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Abstract. In this paper, we show an in-place implementation of the ASCON linear layer. An in-place
implementation is important in the context of quantum computing, we expect our work will be useful
in quantum implementation of ASCON. In order to get the implementation, we first write the ASCON
linear layer as a binary matrix; then apply two legacy algorithms (Gauss-Jordan elimination and PLU
factorization) as well as our modified version of Xiang et al.’s algorithm/source-code (published in
ToSC/FSE’20). Our in-place implementation takes 1595 CNOT gates and 119 quantum depth; and this is
the first in-place implementation of the ASCON linear layer, to the best of our knowledge.
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1 Introduction

ASCON [DEMS19] is a lightweight cryptographic primitive that provides confidentiality, integrity, and authenticity
to data transmission. It is recently selected as the winner of the LWC project by NIST1.

In recent years, quantum computing has become an active research area for improving the performance
and security of cryptographic primitives. The potential benefits of quantum computing include increased
processing speeds and the ability to perform certain operations more efficiently than classical computers.
Therefore, exploring the potential of quantum computing to improve the performance of ASCON is of significant
interest to the cryptography community. With the increasing popularity of quantum computing, an efficient
implementation of ciphers on quantum logic is becoming increasingly important. Therefore, it comes as no
surprise that the researchers have been working on finding improved quantum implementation for the ciphers
(see, e.g., [JBB+22,JBK+22a,JSK+22]).

Contribution

In this work, we present possibly the first-ever in-place implementation of the ASCON linear layer. The related
implementations are available as an open-source project2. The linear layer is described in terms of rotation and
XOR of five 64-bit registers. Thus, it can be equivalently expressed as a 320× 320 binary matrix.

To the best of our finding, the only work to deal with the quantum implementation of ASCON is done
in [LJS+22]. However, this work does not implement the linear layer explicitly (implements the state update
function as one module). Internally, the näıve quantum implementation of the linear layer (Section 3) is invoked,
which results in a out-of-place implementation with doubled qubit count.

When in comes to in-place implementation, we know about the PLU factorization, Gauss-Jordan elimination
and a recent development by XZLBZ [XZL+20]. All the methods have been used in some capacity in the
literature (Section 3). In total, we show 3 in-place implementations of the ASCON linear layer.

In this process, we would like to note that the authors of [XZL+20] explicitly state that their algorithm/source-
code works efficiently up to 32× 32 binary matrix. Notably, the task of finding good in-place implementation of
64 × 64 binary matrices and beyond is mostly kept out-of-scope. We contribute to the algorithm as well as
the source-code of XZLBZ [XZL+20] so that now it can work even with the ASCON binary matrix (which is of
dimension 320× 320).

As noted in Section 3, the näıve implementation in quantum doubles the number of qubits and requires a
total of (number of qubits + number of XOR operation) CNOT gates in general. When the qubit count ×
CNOT count metric is considered, the implementation reported by us is 16.93% cheaper. The benchmarks
corresponding to these implementations, along with two more in-place implementations (obtained by applying
the Gauss-Jordan elimination and PLU factorization) are given in Section 4.

1https://csrc.nist.gov/News/2023/lightweight-cryptography-nist-selects-ascon
2https://github.com/sohamroy19/ascon-linear-layer/

https://csrc.nist.gov/News/2023/lightweight-cryptography-nist-selects-ascon
https://github.com/sohamroy19/ascon-linear-layer/
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2 ASCON Linear Layer

As defined in [DEMS19], the linear layer pL provides diffusion within each 64-bit register word xi. It applies a
linear function Σi(xi) to each word xi, defined as follows (‘≫’ indicates right rotation):

x0 ← Σ0(x0) = x0 ⊕ (x0 ≫ 19)⊕ (x0 ≫ 28)

x1 ← Σ1(x1) = x1 ⊕ (x1 ≫ 61)⊕ (x1 ≫ 39)

x2 ← Σ2(x2) = x2 ⊕ (x2 ≫ 1)⊕ (x2 ≫ 6)

x3 ← Σ3(x3) = x3 ⊕ (x3 ≫ 10)⊕ (x3 ≫ 17)

x4 ← Σ4(x4) = x4 ⊕ (x4 ≫ 7)⊕ (x4 ≫ 41)

When simplified, this can be written as a binary non-singular matrix of dimension 320× 320. The Hamming
weight of each row (and also column) of this matrix is 3, and the multiplicative order of the matrix is 64. A
graphical view is given in Figure 1 (blue indicates 1 and yellow indicates 0).

