Toward Practical Lattice-based
Proof of Knowledge from Hint-MLWE

Duhyeong Kim', Dongwon Lee?, Jinyeong Seo?, and Yongsoo Song?

Intel Labs
duhyeong1204Qgmail . com
Seoul National University
{dongwonlee95, jinyeong.seo, y.song}@snu.ac.kr

Abstract. In the last decade, zero-knowledge proof of knowledge pro-
tocols have been extensively studied to achieve active security of vari-
ous cryptographic protocols. However, the existing solutions simply seek
zero-knowledge for both message and randomness, which is an overkill
in many applications since protocols may remain secure even if some
information about randomness is leaked to the adversary.

We develop this idea to improve the state-of-the-art proof of knowledge
protocols for RLWE-based public-key encryption and BDLOP commit-
ment schemes. In a nutshell, we present new proof of knowledge protocols
without using noise flooding or rejection sampling which are provably
secure under a computational hardness assumption, called Hint-MLWE.
We also show an efficient reduction from Hint-MLWE to the standard
MLWE assumption.

Our approach enjoys the best of two worlds because it has no computa-
tional overhead from repetition (abort) and achieves a polynomial over-
head between the honest and proven languages. We prove this claim by
demonstrating concrete parameters and compare with previous results.
Finally, we explain how our idea can be further applied to other proof of
knowledge providing advanced functionality.

Keywords: Zero-knowledge - Proof of Plaintext Knowledge - BDLOP -
Hint-MLWE.

1 Introduction

In the last decade, lattice cryptography has arisen as one of the most promising
foundations due to its versatility and robustness against quantum attacks. In par-
ticular, it has wide application in advanced cryptographic primitive for privacy-
preserving computational protocols such as homomorphic encryption (e.g. [9, 8]),
multi-party computation (e.g. [14, 18, 5]) and commitment (e.g. [6, 4, 16]).
When building a protocol secure against an active adversary, we often use a
strategy to first design a protocol in the semi-honest model and then compile it
into a maliciously secure version. In particular, zero-knowledge proof of knowl-
edge is often used for the compilation step. To the best of our knowledge, there
are two major methodology to achieve zero-knowledge in lattice-based proof of
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knowledge protocols: noise flooding and rejection sampling. In the usual sigma
protocols, the prover generates an auxiliary randomness r, receives a challenge ~y
from the verifier, and then sends a response z := y + - r where r is the random-
ness of the input ciphertext/commitment. First, the noise flooding technique
samples y from an exponentially large distribution to fully hide the informa-
tion of 4 - r. On the other hand, the rejection sampling [20] makes the random
variable z independent to r by manipulating its probability distribution. This
technique has an advantage in that the ratio ||z||,/||v - r||, is very small, but
instead can abort the protocol repeatedly until generating an accepting tran-
script. Both methods commonly aim to prevent any information leakage on the
randomness of the input ciphertext/commitment, which results in the semantic
security of the protocol including the zero-knowledge of the message.

This work starts from the observation that the previous approach can be
an overkill since it provides zero-knowledge for both message and randomness,
while the primary goal of the zero-knowledge proof is mostly to ensure that there
is no information leakage on the message from the transcripts. In other words,
we do not always have to achieve the zero-knowledge for randomness, but it is
allowed to reveal some information about it as long as the message privacy is
guaranteed.

A natural question is how such partial information leakage of randomness
affects the security of proof of knowledge protocols. It is obvious that if an ad-
versary obtains the randomness in clear, then the message can also be recovered
directly. Hence, we aim to precisely analyze the conditional distribution of the
randomness r for given y + v - r, which indicates how much information about
the randomness is hidden against the adversary.

We apply this idea to a proof of plaintext knowledge (PPK) protocol for
the RLWE-based public-key encryption scheme [8, 17] and a Proof of Opening
Knowledge (POK) protocol for the BDLOP commitment scheme [6] and its ap-
plications [4, 16]. We show that it is possible to build secure PPK and POK
protocols without noise flooding or rejection sampling while achieving a poly-
nomial overhead between the honest and proven languages. Finally, we present
concrete parameter sets and show that our solution outperforms the state-of-
the-art results.

1.1 Technical Overview

Previous work statistically erased the information of the input randomness by
using noise flooding or rejection sampling techniques so that it suffices to con-
sider the standard (algebraic) LWE assumption for the security of public key
and ciphertext/commitment. On the other hand, in our work, we allow partial
information leakage on the randomness from the transcripts without using such
techniques, and we rigorously analyze how such leakage affects the secrecy of the
message.

We first explain how the transcripts in each proof of knowledge protocol
can be interpreted as an algebraic LWE instance with hints on the LWE secret
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and error, and then we show how the security reduction can be done under the
hardness assumption of a variant of LWE called Hint-MLWE.

PPK for RLWE-based Public-Key Encryption. For a public key pk, let
Encpk(m,r) be a ciphertext which we want to prove the plaintext knowledge
through the PPK protocol where m and r denote the message and encryption
randomness, respectively. Then, for zero-knowledge of the message m, we need
to prove that the transcript of the protocol does not leak any information on
m, which consists of Encpi(m, r), random ciphertexts Encp(y;, u;), challenges ~;
and responses (v;,2;) := (u;,y;) + v - (m,r) for 0 < i < £. Since Encp(v;, Z;)
can be naturally generated from Encpk(m,r), (v;,2;) and pk as Encpk(ui, y;) =
Encpk(vi, 2;) — i - Encpe(m, r), it is enough to consider the following tuple:

(pk7 Encpk(ma I'), (1)07 ZO); ceey (Uf—la Zf—l))

for given challenges g, ..., Ye—1-

Following the methodology of Chen et al. [11], we adopt the BFV scheme |[8,
17] and assume the condition p | ¢ for the plaintext modulus p and the ciphertext
modulus ¢, which enables to make each v; to be uniform random in R, with
u; < U(R,p) for a polynomial ring R := Z[X]/(X"™ + 1). Since Encp(m,r) =
pk - 7 + ((¢/p) - m 4+ M r®) for r := (r© 1) ) € R3 the remaining

components (pk, Encpk(m,r),z1,...,2¢) can be re-phrased as the following three
tuples:
(pk, pk - r© + ((q¢/p) - m + 1D, 7“(2))) (Public Key & Ciphertext)

(Yo T+ ¥is-eosYo—1-T+Yo-1) (Hints on the randomness r)

POK for BDLOP Commitment. For a commitment key ck = (Bg, B1) which
consists of two matrices over Ry, let Come(m, r) = (Bor, Bir + m) be the com-
mitment of the message m with the commitment randomness r, where we want
to prove the zero-knowledge of the message through the POK protocol. The
transcript of the POK protocol consists of Comc(m,r), w = By, a challenge v
and the response z = 7y - r +y. Similarly to the above PPK, w can be generated
from the other components, and hence it suffices to consider the following tuple
(B,Br+(0,m)",~y-r+y) where B is the concatenation of By and B;. In BDLOP,
we can express B = R-[I |A] for some invertible matrix R and a matrix A where
both are public. Therefore, it suffices to show that the secrecy of message m is
guaranteed for arbitrary m when the tuple (A, [I |Alr+R™'-(0,m)",v-r+y)
is given.

Security Reduction from Hint-MLWE. For the security proof, we define a
variant of Module-LWE (MLWE), which we call Hint-MLWE, and prove that
the secrecy of the message m is guaranteed under the hardness assumption
of Hint-MLWE. To be precise, the Hint-MLWE problem gives MLWE samples
(A, [I |A]r) with a bounded number of hints on secret and error as (yo - r +
Y0,y Ye—1 T +ye_1) where A + L{(Rq"”d)7 r < x,y; < & for some distribu-
tions x, & over R¥™ and 7, ...,7—1 are chosen from some distribution C over
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R’. The Hint-MLWE assumption implies that it is hard to distinguish between
the MLWE samples and the uniform samples (a, b) for b <- U(R;") even if the
hints on the secret and error are given.

We can directly apply the Hint-MLWE assumption to the security proofs: For
PPK, regarding (pk, pk-7(9) 4+ (r(1) +(2))) as two RLWE samples, the Hint-RLWE!
assumption under proper parameters implies that one cannot distinguish it from
(pk,b) for b < U(R?2) even when the hints are given. Similarly for POK, the
tuple (A, [I |A]r,y-r+y) is computationally indistinguishable with (A, u,y-r+y)
for an uniform random vector u under the Hint-MLWE assumption. Therefore,
there is no information leakage on the input message for both PPK and POK
protocols.

Hardness of Hint-MLWE. We also prove that there exists an efficient reduc-
tion from standard MLWE to Hint-MLWE under a discrete Gaussian setting, so
we can apply analyses on the concrete hardness of MLWE which has been stud-
ied extensively. Roughly speaking, when we set x, ¢ as discrete Gaussian with
width o1, o9 respectively, then it corresponds to the MLWE problem with secret
key and error distributions as discrete Gaussian with width parameter o, such
that 1 = 2( ) for some B > 0 determined by the challenge distribution
C. Therefore the concrete hardness of Hint-MLWE is measured by the width
parameters ¢ of underlying MLWE.

Our reduction result gives several implications on the effect of information
leakage from hints to security. For example, setting o2 > o1 corresponds to
the noise flooding technique and our reduction gives the same result: We can
easily check ¢ =~ 01, which implies the hints does not leak any non-negligible
information of the secret. It also provides the relation between the number of
hints and the hardness of Hint-MLWE: When there are exponentially many hints
given so that ¢ — 0, then the underlying MLWE would easily solvable, which
implies the hints leak entire information of secret.

1.2 Related Works

In previous literature, there have been proposed several variants of LWE with
different forms of side information. In [2, 27], a variant called extended-LWE was
firstly proposed which gives a hint on LWE secret and error vectors in a form
of a “noisy” inner product, i.e., (A, [I|A]r,(r,z) + f) for a small integer f and
given small vectors z, with a reduction from standard LWE. Later, extended-
LWE has been modified in various forms according to its usage. In [10], for
example, the noisy hint was substituted by the “exact” inner product (i.e., f =
0), and the problem was generalized into the multi-secret version, which was
used to prove the hardness of LWE with a binary secret. In [23], the exact inner
product hint was restricted to its “sign” value, and this variant of extend-LWE
was applied for the construction of an efficient lattice-based commitment scheme.

! Note that we can naturally define the Hint-RLWE problem as a special case (d=1)
of Hint-MLWE.
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Note that all the above variants of extended-LWE have commonly been proved
to be computationally hard under non-algebraic setting?, while the hardness of
Hint-LWE can also be proved in algebraic setting (in both ring and module
settings).

The Hint-LWE problem was firstly defined in [19], which publishes a hint on
the LWE error with additive Gaussian noise, i.e., (A, As + e,e + f) for a small
vector f. The main differences between the Hint-LWE problems in [19] and our
paper are as following: (1) We consider multiple hints on both LWE secret and
error, while [19] only considers a single hint on LWE error, (2) We also consider
the multiplication of challenges to the LWE secret and error in the hints while
[19] did not, (3) We prove the hardness of Hint-LWE under discrete Gaussian
setting while [19] uses continuous Gaussian (Hence, [19] is not able to consider
the hint on LWE secret which should be discrete). A multi-secret version was
considered in [19], but we note that our Hint-LWE problem can also be naturally
generalized to the multi-secret version.

There has been a recent work that analyzes the concrete security of LWE with
side information [13]. It considers various forms of hints (e.g., exact, approximate,
modulo inner product, short vector) and shows how these hints can be used to
improve the performance of the LWE attack algorithms. Note that a hint with
a (discrete) Gaussian noise in this paper has not been considered in [13], which
might be of independent interest.

2 Preliminaries

2.1 Notation

We use bold lower-case and upper-case letters to denote column vectors, and
matrices respectively. For a positive integer ¢, we use Z N (—q/2,q/2] as a rep-
resentative set of Z,, and denote by [a], the reduction of @ modulo g.

