
vetKeys: How a Blockchain

Can Keep Many Secrets

Andrea Cerulli1, Aisling Connolly1, Gregory Neven*,
Franz-Stefan Preiss1, Victor Shoup1

1 DFINITY

April 30, 2023

Abstract

We propose a new cryptographic primitive called verifiably encrypted threshold key derivation
(vetKD) that extends identity-based encryption with a decentralized way of deriving decryption
keys. We show how vetKD can be leveraged on modern blockchains to build scalable decentral-
ized applications (or dapps) for a variety of purposes, including preventing front-running attacks
on decentralized finance (DeFi) platforms, end-to-end encryption for decentralized messaging
and social networks (SocialFi), cross-chain bridges, as well as advanced cryptographic primi-
tives such as witness encryption and one-time programs that previously could only be built from
secure hardware or using a trusted third party. And all of that by secret-sharing just a single
secret key. . .

1 Introduction

1.1 Privacy on Blockchains

Since its creation in 2008, Bitcoin [Nak08] has taken the world by storm. The financial world has
come to accept cryptocurrencies as an investment class of their own and is still wrapping its head
around the longer-term implications to the system of global finance. At the same time, the technology
sector has witnessed an unseen spurt of innovation in decentralized computing, in particular, in
blockchains, Bitcoin’s main underlying technical ingredient.

Bitcoin is restricted to payments and is notoriously inefficient, processing just 7 transactions
per second using the energy of a medium-sized country [Sch22]. Modern blockchains often make
different trade-offs in terms of decentralization and efficiency to offer much more functionality at a
fraction of the energy to process thousands of transactions per second. Rather than being restricted
to payments, they usually support running arbitrary pieces of code, called smart contracts or dapps
(short for decentralized applications), on the blockchain. The nodes that maintain the blockchain
keep track of the dapps’ state and apply user transactions that modify the state.

Many modern blockchains are Turing-complete, meaning that they can run arbitrary computa-
tions, ranging from small scripts to complete decentralized finance (DeFi) platforms, social networks
(SocialFi), or games (GameFi). The vision that such decentralized, token-based applications will
one day replace current Internet services is called Web3, a third iteration of the World Wide Web,
after the first iteration enabled users to mainly consume static pages while the second that added
user-contributed content.

*Work partially done while at DFINITY.

1

Security and privacy on blockchains. Blockchains are often touted to increase security for users,
which is true to a certain extent. Their decentralized nature means that dapps can offer stronger
availability and integrity than a centralized web application: rather than relying on a single provider
to keep the service running, dapps remain online as long as a sufficiently large fraction of the diverse
set of nodes are reachable. Moreover, because all dapp computations are performed in lockstep
on many nodes at the same time, a faulty or malicious party cannot easily tamper with a dapp’s
state. Finally, users and transactions are typically authenticated by cryptographic keys instead of
passwords, making impersonation and account compromise considerably harder to pull off.

The elephant in the room, however, is privacy. The same decentralization that helps integrity
and availability is a disaster for privacy. As the state of dapps is replicated across tens, hundreds,
or even thousands of nodes, dapps are generally unsuitable for storing sensitive data.

Encryption can help, but key management is complicated, more so than for authentication.
Syncing encryption keys across devices is particularly difficult. An identity provider dapp can link
multiple signature keys to a user so that any third-party dapp can accept signatures from a new
device as soon as it’s added to a user’s profile. Data encrypted under the existing devices’ encryption
keys is not automatically legible to a new device, however. Moreover, hardware wallets and secure
environments in consumer devices usually don’t support encryption. Decryption keys can be held
in web browsers’ local storage, but are more exposed to malware there and do not survive cookie
cleanups.

Solutions for blockchain privacy. Secret sharing [Sha79] seems like a natural fit to the problem:
users could secret-share any sensitive information over the nodes in the network, guarded by a
dapp that determines under which conditions the secret can be reconstructed. This may work for a
handful of secrets or in a static, permissioned network, but, because all secrets have to be verifiably
re-shared when membership changes, this doesn’t scale to a setting with billions of secrets in a
dynamic blockchain network.

Threshold public-key encryption (PKE) [SG98, RB94, CKPS01] is a much better fit: here, all
nodes have a share of the decryption key of a public-key encryption scheme. Users encrypt sensitive
information under the corresponding public key, and a dapp controls the conditions under which
the nodes collaborate to decrypt a particular ciphertext. Nodes can send the decryption shares
directly to the user or encrypted under a user-provided public key, so that the nodes don’t learn
the plaintext. When network membership changes, the nodes only have to re-share that single
decryption key, independent of the number of encrypted ciphertexts.

While threshold PKE works for many scenarios, it is still sub-optimal for others, especially when
many ciphertexts have to be decrypted all at once. Think, for example, of a secret-bid auction
dapp, where at the end of each auction, all bids need to be decrypted so that the winner can be
determined. Or think of a decentralized exchange (DEX) that prevents front-running by sequencing
encrypted transactions and only decrypt them for execution when the order is fixed.1

In such applications, performing a threshold decryption for every single ciphertext is simply not
feasible because of the sheer volume of ciphertexts that need to be decrypted.

A more scalable solution to the front-running problem was developed by Sekar [Sek22] and Gailly,
Melissaris, and Romailler [GMR23], who implemented the threshold time-lock encryption scheme
suggested by Boneh and Franklin [BF01] on top of the drand randomness beacon [dra]. At each
round, the random beacon computes a threshold BLS signature [Bol03, BLS01] on the round number.
Because BLS signatures are also decryption keys to the Boneh-Franklin identity-based encryption
(IBE) scheme, users can encrypt transactions to a future round number, so that the nodes can decrypt
all ciphertexts using the random beacon for that round. Front-running is prevented by fixing the
execution order based on the encrypted transactions; only when the randomness beacon becomes
known, the nodes decrypt the transactions for that round and execute them in the committed order.

1Front-running is actually a major problem on decentralized exchanges on Ethereum where it’s known as miner-
extracted value (MEV) and has cost users more than $600 million since 2020. [Gen22]

2

1.2 Our Contributions

We extend this idea to build a flexible and scalable solution to achieve user privacy on blockchains
by means of a new cryptographic primitive that we call verifiably encrypted threshold key derivation
(vetKD). Intuitively, vetKD can be seen as the key derivation of an IBE scheme, where the master
secret is secret-shared among a set of servers that can assist users in deriving IBE keys by sending
encrypted key shares to the users. The idea is that the shares are encrypted under a public key
provided by the user, so that the servers do not learn the derived key. Nevertheless, servers can verify
that a encrypted share indeed contains a valid key share, so that users are guaranteed to recover the
correct key if they receive sufficiently many valid encrypted shares. We refer to the derived keys as
vetKeys.

In this paper, we focus on vetKD schemes that apply to the Boneh-Franklin IBE scheme [BF01],
meaning that that we are actually looking to build verifiably encrypted threshold BLS (vetBLS) sig-
natures. We define a vetBLS ideal functionality in the universal composability (UC) model [Can01]
and provide four different vetBLS protocols that securely realize it. The first two protocols, the
simple vetBLS protocol πvetbls-sim and the zero-knowledge vetBLS protocol πvetbls-zkp, are presented
in Section 4 and have encrypted signature size and verification time linear in the threshold. We also
present two aggregate vetBLS protocols πvetbls-agg1 and πvetbls-agg2 in Section 5 that have constant
encrypted signature size and verification time, but that realize a slightly weaker version of the vet-
BLS functionality where the encrypted signature leaks some information about the BLS signature
to the adversary. Whether such leakage can be tolerated depends on the application; in Sections 6
and 7, we prove that it is harmless for use as a verifiably encrypted threshold IBE, pseudo-random
function (PRF), verifiably random function (VRF), or signature scheme. We note that these proofs
extend to the non-threshold case, i.e., that the security of the IBE, PRF, VRF, or signature scheme
are not affected if the adversary additionally sees verifiably encrypted BLS signatures using the
(non-threshold) VES scheme of [BGLS03].

In theory, each dapp that wants to derive vetKeys could use its own vetBLS instance with an
independently generated master key. The cost of re-sharing these master keys when the set of
validator nodes changes quickly becomes prohibitive, however. We therefore analyze the security of
a composed protocol in Section 8 that uses a single master key for all dapps and for all purposes
listed above at the same time, and show that doing so is fine as long as the derivation identity
domains are properly separated by including a sub-session identifier.

Finally, we describe the integration of vetKeys into the Internet Computer [DFI22], the blockchain
created by the DFINITY Foundation. Somewhat surprisingly, the bottleneck turns out to be the
verification time of encrypted key shares, rather than block space, so that it is worth considering
variants of our schemes that make different trade-offs in this regard.

1.3 Applications

Equipping a blockchain with a vetKD interface enables a wide range of applications, even beyond
the ones we already discussed.

End-to-end encryption. Our main use case is to enable a blockchain to host threshold-encrypted
data in a way that scales to millions of users and billions of secrets, using just a single threshold-
shared secret key. The BLS signatures that underlie the Boneh-Franklin IBE scheme are unique,
making them immediately useful as symmetric keys.

Think, for example, of a secure file storage dapp: a user could use the BLS signature on their
identity as the root secret under which they encrypt their files before storing them in the dapp. The
dapp enforces that only the authenticated user is allowed to recover the root key, and hence decrypt
the files. The nodes in the blockchain assist a user in recovering their root key, but never see that
key or the content of the files.

More sophisticated access policies can be expressed as well. In a secure messaging dapp, the

3

conversation between two users can be encrypted using the BLS signature on their pair of identities,
to which only those users are given access by the dapp. An end-to-end encrypted decentralized social
network (SocialFi) can let users encrypt posts using a key that is related to the post, e.g., the BLS
signature on a unique identifier for the post. The SocialFi dapp then ensures that only the author,
and the users that the post is shared with, get access to that key.

Blockchain-issued signatures and cross-chain bridges. Because the key derivation of an IBE
scheme automatically yields a signature scheme [BF01], the resulting decryption keys can also be
used as signatures issued by the blockchain. This is especially useful for blockchains that don’t have
a built-in certification feature enabling dapps to sign statements. It can also be used to efficiently
bridge blockchains, e.g., to swap assets in DeFi application: a dapp on a first blockchain can verify
signed statements issued by a second blockchain, without having to implement a complete light
client of that second chain.

Verifiable randomness. Because of their uniqueness, BLS signatures can also act as a verifiable
random function (VRF). Trusted, verifiable randomness is important for applications such as trust-
less online lotteries and casinos, fair decentralized games (GameFi), and selecting random features
for non-fungible tokens (NFTs).

Dead man’s switch. Journalists or whistleblowers can ensure that compromising information in
their possession is automatically published if they were to become incapacitated. They can store the
information in a dapp, encrypted under a BLS signature that the dapp automatically and publicly
recovers when a certain amount of time passes after it has received an authenticated ping from its
owner.

Secret-bid auctions and MEV protection. As described in the introduction, a vetKD-equipped
blockchain can also cover use cases where many ciphertexts needs to be decrypted at the same time.
In a secret-bid auction dapp, users can submit bids that are IBE-encrypted under an identifier of
the auction, so that at the end of the auction, the dapp can decrypt all bids with a single vetKD
evaluation.

A similar technique can be used to prevent front-running, also known as miner-extracted value
(MEV), on a decentralized exchange (DEX). Users submit their transactions IBE-encrypted under
a predictable batch identifier. The DEX orders the transactions in encrypted form and, when all
transactions for a particular batch have been ordered, triggers the recovery of the decryption key
for that batch and executes the decrypted transactions in the fixed order.

Note that all of the symmetric-encryption use cases listed above can be modified to encrypt using
an IBE scheme instead of a symmetric-key encryption, thereby eliminating the need to perform a
vetKD derivation for encryption. (Decryption, of course, still requires a vetKD evaluation.)

Time-lock encryption. Time-lock encryption [RSW96, LJKW18] enables a sender to encrypt a
message “to the future,” ensuring that it will get decrypted at a given time, but no earlier than that
time. Existing solutions rely on centralized trusted parties, witness encryption (see next paragraph),
or gradual release through puzzle solving. Time-lock encryption can be achieved via IBE [BF01]
by letting a centralized authority release IBE decryption keys corresponding to the current time at
regular intervals, and letting the sender IBE-encrypt its message using the desired decryption time
as identity. The authority’s functionality can be run in a dapp on a vetKD-equipped blockchain,
eliminating the need for a trusted central party.

Witness encryption. A witness encryption scheme [GGSW13] for a language L with witness
relationship R lets a sender encrypt a message to an instance x ∈ L that can only be decrypted
using a witness w such that R(x,w). The only current implementations are based on indistinguisha-
bility obfuscation [BGI+01], of which few instantiations are known based on well-founded assump-
tions [JLS21]. Witness encryption is almost trivial to implement on a vetKD-enabled blockchain:
anyone can IBE-encrypt their message using the instance x as identity, while a witness-verifying

4

dapp lets anyone who provides a valid witness w for x (or a valid zero-knowledge proof of knowledge
of w, if it should remain private) to obtain the decryption key for x. The primitive may sound rather
theoretical at first, but it actually covers quite practical use cases as it enables one to encrypt to any
verifiable future event, e.g., the price of a stock going above or below a certain level, information
escrow, or break-the-glass policies.

One-time programs. Another cryptographic primitive with few instantiations is one-time pro-
grams [GKR08] that can be executed only once on a single input, and that don’t leak anything
about the program other than the result of the computation. Their only currently known instances
rely on trusted hardware [GKR08] or on witness encryption on a blockchain [GG17]. Given that
witness encryption is easy to build on a vetKD-enabled blockchain, it should not come as a surprise
that one-time programs are as well. The creator of the program garbles the circuit and IBE-encrypts
the input wire keys, using the wire index and the value as the identity. A dapp assists users in re-
covering the IBE decryption corresponding to their input, making sure that only a single value for
each wire is ever recovered.

1.4 Related Work

From a constructional point of view, the closest related work is the (non-threshold) verifiably en-
crypted signature (VES) scheme due to Boneh et al. [BGLS03]. Indeed, both of our aggregate
vetBLS schemes can be seen as threshold variants of Boneh et al.’s VES scheme, mapped to an
asymmetric Type-3 pairing [GPS06] in slightly different ways. Boneh et al.’s use case, however, is
very different from ours: they envisage an optimistic fair exchange of signatures [ASW00], where a
first signer encrypts her signature under an adjudicator’s public key so that the countersigner can
have it decrypted by the adjudicator if the first signer fails to reveal its real signature. A major
difference is that in VES, the first signer knows her full signature, so there’s no point in hiding it
from the signer. Indeed, Calderon et al. pointed out that VES in fact do not require encryption
at all and can be built from signatures alone [CMSW14]. (In fact, Section 10 of [ASW00] already
made a very similar observation and gives a fair exchange protocol based only on signatures.) In a
threshold setting, on the other hand, an individual signer does not know the full signature, and it is
crucial that she doesn’t learn the full signature from the encrypted signature.

Calypso [KAG+20] is conceptually related in that it also enables private delivery of threshold-
reconstructed decryption keys to users of a smart contract. It uses threshold ElGamal encryption
instead of BLS, however, meaning that each ciphertext requires a separate threshold protocol to
decrypt. By using BLS signatures as IBE keys, on the other hand, a single threshold evaluation
can be used to decrypt many ciphertexts in one go. Calypso also doesn’t have public verification of
encrypted decryption shares and is presented without security proofs.

Benhamouda et al. [BGG+20] and Goyal et al. [GKM+20] describe how users can secret-share and
conditionally reveal their secrets on a blockchain with a dynamically evolving committee of nodes,
addressing some of the same use cases as our work. Secret-sharing (and especially, dynamically re-
sharing) individual user secrets doesn’t scale for billions of secrets, but works very well for a limited
number of secret keys that are then used to encrypt other secrets. Indeed, their re-sharing protocols
can be combined with our vetKD protocols to re-share the master secret key to a new set of nodes.

Another line of work [CGJ+17, BMSV18, CZK+19, KGM19, RAA+19] protects user secrets in
smart contracts using trusted execution environments (TEEs) such as Intel SGX or AMD SEV-
SNP. Apart from adding a centralized trust assumption in the form of the TEE manufacturer,
the unrelenting stream of attacks on TEEs [vSSY+22, BJKS21] doesn’t instill confidence in their
security. It therefore seems fair to state that, in their current state, TEEs do not provide a very
strong level of security for user data, and in particular, fail to provide any relevant protection against
an adversary that has physical access to the node machines.

Time-lock encryption, that we mentioned as an example application of vetKeys, was originally
proposed by Rivest, Shamir, and Wagner [RSW00] using two different approaches: time-lock puzzles

5

that can be solved only with a predictable amount of computation, and trusted parties that only
reveal information after a certain time has passed. Liu et al. [LJKW18] followed the former approach
using witness encryption [GGSW13] and using the Bitcoin chain as a “computational reference
clock”. Boneh and Franklin [BF01] describe a solution that takes the latter approach by adding
a timestamp to a user’s identity in an identity-based encryption scheme and by distributing the
authority in a threshold fashion. This idea was taken further to build a (non-threshold) time vault
service [MHS02, BC04] that uses just the timestamp as identity. Sekar [Sek22] and Gailly, Melissaris,
and Romailler [GMR23] then built a threshold version of this protocol in the context of blockchain
networks and decentralized systems on top of the drand randomness beacon [dra].

The application of vetKeys to protect against MEV draws inspiration from fair transaction
ordering in replicated systems, which has a much longer history. Reiter and Birman [RB94] describe
a protocol that achieves “input causality”, meaning that earlier requests cannot depend on the
payload of later requests. Clients submit their requests encrypted under a threshold public key,
upon which the servers agree on the order of encrypted requests and only then jointly decrypt and
execute the requests. Cachin et al. [CKPS01] further refined and proved this protocol, referring to it
as “secure causal atomic broadcast”. Duan, Reiter, and Zhang [DRZ17] describe further variations,
replacing threshold encryption with commitment-and-reveal and secret-sharing techniques. The
TEX protocol [KGF19] uses the commit-and-reveal idea combined with automated opening through
a verifiable delay function [BBBF18]. All of these solutions require a separate threshold evaluation
for each transaction, or at the very least, for every transaction sender. By letting senders IBE-
encrypt their transactions to a batch number, our solution can derive a single vetKey to (locally)
decrypt all transactions in the batch, enabling a much higher transaction throughput.

Several solutions have been built to address the particular problem of MEV protection in
blockchain networks. Helix [ACG+18] encrypts transactions via a threshold public-key encryption
scheme to limit censorship and front-running; once the order of transactions is final, their contents
are decrypted. Kill Cord [Tou18] and Kimono [FH18] are Ethereum contracts that let a user generate
a secret key, secret-share it among Ethereum nodes and incentivize them to decrypt a given cipher-
text if a certain time passes. ClockWork [CDN20] lets users submit transactions encrypted with
Rivest et al.’s time-lock puzzle [RSW00] and lets the exchange commit to an ordered batch of trans-
actions before it can decrypt them. The Shutter network [Shu21] prevents MEV on the Ethereum
network by having a dedicated set of nodes (so-called “Keypers”) regularly generate new threshold
encryption keys under which users encrypt their transactions. After the transactions appeared on
chain, the Keypers reveal the secret key. ETHTID [SRMH21] implements threshold information
disclosure on Ethereum, whereby a council generates a threshold encryption key so that the public
key can be used to encrypt messages that are revealed when the council reconstructs the decryp-
tion key. Ferveo [BO22] prevents MEV on Tendermint-based proof-of-stake blockchains by letting
the chain validators jointly generate keys for a threshold encryption scheme in Gap Diffie-Hellman
groups [BZ03]. Users can encrypt information under this public key; to decrypt, the validators create
decryption shares that a block proposer can aggregate and include in a block.

2 Usage in a Blockchain Scenario

We first present a syntax definition for vetKD schemes and illustrate their typical usage in a
blockchain scenario. A vetKD scheme consists of the following algorithms:

� DKG(n, t, f) → (mpk ,mpk1, . . . ,mpkn,msk1, . . . ,mskn): A distributed key generation pro-
tocol performed by n servers S1, . . . ,Sn, up to f of whom may be malicious, for a thresh-
old t, so that each server Si receives the master public key mpk , master public key shares
(mpk1, . . . ,mpkn), and a share of the master secret key msk i, and so that a threshold of t
servers is required to derive keys under mpk .

6

Dapp allowed for ?Check:

Figure 1: Typical usage of vetKD in a blockchain scenario.

� TKG() → (tpk , tsk): A transport key generation algorithm that a user can use to generate a
transport public key tpk and corresponding secret key tsk .

� EKDerive(msk i, id , tpk)→ eki: An encrypted key derivation algorithm that a server Si uses to
compute an encrypted key share eki for identity id , encrypted under the transport public key
tpk .

� EKSVerify(mpk i, id , tpk , eki) → 0/1: An encrypted key share verification algorithm which
verifies that eki indeed contains a valid share by server Si with master public key share mpk i

of a derived key for identity id encrypted under transport key tpk .

� Combine(mpk , id , S, {mpk i, eki}i∈S)→ ek: A combination algorithm that combines a set of at
least t verified encrypted key shares eki for i ∈ S for identity id into an encrypted key ek.

� EKVerify(mpk , id , tpk , ek) → 0/1: An encrypted key verification algorithm that lets anyone
verify that ek contains a derived key for identity id under mpk , encrypted under the transport
key tpk .

� Recover(mpk , id , tsk , ek) → K: A recovery algorithm that enables the user to recover the
derived key K for identity id from the verified encrypted key ek using the transport secret key
tsk .

We postpone a formal discussion of the desired security properties until later; for now it suffices
to know that an adversary controlling at most f < t corrupt servers cannot learn the derived key
for any identity id for which it did not “legitimately” obtain at least t − f encrypted key shares
from honest servers, i.e., a key shares encrypted under a transport public key tpk created by the
adversary.

A typical blockchain scenario is depicted in Figure 1. The vetKD servers will be the blockchain
validator nodes, or a committee representing them. The dapp D can implement arbitrary policies
to determine which users are allowed to derive the key for which identities. (The identity domains
of different dapps are kept separate to avoid interference between dapps.)

When a user wants to derive the key for identity id from a dapp D, they generate a transport
key pair (tpk , tsk) using TKG. The transport key is short-lived in principle; it only needs to be held
for the duration of this vetKD evaluation, but can optionally be reused for multiple evaluations.
The user submits a signed transaction tx = [tpk , id]U to D that includes the transport public key
and the derivation identity, where [·]U denotes the user’s signature on the transaction.

When the transaction is included in a block, the dapp D is executed to check whether the user
is allowed to obtain the key for id . If so, and if id is in the identity domain of D, then all nodes run

7

EKDerive and broadcast their encrypted key shares eki to all other nodes, who verify them using
EKSVerify.

As soon as a node receives sufficiently many valid encrypted shares, it runs Combine to create an
encrypted key ek and possibly broadcasts it to other nodes. The next block proposer then includes
ek in the block as a response to the original transaction with id and tpk ; other nodes can validate
the correctness of ek by running EKVerify. When the user sees the response in the blockchain, they
can run Recover to recover the derived key K for id .

In use cases where the dapp D itself needs a decryption key (e.g., in the front-running use case
described above), D can trigger the same interaction for a “dummy” transport key generated by D
and thus obtain the required key.

3 Overview

In this section, we provide a very brief overview of our protocols. As mentioned in Section 1.2, our
protocols for verifiably encrypted threshold key derivation (vetKD) build on protocols for verifiably
encrypted threshold BLS (vetBLS) signatures.

