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ABSTRACT
The functional bootstrap in FHEW/TFHE allows for fast table

lookups on ciphertexts and is a powerful tool for privacy-preserving

computations. However, the functional bootstrap suffers from two

limitations: the negacyclic constraint of the lookup table (LUT) and

the limited ability to evaluate large-precision LUTs. To overcome

the first limitation, several full-domain functional bootstraps (FDFB)

have been developed, enabling the evaluation of arbitrary LUTs.

Meanwhile, algorithms based on homomorphic digit decomposi-

tion have been proposed to address the second limitation. Although

these algorithms provide effective solutions, they are yet to be

optimized. This paper presents four new FDFB algorithms and

two new homomorphic decomposition algorithms that improve

the state-of-the-art. Our FDFB algorithms reduce the output noise,

thus allowing for more efficient and compact parameter selection.

Across all parameter settings, our algorithms reduce the runtime

by up to 39.2%. Furthermore, our FDFB algorithms introduce an

error that can be as small as 1/15 of that introduced by previous

algorithms when evaluating continuous functions. Our homomor-

phic decomposition algorithms also run at 2.0x and 1.5x the speed

of prior algorithms. We have implemented and benchmarked all

previous FDFB and homomorphic decomposition algorithms and

our methods in OpenFHE.

KEYWORDS
Homomorphic Encryption, TFHE, FHEW, Functional Bootstrap,

FDFB, Homomorphic Decomposition

1 INTRODUCTION
Fully Homomorphic Encryption (FHE) is a powerful cryptographic

tool that enables computation on encrypted data without requir-

ing access to the decryption key. It has great potential for use in

computing fields where data privacy is important, such as secure

cloud computing [26, 36, 34] and privacy-preserving machine learn-

ing [29, 5, 15, 35], as well as in the construction of cryptographic

protocols such as private set intersection [11, 10, 18].

Since Gentry’s first construction of an FHE scheme utilizing the

bootstrap technique [21], various FHE schemes have been devel-

oped [20, 6, 12, 22, 19, 14] and significant improvements have been

made [31, 32, 3, 27]. Among these FHE schemes, BGV/FV, CKKS,

FHEW/TFHE have gained prominence recently because of their

great efficiency. BGV/FV and CKKS have effective packing capa-

bilities that allow for computations over vector data using Single
Instruction Multiple Data (SIMD) instructions, making them ideal for

simultaneously processing large arrays of numbers. However, due

to their expensive bootstrap process, these schemes are unsuitable

for evaluating non-polynomial functions or deep circuits. On the

other hand, FHEW/TFHE utilize an efficient functional bootstrap

(or programable bootstrap) process that enables the evaluation of a

lookup table (LUT) without additional cost, making these schemes

ideal for evaluating Boolean circuits and non-polynomial functions.

Moreover, due to the switching method introduced in CHIMERA [4]

and later improved in PEGASUS [35], a CKKS ciphertext can be

converted into multiple FHEW/TFHE ciphertexts to compute non-

polynomial functions and then converted back to CKKS ciphertext

for SIMD polynomial evaluation. This makes functional bootstrap

a versatile tool for all FHE evaluation purposes.

Despite its strength, functional bootstrap still suffers from two

limitations: (1) the evaluated LUT 𝑓 : Z𝑝 → Z𝑝 must be negacyclic

such that 𝑓 (𝑥 + 𝑝
2
) = −𝑓 (𝑥) for all 𝑥 ∈ Z𝑝 , preventing some LUTs

from being evaluated directly; (2) the input plaintext modulus 𝑝 is

typically small due to efficiency constraints, limiting its ability to

evaluate large precision LUTs. Numerous efforts have been made

to address these two limitations. To circumvent the negacyclicity

constraint, Full Domain Functional Bootstrap (FDFB) algorithms

supporting arbitrary LUTs have been proposed. These FDFB algo-

rithms can be categorized into Type-SelectMSB, Type-HalfRange

and Type-Split. Type-SelectMSB selects between two negacyclic

LUTs based on the most significant bit (MSB) of the encrypted mes-

sage and is used in algorithms proposed by [16, 28]. Type-HalfRange

transforms the encrypted message to prevent it from exceeding
𝑝
2
,

thereby bypassing the negacyclic limitation. This method is adopted

in algorithms proposed by [33, 37, 23]. Finally, Type-Split expresses

an arbitrary LUT as the sum of a ‘pseudo-odd’ LUT and a ‘pseudo-

even’ LUT, each of which can be evaluated using two functional

bootstraps. This method is employed in the algorithm proposed by

[17]. In addition to focusing on the construction of FDFB, a method

for using FDFB to aid in evaluating CKKS ciphertexts is presented in

[30]. To handle the evaluation of large-precision LUTs, Guimarães

et al. [24] propose tree-based and chaining methods to combine

multiple functional bootstraps in TFHE. These two methods in [24]

assume that each ciphertext encrypts a digit of the original message.