Figure 1: ASCON linear layer (320× 320 binary matrix in graphical form)

3 Quantum Implementation of Linear Layer

The problem of optimization of a binary non-singular matrix while implementing for a classical device is
well-studied [BP10,LSL+19,Köl19,Max19,XZL+20,BFI19,BDK+21,LWF+22]. However, the research works
dedicated to find quantum quantum implementation/optimization are few and far between. Here we attempt to
collate the major research works. We also cover the basic theory which is relevant for linear layer implementation
(for the implementation of the non-linear component, one may refer to, e.g., [DBSC19,CBC23]).
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3.1 Metrics

Qubit Analogous to the concept of bit in the classical computing, we use quantum bits (qubits for short). It is
customary to write the qubits using the Dirac’s ket notation, e.g., |0〉 or |1〉.

CNOT and SWAP Gates The Controlled NOT (CNOT for short) and SWAP gates form the basis of linear
operations. The CNOT gate basically works like an in-place XOR gate. The circuit diagrams for the gates are
as shown in Figure 2.

|a〉 |a⊕ b〉
|b〉 • |b〉

(a) CNOT

|a〉 × |b〉
|b〉 × |a〉

(b) SWAP

Figure 2: Basic quantum gates

A SWAP gate can be implemented using 3 CNOT gates (see, e.g., [DBSC19, Figure 3]). It may not be
possible to swap two qubits if those are not adjacent, see [Ser17, Page 6] or [WFH11].

Quantum Circuit and Depth The quantum circuits are composed of the quantum gates and those operate
on the qubits. For instance, the quantum circuit corresponding to the implementation stated in Example 4 is
given in Figure 3.

|x0〉 |x0〉

|x1〉 • |x1 ⊕ x3〉

|x2〉 × |x1〉

|x3〉 • • × |x2 ⊕ x3〉

Figure 3: A quantum circuit (with CNOT and SWAP gates)

The depth of a logical circuit can be defined as the number of combinational logic gates along the longest
path of the circuit. Unlike the classical depth, the quantum depth is generally not simple to calculated (noted
in [JBK+22b]), due to the fact fact a quantum gate can have only 1 fan-out. More relevant discussion on depth
can be found in [ZH23]; and apparently this is the only paper that attempts to optimize for quantum depth by
using a greedy algorithm.

3.2 Näıve Quantum Implementation

The so-called d-XOR implementation is proposed to indicate the näıve implementation in a classical circuit
[KPPY14]. The d-XOR count for the ASCON linear layer is 640, as each row has two XOR operations. However,
due to fan-out restriction in a quantum circuit, this implementation becomes incompatible.

For the näıve quantum implementation of a n×n binary matrix, we first need to introduce (up to) n ancilla
qubits (effectively doubling the qubit count) initialized at |0〉. Then the ancilla qubits are updated with the
initial values of the first n qubits. This helps retain the original matrix while the n qubits are overwritten.

