as:

𝑜(𝑥) = 𝑠(𝑥) + 𝜉𝑤 (𝑥)

This implies,

𝑜(𝑥)𝑏(𝑥) = (𝑞𝑠 (𝑥)+𝜉𝑞𝑤 (𝑥))𝑧𝐻 (𝑥)+(𝑟𝑠 (𝑥)+𝜉𝑟𝑤 (𝑥))𝑥+𝑛−1
(𝜇+𝜉𝑡)

here the polynomials 𝑞𝑤 (𝑥), 𝑟𝑤 (𝑥) are as defined in §4.5, and 𝑞𝑠 (𝑥)

and 𝑟𝑠 (𝑥) defined as below.

𝑠(𝑥)𝑏(𝑥) = 𝑞𝑠 (𝑥)𝑧𝐻 (𝑥) + 𝑟𝑠 (𝑥) + 𝑥 + 𝜇 · 𝑛−1
(30)

Let 𝑞𝑜 (𝑥), 𝑟𝑜 (𝑥) and 𝑝𝑜 (𝑥) be the polynomials defined as:

𝑞𝑜 (𝑥) = 𝑞𝑠 (𝑥) + 𝜉𝑞𝑤 (𝑥)

𝑟𝑜 (𝑥) = 𝑟𝑠 (𝑥) + 𝜉𝑟𝑤 (𝑥)

𝑝𝑜 (𝑥) = 𝑟𝑜 (𝑥)𝑥 + 𝜇 + 𝜉𝑡

P then sends the tuple (𝑔𝑏(𝜏), 𝑔𝜇 , 𝑡) along with the IPA proof

𝜋 =

{
𝑔𝑞𝑜 (𝜏), 𝑔𝑟𝑜 (𝜏), ℎ𝑝𝑜 (𝜏), 𝑣𝜇

}
(31)

V upon receiving (𝑔𝑏 , 𝑔𝜇 , 𝑡) and the proof (𝑔𝑞, 𝑔𝑟 , ℎ𝑝 , 𝑣𝜇), first

computes 𝜉 = HFS(𝑔𝑠 , 𝑔𝑤 , 𝑔𝑏 , 𝑔𝜇 , 𝑡) and then checks that the follow-

ing equation holds:

𝑒

(
𝑔𝑠 · 𝑔𝜉𝑤 , 𝑔𝑏

)
= 𝑒

(
𝑔𝑞, 𝑔

𝑧𝐻 (𝜏)

)
· 𝑒

(
𝑔𝑟 , 𝑔

𝜏) · 𝑒 (
𝑔𝜇 · 𝑔𝜉𝑡 , 𝑔1/𝑛

)
(32)

Finally,V accepts it as a valid signature with threshold 𝑡 if the

following additional checks pass.

𝑒
(
ℎ𝑝 , 𝑔

)
= 𝑒

(
𝑔𝑟 , ℎ

𝜏) · 𝑒 (
𝑔𝜇 · 𝑔𝜉𝑡 , ℎ1/𝑛

)
(33)

𝑒
(
𝑣𝜇 , 𝑔

)
= 𝑒

(
𝑔𝜇 , 𝑣

)
(34)

Analysis. The completeness is clear and we prove its soundness

in §5. This brings down the combined proof size of both the IPA to

four group elements from seven group elements.

4.7 Threshold signature design
Combining all the above, we get the following threshold signature

scheme. We summarize the construction in Figure 2.

Setup. The algorithm Setup produces the parameters for the BLS

signature scheme 𝑝𝑝𝐵𝐿𝑆 = {F,G,G𝑇 , (𝑔,𝑔𝑇), 𝑒(·, ·),H(·)} and a CRS

of size linear in 𝑛, the number of signers. This CRS is required by

our IPA scheme. More specifically the algorithm Setup samples a

uniformly random 𝜏 in order to generate:

• 𝒈 := [𝑔,𝑔𝜏 , 𝑔𝜏
2

, · · · , 𝑔𝜏𝑛]

• 𝒉 := [ℎ,ℎ𝜏 , ℎ𝜏
2

, · · · , ℎ𝜏𝑛−1

]

Then, as described in §4.1, using the Lagrange polynomials defined

over the multiplicative subgroups𝐻, 𝐿, as well as 𝒈,𝒉, three vectors
of group elements are computed:

• ®𝑔L := [𝑔1, 𝑔2, · · · , 𝑔𝑛] = [𝑔L1,𝐻 (𝜏), 𝑔L2,𝐻 (𝜏), · · · , 𝑔L𝑛,𝐻 (𝜏)
]

• ®ℎL := [ℎ1, ℎ2, · · · , ℎ𝑛] = [ℎL1,𝐻 (𝜏), ℎL2,𝐻 (𝜏), · · · , ℎL𝑛,𝐻 (𝜏)
]

Weighted threshold signature

Setup(1
𝜅 , 𝑛):

On input 1
𝜅
for the security parameter 𝜅 produces first the public pa-

rameters for the BLS scheme 𝑝𝑝𝐵𝐿𝑆 = {F,G,G𝑇 , (𝑔,𝑔𝑇), 𝑒(·, ·),H(·)}.
Here 𝑒 : G × G → G𝑇 is the bilinear pairing operation, and

H : {0, 1}∗ → G is the random oracle. The setup algorithm ad-

ditionally outputs the following CRS

- Let ℎ, 𝑣 ∈ G be additional uniform random generators of G

- Sample 𝜏 ∈ F;
- Compute 𝒈 := [𝑔,𝑔𝜏 , · · · , 𝑔𝜏𝑛] and 𝒉 := [ℎ,ℎ𝜏 , · · · , ℎ𝜏𝑛−1

]

- From 𝒈 and 𝒉 compute

– ®𝑔L := [𝑔L1,𝐻 (𝜏), 𝑔L2,𝐻 (𝜏), · · · , 𝑔L𝑛,𝐻 (𝜏)
]

– ®ℎL := [ℎL1,𝐻 (𝜏), ℎL2,𝐻 (𝜏), · · · , ℎL𝑛,𝐻 (𝜏)
]

– ®𝑢 := [𝑔L1,𝐿 (𝜏), 𝑔L2,𝐿 (𝜏), · · · , 𝑔L𝑛,𝐿 (𝜏)
]

- Compute 𝑔𝜂 where 𝜂 =

∑
𝑖∈[𝑛]

L𝑖 (𝜏)/𝜔𝑖
using ®𝑔L .

Output 𝑝𝑝 := (𝑝𝑝𝐵𝐿𝑆 , ®𝑔L , ®ℎL , ®𝑢,ℎ, 𝑣, 𝑔𝜂)

KeyGen(𝑝𝑝,𝑛,𝒘):

- Each signer 𝑖 samples its signing key 𝑠𝑖 ← F uniformly at random.

- Let 𝒑𝒌 := [𝑔𝑠1 , . . . , 𝑔𝑠𝑛] be the vector of public keys.

- Compute 𝑣𝑘 :=

{
𝑔,ℎ, 𝑣, 𝑔𝑠(𝜏), 𝑔𝑤(𝜏), 𝑔𝜏 , 𝑔𝑧𝐻 (𝜏)

}
- Compute𝑎𝑘 :=

{[
𝑔
𝑠𝑖
𝑖

]
𝑖∈[𝑛]

;

[
ℎ
𝑠𝑖
𝑖

]
𝑖∈[𝑛]

;

[
𝑔𝑞𝑖 (𝜏)

]
𝑖∈[𝑛]

; [𝑔𝜂𝑠𝑖]𝑖∈[𝑛]

}
with help from the signers (see §4.1 and §4.4)

Output (𝑣𝑘, 𝑎𝑘)

PSign(𝑚,𝑠𝑖): Output 𝜎𝑖 = H(𝑚)
𝑠𝑖

PVerify(𝑚,𝜎𝑖 , 𝑔
𝑠𝑖): Output 1 if 𝑒(𝑔𝑠𝑖 ,H(𝑚)) = 𝑒(𝑔, 𝜎𝑖), otherwise 0.

Combine(𝑝𝑝, {𝜎𝑖 }, 𝑡 ′, 𝑎𝑘):

- Let 𝐼 be the indices corresponding to valid partial signatures.

- Compute the bitvector 𝒃 where 𝒃[𝑖] = 1, ∀𝑖 ∈ 𝐼 and 0 otherwise.

- Compute commitment to 𝒃 , 𝑔𝑏 := 𝑔𝑏(𝜏)
and the proof 𝑔𝑞𝑏 := 𝑔𝑞𝑏 (𝜏)

.

- Compute the aggregated public key 𝑔𝜇 = 𝑔𝜇 = ⟨𝒑𝒌,𝒃 ⟩.
- Compute the aggregated signature 𝜎𝐵𝐿𝑆 =

∏
𝑖∈𝐼 𝜎𝑖 .

- Compute the IPA proof 𝜋 =

{
𝑔𝑞𝑜 (𝜏), 𝑔𝑟𝑜 (𝜏), ℎ𝑝𝑜 (𝜏), 𝑣𝜇

}
(cf. §4.6)

Output 𝜎 := (𝑔𝜇 , 𝑔𝑏 , 𝑔𝑞𝑏 , 𝜎𝐵𝐿𝑆 , 𝜋, 𝑡
′
)

Verify(𝑝𝑝,𝑚, 𝜎, 𝑣𝑘, 𝑡)

- Parse 𝜎 as (𝑔𝜇 , 𝑔𝑏 , 𝑔𝑞𝑏 , 𝜎𝐵𝐿𝑆 , 𝜋, 𝑡
′
).

- Check correctness of bit vector as

𝑒(𝑔𝑏 , 𝑔/𝑔𝑏) = 𝑒(𝑔𝑞𝑏 , 𝑔
𝑧𝐻 (𝜏)

)

- Verify the IPA proof 𝜋

– Compute 𝜉 = HFS(𝑔𝑠 , 𝑔𝑤 , 𝑔𝑏 , 𝑔𝜇 , 𝑡
′
) where 𝑔𝑠 , 𝑔𝑤 are part of 𝑣𝑘 .