Our starting point is the BLS signature scheme [BLS04] adapted to the setting where we use an
asymmetric bilinear map (a so-called Type-3 pairing)

e : G1 ×G2 → GT,

where G1 = (g1), G2 = (g2), and GT are multiplicative groups of prime order q. Let H : {0, 1}∗ → G1

be a hash function, modeled as a random oracle [BR93]. The secret key sk for BLS is a random
element of Zq and the public key is pk = gsk2 . A signature on a message m is σ = H(m)sk and can
be verified by checking that e(σ, g2) = e(H(m), pk). The security of BLS can be proved under the

co-CDH assumption, which says that given gα1 , g
β
1 , g

β
2 for random α, β ∈ Zq, it is hard to compute

gαβ1 .
In all of our vetBLS protocols, we assume a secure protocol for distributed key generation. Such a

protocol securely generates a BLS secret key sk and corresponding public key pk along with Shamir
secret shares sk1, . . . , skn and corresponding public key shares pk1, . . . , pkn, and gives each server Si
the values pk , (pk1, . . . , pkn), sk i. Here, sk i = ω(i) and pk i = g

ω(i)
2 , where ω is a random polynomial

over Zq of degree less than t.
Our first vetBLS protocol, πvetbls-sim, is a very simple protocol that relies on a secure signature

scheme SS and a CPA-secure public-key encryption scheme PKE . Each server Si has its own
signing key ssk i for SS, and we assume a secure PKI that allows every other server to reliably
obtain Si’s corresponding public signature verification key spk i. The protocol works as follows.
A user U generates a transport public key tpk and transport secret key tsk by running the key
generation algorithm for PKE . Given a request for an encrypted signature share, consisting of
tpk and a message m, a server Si generates an encrypted signature share esi = (Ci, σ

′
i), where

Ci is an encryption of the BLS signature share σi = H(m)ski under tpk , and σ′
i is a signature on

(pk ,m, tpk , Ci) under spk i. Such an encrypted signature share esi can be validated by validating
the signature σ′

i. A valid encrypted signature es consists of a collection of 2t − 1 valid encrypted
signature shares (from distinct servers). Given such a valid encrypted signature es, the user U can
decrypt each ciphertext Ci using tsk to obtain a BLS signature share σi and can check that σi is valid
by testing if e(σi, g2) = e(H(m), pk i). Since es consists of 2t − 1 valid encrypted signature shares,
and there are at most t− 1 corrupt servers, the user is sure to obtain a set of t valid BLS signature
shares which can be combined via “interpolation in the exponent” to obtain the corresponding BLS
signature.

One drawback of protocol πvetbls-sim is that encrypted signatures are of size proportional to
t. Another drawback is that it requires that n ≥ 2t − 1. Our second vetBLS protocol, πvetbls-zkp,
which is based on non-interactive zero-knowledge proofs, eliminates the second drawback, and works

8

as follows. A user U generates a transport public key tpk and transport secret key tsk based on
ElGamal encryption — specifically, U generates tsk ∈ Zq at random and sets tpk = g tsk1 . Given
a request (tpk ,m) for an encrypted signature share, a server Si generates an encrypted signature
share esi = (Ci, πi), where Ci = (gti1 , tpk ti · σi) is an ElGamal encryption of the BLS signature
share σi = H(m)ski under tpk , where ti ∈ Zq is chosen at random, and πi is a non-interactive
zero-knowledge proof that Ci encrypts a valid BLS signature share σi. The proof πi is a standard
application of Fiat-Shamir [FS87] and Sigma protocols. Such an encrypted signature share esi can
be validated by validating the proof πi. A valid encrypted signature es consists of a collection of
t valid encrypted signature shares (from distinct servers). Given such a valid encrypted signature
es, the user U can decrypt each ciphertext Ci using tsk to obtain a BLS signature share σi. The
proofs ensure that these t BLS signature shares must be valid, and so they can be combined via
“interpolation in the exponent” to obtain the corresponding BLS signature. In addition to the
security properties (soundness and zero knowledge) of the proofs, the security of this protocol relies
on the external Diffie-Hellman (XDH) assumption [Sco02, BBS04, BGdMM05], which states that
the decisional Diffie-Hellman (DDH) problem is hard in G1.

Both of the above protocols suffer from the drawback that the encrypted signatures are of size
proportional to t. To deal with this, we give two protocols, πvetbls-agg1 and πvetbls-agg2, in which
encrypted signature shares are aggregated into a compact encrypted signature whose size is inde-
pendent of n and t. Validation of encrypted signature shares and encrypted signatures is performed
by checking simple pairing equations, and these protocols can be seen as threshold variants of the
verifiably encrypted signature scheme of Boneh et al. [BGLS03], mapped to a Type-3 pairing setting.
To simplify the discussion in this section, we focus here on protocol πvetbls-agg1; protocol πvetbls-agg2

and its security properties are very similar.
Protocol πvetbls-agg1 works much like protocol πvetbls-zkp, except that it uses pairing equations

rather than non-interactive zero knowledge proofs. A user U chooses the transport secret key tsk ∈ Zq

at random and sets the transport public key to tpk = (tpk1, tpk2) = (g tsk1 , g tsk2). Given a request
(tpk ,m) for an encrypted signature share, a server Si first checks the validity of tpk by checking that
e(tpk1, g2) = e(g1, tpk2). If tpk is valid, Si generates an encrypted signature share esi = (Ci,1, Ci,2) =
(gti1 , tpk ti

1 · σi), where σi = H(m)ski is a BLS signature share and ti ∈ Zq is chosen at random;
otherwise, Si ignores the request. Such an encrypted signature share esi can be verified by checking
that e(Ci,2, g2) = e(Ci,1, tpk2) · e(H(m), pk i). Given t valid encrypted signature shares, they can be
combined into a single encrypted signature es = (C1, C2) by “interpolation in the exponent”. Such
an encrypted signature can itself be verified by checking that e(C2, g2) = e(C1, tpk2) · e(H(m), pk).
Given such a valid encrypted signature es, the user U can decrypt it to obtain σ = C2 · C−tsk

1 .
The validity of es guarantees that σ is a valid BLS signature on m under pk . Note that instead of
validating es as above (which requires three pairings), the user can instead simply decrypt es and
check whether the resulting signature is a valid BLS signature (which requires just two pairings).

Protocol πvetbls-agg1 in fact leaks some information about the BLS signatures corresponding to
the signing requests. We can precisely characterize the extent of this leakage. Specifically, for a
transport public key tpk = (tpk1, tpk2) generated by an honest user U , in addition to tpk itself, the
adversary learns an ElGamal encryption (gt1, tpk

t
1 · σ) of the BLS signature σ on m whenever an

encrypted signature share request (tpk ,m) is made to any server. We can prove that this leakage is
harmless in several applications of vetBLS, including verifiably encrypted threshold IBE.

4 Verifiably Encrypted Threshold BLS

Our main vetKD construction will be based on the Boneh-Franklin IBE scheme [BF01]. As observed
by Naor [BF01], the key derivation of any IBE scheme is also a signature scheme, which in the case
of the Boneh-Franklin IBE scheme is the BLS signature scheme [BLS01].

At the core of our vetKD construction is therefore a verifiably encrypted threshold variant of the

9

BLS signature scheme. We define it here as a separate building block and give multiple instantiations
that can be modularly plugged into our vetKD constructions. Before doing so, we recall some basic
facts about BLS and threshold BLS signatures.

4.1 BLS and Threshold BLS Signatures

In the rest of this paper, we will assume that all algorithms, including adversarial ones, take a
security parameter κ ∈ N as an implicit input.

We say that a function f : N → R is polynomially bounded if there exist c, d ∈ R such that for
all n ∈ N we have |f(n)| ≤ nc + d, and we say that f is negligible if for all c ∈ R there exists n0 ∈ N
such that for all n ≥ n0 we have |f(n)| < n−c.

We say that an algorithm is efficient if its running time is polynomially bounded in κ. Com-
putational problems as well as security definitions are described as a game between two efficient
algorithms, an experiment and an adversary, and the adversary is said to win the game if it pro-
duces an output that satisfies some condition defined by the experiment. The adversary’s advantage
is the probability that it wins the game as a function of the security parameter. We say that a
computational problem is hard and that a scheme is secure according to a particular security def-
inition if no efficient adversary exists that has non-negligible advantage in winning the associated
game. Problems and schemes may involve mathematical structures such as groups; we see these as
being generated by algorithms that take the security parameter as an input, so that one can define
hardness and security in the same way.

A standard signature scheme SS consists of

� KeyGen()→ (pk , sk): a key generation algorithm that generates a public key pk and a matching
secret key sk ;

� Sign(sk ,m)→ σ: a signing algorithm that, on input the secret key and a message, produces a
signature σ; and

� Verify(pk ,m, σ)→ 0/1: a verification algorithm that, given the public key, a message m, and a
signature σ, outputs 0 or 1 indicating that the signature is rejected or accepted, respectively.

We consider the common security notion of existential unforgeability under chosen-message at-
tack [GMR88] where the advantage of an adversary A is given by the probability that, on input an
honestly generated public key pk and given access to a signing oracle Sign(sk , ·), A outputs a forgery
(m∗, σ∗) so that Verify(pk ,m∗, σ∗) = 1 and it didn’t query m∗ from its signing oracle.

The BLS signature scheme [BLS04] was originally presented using a symmetric bilinear map (so-
called Type-1 pairing [GPS06]); we use here the variant using an asymmetric bilinear map (so-called
Type-3 pairing). Let e : G1 ×G2 → GT be a bilinear map where G1 = (g1), G2 = (g2), and GT are
multiplicative groups of prime order q, and let H : {0, 1}∗ → G1 be a hash function, modeled as a
random oracle [BR93]. The BLS signature scheme is given as follows:

� KeyGen(): sk ←$ Zq, pk ← gsk2 , return (pk , sk).

� Sign(sk ,m): return σ = H(m)sk .

� Verify(pk ,m, σ): return 1 if e(σ, g2) = e(H(m), pk), otherwise return 0.

Definition 1 (Computational co-Diffie-Hellman Problem). The advantage of an algorithm A in
solving the computational co-Diffie-Hellman (co-CDH) problem in (G1,G2) is defined as

Pr
[
y = gαβ1 : α, β ←$ Zq , y ←$ A(gα1 , g

β
1 , g

β
2)

]
.

Theorem 1 ([BLS04, BS23]). The BLS scheme is uf-cma secure in the random-oracle model if the
co-CDH problem in (G1,G2) is hard.

10

A t-out-of-n threshold signature scheme T S consists of the following algorithms and protocols:

� DKG(n, t)→ (pk , pk1, . . . , pkn, sk1, . . . , skn): a distributed key generation protocol, at the end
of which each signer i obtains the public key pk , all signers’ public key shares pk1, . . . , pkn,
and its own secret key share sk i;

� Sign(sk i,m)→ σi: a signing algorithm that lets signer i sign a message m using its secret key
share sk i to produce a signature share σi;

� SVerify(pk i,m, σi)→ 0/1: a share verification algorithm that enables anyone to verify whether
a signature share σi on message m was validly signed by signer i with public key share pk i;

� Combine(pk ,m, S, (pk i, σi)i∈S) → σ a combination algorithm that takes as input the public
key shares pk i and signature shares σi of a set S ⊆ [1, n] of signers with |S| ≥ t, and produces
a full signature σ;

� Verify(pk ,m, σ)→ 0/1: a verification algorithm that given the public key pk , message m, and
full signature σ, checks whether the signature is valid.

The advantage of an adversary A in breaking the existential unforgeability against chosen-
message attack (uf-cma) of T S is its probability in winning the following game. The adversary
first outputs the corrupt signer indices C ⊂ [1, n] with |C| < t. It then engages in the DKG protocol,
where the adversary plays the role of the parties in C and the experiment plays the role of the honest
parties H = [1, n] \C. At the end of the DKG protocol, all honest parties output the public key pk ,
public key shares pk1, . . . , pkn, and each honest party i ∈ H ends up with its own secret key share
sk i.

The experiment then runs A while giving it access to a signing oracle that, on input a signer
index i ∈ H and a message m, returns σi ←$ Sign(sk i,m). Eventually, the adversary outputs its
forgery (m∗, σ∗). It is said to win the game if Verify(pk ,m∗, σ∗) = 1 and it never queried its signing
oracle for a signature on m∗.

The threshold BLS scheme tBLS by Boldyreva [Bol03] is the natural application of Shamir secret
sharing [Sha79] to the secret keys of the BLS scheme. The basic principle is that the public key
pk = gsk2 for a random sk ∈ Zq, while the secret key shares are determined by a random polynomial
ω(X) = sk + ω1 · X + . . . + ωt−1 · Xt−1 ∈ Zq[X] so that each signer i is given a secret key share

sk i = ω(i), with its public key share given by pk i = gski
2 .

Using Lagrange interpolation, one can rewrite ω(X) from the images of t points S ⊂ Zq as

ω(X) =
∑

i∈S Λi,S(X) · ω(i), where Λi,S(X) =
∏

j∈S\{i}
X−j
i−j are the Lagrange basis polynomials.

It therefore holds for all S ⊆ [1, n] with |S| ≥ t that sk =
∑

i∈S Λi,S(0) · sk i.
The threshold BLS scheme tBLS is described as follows:

� DKG(n, t): For simplicity, we assume that a trusted dealer chooses a random polynomial

ω(X)←$ Zq[X] of degree t− 1, sets pk = g
ω(0)
2 and (pk i, sk i) = (g

ω(i)
2 , ω(i)) for i ∈ [1, n], and

hands (pk , pk1, . . . , pkn, sk i) to each signer i.

� Sign(sk i,m): Return σi = H(m)ski .

� SVerify(pk i, i,m, σi): Return 1 if e(σi, g2) = e(H(m), pk i), otherwise return 0.

� Combine(pk ,m, S, (pk i, σi)i∈S): return σ ←
∏

i∈S σ
Λi,S(0)
i .

� Verify(pk ,m, σ): return 1 if e(σ, g2) = e(H(m), pk), otherwise return 0.

Theorem 2 ([Bol03, BS23]). The tBLS scheme is uf-cma secure if BLS is uf-cma secure.

11

4.2 The vetBLS Ideal Functionality

We analyze the security of our vetKD scheme in Canetti’s universal composability (UC) frame-
work [Can01]. Here, protocols are proved secure by showing that no efficient environment E can
with non-negligible advantage distinguish whether it’s running in a real-world execution with a
real-world protocol π and a real-world adversary A, or in an ideal-world execution with an ideal
functionality F and a simulator Sim . In both worlds, the environment provides the inputs and
receives the outputs of all honest parties. In the real world, the honest parties process their inputs
as described by the protocol π, possibly communicating with other parties over a network that is
completely controlled by A. In the ideal world, the ideal functionality F acts as a central trusted
third party that processes inputs and delivers outputs to honest and corrupt parties alike. Secure
composition of protocols is modeled as a hybrid execution in which all the parties in the real-world
protocol have access to an ideal sub-functionality F ′.

In Figure 2, we present a helper functionality for our vetKD construction, the verifiably encrypted
threshold BLS functionality Fvetbls. It models a set of servers Si that jointly generate a BLS key pair
and can jointly create encrypted BLS signatures if at least one honest server agrees to sign the same
message m encrypted under tpk , where tpk are users’ transport keys. (We must of course assume
that the t− 1 corrupt servers can always sign any messages they want, hence a single participating
honest server enables the creation of an encrypted signature.) The actual BLS signature σ can only
be recovered by the user who generated tpk .

The main guarantees that the Fvetbls functionality upholds are that

1. participation of at least one honest server is required to create a valid encrypted signature for
an honest user’s tpk ,

2. an encrypted signature on m under an honest user’s tpk does not reveal the BLS signature σ
on m to the adversary,

3. the only way for the adversary to obtain a BLS signature on m is by having at least one honest
server participate in an encrypted signature on m under a non-honest tpk ,

4. and when the honest user who generated tpk decrypts an encrypted signature es that is valid
for m and tpk , it recovers the BLS signature on m.

In designing the Fvetbls functionality in Figure 2, we made the following choices and assumptions:

� The functionality is parameterized with multiplicative groups G1 and G2 generated by g1 and
g2, respectively. It keeps a key pair (pk , sk) in its internal state, as well as a map H initialized
as H [·] = ⊥ to keep track of hash responses, a map TPK initialized as TPK [·] = ∅ to keep
track of honest users’ public keys, and initially empty sets ES and V to keep track of created
and verified encrypted signatures, respectively. We use the abbreviated notation tpk ∈ TPK
to denote ∃ U : tpk ∈ TPK [U].

� As prescribed by the UC framework, each input includes the session identifier sid of the
protocol or functionality instance that it is addressed to. We assume that the set of all server
identities Si can somehow be derived from the session identifier sid as a function servers(sid).
The server identities could for example be statically encoded in sid , or they could be obtained
from the governance system of a blockchain. We assume the set of servers to be static, so the
total number of servers is fixed as n(sid) = |servers(sid)|. We also assume that each server Si
is assigned a unique identifier i ∈ [1, n(sid)] and that the threshold of servers that needs to be
involved in a signing query is fixed as t(sid). For brevity, we will usually refer to n(sid) and
t(sid) simply as n and t.

� We assume static corruption of t − 1 servers and an arbitrary number of other parties. At
the beginning of the experiment, the adversary A outputs the identities of the parties that it

12

Functionality Fvetbls

� On (sid , "init") from honest Si ∈ servers(sid):
If (pk , sk) aren’t defined, choose sk ←$ Zq, compute pk ← gsk

2 , and store (pk , sk). Send ("init",Si, pk)
to Sim .

� On (sid , "output-pk",Si) from Sim :
If Si ∈ servers(sid), output (sid , "output-pk", pk) to Si.

� On (sid , "hash",m) from P:
If H [m] = ⊥, choose H [m]←$ G1. Output (sid , "hash",m,H [m]) to P.

� On (sid , "transport-keygen") from honest U :
Send a message ("transport-keygen",U) to Sim and wait for a response tpk from Sim . Add tpk to
TPK [U] and output (sid , "tpk", tpk) to U .

� On (sid , "encsign",m, tpk) from honest Si ∈ servers(sid):
If tpk ∈ TPK , add (m, tpk) to ES and send ("encsign",m, tpk ,Si) to Sim . Otherwise, add
(m,⊥) to ES , simulate an internal input (sid , "hash",m), compute σ ← H [m]sk , and send
("encsign",m, tpk ,Si, σ) to Sim .

� On (sid , "output-encsig",m, tpk ,Si, es) from Sim :
Simulate an internal input (sid , "verify", pk ,m, tpk , es). If (pk ,m, tpk , es, true) ∈ V then output
(sid , "encsign",m, tpk , es) to Si.

� On (sid , "verify", pk ′,m, tpk , es) from P:
Send ("verify", pk ′,m, tpk , es) to Sim and wait for a response β from Sim . Add (pk ′,m, tpk , es, b) to
V and output (sid , "verify", pk ′,m, tpk , es, b) to P, where b is determined as follows:

1. If (pk ′,m, tpk , es, γ) ∈ V , set b← γ.

2. Else, if pk ′ ̸= pk , set b← β.

3. Else, if tpk ̸∈ TPK or (m, tpk) ∈ ES or (m,⊥) ∈ ES , set b← β.

4. Else, set b← false.

� On (sid , "decrypt", pk ′,m, tpk , es) from honest U :
Simulate inputs (sid , "verify", pk ′,m, tpk , es) and (sid , "hash",m). If pk ′ ̸= pk then send
("decrypt", pk ′,m, tpk , es) to Sim , wait for σ from Sim , and output (sid , "decrypt", pk ′,m, tpk , es, σ)
to U . Else, if tpk ∈ TPK [U] and (m, tpk , es, true) ∈ V , compute σ ← H [m]sk and output
(sid , "decrypt",m, tpk , es, σ) to U .

Figure 2: The verifiably encrypted threshold BLS functionality Fvetbls.

13

wants to corrupt. From then on, A controls these parties, sees all their inputs and outputs,
and can make them arbitrarily deviate from the protocol.

� We assume that the environment lets at least one honest server call the "init" interface before
it makes any calls to the "output-pk", "encsign", "verify", and "decrypt" interfaces.

� A crucial aspect of the Fvetbls functionality is that the secret key sk and any signatures de-
livered to honest parties remain hidden from the simulator. To issue the BLS signatures
themselves, the Fvetbls functionality therefore does not follow the common approach of generic
signature functionalities where the simulator hands the signatures [Can04] or the signing al-
gorithm [Fis06] to the functionality. Instead, the Fvetbls functionality follows the approach of
Groth-Shoup [GS22] by internally generating the secret key sk and computing all signatures
H(m)sk , hidden from the simulator’s view. It does, however, consult the simulator to pro-
duce encrypted signatures and users’ transport keys, as these are meant to be visible to the
adversary.

� The "hash" interface of the Fvetbls functionality behaves like an “internal random oracle”,
assigning random group elements to incoming messages. An external random-oracle function-
ality would not have worked here, as the simulator in the random-oracle-hybrid world would
be able to program the random oracle so that it knows the corresponding BLS signatures,
which we explicitly wanted to avoid. Modeling the hash function as a real-world function H
would actually work for stand-alone applications of Fvetbls, but would not have allowed the
single-key composability of protocols in Section 8.

� Users can generate a transport public key tpk by invoking the "transport-keygen" interface;
note that one user can generate multiple transport keys.

� Individual servers express their explicit agreement to create a BLS signature for m encrypted
under tpk by providing an input (sid , "encsign",m, tpk) to the functionality. How tpk is
transmitted from the user to the server is outside of the model of Fvetbls; in a typical blockchain
usage, it could be included in a user-signed transaction that appears on the blockchain.

� When an honest server agrees to create an encrypted signature for m under a tpk that is
not controlled by an honest user, the Fvetbls functionality assumes that tpk is adversarially
controlled and leaks the BLS signature on m to the simulator. When it agrees to do so under
an honest user’s tpk , however, nothing is leaked to the simulator.

� The verification and decryption interfaces do not assume that all participants have an authentic
copy of the public key pk . Rather, they are called with an explicit public key pk ′; any security
guarantees only hold for pk ′ = pk , however.

� The verification interface enforces consistency, meaning that verifying the same encrypted
signature for the same pk ′, the same message and the same tpk will always return the same
result, as well as unforgeability, in the sense that the only way for the simulator to create a valid
signature under pk for m and an honest user’s tpk is if at least one honest server participated
in an encrypted signing of m, either under tpk , or under a key that is not registered to an
honest user. This is also in line with the game-based unforgeability definition of (non-threshold)
verifiably encrypted signatures [BGLS03] that excludes trivial forgeries wherem was previously
queried to either a signing oracle or a decryption oracle.

� When an honest user uses the "decrypt" interface to decrypt a valid encrypted signature
under pk for m under its own tpk , it always recovers the BLS signature on m. Note that the
BLS signature is delivered in an output directly to the user, without its value being leaked to
the simulator.

14

Functionality Fmca

� On (sid , "register", v) from P:
Send (sid , "register", v,P) to Sim and wait for "ok" from Sim . If a record (P, v′) exists then ignore,
otherwise create a record (P, v).

� On (sid , "retrieve",P ′) from P:
Send (sid , "retrieve",P ′,P) to Sim and wait for "ok" from Sim . If a record (P, v) exists, output
(sid , "retrieve",P ′, v) to P, otherwise output (sid , "retrieve",P ′,⊥) to P.

Figure 3: The multi-party certification authority ideal functionality Fmca based on Canetti’s single-
party version Fca [Can04].