Therefore, when an input ciphertext has a large modulus, it must

first be preprocessed with homomorphic decomposition before the

methods can be applied. On the other hand, Liu et al. [33] develop

homomorphic digit decomposition algorithms and demonstrate

how they can be used to evaluate large-precision sign functions.
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As a result, homomorphic decomposition is a crucial component in

current techniques for evaluating large-precision LUTs.

In practice, functional bootstrap plays a critical role in many FHE

applications, and thus its optimization is paramount for achieving

high performance. Nevertheless, the efficiency of the FDFB and

digit decomposition algorithms still requires further evaluation and

optimization.

1.1 Our Contributions
This work presents new methods for optimizing the current FDFB

and homomorphic decomposition algorithms. Our contributions

can be summarized as follows.

(1) We present four novel FDFB algorithms: FDFB-Compress,
FDFB-CancelSign, FDFB-Select and FDFB-BFVMult. FDFB-
Compress improves Type-HalfRange to theoretical optimality,

while the other three algorithms improve Type-SelectMSB but are

suitable for different scenarios. When evaluating discrete LUTs,

FDFB-BFVMult shows a speedup of 23.4% ∼ 39.2% compared

to state-of-the-art results across all parameter settings. We have

also extended our FDFB algorithms to enable the evaluation of

continuous functions. In this context, the output noise introduced

by FDFB-CancelSign and FDFB-Select is independent of the

Lipschitz constant of the evaluated function. Additionally, our al-

gorithms introduce an error as small as 1/15 that of previous algo-

rithms when evaluating Sigmoid : (−8, 8) → (−2, 2) while main-

taining comparable efficiency.

(2) We present two new homomorphic decomposition algo-

rithms HomDecomp-Reduce and HomDecomp-FDFB, whose
running speed is 2x and 1.5x that of HomFloor andHomFloorAlt
from [33], respectively. Unlike HomFloor, our algorithms do not

require the input ciphertext to have small noise. The speedup of

our algorithms directly results in faster large-precision evaluations

of functions such as sign, ReLU, max, ABS, etc.

(3) We provide a comprehensive theoretical noise analysis for

our FDFB and homomorphic decomposition algorithms, as well

as those developed by previous works. We have implemented and

benchmarked all the algorithms in the OpenFHE library [2] to

validate our results. Our implementation of all FDFB algorithms

in a single library is a first-of-its-kind initiative, which provides

standardized access to these algorithms.

1.2 Related Works
1.2.1 FDFB Algorithms. The current FDFB algorithms are summa-

rized as follows.

WoP-PBS1 [16] (Type-SelectMSB) introduces an extra MSB to

the encrypted message by doubling the ciphertext modulus. The

algorithm evaluates the LUT to obtain a ciphertext that possibly

differs by a sign from the desired result. Then, it extracts the MSB

using functional bootstrap and offsets the sign by invoking BFV

multiplication. However, the rapid noise growth of BFV multipli-

cation requires the algorithm to use inefficient parameters, thus

degrading performance.

WoP-PBS2 [16] (Type-SelectMSB) builds two sub-LUTs accord-

ing to the MSB of the encrypted message. The algorithm evaluates

both sub-LUTs to obtain two ciphertexts and extracts theMSB using

functional bootstrap. Then BFV multiplication is invoked to select

the correct ciphertext. Again, BFV multiplication still requires large

parameters and degrades performance.

FDFB-KS [28] (Type-SelectMSB) builds two sub-LUTs similarly

to WoP-PBS2. The algorithm selects between the two sub-LUTs

to obtain an encrypted LUT and then uses functional bootstrap to

evaluate it. However, selecting the sub-LUTs requires multiple func-

tional bootstraps and causes significant computational overhead.

EvalFunc [33] (Type-HalfRange) introduces an extra MSB in a

similar way to WoP-PBS1. The algorithm extracts the MSB using

functional bootstrap and cancels it to ensure that the message

does not exceed
𝑝
2
. Then it can evaluate the LUT without being

constrained by negacyclicity. We note that the FullyFBS of [37]

and the FDFB-C of [23] are essentially the same as EvalFunc.
Comp [17] (Type-Split) expresses an arbitrary LUT as the sum of

a ‘pseudo-odd’ LUT and a ‘pseudo-even’ LUT. Then the algorithm

evaluates each LUT using two functional bootstraps.

In [8], Carpov et al. develop a multi-value bootstrap technique

that allows several LUTs to be evaluated on the same input using a

single functional bootstrap call. This technique can reduce the func-

tional bootstraps required for WoP-PBS1, WoP-PBS2 and Comp
when the parameters support multi-value bootstrap.

1.2.2 Homomorphic Decomposition Algorithms. The current ho-
momorphic decomposition algorithms are summarized as follows.

HomFloor [33] uses two bootstraps to clear the lower bits of a

large-precision message before modulus switching, which prevents

the modulus switching noise from corrupting the higher digits. By

iteratively applying these operations, a large-precision message can

be decomposed into a vector of 4-bit digits. However, this algorithm

does not apply to extracting CKKS ciphertexts because it requires

a small noise in the input ciphertext.