– Check the three equations below hold:

𝑒

(
𝑔𝑠 · 𝑔𝜉𝑡

′
, 𝑔𝑏

)
= 𝑒

(
𝑔𝑞, 𝑔

𝑧𝐻 (𝜏)

)
· 𝑒 (𝑔𝑟 , 𝑔𝜏) · 𝑒

(
𝑔𝜇 · 𝑔𝜉𝑡

′
, 𝑔1/𝑛

)
𝑒
(
ℎ𝑝 , 𝑔

)
= 𝑒 (𝑔𝑟 , ℎ𝜏) · 𝑒

(
𝑔𝜇 · 𝑔𝜉𝑡

′
, ℎ1/𝑛

)
𝑒(𝑣𝜇 , 𝑔) = 𝑒(𝑔𝜇 , 𝑣)

- Check the BLS signature

𝑒(𝜎𝐵𝐿𝑆 , 𝑔) = 𝑒(𝑔𝜇 ,H(𝑚))

- Finally check that 𝑡 ′ ≥ 𝑡 .

Figure 2: BLS multi-threshold signature scheme.

• ®𝑢 := [𝑢1, 𝑢2, · · · , 𝑢𝑛] = [𝑔L1,𝐿 (𝜏), 𝑔L2,𝐿 (𝜏), · · · , 𝑔L𝑛,𝐿 (𝜏)
]

Finally 𝑔𝜂 where 𝜂 =

∑
𝑖∈[𝑛]

L𝑖 (𝜏)/𝜔𝑖
using ®𝑔L is also generated.

9

The algorithm outputs the tuple 𝑝𝑝 := (𝑝𝑝𝐵𝐿𝑆 , ®𝑔L , ®ℎL , ®𝑢,ℎ, 𝑣, 𝑔𝜂).

Key Generation. The key generation algorithm KeyGen takes

as input the public parameters 𝑝𝑝 , the number of signers 𝑛, and

the corresponding set of weights 𝒘 = [𝑤1,𝑤2, . . . ,𝑤𝑛]. KeyGen
generate keys for all participants and must be run in a collaborative

(yet non interactive) manner.

Let F be the scalar field of the pairing group G. For each in-

dividual signer 𝑖 ∈ [𝑛], the algorithm outputs (𝑠𝑖 , 𝑔
𝑠𝑖

) for 𝑠𝑖 ∈ F
which are the signing and public key respectively. Each signer lo-

cally samples its signing key and makes the corresponding public

key public. For security, the signers also need to publish a non-

interactive zero-knowledge (NIZK) proof-of-possession of the sign-

ing key. Concretely, for proof-of-possession, we use the approach

from [12, §6].

In order to help the signature aggregator P, each signer 𝑖 ad-

ditionally produces 𝑎𝑘𝑖 := {𝑔𝑠𝑖 , 𝑔𝑠𝑖
𝑖
, ℎ

𝑠𝑖
𝑖
, 𝑣𝑠𝑖 , 𝑔𝜂𝑠𝑖 ,

[
𝑢
𝑠𝑖
𝑘

]
𝑘∈[𝑛]

} with a

proof to ensure the vector is consistent w.r.t 𝑠𝑖 . From this input and

𝑝𝑝 , the signature aggregatorP is able to produce the public aggrega-

tion key 𝑎𝑘 := {
[
𝑔
𝑠𝑖
𝑖

]
𝑖∈[𝑛]

;

[
ℎ
𝑠𝑖
𝑖

]
𝑖∈[𝑛]

;

[
𝑔𝑞𝑖 (𝜏)

]
𝑖∈[𝑛]

; [𝑔𝜂𝑠𝑖]𝑖∈[𝑛]
}.

On the other side, a participantV willing to validate a weighted

signature will be given the verification key

𝑣𝑘 := {𝑔, ℎ, 𝑣, 𝑔𝑠(𝜏), 𝑔𝑤(𝜏), 𝑔𝜏 , 𝑔𝑧𝐻 (𝜏)}, where in particular the global

public key and the vector of weights are represented by their re-

spective commitments 𝑔𝑠(𝜏), 𝑔𝑤(𝜏)
.

Computing partial signature. As with a standard BLS signature,

for any message𝑚, signer 𝑖 computes its partial 𝜎𝑖 as H(𝑚)
𝑠𝑖
. The

signer then sends 𝜎𝑖 to P.
Verifying partial signature. As with a standard BLS signature,

a partial signature 𝜎𝑖 from signer 𝑖 is valid only if 𝑒(𝑔𝑠𝑖 ,H(𝑚)) =

𝑒(𝑔, 𝜎𝑖).

Combining partial signatures. Upon receiving valid partial sig-

natures 𝜎𝑖 , P first checks that the total weight of these partial

signatures is greater than the required threshold 𝑡 .

• As described in §4.2, P then computes the vector 𝒃 rela-

tive to the signers that have contributed and outputs the

corresponding commitment 𝑔𝑏 := 𝑔𝑏(𝜏)
. P then computes

𝑔𝑞𝑏 = 𝑔𝑞𝑏 (𝜏)
that proves that 𝒃 is a bit vector. Then the total

weight of the signers selected by 𝒃 is computed as 𝑡 ′ = ⟨𝒘, 𝒃⟩.
As mentioned above we have 𝑡 ′ ≥ 𝑡 .

• The aggregated public key conceptually defined as 𝑔𝜇 :=

⟨𝒑𝒌, 𝒃⟩ can be obtained by computing 𝑔𝜇 =

∏
𝑖:𝑏[𝑖]=1

𝑔𝑠𝑖 .

Similarly the aggregated signature w.r.t to this key can be

obtained by multiplying all the partial signatures: 𝜎𝐵𝐿𝑆 :=∏
𝑖:𝑏[𝑖]=1

𝜎𝑖 .

• The last step consists of producing the double IPA proof 𝜋

defined in §4.3-4.6 to ensure that the vector 𝒃 is indeed a

bit vector and that ⟨𝒑𝒌, 𝒃⟩ and ⟨𝒘, 𝒃⟩ have been computed

correctly. The weighted signature 𝜎 finally is defined as

𝜎 := (𝑔𝜇 , 𝑔𝑏 , 𝑔𝑞𝑏 , 𝜎𝐵𝐿𝑆 , 𝜋, 𝑡
′
).

Verifying the final weighted signature. The verifier V upon

receiving a weighted signature 𝜎(𝑔𝜇 , 𝑔𝑏 , 𝑔𝑞𝑏 , 𝜎𝐵𝐿𝑆 , 𝜋, 𝑡
′
), can verify

it by checking the validity of 𝑔𝜇 and 𝑡 ′ leveraging the double IPA
proof 𝜋 and performing a simple BLS signature verification with

the message𝑚 and the public key 𝑔𝜇 .

5 ANALYSIS
We prove security of our threshold signature scheme in the Al-

gebraic Group Model (AGM). We will prove the security in two

parts. First, we will prove that assuming hardness of 𝑞-SDH in the

AGM, our protocol for RTS is knowledge sound. More precisely,

for any PPT adversary A that successfully convinces a verifierV
with respect to a committed key 𝑔𝑠(𝜏)

and committed weights 𝑔𝑤(𝜏)
,

then there exists an efficient extractor E, who interacts withA and

outputs a bit vector 𝒃 such that ⟨𝒑𝒌, 𝒃⟩ = 𝑔𝜇 and ⟨𝒘, 𝒃⟩ ≥ 𝑡 .

We then use the knowledge soundness of the protocol for RTS

and hardness of co-CDH assumption to prove that our threshold

signature scheme is existentially unforgeable as per the security

game in Figure 1. Our unforgeability proof follows the security

proof of Boneh et al., [12, Theorem 5]. We also follow the proof-of-

possession approach adopted in that paper.

5.1 Knowledge soundness of the IPA protocol.
Throughout our analysis, we use the following theorem which we

prove in Appendix B.

Theorem 5.1. Let 𝒈𝑚 = [𝑔,𝑔𝜏 , 𝑔𝜏
2

, . . . , 𝑔𝜏
𝑚

] be the 𝑞-SDH param-
eters for any given𝑚. Assuming hardness of 𝑞-SDH, no PPT adversary
A on input 𝒈𝑚 can output a non-zero polynomial 𝑎(·) of degree ≤ 𝑚
such that 𝑎(𝜏) = 0.

To prove that our protocol for RTS is secure, we prove the fol-

lowing theorem.

Theorem 5.2 (RTS Knowledge-Soundness). Assuming hard-
ness of 𝑞-SDH in the Algebraic Group Model, our protocol for the
relation RTS is knowledge sound.

We prove Theorem 5.2 in parts. Lemma 5.3, which we prove

in Appendix B, first shows knowledge soundness of the bit vector

relation.Wewill then prove security of the remaining inner-product

arguments.

Lemma 5.3 (Bit vector). Assuming hardness of 𝑞-SDH in the
Algebraic Group Model, the protocol for proving that the committed
vector 𝒃 is binary is knowledge sound.

Recall that the IPA proof consists of tuple (𝑔𝜇 , 𝑣𝜇) that satisfy the

check:

𝑒
(
𝑔𝜇 , 𝑣

)
= 𝑒

(
𝑣𝜇 , 𝑔

)
(35)

Since AIPA is algebraic, for 𝑔𝜇 , 𝑣𝜇 ∈ G, let 𝝁, 𝝁 be the vectors

such that 𝑔𝜇 = ⟨𝝁,𝒈𝑛⟩ and 𝑣𝜇 = ⟨𝝁,𝒈𝑛⟩, respectively. Also, let 𝜇(𝑥)

and 𝜇(𝑥) be the polynomials defined using the elements of 𝒑 and

𝒓 as coefficients, respectively. Then, in Appendix B, we prove the

following.

Lemma 5.4. Assuming hardness of discrete logarithm and 𝑞-SDH
in the AGM, 𝜇(𝑥) is a constant polynomial.

The next part in our proof is to bound the degree of the polyno-

mial 𝑟𝑜 (𝑥) given the 𝑔𝑟 and ℎ𝑝 that satisfy the following constraint:

𝑒
(
ℎ𝑝 , 𝑔

)
= 𝑒

(
𝑔𝑟 , ℎ

𝜏) · 𝑒 (
𝑔𝜇 · 𝑔𝜉𝑡 , ℎ1/𝑛

)
(36)

Again, since AIPA is algebraic, let 𝒑, 𝒓 be the vectors such that

ℎ𝑝 = ⟨𝒑,𝒈𝑛⟩ and 𝑔𝑟 = ⟨𝒓,𝒈𝑛⟩, respectively. Also, let 𝑝(𝑥) and 𝑟 (𝑥)

be the polynomials defined using the elements of 𝒑 and 𝒓 as coeffi-

cients, respectively. Then, in Appendix B, we prove the following.