Let n be a power of two and ¢ be an integer. We denote by R = Z[X]/(X"+1)
the ring of integers of the 2n-th cyclotomic field and R, = Z,[X]/(X™ + 1) the
residue ring of R modulo ¢. For a polynomial f = Z;:Ol fiXt € R, thetP (p>1)
and ¢*° norms are defined as follows:

n—1

|p — .
S Il = g 15
i=

For a vector of polynomials f = (f(*,..., f(m=1) € R™, we write
m—1
) (@) [P — wH
SO = e ]
7=

2 In [23], the authors applied the module extended-LWE to instantiate the commit-
ment scheme, but they only provided the proof for plain extended-LWE.
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For a polynomial ¢ € R, we denote the vector of its coefficients by a bold letter

c and the corresponding negacyclic matrix by M(c). For a matrix A € R™*"
[l Ax]|,
) [E P
We denoted the largest and the smallest singular value of a real-value matrix

A by omax(A) and omin(A), respectively.

we denote the matrix norm of A by [|Al|, := maxyxcrn

2.2 Probability Distributions

We denote sampling « from the distribution D by x < D. For distributions D;
and D over a countable set S (e.g., Z™), the statistical distance of D; and D5 is
defined as 1 -3 o |Di(z) — Do(z)| € [0,1]. We denote the uniform distribution
over S by U(S) when § is finite.

We define the n-dimensional spherical Gaussian function p. : R™ — (0, 1]
centered at ¢ € R" as pe(x) := exp(—7 - (x — ¢) ' (x — ¢)). In general, for a
positive definite matrix ¥ € R™*™ we define the elliptical Gaussian function
Pevs i R* = (0,1] as p, /5(x) := exp(—7 - (x —¢) 7' (x — ¢)).

Let A C R™ be a lattice and v € R". The discrete Gaussian distribution
D, Ao Vs 18 defined as a distribution over the coset v + A, whose probability
mass function is D, , . 5(x) = p. /5(x)/p. s(v+ A4) for x € v+ A where
Pevs(V+A) =3 cvinPeys(y) < oo Note that D, , . /5 is identical to
the distribution of ¢ + x where x <+ D(vfc)JrA,O,\/f' When ¢ = 0, then we omit
c in the subscripts of both p and D. When ¥ = ¢2% -1, for ¢ > 0 where I, is the
(n x n) identity matrix, then we substitute VZ by o in the subscript and refer
to o as the width parameter of Dy ¢ . We denote by = <— Dz» , for x € R when
we sample its corresponding coefficient vector x from Dzn ,.

2.3 Module SIS/LWE

Definition 1. Let m,d be positive integers, and 0 < 5 < q. Then, the goal of
the Module-SIS (MSIS) problem is to find, for a given matriz A Z/{(Rg”d),
x € RY such that Ax = 0 (mod q) and ||x||, < 8. We say that a PPT adversary
A has advantages € in solving MSISg 4.m q.8 if

Prlx|l, <BAAx=0 (modq)|A + UR]");x«+ AA)] >e.

Definition 2. Let d, m,q be positive integers, and x be a distribution over R4T™.
Then, the goal of the Module-LWE (MLWE) problem is to distinguish (A, u) from
(A, [I,| Alr) for A < U(R™?), u « U(RY"), and v < x. We say that a PPT
adversary A has advantages € in solving MUIWER q.m.q. of

[Prb=1]A <—U(R2"Xd); r« x; b« A(A,[L,| Ar)]
—Prb=1] (A u) <—Z/{(R;"Xd X R"); b+ A(Au)|| >e.

The MLWE problem with d = 1 is called the Ring-LWE problem and denoted
by RLWER m.q.x-
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2.4 RLWE-based Public-Key Encryption

We describe the BFV scheme [8, 17|, which is a standard RLWE-based public-key
encryption with homomorphic property, to describe our PPK protocol.

e BFV.Setup(1?): Given a security parameter ), outputs the parameter set pp =
(R, q,p, x) where x is a distribution over R?, and p, q are odd integers such that
rla

The parameters p, g do not need to satisfy p | ¢ in general, but Chen et al. [11]
introduced this condition to simplify the proof of plaintext knowledge. We make
the same assumption to take its advantage in the protocol construction. The
scaling factor will be denoted by A := ¢/p € Z.

e BFV.Gen(pp): Given a public parameter pp = (R, q,p, x), sample (e, s) < x.
Outputs a secret key s and a public key pk = (—a-s+e,a) € Rg where a < U(R,).

e BFV.Encpk(m,r): For a public key pk = (b, a), message m € R, and encryp-
tion randomness r = (rg,7r1,72) € R3, output the ciphertext ¢ = 75 - (b,a) +
(ro+A4-m,r) (mod q).

e BFV.Dec(s,c): For a secret key s and a ciphertext ¢ = (cg,¢1) € Rﬁ, output
m=|A""(co+c1-s)| (mod p).

The encryption randomness r is generally chosen to be small so that the
decryption works correctly. Note that the additive homomorphism holds for both
message and randomness: For messages m1,ma € Ry, v € R, and 1,12 € R it
holds that

Encpk(mi,r1) 4+ Encpk(me, re) = Encpk(my + me,r1 +1r2) (mod q)

7 - Encp(my, r1) = Encp(y - ma,v - 11)  (mod g).

2.5 Lattice-based Commitment Scheme

We first recall the definition of commitment scheme.

Definition 3 (Commitment Scheme). A commitment scheme consists of the
following three algorithms:

— Gen(l’\): Given a security parameter X\, it generates a commitment key ck.

— Comek(m, r): Given a commitment key ck, a message m, and randomness r,
it outputs a commitment c.

- Openck(c,m,r): Given a commitment ¢, a message m, and randomness T, it
outputs either 0 or 1.

where Gen is probabilistic and Com, Open are deterministic. Let R be a distribution
for randomness. Then a commitment scheme (Gen, Com, Open) is said to be secure
if it satisfies the following properties:
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— Hiding: For all PPT adversaries A, the following advantage is negligible:

Pr [b:b’

ck—Gen(17);(mo,m1 )+ A(ck);r+TR; _ 1
b+U({0,1});c=Comex (myp,r);b’ +A(ck,c); 21"

— Binding: For all PPT adversaries A, the following probability is negligible:

Pr [(Dpenck(c,m,r) = Open,, (c,m/,r") = 1) A (m #m')

ck<Gen(1*);
(e,m,r,m’ ;7" )«—A(ck) |

Below, we present the BDLOP commitment scheme, whose binding and hid-
ing properties rely on the hardness of MSISg ,, ¢ i @a0d MLWER ,, 4.+, T€SPEC-
tively, where x is a distribution for commitment randomness. We refer the reader
to [6] for more details.

° BDLDP.Gen(l)‘): Given a security parameter A, it outputs a commitment key
ck = (Bo, B1) which are generated as follows:

- By = [I,| By € REXTVER) Ghere By « U(REWTR).
— By = [0M I BY] € Ry where By + U(RE*Y).

e BDLOP.Come(m, r): Given a commitment key ck, a message m € RZ, and ran-

domness r € R*TVFF it outputs ¢ = (cg,c1) where cg = Bor (mod ¢) and
¢ =Bir+m (mod g).

e BDLOP.Open, (¢, m,r): Given a commitment ¢ = (cg,c1), a message m, and
randomness r, it outputs 1 if and only if ¢ = BDLOP.Come(m,r) and |[|r[[, <

BepLop-

In [6], there is a weaker version of opening algorithm supporting for efficient
proof of opening knowledge, which we will describe in Sec. 5.1. The commitment
scheme also satisfy the additive homomorphism for both message and random-
ness as well as the BFV scheme.

2.6 Proof of Knowledge and Simulatability

In this subsection, we present a new approach to building a secure proof-of-
knowledge protocol. The conventional construction involves a zero-knowledge
proof for the prover’s secret input and randomness used in generating statements
to be proved. However, our new definition primarily relies on the idea that the
leakage of some information on randomness does not lead to an attack against
the prover’s secret input, which is formally described below.

Definition 4. Let L, L’ be NP-languages satisfying L C L’. Let R, R/ be witness
relations for L and L' respectively i.e., (t € L < Jw (t,w) € R) and (t € L' &
Jw’ (t,w') € R'). Let (P,V) be an interactive protocol where P takes a secret
immput m and a public parameter pp as input, and V only takes a public parameter
pp as input. Then (P,V) is called a secure proof-of-knowledge protocol for the
languages (L, L") if and only if it satisfies the followings:
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— Two Phases: The protocol consists of the following phases.

o Generate-phase: In generate-phase, the prover first samples random-
ness r, and then generates a statement t with x and r. At the end of the
phase, it sends the statement t to the verifier V.

e Prove-phase: In prove-phase, the prover and the verifier take (pp,t,x,r)
and (pp,t) as input respectively. Then, they interact each other to prove
that t € L. At the end of the phase, the verifier outputs either 0 or 1.

We refer the sequence of messages exchanged between P and V during the
generate-phase and the prove-phase as the transcript, and denote it by
Tr(P(pp, ), V(pp)).

— Completeness: If P generates a statement t € L in the generate-phase, the
prove-phase ends with 1 except for negligible probability.

— Knowledge Soundness: If there exists an adversarial prover P* which
makes the verifier outputs 1 at the prove-phase with non-negligible probability,
then there exists an efficient algorithm &, called an extractor, which, given
black-box access to P*, outputs w' such that (t,w’) € R with non-negligible
probability.

— Simulatability: There exists a PPT algorithm S, called a simulator, whose
input is pp and output is tr which is computationally indistinguishable from
the transcript from the honest prover P and verifier V, for any secret in-
put z. In other words, for all PPT algorithm A, the following advantage is
negligible:

‘Pr {b -1 z+A(pp); tr<—5(pp);] ‘

b A(pp,tr);

= A(pp); trTr(P(pp,z),V(PP)); _
e b:A(pp,t’:)px PP ]7Pr [bil

In this definition, we reformulate zero-knowledge condition on the prover’s
secret input by simulatability. The main difference between our simulatability
property and the conventional zero-knowledge proof is whether randomness is
perfectly hidden together or not. Since the essential purpose of secure proof-of-
knowledge protocol is to hide the prover’s secret input rather than a randomness,
it suffices to satisfy our simulatability property for the desired security require-
ment. It is worth noting that similar approaches have been considered in [15, 23].

Our definition utilizes two languages L C L/, called the honest and proven
languages respectively, to address common scenarios in lattice-based construc-
tion. There have been studies, such as [7, 25|, which reduce the communication
cost by weakening extractors’ power in the knowledge soundness property. Since
our instantiations of proof-of-knowledge in this paper also employ these meth-
ods, our definition makes use of two languages to cover these cases. The gap
between L and L’ is often referred as soundness slack.

2.7 Useful Lemmas

Lemma 1 (|20, Lemma 4.4]). For any k > 0, Pr[||x|| . < ko | x <= Dzn 5] >
1—2n - exp(—7k?).

Lemma 2 (|4, Lemma 2.5]). Pr [||X||2 < o\/n/T| X Dgno| >1—277/5,
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Lemma 3 (Simplified Convolution Lemma [28]). Let 3,39 be positive
definite matrices such that 23_1 = 27+ B3 satisfies V23 > n.(Z") for
0 <e < 1/2. Then for an arbitrary c € 2™, the distribution

{x1 +x2 | x1 ¢ Dy ys7) X2 DZ",C,\/EQ}
is within statistical distance 2¢ of Dyn ¢ /57755 -

Definition 5 (Smoothing parameter [26]). For an n-dimensional lattice A
and positive real € > 0, the smoothing parameter n-(A) is the smallest s such
that p1/(A*\{0}) < e.

Definition 6 ([28, Definition 2.3]). Let X be a positive-definite matriz. We
say that vV > n.(A) ifng(\/f_l -A) <1, de,p (\/iT /1*\{0}) <e.

Lemma 4 (|26, Lemma 3.3]). For any n-dimensional lattice A and € > 0,

In(2n(1+1/¢))

n:(A) < T

where A\p(A) is the smallest real number r > 0 such that dim(span(ANrB)) =n
and B is the n-dimensional unit ball centered at the origin.
Lemma 5. For a positive-definite matriz 3, VI > 1.(A) ifHE_1H2 <n(A)72

Proof. Note that the matrix norm equals to the largest singular value, and hence

Vomin(E) = 1/1/0max(B-1) = 1/1/[[Z71], > n-(A). Therefore, it holds that

erA*\{o} exp (—ﬂ'amin(E) . XTX) < € by Def. 5.

Since X is positive-definite, it holds that x' £x > opin(2) - x'x for any
x € A*, and we obtain

Z exp(—m - XTEX) < Z exp (—mmin(z) ~xTx) <e,
x€A*\{0} xeA\{0}
which implies ng(\/i_l -A) < 1. O

Lemma 6 ([7, Lemma 3.1]). Let n be a power of two, and let 0 < i,j < 2n
such that i # j. Then, 2(X* — X7)~! is an element of R such that

20— x9) Y <1

where the inverse of (X* — X7) is taken over the field Q[X]/(X™ + 1).