Functionality Fdkg

� On (sid , "init") from Si:
If Si ̸∈ servers(sid) then ignore. If this is the first honest server in servers(sid) calling "init", then
choose a random polynomial ω(X)←$ Zq[X] of degree t(sid)−1, set sk ← ω(0) and pk ← gsk

2 , compute

pk i ← g
ω(i)
2 for i ∈ [1, n] where n = |servers(sid)|], and record ("init", pk , (pk1, . . . , pkn), sk , ω). Else,

look up the record ("init", pk , (pk1, . . . , pkn), sk , ω). Send ("init",Si, pk , (pk1, . . . , pkn)) to Sim .

� On (sid , "output-share",Si) from Sim :
If no record ("init", pk , (pk1, . . . , pkn), sk , ω) exists, then ignore. Else, compute sk i ← ω(i) mod q
and output (sid , "init", pk , (pk1, . . . , pkn), ω(i)) to Si.

Figure 4: The distributed key generation functionality Fdkg.

4.3 A Simple Construction

We first present a simple instantiation of Fvetbls called πvetbls-sim where a user’s transport key pair
is a standard public-key encryption (PKE) key pair, and where each server Si simply encrypts its
BLS signature share H(m)ski under the transport public key and signs the resulting ciphertext. An
encrypted signature consists of 2t − 1 such signed ciphertexts from different signers; given that at
least t of these must be honest, the owner of the transport key can decrypt the individual signature
shares, find a subset of t valid ones, and combine them into a full signature.

The details of protocol πvetbls-sim are given in Figure 5. Apart from a public-key encryption
scheme PKE and a standard signature scheme SS, it also assumes a multi-party certification au-
thority ideal functionality Fmca, described in Figure 3 as a variant of Canetti’s single-party func-
tionality Fca [Can04], as well as a distributed key generation functionality Fdkg described in Fig-
ure 4. The latter distributes Shamir secret shares [Sha79] of the BLS secret key to the servers
and certifies the resulting public key and public key shares. Distributed key generation is a re-
search topic on its own; instantiations under various settings and assumptions exist in the litera-
ture [Fel87, Ped91, CKLS02, AF04, DYX+22, Gro21] and can be plugged into our schemes.

The "encsign" interface lets servers send their encrypted signature shares to a combiner who
collects, verifies, and combines them, and sends the result back to the servers. The combiner does
not need to be trusted; its role could be played by one or a subset of the servers, or by an additional
party. In a typical blockchain scenario, the block maker will act as a combiner by including the
encrypted signature in a block.

It is important to note that the πvetbls-sim protocol is only able to produce BLS signatures if

15

Protocol πvetbls-sim

� On input (sid , "init"), Si provides input ((sid , "dkg"), "init") to Fdkg and waits for an out-
put ((sid , "dkg"), "init", pk , (pk1, . . . , pkn), sk i). It also generates (spk i, ssk i) ←$ SS.KeyGen()
and registers spk i with Fmca. It stores pk , sk i, and ssk i in its local state and outputs
(sid , "output-pk", (pk , (pk1, . . . , pkn)).

� On (sid , "hash",m), P returns (sid , "hash",m,H(m)).

� On (sid , "transport-keygen"), U generates a transport encryption key pair (tpk , tsk) ←$

PKE .KeyGen(), stores tsk in its local state, and outputs (sid , "tpk", tpk).

� On (sid , "encsign",m, tpk), Si computes σi ← H(m)ski , Ci ←$ PKE .Enc(tpk , σi), and σ′
i ←

SS.Sign(ssk i, (pk ,m, tpk , Ci)), and sends esi ← (Ci, σ
′
i) to a combiner.

When a combiner receives this message, it retrieves spk i for Si from Fmca and verifies that
SS.Verify(spk i, (pk ,m, tpk , Ci), σ

′
i) = 1. As soon as it received validly signed encrypted signature

shares from 2t − 1 different servers Si, i ∈ S, it compiles es ← (S, (Ci, σ
′
i)i∈S) and sends (m, tpk , es)

to all servers.

When Si receives this message, it verifies that |S| = 2t − 1 and that
SS.Verify(spk i, (pk ,m, tpk , Ci), σ

′
i) = 1 for all i ∈ S, where it retrieves spk i for Si from Fmca.

If all of these tests pass, it outputs (sid , "encsign",m, tpk , es).

� On (sid , "verify", pk ′,m, tpk , es), P parses es as (S, (Ci, σ
′
i)i∈S) and pk ′ as (pk , ·). It verifies that

|S| = 2t − 1 and checks that SS.Verify(spk i, (pk ,m, tpk , Ci), σ
′
i) = 1 for all i ∈ S, where it retrieves

spk i for Si from Fmca. If all of these tests pass, it sets result ← true, otherwise it sets result ← false.
It outputs (sid , "verify", pk ′,m, tpk , es, result).

� On (sid , "decrypt", pk ′,m, tpk , es), U parses es as (S, (Ci, σ
′
i)i∈S) and pk ′ as (pk , (pk1, . . . , pkn)). It

looks up tsk from its local state, decrypts σi ← PKE .Dec(tsk , Ci) for all i ∈ S, and finds a sub-
set S′ ⊆ S of size |S′| = t such that e(σi, g2) = e(H(m), pk i) for all i ∈ S′, where it retrieves

spk i for Si from Fmca. If it finds such a set, U reconstructs σ ←
∏

i∈S′ σ
Λi,S′ (0)

i and outputs
(sid , "decrypt",m, tpk , es, σ).

Figure 5: The simple vetBLS protocol πvetbls-sim based on a public-key encryption scheme PKE , a
standard signature scheme SS, a hash function H : {0, 1}∗ → G1, the certification authority ideal
functionality Fmca and a distributed key generation ideal functionality Fdkg.

16

n ≥ 2t − 1, i.e., t ≤ ⌈n2 ⌉. One could consider an optimistic version of the protocol where, if after a
certain timeout the combiner received less than 2t− 1 but at least t encrypted shares, the combiner
includes all shares that it received in the hope that t of them are valid. Such a protocol, however,
would lose the guarantee that a valid encrypted signature can always be decrypted by the user, so
would not securely realize the Fvetbls functionality.

The protocol relies on the standard definition of ind-cpa security [GM84] for a public-key en-
cryption scheme PKE consisting of a key generation algorithm (pk , sk)←$ KeyGen(), an encryption
algorithm C ←$ Enc(pk ,m), and a decryption algorithm m← Dec(sk , C). The adversary A is given
a fresh public key pk as input. At some point, A outputs two challenge messages m0,m1, upon
which the experiment chooses b ←$ {0, 1} and sends the challenge ciphertext C∗ ←$ Enc(pk ,mb)
back to A. The adversary outputs a bit b′. Its advantage in breaking the ind-cpa security is defined
as the difference in its probability of outputting b′ = 1 when b = 1 and outputting b′ = 0 when
b = 0.

It is worth pointing out that the theorem below doesn’t involve any assumptions related to the
security of BLS signatures themselves. This is of course because, as stated earlier, the Fvetbls func-
tionality doesn’t impose any unforgeability or other guarantees on the BLS signatures themselves.

Theorem 3. If SS is uf-cma secure, PKE is ind-cpa secure, and H is modeled as a random oracle,
then πvetbls-sim securely realizes Fvetbls in the (Fdkg,Fmca)-hybrid model.

Proof. We prove the theorem by observing the following sequence of games:

Game 0: The real execution of E and A with πvetbls-sim in the Fmca and Fdkg-hybrid world.

Game 1: The simulator Sim takes over the execution of A, Fmca, Fdkg, and all honest parties P by
simply relaying messages to and from E as the real-world experiment would do. We refer to
the simulated executions as “A”, “Fmca”, “Fdkg”, and “P”, respectively. The change is purely
conceptual, so E ’s view is identical to that in G0.

Game 2: The simulator aborts whenever an honest party receives an encrypted signature es con-
taining a ciphertext Ci and signature σ′

i attributed to an honest server Si with a valid
signature SS.Verify(spk i, (pk ,m, tpk , Ci), σ

′
i) = 1, but “Si” never produced Ci on an input

(sid , "encsign",m, tpk). Any environment causing G3 to abort easily gives rise to a uf-cma
forger against SS.
Note that it now also impossible for an honest party to successfully verify an encrypted sig-
nature es for m and tpk , even though no honest server ever participated in the creation of an
encrypted signature on m under tpk .

Game 3: Rather than decrypting the individual ciphertexts in an encrypted signature es and ver-
ifying and interpolating the resulting signature shares, an honest user “U” who generated tpk
and receives a valid encrypted signature es for m and tpk immediately outputs the full BLS
signature H(m)sk . Since there must be at least t honest servers in S, since those servers en-
crypted their correct BLS signature shares, and since all honest servers’ ciphertexts in es were
actually created by those honest servers, interpolation is guaranteed to yield a correct BLS
signature. This change is therefore purely conceptual.

Game 4: When an honest server “Si” encrypts a signature share σi under a transport public key
tpk generated by an honest user “U”, the simulator now encrypts g1 instead. When “U” has
to decrypt that exact ciphertext, it uses σi as the outcome, without actually decrypting. A
simple hybrid argument over the affected ciphertexts can be used to show that any environment
distinguishing this game from the previous one can be used to break the ind-cpa security of
PKE . Essentially, the reduction would use its challenge public key as tpk for U , use σi and
g1 as its challenge messages, and use its challenge ciphertext as encryption of σi. Note that

17

U never needs to decrypt incoming ciphertexts, as since the previous game, simulated honest
users don’t try to decrypt but, if es is valid, directly output the BLS signature.

Game 5: Instead of executing the real code of Fdkg, the simulator lets “Fdkg” generate sk ←$ Zq

and compute pk ← gsk2 . It also chooses secret key shares sk i ←$ Zq for all t−1 corrupt servers

Si, i ∈ S and computes their public key shares as pk i ← gski
2 . For all honest Si, it computes

pk i ← pkΛ0,S′ (i) ·
∏

j∈S pk
Λj,S′ (i)

j , where S′ = S ∪ {0}.
Whenever an honest server Si has to encrypt a signature share under a tpk that was not
generated by an honest user, it first computes σ ← H(m)sk and then computes the share as
σi ← σΛ0,S′ (i) ·

∏
j∈S H(m)skj ·Λj,S′ (i).

It is clear that the t points (0, sk) and (i, sk i) for i ∈ S implicitly define a unique polynomial

ω(X) ∈ Zq[X] of degree t−1, and that by Lagrange interpolation pk i = g
ω(i)
2 and σi = H(m)ω(i)

as in the real game. This change is therefore purely conceptual.

Note that the simulation of honest servers “Si” in Game 5 no longer depends on the secret key
share sk i. When encrypting to a tpk generated by an honest user, it encrypts a string of zeroes; when
encrypting to any other tpk , it encrypts a signature share σi that is computed from σ = H(m)sk and
the secret key shares sk i of corrupt servers. Also note that this is the only point where the simulator
uses sk at all.

We can therefore easily turn Game 5 into a simulator Sim that interacts with E and Fvetbls in
the ideal world, as follows:

� On ("init",Si, pk) from Fvetbls, Sim uses pk as the output of Fdkg, chooses random secret
key shares sk i for all corrupt servers, and computes the public key shares as in Game 5.

� It “outsources” the random oracle H(·) to the "hash" interface of Fvetbls, which also implements
a random oracle with range G1. This is the reason for the condition in Theorem 3 that H be
modeled as a random oracle: the "hash" interface essentially implements a random oracle, so
in order to substitute it for H, we have to model H as a random oracle.

� On ("transport-keygen",U) from Fvetbls, it runs the honest simulated user “U” on (sid ,TKG)
to obtain (sid , "tpk", tpk), and sends ("tpk",U , tpk) to Fvetbls.

� On ("encsign",m, tpk ,Si) from Fvetbls, Sim lets “Si” encrypt g1 instead of the real signature
share, as done in Game 4. Note that this ciphertext never needs to be decrypted by “U”,
because "decrypt" inputs are handled locally by Fvetbls, without intervention from Sim .

� On ("encsign",m, tpk ,Si, σ) from Fvetbls, Sim lets “Si” recompute σi from σ and the corrupt
servers’ secret key shares sk i using Lagrange interpolation as in Game 5, encrypt it under tpk ,
and sign it.

� When an honest “Si” outputs (sid , "encsign",m, tpk , es), Sim sends (sid ,
"output-encsig",m, tpk ,Si, es) to Fvetbls.

� On ("verify", pk ′,m, tpk , es) from Fvetbls, Sim returns the result of calling the "verify"

interface of πvetbls-sim with pk ′,m, tpk , es. Any forgeries, i.e., signatures deemed valid by
πvetbls-sim but not by Fvetbls, have been ruled out in Game 2.

� When “U” receives a valid encrypted signature es to decrypt, it invokes the "decrypt" interface
on Fvetbls to obtain the signature σ and outputs σ, exactly as in Game 3.

18

4.4 Construction with Zero-Knowledge Proofs

We now present a second scheme that only requires contributions from t servers to create an en-
crypted signature. An encrypted signature contains t BLS signature shares that are ElGamal-
encrypted [ElG84] under the user’s public key in G1, together with a zero-knowledge proof that they
are indeed valid ElGamal-encrypted signature shares. Details of the πvetbls-zkp scheme are given in
Figure 6.

Depending on the standard encryption and signature schemes used in the πvetbls-sim scheme, the
gains in terms of signature length of πvetbls-zkp with respect to πvetbls-sim are probably offset by
the longer size per share due to the ElGamal randomness and the zero-knowledge proof. However,
waiting for the combiner to collect t signature shares instead of 2t−1 can significantly reduce latency
in many settings. Apart from that, the πvetbls-zkp scheme obviously has the advantage of supporting
any threshold t ≤ n, instead of being restricted to t ≤ n+1

2 .
Because we’re using ElGamal encryption in G1, we have to rely on the external Diffie-Hellman

(XDH) assumption [Sco02, BBS04, BGdMM05], which states that the decisional Diffie-Hellman
(DDH) problem is hard in G1.

Definition 2 (External Diffie-Hellman Problem). The advantage of an algorithm A in solving the
external Diffie-Hellman (XDH) problem in G1 is defined as∣∣∣Pr [b = 1 : α, β ←$ Zq , b←$ A(gα1 , g

β
1 , g

αβ
1)

]
− Pr

[
b = 1 : α, β, γ ←$ Zq , b←$ A(gα1 , g

β
1 , g

γ
1)
]∣∣∣ .

Theorem 4. If the XDH assumption holds in G1, the BLS signature scheme is uf-cma secure,
and H,H′ are modeled as random oracles, then the πvetbls-zkp protocol securely realizes Fvetbls in the
Fdkg-hybrid model.

Proof. We prove the theorem by observing the following sequence of games:

Game 0: The real execution of E and A with πvetbls-zkp in the Fdkg-hybrid world.

Game 1: The simulator Sim takes over the execution of A, Fdkg, and all honest parties P. This
change is purely conceptual.

Game 2: (Soundness of the zero-knowledge proof.) When a simulated honest user “U” has to
decrypt an encrypted signature es, it no longer decrypts the individual shares and veri-
fies the combined result as in the real protocol, but instead it verifies es as is done in the
"verify" interface of πvetbls-zkp, by checking that it contains encrypted shares from t dif-
ferent servers with valid zero-knowledge proofs according to Equation (2). If so, it outputs
(sid , "decrypt",m, tpk , es, σ) straight away, where σ ← H(m)sk if the verification was success-
ful and σ ← ⊥ if not. Note that this change implies that the decryption of a valid signature
by the correct user always yields a correct BLS signature.

The only way for this game to be any different from the previous one is if es contains a valid
zero-knowledge proof (c, s1, s2) for a ciphertext (C1, C2) that is not an encryption of H(m)ski

under tpk , i.e., the environment broke the soundness property of the zero-knowledge proof by
creating a valid proof for a pair (C1, C2) that is not a member of the language described by
Equation (1).

For E to do so, it must at some point make a random-oracle query

c = H′(C1, C2, tpk ,H(m), pk i, U1, U2, U3

)
.

19

Protocol πvetbls-zkp

� On input (sid , "init"), Si provides input ((sid , "dkg"), "init") to Fdkg and waits for an output
((sid , "dkg"), "init", pk , (pk1, . . . , pkn), sk i). It stores pk , (pk1, . . . , pkn), and sk i in its local state
and outputs (sid , "output-pk", (pk , (pk1, . . . , pkn))).

� On (sid , "hash",m), P returns (sid , "hash",m,H(m)).

� On (sid , "transport-keygen"), U chooses tsk ←$ Zq, computes tpk ← g tsk
1 , stores tsk in its local

state, and outputs (sid , "tpk", tpk).

� On (sid , "encsign",m, tpk), Si computes σi ← H(m)ski . It ElGamal-encrypts σi as (C1, C2) ←
(gt

1 , tpk t · σi), and creates a generalized Schnorr zero-knowledge proof [CKY09]

(c, s1, s2)←$ ZKP
{
t, sk i : C1 = gt

1 ∧ C2 = tpk t · H(m)ski ∧ pk i = gski
2

}
(1)

by choosing r1, r2 ←$ Zq and computing

c← H′(C1, C2, tpk ,H(m), pk i, gr1
1 , tpkr1 · H(m)r2 , gr2

2

)
s1 ← c · t+ r1 mod q

s2 ← c · sk i + r2 mod q .

It then sends esi ← (C1, C2, c, s1, s2) to a combiner.

When a combiner receives this message, it verifies the zero-knowledge proof by checking that

c = H′(C1, C2, tpk ,H(m), pk i, gs1
1 · C

−c
1 , tpks1 · H(m)s2 · C−c

2 , gs2
2 · pk

−c
i

)
. (2)

As soon as it received t valid encrypted signature shares esi from different servers Si, i ∈ S, it compiles
es ← (S, (esi)i∈S) and sends es to all servers.

When Si receives es, it verifies that |S| = t and that each esi satisfies Equation (2). If so, it outputs
(sid , "encsign",m, tpk , es).

� On (sid , "verify", pk ′,m, tpk , es), P parses es as (S, (esi)i∈S) and pk ′ as (pk , (pk1, . . . , pkn)). It
verifies that |S| = t and that all esi satisfy Equation (2). If so, it sets result ← true, otherwise it sets
result ← false. It outputs (sid , "verify",m, tpk , es, result).

� On (sid , "decrypt", pk ′,m, tpk , es), U parses es as (S, (Ci,1, Ci,2, ci, si,1, si,2)i∈S) and pk ′ as (pk , ·),
and looks up tsk from its local state. It decrypts σi ← Ci,2 · C−tsk

i,1 for all i ∈ S and reconstructs

σ ←
∏

i∈S′ σ
Λi,S′ (0)

i . If e(σ, g2) ̸= e(H(m), pk), it sets σ ← ⊥. It outputs (sid , "decrypt",m, tpk , es, σ).

Figure 6: The zero-knowledge vetBLS protocol πvetbls-zkp based on hash functions H : {0, 1}∗ → G1

and H′ : {0, 1}∗ → Z2ℓ , and the distributed key generation ideal functionality Fdkg.

20

and come up with s1, s2 ∈ Zq such that

U1 = gs11 · C
−c
1

U2 = tpks1 · H(m)s2 · C−c
2

U3 = gs22 · pk
−c
i .

If (C1, C2) is not an ElGamal encryption of H(m)ski under tpk , then we can say that (C1, C2) =
(gt11 , tpk t2 · H(m)ski) for some t1, t2 ∈ Zq, t1 ̸= t2. Let µ, u1, u2, and u3 be the discrete
logarithms of H(m), U1, U2, and U3 with respect to bases g1, g1, g1, and g2, respectively. In
order to satisfy the above equations, it needs to hold that

u1 = s1 − c · t1 mod q

u2 = (s1 − c · t2) · tsk + (s2 − c · sk i) · µ mod q

u3 = s2 − c · sk i mod q .

As C1, C2, tpk ,H(m), pk i are all included in the argument of the random-oracle call, the values
of t1, t2, tsk , µ, sk i are all fixed at the moment that E makes this query, as are the values of
u1, u2, u3. From the first and third equations, we get that

s1 = u1 + c · t1 mod q

s2 = u3 + c · sk i mod q .

Filling these into the second equation, we find that if t1 ̸= t2 mod q, there is only one value for
c ∈ Zq, and hence at most one value in Z2ℓ , for which this system of equations has a solution,
namely the one satisfying

u2 = (u1 + c · (t1 − t2)) · tsk + u3 · µ mod q .

The probability that the random-oracle output hits this value is at most 1/2ℓ. The probability
that any of qH′ random-oracle queries hit this value is at most

1−
(
1− 1

2ℓ

)qH′

≤ qH′

2ℓ
.

Game 3: (Forgery of encrypted signatures.) Whenever an honest party is asked to verify an en-
crypted signature es on a message m under a tpk that was generated by an honest user, and
verification succeeds, even though no honest server “Si” ever participated in the creation of
an encrypted signature for (m, tpk) or for (m, tpk ′) where tpk ′ was not generated by an honest
user, the simulator aborts.

We show how any environment E and adversary A that can distinguish this game from the
previous one can be used to build a uf-cma forger B for the BLS signature scheme. On input
pk , B runs E and A as in Game 2, but using pk as the public key, for which it of course doesn’t
know sk , and relaying A’s random-oracle queries H(·) to its own random oracle.

The only time that B needs sk is to compute σ = H(m)sk when an honest “Si” computes an
encrypted signature share for a non-honest tpk . At this point, B queries its signing oracle on
m to obtain σ.

When it obtains an encrypted signature es that causes Game 3 to abort, it decrypts es using
tsk (which it can do because tpk was generated by an honest user “U” and because Game 2
guarantees that valid encrypted signature shares decrypt correctly) to obtain σ, a valid message
on m. This is a non-trivial forgery, because E never made an honest server create an encrypted
signature on m under a non-honest key tpk ′, which would have made B query its signing oracle
on m.

21

Game 4: (Zero-knowledge.) When a simulated honest server “Si” produces an encrypted signature
share esi = (C1, C2, c, s1, s2), it creates a simulated proof by programming the random oracle
for H′. In particular, it chooses c←$ Z2ℓ and s1, s2 ←$ Zq and, if the entry for

H′(C1, C2, tpk ,H(m), pk i, gs11 · C
−c
1 , tpks1 · H(m)s2 · C−c

2 , gs22 · pk
−c
i

)
.

is not yet defined, sets it to c. By the randomness of s1, s2, c, the probability that this entry is
already defined when the table for H′ has qH′ is qH′/(q2 · 2ℓ). The probability that it is defined
for any of qES encrypted signature queries is at most

1−
(
1− qH′

q2 · 2ℓ

)qES

≤ qES · qH′

q2 · 2ℓ
.

Game 5: (ElGamal encryption.) When an honest server “Si” creates an encrypted signature share
under an honest transport public key tpk , it uses two random group elements C1, C2 ←$ G1

instead of an ElGamal encryption of σi.

Note that the zero-knowledge proofs remain valid as Game 4 switched to simulated proofs.
Also note that the decryption of (C1, C2) by “U” will still yield σi, because of the changed
decryption behavior in Game 2.

Indistinguishability from the previous game can be shown through a hybrid argument that
gradually replaces all ciphertexts by honest servers under honest tpk . Any environment and
adversary distinguishing the ith from the (i − 1)st hybrid game gives rise to the following
algorithm B solving the XDH problem.