10

Lemma 5.5. Assuming hardness of discrete logarithm and 𝑞-SDH
in the AGM, 𝑟 (𝑥) is a polynomial of degree at most 𝑛 − 2.

Remark. Note that hardness of 𝑞-SDH implies hardness of discrete

logarithm. In Lemma 5.4 and 5.5 for easier exposition.

Given the claimed aggregated public key 𝑔𝜇 and claimed thresh-

old 𝑡 , let 𝑔𝜇 = 𝑔𝜇𝑔
𝜉𝑡
. Recall from §4.6, 𝑜(𝑥) is the polynomial defined

as 𝑜(𝑥) = 𝑠(𝑥) + 𝜉𝑤 (𝑥). Let 𝒐 = [𝑜(𝜔), 𝑜(𝜔𝑖
), . . . , 𝑜(𝜔𝑛

)]. Then, in RTS,

P convincesV than𝑔𝜇 = 𝑔⟨𝒃,𝒐⟩ . Then, in the next lemma, we prove

that, except with negligible probability, correctness of 𝑔𝜇 implies

correctness of 𝑔𝜇 and 𝑡 .

Lemma 5.6. Let 𝒐 be the vector defined as above. If 𝑔𝜇 = 𝑔⟨𝒃,𝒐⟩ ,
then except with negligible probability in𝜅 ,𝑔𝜇 = 𝑔⟨𝒃,𝒔 ⟩ and 𝑡 = ⟨𝒃,𝒘⟩.

Proof. Our proof uses the standard Schwartz-Zippel lemma. Let

𝜇 = ⟨𝒔, 𝒃⟩ and 𝑡 = ⟨𝒃,𝒘⟩ be the correctly computed values. Also, let

𝜇 be such that 𝑔𝜇 = 𝑔𝜇s. Then, correctness of 𝑔𝜇 implies that:

𝜇 + 𝜉𝑡 = 𝜇 + 𝜉𝑡 ⇒ (𝜇 − 𝜇) + 𝜉(𝑡 − 𝑡) = 0

Let ∆(𝑥) = (𝜇 − 𝜇) + 𝑥(𝑡 − 𝑡) = 0 be the polynomial of degree

1 in the variable 𝑥 . This implies that ∆(𝜉) = 0 for an uniformly

random 𝜉 ∈ F which is sampled after committing to ∆(𝑥). Thus,

using Schwartz-Zippel lemma, ∆(𝑥) is identically zero, except with

negligible probability. □

We now use Lemma 5.4, Lemma 5.5 and theorem 5.1 to prove

that the claimed 𝑔𝜇 is indeed 𝑔⟨𝒃,𝒐⟩ .

Theorem 5.7 (Sumcheck). Let 𝒐 be the vector as defined above
and 𝒃 be the bit vector as per Lemma 5.3. Let 𝑔𝜇 and 𝑡 be the claimed
aggregated public key and threshold, respectively. Let 𝑔𝜇 = 𝑔𝜇𝑔

𝜉𝑡 .
Then, assuming hardness of q−𝑆𝐷𝐻 in the AGM, 𝑔𝜇 = 𝑔⟨𝒃,𝒖⟩ .

Proof. Let 𝒈𝑛 be the input to the adversary AIPA. Also, let 𝑜(𝑥)

and 𝑏(𝑥) be the polynomials defined using the elements of vector 𝒐
and 𝒃 as coefficients, respectively. Then the tuple (𝑔𝑞, 𝑔𝑟) in the IPA

proof satisfies the following check.

𝑒

(
𝑔𝑏(𝜏), 𝑔𝑜(𝜏)

)
= 𝑒

(
𝑔𝑞, 𝑔

𝑧𝐻 (𝜏)

)
· 𝑒

(
𝑔𝑟 , 𝑔

𝜏) · 𝑒 (
𝑔𝜇 , 𝑔

)
(37)

Let 𝑞(𝑥) and 𝑟 (𝑥) are the polynomials defined as:

𝑏(𝑥)𝑜(𝑥) = 𝑞(𝑥)𝑧𝐻 (𝑥) + 𝑥𝑟 (𝑥) + 𝜈 (38)

Since, AIPA is algebraic, it outputs vectors 𝒒̃, 𝒓̃ ∈ F𝑛+1
such

that (𝑔𝑞, 𝑔𝑟) = (⟨𝒈𝑛, 𝒒̃⟩, ⟨𝒈𝑛, 𝒓̃⟩). Let 𝑞(𝑥), 𝑟 (𝑥) be two polynomials of

degree 𝑛 each defined using the vectors 𝒔 and ˜𝒃 as their coefficients,

respectively. Let 𝜇 be such that 𝑔𝜇 = 𝑔𝜇 . Note that such 𝜇 exists due

to Lemma 5.4. Let ∆(𝑥) be the polynomial defined as

∆(𝑥) = (𝑞(𝑥) − 𝑞(𝑥))𝑧𝐻 (𝑥) + 𝑥 (𝑟 (𝑥) − 𝑟 (𝑥)) + (𝜈 − 𝜇) (39)

Then, a successful verification implies that ∆(𝜏) = 0), i.e.,

(𝑞(𝜏) − 𝑞(𝜏))𝑧𝐻 (𝜏) + 𝜏(𝑟 (𝜏) − 𝑟 (𝜏)) + (𝜈 − 𝜇) = 0 (40)

We now argue that if 𝜈 ̸= 𝜇, then ∆(𝑥) is a non-zero polynomial

and 𝑞-SDH is easy. Note that 𝑥 (𝑟 (𝑥) − 𝑟 (𝑥)) do not have a constant

term. Hence, the for ∆(𝑥) to be a identically zero-polynomial, (𝑞(𝑥)−
𝑞(𝑥))𝑧𝐻 (𝑥) must have a constant term equal to 𝜇 − 𝜈 . This implies

that (𝑞(𝑥) − 𝑞(𝑥)) must be non-zero, and hence (𝑞(𝑥) − 𝑞(𝑥))𝑧𝐻 (𝑥)

is a polynomial of degree at least 𝑛. But, by definition, 𝑟 (𝑥) is a

polynomial of degree 𝑛 − 2. Similarly, from Lemma 5.5, 𝑟 (𝑥) is also

a polynomial of degree at most 𝑛 − 2. This implies that ∆(𝑥) is a

non-zero polynomial with ∆(𝜏) = 0, and 𝑞-SDH is easy.

Note that ∆(𝑥) is of degree at most 2𝑛. Thus, in our reduction, we

start with a 𝑞-SDH tuple with 𝒈2𝑛 only sends the first 𝒈𝑛 to AIPA.

A𝑞SDH uses the remaining 𝑛 elements as per Theorem 5.1. □

5.2 Security of threshold signature scheme
Let ATS be the adversary that forges a threshold signature. Re-

call, we define forgery as when ATS produces a signature 𝜎 with

threshold 𝑡 , while querying partial signatures from honest signers of

weight less than 𝑡−𝑤𝐹 . Here𝑤𝐹 is the weight of the corrupt signers.

Trivially, if𝑤𝐹 = ∥𝒘 ∥1, i.e., ATS corrupts all signers, then the sig-

nature scheme is secure by default. Thus, we focus on𝑤𝐹 < ∥𝒘 ∥1,
i.e., there exists at least one honest signer.

We now use ATS to build an adversary AcoCDH that breaks the

co-CDH assumption. We will present our analysis using a asymmet-

ric pairing group, as it is more general than the symmetric group.

The same analysis holds for symmetric pairing group as well.

Let AcoCDH be the co-CDH adversary. AcoCDH upon receiving

a co-CDH tuple (𝑔1, 𝑔2, 𝑔
𝑠
1
, 𝑔𝑠

2
, 𝑔𝑟

2
) proceeds as follows.AcoCDH sam-

ples 𝛼, 𝛽 ∈ F and sets ℎ = 𝑔𝛼 , 𝑣 = 𝑔𝛽 . Also, AcoCDH samples 𝜏 ∈ F
and computes the public parameters of our signature using the

Setup(1
𝜅 , 𝑛) algorithm.

Setup, key generation and proofs-of-posession. Recall, 𝐹0 is the

initial set of signers A corrupts. LetH = [𝑛] \ 𝐹0 be the initial set

of honest signers. AcoCDH samples a random signer index 𝑖 ∈ H
and uses 𝑔𝑠

1
as the public key of signer 𝑖 , i.e., 𝑝𝑘𝑖 = 𝑔𝑠 . For remain-

ing honest signers AcoCDH samples the signing keys uniformly at

random. Let 𝑠𝑖 be the signing key of signer 𝑖 . AcoCDH then com-

putes proof-of-possession for all honest signers except 𝑖 as per the

honest protocol. For signer 𝑖 , it samples a uniform random 𝑎 ∈ F
and sets Hpop(𝑔𝑠

1
) = 𝑔𝑎

2
, and outputs 𝑔𝑠𝑎

2
as the proof-of-possession.

AcoCDH then sends public keys of all the signers inH along with

its proof-of-possession to ATS.

Also, wheneverATS queriesHpop(·) on input𝑦,AcoCDH samples

a uniformly random𝑎𝑦 ∈ F, assignsHpop(𝑦) = 𝑔
𝑟𝑎𝑦
2

, and adds (𝑦, 𝑎𝑦)

to a list 𝐿1.

Emulating signing and corruption oracles. AcoCDH then emu-

lates the corruption oracle Ocur(·) as follows. IfATS corrupts 𝑖 , then

AcoCDH aborts. Otherwise, upon corrupting signer 𝑖 ̸= 𝑖 , AcoCDH

responds with the signing key 𝑠𝑖 .

Similarly, AcoCDH emulates the signing oracle Osign(·, ·) as fol-
lows. Let 𝑞𝐻 be the upper-bound on the number of signing queries.

AcoCDH samples a random 𝑘 ∈ [𝑞𝐻]. For the 𝑘-th random oracle

query to H(𝑚), AcoCDH outputs H(𝑚) = 𝑔𝑟
2
and adds (𝑚,⊥, 1) to a

list 𝐿0. Otherwise, AcoCDH chooses a random 𝑎𝑚 ∈ F and assigns

H(𝑚) = 𝑔
𝑎𝑚
2

. Also, it adds (𝑚,𝑎𝑚, 0) to the list 𝐿0.

AcoCDH emulates the signing procedure as follows. IfATS queries

partial signature from signer 𝑖 on the message𝑚𝑘 , AcoCDH aborts.