3 Hint-MLWE

In this section, we introduce a variant of the MLWE problem called Hint-MLWE.
The Hint-MLWE problem is inspired by the structure of transcripts generated
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by lattice-based proof of knowledge protocols. They often include partial infor-
mation about secret values such as the MLWE secret and the errors in MLWE
instances, which are obtained by adding random errors to them. Since these
‘hints’ on the secret values may affect the security of MLWE, noise flooding or
rejection sampling have utilized to ensure that no useful information is leaked
from a transcript.

Apart from these previous approaches, we aim to precisely measure how much
information on the secret values can be leaked from a transcript and its impact
on the security of the protocol. In this context, we come up with the Hint-MLWE
problem where the adversary is given the MLWE problem with some hints about
secrets and errors. As expected, this problem is useful for proving the security
of proof-of-knowledge protocols which we will deal with in Sec. 4 and 5.

To return, we will show that our goal can be achieved if both the secret
values and the errors for generating hints are drawn from (discrete) Gaussian
distributions by precisely analyzing the conditional distribution of the secret
values for given hints. We start by giving a formal definition of the Hint-MLWE
problem.

Definition 7 (The Hint-MLWE Problem). Let d,m,{ be positive integers,
X, & be distributions over R*™™, and C be a distribution over R‘. The Hint-
MLWE problem, denoted by Hintl\/lLWEff(’j’Cmq’X, asks an adversary A to distin-
guish the following two cases:

1. (A, [Im|A]r,'yO,...,w1,z0,...,Zg1> for A <—L{(R2”Xd), r<x,y; <&,
(Y0, -y ve—1) < C, and z; = ;- +y; for 0 <i < /.

2. (A,u,'yo,...,w1,z0,...7z,g1) for A <—L[(R;"Xd), u < URY), T+ X,
Vi<& (0, yv-1) < C,and z; =;-r+y; for0<i<U{.

We call the d = 1 case of Hint-MLWE as the Hint-RLWE problem and denote it

. £,€,C
by HintRLWEGSS .

We often refer (zo,...,z¢—1) as hints since it contains partial information about
the secret r. When x and ¢ are spherical discrete Gaussian distributions, we
replace them with their width parameters in the Hint-MLWE notation for sim-
plicity.

Lemma 7. Let £ > 0 be an integer and o1,09 > 0 be reals. For 7y, ...,ve—1 € R,
let T'; be the negacyclic matriz corresponding to v; and Xy := (% T+ % .
1 2

lf:l L) T,)"Y. Then, the following two distributions over Rt are statisticall
=0 "1 g Y
identical:

{(T,Zo,...,Zgl) | ¥ < Dzn o)y Yi < Dznooys zi:%-r—i-yi}

{(f’zo, ceZ0-1)

74 Dzn o1y Yi < Danoyy 2i =i 7+ Yis
_ 1 L=1 T N
c= 7320 oL 2y, 74— Dy o y5g
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Proof. We claim that two random variables have the same probability mass func-
tion. The probability that the first random variable outputs (v, wp,...,ws—1) €
R can be written as following:

Prir=v, vi-r4+yi =w; |7 < Dzn o, Yi < Dzn o)

:Dzn,gl (V) . H ’Z)Zn’g2 (Wi — I‘iV)

1

/—
1 1
X eXp l—ﬂ' (0% —% Z i —Tv) T Z-—I}v))}

=0

{—
—7 ((v—c)Tzol(v—c)—cho ct — Z )]

2 =0

=exp

where ¢ = %320 : Zf;é T w;.
Hence, the conditional probability Pr[r = v | v; - 7 + y; = w;] is proportional
to exp [—m(v — c) =5t (v — c)] for any wy,...,w; € R, which implies

Prir=v|vy-r+y =w|=ps;(v—c)=Pr[f=v|y- r+y=uwi
Therefore, the given two distributions are statistically identical. O

At a high level, Lem. 7 implies that the conditional distribution of r given
(Yo r+Yo-..,Ye—1-7+ye—1) follows a (possibly not balanced) discrete Gaussian
distribution again. Namely, the distribution of the first component of r given

=y -+ yl can be expressed as the Gaussian distribution over Z" with
parameters c = 1 EO ZZ 01" z; and Xg. Based on Lem. 7, we prove the
hardness of Hint- MLWE under the MLWE assumption when the secret and
errors are sampled from discrete Gaussian distributions.

Theorem 1 (Hardness of Hint-MLWE). Let d, k,m,q, ¢ be positive integers
and C be a distribution over R‘. Let B > 0 be a real number which satisfies

HZZ 1M 'yJ)TM(vj)Hz < B for any possible (yo,...,7ve—1) sampled from C.

For 01,00 > 0, let 0 > 0 be a real number defined as 0—12 = 2(& + U%) If

77
o > V2-n(Z") for 0 < & < 1/2, then there exists an efficient reduction from
MLWER, d4,m.q,c tO Hlntl\/ILWEég;’qu that reduces the advantage by at most
(d+m) - 2e.

Proof. Let (y1,...,v) + C, and let 3 = (o721, + 052 Zé : [/T;)~" where
I'; := M(,) is the corresponding negacyclic matrix of ; for O S j <X

Let (A,b) € R;”Xd x Ry be given MLWER 4.4, instances. Our reduction
starts by sampling some polynomials in R:

75 < Dgnoyy Yij & Dzno, for 0 <i<d+m, and 0 < j </
-1
t; < Dznp“m for C; = ?20 . ZI‘;—(F]Pz +yz’]) and0<i<d+m
2 j=0
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We write (T07 s 7Td+’m—1)7 (y07 s 7yd+’m—1)? and (t07 s atd-‘rm—l) asr, y,
and t respectively. Note that g — 02 - I, is positive-definite, since the smallest

)
singular value of X is (0;2 +oy%- HZj;(l) T, ’ ) > (0724 0,2-B) ' =
2

202 > o2,

Then, we use the sampled polynomials to transform the given MLWE sample
(A,b) into ( A, b+ [Ly, [Alt, v0,...,7-1, Zo;--- 7Zz1> where z; = ;- r+y;
for 0 < j < ¢, which are the output of the reduction.

We first assume that b = [I,,, |A]r’ for v/ + DZt™. Then, we have b +
I, |A]Jt = [L,, |A](r'+t) where r' +t follows the distributions Hfig“ _1(Dzn,0 +

Dy i vso=orT,)-

Now we show that /X3 > 1. (Z") where 23! := 0721, +(Zp—0%-1,)"!. By
Lem. 5, it is enough to show that ||23_1 ||2 < ne(Z™)~2. Recall that the smallest
singular value of g — 0?1, is at least o as discussed above. Therefore, it holds
that

B3, =072+ [[(Bo = 0® L) 7|, <077+ 07 = 2077 < e (27) 77

By Lem. 3, the distributions DZ'!L76+DZW’ 1 /E—o7T, are within the statistical
distance 2¢ of Dy, ., /5. Therefore, the distribution of

<Aa b+[InL |A]t? Y05+ Ye—1, Z07"'7Z€—1>

is within statistical distance (d + m) - 2¢ of

d+m—1

(A7 [Im |A]f'7 Yoy -5 Ve—1, Z05-~-5Z€—1> for 1 < H DZ",Ci,m'
=0

As the last step, we apply Lem. 7 on (t,zg,...,2Z¢—1), then its distribu-

tion is identical to that of (r,zg,...,2z¢—1). As a result, the distribution of

(A, L |AJE, Y0,---,Ye—1, Zo,--- ,ze1) is identical to that of

(A, I |Alr, Yo,-..)Ye—1, Zoy--- ,zzl), which exactly follows the distribu-

l,02,C
R,d,m,q,01"

Ifb « L{(R;”), then (A7 b+, |Alt, Y0,---sYe—1, Z0s-- -, zzl> follows the

tion of samples from HintMLWE

same distribution with (A, W, Y0,---sVo—1, Z0y-- - 7Z[1> where u < U(R}").
Therefore, the reduction is correct and reduces the advantage at most (d +
m) - 2e. O

Remark 1. When C samples monomials with leading coefficient £1, then it holds
that ‘ 227(1] I‘jTerQ S £.

Jj=
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Remark 2. Let a € R with [lal|,, < 1 and |la||; < k. Then, for any real
polynomial b € R[X]/(X™ + 1), we have ||a-b|, < k- ||b||,. Thus, we obtain

[M(a)b] lla-bll
IM(a)||, = maxpezn %ﬁz‘z = MAaXpeR[X]/(X"+1) ‘I{\ITH‘; <K
Therefore, if a distribution C over R’ outputs a sample (7o, ...,v,—1) with
Y

-1
il <1 and o, <, then [SIZETTT,

) < ¢k? holds.

4 Proof of Plaintext Knowledge for RLWE-based
Public-Key Encryption

The Proof of Plaintext Knowledge (PPK) protocol is frequently used to attain
active security in the constructions of secure multiparty computation proto-
cols [3, 14]. To be precise, the prover would like to send a ciphertext ct to the
verifier and convince the verifier that ct is well-formed while revealing no infor-
mation about the underlying message m.

One can formalize the functionality of PPK protocol using the framework
of the secure proof of knowledge protocol in Sec. 2.6. Let (Gen,Enc,Dec) be
a public-key encryption scheme, and pk be a public key for Enc. Then, the
public parameter pp is pk, the secret input is the prover’s message m, and the
honest language L and the proven language L’ are the set of honestly generated
ciphertexts and the set of accepted ciphertexts respectively. In the generation
phase, the prover samples encryption randomness r and generates a ciphertext
by ¢ = Encpk(m, 7). In the proof phase, the verifier checks whether c¢ is valid or
not. If it outputs 1, it is the case that ¢ € L.

The completeness ensures that an honestly generated ciphertext ¢ € L always
passes the proof phase except for negligible probability. The soundness ensures
that if the prove-phase ends with 1, then ¢ € L and the prover knows encryption
randomness u and message m except for negligible probability. Finally, the sim-
ulatability ensures that a verifier cannot know the underlying message m from
the transcript between the honest prover and verifier. Thus, the construction of
PPK protocol based on the proof-of-knowledge framework fulfills all the required
functionality.

4.1 PPK based on Hint-RLWE

Now, we provide a concrete instantiation of PPK protocol for the BF'V scheme |8,
17]. The main objective of the PPK protocol is to convince the verifier that a
ciphertext is generated with small randomness. For pp = BFV.Setup(1?); pk +
BFV.Gen(pp), we first define the witness relationship Repx and Ry as follows:

Repx = {(m,r,c) | BEV.Encp(m, 2r) =c A |r|| < B},
Rppg = {(m,r, ) | BFV.Encp(m,1) = ¢ A |lrf, < 8},
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Then, (m,r) can be viewed as a witness for the statement about c. The honest
language Lppx and the proven language Ly, are defined as follows:

LppK = {C S Rg ‘ El(m,r) S Rp X RB s.t. (m,r,c) S RPPK} 5
Lipx = {c € R2 | 3(m,r) € R, x R s.t. (m,r,c) € Ripg} -

In Fig. 1, we describe the PPK protocol Ilppx for the BFV scheme whose
security relies on the hardness of (Hint)RLWE. We remark that an encryption
randomness r is multiplied by 2 in Rppx for the honest language due to the
weakened knowledge extractor. In the soundness proof, we show that a knowledge
extractor can obtain (X' — X7) - (m,r) for some i # j. Since (X* — X7)"1 ¢ R
and 2(X*— X7)~! € R by Lem. 6, we can finally get (2m, 2r) rather than (m,r).
The prior work [5] had the same issue, but it resolved the problem by changing
the proven language of PPK. To be precise, the previous PPK protocol does
not guarantee the validity of c, but the validity of 2c instead. However, this
approach induces another issue that 2c is an encryption of 2m, not m. Hence,
we tweak the relation Rppx of the honest prover so that we can guarantee that
the ciphertext c itself is a valid encryption of m in the proven language.

Since the membership decision for Rppx and Rppx can be done in polynomial
time, both Lppg and Ljp, are NP-languages. The bounds ; and ] are parameters
that will be determined later after P and V are designated.