For the lack of a better terminology, we call this the näıve quantum implementation or direct-CNOT
(d-CNOT for short) implementation. An example can be seen from Example 1. Here and in the subsequent
Examples, we use the variable x with subscript starting from 0 to indicate the matrix; if needed the variable y
with subscript starting from 0 is also used to indicate each row of the matrix (thus, x variables act as the input
and y variables act as the output for the implementation).
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Example 1 (Näıve quantum). Consider the binary matrix M4×4:
1 1 0 0
0 1 1 1
1 1 1 1
1 0 0 1


Our original qubits are {x0, x1, x2, x3}. In the first step, 4 ancilla qubits are created and initialized to 0:

x4 ← |0〉
x5 ← |0〉
x6 ← |0〉
x7 ← |0〉

After this, the ancilla qubits are updated in-place, so that each copies one original qubit:

x4 ← x4 ⊕ x0
x5 ← x5 ⊕ x1
x6 ← x6 ⊕ x2
x7 ← x7 ⊕ x3

Equivalently, M is augmented with the 4× 4 identity matrix to create this 8× 4 matrix, which we name M ′:

M =


1 1 0 0
0 1 1 1
1 1 1 1
1 0 0 1

 −→



1 1 0 0
0 1 1 1
1 1 1 1
1 0 0 1
1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1


= M ′

Finally, we update the original qubits in-place (in M ′) with the help of the ancilla qubits:

x0 ← x0 ⊕ x5
x1 ← x1 ⊕ x6
x1 ← x1 ⊕ x7
x2 ← x2 ⊕ x4
x2 ← x2 ⊕ x5
x2 ← x2 ⊕ x7
x3 ← x3 ⊕ x4

Therefore, the näıve quantum implementation takes 8 qubits and 11 CNOT operations in total, with 3
quantum depth.

ut

It may not always be necessary to double the number of qubits in the näıve quantum implementation. This
can manifest in two ways (see Examples 2 and 3):

1. Not all original qubits are updated (happens when the ith row of the matrix is identical to the ith row of
an identity matrix).

2. Not all original qubits are needed to update other qubits (happens when the ith column of the matrix is
identical to the ith column of an identity matrix).
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Example 2 (Not all qubits are updated). The näıve quantum implementation of the following matrix is possible
without copying x3 to an ancilla qubit, as the 3rd row has not been modified:

1 1 0 0
0 1 0 1
0 1 1 1
0 0 0 1


ut

Example 3 (Not all original qubits are needed). The näıve quantum implementation of the following matrix is
possible without copying x0 and x2 to ancilla qubits, as the 0th and 2nd columns have not been modified:

1 1 0 0
0 1 0 1
0 1 1 1
0 0 0 1


Thus, it can be implemented using only 1 ancilla qubit to store a copy of the original x1.

ut

There is also another notion that captures the essence of in-place implementation. This is the so-called
sε-XOR implementation [BDK+21, BKD+21b]. In particular, when ε = 1, this implementation reduces to
factorization of a binary non-singular matrix into matrices for which the quantum implementation is apparent.

3.3 In-place Implementations

Legacy Algorithms Two legacy algorithms are known to have a quantum-friendly outcome:

1. Gauss-Jordan elimination (mentioned in [Köl19]);
2. PLU factorization (used in some form in [ASR12,GLRS16,ASAM18,vH19,ZWS+20,JNRV20]).

As these two algorithms are well-known, we briefly describe those in Examples 4 and 5 for the sake of
completeness (similar to Example 1, we use the variable x with subscript starting from 0). For the PLU
factorization, we use the Sage3 implementation.

Example 4 (Gauss-Jordan elimination). Consider the binary matrix M4×4:
1 0 0 0
0 1 0 1
0 1 0 0
0 0 1 1


By applying the Gauss-Jordan elimination we obtain the following factorization of the matrix:

1 0 0 0
0 1 0 1
0 1 0 0
0 0 1 1

 =


1 0 0 0
0 1 0 0
0 1 1 0
0 0 0 1




1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0




1 0 0 0
0 1 0 1
0 0 1 0
0 0 0 1




1 0 0 0
0 1 0 0
0 0 1 1
0 0 0 1


In this factorization each matrix is necessarily an elementary matrix, corresponding to an elementary operation.
Thus, the sequence of gates given by the above factorization is as follows:

x2 ← x2 ⊕ x3
x1 ← x1 ⊕ x3

x2, x3 ← x3, x2

x2 ← x2 ⊕ x1

This implementation incurs 3 CNOT and 1 SWAP gates with 4 quantum depth (can be seen from Figure 3).
ut

3https://doc.sagemath.org/html/en/reference/matrices/sage/matrix/matrix2.html#sage.matrix.matrix2.