Otherwise, it uses its knowledge of signing keys of the remaining

signers and the list 𝐿0 to compute the honest partial signature.

11

Breaking co-CDH. Let ATS outputs a non-trivial forgery 𝜎 =

(· · · , 𝑔𝜇 , 𝜎𝐵𝐿𝑆 , 𝑡, · · ·) for message𝑚∗. If H(𝑚∗) was not the 𝑘-th ran-

dom oracle query, then AcoCDH aborts. Otherwise, using knowl-

edge soundness of the protocol for RTS, we can extract a bit vector

𝒃 such that ⟨𝒑𝒌, 𝒃⟩ = 𝑔𝜇 and ⟨𝒘, 𝒃⟩ = 𝑡 . Let 𝐼 be the set of indices

such that 𝒃[𝑖] = 1, ∀𝑖 ∈ 𝐼 , and 0 otherwise.

Note that the non-triviality of the forgery implies that 𝐼 includes

at least one honest signer, whoATS did not query for partial signa-

ture on the message𝑚∗. If 𝑖 ̸∈ 𝐼 , then AcoCDH aborts. Otherwise,

AcoCDH proceeds as follows.

For each 𝑖 ∈ 𝐼 \ {𝑖}, AcoCDH looks up (𝑝𝑘𝑖 = 𝑦𝑖 , 𝑎𝑖) in 𝐿1 . Then,

the proof-of-possession of signer 𝑖 is 𝜋𝑖 = (𝑔𝑟
2
)
𝑎𝑖 log 𝑦𝑖

. Here log𝑦𝑖
is the discrete logarithm of 𝑦𝑖 with respect to 𝑔1. AcoCDH then

outputs the the co-CDH break 𝑔2,𝑟𝑠 as:

𝑔2,𝑟𝑠 = 𝜎𝐵𝐿𝑆 ·
∏

𝑖∈𝐼\{𝑖 }
𝜋
−𝑎−1

𝑖

𝑖
(41)

Success probability. Let 𝜖 be the probability with which ATS

outputs a forgery. It is easy to see that if AcoCDH does not abort,

then it outputs a correct co-CDH break. Thus, we first lower-bound

the probability that AcoCDH does not abort.

First, since 𝑖 is chosen uniformly at random, ATS does not cor-

rupt 𝑖 with probability at least 1/𝑛. Next,𝑚∗ is the 𝑘-th random

oracle query with probability at least 1/𝑞H. Also, let 𝛿RTS
be the

probability that the extractor E outputs a bit vector 𝒃 that satis-

fies 𝑔𝜇 = ⟨𝒑𝒌, 𝒃⟩. Finally, the probability that 𝑖 ∈ 𝐼 is at least 1/𝑛.

Combining all the above, we get that with 𝜖CDH, AcoCDH outputs

a valid co-CDH break, where:

𝜖CDH ≥ 𝜖 · 𝛿RTS
· 1

𝑛2𝑞𝐻
(42)

Theorem 5.8. For any PPT adversary ATS, if ATS successfully
creates a non-trivial forgery with probability 𝜖 , then AcoCDH breaks
the 𝑞-SDH assumption with probability 𝜖 · 𝛿RTS

/poly(𝑛, 𝑞𝐻).

5.3 Performance
The CRS and aggregation key each consist of 𝑂(𝑛) group elements.

The verification key consists of 7 group elements. The one-time pre-

processing requires 𝑂(𝑛2
) computation costs to compute 𝑛 group

elements, each requiring 𝑛 group exponentiations. The per signer

signing key is a single field element and signing requires one group

exponentiation. During signature aggregation, P performs 𝑂(𝑛)

group exponentiations, 𝑂(𝑛 log𝑛) field operations. The signature

consists of 8 group elements and 1 integer for specifying the thresh-

old. Verification takes 1 exponentiations and 13 pairings.

6 IMPLEMENTATION AND EVALUATION
We implement and measure our threshold signature scheme in

golang. For our experiments, we only implement the computation

component without any networking. We use the BLS12-381 pairing

based curve implementation from gnark-crypto [16]. We also use

(for both in our implementation and the existing works) the multi-

exponentiation of group elements using Pippenger’s method [9, §4]

to increase the efficiency of the aggregator. All experiments are run

on a t3.2xlarge Amazon Web Service (AWS) instance with 32 GB

RAM and 8 virtual cores.

We measure the computation cost in terms of latency for prepro-

cessing, signing, verification, and aggregation algorithm. Through-

out our evaluation, we use the pairing based BLS signature [14] as

the underlying signature scheme. We compare our scheme with

the following schemes: (1) generic SNARK approach, (2) compact

certificate in Micali et. al. [44], (3) (vanila) Shamir secret sharing

base threshold BLS [10], and (4) pairing based multisignature based

on BLS [12].

With our evaluation we seek to demonstrate that our scheme sup-

ports arbitrary weight distribution and multiple thresholds while

maintaining a signature size and verification time comparable to

that of standard threshold signature and multisignature schemes.

Recall, that existing threshold signature schemes are very ineffi-

cient with arbitrary weight distribution. On the other hand, mul-

tisignature schemes require a linear-size public verification key.

Our evaluation also illustrates that existing off-the-self SNARKs (as

described below) are inefficient when used as threshold signature

schemes.

Threshold signature using generic SNARK. We consider the

following generic SNARK construction. Each signer has one signing

key and a weight. The signer signs only once using its signing key.

The aggregator functions as a SNARK prover P who convinces

the verifier V that it knows a set of valid signatures, each with

distinct public key, with a total weight greater than or equal to

the desired threshold. We build the SNARK prover atop the open

source SNARK prover implementation of [4]. We use the gnark

library [16] to create the SNARK proof. We use choose the most

SNARK-friendly signature scheme available in the gnark library,

which is the EdDSA signature — with gnark frontend. A single

EdDSA verification produces 6.5k constraints in the Groth16 proof

system [37], and 13.6k constraints in the PLONK system [30]. For

this experiment, we also assume that the verifier has the list of all

public-keys and all weights are equal. Note that, it is also possible

to construct the proof with respect to a commitment of the public

keys and distinct weights. This will further increase the running

time of the aggregator. We want to note that, the EdDSA signa-

ture implementation of gnark uses MiMc [2] hash function as the

underlying random oracle.

Compact certificates of knowledge (CCoK) [44]. We bench-

mark CCoK based on their open source implementation of Algo-

rand [3].We use EdDSA signature over the curve25519 elliptic curve

as the underlying signature scheme, and SHA256 implementation

from libsodium as the underlying hash function. We adapted exist-

ing benchmarks for their implementation in the unweighted setting

for our desired threshold values. Also, for any given threshold 𝑡 ,

we consider the collected weight to be 1.25𝑡 . Note that the CCoK

scheme requires an additional soundness security parameter, which

is then used to compute the number of Merkle paths to be revealed

in the certificate. For all benchmarks, we use pick the parameter to

achieve 128 bit of security.

BLS threshold and multisignature.We also compare with the

virtualization approach using BLS threshold signature and the BLS

multisignature scheme [12, §6] as described in §1, §3.4, and §7. We

do not include the cost of the DKG protocol for the virtualization

approach.

12

Table 3: The key generation time and preprocessing time of our
approach in the unweighted setting.

𝑛
Key generation

time (milliseconds)

Preprocessing

time (seconds)

64 2.25 0.10

256 7.11 0.90

1024 28.34 10.65

4096 112.23 149.11

6.1 Evaluation Setup
With the exception of BLS threshold signature and CCoK, the aggre-

gation time and signature size of the other schemes depend solely

on the number of signers used to compute the final signature. To

evaluate these schemes, we begin by evaluating all signatures in the

unweighted setting with varying numbers of signers to aggregate,

specifically with 𝑡 = 64, 256, 1024, and 4096.

For BLS threshold signature, the aggregation time only depends

on the required threshold 𝑡 . However, in the weighted setting, 𝑡 may

be much larger than the total number of signers. Thus, to examine

the effect of weights, we also evaluate the BLS threshold signature

scheme with 𝑛 = 𝑡 = 32768, 65536.

Finally, since in CCoK, the aggregator needs to collect a larger

fraction of signatures than the proven threshold 𝑡 , we use 𝑛 = 2𝑡

while evaluating CCoK. Note that, CCoK’s performance, depends

on the actual weight distribution. Nevertheless, our unweighted

evaluation shows that the signature size of CCoK is more than 80

KBytes even for a 𝑡 = 256. Consequently, we do not evaluate CCoK

in the weighted setting.

6.2 Evaluation Results

preprocessing and key generation time. In Table 3 we illustrate

the per-party key generation time and the preprocessing time i.e.,

the time an aggregator takes to compute the the aggregation key,

of our scheme. Our evaluation illustrates that generating keys in

our scheme is very efficient, i.e., it only takes 112 milliseconds to

generate the keys with 4096 signers. Also, the key generation time

grows only linearly with the number of signers. In comparison,

the preprocessing time is much higher, i.e., 149 seconds for 4096

signers, and grows quadratically with number of signers. As we

mention before, this is because, an aggregator needs to perform

𝑂(𝑛2
) group exponentiations to compute the aggregate public key.

Fortunately, as we discuss in §4.4 the aggregation key is efficiently

verifiable, hence, can be delegated to external entities.

Signature aggregation time.We report the unweighted signature

aggregation time in Table 4. The reported aggregation time does

not include the time the aggregator spends verifying the signatures,

which is identical in BLS threshold, multisignature, and our scheme.

Note that multisignature scheme have the shortest aggregation

time. This is because aggregation in a multisignature scheme only

requires a linear number of group operations. Contrary to that, our

approach and BLS threshold signature scheme need 𝑂(𝑛) group

exponentiations and 𝑂(𝑛 log𝑛) field operations. The longer aggre-

gation time in CCoK is because the aggregator needs to compute a

large number of hashes.

Table 4: Unweighted aggregation time (in milliseconds)

𝑡 64 256 1024 4096

BLS Threshold 4.81 13.99 81.41 660.26

Multisignature 0.15 0.54 2.69 11.23

CCoK 20.53 79.36 313.12 1246.76

Groth16 6535.86 25695.95 — —

Plonk 46081.93 — — —

Our approach 3.74 9.51 54.80 690.44

Observe that generic SNARK based approaches require orders

of magnitude higher aggregation time and are impractical to be

used to build threshold signatures for a large number of signers.