On input (A,B,C) = (gα1 , g
β
1 , g

γ
1) ∈ G3

1, B follows the code of Game 5, but generates the
transport keys of all honest users “U” as tpk ← A · g tsk1 for tsk ←$ Zq. Note that this
doesn’t affect the handling of decryption inputs, as in Game 5 these no longer involve the
transport secret key. Algorithm B uses random group elements (C1, C2) ←$ G2

1 in the first
i − 1 encrypted signature shares to honest users, uses real encryptions (gr1 , tpk

r · σi) for the
(i + 1)st to last encrypted signature shares, and uses (C1, C2) ← (B,C · Btsk · σi) for the ith
encrypted share, where tsk is the value it chose to compute tpk = A · g tsk1 . If γ = αβ, we have

that (C1, C2) = (gβ1 , g
αβ+tskβ
1 ·σi) = (gβ1 , tpk

β ·σi) as in a real ciphertext, while if γ is random,
(C1, C2) are random group elements. If E decides it’s running in the (i− 1)st hybrid game, B
outputs 1, otherwise it outputs 0.

Game 6: (Random key shares for corrupt servers.) Instead of executing the real code of Fdkg, the
simulator lets “Fdkg” choose random sk and sk i ←$ Zq for all corrupt servers Si, and derive
public key shares for honest users as in Game 4 in the proof of Theorem 3. It also computes
the signature share σi that an honest server “Si” encrypts to a non-honest tpk by interpolation
from σ ← H(m)sk and the corrupt servers’ shares. Just as in the proof of Theorem 3, this
change is purely conceptual.

Game 6 can be turned into the following simulator Sim that interacts with E and Fvetbls in the
ideal world:

� On ("init",Si, pk) from Fvetbls, Sim uses pk as the output of Fdkg, chooses random secret
key shares sk i ←$ Zq for all corrupt servers, and computes the public key shares as in Game 6.

� It lets the random oracle H(·) be handled by the "hash" interface of Fvetbls.

� On ("transport-keygen",U) from Fvetbls, it runs the honest simulated user “U” on (sid ,TKG)
to obtain (sid , "tpk", tpk), and sends tpk to Fvetbls.

22

� On ("encsign",m, tpk ,Si) from Fvetbls, Sim lets “Si” use random group elements C1, C2 ←$

G1 as in Game 5 and simulate the zero-knowledge proof (c, s1, s2) by programming the random
oracle H′ as in Game 4. Note that this ciphertext never needs to be decrypted by “U”, because
Fvetbls handles decryptions independent of Sim .

� On ("encsign",m, tpk ,Si, σ) from Fvetbls, Sim lets “Si” recompute σi using Lagrange inter-
polation as in Game 6 and encrypts it under tpk as in the real protocol.

� When an honest “Si” outputs (sid , "encsign",m, tpk , es), Sim sends (sid ,
"output-encsig",m, tpk ,Si, es) to Fvetbls.

� On ("verify", pk ′,m, tpk , es) from Fvetbls, Sim runs πvetbls-zkp on input (sid ,
"verify", pk ′,m, tpk , es) and returns the result to Fvetbls.

5 Aggregated Constructions with Leakage

The simple and zero-knowledge schemes from the previous section have encrypted signatures that
are linear in size in the number of combined shares, i.e., in the threshold t. In this section, we analyze
the security of the πvetbls-agg1 and πvetbls-agg2 protocols, where the encrypted signature shares are
aggregated into a compact verifiably encrypted signature, with size independent of n or t. Rather
than relying on standard signatures or zero-knowledge proofs, verification of encrypted signatures
is performed by checking simple pairing equations. The schemes can be seen as threshold variants
of the verifiably encrypted signature scheme of Boneh et al. [BGLS03], mapped to a Type-3 pairing
setting in two different ways.

Unfortunately, however, πvetbls-agg1 and πvetbls-agg2 do not securely realize the Fvetbls functionality
as put forward in Figure 2. Whereas the simulators in πvetbls-sim and πvetbls-zkp could simulate
encrypted signatures by honest servers to an honest tpk by encrypting bogus signature shares, the
public verifiability by pairing equations of πvetbls-agg1 and πvetbls-agg2 prevents us from doing anything
of the kind. This points to the fact that the encrypted signature shares in the compact constructions
actually do leak some information about the signature share, namely, a verifiable ElGamal encryption
of it.

5.1 Ideal Functionality with Leakage

We recover the compact constructions simply by accepting that leakage into the security model.
Namely, we weaken the Fvetbls functionality by, whenever an honest server creates an encrypted
signature for an honest tpk , giving the simulator access to leakage information derived from the
actual BLS signature. This is modeled in the FL

vetbls ideal functionality in Figure 7, where the
functionality is parameterized by a leakage algorithm L that, on input leakage parameters lpars
and a BLS signature σ, returns leakage information λ. The leakage parameters are generated as
lpars ←$ L(⊥,⊥) at the initialization of the functionality.

The FL
vetbls functionality is weaker than the Fvetbls functionality in the sense that any protocol π

that securely realizes Fvetbls also realizes FL
vetbls for any L, but not vice versa. How severely leakage

weakens the functionality depends on the type of leakage. On the one extreme, if L(lpars, σ) is
independent of σ, FL

vetbls is equivalent to Fvetbls. On the other extreme, if L(lpars, σ) = σ, then
it completely undermines the main security guarantee of the Fvetbls functionality, namely secure
delivery of BLS signatures. Whether the leakage affects the security of a higher-level protocol
depends on the exact type of leakage and on the higher-level protocol.

23

Functionality FL
vetbls

Identical to functionality Fvetbls in Figure 2, except for the addition of a new "leakpars" interface and a
modified "encsign" interface as follows.

� On (sid , "leakpars") from Sim :
If lpars is not defined, generate and store lpars ←$ L(⊥,⊥). Output (sid , "leakpars", lpars) to Sim .

� On (sid , "encsign",m, tpk) from honest Si ∈ servers(sid):
Simulate an input (sid , "hash",m) and compute σ ← H [m]sk . If tpk ∈ TPK , add (m, tpk) to ES ,
compute λ ←$ L(lpars, σ) and send ("encsign",m, tpk ,Si, λ) to Sim . Otherwise, add (m,⊥) to ES
and send ("encsign",m, tpk ,Si, σ) to Sim .

Figure 7: The verifiably encrypted threshold BLS functionality with signature leakage FL
vetbls, where

L is a leakage algorithm.

5.2 BLS Signatures with Leakage

We first show that basic BLS signatures remain secure in the presence of a particular type of leakage
that we will need to prove our aggregate vetBLS constructions.

We extend the definition of uf-cma security for standard signature schemes by giving the adver-
sary access to an oracle that “leaks” partial information derived from signatures on messages of its
choice. The adversary can query its leakage oracle “for free”, without affecting the non-triviality
condition. Meaning, having queried its leakage oracle on the leakage of a signature on message m
doesn’t preclude it from using a signature on m as its forgery.

We define the advantage of an adversary A in breaking the uf-cmaL security of SS =
(KeyGen,Sign,Verify) as its probability in winning a game where the adversary is given a fresh
public key pk as well as fresh leakage parameters lpars ←$ L(⊥,⊥) as input. It is then given access
to a signing oracle Sign(sk , ·) as well as a leakage oracle L(lpars,Sign(sk , ·)). The adversary wins if
it outputs a forgery m∗, σ∗ so that Verify(pk ,m∗, σ∗) = 1 and it never queried m∗ from its signing
oracle.

We define two types of leakage based on ElGamal encryption of a signature:

1. co-ElGamal-1 leakage is given by an algorithm cEG1 that, on input (⊥,⊥), returns lpars =
(h1, h2) = (gx1 , g

x
2) for x ←$ Zq, and that, on input ((h1, h2), σ), returns λ = (gr1 , h

r
1 · σ) for

r ←$ Zq.

2. co-ElGamal-2 leakage is given by algorithm cEG2 that, on input (⊥,⊥), returns lpars = h1 = gx1
for x←$ Zq, and that, on input (h1, σ), returns λ = (gr1 , g

r
2 , h

r
1 · σ) for r ←$ Zq.

Theorem 5. The BLS scheme is uf-cmacEG1 and uf-cmacEG2 secure in the random-oracle model if
the co-CDH problem in (G1,G2) is hard.

Proof. We first prove the statement for the case of co-ElGamal-1 leakage. Given a uf-cmacEG1 adver-

sary A, consider the following co-CDH adversary B. On input (A1 = gα1 , B1 = gβ1 , B2 = gβ2), B sets
pk ← B2, chooses v ←$ Zq and sets h1 ← gv1 /B1 and h2 ← gv2 /B2. It runs A on input (pk , (h1, h2))
and simulates A’s oracle queries as follows:

� Random oracle H(m): B guesses a random query index to be the hash of A’s forgery m∗. For
the query H(m∗), B returns A1. For all other queries H(m), B chooses rm ←$ Zq and returns
grm1 .

� Signing oracle: When A makes a signing query for m ̸= m∗, B returns σ ← Brm
1 . If A queries

for a signature on m∗, B gives up.

24

� Leakage oracle: If A makes a leakage query for m, B needs to return a tuple of the form
(gr1 , h

r
1 · H(m)β). For m ̸= m∗, it simply does so by computing a signature σ for m as above,

choosing r ←$ Zq, and returning (gr1 , h
r
1 · σ). For m = m∗, it proceeds differently: it chooses

s←$ Zq and outputs λ = (λ1, λ2) = (A1 ·gs1 , Av
1 ·gvs1 /Bs

1). This is correctly distributed because
if λ1 = A1 · gs1 = gr1 for r = α+ s, then λ2 is

λ2 = hr
1 · H(m∗)β

= (gv1 /B1)
r ·Aβ

1

= g
v(α+s)−β(α+s)
1 · gαβ1

= gvα+vs−βs
1

= Av
1 · gvs1 /Bs

1 .

When A outputs a forgery σ∗ on m∗, it outputs σ∗ = H(m∗)β = gαβ1 , otherwise it gives up.
The proof for co-ElGamal-2 leakage is similar, except that B sets h1 ← gv1 /A1 and simulates

signature leakage for m∗ as (λ1, λ2, λ3) ← (B1 · gs1 , B2 · gs2 , Bv
1 · gvs1 /As

1), which one can check is of
the form (gr1 , g

r
2 , h

r
1 · H(m∗)β) for r = β + s.

5.3 Two Aggregated vetBLS Constructions

We present two aggregated constructions πvetbls-agg1 and πvetbls-agg2 in Figures 8 and 9, respectively.
Both constructions have constant-size encrypted signatures and can be seen as the natural threshold
extension of the verifiably encrypted signature scheme of Boneh et al. [BGLS03], but mapped to a
Type-3 pairing in two different ways.

In order to verify encrypted signatures by applying a pairing equation, we need more than
tpk ∈ G1 and ElGamal ciphertext components (C1, C2) ∈ G2

1. The πvetbls-agg1 scheme uses a double
transport public key as tpk = (g tsk1 , g tsk2), while the πvetbls-agg2 scheme adds an element gr2 to
the ElGamal ciphertext. The effect is that πvetbls-agg1 has to perform an extra pairing computation
during the creation of encrypted signature shares, to check that the public key is correctly distributed,
while πvetbls-agg2 has to perform an extra pairing during the verification of encrypted signatures and
signature shares, to ensure that the extended ElGamal ciphertext is correctly distributed.

We show that the πvetbls-agg1 and πvetbls-agg2 protocols securely realize the F cEG1

vetbls and F cEG2

vetbls

functionalities, respectively. This is of course a weaker result than to realize the original Fvetbls

functionality, but as we will see later, it actually turns out to suffice for usage in an IBE scheme,
VRF, and signature scheme.

It is worth noting that, unlike Theorems 3 and 4, Theorem 6 does not rely on the hardness of the
XDH problem, even though all four schemes use the same basic approach of ElGamal-encrypting the
BLS signature in G1. However, by giving away an additional element in G2 that enables a pairing
verification, the ElGamal encryption loses its semantic security based on the XDH assumption.
Instead, the πvetbls-agg1 and πvetbls-agg2 protocols realize the weaker F cEG1

vetbls and F
cEG2

vetbls functionalities.

Theorem 6. If the co-CDH problem is hard and H is modeled as a random oracle, then the
πvetbls-agg1 and πvetbls-agg2 protocols securely realize the F cEG1

vetbls and F cEG2

vetbls functionalities in the
Fdkg-hybrid model, respectively.

Proof. We first prove the statement for the πvetbls-agg1 protocol. Consider the following simulator

Sim that interacts with E and F cEG1

vetbls in the ideal world:

� On ("init",Si, pk) from F cEG1

vetbls, Sim uses pk as the output of “Fdkg”, chooses random secret
key shares sk i ←$ Zq for all corrupt servers, and derives public key shares for honest users as
in Game 4 in the proof of Theorem 3.

25

Protocol πvetbls-agg1

The "init" and "hash" interfaces are identical to πvetbls-zkp, except that the "init" interface outputs
(sid , "output-pk", pk). The other interfaces are as follows:

� On (sid , "transport-keygen"), U chooses tsk ←$ Zq, computes tpk1 ← g tsk
1 , tpk2 ← g tsk

2 , stores tsk
in its local state, sets tpk ← (tpk1, tpk2), and outputs (sid , "tpk", tpk).

� On (sid , "encsign",m, tpk), Si parses tpk = (tpk1, tpk2) and checks whether e(tpk1, g2) = e(g1, tpk2);
if not, it ignores this input. Otherwise, it computes σi ← H(m)ski , encrypts σi as (C1, C2) ←
(gt

1 , tpk t
1 · σi), and sends esi ← (C1, C2) to a combiner.

When a combiner receives this message, it checks that e(C2, g2) = e(C1, tpk2) · e(H(m), pk i). When it
received t valid such esi = (Ci,1, Ci,2) from different servers Si, i ∈ S, it computes

es =
(
C1, C2

)
=

(∏
i∈S

C
Λi,S(0)

i,1 ,
∏
i∈S

C
Λi,S(0)

i,2

)

and sends es to all servers.

When Si receives es, it verifies that e(C2, g2) = e(C1, tpk2) · e(H(m), pk). If so, it outputs
(sid , "encsign",m, tpk , es).

� On (sid , "verify", pk ′,m, tpk , es), P parses es as (C1, C2) and verifies that e(C2, g2) = e(C1, tpk2) ·
e(H(m), pk ′). If so, it sets result ← true, otherwise it sets result ← false. It outputs
(sid , "verify", pk ′,m, tpk , es, result).

� On (sid , "decrypt", pk ′,m, tpk , es), U parses es as (C1, C2) and looks up tsk from its local state.
It decrypts σ ← C2 · C−tsk

1 and checks whether e(σ, g2) = e(H(m), pk ′). If so, it outputs
(sid , "decrypt", pk ′,m, tpk , es, σ).

Figure 8: The first aggregate vetBLS protocol πvetbls-agg1 based on hash function H : {0, 1}∗ → G1

and the distributed key generation ideal functionality Fdkg.

26

Protocol πvetbls-agg2

The "init" and "hash" interfaces are identical to πvetbls-zkp, except that the "init" interface outputs
(sid , "output-pk", pk). The other interfaces are as follows:

� On (sid , "encsign",m, tpk), Si computes σi ← H(m)ski , encrypts σi as (C1, C2, C3)← (gt
1 , gt

2 , tpk t
1 ·

σi), and sends esi ← (C1, C2, C3) to a combiner.

When a combiner receives this message, it checks that e(C1, g2) = e(g1, C2) and that e(C3, g2) =
e(tpk , C2) · e(H(m), pk i). When it received t valid such esi = (Ci,1, Ci,2, Ci,2) from different servers
Si, i ∈ S, it computes

es =
(
C1, C2, C3

)
=

(∏
i∈S

C
Λi,S(0)

i,1 ,
∏
i∈S

C
Λi,S(0)

i,2 ,
∏
i∈S

C
Λi,S(0)

i,3

)

and sends es to all servers.

When Si receives es, it verifies that e(C1, g2) = e(g1, C2) and that e(C3, g2) = e(tpk , C2) · e(H(m), pk).
If so, it outputs (sid , "encsign",m, tpk , es).

� On (sid , "verify", pk ′,m, tpk , es), P parses es as (C1, C2, C3) and verifies that e(C1, g2) = e(g1, C2)
and that e(C3, g2) = e(tpk , C2) · e(H(m), pk ′). If so, it sets result ← true, otherwise it sets result ←
false. It outputs (sid , "verify", pk ′,m, tpk , es, result).

� On (sid , "decrypt", pk ′,m, tpk , es), U parses es as (C1, C2, C3)and looks up tsk from its local state. It
decrypts σ ← C3 · C−tsk

1 and checks whether e(σ, g2) = e(H(m), pk ′); if not, it sets σ ← ⊥. It outputs
(sid , "decrypt", pk ′,m, tpk , es, σ).

Figure 9: The second aggregated vetBLS protocol πvetbls-agg2 based on hash function H : {0, 1}∗ →
G1 and the distributed key generation ideal functionality Fdkg.

27

� It lets the random oracle H(·) be handled by the "hash" interface of F cEG1

vetbls.

� On ("transport-keygen",U) from F cEG1

vetbls, it inputs (sid , "leakpars") to F cEG1

vetbls to obtain
output (sid , "leakpars", lpars) where lpars = (h1, h2). It then chooses δ ←$ Zq, computes

tpk ← (h1 · gδ1 , h2 · gδ2), adds (tpk , δ) to TPK [U], and sends tpk back to F cEG1

vetbls.

� On ("encsign",m, tpk ,Si, λ) from F cEG1

vetbls, Sim lets “Si” look up the user U such that (tpk , δ) ∈
TPK [U], parse λ = (λ1, λ2), compute esi ← (λ1, λ2 · λδ

1) and send esi to the combiner.

� On ("encsign",m, tpk ,Si, σ) from F cEG1

vetbls, Sim lets “Si” recompute σi via Lagrange interpo-
lation from σ and the secret key shares sk i of the corrupt servers. It then computes esi as
(gr1 , tpk

r
1 · σi) and sends esi to the combiner.

� When an honest “Si” outputs (sid , "encsign",m, tpk , es), Sim provides input
(sid , "output-encsig",m, tpk ,Si, es) to F cEG1

vetbls.

� On ("verify", pk ′,m, tpk , es) from F cEG1

vetbls, Sim runs πvetbls-agg1 on input (sid ,
"verify", pk ′,m, tpk , es) and returns the result to Fvetbls.

One can see that the view thus generated by Sim to E and A is distributed exactly as in the real
world. In particular, encrypted signature shares by an honest “Si” to an honest tpk are correctly
distributed as

(λ1 , λ3 · λδ
1) = (gr1 , hr

1 · H(m)sk · grδ1)

= (gr1 , tpkr · H(m)sk) .

To see why decryption of a valid encrypted signature for always results in a correct BLS signature,
observe that the condition in the "verify" interface of πvetbls-agg1 that e(C2, g2) = e(C1, tpk2) ·
e(H(m), pk) and the fact that (tpk1, tpk2) = (g tsk1 , g tsk2) together imply that C2 = gt·tsk+µ·sk

1 , where
t = dlogg1(C1) and µ = dlogg1(H(m)). The decryption as performed in the "decrypt" interface

therefore always recovers σ = C2 · C−tsk
1 = gµ·sk1 = H(m)sk .

The only difference between the simulated and the real experiment occurs when the "verify"

interface of F cEG1

vetbls rejects an encrypted signature that πvetbls-agg1 deems valid. In particular, this
happens when es verifies correctly for m and an honest user’s tpk , even though no honest “Si” ever
participated in a protocol for m and tpk or a non-honest tpk ′.

Any environment E and adversary A that cause this event to happen can be used to build a uf-
cmacEG1 forger B against BLS. Namely, on input pk , (h1, h2), B runs E and A against a simulated
“F cEG1

vetbls” and the simulator Sim described above, where B uses the same public key pk as in its

own experiment, uses (h1, h2) as the leakage parameters for “F cEG1

vetbls”, and relays "hash" queries
to its own random oracle. It mostly generates honest users’ public keys also as above, but for one
random honest user, it generates the keys so that it knows the decryption key, i.e., as tpk∗ = g tsk

∗

1

for tsk∗ ←$ Zq.
On an "encsign" input for m and an honest tpk ̸= tpk∗, B queries its leakage oracle on m to

obtain λ = cEG1(lpars,Sign(sk ,m)) and computes the encrypted signature share as above. For a
non-honest tpk ′ or for tpk∗, it queries its signing oracle to obtain σ and proceeds as Sim above.

If a discrepancy between the "verify" interfaces of “F cEG1

vetbls” and πvetbls-agg1 occurs for an en-

crypted signature es = (C1, C2) on m∗ under tpk∗, B decrypts es as σ∗ ← C2 · C−tsk∗

1 and outputs
m∗, σ∗ as its forgery. If such a discrepancy happens for some other honest key tpk ̸= tpk∗, B gives
up. The theorem statement for πvetbls-agg1 then follows from Theorem 5.

The proof for πvetbls-agg2 is extremely similar, the only differences being that Sim uses tpk ← h1·gδ1
as honest users’ public keys, simulates encrypted signature shares to honest tpk as esi ← (λ1, λ2, λ3 ·
λδ
1) and to non-honest tpk as esi ← (gr1 , g

r
2 , tpk

r ·σi). We leave the details as an easy exercise to the
reader.

28

Functionality Fvetibe

� On (sid , "init") from honest Si ∈ servers(sid):
Send ("init",Si) to Sim . If mpk isn’t defined, wait for a response mpk from Sim and store mpk .

� On (sid , "output-mpk",Si) from Sim :
If Si ∈ servers(sid) and mpk is defined, output (sid , "output-mpk",mpk) to Si.

� On (sid , "init",mpk ′) from U :
If ID [U] = ⊥ set ID [U]← ∅ and set MPK [U] = mpk ′. Send ("init",U ,mpk ′) to Sim .

� On (sid , "ekderive", id ,U) from honest Si ∈ servers(sid):
If ID [U] = ⊥ then ignore. Add id to EKD [U] and send ("ekderive", id ,U) to Sim .

� On (sid , "output-key", id ,U) from Sim : If ID [U] = ⊥ then ignore. If id ̸∈ EKD [U] and there does not
exist a corrupt U ′ such that id ∈ EKD [U ′], then ignore. Add id to ID [U] and output ("ekderive", id)
to U .

� On (sid , "encrypt",mpk ′, id ,m) from P: If mpk ′ = mpk , send (sid , "encrypt",mpk , id , |m|) to Sim ;
otherwise, send (sid , "encrypt",mpk ′, id ,m) to Sim . Wait for C from Sim so that ∄ (mpk ′, C, id , ·) ∈
CTXT . Add (mpk ′, C, id ,m) to CTXT and output (sid , "encrypt",mpk ′, id ,m,C) to P.

� On (sid , "decrypt", id , C) from U : If U is honest and id ̸∈ ID [U] then ignore. If U is corrupt and there
does not exist a corrupt U ′ such that id ∈ EKD [U] then ignore. If ∃ (MPK [U], C, id ,m) ∈ CTXT
then output (sid , "decrypt", id , C,m) to U . Otherwise, send (sid , "decrypt",MPK [U], id , C) to Sim ,
wait for m from Sim , add (MPK [U], C, id ,m) to CTXT , and output (sid , "decrypt", id , C,m) to U .

Figure 10: The ideal functionality for identity-based encryption with verifiably encrypted threshold
key derivation Fvetibe.

6 Verifiably Encrypted Threshold IBE

We now return to our original goal of building an IBE scheme with verifiably encrypted threshold key
derivation, or verifiably encrypted threshold IBE (vetIBE) scheme. As argued in the introduction,
such a scheme has many applications in blockchain scenarios, from end-to-end encrypted on-chain
messaging and social networks to preventing miner extracted value in DeFi applications.