Theorem 2. Let £ be a positive integer, 01,02 > 0 and K = \/In(2n/e)/m for
a negligible € > 0. Let pp = (R, q,p,x) < BFV.Setup(1?), pk < BFV.Gen(pp),
C={X7:0<j < 2n}, B = kop, and B’ = 2nk(oy + 02). If (2n)~*
1s negligible, then Ilppx is a secure proof-of-knowledge protocol for the pair of
NP-languages (Lppx, Lppg) under the hardness assumption of RI(WER 1,4, and

13
HintRLWE ;7 ()

Proof. We show the completeness, knowledge soundness, and simulatability of
Ilppx as below.

Completeness: Suppose that both prover and verifier honestly follow the proto-
col. Then, the ciphertext ¢ generated by the prover satisfies the honest language
Ly since ||r|| < B except for a negligible probability ¢ from Cor. 1. The equal-
ity BFV.Enc(v;,z;) = w; +; - ¢ follows from the fact that v; = u; + v; - m and
z; =y; + 7 - r. It remains to show that ||z;||., < (14 02/01) - for 0 <i < L.
Let z;, = (zl-(o)7z§1),z£2)). From the definition, zi(j) follows the distribution
Dzn oy +7i - Dzn o, for 0 < j < 3. Note that v; - Dzn ,, is statistically identical
to Dzn» -, regardless of v;, as y; is a monomial with the leading coefficient 1 and
Dz o, is spherical with center zero. Then, z(j ) follows the distribution Dzn» », +

Dyn o, for all 0 < i < ¢, which is bounded by (1 + o3/01) - 8 = (01 + 02) - K
with an overwhelming probability. Therefore, the verifier outputs 1 except for a

negligible probability.

Soundness: Since the soundness error (2n)~¢ is negligible, it suffices to show
the existence of an efficient knowledge extractor which can generate a witness
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PPK pI'OtOCOl pr](

Prover P Verifier V
Input: m € R, pk
pk € Ri

Generate-phase:

r < D%",o‘l
¢ = BFV.Encpk(m, 2r) ;
Prove-phase:
For0<i<{:
u; < U(Ry)
Yi < D%"',az
w; = BFV.Encp(ui, 2y:)
W
—_—
(Yos- -+ ye-1) e UCY)
Yi
-

For0<i<?:
vi =u; +v -m (mod p)
Zi =Yi+7i-r

('Uiyzi)
For 0 < ¢ < £, check:

BFV.Encpk(vi, 22;) = w; + ;- ¢ (mod q)
|zill o < (14 02/01) B

Fig. 1. Our PPK protocol for the BFV scheme.




Toward Practical Lattice-based Proof of Knowledge from Hint-MLWE 17

Simulator Sppx
Input
pk € Rg
1. Sample ¢ « U(RZ2) and (qo,...,7e-1) < U(C").
2. Sample r < D3, .
3. Sample y; + D%n’az, and compute z; =y; +; - r for 0 < i < /.
4. Sample v; < U(R,,), and compute w; = BFV.Encpk(v;,22;) —; - ¢ (mod ¢)
for 0 <i< /.
5. Output tr = (c, (W4, i, (i, 2i) )Jo<i<e)-

Fig. 2. Simulator for Ilppk.

from two accepting transcripts (¢, w;, v, (v, 2;)) and (¢, w;, 7}, (v}, z})) such that
~i # 7} for some 0 < ¢ < £. We define an extractor £ as follows:

1. Find an index ¢ such that «; # 7/, and set 7; = 7; —~i. It is shown in Lem. 6
that 2’7{1 is an element of R with ||2;Yi_1Hoo <1
2. Compute and output (m,r) as follows:

m_10Jr1
2
r=273 " (zi—2) (modg)

257" (v; —v})  (mod p)

From BFV.Encpk(vi,22;) = W; +; - ¢ and BFV.Encp (v}, 22]) = w; + 7, - ¢, we
get BFV.Ency(v; — v}, 2(z; —2})) = 7; -c. We also note that Z:t = %1 (mod p) if
p and ¢ are odd integers such that p | ¢. Then, we obtain the following equality:

_ +1
BFV.Encpu(m,r) = 27, * - BFV.Encpy (p 5 (v; — ),z — zé) (mod ¢q)

1
:2’7;1-%-BFV.Encpk (v; — v}, 2(z; — z;)) (mod q)
1 g+1 _
:27i1~7-%-c:c (mod gq).

Meanwhile, we get [r||, <n-|jz; — 2| < 8 sincer =27, ' (z;—2) € R
and H27; 1” < 1. Therefore, the output (m,r,c) satisfies the relation Ripyg, so
o0
£ is an knowledge extractor for ITppg.

Simulatability. We show that Sppx in Fig 2 is a simulator for the protocol Ilppg.
Let Do(m) and D; be the distribution of the transcripts generated by the honest
prover and verifier of Ilppx for each message m € R, and that generated by Sppx,
respectively. We prove these distributions are computationally indistinguishable
by the hybrid argument: Let Ho(m) = Do(m), Hi(m), He and Hz = D; be the
distributions of tr which are defined as follows:
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Ho(m) : tr « Tr(P(pk,m),V(pk)) for pp = BFV.Setup(1*); pk < BFV.Gen(pp)
and given m € R,,.

Hi(m) : tr < Tr(P(pk,m), V(pk)) for pk + U(R?) and given m € R,,.
Hy @ tr  Spex(pk) for pk < U(RZ).
H3 : tr < Sppx(pk) for pp = BFV.Setup(1*); pk <+ BFV.Gen(pp).

Claim 1: Ho(m) and H;(m) are computationally indistinguishable for any mes-
sage m € R, under the hardness assumption of RIWER 1 4 .

For a given RLWE sample pk, one can pick any message m € R, and generate
the transcript tr < Tr(P(m, pk), V(pk)) . When pk is sampled from the RLWE
distribution (resp. the uniform distribution), then tr follows Hq(m) (resp. H1).
Therefore, Ho(m) and H; are computationally indistinguishable if RLWER 1 4.
is hard.

Claim 2: H;(m) and Hs are computationally indistinguishable for any message
14
m € R, under the hardness assumption of HintRLWE%O;é/{élc )
Let A be an algorithm that distinguishes H;(m) and Hs with an advan-
tage ¢’ for a message m € R,. Then, we can construct an algorithm B solving

14
HintRLWE ;72 () by exploiting A.
The algorithm B first receives a sample <a, b, Y0, .-, Ye—1,%0,---,%0—1

from the Hint-RLWE challenger. Let pk = a, ¢ = 2- b + ((¢/p)m,0) (mod q),
v; = u; +y; - m (mod p) for u; < U(R,), and w; := BFV.Encp(v;,22;) —; - €
(mod ¢) for 0 < ¢ < {. The algorithm B runs A(pk,tr) for the transcript
tr:= (c, (W4, Vi, (v4,2:))1<i<e), and it outputs the response from A.

If b = [I |ajr where r <« D%",al’ yi — D%",az’ z; = ;- r+y; for
0 < i < £. Then, ¢ = BFV.Encp(m, 2r) holds. Moreover, it holds that w; =
BFV.Encpk(u;, 2y;) since p | ¢. Therefore, tr follows the distribution H;(m).

Otherwise, if b is sampled from U(R?), ¢ and v; become uniform over R?
and R, respectively. Therefore, tr follows the distribution H.,.

14
Thus, the algorithm B solves HintRLWEff;’g(f_? ) with the same advantage
¢’, and &’ should be negligible by the hardness assumption, and therefore H;(m)
and Hy are computationally indistinguishable for any message m € R,,.

Claim 3: Hs and H3 are computationally indistinguishable under the hardness
assumption of RLWER 4.y. . -

For a given RLWE sample pk, one can generate the transcript tr < Sppx(pk).
When pk is sampled from the RLWE distribution (resp. the uniform distribu-
tion), then tr follows Hz (resp. Hs). Therefore, if one can distinguish Hs and Hs
with advantage ¢’ > 0, then it can also solve RLWER , ., y. With advantage ¢’.

By Claim 1,2 and 3, the distributions Ho(m) and Hs are computationally in-
distinguishable for any message m € R, and hence Ilppg is simulatable assuming

that RIWE g y..v. and HintRLWES72: 4 are hard to solve.
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Thus, the completeness, knowledge soundness, and simulatability of ITppk are
completely proved.

Remark 3. Let o > 0 be a real number such that 02 = 2(o; 2 + €05 ?). If 0 >

V2 -n.(Z") for some negligible € > 0, then the hardness of HintRLWEf{E’(%?Z) is

reduced from the hardness of RLWEg 5, » by Thm. 1, since samples from U(C*)
are monomials (see Rem. 1).

Soundness Slack. In the previous work [5], the value 3’/3 is used to describe
soundness slack between Lppx and Ljpg. This measurement correctly captures
the intuition of soundness slack since it represents an overhead derived from the
noise flooding. However, this context does not perfectly fit with our case since
the security of our protocol eventually depends on ko (rather than 8 = koq) if
we reduce the hardness of Hint-RLWE from RLWE. Thus we use the quantity
B'/ko = M as an alternative measurement for soundness slack in our

protocol since it precisely describes how much cost is incurred to achieve the
security against a malicious adversary.

Parameter Setting. We explain a methodology to choose optimal parameter
sets for ITppk following the conditions of Thms 1 and 2. We denote by As,q and
Azk the security parameters of soundness and simulatability of our protocol, re-
spectively. The soundness security stands for the soundness error of the protocol
so it is determined by the size of the challenge space. The zero-knowledge secu-
rity is originally intended to denote a statistical distance between the simulator
and real accepting conversation because simulators in the previous studies [5, 18]
are based on statistical indistinguishability. Since our simulator is based on com-
putational indistinguishability, we only account for statistical advantage for Azk
neglecting computational ones.

We now set the parameters k, ¢, 01, and o9 for given As,q and Azx. We first
consider the soundness security. We set £ = [Agna/ log 2n] so that (2n) ¢ < 27 Asw
holds. Then, we set the parameters o1, o3 which are related to the zero-knowledge
security Azk. Note that indistinguishability for Sppx comes from computational

hardness of R\WE .. . and HintRLWES 2 #©). From Thm. 1, the hardness

£
of HintRLWE%’?;’fg(lc ) is reduced from RLWER 2,4, With statistical advantage 6e

where 5 = 2((%% + U%), and € > 0 is some value satisfying o > /2 - n.(Z").

Since we use standard HE parameter sets presented in [1] for RIWER 4 . x., it is
computationally hard. Thus, it suffices to consider the hardness of RLWER 4.2+
and the advantage 6¢ occurred during reduction for the zero-knowledge security
Azk. We set ¢ = 272 /6 and 0 = /2 - 71’1(2"(?1/5)) ~ 2. 7)‘2’(“2(12”) SO
that o > v/2-1.(Z") for given Azk. Note that standard HE parameters presented
in [1] use 3.2 - v/27 as width parameter for error distribution of RLWE. Since
the value of o is larger than that value for Azx = 128, it does not affect on the
hardness assumption of RLWE with our parameter.

Note that the soundness slack of our protocol is determined by o7 4+ o2 when
o is fixed. Hence, we aim to choose o1 and oy so that the soundness slack is
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minimized for given o. It is easy to show that the best parameters are such that
o1 =V 05 + l-0,09 = 03 -01 and Therefore, the soundness slack of our protocol
is calculated as 2n(oy + 02) /o = 2n(1 + £3)3.

Finally, we set the parameter x which is related to the completeness. If we
set k = /In(2n/e) /7 for a negligible &', a honestly generated conversation gets
accepted with an overwhelming probability by Thm. 2.

4.2 Extension to Multi-prover PPK

Among versatile applications of PPK protocol, we focus on its usage on the
SPDZ multi-party computation (MPC) protocol [14] which utilizes somewhat
homomorphic encryption (HE). To achieve active security, SPDZ runs a zero-
knowledge PPK protocol for HE ciphertexts so that they are ensured to be
honestly generated.

There have been several follow-up studies [5, 18] that improve the efficiency of
the PPK protocol in SPDZ. The current state-of-the-art PPK protocol for SPDZ
is called k-prover PPK protocol [5], which consists of k parties who play roles of
both prover and verifier. In this protocol, all parties verify the validity of a single
(accumulated) ciphertext instead of verifying multiple ciphertexts by repeatedly
running ITppx for each party. This reduces the computational cost of verification
by a factor of k. However, for this purpose, all parties must be online to jointly
generate a shared challenge. Therefore, the noise flooding method is enforced
to achieve zero-knowledge since the rejection sampling method would lead to
a slowdown due to potentially having to rerun the protocol multiple times|[5].
Hence, it achieves a faster verification procedure at the expense of increased
communication cost due to the larger ciphertext size resulting from the noise
flooding method.