The dashed entries in the table indicate that we could not run

the SNARK prover with the chosen parameters. The Groth16 setup

ceremony ran out of memory with 4096 signers. Similarly, the plonk

aggregator ran out of memory while aggregating signatures with

1024 signers or higher.

Finally, we measure the aggregation cost of the BLS threshold

signature scheme in the weighted setting. Recall that the aggrega-

tion cost in the BLS threshold signature depends only on 𝑡 and not

the actual weight distribution. In our evaluation with 𝑡 = 32768 and

𝑡 = 65536, computing the aggregated signature requires 30 and 120

seconds, respectively. Also, with 32768 and 65536 signers, for each

signature, the signers will need to send a total of 3 and 6 Megabytes

of data, respectively. The quadratic growth is due to our quadratic

time implementation to compute Lagrange coefficients. We will

update it with a quasilinear algorithm in the later version.

Verification time, verification key size, and signature size.We

report the unweighted signature verification time and signature

size in Table 5. As expected, the BLS threshold signature scheme

has the smallest signature size (only one G2 element) and shortest

verification time (only two pairings). Also, as expected, the signa-

ture size of the CCoK approach is very large. Note that although

CCoK requires the longest verification, the verification is still less

than 100 milliseconds. This might be reasonable for many applica-

tions. We want to note that despite having an asymptotically linear

verification time, the concrete verification time multisignature is

very fast. This is because the multisignature only requires a linear

number of group multiplications and not group exponentiations.

The only practical downside of a multisignature scheme is the

verification key size, i.e., the verifier must store all signers’ public

keys. The linear verification key size can be prohibitive for appli-

cations where a blockchain acts as a verifier, as storing large data

on-chain is very expensive (since each node in the blockchain needs

to replicate the verification key).

Memory usage. Our protocol has low memory usage except for

the preprocessing step. Recall from §4 only the aggregator (a single

machine) performs the preprocessing step. During preprocessing,

our scheme with 256, 1024, and 4096 signers uses 0.03GB, 0.25GB,

and 3.44GB of memory, respectively. The higher memory during

preprocessing is an implementation choice, as we store vectors of

size 𝑂(𝑛2
) in the memory. We adopt this approach for the faster

preprocessing time. Alternatively, one could implement the pre-

processing step with lower memory usage at the cost of a longer

running time.

13

Table 5: Unweighted verification time (inmilliseconds) and signature
size (in bytes)

Scheme

Verification

time

Signature

size

Verification

key size

BLS Threshold 1.05 96 48

Multisig. (𝑡 = 4096) 5.63 608 196608

Groth16 4.6 192 1440

Plonk 5.5 624 1306

CCoK (𝑡 = 64) 57.73 27033 64

CCoK (𝑡 = 4096) 89.24 206085 64

Our approach 8.21 536 672

7 RELATEDWORK
The closest signature scheme to our approach is the standard mul-

tisignature scheme. Since we already discuss its properties in detail

throughout the paper, we focus on other schemes below.

Threshold Signatures. Threshold signature schemes were first

proposed for ElGamal and RSA signatures [23, 24, 33, 38, 48] and

later for BLS signatures [10, 12], often utilizing Shamir secret shar-

ing [47]. This approach has many advantages: the signature size,

verification key size, and verification time are all constant. Also,

many of these schemes produce unique threshold signatures, a

property that is crucial for threshold signature-based randomness

beacons [20]. These standard threshold signatures do not efficiently

support arbitrary weight distributions or multiple thresholds.

As mentioned, one approach to support arbitrary weights is

virtualization of threshold signatures. Here, the signing key is secret-
shared using a (∥𝒘 ∥1, 𝑡) Shamir secret sharing. Each signer with

weight𝑤 receives𝑤 shares of the secret and signs using all𝑤 shares.

This approach is inefficient for both the signer and the aggregator.

Compact Certificate of Knowledge (CCoK). Micali et al. [44]

presents an elegant protocol CCoK to address these issues. CCoK

uses a specialized SNARK analogous to Kilian’s protocol [39]. CCoK

has several nice properties. A signer only needs to sign once, inde-

pendent of its weight. Their protocol also supports multiple thresh-

olds. The underlying signature scheme is used in a black box man-

ner and hence is compatible with any signature scheme. However,

CCoK has several downsides. First, it cannot prove the exact weight

of the signers who signed the message. In particular, to prove that a

signature is signed by signers with a total weight 𝑡 , the aggregator

needs to collect partial signatures of weight (1 + 𝜖)𝑡 for some 𝜖 > 0.

The signature size depends on 𝜖 . The smaller the 𝜖 , the larger the

signature. As we illustrate in §6, the signature becomes very large

even with 𝜖 = 0.25.

Sampling-based approach.Chaidos andKiayias present a sampling-

based approach to design a weighted threshold signature in the

proof-of-stake setting [21]. The idea is to sample a subset of signers

in a verifiable manner based on the weight distribution and then

let the sampled signers sign the message. A similar approach has

been adopted for constructing weighted secure multiparty compu-

tation protocols [22, 35]. This approach has a few drawbacks. First

of all, it requires a mechanism to securely sample signers propor-

tional to their weights. It also increases the costs for signers with

large weights. Additionally, this approach is typically vulnerable to

adaptive corruption.

Generic weighted secret sharing. A generic approach to design-

ing a threshold signature that supports arbitrary weight distribution

is to use a weighted secret sharing scheme (WSS), i.e., a secret shar-

ing scheme that inherently considers the weight of each signer.

Beimel [5, 6] presented the first characterization of WSS where the

share size is sublinear than the weight of the signer. Prior works

on WSS has explored other approaches such as Chines remainder

theorem [31, 51], allowing only restricted classes of hierarchical

weights [27, 49], and wiretap channels [8]. All these works are

theoretical and have very high concrete costs.

8 CONCLUSION AND OPEN PROBLEMS
We have presented a new threshold signature scheme that sup-

ports arbitrary weight distribution and arbitrary thresholds. The

signature consists of only 8 group elements. Verifying the signature

requires 1 group exponentiations and 13 bilinear pairings. A core

component of our scheme is an inner-product argument (IPA) be-

tween a vector of signing keys and a vector of field elements. Our

threshold signature scheme uses the IPA scheme in a modular way.

Thus, any improvement in the IPA scheme immediately results in

an improvement in our signature scheme. We formally prove the

security of our scheme in the Algebraic Group Model.

Limitations and Open problems. One drawback of our thresh-

old signature scheme is that the signatures are not unique. This

prevents us from using our signature to implement a randomness

beacon. Designing a weighted unique threshold signature scheme is

a fascinating open problem. Also, existing approaches to proactively

refresh the signing key shares without changing the verification

key do not directly work with our scheme. Making our threshold

signature proactively secure is an interesting open problem. An-

other limitation of our scheme is that the pre-processing cost of

the aggregator is quadratic in the number of signers.

Another interesting future directions to improve our scheme

include reducing the public keys each signer needs to publish and

improving the underlying cryptographic assumptions (e.g., remov-

ing the need for pairing).

Our approach to computing the inner product between a vector

of group and field elements may be of independent interest. For our

approach to work, the discrete logarithms of the group elements

are known in a distributed manner. A potential application could

be accountable private threshold signatures [13].

ACKNOWLEDGMENTS
This work is funded in part by a VMware early career faculty grant,

a Chainlink Labs Ph.D. fellowship, the National Science Foundation.

REFERENCES
[1] Ittai Abraham, Dahlia Malkhi, and Alexander Spiegelman. 2019. Asymptotically

optimal validated asynchronous byzantine agreement. In Proceedings of the 2019
ACM Symposium on Principles of Distributed Computing. 337–346.

[2] Martin Albrecht, Lorenzo Grassi, Christian Rechberger, Arnab Roy, and Tyge

Tiessen. 2016. MiMC: Efficient encryption and cryptographic hashing with

minimal multiplicative complexity. In Advances in Cryptology–ASIACRYPT 2016:
22nd International Conference on the Theory and Application of Cryptology and
Information Security, Hanoi, Vietnam, December 4-8, 2016, Proceedings, Part I.
Springer, 191–219.

[3] Algorand. Algorand’s official implementation in Go. (????). https://github.com/

algorand/go-algorand

14

https://github.com/algorand/go-algorand
https://github.com/algorand/go-algorand

[4] Leemon Baird, Sanjam Garg, Abhishek Jain, Pratyay Mukherjee, Rohit Sinha,

MingyuanWang, and Yinuo Zhang. 2023. Threshold Signatures in the Multiverse.

In 2023 IEEE Symposium on Security and Privacy (SP). IEEE.
[5] Amos Beimel, Tamir Tassa, and Enav Weinreb. 2005. Characterizing ideal

weighted threshold secret sharing. In Theory of Cryptography: Second Theory of
Cryptography Conference, TCC 2005, Cambridge, MA, USA, February 10-12, 2005.
Proceedings 2. Springer, 600–619.

[6] Amos Beimel and EnavWeinreb. 2006. Monotone circuits for monotone weighted

threshold functions. Inform. Process. Lett. 97, 1 (2006), 12–18.
[7] Eli Ben-Sasson, Alessandro Chiesa, Michael Riabzev, Nicholas Spooner, Madars

Virza, and Nicholas P Ward. 2019. Aurora: Transparent succinct arguments

for R1CS. In Annual international conference on the theory and applications of
cryptographic techniques. Springer, 103–128.

[8] Fabrice Benhamouda, Shai Halevi, and Lev Stambler. 2022. Weighted Secret

Sharing from Wiretap Channels. Cryptology ePrint Archive (2022).
[9] Daniel J Bernstein, Jeroen Doumen, Tanja Lange, and Jan-Jaap Oosterwijk. 2012.

Faster batch forgery identification. In Progress in Cryptology-INDOCRYPT 2012:
13th International Conference on Cryptology in India, Kolkata, India, December
9-12, 2012. Proceedings 13. Springer, 454–473.

[10] Alexandra Boldyreva. 2003. Threshold signatures, multisignatures and blind

signatures based on the gap-Diffie-Hellman-group signature scheme. In Public
Key Cryptography, Vol. 2567. Springer, 31–46.

[11] Dan Boneh and Xavier Boyen. 2004. Short signatures without random oracles. In

Advances in Cryptology-EUROCRYPT 2004: International Conference on the Theory
and Applications of Cryptographic Techniques, Interlaken, Switzerland, May 2-6,
2004. Proceedings 23. Springer, 56–73.