We first define the concept of vetIBE by presenting an ideal functionality in the UC framework.
We then show how the Boneh-Franklin FullIdent scheme [BF01] securely realizes that functionality
in the F cEG

vetbls-hybrid world. Since any protocol that securely realizes Fvetbls also realizes F cEG
vetbls, that

means that our scheme can be combined with any of the four vetBLS constructions of the previous
sections.

6.1 The vetIBE Ideal Functionality

In Figure 10, we describe the vetIBE ideal functionality Fvetibe. Rather than assigning a fixed
identity to each user, which would severely restrict use cases, we follow Nishimaki et al. [NMO06]
in allowing users to collect decryption keys for multiple identities. We further extend their model—
as well as the set of use cases—by allowing multiple users to obtain the decryption key for the
same identity, and also by guaranteeing secrecy for ciphertexts that are encrypted before any users
are registered as recipients for that identity. These extensions are crucial for flexible use in many
applications, including end-to-end encrypted messaging, social networks, or time-locked encryption.

Because of the latter extension, we run into the same “commitment problem” observed by
Hofheinz et al. [HMM15] for IBE in the Constructive Cryptography framework [Mau11]. Namely,
when messages are encrypted to an identity that only later gets assigned to a corrupt user, the

29

simulator first has to “commit” to a ciphertext C without knowing the message m, and then later
come up with a decryption key for id that makes C decrypt to m. A technically very similar prob-
lem occurs for public-key encryption in the face of adaptive corruptions, which was proved to be
impossible to achieve in the standard model [Nie02a]. For IBE, the problem seems more inherent
still, as it even shows up for static corruptions.

The Fvetibe functionality lets servers decide which users U get access to which identities id by
participating in an encrypted key derivation "ekderive" for that U and id . The decryption key
itself is kept internal to the functionality. As soon as it is delivered to U through the "output-key"
interface, that user is able to decrypt ciphertexts encrypted to id through the "decrypt" interface,
as long as the user was initialized with the correct mpk ′ = mpk .

The main security guarantee of the Fvetibe scheme is that messages encrypted under an id that
no corrupt users have access to, meaning that no honest server ever participated in an encrypted key
derivation for for a corrupt user, remain hidden from the adversary. Any ciphertext that encrypts
a message m to identity id through the "encrypt" interface using the correct master public key
mpk is guaranteed to decrypt to m for any user that was initialized with mpk and obtained a
decryption key for id . Decryption of maliciously created ciphertexts or ciphertexts encrypted to a
different identity id ′ or a different master public key mpk ′ can have arbitrary results; in particular,
the Fvetibe functionality does not enforce any robustness property [ABN10].

The Fvetibe functionality in Figure 10 stores in its state the master public key mpk , a map ID
initialized to ID [·] = ⊥ to keep track of which user received a decryption key for which identity,
a map MPK initialized to MPK [·] = ⊥ to keep track of which master public key each user was
initialized with, a map EKD initialized to EKD [·] = ∅ to keep track of which user U had at least one
honest server participating in an encrypted key derivation for which identity id , and a map CTXT
to keep track of ciphertexts and their decryptions.

An honest user with id ∈ EKD [U] will have to wait for the decryption key to be delivered through
the "output-key" interface before id is added to ID [U] so that U can decrypt messages encrypted
under id . A corrupt user, however, can decrypt under id if id ∈ EKD [U ′] for any corrupt user U ′,
modeling that as soon as an honest server grants a corrupt users access to ciphertexts encrypted
under id , one must assume that all corrupt users have this access.

6.2 A Construction based on the Boneh-Franklin IBE

Non-committing public-key encryption is known to be impossible to realize in the standard
model [Nie02a], but relatively easy to instantiate in the random-oracle model [CLNS17]. It should
therefore not come as a surprise that are able to instantiate the Fvetibe functionality in the
random-oracle model; slight more surprising, perhaps, is the fact that the Boneh-Franklin FullIdent
scheme [BF01] that was designed to be ind-cca secure also satisfies the required non-committing
property.

The πvetibe scheme in Figure 11 is presented in the combined (F cEG
vetbls,Fmca)-hybrid model, where

the former functionality is used for key derivation and the latter for registering users’ transport keys.
It is a rather straightforward adaptation of the Boneh-Franklin FullIdent scheme to a Type-3 pairing.
The original scheme was presented for a Type-1 (i.e., symmetric) pairing; a chosen-plaintext secure
variant for a Type-3 pairing is presented in [BS23]. We prove the πvetibe protocol secure under the
hardness of the bilinear co-Diffie-Hellman problem, which is an adaptation to Type-3 pairings of the
bilinear Diffie-Hellman problem that [BF01] used to prove the FullIdent scheme secure, and is also a
computational variant of the assumption under which the chosen-plaintext secure scheme in [BS23]
was proved secure.

Definition 3 (Bilinear co-Diffie-Hellman Problem). The advantage of an algorithm A in solving
the bilinear co-Diffie-Hellman (co-BDH) problem in (G1,G2) is defined as

Pr
[
y = e(g1, g2)

αβγ : α, β, γ ←$ Zq , y ←$ A(gα1 , g
β
1 , g

β
2 , g

γ
2)
]
.

30

Protocol πvetibe

� On (sid , "init"), server Si provides input (sidvetbls, "init") to F cEG
vetbls. When it receives output

(sidvetbls, "init",mpk) from F cEG
vetbls, it outputs (sid , "output-mpk",mpk).

� On (sid , "init",mpk ′), user U provides input (sidvetbls, "transport-keygen") to F cEG
vetbls.

When it receives output (sidvetbls, "tpk", tpk), U stores mpk ′ and tpk , and provides input
(sidmca, "register", tpk) to Fmca.

� On (sid , "ekderive", id ,U), server Si retrieves tpk for U from Fmca. It then calls
(sidvetbls, "encsign", id , tpk) on F cEG

vetbls. When it receives output (sidvetbls, "encsign", id , tpk , es), it
sends (id , es) to U .

� When U receives (id , es), it recovers mpk ′ from its state and checks whether it already has a tuple
(id ,K) in its state; if so it ignores. Otherwise, it first calls (sidvetbls, "verify",mpk ′, id , tpk , es)
on F cEG

vetbls to obtain output (sidvetbls, "verify",mpk ′, id , tpk , es, b). If b = true, it then calls
(sidvetbls, "decrypt",mpk ′, id , tpk , es) on F cEG

vetbls to obtain (sidvetbls, "verify",mpk ′, id , tpk , es,K),
stores (id ,K) in its state, and outputs ("ekderive", id) to U .

� On (sid , "encrypt",mpk ′, id ,m), P checks that m ∈ {0, 1}ℓ. It calls (sidvetbls, "hash", id) on F cEG
vetbls

to obtain response h. It then chooses s←$ {0, 1}κ, sets t← H3(s,m), and computes the ciphertext

C ←
(
gt
2 , s⊕ H2

(
e(h,mpk ′)t)

)
, m⊕H4(s)

)
and outputs (sid , "encrypt",mpk ′, id ,m,C).

� On (sid , "decrypt", id , C), user U checks whether it has a record (id ,K) in its state. If not, it ignores
this input. Otherwise, it parses C = (C1, C2, C3), computes s ← C2 ⊕ H2

(
e(K,C1)

)
, and recovers

m ← C3 ⊕ H4(s). It also computes t ← H3(s,m) and checks whether C1 = gt
2. If so, it outputs

(sid , "decrypt", id , C,m), otherwise it outputs (sid , "decrypt", id , C,⊥).

Figure 11: The Boneh-Franklin IBE with verifiably encrypted threshold key derivation πvetibe in the
(F cEG

vetbls,Fmca)-hybrid model.

31

Theorem 7. If the co-BDH problem is hard in (G1,G2) and H2,H3,H4 are modeled as random
oracles, then the πvetibe protocol securely realizes Fvetibe in the (F cEG1

vetbls,Fmca)-hybrid model as well

as in the (F cEG2

vetbls,Fmca)-hybrid model.

We repeat that, because any secure realization of Fvetbls also securely realizes F cEG
vetbls, the πvetibe

protocol can by the theorem above also be securely instantiated with an instantiation of the leakage-
free functionality Fvetbls.

Proof. We first prove the theorem for the (F cEG1

vetbls,Fmca)-hybrid model, and then sketch the differ-

ences for the case of the (F cEG2

vetbls,Fmca)-hybrid model.
Consider the following simulator Sim that interacts with E and Fvetibe in the ideal world and

that internally runs the real-world adversary A as well as the functionalities F cEG1

vetbls and Fmca to

provide A with a view of πvetibe in the (F cEG1

vetbls,Fmca)-hybrid world.

For brevity, we refer to the random oracle implemented by the "hash" interface of F cEG1

vetbls as a
function H1. The random oracles for H2, H3, and H4 are managed by Sim by keeping maps H2, H3,
and H4, respectively, assigning new inputs to random elements from the appropriate ranges {0, 1}κ,
Zq, and {0, 1}ℓ. One limitation, however, is that Sim aborts if a query H2

(
e(H1(id),mpk)t

)
, H3(s, ·),

or H4(s) is made such that there exists (C, id , t, s) ∈ CTXT .
It interacts with Fvetibe and A as follows:

� On ("init",Si) from Fvetibe, Sim lets “F cEG1

vetbls” process an input (sidvetbls, "init") from “Si”.
The first time it makes such a call, “F cEG1

vetbls” will generate a secret key sk ←$ Zq and public
key pk ← gsk2 . The simulator Sim stores (mpk ,msk)← (pk , sk) and returns mpk to Fvetibe.

� When a simulated honest server “Si” outputs (sid , "output-mpk",mpk), Sim sends
(sid , "output-mpk",Si) to Fvetibe.

� On ("init",U ,mpk ′) from Fvetibe, Sim lets “U” follow the code of πvetibe on input
(sid , "init",mpk ′), but interacting with the simulated ideal functionalities “F cEG1

vetbls” and
“Fmca”. Meaning, “U” generates a transport public key by invoking the "transport-keygen"
interface on “F cEG1

vetbls” and registering the resulting tpk with “Fmca”.

� On (sid , "encrypt",mpk ′, id ,m) from Fvetibe, Sim runs the honest "encrypt" interface of
πvetibe to produce a ciphertext C and sends C back to Fvetibe.

� On (sid , "encrypt",mpk , id , ℓ) from Fvetibe, Sim sets C ← (C1, C2, C3) where t←$ Zq, C1 ←
gt1, C2 ←$ {0, 1}κ, and C3 ←$ {0, 1}ℓ. It chooses s ←$ {0, 1}κ, adds (C, id , t, s) to CTXT ,
and responds C to Fvetibe.

� On ("ekderive", id ,U ,Si) from Fvetibe for an honest user U , Sim lets “Si” follow the πvetibe

protocol by retrieving tpk for U from “Fmca”, calling the "encsign" interface on “F cEG1

vetbls”,
and, when it receives output es, sending (id , es) to “U”.
When “U” receives (id , es), it also follows πvetibe by checking whether it already has a tuple
(id ,K) in its state. If not, it verifies es by calling the "verify" interface of “F cEG1

vetbls”. If it
is valid, it sends (sid , "output-key", id ,U) to Fvetibe. Note that it doesn’t need to bother
decrypting es, as F cEG1

vetbls guarantees that a valid encrypted signature decrypts to the correct
BLS signature.

� On ("ekderive", id ,U ,Si) from Fvetibe for a corrupt user U , it goes over all (C, id , t, s) ∈
CTXT to

– parse C = (C1, C2, C3),

– send an input (sid , "decrypt", id , C) to Fvetibe to obtain a response
(sid , "decrypt", id , C,m),

32

– compute T ← e(H1(id),mpk)t,

– program the maps for random oracles H2, H3, and H4 as

H2[T]← C2 ⊕ s , H3[s,m]← t , H4[s]← m⊕ C3 ,

– and to delete (C, id , t, s) from CTXT .

Note that programming the random oracles this way always works unless Sim aborted earlier.
Also note that, by programming the random oracles in this way, the "decrypt" interface of
πvetibe correctly decrypts C under id to m.

� On (sid , "decrypt", id , (C1, C2, C3)) from Fvetibe, Sim proceeds as for the "decrypt" interface
of πvetibe, using H1(id)

sk as the secret key, to obtain a message m (that could be ⊥). It sends
m back to Fvetibe.

One can see that Sim perfectly simulates the real-world environment of πvetibe as long as it
doesn’t abort. For an environment that calls the "encrypt" interface of Fvetibe qE times, we have
that |CTXT | ≤ qE. Since the random string s in each record (C, id , r, s) ∈ CTXT does not affect
A’s view at all until Sim aborts, the probability that A makes Sim abort in one query to H3(s, ·) or
H4(s) is at most qE/2

κ. The probability that it does so in any of its qH queries is at most

1−
(
1− qE

2κ

)qH
≤ qH · qE

2κ
.

Any environment E and adversary A causing Sim to abort by making a random-oracle query
H2

(
e(H1(id),mpk)r

)
can be turned into an algorithm B that solves the co-BDH problem as follows.

On input (U1, V1, V2,W2), B runs E and A in an environment like the one provided by Sim above,
except that

� instead of letting “F cEG1

vetbls” run the real code of F cEG1

vetbls, it uses pk ← V2,

� it simulates the "hash" interface of “F cEG1

vetbls”, i.e., the random oracle H1(id), by choosing
r ←$ Zq, storing H1[id] ← (gr1 , r), and returning gr1 , except for one randomly guessed query
H1(id

∗) where it returns U1,

� it simulates the "leakpars" interface of “F cEG1

vetbls” by responding with (h1, h2) = (gv1 /V1, g
v
2 /V2)

for v ←$ Zq,

� on input (sidvetbls, "encsign", id , tpk) for an honest user’s tpk , “F cEG1

vetbls” computes the leakage
λ sent to A as

– if id ̸= id∗: λ← (gw1 , hw
1 · σ), where w ←$ Zq, H [id] = (gr1 , r) and σ ← Ur

1 , and

– if id = id∗: λ = (λ1, λ2) ← (U1 · gw1 , Uv
1 · gvw1 /V w

1), which can be seen to be correctly

distributed by considering that λ1 = gβ+w
1 and

λ2 = Uv
1 · gvw1 /V w

1

= gαv+vw−βw
1

= g
α(v−β)+w(v−β)
1 · gαβ1

= hα+w
1 · H1(id

∗)β .

� on input (sidvetbls, "encsign", id , tpk) for a non-honest tpk , “F cEG1

vetbls” computes the BLS sig-
nature σ sent to A as σ ← V r

1 if H [id] = (gr1 , r), or gives up if id = id∗.

33

� on one randomly chosen input (sid , "encrypt",mpk , id , ℓ) from Fvetibe, it gives up if id ̸= id∗;
otherwise, it sets C∗ ← (W2, C

∗
2 , C

∗
3) for C

∗
2 ←$ {0, 1}κ and C∗

3 ←$ {0, 1}ℓ, adds (C∗, id∗,⊥, s)
to CTXT for s←$ {0, 1}κ, and responds C∗ to Fvetibe.

� On (sid , "decrypt", id , (C1, C2, C3) from Fvetibe, B doesn’t decrypt using the secret key for id ,

but instead checks whether there exist s,m such that C1 = g
H3[s,m]
2 . If so, then it additionally

checks whether C2 = s⊕ H2(e(H1(id), pk)
t). If so, then it returns m← C3 ⊕ H4(s) to Fvetibe;

if not, or if no such s,m were found, it returns m← ⊥ to Fvetibe.

The only way that this decryption method produces a different outcome than the real decryp-

tion of πvetibe is if during decryption, no entry in H3 can be found such that C1 = g
H3[s,m]
2 ,

but later a new random-oracle query results in the creation of exactly such an entry. For an
environment that makes qD decryption queries, the probability that some query H2(s,m) is
assigned a random value t such that gt2 = C1 for some previous decryption query is at most
qH · qD/q.

To cause the original simulator Sim to abort, A must make a query H1(T) so that there exists
(C, id , t, s) ∈ CTXT such that T = e(H1(id),mpk)t. Algorithm B’s strategy is that the offending
query H1(T) occurs for the tuple (C∗, id∗,⊥, s) ∈ CTXT , in which case we would have that

T = e(H1(id
∗),mpk)dlogg2

C∗
1

= e(U1, V2)
dlogg2

W2

= e(g1, g2)
αβγ ,

the solution to B’s co-BDH challenge.
Since B can’t test which query H1(T) is the offending one, it simply outputs the key of a randomly

chosen entry in H1, giving it a probability of at least 1/qH to guess correctly. That query also has
to trigger abortion for the tuple (C∗, id∗,⊥, s) ∈ CTXT , however, which happens with probability
1/qE if B didn’t give up prematurely.

There are two reasons that cause B to give up prematurely. The first is if an honest server “Si”
calls “F cEG1

vetbls” with (sidvetbls, "encsign", id
∗, tpk) for a non-honest tpk . However, an honest server

in πvetibe only makes such a call if it received an input (sid , "ekderive", id∗,U) for a corrupt U ,
upon which Sim immediately deletes all tuples (·, id∗, ·, ·) from CTXT .

The other reason for B to give up early is if the randomly chosen "encrypt" input is for id ̸= id∗.
This can indeed happen, but since A’s view is independent of B’s choice of id∗ as long as it doesn’t
give up, we have a probability 1/qH that id = id∗.

Overall, B therefore outputs the solution to the co-BDH problem with probability at least 1/(qE ·
q2H).

The proof in the (F cEG2

vetbls,Fmca)-hybrid model is almost identical to the above, except that the
algorithm B solves the co-BDH problem slightly differently. Namely, it still sets pk ← V2 and
H(id∗) ← U1, but it simulates the leakage parameters lpars as h1 ← gv1/U1 and simulates the
leakage as λ← (gw1 , gw2 , hw

1 · σ) if id ̸= id∗, and as λ← (V1 · gw1 , V2 · gw2 , V v
1 · gvw1 /Uw

1).

7 Other vet Primitives

BLS signatures are so much more than just the decryption keys to the Boneh-Franklin IBE. They can
of course be used as signatures, but also as a pseudo-random function (PRF) or verifiable random
function (VRF). In this section, we describe how our vetBLS protocols can be used as a building
block to create verifiably encrypted threshold variants of all of these primitives.

34

Functionality Fvetsig

� On (sid , "init") from honest Si ∈ servers(sid):
Send ("init",Si) to Sim . If pk isn’t defined, wait for a response pk from Sim and store pk .

� On (sid , "output-pk",Si) from Sim :
If Si ∈ servers(sid) and pk is defined, output (sid , "output-pk", pk) to Si.

� On (sid , "init", pk ′) from U :
Set PK [U]← pk ′ and send ("init",U) to Sim .

� On (sid , "encsig",m,U) from honest Si ∈ servers(sid):
If PK [U] = ⊥ then ignore. Add m to ES [U] and send ("encsig",m,U) to Sim .

� On (sid , "output-sig",m, σ,U) from Sim : If PK [U] = ⊥ or (PK [U],m, σ, false) ∈ V then ignore. If
PK [U] = pk and m ̸∈ ES [U] and there does not exist a corrupt U ′ such that m ∈ ES [U ′], then ignore.
Add (PK [U],m, σ, true) to V , add m to DS , and output ("output-sig",m, σ) to U .

� On (sid , "verify", pk ′,m, σ) from P:
Send ("verify", pk ′,m, σ) to Sim and wait for a response β from Sim . Add (pk ′,m, σ, b) to V and
output (sid , "verify", pk ′,m, σ, b) to P, where b is determined as follows:

1. If (pk ′,m, σ, γ) ∈ V , set b← γ.

2. Else, if pk ′ ̸= pk , set b← β.

3. Else, if m ∈ DS or there exists a corrupt U such that m ∈ ES [U], set b← β.

4. Else, set b← false.

Figure 12: The ideal functionality for verifiably encrypted threshold signatures Fvetsig.

7.1 Verifiably Encrypted Threshold Signatures

We define verifiably encrypted threshold signatures (vetSIG) through the Fvetsig functionality in
Figure 12. It enables a group of servers to securely transmit signatures to authenticated users if at
least t servers agree to do so.

Just as in threshold signatures [ADN06], a valid signature on m can only be registered after at
least one honest server agrees to participate in creating a (in our case, encrypted) signature on m.
Unlike threshold signatures, however, the Fvetsig functionality will only allow such a signature to be
registered after the signature was delivered to its honest recipient; if the recipient is corrupt, valid
signatures can be registered immediately after one honest server participates.

The functionality stores a public key pk , a map PK [·], initially ⊥, to keep track of the public
key each user was initialized with, a map ES [·], initially ∅, to keep track of which messages were
encrypted-signed to which users users, and an initially empty set DS to keep track of messages for
which signatures were delivered to their recipients, and an initially empty set V to keep track of
verified signatures.

We describe a simple protocol πvetsig in the (FL
vetbls,Fmca)-hybrid model in Figure 13 where the

resulting signatures are BLS signatures. Users first call FL
vetbls to generate a transport key and

register it with Fmca. A server encrypted-signs a message to user U by encrypted-signing m using
FL

vetbls under the transport key that it looks up in Fmca. Verification is performed as in the BLS
signature scheme.

Theorem 8. Protocol πvetsig securely realizes Fvetsig in the FL
vetbls-hybrid model if the BLS signature

scheme is uf-cmaL secure when H is modeled as a random oracle.

Proof. The simulator simply runs internal instance of Fvetbls and Fmca and lets simulated honest

35

Protocol πvetsig

The "init" interfaces for servers Si and users U are identical to πvetibe in Figure 11. The other interfaces
are implemented as:

� On (sid , "encsig",m,U), server Si retrieves tpk for U from Fmca and calls FL
vetbls with

(sidvetbls, "encsign",m, tpk). When it receives outputs (sidvetbls, "encsign",m, tpk , es), it sends
(m, es) to U .

� When U receives (m, es), it recovers pk ′ from its state and verifies es by calling
(sidvetbls, "verify", pk

′,m, tpk , es) on FL
vetbls. If es is valid, U decrypts the BLS signature σ by

calling (sidvetbls, "decrypt", pk
′,m, tpk , es) and outputs (sid , "output-sig",m, σ).

� On (sid , "verify", pk ′,m, σ), a party P first calls (sidvetbls, "hash",m) on FL
vetbls to obtain the hash

value h. It outputs (sid , "verify", pk ′,m, σ, b) with b = true if e(σ, g2) = e(h, pk ′), otherwise with
b = false.

Figure 13: The verifiably encrypted threshold BLS signatures protocol πvetsig in the (FL
vetbls,Fmca)-

hybrid model.

parties follow πvetsig based on the inputs from Fvetsig. In particular,

� on ("init",Si), Sim lets “Si” proceed as πvetsig does on input (sid , "init"). If this is the
first honest server calling "init", it will trigger “Fvetbls” to generate a fresh key pair (pk , sk),
allowing Sim to respond pk to Fvetsig.

� when “Si” outputs (sid , "output-pk", pk), Sim sends (sid , "output-pk",Si) to Fvetsig.

� on ("init",U , pk ′) from Sim for an honest user U , Sim lets “U” proceed as πvetsig does on
input (sid , "init", pk ′).

� whenA registers a key with “Fmca” in the name of a corrupt user U , Sim sends (sid , "init", pk)
to Fvetsig as coming from U .

� on ("encsig",m,U) from Fvetsig, Sim lets “Si” proceed as πvetsig on input
(sid , "encsig",m,U).

� when a simulated honest user “U” receives a message (m, es), it also proceeds as prescribed by
πvetsig. If “U” outputs (sid , "output-sig",m, σ), Sim provides (sid , "output-sig",m, σ,U)
to Fvetsig.