We note that our PPK protocol can be naturally extended to the k-prover
case, as described in Appendix A. Compared to the previous work, which uses the
noise flooding, our method significantly reduces soundness slack, which incurs a
smaller ciphertext size and reduced communication cost. Additionally, we note
that the previous work was based on the BGV scheme [9], but we use BFV as a
substitute.

Parameter Setting. A parameter setting for the k-party PPK protocol for
BFV can be done in a similar manner. The only difference is that the bounds 3
and 3’ become k times larger since each party adds k& commitments or responses
during the prove-phase, but it does not affect the soundness slack as both of
them get increased by the same factor. As a result, the soundness slack is still
2n(1 + E%)%. In asymptotic scale, the soundness slack for our PPK protocol
is 2n(1 + £3)2 = O(n - V¥) = O(n - \/Asna/logn) since £ = O(Aspa/logn).
Meanwhile, the soundness slack in the previous PPK protocol [5] accompanies
the exponential factor 22 which comes from the noise flooding technique.
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5 Proof of Opening Knowledge for BDLOP

The commitment scheme has been used extensively as a core building block
of various cryptographic schemes (e.g. [22, 24, 21]). In these applications, the
Proof of Opening Knowledge (POK) protocol is usually incorporated together
to ensure the security against active adversaries. While the existing constructions
of POK rely on zero-knowledge proofs for both input message and commitment
randomness, we aim to construct a more efficient POK protocol that allows us
to leak partial information of the randomness while still guaranteeing the full
message privacy.

Such POK protocol can be implemented using the secure proof-of-knowledge
framework in Sec. 2.6. Let (Gen, Com, Open) be a commitment scheme, and ck be
a commitment key generated by Gen. Then, the public parameter pp is ck, the
secret input x is the prover’s message m, and the honest language L and the
proven language L’ are the set of honestly generated commitments and the set of
accepted commitments, respectively. Then, the completeness guarantees that the
prove-phase ends with 1 if the commitment ¢ € L. The soundness guarantees that
if the prove-phase ends with 1, then ¢ € L and the prover knows randomness r
and message m used for generating the commitment c. Finally, the simulatability
guarantees that the transcript between the prover and the verifier does not leak
any information about input message m.

In the rest of this section, we present a concrete instantiation of the POK pro-
tocol for the BDLOP commitment scheme [6] based on the hardness assumption
of Hint-MLWE, and we provide a concrete parameter set of our POK protocol
with a comparison to prior work. It is worth noting that our POK protocol is
free from aborting, contrary to previous constructions in |6, 23] using rejection
sampling. This work also answers the open questions stated in 23|, whether it
would be possible to achieve any security proof for POK without rejection.

5.1 POK without Abort based on Hint-MLWE

In this subsection, we propose a POK protocol for the BDLOP commitment
scheme [6], which is one of the most widely used building blocks for lattice-based
cryptographic primitives [24, 21]. While our protocol leaks some information
about commitment randomness, it still satisfies security conditions to be a key
ingredient for the construction of the advanced proof techniques such as proofs
for product relation [4] and proofs for linear relation [16]. We discuss how our
POK protocol can be extended to cover these applications in the next subsection.

We first recall soundness slack that arises in lattice-based proof-of-knowledge
construction. The BDLOP scheme follows the proof style presented in [25], so a
knowledge extractor can only obtain a witness of the form 7-(m, r), where 7 is an
element from the difference set C' := {y—+' | 7,7 € C} given a challenge set C.
Hence, it requires a weakened version of the opening algorithm to accommodate
soundness slack. Below, we present the weakened opening algorithm for BDLOP.

e BDLOP.WeakOpen, (c,m,r,7): Given a commitment ¢ = (cg,c1), a message

m, randomness r, and an element ¥ € C, it outputs 1 if and only if ¢ =
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BDLOP.Comck (m, r) and ||5r|, < 284 gp-

Then, the witness relations for POK are defined as follows:

Ropen := {(c,m,r) | BDLOP.Open (c, m,r) = 1}
R{pen = {(c, m,r,7) | BDLOP.WeakOpen,, (c, m,r,7) = 1}

where ck < BDLOP.Gen(1%). We note that (m,r,?¥) serves the role of witness in
Répen' The corresponding honest language and proven language are defined as
follows:

LOpen = {C S Rg+k | El(m,r) (C, m, I') < RBDLDP}

L(/Jpen = {C € Rg+k | El(m,r,’_y) (C, m,r,’_y) € RgDLGP}

In Fig. 3, we describe our new POK protocol for the BDLOP commitment
scheme. We assume that ¢ is a prime integer satisfying ¢ = 5 (mod 8), and
C:={yeR]| |7l = c«N |7l < 1}, the set of polynomials with ternary
coefficients in {0, £1} and hamming weight x > 0. Then, it is known that every
element of C' except 0 is invertible in R, [25, Cor 1.2].

We formulate the security of our POK protocol Ilgpe, for the BDLOP comm-
mitment scheme as the following theorem. Then, the binding property depends
on the hardness of MSISg , 48xp; . under the weakened opening algorithm as
in the prior work|6].

Theorem 3. Let v, k,q be positive integers, 1,00 > 0, Bagorop = (ko1 +
02)\/ (1 + v + k)n/m, and ck + BDLOP.Gen(1?*). If (2)71 227 and 2~ (ktvEk)n/s
are negligible, then Ilgpen is a secure proof-of-knowledge protocol for (Lgpen, L

Open)
under the hardness assumption of HintMLWE}%’;%ﬁgzﬁl.

Proof. We show the completeness, soundness and simulatability of Ilgpes.

Completeness: Suppose that both the prover and the verifier are honest. Since
the relation Boz = w + v - ¢¢ (mod ¢) always holds, we only need to check the
condition ||z||, < Bipee = (ko1 + 02)y/ (1t + v+ k)n/m. By Lem. 2, we have
Irlly < o1/ (p+v+Ek)n/m and |yl|l, < o2v/(p+ v+ k)/m with probability
larger than 1 — 27 (#Fv+k)n/8 Then, we obtain |z|, = |y +7-rll, < (ko1 +
02)y/ (i + v + k) /m with probability larger than (1—2~(1#Fv+kn/8)2 a5 ||1y||| = k.

Therefore, the verifier outputs 1 except for negligible probability since the
value 2~ (#tv+k)n/8 g negligible.

Soundness: Since the soundness error 1/|C| = (n)ﬁ is negligible, it suffices
to show the existence of efficient knowledge extractor for Ryy,,. We refer the

detailed construction of knowledge extractor to [6].

Simulatability: In Fig. 4, we describe a simulator Sgpen for ITgpen. Let Dy(m)
and D; be the distributions of the transcript tr generated by an honest prover and
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POK Protocol Ilgpen
Prover P Verifier V
Input: By € Ry (TR Bo,B1
B, € RE*(Hvih) ' e RE

Generate-phase:

r « DiFvtE

"o

co = Bor (mod q)
ci=Bir+m (mod q) ¢ = (co, 1)

Prove-phase:

yeD’Z‘i"ij
w =Boy (mod q) w
Y
v < UC)
zZ=y+7vy-r
zZ
_

Check ||z||, < Beprop
Check Boz =w+v-¢co (mod q)

Fig. 3. The POK protocol for BDLOP.

verifier for a message m € R’; and that generated by the simulator, respectively,
which are defined as follows:

Do(m): tr < Tr(P(ck, m), V(ck)) for ck - BDLOP.Gen(1*) and given m € R}

D;: tr < Sppen(ck) for ck < BDLOP.Gen(1%)

Assume that there exists an algorithm A that distinguishes the distributions
Do(m) and D; with advantage ¢ > 0 for a message m € R’q“. Then, we can

construct an efficient algorithm B for HintM LWE L 24(©)

Rovjithg,or USING A which works
as follows:
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Simulator Sgpen
Input
B, € RIXWTVHR) B g Rtk

1. Sample u < U(RETF), V « U(RE*F) and v « U(C).

n+v+k pu+v+k
DI DyER,

2. Sample r + and y

I, V Co k
3. Compute ¢ = [Oklx“ Ik:| u (mod ¢) and parse ¢ = [01] forco € R, c1 € Ry.

4. Compute z=y +v-r, and w = Bpz — v- ¢y (mod q).
5. Output (c,w,~,2).

Fig. 4. Simulator for Ilopen.

1. Receive a Hint-MLWE instance (A, u,7,z) from a Hint-MLWE challenger.
Write z = {:O] € RFHVHE and parse A = [i”} for Ag € RAV and Ay €
1 1
kxv
Ry,
2. Sample V < U(RIF). Set By = [I, | V| Ag+VA,] € Ry*HH ),

ik kex (utv-+k) N 0
B, = [0 BTy | Al] € R , and compute ¢ = [Ok,lxﬂ Ik]u—i— [m

(mod ¢). Parse ¢ = 2(1) for co € R, c¢1 € R
3. Compute w = Bgz —v-¢o (mod q), and set tr = (¢, w,~,2), ck = (Bg, By).
4. Send tr to A, receive a response b = A(tr), and output b.

We first note that ck always follows the identical distribution with a sample
from BDLOP.Gen(1*). If u = [I,.44 A]r for r < D4, then it holds that

c= {Ogﬁ;# ;Z] [Lx Alr + [I?J = [g‘i]r + L?l] (mod q).

By the definition of Hint-MLWE, we can rewrite z as z = y + v - r for some
r < DEFYTR and y D”;ij. Then, we can also check that

7" o1
w=Bo(y +7 1) -7 -Bor=Boy (mod q)

Therefore, the distribution of tr is identical to Dy(m).
On the other hand, if u « U (Rfﬁk), all the variables are defined just as same

with Sgpen except ¢ due to the addition of {0} . Since { i’; ’ V] is invertible over
m 0F*H Ik
RUHR) X (ntk) I, V
q ) OkXM Ik
of c is identical to that sampled from Sgpen. Therefore, the distribution of tr is
identical to D;.

u is also uniform over Ré‘*k, and hence the distribution
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Thus, the adversary B has the same advantage ¢ as A in distinguishing the
Hint-MLWE instance. As a result, distributions Do(m) and D; are computation-

ally indistinguishable for any message m € R’; if HintM LWE};;;’{JF(,CCEI », 1s hard,

which implies the simulatability of our Ilgpen. O

Parameter Setting. We now present the method for setting parameters in our
POK protocol. The binding property of the commitment scheme is based on
the hardness of MSISg , 4.8rp;,,,» Which is identical to the previous construc-
tion in [6]. Meanwhile, the simulatability of our POK protocol is based on the

HintM LWE}%?’U(C) assumption. Thus, the parameters must be chosen in such
WVoptk,q,01
a way that all three problems remain computationally hard.
To set the concrete parameters for the Hint-MLWE problem, we use the

reduction in Thm. 1. Since a sample v - U(C') satisfies ||v||; = & and |7 =

1, we can reduce the hardness of HintMLWE}{K;Z_(,SLm from MLWER , jitk,q,0

where 1/02 = 2(1/0?++2%/03) by Remark 2. To this end, o > v/2-1.(Z") should
hold for some negligible € > 0. Then, we only need to consider the hardness of
MLWER, ., ji+k,q,0 When setting the parameters for simulatability. Recall that the
upper bound of ||z||, is Bgprop = (ko1 +02)/ (1t + v + k)n/m. Thus, we choose o1
and oy which minimizes ko + o3 under the constraints 1/0? = 2(1/0? + k2 /02),
c>V2- N (Z™).

In Table 1, we present concrete parameters which are calculated according to
the aforementioned method. We measure the hardness of MSIS and MLWE in
terms of the root Hermite factor J, targeting for § ~ 1.0043 which gives 128-bit
security. We first set ¢ ~ 232 and n = 27 as presented in [23] and then adjust the
MSIS rank p and the MLWE rank v. We also set k = 32 to achieve a negligible

soundness error 1/|C| = (:)71 S27R < 27128 We set 0 = /2 - w S0
that the condition o > /2 - 1:(Z"™) holds by Lem. 4.