[12] Dan Boneh, Manu Drijvers, and Gregory Neven. 2018. Compact multi-signatures

for smaller blockchains. In Advances in Cryptology–ASIACRYPT 2018: 24th Inter-
national Conference on the Theory and Application of Cryptology and Informa-
tion Security, Brisbane, QLD, Australia, December 2–6, 2018, Proceedings, Part II.
Springer, 435–464.

[13] Dan Boneh and Chelsea Komlo. 2022. Threshold signatures with private ac-

countability. In Advances in Cryptology–CRYPTO 2022: 42nd Annual International
Cryptology Conference, CRYPTO 2022, Santa Barbara, CA, USA, August 15–18, 2022,
Proceedings, Part IV. Springer, 551–581.

[14] Dan Boneh, Ben Lynn, and Hovav Shacham. 2001. Short signatures from the Weil

pairing. In Advances in Cryptology—ASIACRYPT 2001: 7th International Conference
on the Theory and Application of Cryptology and Information Security Gold Coast,
Australia, December 9–13, 2001 Proceedings 7. Springer, 514–532.

[15] Jonathan Bootle, Andrea Cerulli, Essam Ghadafi, Jens Groth, Mohammad Ha-

jiabadi, and Sune K Jakobsen. 2017. Linear-time zero-knowledge proofs for

arithmetic circuit satisfiability. In International Conference on the Theory and
Application of Cryptology and Information Security. Springer, 336–365.

[16] Gautam Botrel, Thomas Piellard, Youssef El Housni, Arya Tabaie, Gus Gutoski,

and Ivo Kubjas. 2023. ConsenSys/gnark-crypto: v0.9.0. (Jan. 2023). https://doi.

org/10.5281/zenodo.5815453

[17] Benedikt Bünz, Jonathan Bootle, Dan Boneh, Andrew Poelstra, Pieter Wuille, and

Greg Maxwell. 2018. Bulletproofs: Short proofs for confidential transactions and

more. In 2018 IEEE symposium on security and privacy (SP). IEEE, 315–334.
[18] Benedikt Bünz, Ben Fisch, and Alan Szepieniec. 2020. Transparent SNARKs

from DARK compilers. In Annual International Conference on the Theory and
Applications of Cryptographic Techniques. Springer, 677–706.

[19] Benedikt Bünz, Mary Maller, Pratyush Mishra, Nirvan Tyagi, and Psi Vesely. 2021.

Proofs for inner pairing products and applications. In Advances in Cryptology–
ASIACRYPT 2021: 27th International Conference on the Theory and Application of
Cryptology and Information Security, Singapore, December 6–10, 2021, Proceedings,
Part III 27. Springer, 65–97.

[20] Christian Cachin, Klaus Kursawe, Frank Petzold, and Victor Shoup. 2001. Se-

cure and efficient asynchronous broadcast protocols. In Annual International
Cryptology Conference. Springer, 524–541.

[21] Pyrros Chaidos and Aggelos Kiayias. 2021. Mithril: Stake-based threshold mul-

tisignatures. Cryptology ePrint Archive (2021).
[22] Arka Rai Choudhuri, Aarushi Goel, Matthew Green, Abhishek Jain, and Gabriel

Kaptchuk. 2021. Fluid MPC: secure multiparty computation with dynamic par-

ticipants. In Advances in Cryptology–CRYPTO 2021: 41st Annual International
Cryptology Conference, CRYPTO 2021, Virtual Event, August 16–20, 2021, Proceed-
ings, Part II 41. Springer, 94–123.

[23] Yvo Desmedt. 1988. Society and group oriented cryptography: A new concept.

In Advances in Cryptology—CRYPTO’87: Proceedings 7. Springer, 120–127.
[24] Yvo Desmedt. 1993. Threshold cryptosystems. In Advances in Cryptol-

ogy—AUSCRYPT’92: Workshop on the Theory and Application of Cryptographic
Techniques Gold Coast, Queensland, Australia, December 13–16, 1992 Proceedings 3.
Springer, 1–14.

[25] Liam Eagen, Dario Fiore, and Ariel Gabizon. 2022. cq: Cached quotients for fast

lookups. Cryptology ePrint Archive (2022).
[26] Ethereum. 2023. Decentralized autonomous organizations (DAOs). https://

ethereum.org/en/dao/. (2023).

[27] Oriol Farras and Carles Padró. 2012. Ideal hierarchical secret sharing schemes.

IEEE transactions on information theory 58, 5 (2012), 3273–3286.

[28] Ethereum Foundation. 2020. PROOF-OF-STAKE (POS). https://ethereum.org/en/

developers/docs/consensus-mechanisms/pos/. (2020).

[29] Georg Fuchsbauer, Eike Kiltz, and Julian Loss. 2018. The algebraic group model

and its applications. In Advances in Cryptology–CRYPTO 2018: 38th Annual In-
ternational Cryptology Conference, Santa Barbara, CA, USA, August 19–23, 2018,
Proceedings, Part II 38. Springer, 33–62.

[30] Ariel Gabizon, Zachary J Williamson, and Oana Ciobotaru. 2019. Plonk: Per-

mutations over lagrange-bases for oecumenical noninteractive arguments of

knowledge. Cryptology ePrint Archive (2019).
[31] Sanjam Garg, Abhishek Jain, Pratyay Mukherjee, Rohit Sinha, Mingyuan Wang,

and Yinuo Zhang. 2022. Cryptography with Weights: MPC, Encryption and

Signatures. Cryptology ePrint Archive (2022).
[32] Rati Gelashvili, Lefteris Kokoris-Kogias, Alberto Sonnino, Alexander Spiegel-

man, and Zhuolun Xiang. 2022. Jolteon and Ditto: Network-Adaptive Efficient

Consensus with Asynchronous Fallback. In International conference on financial
cryptography and data security. Springer.

[33] Rosario Gennaro, Stanisław Jarecki, Hugo Krawczyk, and Tal Rabin. 1996. Robust

threshold DSS signatures. In Advances in Cryptology—EUROCRYPT’96: Interna-
tional Conference on the Theory and Application of Cryptographic Techniques
Saragossa, Spain, May 12–16, 1996 Proceedings 15. Springer, 354–371.

[34] Rosario Gennaro, Stanislaw Jarecki, Hugo Krawczyk, and Tal Rabin. 2007. Secure

distributed key generation for discrete-log based cryptosystems. Journal of
Cryptology 20, 1 (2007), 51–83.

[35] Craig Gentry, Shai Halevi, Hugo Krawczyk, Bernardo Magri, Jesper Buus Nielsen,

Tal Rabin, and Sophia Yakoubov. 2021. YOSO: You Only Speak Once: Secure MPC

with Stateless Ephemeral Roles. In Advances in Cryptology–CRYPTO 2021: 41st
Annual International Cryptology Conference, CRYPTO 2021, Virtual Event, August
16–20, 2021, Proceedings, Part II. Springer, 64–93.

[36] Yossi Gilad, Rotem Hemo, Silvio Micali, Georgios Vlachos, and Nickolai Zel-

dovich. 2017. Algorand: Scaling byzantine agreements for cryptocurrencies. In

Proceedings of the 26th symposium on operating systems principles. 51–68.
[37] Jens Groth. 2016. On the size of pairing-based non-interactive arguments. In

Annual international conference on the theory and applications of cryptographic
techniques. Springer, 305–326.

[38] Lein Harn. 1994. Group-oriented (t, n) threshold digital signature scheme and

digital multisignature. IEE Proceedings-Computers and Digital Techniques 141, 5
(1994), 307–313.

[39] Joe Kilian. 1992. A note on efficient zero-knowledge proofs and arguments. In

Proceedings of the twenty-fourth annual ACM symposium on Theory of computing.
723–732.

[40] Chelsea Komlo and Ian Goldberg. 2021. FROST: flexible round-optimized Schnorr

threshold signatures. In Selected Areas in Cryptography: 27th International Con-
ference, Halifax, NS, Canada (Virtual Event), October 21-23, 2020, Revised Selected
Papers 27. Springer, 34–65.

[41] Jonathan Lee. 2021. Dory: Efficient, transparent arguments for generalised inner

products and polynomial commitments. In Theory of Cryptography: 19th Interna-
tional Conference, TCC 2021, Raleigh, NC, USA, November 8–11, 2021, Proceedings,
Part II. Springer, 1–34.

[42] Helger Lipmaa, Janno Siim, and Michał Zając. 2023. Counting vampires: from

univariate sumcheck to updatable ZK-SNARK. In Advances in Cryptology–
ASIACRYPT 2022: 28th International Conference on the Theory and Application of
Cryptology and Information Security, Taipei, Taiwan, December 5–9, 2022, Proceed-
ings, Part II. Springer, 249–278.

[43] Yuan Lu, Zhenliang Lu, Qiang Tang, and Guiling Wang. 2020. Dumbo-mvba:

Optimal multi-valued validated asynchronous byzantine agreement, revisited.

In Proceedings of the 39th Symposium on Principles of Distributed Computing.
129–138.

[44] Silvio Micali, Leonid Reyzin, Georgios Vlachos, Riad S Wahby, and Nickolai

Zeldovich. 2021. Compact certificates of collective knowledge. In 2021 IEEE
Symposium on Security and Privacy (SP). IEEE, 626–641.

[45] Andrew Miller, Yu Xia, Kyle Croman, Elaine Shi, and Dawn Song. 2016. The

honey badger of BFT protocols. In Proceedings of the 2016 ACM SIGSAC conference
on computer and communications security. 31–42.

[46] National Institute of Standard and Technology. 2023. Multi-Party Threshold

Cryptography. https://csrc.nist.gov/Projects/threshold-cryptography. (2023).

[47] Adi Shamir. 1979. How to share a secret. Commun. ACM 22, 11 (1979), 612–613.

[48] Victor Shoup. 2000. Practical threshold signatures. In Advances in Cryptol-
ogy—EUROCRYPT 2000: International Conference on the Theory and Application
of Cryptographic Techniques Bruges, Belgium, May 14–18, 2000 Proceedings 19.
Springer, 207–220.

[49] Tamir Tassa. 2007. Hierarchical threshold secret sharing. Journal of cryptology
20 (2007), 237–264.

[50] Maofan Yin, Dahlia Malkhi, Michael K Reiter, Guy Golan Gueta, and Ittai Abra-

ham. 2019. Hotstuff: Bft consensus with linearity and responsiveness. In Proceed-
ings of the 2019 ACM Symposium on Principles of Distributed Computing. ACM,

347–356.