Matrix.LU

https://doc.sagemath.org/html/en/reference/matrices/sage/matrix/matrix2.html#sage.matrix.matrix2.Matrix.LU
https://doc.sagemath.org/html/en/reference/matrices/sage/matrix/matrix2.html#sage.matrix.matrix2.Matrix.LU
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Example 5 (PLU factorization). Consider the binary matrix M4×4:
1 0 1 0
0 1 0 1
0 1 0 0
1 0 0 1


By applying the PLU factorization, we obtain the following:

1 0 1 0
0 1 0 1
0 1 0 0
1 0 0 1

 =


1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0




1 0 0 0
0 1 0 0
1 0 1 0
0 1 0 1




1 0 1 0
0 1 0 1
0 0 1 1
0 0 0 1


These three matrices are respectively a permutation matrix, a lower triangular matrix and an upper triangular
matrix; and can be implemented following [vH19, Algorithm 1]. The implementation is given as follows (that
incurs 5 CNOT and 1 SWAP gates, with 4 quantum depth):

x0 ← x0 ⊕ x2
x1 ← x1 ⊕ x3
x2 ← x2 ⊕ x3
x3 ← x3 ⊕ x1
x2 ← x2 ⊕ x0

x2, x3 ← x3, x2

ut

XZLBZ and Its Modification A new idea for in-place implementation of binary matrices is proposed by
XZLBZ [XZL+20]. This is subsequently used by various research works such as [JBK+22b,HS22,YJBS23].

The details of the algorithm used by XZLBZ [XZL+20] is omitted here for brevity though, we present a
summarized view for the sake of completeness. The algorithm runs it two phases.

1. In the first phase, an initial factorization is done. In this process, the first priority is to use A? search.
However, if there is no resolution from the A? search, then the algorithm falls back to Gauss-Jordan
elimination.

2. In the second phase, the algorithm tries to find an alternate representation by replacing gap number of
CNOT operations with a reduced number of CNOT operations. The gap variable is iterated over, initially
being set to the length of the sequence. The program terminates if the gap hits a certain lower bound
(which is hard-coded as 4 in their source-code).

In this work, we take a closer look and make some in-house modifications to XZLBZ. The main objective
for such change is to accommodate the algorithm/source-code run with larger (i.e., > 32× 32) binary matrices.

In another direction, the work of Zhu-Huang [ZH23] deals with taking the output from XZLBZ, then
post-process it to find a lower quantum depth. A greedy algorithm is used for this purpose. This is among the
first, if not the first, work to purposefully optimize for quantum depth. One notable feature in the output is
that, unlike XZLBZ [XZL+20], there is no final relabel in [ZH23]. In other words, in a typical XZLBZ output,
there are assignments to the y variables. In contrast, Zhu-Huang’s implementation does not need any special
y-variable assignment (as a y-variable corresponds to its x-variables). We also make changes to XZLBZ so that
our modified version optionally returns with/without final relabel4. See Example 6 for an implementation with
final relabel and another implementation without final relabel of the same matrix.

Example 6 (Final relabel). Consider the following matrix:
0 1 1 0 0
1 0 0 1 1
1 0 1 1 0
1 1 0 0 0
1 1 0 0 1