Comparison to Rejection Sampling. In the previous work [6, 23], the re-
jection sampling method is used to attain zero-knowledge or simulatability. Al-
though it reduces the soundness slack significantly, it introduces additional com-
putational overheads due to repetition. To provide comparison with our work,
we also calculate concrete parameters in Table 1 which are obtained by using
the rejection sampling method in [20] and [23]. We follow the notation from [23]
where Rej, and Rej, refer to the rejection sampling methods presented in [20]
and its improved version, respectively. In [23], they set randomness distribution
to be U({—1,0,1}") and the number of rejections M = 6. Then, Rej, and Rej,

output z whose distribution is statistically close to D%‘ 'Z,;Hf and Db’ lgk, re-

spectively, where Sy = 16.89 - k/(u + v + k)n and f; = 1.69 - 6/ (p + v + k)n.
3

Simulatability of Rej, can be obtained by constructing the simulator that
has a negligible statistical distance to the distribution of real transcripts, but the

3 Since the Gaussian function in [23] is defined as p(x) = exp(—1/2 - x " x), we multi-
plied a factor of v/27 to those presented in [23].
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simulator for Rej, requires additional assumption called Extended-MLWE [23]
to achieve indistinguishability since it leaks some information on commitment
randomness. We remark that the hardness of the Extended-MLWE problem has
been proven only for the non-algebraic setting. In contrast, simulatability for our
method depends on the Hint-MLWE problem, and its hardness can be reduced
from the MLWE problem by Thm. 1.

We now compare the parameters with ours (Table 1). Note that v is deter-
mined by the hardness of MI(WER 1 4k .g xior. Where Xier = U({—1,0,1}"). As a
result, v needs to be at least 10 for both Rej, and Rej, to attain root Hermite
factor § ~ 1.0043, assuming the Extended-MLWE problem is as hard as the
MLWE problem. However, our method enables us to set ¥ = 9 due to the larger
upper bound on the commitment randomness r. It is worth noting that both
Rej, and Rej; have an upper bound on the ratio |ly||,/||yr||, in terms of the
rejection rate, and therefore they try to set ||r||, as small as possible. However,
our method is free from this restriction.

Note that y is determined by the hardness of MSISg ;114 k,1,9,8x8;, for Rej;.
As a result, p should be at least 7 for Rej, to attain root Hermite factor § ~
1.0043. In case of Rej,, it reduces p to 6 due to having a smaller width parameter.
Meanwhile, it suffices to set 4 = 5 in our case. Therefore, our method gives
smaller p, v values compared to the prior work under the same security level.
Additionally, our method reduces computational overheads since it does not
require any repetitions (rejections) to achieve simulatability.

Rej, Rej, Ours
w (MSIS rank) | 7 6 5
v (MLWE rank) | 10 10 9
Repetition 6 6 -
Simulatability | — |Ext-MLWE | MLWE

Table 1. Parameters of each POK for BDLOP (g~ 2%, n =27, k =32, k= 1)

5.2 Optimizations and Extensions

In the realm of lattice-based cryptography, there are several applications of the
BDLOP commitment scheme such as proofs for integral relation [22], group sig-
nature [21] and ring signature [24]. In these applications, advanced proof tech-
niques from [4, 16] are employed to verify additional conditions for the input
message. These conditions vary depending on applications, but they all stem
from the core property of the BDLOP scheme: computational binding.

In this subsection, we briefly describe how our POK protocol can be fur-
ther extended to advanced proof systems for product relation [4] and for linear
relation over Z, [16].
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Modification in Challenge Set. In recent applications of BDLOP, the modu-
lus g is often set to be ¢ = 2n+1 (mod 4n) to obtain the isomorphism R, ~ Zj.
However, this approach has a disadvantage in that some elements of C' are not
invertible in R,. To cope with this issue, a new challenge distribution C over
{v e R | ||7ll, <1} was proposed in [4] where each coefficient is sampled inde-
pendently from —1,0, 1 with probability 1/2 for 0 and 1/4 for each —1 and 1. Tt
has been shown in [4] that the POK protocol using the new challenge distribution

C attains a soundness error of approximately ¢~ 1.

The simulatability still holds for this case by simply substituting /(C) with
C in Theorem 3. Since a sample v < C satisfies ||y||,, < 1 and ||y| < n, the
parameter setting procedure for this case is equal to that in Sec. 5.1 except k = n
by Remark 2.

Boosting Soundness. As mentioned earlier, the new challenge distribution
provides a soundness error of ¢~!, which is non-negligible in most applications
where ¢ =~ 232. To reduce the soundness error further (i.e., ¢~*), an optimiza-
tion technique [4] that amplifies a single challenge into multiple challenges via
automorphisms is often used. In this case, the prover sends multiple responses
z; = yi + ¢'(7) -1 for 0 <i < £ where p(X) = X2*/%+1 and the verifier checks
if ||z:]l, < Baprop and Boz; = w; + ' () - ¢o (mod ¢) for 0 <i < L.

A further improvement [22, Appendix A.6] was proposed to reduce the size
of transcripts by expressing (¢?(y))o<i<¢ as a linear combination of the parsed
polynomials ; = Z?i%_l A+ X3 for 0 < i < £ of y = Z?:_Ol @) XI. In this

case, the prover sends w; = Byy, and z, =y, +; - r for y} + D%;;Tk and

verifier checks if Bz, = w, + 7; - ¢g for 0 < i < £. Then, by computing y; =
o e (XY, 7 = g ¢ (XP)z), and w; - S0 ¢ (X)W for 0 < i<t
one can reconstruct the relations z; = y; + ¢*(y) - r and Boz; = w; + ¢*(y) -
co. Thus, the soundness property is still maintained. Since |v;||; < n/¢ while
ng(i) (7)| | < n, it results in smaller size of responses.

Adopting these optimizations, the transcript now contains multiple responses
z; for 0 < ¢ < ¢, which increases the number of hints from 1 to ¢ in terms of Hint-

MLWE. Let C’ be the distribution of (v, . .., ve—1) where v; = Z?ﬁ;l G+ Xt
for v = Z;l;ol @) X7 « C. Then, the simulatability holds under the hardness

assumption of HintM LWE%(,T;,f;k,qm
comes Baprop = (o1 +V20oa)\/ (1 + v + k)n/x since y; = Zﬁ;(l] @' (X7)y’; follows

=1 ~put+v+k . . .. utv+k . .
> j—0 Dz 5, » which is statistically close to Dzn’ Vi, ASSUming the convolution
lemma (Lem. 3).

. Meanwhile, the upper bound of ||z;||, be-

Applications. We first discuss the simulatability for advanced BDLOP-based
proof systems: proof of multiplicative relation [4, Fig. 4] and proof of knowledge
for a (ternary) solution to a linear equation [16, Fig. 1 and Fig. 3]. We present
new simulatability proofs of these protocols without abortion under the Hint-
MLWE assumption in Appendix B.
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To summarize briefly, in those protocols the elements of the transcripts are
fully simulatable except for ¢ and z; since they are sampled independently from
the commitment randomness r. Therefore, it suffices to consider the simulata-
bility of ¢ and z;, and it can be shown using the same methodology to Thm. 3,
together with the aforementioned modifications. As a result, one can construct
simulators for both protocols in a similar way to Sgpen. Note that our new sim-
ulatability proofs for the advanced BDLOP-based proof systems are valid only
for non-aborting transcripts, which is the same restriction for zero-knowledge
proofs in the previous work [4, 16].

As a benchmark, we present parameters for the protocol in [16, Fig. 3] in
Table. 2, which proves knowledge for a ternary solution of a linear equation
over Zq. In [16], a rejection sampling method whose output follows uniform
distribution is used. Meanwhile, [23] uses the improved version of the rejection
sampling method, Rej,, so that it managed to reduce the parameter p by 1.

For the parameters in our method, the binding property depends on the
For the simulatability, it depends on the hardness

hardness of MSIS Ropt.0,8 B0
. l,02,C . . e ’ _
of HthLWER)VMJrk’qm. We choose 01,02 which minimizes Sy pp = (noy +

Viloy)\/ (1 + v+ k)n/m under the constraints 1/0% = 2(1/0? 4 £ - (n/)?/03),
and ¢ > V2 - N:(Z™). As a result, our method reduces both parameter p and
v to 7 and 9, respectively. We also note that our method does not require any
repetition, so it indeed reduces computation overheads.

[16] (23] Ours
w (MSIS rank) | 9 8 7
v (MLWE rank) | 10 10 9
Repetition 18 6 -
Simulatability | — | Ext-MLWE | MLWE

Table 2. Parameters for proof of knowledge of a ternary solution of linear equation
over Z, (q~2% n=2"0=4k=19)
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A Ek-Prover PPK
We present the protocol (Fig. 5) and the simulator (Fig. 6) for the k-prover

PPK. The completeness, soundness, and simulatability of k-Prover PPK can be
proved in similar way to Thm. 2. For more details, refer to [5].

k-PPK Protocol Il ppk

Party P;(0 <i < k) All parties
Input: m; € Ry, pk € Rg pk € Rg

Generate-phase (for P;):
r; < D%n o1

ci = BFV.Encp(m;, 2r;) ~ Droadeast

Prove-phase (for P;):
Foro<j<{:
wij — U(Rp),¥iy  Din g,
Wi = BFV.Encpk(uim Qyi,j)

Broadcast wy ;
R ——

Broadcast ~; (Yo -+, Y1) Z/l(Ce)

PR
Foro<j<{:

Vi,j = Ui,j +v; - m;  (mod p)

Zij = Yij T T

Broadcast (vij,2s,;)
_
k—1 k—1
C = E Ciy, W; = E Wi,
i=0 i=0

k—1 k—1
vj = Zvi,j, zj = sz
i=0 =0
For 0 < j < ¢, check:
BFV.Encpk(vj,22;) = w; +7; - €
1250 < k(1 +02/01) - B

Fig. 5. PPK protocol for k-prover.
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Simulator Sj_ppx
Input
pk € Rg: public key

We denote I C [k] as the set of corrupted parties.

1. Sample ¢y < U(RZ) for i’ ¢ I and (yo, ..., 7e—1) « U(CY).

2. Broadcast c; for ¢’ ¢ I and receive c; for ¢ € I in the generate-phase.

3. Sample ry < D3, ., yirj + Di.,, and vy < U(Ry) for i/ ¢ T and
0<j<Ut.

4. Compute z;/ j = v;-ry +yi ; and wy j = BFV.Encp(vir 5, 224 j) — ;- ¢ for

"¢ Tand 0<j </

Broadcast w;/ ; and receive w; ; for ' ¢ I, 1€ I, and 0 < j < £.

Broadcast (yo,.-.,7v¢—1) as a shared challenge.

Broadcast (vi/ j,2; ;) and receive (v; j,2; ;) for i’ ¢ I, i€ I, and 0 < j < £.

Output tr = (i, Wi j,Vj, Vi js Zi,j)0<i<k,0<j<t-

02

© N

Fig. 6. Simulator for Iy ppx.

B Application of BDLOP

ALS.Gen(1*), ENS.Gen(1%), and ENS'.Gen(1%) correspond to BDLOP.Gen(1*) where
k = 4,2 and 19, respectively. Simulatability of these protocols are provided in
the following subsections.

B.1 Simulatability of ITp..4

In Fig. 9, we describe a simulator Spyoq for a mon-aborting transcript of Ilprog.
Let Do(m) and D; be the distributions of the transcript tr which is generated
by an honest prover and verifier for a message m € RS and that generated by
the simulator, respectively, which are defined as follows:

Do(m): tr < Tr(P(ck, m),V(ck)) for ck < ALS.Gen(1*) and given m € R}

Dy: tr < Sproa(ck) for ck +— ALS.Gen(1%)

Let A be an algorithm that distinguishes the distributions Dg(m) and Dy of
tr under the condition Verp,.q(tr) = 1 with advantage € > 0 for some message
m = (mqy,mg,m3) € RS. Then, given the algorithm A, we can construct an

efficient algorithm B for HintM LWE%”;’HC_;_ 4,q,0, Which works as follows:

1. Receive a Hint-MLWE instance (A, W, Y0y - vy Vo—15Zys - - - 7z2,_1> from the

Hint-MLWE challenger. Compute z; = Ef;é gpi(Xj)z;-, v = Zf;é 7 XE
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Write z; = {ZO’Z} € R+ parse A = {20] for Ag € R and A, €
1

Z1
u
Réx”, and parse u = uo for up € RY and u; = (u1,uz,us,uq) " € Ré.
1

2. Sample V « U(RE*Y), 0p,...,00-1 + U(R,). Compute and set By =
[Iu | v | A0+VA1] c RgX(M+V+4), ]_))1 — [O4XM ‘ I4 | Al] c RéX(H+u+4),
and ck = (Bg, B1).