15

https://doi.org/10.5281/zenodo.5815453
https://doi.org/10.5281/zenodo.5815453
https://ethereum.org/en/dao/
https://ethereum.org/en/dao/
https://ethereum.org/en/developers/docs/consensus-mechanisms/pos/
https://ethereum.org/en/developers/docs/consensus-mechanisms/pos/
https://csrc.nist.gov/Projects/threshold-cryptography

[51] Xukai Zou, Fabio Maino, Elisa Bertino, Yan Sui, Kai Wang, and Feng Li. 2011.

A new approach to weighted multi-secret sharing. In 2011 Proceedings of 20th
International Conference on Computer Communications and Networks (ICCCN).
IEEE, 1–6.

A SUCCINCT NON-INTERACTIVE IPA
In this section, we will describe our new succinct non-interactive

inner product argument (IPA) protocol between a vector of two

field elements. Our IPA protocol does not rely on a random oracle

for non-interactivity and only requires a universal setup.

A.1 Design
Let 𝒂, 𝒃 ∈ F𝑛 be the two input vectors of length 𝑛. The prover P
wants to convince a verifierV that ⟨𝒂, 𝒃⟩ = 𝜇, whereV possesses

𝜇, and commitments to 𝒂 and 𝒃 .

Setup. For any security parameter 𝜅 , let (G,G𝑇) be the description

of a bilinear pairing group with scalar field F. Also, let 𝑒 : G×G→
G𝑇 be an efficiently computable bilinear pairingmap. Let𝑔, ℎ ∈ G be

two uniformly random generators of G. Our IPA protocol assumes

the following common random string (CRS){[
𝑔,𝑔𝜏 , 𝑔𝜏

2

, . . . , 𝑔𝜏
𝑛
]

;

[
ℎ,ℎ𝜏 , ℎ𝜏

2

, . . . , ℎ𝜏
𝑛−1

]}
Here 𝜏 ∈ F is the 𝑞-SDH trapdoor.

Let 𝐻 = {𝜔,𝜔2, . . . , 𝜔𝑛} be a multiplicative subgroup of F of
order 𝑛. Here 𝜔 is a 𝑛-th root of unity of F.

Proof generation. Let 𝑎(·) and 𝑏(·) be polynomials of degree 𝑛 − 1

such that 𝑎(𝜔𝑖
) = 𝒂[𝑖] and 𝑏(𝜔𝑖

) = 𝒃[𝑖] for all 𝑖 ∈ [𝑛]. Then,

⟨𝒂, 𝒃⟩ =

∑︁
𝑖∈[𝑛]

𝑎(𝜔𝑖
)𝑏(𝜔𝑖

)

Let 𝑧𝐻 (𝑥) be the vanishing polynomial over 𝐻 , i.e.,

𝑧𝐻 (𝑥) =

∏
𝑖∈[𝑛]

(𝑥 − 𝜔𝑖
) = 𝑥𝑛 − 1

Our IPA scheme uses the following sumcheck Lemma [7] of

univariate polynomials.

𝑎(𝑥)𝑏(𝑥) = 𝑞(𝑥)𝑧𝐻 (𝑥) + 𝑟 (𝑥)𝑥 + 𝑛−1⟨𝒂, 𝒃⟩

Here, both 𝑞(𝑥) and 𝑟 (𝑥) are unique polynomials of degree 𝑛 − 2.

Let 𝑝(𝑥) = 𝑟 (𝑥)𝑥 + 𝑛−1⟨𝒂, 𝒃⟩.
The IPA 𝜋 for 𝜇 = ⟨𝒂, 𝒃⟩ is the tuple is

𝜋 =

{
𝑔𝑞(𝜏), 𝑔𝑟 (𝜏), ℎ𝑝(𝜏)

}
(43)

Proof verification. We use KZG commitments to polynomials

𝑎(𝑥) and 𝑏(𝑥), i.e., (𝑔𝑎, 𝑔𝑏) = (𝑔𝑎(𝜏), 𝑔𝑏(𝜏)
) as the commitments to the

vectors 𝒂 and 𝒃 , respectively.
V upon receiving the proof 𝜋 = (𝑔𝑞, 𝑔𝑟 , ℎ𝑝), accepts 𝜇 as the

inner product, if following checks pass

𝑒(𝑔𝑎, 𝑔𝑏) = 𝑒(𝑔𝑞, 𝑔
𝑧𝐻 (𝜏)

) · 𝑒
(
𝑔𝑟 , 𝑔

𝜏) · 𝑒 (
𝑔𝜇 , 𝑔1/𝑛

)
; and (44)

𝑒(ℎ𝑝 , 𝑔) = 𝑒
(
𝑔𝑟 , ℎ

𝜏) · 𝑒 (
𝑔𝜇 , ℎ1/𝑛

)
(45)

A.2 Analysis.
The completeness is clear. The proof consists of 3 G elements. Also,

assuming 𝑔𝑧𝐻 (𝜏), 𝑔1/𝑛, ℎ1/𝑛
are part of the CRS, verification requires

one exponentiation and 7 pairings. In terms of provers computation

cost, P computes the polynomials 𝑞(𝑥) and 𝑟 (𝑥) in 𝑂(𝑛 log𝑛) field

operations using number theoretic transform. Then, P computes

(𝑔𝑞(𝜏), 𝑔𝑟 (𝜏), ℎ𝑝(𝜏)
) using 𝑂(𝑛) group exponentiations.

Knowledge soundness. The knowledge soundness follows a simi-

lar argument as the IPA for ⟨𝒑𝒌, 𝒃⟩. Note that, unlike ⟨𝒑𝒌, 𝒃⟩, since
P directly outputs 𝜇 ∈ F, Lemma 5.4 trivially holds. Also, a similar

argument as Lemma 5.5, the check in equation (45) implies that 𝑔𝑟
is a commitment to a degree 𝑛 − 2 polynomial. Hence, similar to

Theorem 5.2, the successful check in equation 44, implies that 𝜇 is

the correct inner-product of the vectors committed in 𝑔𝑎 and 𝑔𝑏 .

Combining all of the above, we get the following theorem.

Theorem A.1. Let (𝑔𝑎, 𝑔𝑏) be the commitments to vectors (𝒂, 𝒃) ∈
F𝑛 , respectively. Then assuming hardness of 𝑞-SDH in the AGM, the
protocol described above is a non-interactive IPA with 𝑂(1) proof size,
𝑂(1) verification time, and 𝑂(𝑛 log𝑛) prover time.

B PROOFS
Proof of Theorem 5.1. For the sake of contradiction, let’s as-

sume that A outputs a polynomial 𝑎(·) of degree ≤ 𝑚 such that

𝑎(𝜏) = 0. Without loss of generality let’s assume thatA outputs 𝑎(·)
in the coefficient representation, i.e., let 𝑎(𝑥) = 𝑎0 + 𝑎1𝑥 + 𝑎2𝑥

2
+

· · · + 𝑎𝑚𝑥𝑚 be the polynomial ouput by A.

Now consider two exclusive possibilities: (i) 𝑎0 ̸= 0 and (ii) 𝑎𝑖 = 0.

In the former case, we can write

𝜏(𝑎𝑚𝜏𝑚−1
+ · · · + 𝑎1𝜏) = −𝑎0 ⇒

𝑎𝑚𝜏𝑚−1
+ · · · + 𝑎1

−𝑎0

=

1

𝜏

SinceA knows all the coefficients 𝑎0, 𝑎1, . . . , 𝑎𝑚 and the 𝑞-SDH pa-

rameters consists of all powers up to degree𝑚−1,A can efficiently

compute 𝑔1/𝜏
and output the 𝑞-SDH tuple (0, 𝑔1/𝜏

). Next, for the

latter case where 𝑎0 = 0, we can rewrite 𝑎(𝑥) to be 𝑎(𝑥) = 𝑥𝑘 · 𝑎′(𝑥)

for some 0 < 𝑘 < 𝑚 such that 𝑎′(𝑥) has a non-zero constant term

𝑎′
0
. Then, A can follow the same approach as the former case with

polynomial 𝑎′(𝑥) instead of 𝑎(𝑥) to output a 𝑞-SDH tuple. □

Proof of Lemma 5.3. For any 𝑚, let 𝒈𝑚 = [𝑔,𝑔𝜏 , 𝑔𝜏
2

, . . . , 𝑔𝜏
𝑚

].

A𝑞SDH on input the 𝑞-SDH parameters 𝒈2𝑛 , emulates AIPA for

𝑛, i.e., half the size of the 𝑞-SDH parameters. A𝑞SDH sends 𝒈𝑛 to

AIPA and also uses 𝒈𝑛 to generate the public parameters pp of

RTS. Note that the pp consists of evaluations of degree at most

𝑛 − 1 polynomials at 𝜏 in the exponent. ThusA𝑞SDH can efficiently

compute them using only 𝒈𝑛 .
LetH be the set of honest signers andM = [𝑛] \H be the set of

malicious signers.A𝑞SDH samples signing keys for all signers inH ,

computes the corresponding public keys and proof of possessions.

A𝑞SDH then sends the public keys and the proofs to AIPA. AIPA

then responds backwith the public keys of themalicious signers, i.e.,

signers inM and their corresponding proof of possession. A𝑞SDH

uses these proofs of possessions to extract the signing keys of the

malicious signers. SinceAIPA is algebraic, for each malicious public

key AIPA outputs the corresponding signing key.