� on ("verify", pk ′,m, σ) from Fvetsig, Sim proceeds as πvetsig on an input
(sid , "verify", pk ′,m, σ), i.e., queries the "hash" interface of “Fvetbls” to obtain the
hash value h for m and checks whether e(σ, g2) = e(h, pk ′). If so, Sim responds β = true to
Fvetsig, otherwise it responds β = false.

One can see that the only tangible difference in the view thus provided by Sim to A is in the
verification interface. Namely, whereas the simulation by Sim always follows the verification equation
of πvetsig, i.e., e(σ, g2) = e(h, pk ′), the ideal functionality Fvetsig follows its own rules that could lead
to a discrepancy between the ideal execution with Fvetsig and the hybrid execution with πvetsig. In
particular, such a discrepancy can occur if either

� a signature σ output by an honest user for a message m doesn’t satisfy the verification equation
e(σ, g2) = e(h, pk), or

36

� a signature σ does satisfy the verification equation for pk and m, but a valid signature for m
was never delivered to an honest user, or encrypted-signed by an honest server to a corrupt
user.

The first case is easily excluded as Fvetbls guarantees that honest users only output valid signatures.
We show that any environment E and adversary A causing a discrepancy of the second type yields
a successful uf-cmaL adversary B against BLS signatures.

On input public key pk and leakage parameters lpars, B runs E and A in an experiment much like
that with the simulator Sim above, but instead of letting “FL

vetbls” execute the real code of FL
vetbls,

B lets “FL
vetbls” use pk as public key and uses its own random oracle for H(·) to respond to "hash"

queries by A. The only interfaces that involve the secret key sk , which B of course doesn’t know,
are the "encsign" and "decrypt" interfaces, that it simulates as follows:

� On (sidvetbls, "encsign",m, tpk) from a simulated honest server “Si” and a tpk that is regis-
tered in “Fmca” to an honest user, B queries its leakage oracle on m to obtain signature leakage
λ that it includes in a message ("encsign",m, tpk ,Si, λ) to A. On such an input for a tpk
that is not registered to an honest user, B queries its signing oracle on m to obtain signature
σ to include in ("encsign",m, tpk ,Si, σ) to A.

� On (sidvetbls, "decrypt",m, tpk , es) from a simulated honest user “U” for a valid encrypted
signature es, B queries its signing oracle on m and includes the resulting signature σ in the
output (sid , "decrypt",m, tpk , es, σ) to “U”.

If at some point E calls (sid , "verify", pk ,m, σ) that causes a discrepancy of the second type
above, B outputs m,σ as its forgery. Note that this is a non-trivial forgery, because the fact that no
valid signature for m was ever delivered to an honest user and m was never encrypted-signed by an
honest server means that B never had to query its signing oracle on m.

7.2 Verifiably Encrypted Threshold PRF

The uniqueness of BLS signatures makes them easily amenable to a pseudo-random function
(PRF) [GGM86] and a verifiable random function (VRF) [MRV99] in the random-oracle model.
Whereas BLS signatures themselves are unpredictable, but not necessarily pseudo-random, a pseudo-
random output is easily obtained by applying a hash function modeled as a random oracle.

The relation between unique signatures and VRFs has mainly been studied in the standard
model [MRV99, Lys02]. The relation in the random-oracle model seems folklore; concrete schemes
based on RSA and CDH have been proved secure [PWH+17].

Distributed PRFs [NPR99, Nie02b] and VRFs [Dod03] secret-share the secret key over multiple
servers, so that a quorum of them is needed to evaluate the function. The random beacon of the
Internet Computer [HMW18, CDH+22] uses the hash of a threshold BLS signature to obtain common
randomness and was analyzed as a decentralized VRF in [GLOW21].

We describe how to use vetBLS to create verifiably encrypted threshold PRFs (vetPRFs) and
VRFs (vetVRFs) that enable users to securely evaluate and obtain proofs from a threshold of servers
so that the PRF/VRF output value remains hidden from the adversary. (It does not try to hide the
input value, though.)

The Fvetprf ideal functionality in Figure 14 describes the ideal behavior of a vetPRF. The public
key pk that is output by servers is used as a “public handle” to the PRF, allowing users to verify that
they indeed obtain the correct output value for the chosen PRF instance. Users are initialized with
a public key pk ′; the correct output guarantee only holds if the user was initialized with pk ′ = pk .

When an honest server evaluates the PRF on a new input x for an honest user U , a random
output y is chosen and privately delivered to U . The only way for the simulator to learn the output
value is when an honest server evaluates x for a corrupt user.

37

Functionality Fvetprf

� On (sid , "init") from honest Si ∈ servers(sid):
Send ("init",Si) to Sim . If pk isn’t defined, wait for a response pk from Sim and store pk .

� On (sid , "output-pk",Si) from Sim :
If Si ∈ servers(sid) and pk is defined, output (sid , "output-pk", pk) to Si.

� On (sid , "init", pk ′) from U :
Set PK [U]← pk ′ and send ("init", pk ′,U) to Sim .

� On (sid , "enceval", x,U) from honest Si ∈ servers(sid):
If PK [U] = ⊥ or pk is not defined then ignore. Add x to EE [U] and send ("enceval", x,U ,Si) to Sim .

� On (sid , "deliver-eval", x,U) from Sim :
If PK [U] = ⊥ then ignore. If PK [U] = pk and x ̸∈ EE [U] and there does not exist a corrupt U ′ such
that x ∈ EE [U ′], then also ignore.

If PK [U] = pk and Y [pk , x] = ⊥ then choose Y [pk , x] ←$ {0, 1}ℓ. If PK [U] ̸= pk and
Y [PK [U], x] = ⊥ then send (sid , "deliver-eval",PK [U], x) to Sim , wait for a response y from Sim ,
and set Y [PK [U], x]← y.

Add x to DE [U] and output (sid , "deliver-eval", x) to U .
� On (sid , "eval", x) from U :

If x ̸∈ DE [U] then ignore, else output (sid , "eval", x, Y [PK [U], x]) to U .

Figure 14: The ideal functionality for a verifiably encrypted threshold pseudo-random function
Fvetprf .

The functionality maintains the public key pk , a map PK [·] initialized to ⊥ keeping track of
the public keys with which users are initialized, a map EE [·] initialized to ∅ keeping track of which
inputs were encrypted-evaluated for each user, a map DE [·] initialized to ∅ to keep track of the
delivered evaluations for each user, and a map Y [·] initialized to ⊥ to maintain consistency of the
randomly chosen outputs.

The πvetprf protocol in the (FL
vetbls,Fmca)-hybrid model described in Figure 15 uses the FL

vetbls

functionality to have BLS signatures securely delivered to users, who have their transport public
keys registered in Fmca. The output of the PRF on an input x is given by H′(pk , x, σ), where H′ is
a hash function and σ is the BLS signature on m = x.

Theorem 9. Protocol πvetprf securely realizes Fvetprf in the (FL
vetbls,Fmca)-hybrid model if H′ is

modeled as a random oracle and the BLS signature scheme is uf-cmaL secure when H is modeled as
a random oracle.

Proof. Consider a simulator Sim that runs simulated instances of Fmca and FL
vetbls, written as “Fmca”

and “FL
vetbls”, as well as simulated honest parties “Si” and “U”. It mostly runs these running the real

code of Fmca, FL
vetbls, and πvetprf , but in the simulation of the random oracle H′, it only programs the

output values generated by Fvetprf as they become known to Sim . We show that any environment
E and adversary A that make that programming fail give rise to a uf-cmaL forger for BLS with
signature leakage L.

The simulator Sim proceeds as follows:

� On ("init",Si) from Fvetprf , Sim lets “Si” follow the instructions of πvetprf on input
(sid , "init"). When “Si” outputs (sid , "output-pk", pk), then it sends pk to Fvetprf if this is
the first honest server to output a public key, and outputs (sid , "output-pk",Si) to Fvetprf .

� On ("init", pk ′,U) from Fvetprf , Sim lets “U” follow πvetprf on input (sid , "init", pk ′).

38

Protocol πvetprf

� On (sid , "init"), server Si ∈ servers(sid) calls FL
vetbls with (sidvetbls, "init"). When it receives an

output (sidvetbls, "output-pk", pk) from FL
vetbls, it stores pk and outputs (sid , "output-pk", pk).

� On (sid , "init", pk ′), user U calls FL
vetbls with (sidvetbls, "transport-keygen") and waits for output

(sidvetbls, "tpk", tpk) from FL
vetbls. It then registers tpk with Fmca and stores tpk and pk ′.

� On (sid , "enceval", x,U), server Si recovers the stored public key pk and retrieves the transport public
key tpk registered for U from Fmca; any of these is not found, it ignores this input. It then calls FL

vetbls

with (sidvetbls, "encsign", x, tpk). When it receives an output (sidvetbls, "encsign", x, tpk , es) from
FL

vetbls, it sends (pk , x, tpk , es) to U .
� When U receives a message (pk , x, tpk ′, es), it recovers tpk and pk ′ from its storage. If pk ̸= pk ′ or

tpk ̸= tpk ′, it ignores this message. Otherwise, it calls FL
vetbls with (sidvetbls, "decrypt", pk

′, x, tpk , es).
If U then receives an output (sidvetbls, "decrypt", pk

′, x, tpk , es, σ) from FL
vetbls, it computes y ←

H′(pk ′, x, σ), stores (x, y, σ) in its state, and outputs (sid , "deliver-eval", x).

� On (sid , "eval", x) from U :
If no tuple (x, y, σ) is stored in the state, ignore. Else, output (sid , "eval", x, y).

Figure 15: The verifiably encrypted threshold pseudo-random function protocol πvetprf in the
(FL

vetbls,Fmca)-hybrid model with hash function H′ : {0, 1}∗ → {0, 1}ℓ.

� When A registers a key tpk with “Fmca” in name of a corrupt user U , Sim follows the code of
Fmca but additionally inputs (sid , "init", pk) in name of U to Fvetprf .

� On ("enceval", x,U ,Si) from Fvetprf , Sim acts differently depending whether U is honest or
corrupt. If U is honest, it lets “Si” follow πvetprf on input (sid , "enceval", x,U), causing it to
send a message (pk , x, tpk , es) to “U”.
If U is corrupt, however, Sim first provides an input (sid , "deliver-eval", x,U) to Fvetprf and
a subsequent input (sid , "eval", x) as coming from U so that Sim , who plays the role of the
ideal-world U , obtains output (sid , "eval", x, y). It then programs the random oracle for H′

by setting H ′[pk , x, σ] ← y, where σ ← hsk and h is obtained by calling (sidvetbls, "hash", x)
on “Fvetbls”; if the entry H ′[pk , x, σ] is already defined, Sim aborts.

� When “U” receives a message (pk ′′, x, tpk ′, es), it initially follows the honest code of πvetprf ,
but if pk ′′ = pk and “U” receives a "decrypt" output from “FL

vetbls”, it doesn’t make an
internal random-oracle call H′(pk , x, σ) but simply sets y ← ⊥.
When “U” produces an output (sid , "deliver-eval", x, y), Sim provides an input
(sid , "deliver-eval", x,U) to Fvetprf . If it then receives (sid , "deliver-eval", pk ′′, x) from
Fvetprf , it responds with y to Sim .

� If A makes a random-oracle query H′(pk ′, x, σ), Sim proceeds as follows. If pk = pk ′, σ =
H [x]sk , and H ′[pk , x, σ] = ⊥, Sim aborts. Otherwise, it returns H ′[pk ′, x, σ], assigning it a
random value from {0, 1}ℓ if it is not yet defined.

The simulation provided by Sim is perfect as long as Sim does not abort. Any environment E
and A that cause Sim to abort can be turned into a uf-cmaL adversary B against BLS as follows.

Algorithm B runs E and A in the same environment as with Fvetprf and Sim above, except
that “FL

vetbls” no longer runs the real code of FL
vetbls, but uses information from its own uf-cmaL

experiment to simulate it. In particular, on input (pk , lpars), B uses pk as the public key of FL
vetbls;

forwards queries to its "hash" interface to its own random oracle for H; queries its signing oracle

39

Functionality Fvetvrf

The functionality contains all the interfaces of Fvetprf in Figure 14 and adds the following ones:

� On (sid , "proof", x) from U :
If x ̸∈ DE [U] then ignore. Else, send ("proof",PK [U], x, Y [PK [U], x]) to Sim and wait for a re-
sponse ϕ from Sim so that (PK [U], x, ϕ, false) ̸∈ V . Add (PK [U], x, ϕ, true) to V and output
(sid , "proof", x, ϕ) to U . Output (sid , "proof", x, y, ϕ) to U .

� On (sid , "verify-proof", pk ′, x, y, ϕ) from P:
Send ("verify-proof", pk ′, x, y, ϕ) to Sim and wait for a response β from Sim . Add (pk ′, x, y, ϕ, b) to
V and output (sid , "verify-proof", pk ′, x, y, ϕ, b) to P, where b is determined as follows:

1. If (pk ′, x, y, ϕ, γ) ∈ V , set b← γ.

2. Else, if pk ′ ̸= pk , set b← β.

3. Else, if y ̸= Y [pk ′, x], set b← false.

4. Else, if ∃ (pk , x, y, ·, true) ∈ V , set b← β.

5. Else, if there exists a corrupt U such that x ∈ EE [U], set b← β.

6. Else, set b← false.

Figure 16: The ideal functionality for a verifiably encrypted threshold verifiable random function
Fvetvrf .

on m when it needs to compute σ = H [m]sk to respond to an "encsign" input for a corrupt user’s
tpk ; queries its leakage oracle on m when it needs to compute λ ←$ L(lpars, σ) to respond to
an "encsign" input for an honest user’s tpk ; and replaces the check whether σ = H [x]sk in the
simulation of H′ with the equivalent check whether e(σ, g2) = e(H(x), pk).

One can see that Sim aborts only when A makes a random-oracle query H′(pk , x, σ) with σ =
H(x)sk before x was encrypted-evaluated to a corrupt user. If this happens, B outputs x, σ as its
forgery, which is non-trivial because B would only query its signing oracle on x if it gets encrypted-
evaluated to a corrupt user.

7.3 Verifiably Encrypted Threshold VRF

The attentive reader will have noticed that the BLS signature σ in the PRF construction above
could be used as a verifiable proof the the PRF output is correct, turning the PRF into a VRF. In
Figures 16 and 17, we describe an ideal functionality Fvetvrf and a protocol πvetvrf for a verifiably
encrypted threshold VRF that add proving and verification interfaces to the PRF functionality and
protocol above. The resulting protocol can be seen as a verifiably encrypted variant of the DFINITY
decentralized VRF that is used as the random beacon for the Internet Computer [HMW18, CDH+22,
GLOW21].

Theorem 10. Protocol πvetvrf securely realizes Fvetvrf in the (FL
vetbls,Fmca)-hybrid model if H′ is

modeled as a random oracle and the BLS signature scheme is uf-cmaL secure when H is modeled as
a random oracle.

Proof. The simulator and proof are very similar to the proof for πvetprf in Theorem 9, so we only
sketch the differences here. Consider the simulator Sim that behaves identically to that of Theorem 9,
but adds the following actions:

� On ("proof", pk ′, x, y) from Fvetvrf , Sim finds a simulated user “U” with a state that contains
pk ′ as well as a tuple (x, ·, σ), which must exist if Fvetvrf sent this message. If pk ′ = pk and

40

Protocol πvetvrf

The protocol contains all of the interfaces of πvetprf in Figure 15 and adds the following ones:

� On (sid , "proof", x), U checks whether its state contains a tuple (x, y, σ). If so, it outputs
(sid , "proof", x, y, ϕ).

� On (sid , "verify-proof", pk , x, y, ϕ), P calls (sidvetbls, "hash", x) on FL
vetbls to obtain a response

h. It then checks whether e(ϕ, g2) = e(pk , h) and whether H′(pk , x, σ) = y. It outputs
(sid , "verify-proof", pk , x, y, ϕ, b) where b← true if both checks pass and b← false otherwise.

Figure 17: The verifiably encrypted threshold verifiable random function protocol πvetvrf in the
(FL

vetbls,Fmca)-hybrid model with hash function H′ : {0, 1}∗ → {0, 1}ℓ.

H [pk , x, σ] = ⊥, it programs the random-oracle entry H′(pk , x, σ) by setting H ′[pk , x, σ]← y.
It then responds σ to Fvetvrf .

� On input ("verify-proof", pk ′, x, y, ϕ) from Fvetvrf , Sim executes the honest code of πvetvrf

on input (sid , "verify-proof", pk ′, x, y, ϕ) to obtain output ("verify-proof", pk ′, x, y, ϕ, β)
and responds β to Fvetvrf .

In particular, Sim simulates the random oracle for H′ in the same way as in Theorem 9, aborting
whenever a query H′(pk , x, σ) is made with σ = H [x]sk and H ′[pk , x, σ] = ⊥.

Entries in H ′ are programmed at two occasions now: when an honest server encrypted-evaluates
x for a corrupt user, and when an honest user calls the "proof" interface. Note that the latter
event immediately leads to a valid proof ϕ for x being added to V in Fvetvrf , so that the two
occasions where the random oracle gets programmed correspond exactly with cases 4 and 5 of the
"verify-proof" interface of Fvetvrf .

Programming these random-oracle entries never fails, because then the simulator must have
aborted on an earlier random-oracle query already. One can prove that any environment and adver-
sary that cause Sim to abort can be turned into a uf-cmaL forger B against BLS in a similar way
as in Theorem 9, except that now B also consults its signing oracle on x to respond to incoming
message ("proof", pk , x, y) from Fvetvrf , excluding x from being used in B’s forgery. This is fine,
because B programs H ′[pk , x, σ] ← y immediately after that, so that random-oracle queries on x
can no longer cause Sim to abort.

We leave further details as an exercise to the reader.

8 Secure Single-Key Composition

Multi-session functionalities and protocols. Consider the FL
vetbls functionality depicted in

Figure 7. Let Π be a set of protocols in the FL
vetbls-hybrid model so that π|FL

vetbls securely realizes
some functionality Fπ for every π ∈ Π.

Analogously to the multi-session extension of a single functionality [CR03], we define the multi-
session extension F̂Π of a set of functionalities {Fπ : π ∈ Π} as follows. Every input to F̂Π specifies,
apart from the session identifier sid , also a sub-session identifier ssid . Let {SSIDπ : π ∈ Π} be a
set of disjoint sets of sub-session identifiers, each associated with a different protocol π ∈ Π. When
the multi-session extension F̂Π receives a message for a new sub-session ssid ∈ SSIDπ, it internally
creates a new instance of Fπ to which all future inputs for ssid get routed.

Let π̂Π be the corresponding multi-instance protocol that for every ssid ∈ SSIDπ internally runs
an instance of π. Standard UC composition [Can01] guarantees that π̂Π securely realizes F̂Π in the

41

≈… …

≈… …

Figure 18: Top: The multi-session composition π̂Π of a set of protocols Π securely realizes the
multi-session functionality F̂Π in the FL

vetbls-hybrid model, as implied by standard UC composition.
Bottom: The single-key composition π̄Π in the F̄L

vetbls-hybrid model that we want to achieve.

FL
vetbls-hybrid model, as depicted at the top of Figure 18. For this guarantee to hold, however, each

instance of any π ∈ Π must use its own separate instance of FL
vetbls, each with its own key pair

(pk , sk).

Single-key composition. We are rather interested in the security of a single-key composition π̄Π

as depicted at the bottom of Figure 18, where all protocol instances use a single instance of a multi-
session but single-key functionality F̄L

vetbls. (Note that joint-state universal composability [CR03]

doesn’t guarantee such composition, as it uses the multi-session extension F̂L
vetbls of FL

vetbls as the
common underlying functionality, which is a multi-key functionality.)

Let F̄L
vetbls be the functionality that internally runs a single instance of FL

vetbls, generating a single
key pair (pk , sk), but that separates the message spaces of the different sub-sessions by prepending
the sub-session identity ssid to all messages. More particularly, on an input (sid , ssid , v) from a
party P, F̄L

vetbls passes an input (sid , v) to the internal instance of FL
vetbls as coming from P, but

replacing any message m occurring in v with m′ = (ssid ,m). Likewise, when such a call to the
internal instance of FL

vetbls produces an output (sid , v) for a party P ′, F̄L
vetbls outputs (sid , ssid , v)

to P ′, but replacing any message m′ = (ssid ,m) in v with m.
We define the single-key composition π̄Π of Π as the following protocol in the F̄L

vetbls-hybrid
model:

� when called with a sub-session ssid ∈ SSIDπ for π ∈ Π, π̄Π routes the input to an internal
instance of π associated with ssid ;

� an instance sid of π̄Π invokes only a single instance sid0 of F̄L
vetbls;

� whenever an internal instance of π associated with ssid instructs a party Pi to send an input
(sid ′, v) to FL

vetbls, π̄Π sends an input (sid0, ssid , v) to F̄L
vetbls;

� whenever a party Pi running π̄Π receives an input (sid0, ssid , v) from F̄L
vetbls for ssid ∈ SSIDπ,

it follows the instructions of π on receiving the message (sid ′, v) from FL
vetbls.

It is tempting to expect that if π|FL
vetbls securely realizes Fπ for all π ∈ Π, then π̄Π|F̄L

vetbls

securely realizes F̂Π. Unfortunately, that turns out to be false: consider, for example, a functionality
F that lets all parties agree on a common random group element, together with a protocol π that

42

Protocol π̃

Identical to protocol π, but adding the interface:

� On (sid , "extended-pk"), P̃ provides input (sid0, "extended-pk") to F̃L
vetbls to receive output

(sid0, pk1, pk2), and outputs (sid , "extended-pk", pk1, pk2).

Functionality F̃L
vetbls

Identical to functionality FL
vetbls, but adding the interface:

� On (sid , "extended-pk") from P̃:
If (pk , sk) is defined, output (sid , "extended-pk", gsk

1 , gsk
2) to P̃, else output (sid"extended-pk",⊥) to

P̃.

Functionality F̃π

Identical to functionality Fπ, but adding the interface:

� On (sid , "extended-pk") from P ∈ {P̃,Sim}:
If (pk1, pk2) isn’t defined yet, generate x ←$ Zp, store (pk1, pk2) ← (gx

1 , g
x
2). Output

(sid , "extended-pk", pk1, pk2) to P.

Figure 19: The imposed-key extensions π̃, F̃L
vetbls, and F̃π for a protocol π that securely realizes Fπ

in the FL
vetbls-hybrid model. The party P̃ is a new dedicated party that cannot be corrupted.

realizes it in the FL
vetbls-hybrid model by using the public key as the common group element. The

single-key composition π̄{π} of multiple instances of π in the F̄L
vetbls-hybrid model obviously doesn’t

securely realize F̂{π}, because all sub-sessions will end up with the same group element, instead of
independently random ones.

Imposed-key simulatability. We want to go even further than a protocol π that securely single-
key composes with itself; we want it to securely single-key compose with different protocols π′, too.
It would of course be very inconvenient to have to prove that secure composition separately for each
combination of protocols.

Rather, we define a requirement for a single protocol π in the FL
vetbls-hybrid model that, if all

protocols in Π satisfy it, guarantees that they can all be securely single-key composed as π̄Π in the
F̄L

vetbls-hybrid model. Namely, we require that the protocol remains simulatable if, in the FL
vetbls-

hybrid world, the environment is additionally given the extended public key (gsk1 , gsk2), while in the
ideal world, both the environment and the simulator are given a pair of elements (gx1 , g

x
2) for a

random x←$ Zp. This imposes an additional restriction on the simulator, as it must now be able to
simulate the real-world protocol for a given public key for the FL

vetbls functionality, without knowing
the corresponding secret key.