3. Compute cg = [I, | V] -u, ¢; =u; +m; for 1 < j <3,

£—1

¢y =ug + Z Sip™" <(<b37Zi> —¢'(7) - ug)

=0

ma((by,z) — () - ) — ma((b,z) — () -un)

and set ¢ = [20} € RZ‘H for c; = (t1,...,ts)" € R;‘.
1

4. Compute w, = Boz, —~;-co (mod q), f;; = (bj,z;) —¢*(7)-¢; for 0 <i < ¢,
1<j<3,and f4 = (bg,2z0) — 7" 4.

5. Compute v = 00 807" (fiifiz + ' (V) fis) + fa-

6. Set tr = (c,v,7, (W}, d;,2})o<i<s), Send it to A, receive a response b =
A(ck, tr), and output b.

The overall flow is identical to the proof for Sgprgp except for the ¢4 part.
Assume that u = [Iu+4 A]r for r « ng, 1::4. First, it is easy to check that
co = Bor and ¢; = (bj,r) +m; for 1 < j < 3. By the definition of Hint-MLWE,

we can express z, = y; + ;- r for 0 < i < £ where y; + DAZL:ZJQA

words, z; = y; + ¢'(y) - r for z; = Eﬁ;é 0 (XHz, and y; = Z§;(1) o (XY)y!.
Then it holds that (b;,y;) = (b;,z;) — ¢'(v) (bj, 1) = (bj,2z;) — ¢'(7) - u; for
0<i<{ 1<j<4,and hence we get

. In other

w; = Boz; — ¢'(7) - co = Boys,

~

ca = (bg,x) + Y i ((bs,yi) —mi (ba,yi) — ma(by1,y;)).

i

—

Il
o

Note that v = (by, yo) + Zf;é 3io~" ({(b1,y;) (ba,y;)) holds for non-abort tran-
script. Therefore, the distribution of tr is identical to Dy(m) under the condition
Verproa(tr) = 1.

Now let us assume that u < U (RAH*). We can easily check that if ¢ is deter-
mined then there exists a unique solution u that satisfies the relation between c
and u. Therefore, ¢ also follows the uniform distribution over Rg“. In simulator
Sproa, We can also check that c follows the uniform distribution over Rg*“. By
the definition of Hint-MLWE, we can express z; =y, +; - r for 0 <4 < ¢ where
r+ D’Z‘f’ '(’:4 and y; + D%_’ 22'4. All the other variables are defined just as same
with Sproq. Therefore, the distribution of tr is identical to D;.
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HProd

Prover P Verifier V
Inputs: By € Rgx(“+y+4) Bo,bi,...,by
bi,...,bs € RZ+V+4

mi, M2, M3 € Rq

Generate-phase:
+v+4)

501

r<—DgfL

COZB()I'
¢j =(bj,r)+m; (1<j<3) 0, €1, €2, 8

Prove-phase:

yi e DI (0<i<)
£—1 ) )

yi=» ¢'(X)y; (0<i<e)
=0

w; =Boy; (0<i<{) w;

Cq = <b47 I‘>

—1
+> dip " ((bs,yi) — mu (b2, yi) —m2 (b1,y:))
=0

£—1
v =(bs,yo) + > _ S~ ((b1,yi) (ba,ys)) v
1=0
-1 )
Y C =) X'
i—0
Y0y -0y Vo1
oo
/
zi=yi+vy-r (0<i<{) Zi
VerProd(CO7 Cly...,C4,

’ ’
Wi76i7U777Zi)

Fig. 7. Proof of product relation [4].
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Thus, the adversary B has the same advantage ¢ as A in distinguishing the
Hint-MLWE instance. As a result, the distributions Dy (m) and D; of tr under the
condition Verp,oq(tr) = 1 are computationally indistinguishable for any message

m € R} if HintMLWER¢,,  is hard, which implies the simulatability of

11 Prod- a

/ /
VerProd(C07 C1,C2,C3,C4, W, 6i7 v,7, Zi)

£—1 -1
1: Compute z; = Z(pi(Xj)z;, w; = ngi(Xj)w;- (0<i<¥)
3=0 3=0

2: Check |z, < (no1+ Vioa)y/n(p+v+4)/7 (0<i<0)
3: Check Bozi=w;i+ ¢ (y)co (0<i<¥)

4: Compute f;; = (bj,z:)—¢'(7)e; (0<i<l 1<j<3)
5: Compute fs= (bs,z0)—7 ca

£—1

6: Check Z5itp_i (fi,lfi,Q + <,0i(’Y)fi,3) + fa=w

=0

Fig. 8. Verification procedure for ITproq

Simulator Sproq
Input

B, € Ri*vHD) g ¢ pixltvid)

1. Sample u < U(RET), V <= U(RE*Y), (70, ... ,7e-1) + C', and §; « U(R,)
for 0 <i< /.
2. Sample r + DL

7" o1

I, V c
04%1 I4]u (mod ¢) and parse ¢ = Lﬂ for ¢g € Rl and

_ T o pd
c1 = (c1,¢2,¢3,c4) € Ry

and y/ — DEF T for 0 < < .

VAR

3. Compute ¢ = [

4. Compute z, =y, + ;- r, z; = Zﬁ;é ©'(X7)z; and w; = Boz; — 7i - €o

(mod ¢) for 0 < i < £.

5. Let B; be the i-th row of By for 1 < i < 4. Compute f; ; = (b;,z;) —¢"(7)c;
for 0<i< ¥, 1<j<3and fy = (bg,z0) — 7 cqy.

6. Compute v = Zf;ol Vi~  (firfiz + 0 (V) fi3) + fa

7. Output (C'»/U,’% (Wgavivz;)0§i<£)~

Fig. 9. Simulator for ITpyeq.
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B.2 Simulatability of IT;;,

In Fig. 12, we describe a simulator Sy, for a non-aborting transcript of Il ;,. Let
Do(M, k, m) and D; be the distributions of the transcript tr which is generated
by an honest prover and verifier for a message m € R, a matrix M and a vector
k, and that generated by the simulator, respectively, which are defined as follows:

Do(M, k,m): tr < Tr(P(ck, M, k,m),V(ck, M, k)) for ck < ENS.Gen(1?) and
given
m € Ry, M € ZI™kn k € 7.

Dy: tr < Srer(ck, M, k) for ck < ENS.Gen(1*)

Let A be an algorithm that distinguishes the distributions Do m k(m) and Dy
of tr under the condition Very;,(tr) = 1 with advantage € > 0 for some message
m € R,, matrix M and vector k. Then, given the algorithm A, we can construct

an efficient algorithm B for HintM LWE%‘TV2 20,00 which works as follows:

1. Receive a Hint-MLWE instance (A,u,o,...,%¢1,20,--.,Z,_,) from the
Hint-MLWE challenger. Compute v = Z] 0 X, z = Zf:(lj @' (X7)z; for

0<j <l Write z; = { 0, l} € RHVH2 parse A = {A

HXV o
20 A1] for Ag € Rl nd

u
A e Rﬁx”, and parse u = [uo] for up € R} and u; = (u1,u9) " € R(QJ.
1

2. Sample V < U(RK*?), xq,...,x¢_1 + U(ZT'), and g « U({a € Rylag =
-+ =ay—1 = 0}). Compute and set By = [Iu | V| Ay + VAJ S Rf;x(“+”+2),
B, = [02 | I, | Aj] € Ry U™ land ck = (By, By).
3. Let b; be the i-th row of By for 1 < j < 2. Compute ¢g = [I# | V] ‘u

c1 =ui; +m, and co = ug + g, and set ¢ = {EO] for ¢; = (c1,¢2) " € Rﬁ.
1

4. Compute w; = Boz] —7; - ¢o (mod ¢) for 0 <7 < ¢.

5. Compute f = Zﬁ E}X Zk tgpk (iNTT(nMij)cl — <k,xj>), h =g+ f,
and v; = Zj é 7 X7 Zk o @" ((ANTT(nM " x;)b1, 21 ) ) + (b2, z;) —¢' () (f+
co —h) for 0 <i < 2.

6. Set tr = (c, h, v, (W}, X;,v;,2})0<i<e), send it to A, receive a response b =
A(ck, tr), and output b.

Assume that u = [L,42 A]r for r + D‘ZL;""TQ First, it is easy to check that
co = Bor, ¢1 = (b1,r) + m and ¢co = (ba,r) + g. By the definition of Hint-
MLWE, we can express z; =y, +v; - r for 1 < i < £ where y; «+ ’D’Zﬁtlgjz.
Then we get w; = Boz; — ap'(*y) = Boy; (mod q) for 0 < i < ¢ where
Vi = Yo (X)) zi = Y g <Xﬂ> 7, and w; = 0" @' (X7)w). Since
(by,z;) = (ba,yi) + ¢ (7) (ba,1) = (ba,yi) + ¢*(7) - up and f 4ty — h = uy, we
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get
-1y ol _
vi=p X ©" ((ANTT(nM "x;)b1,2; 1)) + (b2,2;) — ©'(7)(f + c2 — h)
=0 k=0
-1y e ‘ ‘
=X X D@ ((ANTT(nM ") b1, 75 1)) + (ba, i) + ¢'(7) - uz — ' (7) - us
=0 k=0
-1y o1
= ZXJ oF (<iNTT(nMij)b1,zi_k>) + (ba,y;) .
=0 k=0

Therefore, the distribution of tr is identical to Dy v k,m.-
I, V o+
2 g _
Now let us assume that u « Z/{(Rf; ). Since ¢ = [02’;# Ig] cu+ {m}
(n+2)x (n+2)

for m = (m,g)" € RZ and [ I } is invertible over Ry , ¢ is also

i
02*H 1,
uniform over Rfl‘” independent to both m and g. In non-abort transcript, h
is an element of {a € Rylag = -+ = as—1 = 0}. Since g is uniform over this
set, h = f + g is also uniform and independent to f. By the definition of Hint-
MLWE, we can express z;, = y. + ;- r for 0 < i < ¢ where r «+ D‘Z*,T,Z_TQ
and y} D’Z‘,t (”7:'2 Therefore, the distribution of tr is identical to D; under the
condition Verpi,(tr) = 1.

Thus, the adversary B has the same advantage ¢ as A in distinguishing
the Hint-MLWE instance. As a result, distributions Dy(M, k, m) and Dy of tr
under the condition Verp;, (tr) = 1 are computationally indistinguishable for any

message m € Ry, matrix M and vector k if HintM LWE?%‘TU2 5;2 .0, 18 hard, which

implies the simulatability of our ITi,. O
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HLin
Prover P Verifier V
Inputs: By € RA* (v +2) Bo, b1, b
bl, b2 € RZ+V+2 M7 k
m € Ry
M e Zg ", k = M -NTT(m) € Zg'
Generate-phase :
r < D2
VACH-31
Co = BoI‘
c1 = (by,r)+m o, C1
_—
Prove-phase :
g U{g € Rylgo="-+=ge-1=0})
C2 = <b27 I‘> +9g
yi < DLV (0<i<)
-1 ,
yi =3 ¢ (X)y}, wi=Boy, (0<i<0) c2, Wi
j=0
X0y ooy Xo—1 M(Z;n)
X0y -y Xb—1
-
-1 -1
1.5 k(. T
h=g+ ZX ® (1NTT(nM x;)m — (k, Xj>)
7=0 k=0
—1 -1

e
|
(]
|
el
(]
hGR‘
~—~

<iNTT(nMij)b1, Yi7k>>

7=0 k=0
+(b2,yi) (0<i< ) h, v
-1 )
Y Coy=) uX
=0
Y05 ey Y1
S
!
zi=yi+y-r (0<i<¥) Z;

!
Veriin(co, ¢1, C2, W5,

/
Xiy ha U’i7’Y7zi)

Fig. 10. Proof of linear relation [16]
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/ /
VerLin(c07617027W‘ Xiah vivfya i)

1: Compute z; = ng X] z]7 w; = ng X] wJ (0<i<¥)

2: Check |z, < nal—i—\[az)\/ u+u+2)/ﬂ' (0<i<?)
3: Check Bozi:wi—i—cp(fy)co (0<i<¥)

4: Check hoI"-Ihk71:0
1y et
. _ j k(. To V. ‘
5: Compute f= JZO ZX] ;)go (1NTT(dA xj)c1 — (k, xj>)

6: Check Z XJZ@ (<1NTT (dA"x;)b1, 7 k>)+(b2,zi)

7 — v+ (N Hea—h) (0<i<)

Fig. 11. Verification procedure for I1iin

Simulator Spiq
Input

B, € Ry By e Ry M e zmen k e Z

Sample u < U(REY?), V «— U(RE*?), and (70, ...,7e-1) < C.
Sample xo, ..., x¢—1 + U(Zy") and h <~ U({h € Rylho = -+ = hy—1 = 0}).