4Our implementations (given in the repository) follow the without final relabel format, where the initial permutation

is declared at the top.
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The matrix is implemented with final relabel by XZLBZ [XZL+20] as follows (notice that the y-variables do
not directly match the corresponding x-variables at the LHS):

x3 ← x3 ⊕ x0
(x0 ← x0 ⊕ x1)→ y3

(x1 ← x1 ⊕ x2)→ y0

(x2 ← x2 ⊕ x3)→ y2

(x3 ← x3 ⊕ x4)→ y1

(x4 ← x4 ⊕ x0)→ y4

The matrix can also be implemented without final relabel, by using 2 SWAP gates at the beginning (this is
similar to [ZH23]). In this implementation, the last assignment of an x-variable acts as the corresponding
y-variable, and is given as follows:

x0, x1 ← x1, x0

x1, x3 ← x3, x1

x1 ← x1 ⊕ x3
(x3 ← x3 ⊕ x0)→ y3

(x0 ← x0 ⊕ x2)→ y0

(x2 ← x2 ⊕ x1)→ y2

(x1 ← x1 ⊕ x4)→ y1

(x4 ← x4 ⊕ x3)→ y4

The implementation with final relabel can be described by following permutation matrix; and this is termed
as the reduced matrix by XZLBZ [XZL+20]: 

0 1 0 0 0
0 0 0 1 0
0 0 1 0 0
1 0 0 0 0
0 0 0 0 1


ut

SMT/MILP Model To the best of our finding, the only other idea for in-place implementation of the linear
layer is reported in [BKD+21b,BKD21a]. The idea here is to convert the factorization into an SMT or MILP
instance. However, it becomes mostly impractical to deal with > 8× 8 binary matrices, due to the solver taking
long time.

4 Quantum Benchmark

With the background covered in Section 3, the following quantum benchmarks are reported in Table 1:

1. Näıve corresponds to using ancillary qubits to enable computing the new state of a qubit while maintaining
the previous one (in a back-up qubit), which is required for the calculation of new state of two other qubits.

2. Gauss-Jordan elimination factorizes any binary matrix using elementary operations (which correspond to
CNOT or SWAP gates).

3. PLU factorization outputs a given binary matrix into a permutations matrix, a lower triangular matrix and
an upper triangular matrix.

4. Modified XZLBZ is our in-house modification of what is introduced in [XZL+20].

In the näıve quantum implementation, the qubit count × CNOT count = 640× 960; but the same metric
for the result obtained using modified XZLBZ is 320× 1595. Thus, we save about about 16.93%.
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Table 1: Quantum benchmarks of ASCON linear layer

Method Qubit count CNOT count Quantum depth

Näıve
640

(out-of-place)
960 26

Gauss-Jordan
320

(in-place)

2413 358
PLU 2413 288

Modified XZLBZ 1595 119

5 Conclusion

In this work, we extract the ASCON linear layer (which is a 320× 320 binary non-singular matrix) and show its
quantum benchmarks. To the best of our knowledge, this is the first-of-its-kind analysis on ASCON. We show
4 in-place implementations of the matrix, which is useful in finding a suitable quantum implementation (as
in-place implementations do not require any ancilla/garbage qubit).

The best in-place implementation (in terms of either CNOT count or quantum depth) that we obtain is
from a modified version of the XZLBZ [XZL+20]. We contribute in respective parts of the algorithm and the
source-code of XZLBZ [XZL+20], so that now our version of XZLBZ works well even with the ASCON linear
layer.

The näıve quantum implementation doubles the qubit count, whereas the in-place implementations maintain
the same qubit count. Thus, one may be interested in a trade-off where the resulting circuit incurs relatively
low CNOT count and/or quantum depth, but not all qubits are duplicated. Put in other words, some of the
qubits are updated in-place, but the rest are duplicated and updated out-of-place.

References

ASAM18. Mishal Almazrooie, Azman Samsudin, Rosni Abdullah, and Kussay N. Mutter. Quantum reversible circuit
of AES-128. Quantum Information Processing, 17(5):1–30, may 2018. 5

ASR12. Brittanney Amento, Rainer Steinwandt, and Martin Roetteler. Efficient quantum circuits for binary elliptic
curve arithmetic: reducing t-gate complexity, 2012. 5

BDK+21. Anubhab Baksi, Vishnu Asutosh Dasu, Banashri Karmakar, Anupam Chattopadhyay, and Takanori Isobe.
Three input exclusive-or gate support for boyar-peralta’s algorithm. In Avishek Adhikari, Ralf Küsters,
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