We define this formally by considering the standard UC experiment for the imposed-key exten-
sions π̃, F̃π, and F̃L

vetbls of π, Fπ, and FL
vetbls, respectively, as described in Figure 19. Since the

environment in the UC framework cannot access protocols and functionalities directly, we introduce
a dedicated incorruptible party P̃ through which the environment can obtain the extended public
key. We say that π imposed-key realizes Fπ in the FL

vetbls-hybrid model if π̃ securely realizes F̃π in

the F̃L
vetbls-hybrid model, as graphically depicted at the bottom of Figure 20.

Theorem 11. Let Π be a set of protocols and {Fπ : π ∈ Π} be a set of corresponding functionalities.

43

≈… …

≈

Figure 20: Top: The statement to be proved in Theorem 11, with the real-world experiment on
the left where an environment E faces the single-key multi-session protocol π̄Π in the F̄L

vetbls-hybrid
model, and the the ideal world on the right where E interacts with the multi-session functionality
F̂Π. Bottom: The precondition of Theorem 11 that π̃ securely realizes F̃π in the F̃L

vetbls-hybrid
model. The red wires depict the additional access to the "extended-pk" interfaces.

If for all π ∈ Π, π imposed-key realizes Fπ in the FL
vetbls-hybrid model, then the single-key composition

π̄Π securely realizes the multi-session functionality F̂Π in the F̄L
vetbls-hybrid model.

Proof. The statement that we’re looking to prove is graphically depicted in Figure 20: we want to
show that there exists a simulator Sim such that no efficient environment E and adversary A can
distinguish the real experiment with the single-key protocol π̄Π and functionality F̄L

vetbls from the

ideal experiment with the multi-session functionality F̂Π.
We prove the theorem through a hybrid argument. Consider a sequence of games G0, . . . ,Gn,

where n is an upper bound on the number of sub-sessions created by the environment. The sequence
gradually changes the experiment from the real world on the left of Figure 20 to the ideal world on
the right.

Because π̃ securely realizes F̃π in the F̃L
vetbls-hybrid model for all π ∈ Π, there exists a simulator

˜Simπ so that no efficient environment Ẽ and adversary Ã can distinguish π̃ in the F̃L
vetbls-hybrid

world from F̃π in combination with ˜Simπ in the ideal world.
In game Gi, graphically depicted in Figure 21, the environment interacts with a hybrid protocol

π̄i and a simulator Sim i. The hybrid protocol π̄i replaces the first i protocol sub-sessions π1, . . . , πi

in π̄Π with their ideal functionalities Fπ1 , . . . ,Fπi . The simulator Sim i then presents the adversary
A with a simulation of the first i protocol sub-sessions provided by the imposed-key simulators
˜Simπ1

, . . . , ˜Simπi
, and an unmodified view of πi+1, . . . , πn for the remaining sub-sessions.

In more detail, the simulator Sim i works as follows:

� It generates a secret key sk ←$ Zp and computes the corresponding public key pk ← gsk2 that
will be used for the simulation of F̄L

vetbls.

� It internally runs a separate instance of ˜Simπj
associated with ssid j for j = 1, . . . , i, relaying

inputs and outputs between ˜Simπj
and the internal instance of Fπj

associated with the same

ssid j in π̄i. However, when ˜Simπj
makes a call to the "extended-pk" interface of F̃πj

, Sim i

44

… …

… …

Figure 21: Game Gi in the hybrid argument in the proof of Theorem 11. The red wires extending to
the left of ˜Simπj indicate the access to the "extended-pk" interface of F̃πj that must be simulated
by Sim i.

responds with ("extended-pk", gsk1 , gsk2), thereby imposing the public key pk to the simulation

provided by ˜Simπj
.

� It simulates the F̄L
vetbls functionality honestly (i.e., following the code of F̄L

vetbls) for all queries

involving sub-sessions ssid i+1, . . . , ssidn, but relays responses from ˜Sim1, . . . , ˜Sim i for all calls
to sub-sessions ssid1, . . . , ssid i of F̄L

vetbls in the following way.

When π̄i or A provides an input (sid0, ssid , v) to F̄L
vetbls for some ssid ∈ {ssid1, . . . , ssid i},

it provides an input (sid ′, v) to the simulated F̃L
vetbls functionality of the internal instance of

˜Simπj
associated with ssid j , and relays responses back to π̄i and A. This means in particular

that an input (sid0, ssid j , "hash",m) will result in the same value h being responded as ˜Simπj

uses internally for a query (sid ′, "hash",m). Moreover, because Sim i imposed the same public

key pk onto the internal simulation of F̃L
vetbls by

˜Simπj
, a BLS signature on m will also be the

same in the simulation by Sim i and the internal simulation by ˜Simπj
, namely hsk .

� It provides a simulated protocol view to the adversaryA where the first sub-sessions j = 1, . . . , i
are simulated by their respective imposed-key simulator ˜Simπj interacting with the internal
instance of Fπj within π̄i, while the other sub-sessions j = i + 1, . . . , n are linked directly to
the internal instances of πj within π̄i.

Game G0 is clearly equivalent to the F̄L
vetbls-hybrid world on the left of Figure 20, where the

simulator Sim0 includes the honest execution of F̄L
vetbls and all sub-sessions are simulated by real

protocol instances within π̄0 = π̄Π. Game Gn fits the right-hand side of Figure 20 because π̄n

exclusively runs internal instances of Fπj , just like F̂Π, and using Sim = Simn as a simulator. Note
that Sim no longer needs to run an internal instance of F̄L

vetbls, but simply generates a key pair that

it imposes on all internal instances of ˜Simπj
.

We can therefore prove that π̄Π securely realizes F̂Π in the F̄L
vetbls-hybrid model by showing

that two subsequent games Gi−1 and Gi are indistinguishable. We do so by contradiction: given
an efficient environment E and adversary A that can distinguish Gi−1 from Gi, we construct an
environment Ẽ and adversary Ã that can distinguish an execution of π̃i in the F̃L

vetbls-hybrid world

from an ideal execution of F̃πi
, contradicting the fact that πi imposed-key realizes Fπi

.
Namely, consider the environment Ẽ that first inputs ("extended-pk") to obtain output

("extended-pk", pk1, pk2). It then runs E and A in an experiment similar to game Gi, but where

45

Ẽ relays all of E ’s inputs and outputs involving ssid i to its own experiment, adding and removing
sub-session identifiers as needed. Also, it simulates F̄L

vetbls in a different way than Sim i, namely:

� for "hash" queries involving ssid j , j ∈ 1, . . . , i− 1, it re-routes the responses provided by the

internal instance of ˜Simj , as done by Sim i;

� for "hash" queries involving ssid i, Ẽ re-routes responses obtained by Ã in its own experiment;

� and for "hash" and "encsign" queries involving ssid j , j ∈ i + 1, . . . , n, Ẽ simulates "hash"
responses so that it knows their discrete logarithm, i.e., by choosing r ←$ Zq, recording
H [(ssid j ,m)] ← (r, h = gr1), and returning ("hash", ssid j ,m, h), so that it can simulate
"encsign" responses by returning σ = pkr

1;

So essentially, the only differences between Gi and the view produced by Ẽ is that all inputs and
outputs related to ssid i are relayed to and from Ẽ ’s experiment, and that "encsign" queries for
ssid i+1, . . . , ssidn are simulated as pkr

1 instead of hsk , but these are of course the exact same value
gr·sk1 .

One can therefore see that if Ẽ and Ã are running in the F̃L
vetbls-hybrid world with π̃i, then the

view produced by Ẽ to E and A is exactly that of Gi−1 where ssid i is run with the real protocol

πi, while if they are running in the ideal world with F̃πi
and ˜Simπi

, then that view is exactly that

of Gi where ssid i is run by Fπi
and ˜Simπi

. Therefore, by repeating E ’s output, Ẽ obtains the same
probability in winning its own game as E has in distinguishing Gi−1 from Gi.

To show that arbitrarily many instances of our vetIBE, vetSIG, vetPRF, and vetVRF protocols
can run in parallel while sharing a common vetBLS instance, we have left to show that they all
satisfy the precondition of Theorem 11, namely that they all imposed-key realize their respective
functionalities in the FL

vetbls-hybrid model.

Theorem 12. For prim ∈ {vetibe, vetsig, vetprf, vetvrf}, πprim imposed-key realizes Fprim for L ∈
{cEG1, cEG2}.

Corollary 1. The single-key composition π̄Π securely realizes the multi-session functionality F̂Π in
the F̄L

vetbls-hybrid model for Π = {πvetibe, πvetsig, πvetprf , πvetvrf} and L ∈ {cEG1, cEG2}.

Proof (Theorem 12). We sketch the proof for prim = vetibe here, the proofs for the other primitives
are analogous.

We have to show that there exists a simulator ˜Sim such that no environment Ẽ can tell whether
it’s interacting with π̃vetibe and F̃L

vetbls in the real world or with ˜Sim and F̃vetibe in the ideal world,
as depicted in Figure 20.

The only way that π̃vetibe, F̃L
vetbls, and F̃vetibe differ from πvetibe, FL

vetbls, and Fvetibe is by the
presence of the "extended-pk" interface that, in the real world, outputs (gsk1 , gsk2) for the sk used
by F̃L

vetbls, and in the ideal world, outputs (gx1 , g
x
2) for a random x ←$ Zq. Meaning, the simulator

˜Sim , on input (mpk1,mpk2) = (gx1 , g
x
2), must be able to provide a simulation of F̃L

vetbls and π̃vetibe.

Consider the simulator Sim from the proof of Theorem 7. The simulator ˜Sim behaves exactly
like Sim , but runs a simulated instance “F̃L

vetbls” that uses mpk = mpk2 as its master public key, and
that responds to calls to its "hash" interface so that it knows the discrete logarithm of the returned

hash values, i.e., by choosing r [m] ←$ Zq and setting H1[m] ← g
r [m]
1 . Whenever the real F̃L

vetbls

would use H1[m]sk , the simulated “F̃L
vetbls” uses mpkr

1 instead. Also, whenever Sim uses H1(id)
sk as

part of the "decrypt" interface, ˜Sim uses mpk
r [id]
1 instead.

A similar approach works for the vetsig, vetprf, and vetvrf cases. Crucially, for all of them,
the simulator gets to decide the (master) public key that is used by the protocol, enabling ˜Sim to
substitute mpk2 for it.

46

Earlier in this section, we mentioned a functionality F that generates a common random group
element as a counterexample that is not single-key composable. Indeed, such a functionality would
internally generate the common group element, preventing the simulator from setting it to the
imposed master public key, so the same proof technique would not go through.

9 Integration and Evaluation

DFINITY is currently integrating vetKeys as a system service into the Internet Computer
(IC) [DFI22], the blockchain created by the DFINITY Foundation.

The IC is unique in that it can serve web content straight from the blockchain, so that users can
interact with it using an ordinary web browser. Because all web assets are certified by the blockchain
through a threshold signature created by the nodes, the IC realizes an interesting security model
where any scripting code that is downloaded and executed in the browser (e.g., Javascript or WASM
code) is threshold-signed by the IC.

In a traditional client-server setting, cryptographic client-side scripts cannot protect the user
from a malicious server, because a bad server can always tamper with the script code to make it
leak all the user’s secrets to the server. On the IC, however, that code is certified by the entire
blockchain, rather than by a single node.2 The code can therefore be trusted to be correct, and can
usefully include cryptographic routines that lets the user hide secrets from the blockchain nodes,
including for example the transport secret key, any derived vetKeys, and any content encrypted
under these vetKeys.

Integration into the IC. The IC is subdivided into so-called subnets, each running its own
blockchain to implement a replicated state machine for the dapps running on that subnet. Dapps on
different subnets can asynchronously communicate with each other through cross-net messages that
are authenticated by threshold signatures. One can therefore secret-share a vetBLS secret key over
the nodes of a single subnet and allow dapps on the local subnet as well on other subnets to derive
vetKeys from the secret-shared vetBLS secret key. When the composition of a subnet changes, i.e.,
when nodes join or leave the subnet, the vetBLS secret key is re-shared to the new members in the
same way as the IC already does for the threshold signature keys [Gro21]. The vetBLS requests
from different dapps are isolated from each other as described in Section 8, by pre-fixing a domain
separator that includes the unique identifier of the dapp.

Dapps can trigger a vetBLS request by calling a special system interface. This call contains the
derivation path (that, together with the dapp identifier, is used as a domain separator) and the
message, as well as the transport public key tpk under which the BLS signature will be encrypted;
typically, tpk will have been included in a user-supplied ingress message that appeared on the
blockchain earlier.

The effect of the system call is that each node will create and broadcast an encrypted BLS
signature share; verify incoming shares until sufficiently many encrypted shares are received; combine
these shares into a full encrypted signature and include it in a block proposal as the response to the
system call; and verify the validity of the encrypted signature included in a block as part of block
validation.

Efficiency estimates. Figure 22 depicts a breakdown of the estimated CPU time spent by each
node per vetBLS request, as well as their encrypted signature sizes. The numbers are based on
benchmarks of basic cryptographic operations on the hardware of a typical Internet Computer node

2One remaining caveat is that the threshold signature on the downloaded web assets needs to be properly verified
in the browser, with the correct public key. The code to do so is currently included in a service worker served by
the TLS endpoint, a so-called boundary node. The boundary node thereby becomes a single point of failure in the
security model; a more secure implementation would include the threshold signature verification in a browser plugin,
or in a dedicated IC client application.

47

sim zkp agg1 agg2 sim-opt zkp-opt agg1-opt agg2-opt sim-out zkp-out agg1-out agg2-out
0

10

20

30

40

50

verify full

combine
verify share

create share

|es|

0

2000

4000

6000

8000

10000

encrypted signature size (B)node CPU time (ms)

Figure 22: CPU time spent per vetBLS request by each node in a subnet of n = 13 nodes with
threshold t = 5, as well as the size of an encrypted signature in bytes.

(a server machine with an AMD EPYC 7232P 3.10GHz processor); we hope to update this section
soon with actual experimental results.

The four leftmost columns in Figure 22 display a breakdown of the CPU time of the basic
vetBLS schemes as described in this paper. One can immediately see that for all schemes other
than πvetbls-sim, by far the most CPU time is spent on the verification of encrypted signature shares
(depicted in orange in Figure 22).

The verification of encrypted shares is important to discard bad shares provided by corrupt
nodes. Nodes in a typical blockchain network, however, are usually incentivized to behave honestly,
so that one can expect that nodes will provide correct shares most of the time. One can therefore
improve best-case efficiency by considering an optimistic variant of each scheme that

� adds to each encrypted signature share a standard (e.g., Ed25519) signature by the node,

� limits encrypted share verification to verifying this standard signature,

� after having received encrypted shares signed by t different nodes, optimistically combines the
encrypted shares and verifies the resulting full encrypted signature,

� and only if that fails, resorts to fully verifying the individual encrypted shares and combining
t valid ones.

The middle four columns in Figure 22 depict the best-case efficiency estimates for the optimistic
variants of all four schemes; worst-case efficiency in the presence of t− 1 corrupt nodes is of course
identical to the basic schemes. One can see that encrypted share verification now takes a minimal
amount of CPU time, while keeping the size of the full encrypted signature the same.

Another optimization stems from the observation that the network nodes will be handling many
requests from many different dapps and users simultaneously, but each individual user will only
be deriving one or a few vetKeys at the same time. It can therefore make sense to consider an
outsourced variant of each scheme, where encrypted shares include a standard signature by the
nodes as in the optimistic variant, but the full encrypted signature is simply the concatenation of
2t−1 encrypted shares that are validly signed by different nodes. Full verification of individual shares
and combination into a valid encrypted signature is then left to the user’s device, that probably has
more idle CPU time to spend on it. Since at most t − 1 nodes are corrupt, at least t of the 2t − 1

48

πvetbls optimistic outsourced
sim zkp agg1 agg2 sim zkp agg1 agg2 sim zkp agg1 agg2

n = 13 rps 545 30 33 20 647 42 99 86 647 264 254 427
t = 5 |es| 1440 880 96 192 1440 880 96 192 1440 7920 1440 2304
n = 13 rps 370 19 23 13 414 24 74 59 414 77 208 311
t = 9 |es| 2720 1584 96 192 2720 1584 96 192 2720 26928 2720 4352
n = 40 rps 225 10 12 7 285 16 63 46 285 31 170 232
t = 14 |es| 4320 2464 96 192 4320 2464 96 192 4320 66528 4320 6912
n = 100 rps 97 4 5 2 127 6 34 22 127 5 97 115
t = 34 |es| 10720 5984 96 192 10720 5984 96 192 10720 400928 10720 17152

Table 1: Estimated performance overview in different settings of the vetBLS schemes in this paper.
The columns contain estimates for the basic, optimistic, and outsourced variants of the πvetbls-sim,
πvetbls-zkp, πvetbls-agg1, and πvetbls-agg2 schemes. Each row contains the number of vetBLS requests
per second (rps) that a network of n single-core servers can theoretically handle with a threshold t,
as well as the size of an encrypted signature es in bytes.

encrypted shares are bound to be valid shares, so that the user is guaranteed to obtain the requested
vetKey.

The outsourced variant of the four vetBLS schemes is depicted in the rightmost four columns of
Figure 22. One can see that CPU time spent per request by each node is now drastically reduced,
at the cost of increased encrypted signature sizes. Because the full encrypted signature appears in
the blockchain, it very much depends on the concrete parameters (number of nodes, threshold, and
price of bandwidth on the blockchain) whether this optimization is worth it.

Table 1 contains estimates for the throughput of the network, measured in vetBLS requests per
second on single-core node machines, as well as the corresponding encrypted signature sizes. Note
that the cryptographic operations to handle simultaneous vetKey requests are highly parallelizable,
so that on multi-core nodes one would expect to achieve a multiple of these throughput numbers.

On the 13-node application subnets and 40-node system subnets that are currently deployed on
the Internet Computer, one would therefore expect a vetKey throughput of hundreds of requests per
second. Of course, these estimates neglect the cost of running the dapps and the blockchain itself;
we hope to update the paper with actual experimental results soon.

References

[ABN10] Michel Abdalla, Mihir Bellare, and Gregory Neven. Robust encryption. In Daniele
Micciancio, editor, TCC 2010: 7th Theory of Cryptography Conference, volume 5978 of
Lecture Notes in Computer Science, pages 480–497, Zurich, Switzerland, February 9–
11, 2010. Springer, Heidelberg, Germany.

[ACG+18] Avi Asayag, Gad Cohen, Ido Grayevsky, Maya Leshkowitz, Ori Rottenstreich, Ronen
Tamari, and David Yakira. Helix: A scalable and fair consensus algorithm resistant
to ordering manipulation. Cryptology ePrint Archive, Report 2018/863, 2018. https:
//eprint.iacr.org/2018/863.

[ADN06] Jesús F. Almansa, Ivan Damg̊ard, and Jesper Buus Nielsen. Simplified threshold
RSA with adaptive and proactive security. In Serge Vaudenay, editor, Advances in
Cryptology – EUROCRYPT 2006, volume 4004 of Lecture Notes in Computer Science,
pages 593–611, St. Petersburg, Russia, May 28 – June 1, 2006. Springer, Heidelberg,
Germany.

[AF04] Masayuki Abe and Serge Fehr. Adaptively secure feldman VSS and applications to
universally-composable threshold cryptography. In Matthew Franklin, editor, Advances
in Cryptology – CRYPTO 2004, volume 3152 of Lecture Notes in Computer Science,

49

https://eprint.iacr.org/2018/863
https://eprint.iacr.org/2018/863

pages 317–334, Santa Barbara, CA, USA, August 15–19, 2004. Springer, Heidelberg,
Germany.

[ASW00] N. Asokan, Victor Shoup, and Michael Waidner. Optimistic fair exchange of digital
signatures. IEEE J. Sel. Areas Commun., 18(4):593–610, 2000.

[BBBF18] Dan Boneh, Joseph Bonneau, Benedikt Bünz, and Ben Fisch. Verifiable delay func-
tions. In Hovav Shacham and Alexandra Boldyreva, editors, Advances in Cryptology
– CRYPTO 2018, Part I, volume 10991 of Lecture Notes in Computer Science, pages
757–788, Santa Barbara, CA, USA, August 19–23, 2018. Springer, Heidelberg, Ger-
many.

[BBS04] Dan Boneh, Xavier Boyen, and Hovav Shacham. Short group signatures. In Matthew
Franklin, editor, Advances in Cryptology – CRYPTO 2004, volume 3152 of Lecture
Notes in Computer Science, pages 41–55, Santa Barbara, CA, USA, August 15–19,
2004. Springer, Heidelberg, Germany.

[BC04] Ian F. Blake and Aldar C-F. Chan. Scalable, server-passive, user-anonymous timed
release public key encryption from bilinear pairing. Cryptology ePrint Archive, Report
2004/211, 2004. https://eprint.iacr.org/2004/211.

[BF01] Dan Boneh and Matthew K. Franklin. Identity-based encryption from the Weil pairing.
In Joe Kilian, editor, Advances in Cryptology – CRYPTO 2001, volume 2139 of Lecture
Notes in Computer Science, pages 213–229, Santa Barbara, CA, USA, August 19–23,
2001. Springer, Heidelberg, Germany.

[BGdMM05] Lucas Ballard, Matthew Green, Breno de Medeiros, and Fabian Monrose. Correlation-
resistant storage via keyword-searchable encryption. Cryptology ePrint Archive, Re-
port 2005/417, 2005. https://eprint.iacr.org/2005/417.

[BGG+20] Fabrice Benhamouda, Craig Gentry, Sergey Gorbunov, Shai Halevi, Hugo Krawczyk,
Chengyu Lin, Tal Rabin, and Leonid Reyzin. Can a public blockchain keep a secret? In
Rafael Pass and Krzysztof Pietrzak, editors, TCC 2020: 18th Theory of Cryptography
Conference, Part I, volume 12550 of Lecture Notes in Computer Science, pages 260–
290, Durham, NC, USA, November 16–19, 2020. Springer, Heidelberg, Germany.

[BGI+01] Boaz Barak, Oded Goldreich, Russell Impagliazzo, Steven Rudich, Amit Sahai, Salil P.
Vadhan, and Ke Yang. On the (im)possibility of obfuscating programs. In Joe Kil-
ian, editor, Advances in Cryptology – CRYPTO 2001, volume 2139 of Lecture Notes
in Computer Science, pages 1–18, Santa Barbara, CA, USA, August 19–23, 2001.
Springer, Heidelberg, Germany.

[BGLS03] Dan Boneh, Craig Gentry, Ben Lynn, and Hovav Shacham. Aggregate and verifiably
encrypted signatures from bilinear maps. In Eli Biham, editor, Advances in Cryptology
– EUROCRYPT 2003, volume 2656 of Lecture Notes in Computer Science, pages 416–
432, Warsaw, Poland, May 4–8, 2003. Springer, Heidelberg, Germany.

[BJKS21] Robert Buhren, Hans Niklas Jacob, Thilo Krachenfels, and Jean-Pierre Seifert. One
glitch to rule them all: Fault injection attacks against AMD’s secure encrypted virtual-
ization. In Giovanni Vigna and Elaine Shi, editors, ACM CCS 2021: 28th Conference
on Computer and Communications Security, pages 2875–2889, Virtual Event, Republic
of Korea, November 15–19, 2021. ACM Press.

[BLS01] Dan Boneh, Ben Lynn, and Hovav Shacham. Short signatures from the Weil pairing.
In Colin Boyd, editor, Advances in Cryptology – ASIACRYPT 2001, volume 2248 of

50

https://eprint.iacr.org/2004/211
https://eprint.iacr.org/2005/417

Lecture Notes in Computer Science, pages 514–532, Gold Coast, Australia, Decem-
ber 9–13, 2001. Springer, Heidelberg, Germany.