Sample r < D%ji:ra v+ D’Z‘j';f, and y; = Zf;é @i(Xj)y; for 0 <1 < £.

L

Compute ¢ = [ gw V} u (mod ¢) and parse ¢ = [CO} for cg € R*, c, € R2.
02Xk T, q q

5. Compute z;, =y, +~;-r, z; = Zf (1)4,0 (XJ) , wi = Boz, — ;- ¢y (mod gq),
and w; = Ef;é @' (X7 )W) (mod q) for 0 <i < (.

6. Compute f = Zf é 3 X7 Zk O<p (iNTT(dAij)cl — (k,x;)).

7. Cpmpute v = Zf (1) 3 X7 Zk 090 F ((ANTT(dA T x;)b1,2i—1)) + (b2, 2;) —
O"(YV)(f+ca—h) for 0 <i <.

8. OutPUt (Ca h77a (WgaXuUmZ;)Ogid)-

Fig. 12. Simulator for I1iiy.

B.3 Simulatability of ITre,

In Fig. 15, we describe a simulator Ste, for non-aborting transcripts of Ilte,. Let
Do(M, k, m) and D; be the distributions of the transcript tr which is generated
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by an honest prover and verifier for a message m € Rq, a matrix M and a
vector k, and that generated by the simulator, respectively, which are defined as
follows:

Do(M, k, m): tr < Tr(P(ck, M, k,m),V(ck, M, k)) for ck < ENS’.Gen(1*) and
given m € Rk M e me}m keZy.

Dy: tr < Srer(ck, M, k) for ck < ENS’.Gen(1?)

Let A be an algorithm that distinguishes the distributions Dy(M, k, m) and D;
of tr under the condition Verre,(tr) = 1 with advantage € > 0 for some message
m = (mq,..,mg) € Rk, matrix M and vector k. Then, given the algorithm

A, we can construct an efficient algorithm B for HintM LWE%”; k3.0, Which
works as follows:

1. Receive a Hint-MLWE instance (A,u 'yo,.. 2 Ye—1,20, - - -, Zy_q) from the
Hint-MLWE challenger. Compute v = Z 0 ’yJX , Zp = Zj (1)<p (XJ)Z for

0 <i</{ Parse A = {i ] for Ag € R and A, € R((]k+3)xy, and parse
1

u
u= [uo] for up € R and u; = (u1,uz, e Ups3) | € R’;*‘?’.
1

2. Sample V « U(RE*FTY) ) 805 eens et U(Ry), Xo, ..., Xem1 UL,
and g < U({a € Rylag =+ =as—1 =0}),andset Bg = [L, | V| Ag + VA,] €
Rgx(u+u+k+3)’ B, = [0(k+3)><,u | Ik+3 | Al] c R((Ik+3)><(}t+l/+k+3)7 and ck —
(BOaBl)-

3. Let b; be the i-th row of By for 1 < j < k + 3. Compute ¢y = [Iu | V] -u
¢ =u; +my; for 1 <i <Kk, cpy1 = upy1 + g,

—1k—1
Chya = tnsa + (Brys,Z0) — 7 - ukrs + 3 Y Oinyio (3my - ((by,zi) — ©'(7) - u;)?),
1=0 5=0

—1k-1 ‘
Crps = ks + Y Gy ((3mF —1) - ((bj,2:) — ' () - ).
1=0 5=0

4. Compute f;; = (bj,z;) — ¢'(y)cj for 0 < i < £, 0 < j < k, frqo =
(bk+2,20) =7 - Chkt2s frts = (Pr+3,20) — 7 - Chr3, and

-1 k-1

v=2 D O <fz',j (fig + o' (M) (fig — WV))) + frro + frvs
=0 j=0
5. Parse MTx; = NTT(&;0)|| ... [INTT(& x—1) for 0 < i < £, and compute 7 =

Zf 3 %Xlzg Ocps(Z?;é n& jc; — (k,x;) ), h=g+7, and

1

T
~
=
o

-1

XP ©*(n&p; (b, 2i—s) ) + (bry1,2i) — 9" (V) (T + €pp1 — h).
=1

S
| =

iS]
I
=
V)
I
<
<
Il
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c .
6. Set ¢ = cO for ¢; = (c1,...,cpp3)" € R’;H.
1

7. Compute w; = Boz, —; - ¢o (mod q) for 0 <i < /(.
8. Set tr = (¢, h,v,v, (6:)o<i<er, (Wi, X;, V), 2})0<icr), send it to A, receive a
response b = A(ck, tr), and output b.

Assume that u = [I, 4443 A]r for r + D"+”+k+3 First, it is easy to check
that ¢g = Bor, ¢; = (bj,r) +m; for 1 <j < k ‘and ck+1 = (bg41,r) + g. By
the definition of Hint-MLWE, we can express z; =y, +~; -r for 1 < i < ¢ where

v+ ngt;;rmrg Then we get w; = Boz; —¢'(7)-co = Boy; (mod ¢) for 0 <i <

£ where y; = Zﬁ;é gpi(Xj)y;-, 7; = Zﬁ Lo (X2, %, and w; = Zﬁ:;é (X)W,
Since {by,2:) = (by, 1) + 9 (7) (s, 1) = (By,y2) + () - 5, we get

0—1 k-1
2
Crya = (b2, ) + (bris, yo) — D> Sikrjp " (3mj<bj7Yi>)
=0 j=0
(=1 k—1
k3 = (brgs,T) + ikt 3m — 1) (bj,y4)) -
=0 j=0

In non-abort transcript, v and v} for 0 < ¢ < £ are identical to those sampled
from Dy(M, k, m). Therefore, the distribution of tr is identical to Dy(M, k, m)
under the condition Verre,(tr) = 1.

Now let us assume that u < U(RATF3). Since there exists 1-to-1 corre-
spondence between u and c, the distribution of ¢ is also uniform over Rf;+k+3
independent to both m and g. In the simulator Srer, the distribution of ¢ =

I
|:0(k+1§)><;¢ IV ]u is also uniform over Rg+k+3 since [0(k+§)x# IV } is invert-
k+3 k+3
(pt+k+3)x (p+k+3)

ible over Ry . In non-abort transcript, h is an element of {a €
Rylag = --- = as—1 = 0}. Since g is uniform over this set, h = g + 7 is also
uniform and independent to 7. By the definition of Hint-MLWE, we can express
z, =yl+v;rforl <i < /{wherer D”+”J1rk+3 and y, + D‘ZL:[:HCJFB. Therefore,
the distribution of tr is identical to D; under the condition VérLin(tr) =1.
Thus, the adversary B has the same advantage ¢ as A in distinguishing
the Hint-MLWE instance. As a result, distributions Dy(M, k, m) and D; of tr

under the condition Verre (tr) = 1 are computationally indistinguishable for
any message m € R’;, matrix M and vector k if HintMLWEf%Uj’HJrk_%qol is

hard, which implies the simulatability of our Ilt,. O
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HTer
Prover P Verifier V
Inputs: Bg € Rf;x (ptvtk+3) Bo,bi,...,bgis
bi,..., bryg € RyTVHEES M, k
mi,...,m, € iNTT({—1,0,1}")
M € Z)"*" k= M - (NTT(ma)|| .. . [INTT(my,)) € Z7
Generate-phase:
v DR
co = Byr, c]':<b_7',r>+m_7~ (1SJ§]€) €0,C€1, .-+, Ck
Prove-phase:
g+ U({g € Rqlgo=""-=ge—1 =0})
ckt1 = (brt1,r) +g
yi = DLV Wi = Boy (0<i <) Chg1, W
-1
yi=> ¢ (X))y; (0<i<) 80y, 0ek—1 + U(Rq)
i=0
50 00k —1 .
X0rXp—1 Xy ... Xg—1 Z/I(Zq )
-

ck+2 = (brt2,r) + (brts,yo)
(—1k—1

=22 bk (37”1 <bj7Yi>2)

i=0 j=0

ck+3 = (brts,r)

£—1k—1
—1 2
+D0D ks ((3mj -1) <bj7Yi>)
i=0 j=0
£—1k—1 . .
= (brt2,50) + D D Sinise ((bj’}’i>s)
i=0 j=0
M x; = NTT(&;,0)| - - - [INTT(&,k—1) (0 < i <€)
k—1
h=g+ Z Zw D néigmg = (koxi)
s=0 j=0
£—1 1 £—1k—1
712 Z Z Z Z ©° ({ n€p,ibj, Yi—s))
p=0 s=0 j=0
Ck+2:k+3
+ (brt1,y:) (053 <) h,v,v]
_—
£—1 )
Y05 o0y YE—1 N+ C, y= Z"/J'X]
PR
j=0
/7
Z; =y +7v r(0<i<0) Zi
Verrer(Co, €1, - -+ Cht3,

’ ’ ’
wi76'i1xi7h7v7via’77 zi)

Fig. 13. Proof of knowledge of a ternary solution for linear system over ZJ"**™ [16].
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/
VerTer(C7 W, 6i7 Xi, hv ’Uv 27 v 7,)

1: Compute z; = zgai(Xj)z;-, w; = Z(pi(Xj)W;- (0<i<¥)

2: Check |z, < (noy + Vo) /n(u+v+k+3)/m (0<i<¥)
3: Check Boz; =w; + goi(fy)co (0<i<¥)

4: Compute f;;=(bj,z)— ¢ (y)c; (0<i<l 0<j<k)

5: Compute fit2 = (brt2,2Z0) — 77 - Crt2

6: Compute fit3 = (brts,Zo) — 7 Crts
—1k-1

7: Check > > Sipije (fm‘ (i + ' (M) (fis — @i(v))>
i=0 j=0
8: + ot + 7 fryz=v
9: Check h():'”:h[fl =0
10: Parse M'x; = NTT(&io)|| ... |INTT(&ip—1) (0 <i<£)
-1 1 .Z—l k—1
11: Compute 7= Z ZX’ Z¢S<Zn€i,jcj — (k, m))
=0 s=0 7=0
£—1 —1k-—1
12: Check Z ”Z ©° (n&p,; (by,zi—s)) + (brt1,2:)
=0 s=0 j=1
13 =0+ (N +err—h) (0<i<b)

Fig. 14. Verification procedure for ITrer
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Simulator Srer

Input
B, € Rgx(u+u+k+3))Bl c Rg{k+3)><(/1,+1/Jrlc+3)7 M e Z?an,k c Z;n

Ll

© x N

10.

11.
12.

13.

14.

Sample u + U(REFH3), Vo U(RE ) and (10, ..., 7e-1) < C.
Sample xo, ..., %1 + U(Zy") and h <~ U({h € Rylhg = -+ = hy—1 = 0}).
Sample 0o, ..., 0ke—1 + U(Ry).
Sample r < D’Z‘j":lrkw and y; + D‘ZﬁtlngrB for 0 <i< /.

I,
0(k+3)><,u Ik+3

Co

Compute ¢ = { }u (mod ¢) and parse ¢ = [ } for ¢y € RY,

C1
Cc1 € R§+3-

Compute z; = y; + 7 - T, z; = Zj‘;é ¢"(X7)z}, and wj = Boz] — 7; - o
(mod q) for 0 <i < £.

Compute f; ;j = (bj,z;) — ¢'(v)c; for 0 <i < {, 0<j <k.

Compute fry2 = (bria,20) — 7
Compute fri3 = (br13,20) —

Compute v = fria+7 fots + D1 Dos—o dikasp ™ (fi,j(fi,j +' (M) (fij—

Ci42-
Ck+3-

ww»)

Parse M Tx; = NTT(&;0)|| - . . |INTT(& 1) for 0 < < /.

Compute 7= 353 LXI 571 o ( Sk ngi e — (k, xi>>

Compute v = Y0 —¢ 2XP 05 o8 <nfp,j <bj,zis>> + (bri1,2:) —

O () (T + g1 — h) for 0 <i < L.
Output (¢, w},d;, x;, h,v,0},7,2})o<i<s-

Fig. 15. Simulator for ITtey.