16

Let (𝑔𝑏 , 𝑔𝑞) be the claimed commitment of the bit vector and

its correctness proof output by AIPA, respectively. Since AIPA is

algebraic, it additionally outputs the tuple of vectors (
˜𝒃, 𝒒̃) such that

(𝑔𝑏 , 𝑔𝑞) = (⟨𝒈𝑛, ˜𝒃⟩, ⟨𝒈𝑛, 𝒒̃⟩). Given 𝑔𝑏 and 𝑔𝑞 , a successful validation

check implies that:

𝑒 (𝑔𝑏 , 𝑔/𝑔𝑏) = 𝑒

(
𝑔𝑞, 𝑔

𝑧𝐻 (𝜏)

)
(46)

Let 𝑏(𝑥) and 𝑞(𝑥) be the polynomials whose coefficients are de-

fined by vectors
˜𝒃 and 𝒒̃, respectively. Note that 𝑏(𝑥) is a polynomial

of degree at most 𝑛, i.e., 1 greater than the bit vector committed by

the honest prover. Nevertheless, if 𝑏(𝜔𝑖
) ̸∈ {0, 1} for any 𝑖 ∈ [𝑛],

the following holds as polynomials

𝑏(𝑥)(1 − 𝑏(𝑥)) = 𝑞𝑏 (𝑥)𝑧𝐻 (𝑥) + 𝑝(𝑥) (47)

where 𝑝(𝑥) is a non-zero polynomial degree 𝑛 − 1 and 𝑞𝑏 (𝑥) is the

quotient polynomial of degree 𝑛. This also implies that

𝑞𝑏 (𝜏)𝑧𝐻 (𝜏) + 𝑝(𝜏) = 𝑞(𝜏)𝑧𝐻 (𝜏)

⇒ (𝑞𝑏 (𝜏) − 𝑞(𝜏))𝑧𝐻 (𝜏) + 𝑟 (𝜏) = 0 (48)

Note that we can view equation (48) a polynomial ∆(𝑥) = (𝑞𝑏 (𝑥)−
𝑞(𝑥))𝑧𝐻 (𝑥) +𝑝(𝑥) of degree at most 2𝑛 evaluated at 𝜏 . Next we argue

that ∆(𝑥) is a non-zero polynomial. Recall, that by definition 𝑝(𝑥)

is a polynomial of degree at most 𝑛 − 1 and 𝑧𝐻 (𝑥) = 𝑥𝑛 − 1. Now,

consider two case: (i) either 𝑞𝑏 (𝑥)−𝑞(𝑥) is a zero polynomial, or (ii)

𝑞𝑏 (𝑥)−𝑞(𝑥) is a non-zero polynomial. In the former, ∆(𝑥) is trivially

non-zero. In the latter, if 𝑞𝑏 (𝑥) − 𝑞(𝑥) is a polynomial of degree 𝑘 ,

then (𝑞𝑏 (𝑥)−𝑞(𝑥)) ·𝑧𝐻 (𝑥) will be a polynomial of degree 𝑛+𝑘 where

the coefficient of the monomial 𝑥𝑘+𝑛
is non-zero.

Thus, using the𝑞-SDHhardness theorem (theorem 5.1), assuming

hardness of 𝑞-SDH with degree 2𝑛, 𝑏(𝑥) evaluates to bit vector over

the subgroup 𝐻 . Also, the bitvector 𝒃 output by the extractor E is

𝒃 = [𝑏(𝜔), 𝑏(𝜔2
), . . . , 𝑏(𝜔𝑛

)]. □

Proof of Lemma 5.4. SinceAIPA is algebraic, we can write 𝜇(𝜏)

and 𝜇(𝜏) as:

𝜇(𝜏) = 𝑧𝛽 +

𝑛∑︁
𝑖=0

𝜇𝑖𝜏
𝑖

; 𝜇(𝜏) = 𝑧0𝛽 +

𝑛∑︁
𝑖=0

𝜇𝑖𝜏
𝑖

Let ∆(𝑥) = 𝛽𝜇(𝑥) − 𝜇(𝑥). Then, a successful verification implies

∆(𝜏) = 0, i.e.,

𝛽2𝑧 + 𝛽

(
𝑛∑︁
𝑖=0

𝜇𝑖𝜏
𝑖 − 𝑧0

)
+

𝑛∑︁
𝑖=0

𝜇𝑖𝜏
𝑖

= 0 (49)

We can view equation (49) as a quadratic polynomial in 𝛽 . If

either of the coefficients of 𝛽2
or 𝛽 is non-zero, then, we can use

equation (49) to solve discrete logarithm for 𝑔𝛽 , as per [29]. Alterna-

tively, when both of these coefficients are zero, the constant term is

also zero, and we can use Theorem 5.1 to break 𝑞-SDH assumption.

Thus, we get that ∀𝑖 ∈ [𝑛], 𝜇𝑖 = 𝜇𝑖 = 0. This implies 𝜇(𝑥) is a

constant polynomial. □

Proof of Lemma 5.5. Let ℎ = 𝑔𝛼 for some 𝛼 ∈ F. Then we can

write 𝑟 (𝜏) and 𝑝(𝜏) as:

𝑟 (𝜏) =

𝑛∑︁
𝑖=0

𝑟𝑖𝜏
𝑖

+ 𝛼

(
𝑛−1∑︁
𝑖=0

𝑟𝑖𝜏
𝑖

)
; 𝑝(𝜏) =

𝑛∑︁
𝑖=0

𝑝𝑖𝜏
𝑖

+ 𝛼

(
𝑛−1∑︁
𝑖=0

𝑝𝑖𝜏
𝑖

)

Let 𝜇′ = (𝜇 + 𝜉𝑡/𝑛). Let ∆(𝑥) be the polynomial defined as:

∆(𝑥) = 𝛼(𝑥𝑟 (𝑥) + 𝜇′) − 𝑝(𝑥)

Then, a successful verification check implies that ∆(𝜏) = 0. Using

definition of 𝑟 (𝑥) and 𝑝(𝑥), we can write ∆(𝜏) as:

𝛼2

(
𝑛−1∑︁
𝑖=0

𝑟𝑖𝜏
𝑖+1

)
+ 𝛼

(
𝑛∑︁
𝑖=0

𝑟𝑖𝜏
𝑖+1

+ 𝜇′ −
𝑛−1∑︁
𝑖=0

𝑝𝑖𝜏
𝑖

)
+

𝑛∑︁
𝑖=0

𝑝𝑖𝜏
𝑖

= 0 (50)

We can view equation (50) as a quadratic equation in 𝛼 . If either

the coefficients of 𝛼2
or 𝛼 is non-zero, we can use equation (50)

to solve the discrete logarithm for 𝑔𝛼 . If both of these coefficients

are zero, the constant term

∑
𝑖 𝑝𝑖𝜏

𝑖
is also zero. Then, we can use

Theorem 5.1 to break the 𝑞-SDH assumption. This implies 𝑟𝑛−1 =

𝑟𝑛−1 = 𝑟𝑛 = 0, i.e., 𝑟 (𝑥) is a polynomial of degree at most 𝑛 − 2. □

C POLYNOMIAL IDENTITIES DERIVATION
Our construction uses the following lemma from [25].

Lemma C.1. Let 𝑠(𝑥) and 𝑏(𝑥) be two polynomials of degree 𝑛 − 1

each over the field F such that 𝑠(𝜔𝑖
) = 𝑠𝑖 and 𝑏(𝜔𝑖

) = 𝑏𝑖 . Also, let
𝑞(𝑥) and 𝑝(𝑥) are the unique quotient and remainder polynomials of
degree 𝑛 − 2 each defined as follows:

𝑠(𝑥)𝑏(𝑥) = 𝑞(𝑥)𝑧𝐻 (𝑥) + 𝑝(𝑥) (51)

here 𝑧𝐻 (𝑥) is the polynomial that evaluates to 0 at every 𝑥 ∈ 𝐻 =

{𝜔,𝜔2, . . . , 𝜔𝑛}. Then the following holds,

𝑞(𝑥) =

∑︁
𝑖∈[𝑛]

𝑞𝑖 (𝑥)𝑏𝑖 ; and 𝑝(𝑥) =

∑︁
𝑖∈[𝑛]

𝑏𝑖𝑠𝑖L𝑖 (𝑥)

where L𝑖 (𝑥) is the 𝑖-th Lagrange polynomial defined on 𝐻 and 𝑞𝑖 (𝑥)

are defined as

L𝑖 (𝑥)𝑠(𝑥) = 𝑠𝑖L𝑖 (𝑥) + 𝑧𝐻 (𝑥)𝑞𝑖 (𝑥) (52)

Proof. Note that by definition, we can write 𝑏(𝑥) as

𝑏(𝑥) =

∑︁
𝑖∈[𝑛]

𝑏𝑖L𝑖 (𝑥)

⇒ 𝑠(𝑥)𝑏(𝑥) =

∑︁
𝑖∈[𝑛]

𝑏𝑖L𝑖 (𝑥)𝑠(𝑥) (53)

Next, by substituting equation (52) in equation (54), we get,

𝑠(𝑥)𝑏(𝑥) =

∑︁
𝑖∈[𝑛]

𝑏𝑖L𝑖 (𝑥)𝑠(𝑥)

=

∑︁
𝑖∈[𝑛]

𝑏𝑖 (𝑠𝑖L𝑖 (𝑥) + 𝑧𝐻 (𝑥)𝑞𝑖 (𝑥))

=

∑︁
𝑖∈[𝑛]

𝑏𝑖𝑠𝑖L𝑖 (𝑥) +

∑︁
𝑖∈[𝑛]

𝑏𝑖𝑞𝑖 (𝑥)𝑧𝐻 (𝑥) (54)

Since𝑞(𝑥) and 𝑟 (𝑥) are the unique quotient and remainder polyno-

mials, we get that the first term of equation (54),

∑
𝑖∈[𝑛]

𝑏𝑖𝑠𝑖L𝑖 (𝑥) =

𝑝(𝑥), and the second term

∑
𝑖∈[𝑛]

𝑏𝑖𝑞𝑖 (𝑥) = 𝑞(𝑥). □

17

	Abstract
	1 Introduction
	2 Technical Overview
	2.1 Multisignature to Inner Product Argument
	2.2 Challenges with using existing IPA protocol
	2.3 Our Approach

	3 System Model and Preliminaries
	3.1 Threshold Signature
	3.2 Bilinear Pairing and Assumptions
	3.3 Algebraic Group Model (AGM)
	3.4 Pairing based Multisignature
	3.5 Inner Product Argument
	3.6 Polynomial Identities

	4 Threshold Signature using IPA
	4.1 Setup and Public Parameters
	4.2 Proving that the committed vector is binary
	4.3 IPA between public keys and bit vector
	4.4 Computing the IPA proof
	4.5 Proving correctness of the threshold
	4.6 Merging IPA proofs
	4.7 Threshold signature design

	5 Analysis
	5.1 Knowledge soundness of the IPA protocol.
	5.2 Security of threshold signature scheme
	5.3 Performance

	6 Implementation and Evaluation
	6.1 Evaluation Setup
	6.2 Evaluation Results

	7 Related Work
	8 Conclusion and Open Problems
	References
	A Succinct Non-Interactive IPA
	A.1 Design
	A.2 Analysis.

	B Proofs
	C Polynomial Identities Derivation