[BLS04] Dan Boneh, Ben Lynn, and Hovav Shacham. Short signatures from the Weil pairing.
Journal of Cryptology, 17(4):297–319, September 2004.

[BMSV18] Mic Bowman, Andrea Miele, Michael Steiner, and Bruno Vavala. Private data objects:
an overview. CoRR, abs/1807.05686, 2018.

[BO22] Joseph Bebel and Dev Ojha. Ferveo: Threshold decryption for mempool privacy in bft
networks. Cryptology ePrint Archive, Paper 2022/898, 2022. https://eprint.iacr.
org/2022/898.

[Bol03] Alexandra Boldyreva. Threshold signatures, multisignatures and blind signatures
based on the gap-Diffie-Hellman-group signature scheme. In Yvo Desmedt, editor,
PKC 2003: 6th International Workshop on Theory and Practice in Public Key Cryp-
tography, volume 2567 of Lecture Notes in Computer Science, pages 31–46, Miami, FL,
USA, January 6–8, 2003. Springer, Heidelberg, Germany.

[BR93] Mihir Bellare and Phillip Rogaway. Random oracles are practical: A paradigm for
designing efficient protocols. In Dorothy E. Denning, Raymond Pyle, Ravi Gane-
san, Ravi S. Sandhu, and Victoria Ashby, editors, ACM CCS 93: 1st Conference on
Computer and Communications Security, pages 62–73, Fairfax, Virginia, USA, Novem-
ber 3–5, 1993. ACM Press.

[BS23] Dan Boneh and Victor Shoup. A Graduate Course in Applied Cryptography, Version
0.6. 2023. https://cryptobook.us.

[BZ03] Joonsang Baek and Yuliang Zheng. Simple and efficient threshold cryptosystem from
the gap diffie-hellman group. In GLOBECOM ’03. IEEE Global Telecommunications
Conference (IEEE Cat. No.03CH37489), volume 3, pages 1491–1495 vol.3, 2003.

[Can01] Ran Canetti. Universally composable security: A new paradigm for cryptographic
protocols. In 42nd Annual Symposium on Foundations of Computer Science, pages
136–145, Las Vegas, NV, USA, October 14–17, 2001. IEEE Computer Society Press.

[Can04] Ran Canetti. Universally composable signature, certification, and authentication. In
17th IEEE Computer Security Foundations Workshop, (CSFW-17 2004), 28-30 June
2004, Pacific Grove, CA, USA, page 219. IEEE Computer Society, 2004.

[CDH+22] Jan Camenisch, Manu Drijvers, Timo Hanke, Yvonne-Anne Pignolet, Victor Shoup,
and Dominic Williams. Internet computer consensus. In Alessia Milani and Philipp
Woelfel, editors, PODC ’22: ACM Symposium on Principles of Distributed Computing,
Salerno, Italy, July 25 - 29, 2022, pages 81–91. ACM, 2022.

[CDN20] Dan Cline, Tadge Dryja, and Neha Narula. Clockwork: An exchange protocol for
proofs of non front-running. https://dci.mit.edu/clockwork, 2020.

[CGJ+17] Arka Rai Choudhuri, Matthew Green, Abhishek Jain, Gabriel Kaptchuk, and Ian
Miers. Fairness in an unfair world: Fair multiparty computation from public bulletin
boards. In Bhavani M. Thuraisingham, David Evans, Tal Malkin, and Dongyan Xu,
editors, ACM CCS 2017: 24th Conference on Computer and Communications Security,
pages 719–728, Dallas, TX, USA, October 31 – November 2, 2017. ACM Press.

51

https://eprint.iacr.org/2022/898
https://eprint.iacr.org/2022/898
https://cryptobook.us

[CKLS02] Christian Cachin, Klaus Kursawe, Anna Lysyanskaya, and Reto Strobl. Asynchronous
verifiable secret sharing and proactive cryptosystems. In Vijayalakshmi Atluri, editor,
ACM CCS 2002: 9th Conference on Computer and Communications Security, pages
88–97, Washington, DC, USA, November 18–22, 2002. ACM Press.

[CKPS01] Christian Cachin, Klaus Kursawe, Frank Petzold, and Victor Shoup. Secure and effi-
cient asynchronous broadcast protocols. In Joe Kilian, editor, Advances in Cryptology
– CRYPTO 2001, volume 2139 of Lecture Notes in Computer Science, pages 524–541,
Santa Barbara, CA, USA, August 19–23, 2001. Springer, Heidelberg, Germany.

[CKY09] Jan Camenisch, Aggelos Kiayias, and Moti Yung. On the portability of generalized
Schnorr proofs. In Antoine Joux, editor, Advances in Cryptology – EUROCRYPT 2009,
volume 5479 of Lecture Notes in Computer Science, pages 425–442, Cologne, Germany,
April 26–30, 2009. Springer, Heidelberg, Germany.

[CLNS17] Jan Camenisch, Anja Lehmann, Gregory Neven, and Kai Samelin. UC-secure non-
interactive public-key encryption. In Boris Köpf and Steve Chong, editors, CSF 2017:
IEEE 30th Computer Security Foundations Symposium, pages 217–233, Santa Barbara,
CA, USA, August 21–25, 2017. IEEE Computer Society Press.

[CMSW14] Theresa Calderon, Sarah Meiklejohn, Hovav Shacham, and Brent Waters. Rethinking
verifiably encrypted signatures: A gap in functionality and potential solutions. In Josh
Benaloh, editor, Topics in Cryptology – CT-RSA 2014, volume 8366 of Lecture Notes
in Computer Science, pages 349–366, San Francisco, CA, USA, February 25–28, 2014.
Springer, Heidelberg, Germany.

[CR03] Ran Canetti and Tal Rabin. Universal composition with joint state. In Dan Boneh,
editor, Advances in Cryptology – CRYPTO 2003, volume 2729 of Lecture Notes in
Computer Science, pages 265–281, Santa Barbara, CA, USA, August 17–21, 2003.
Springer, Heidelberg, Germany.

[CZK+19] Raymond Cheng, Fan Zhang, Jernej Kos, Warren He, Nicholas Hynes, Noah M. John-
son, Ari Juels, Andrew Miller, and Dawn Song. Ekiden: A platform for confidentiality-
preserving, trustworthy, and performant smart contracts. In IEEE European Sympo-
sium on Security and Privacy, EuroS&P 2019, pages 185–200. IEEE, 2019.

[DFI22] The DFINITY Team. The internet computer for geeks. Cryptology ePrint Archive,
Paper 2022/087, 2022. https://eprint.iacr.org/2022/087.

[Dod03] Yevgeniy Dodis. Efficient construction of (distributed) verifiable random functions. In
Yvo Desmedt, editor, PKC 2003: 6th International Workshop on Theory and Practice
in Public Key Cryptography, volume 2567 of Lecture Notes in Computer Science, pages
1–17, Miami, FL, USA, January 6–8, 2003. Springer, Heidelberg, Germany.

[dra] drand. Distributed randomness beacon. https://drand.love.

[DRZ17] Sisi Duan, Michael K. Reiter, and Haibin Zhang. Secure causal atomic broadcast,
revisited. In 47th Annual IEEE/IFIP International Conference on Dependable Systems
and Networks, DSN 2017, pages 61–72. IEEE Computer Society, 2017.

[DYX+22] Sourav Das, Thomas Yurek, Zhuolun Xiang, Andrew K. Miller, Lefteris Kokoris-
Kogias, and Ling Ren. Practical asynchronous distributed key generation. In 43rd
IEEE Symposium on Security and Privacy, SP 2022, San Francisco, CA, USA, May
22-26, 2022, pages 2518–2534. IEEE, 2022.

52

https://eprint.iacr.org/2022/087
https://drand.love

[ElG84] Taher ElGamal. A public key cryptosystem and a signature scheme based on discrete
logarithms. In G. R. Blakley and David Chaum, editors, Advances in Cryptology –
CRYPTO’84, volume 196 of Lecture Notes in Computer Science, pages 10–18, Santa
Barbara, CA, USA, August 19–23, 1984. Springer, Heidelberg, Germany.

[Fel87] Paul Feldman. A practical scheme for non-interactive verifiable secret sharing. In 28th
Annual Symposium on Foundations of Computer Science, pages 427–437, Los Angeles,
CA, USA, October 12–14, 1987. IEEE Computer Society Press.

[FH18] Paul Fletcher-Hill. Kimono — trustless secret sharing us-
ing time-locks on ethereum. https://medium.com/@pfh/

kimono-trustless-secret-sharing-using-time-locks-on-ethereum-8e7e696494d,
2018. Accessed 2022-08-12.

[Fis06] Marc Fischlin. Round-optimal composable blind signatures in the common reference
string model. In Cynthia Dwork, editor, Advances in Cryptology – CRYPTO 2006,
volume 4117 of Lecture Notes in Computer Science, pages 60–77, Santa Barbara, CA,
USA, August 20–24, 2006. Springer, Heidelberg, Germany.

[FS87] Amos Fiat and Adi Shamir. How to prove yourself: Practical solutions to identification
and signature problems. In Andrew M. Odlyzko, editor, Advances in Cryptology –
CRYPTO’86, volume 263 of Lecture Notes in Computer Science, pages 186–194, Santa
Barbara, CA, USA, August 1987. Springer, Heidelberg, Germany.

[Gen22] Ekin Genç. What is MEV, aka maximal extractable value? https://www.coindesk.

com/learn/what-is-mev-aka-maximal-extractable-value/, 2022.

[GG17] Rishab Goyal and Vipul Goyal. Overcoming cryptographic impossibility results using
blockchains. In Yael Kalai and Leonid Reyzin, editors, TCC 2017: 15th Theory of
Cryptography Conference, Part I, volume 10677 of Lecture Notes in Computer Science,
pages 529–561, Baltimore, MD, USA, November 12–15, 2017. Springer, Heidelberg,
Germany.

[GGM86] Oded Goldreich, Shafi Goldwasser, and Silvio Micali. How to construct random func-
tions. Journal of the ACM, 33(4):792–807, October 1986.

[GGSW13] Sanjam Garg, Craig Gentry, Amit Sahai, and Brent Waters. Witness encryption and
its applications. In Dan Boneh, Tim Roughgarden, and Joan Feigenbaum, editors,
45th Annual ACM Symposium on Theory of Computing, pages 467–476, Palo Alto,
CA, USA, June 1–4, 2013. ACM Press.

[GKM+20] Vipul Goyal, Abhiram Kothapalli, Elisaweta Masserova, Bryan Parno, and Yifan Song.
Storing and retrieving secrets on a blockchain. Cryptology ePrint Archive, Report
2020/504, 2020. https://eprint.iacr.org/2020/504.

[GKR08] Shafi Goldwasser, Yael Tauman Kalai, and Guy N. Rothblum. One-time programs.
In David Wagner, editor, Advances in Cryptology – CRYPTO 2008, volume 5157 of
Lecture Notes in Computer Science, pages 39–56, Santa Barbara, CA, USA, August 17–
21, 2008. Springer, Heidelberg, Germany.

[GLOW21] David Galindo, Jia Liu, Mihai Ordean, and Jin-Mann Wong. Fully distributed ver-
ifiable random functions and their application to decentralised random beacons. In
IEEE European Symposium on Security and Privacy, EuroS&P 2021, Vienna, Aus-
tria, September 6-10, 2021, pages 88–102. IEEE, 2021.

53

https://medium.com/@pfh/kimono-trustless-secret-sharing-using-time-locks-on-ethereum-8e7e696494d
https://medium.com/@pfh/kimono-trustless-secret-sharing-using-time-locks-on-ethereum-8e7e696494d
https://www.coindesk.com/learn/what-is-mev-aka-maximal-extractable-value/
https://www.coindesk.com/learn/what-is-mev-aka-maximal-extractable-value/
https://eprint.iacr.org/2020/504

[GM84] Shafi Goldwasser and Silvio Micali. Probabilistic encryption. Journal of Computer
and System Sciences, 28(2):270–299, 1984.

[GMR88] Shafi Goldwasser, Silvio Micali, and Ronald L. Rivest. A digital signature scheme
secure against adaptive chosen-message attacks. SIAM Journal on Computing,
17(2):281–308, April 1988.

[GMR23] Nicolas Gailly, Kelsey Melissaris, and Yolan Romailler. tlock: Practical timelock
encryption from threshold bls. Cryptology ePrint Archive, Paper 2023/189, 2023.
https://eprint.iacr.org/2023/189.

[GPS06] S.D. Galbraith, K.G. Paterson, and N.P. Smart. Pairings for cryptographers. Cryptol-
ogy ePrint Archive, Report 2006/165, 2006. https://eprint.iacr.org/2006/165.

[Gro21] Jens Groth. Non-interactive distributed key generation and key resharing. Cryptology
ePrint Archive, Report 2021/339, 2021. https://eprint.iacr.org/2021/339.

[GS22] Jens Groth and Victor Shoup. On the security of ECDSA with additive key derivation
and presignatures. In Orr Dunkelman and Stefan Dziembowski, editors, Advances in
Cryptology – EUROCRYPT 2022, Part I, volume 13275 of Lecture Notes in Com-
puter Science, pages 365–396, Trondheim, Norway, May 30 – June 3, 2022. Springer,
Heidelberg, Germany.

[HMM15] Dennis Hofheinz, Christian Matt, and Ueli Maurer. Idealizing identity-based encryp-
tion. In Tetsu Iwata and Jung Hee Cheon, editors, Advances in Cryptology – ASI-
ACRYPT 2015, Part I, volume 9452 of Lecture Notes in Computer Science, pages
495–520, Auckland, New Zealand, November 30 – December 3, 2015. Springer, Heidel-
berg, Germany.

[HMW18] Timo Hanke, Mahnush Movahedi, and Dominic Williams. DFINITY technology
overview series, consensus system. CoRR, abs/1805.04548, 2018.

[JLS21] Aayush Jain, Huijia Lin, and Amit Sahai. Indistinguishability obfuscation from well-
founded assumptions. In Samir Khuller and Virginia Vassilevska Williams, editors,
STOC ’21: 53rd Annual ACM SIGACT Symposium on Theory of Computing, pages
60–73. ACM, 2021.

[KAG+20] Eleftherios Kokoris-Kogias, Enis Ceyhun Alp, Linus Gasser, Philipp Jovanovic, Ewa
Syta, and Bryan Ford. CALYPSO: private data management for decentralized ledgers.
Proc. VLDB Endow., 14(4):586–599, 2020.

[KGF19] Rami Khalil, Arthur Gervais, and Guillaume Felley. TEX - A securely scalable trustless
exchange. Cryptology ePrint Archive, Report 2019/265, 2019. https://eprint.iacr.
org/2019/265.

[KGM19] Gabriel Kaptchuk, Matthew Green, and Ian Miers. Giving state to the stateless:
Augmenting trustworthy computation with ledgers. In ISOC Network and Distributed
System Security Symposium – NDSS 2019, San Diego, CA, USA, February 24–27,
2019. The Internet Society.

[LJKW18] Jia Liu, Tibor Jager, Saqib A. Kakvi, and Bogdan Warinschi. How to build time-lock
encryption. Des. Codes Cryptogr., 86(11):2549–2586, 2018.

[Lys02] Anna Lysyanskaya. Unique signatures and verifiable random functions from the DH-
DDH separation. In Moti Yung, editor, Advances in Cryptology – CRYPTO 2002,
volume 2442 of Lecture Notes in Computer Science, pages 597–612, Santa Barbara,
CA, USA, August 18–22, 2002. Springer, Heidelberg, Germany.

54

https://eprint.iacr.org/2023/189
https://eprint.iacr.org/2006/165
https://eprint.iacr.org/2021/339
https://eprint.iacr.org/2019/265
https://eprint.iacr.org/2019/265

[Mau11] Ueli Maurer. Constructive cryptography - A new paradigm for security definitions
and proofs. In Sebastian Mödersheim and Catuscia Palamidessi, editors, Theory of
Security and Applications - Joint Workshop, TOSCA 2011, Saarbrücken, Germany,
March 31 - April 1, 2011, Revised Selected Papers, volume 6993 of Lecture Notes in
Computer Science, pages 33–56. Springer, 2011.

[MHS02] Marco Casassa Mont, Keith Harrison, and Martin Sadler. The HP time vault service:
Innovating the way confidential information is disclosed, at the right time. Technical
Report HPL-2002-243, 2002.

[MRV99] Silvio Micali, Michael O. Rabin, and Salil P. Vadhan. Verifiable random functions. In
40th Annual Symposium on Foundations of Computer Science, pages 120–130, New
York, NY, USA, October 17–19, 1999. IEEE Computer Society Press.

[Nak08] Satoshi Nakamoto. Bitcoin: A peer-to-peer electronic cash system. 2008.

[Nie02a] Jesper Buus Nielsen. Separating random oracle proofs from complexity theoretic
proofs: The non-committing encryption case. In Moti Yung, editor, Advances in
Cryptology – CRYPTO 2002, volume 2442 of Lecture Notes in Computer Science,
pages 111–126, Santa Barbara, CA, USA, August 18–22, 2002. Springer, Heidelberg,
Germany.

[Nie02b] Jesper Buus Nielsen. A threshold pseudorandom function construction and its ap-
plications. In Moti Yung, editor, Advances in Cryptology – CRYPTO 2002, volume
2442 of Lecture Notes in Computer Science, pages 401–416, Santa Barbara, CA, USA,
August 18–22, 2002. Springer, Heidelberg, Germany.

[NMO06] Ryo Nishimaki, Yoshifumi Manabe, and Tatsuaki Okamoto. Universally composable
identity-based encryption. In Phong Q. Nguyen, editor, Progress in Cryptology - VI-
ETCRYPT 06: 1st International Conference on Cryptology in Vietnam, volume 4341
of Lecture Notes in Computer Science, pages 337–353, Hanoi, Vietnam, September 25–
28, 2006. Springer, Heidelberg, Germany.

[NPR99] Moni Naor, Benny Pinkas, and Omer Reingold. Distributed pseudo-random functions
and KDCs. In Jacques Stern, editor, Advances in Cryptology – EUROCRYPT’99,
volume 1592 of Lecture Notes in Computer Science, pages 327–346, Prague, Czech
Republic, May 2–6, 1999. Springer, Heidelberg, Germany.

[Ped91] Torben P. Pedersen. A threshold cryptosystem without a trusted party (extended
abstract) (rump session). In Donald W. Davies, editor, Advances in Cryptology –
EUROCRYPT’91, volume 547 of Lecture Notes in Computer Science, pages 522–526,
Brighton, UK, April 8–11, 1991. Springer, Heidelberg, Germany.

[PWH+17] Dimitrios Papadopoulos, Duane Wessels, Shumon Huque, Moni Naor, Jan Včelák,
Leonid Reyzin, and Sharon Goldberg. Making NSEC5 practical for DNSSEC. Cryp-
tology ePrint Archive, Report 2017/099, 2017. https://eprint.iacr.org/2017/099.

[RAA+19] Mark Russinovich, Edward Ashton, Christine Avanessians, Miguel Castro, Amaury
Chamayou, Sylvan Clebsch, Manuel Costa, Cédric Fournet, Matthew Kerner, Sid Kr-
ishna, Julien Maffre, Thomas Moscibroda, Kartik Nayak, Olya Ohrimenko, Felix Schus-
ter, Roy Schwartz, Alex Shamis, Olga Vrousgou, and Christoph M. Wintersteiger. Ccf:
A framework for building confidential verifiable replicated services. Technical Report
MSR-TR-2019-16, Microsoft, 2019.

55

https://eprint.iacr.org/2017/099

[RB94] Michael K. Reiter and Kenneth P. Birman. How to securely replicate services. ACM
Transactions on Programming Languages and Systems, 16(3):986–1009, 1994.

[RSW96] Ronald L. Rivest, Adi Shamir, and David A. Wagner. Time-lock puzzles and timed-
release crypto. Technical report, 1996.

[RSW00] Ronald L. Rivest, Adi Shamir, and David A. Wagner. Time-lock puzzles and timed-
release crypto. Technical Report MIT/LCS/TR-684, 2000.

[Sch22] John Schmidt. Why does bitcoin use so much energy? https://www.forbes.com/

advisor/investing/cryptocurrency/bitcoins-energy-usage-explained/, 2022.

[Sco02] Mike Scott. Authenticated ID-based key exchange and remote log-in with simple
token and PIN number. Cryptology ePrint Archive, Report 2002/164, 2002. https:

//eprint.iacr.org/2002/164.

[Sek22] Venkkatesh Sekar. Preventing front-running attacks using timelock encryption. Mas-
ter’s thesis, University College London, 2022.

[SG98] Victor Shoup and Rosario Gennaro. Securing threshold cryptosystems against cho-
sen ciphertext attack. In Kaisa Nyberg, editor, Advances in Cryptology – EURO-
CRYPT’98, volume 1403 of Lecture Notes in Computer Science, pages 1–16, Espoo,
Finland, May 31 – June 4, 1998. Springer, Heidelberg, Germany.

[Sha79] Adi Shamir. How to share a secret. Communications of the Association for Computing
Machinery, 22(11):612–613, November 1979.

[Shu21] Shutter Network. Introducing Shutter network – combating front running and
malicious MEV using threshold cryptography. https://blog.shutter.network/

introducing-shutter-network-combating-frontrunning-and-malicious-mev-using-threshold-cryptography/,
2021. Accessed 2022-08-12.

[SRMH21] Oliver Stengele, Markus Raiber, Jörn Müller-Quade, and Hannes Hartenstein.
ETHTID: deployable threshold information disclosure on ethereum. CoRR,
abs/2107.01600, 2021.

[Tou18] Nathan Toups. killcord. https://github.com/nomasters/killcord, 2018. Accessed
2022-08-12.

[vSSY+22] Stephan van Schaik, Alex Seto, Thomas Yurek, Adam Batori, Bader AlBassam,
Christina Garman, Daniel Genkin, Andrew Miller, Eyal Ronen, and Yuval Yarom.
SoK: SGX.Fail: How stuff get eXposed. 2022.

56

https://www.forbes.com/advisor/investing/cryptocurrency/bitcoins-energy-usage-explained/
https://www.forbes.com/advisor/investing/cryptocurrency/bitcoins-energy-usage-explained/
https://eprint.iacr.org/2002/164
https://eprint.iacr.org/2002/164
https://blog.shutter.network/introducing-shutter-network-combating-frontrunning-and-malicious-mev-using-threshold-cryptography/
https://blog.shutter.network/introducing-shutter-network-combating-frontrunning-and-malicious-mev-using-threshold-cryptography/
https://github.com/nomasters/killcord

	Introduction
	Privacy on Blockchains
	Our Contributions
	Applications
	Related Work

	Usage in a Blockchain Scenario
	Overview
	Verifiably Encrypted Threshold BLS
	BLS and Threshold BLS Signatures
	The vetBLS Ideal Functionality
	A Simple Construction
	Construction with Zero-Knowledge Proofs

	Aggregated Constructions with Leakage
	Ideal Functionality with Leakage
	BLS Signatures with Leakage
	Two Aggregated vetBLS Constructions

	Verifiably Encrypted Threshold IBE
	The vetIBE Ideal Functionality
	A Construction based on the Boneh-Franklin IBE

	Other vet Primitives
	Verifiably Encrypted Threshold Signatures
	Verifiably Encrypted Threshold PRF
	Verifiably Encrypted Threshold VRF

	Secure Single-Key Composition
	Integration and Evaluation