HomFloorAlt [33] uses three bootstraps to extract the digits of

a large-precision message, allowing it to decompose the message

into a vector of 5-bit digits and extract CKKS ciphertexts.

1.3 Organization
Section 2 introduces background knowledge on FHEW/TFHE and

the homomorphic operations used in this paper. Section 3 and

Section 4 present our FDFB and homomorphic decomposition algo-

rithms, respectively. Section 5 gives a comprehensive noise anal-

ysis and comparison of our algorithms with previous FDFB and

homomorphic decomposition algorithms. Section 6 presents the

experimental evaluation of our algorithms, demonstrating their

efficiency and effectiveness. Section 7 concludes the paper.

2 PRELIMINARIES
2.1 Notations
The ring of integers modulo 𝑞 is denoted as Z𝑞 = Z/𝑞Z. Its elements

are represented as integers in either [0, 𝑞 − 1] (positive form) or

[−⌊𝑞
2
⌋, ⌊𝑞−1

2
⌋] (signed form). For an integer 𝑎, its positive form and

signed form in Z𝑞 are denoted as [𝑎]+𝑞 and [𝑎]𝑞 , respectively.
For a power-of-2 𝑁 , the 2𝑁 -th cyclotomic ring is denoted as

𝑅 = Z[𝑋 ]/(𝑋𝑁 + 1), and its quotient ring is denoted as 𝑅𝑞 = 𝑅/𝑞𝑅.
Polynomials are represented using bold letters, e.g., a. For a vector
®𝑎 or a polynomial b, we use 𝑎𝑖 and b𝑖 respectively to denote ®𝑎’s 𝑖-th
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entry and b’s coefficient of the 𝑋 𝑖
term. The coefficient vector of b

is denoted as
®b = (b0, b1, . . . , b𝑁−1).

For a postive interger 𝑛, the set {0, 1, . . . , 𝑛 − 1} is denoted as

⟦𝑛⟧. We use 𝑎 ← 𝜒 to represent a random variable 𝑎 sampled

from the distribution 𝜒 , and 𝑎 ← 𝑆 to indicate that 𝑎 is uniformly

sampled from the finite set 𝑆 . We useD(Z, 𝜎) to denote the discrete
Gaussian distribution of parameter 𝜎 over Z. The infinity norm and

2-norm of a vector ®𝑎 are denoted as | ®𝑎 |∞ and | ®𝑎 |2 respectively. All
logarithms are taken with a base of 2 unless otherwise stated.

2.2 FHEW/TFHE Encryption Schemes
2.2.1 LWE and RLWE Ciphertexts. Throughout this paper, we use
lowercase 𝑞 and 𝑛 to denote the modulus and dimension of LWE

instances, while uppercase𝑄 and𝑁 are used for the RLWEmodulus

and dimension.

The LWE ciphertext encrypting an encoded message𝑚 ∈ Z𝑞 is

defined to be

LWE®𝑠,𝑛,𝑞 (𝑚 + 𝑒) = (−⟨®𝑎, ®𝑠⟩ +𝑚 + 𝑒, ®𝑎) ∈ Z𝑛+1𝑞 ,

where ®𝑎 ← Z𝑛𝑞 , 𝑒 ← D(Z, 𝜎), and the secret vector ®𝑠 ← {0,±1}𝑛 .
The RLWE ciphertext encrypting an encoded messagem ∈ 𝑅𝑄

is defined to be

RLWEs,𝑁 ,𝑄 (m + e) = (−a · s +m + e, a) ∈ 𝑅2𝑄 ,

where a← 𝑅𝑄 , e𝑖 ← D(Z, 𝜎), and the secret polynomial satisfies

s𝑖 ← {±1, 0}.
For simplicity, we may sometimes use the abbreviated notation

LWE®𝑠 (𝑚) and RLWEs (m) (or LWE(𝑚) and RLWE(m)) to denote

the LWE and RLWE ciphertexts respectively.

Messages in LWE and RLWE ciphertexts are typically encoded

to prevent decryption failures caused by errors. For instance, in

an RLWE ciphertext, m is often an up-scaled version of the actual

messagem′ ∈ 𝑅𝑝 , as given bym = ⌊𝑄𝑝 m
′⌉ = 𝑄

𝑝 m
′ + e𝑟𝑛𝑑 , where

𝑝 < 𝑄 is the plaintext modulus and e𝑟𝑛𝑑 accounts for the rounding

errors. Then an RLWE ciphertext (b, a) ∈ 𝑅2
𝑄
decrypts to ⌊ 𝑝

𝑄
(b +

a · s)⌉ = ⌊m′ + 𝑝

𝑄
(e + e𝑟𝑛𝑑 )⌉, which is equal to m′ modulo 𝑝 as

long as | 𝑝
𝑄
(e + e𝑟𝑛𝑑 ) |∞ < 1

2
.

2.2.2 RLWE′ and RGSW Ciphertexts. An RLWE
′
ciphertext is a

vector of RLWE ciphertexts encrypting the same message at differ-

ent scales, i.e.,

RLWE
′
s (m) = (RLWEs (m), RLWEs (m ·𝐵), . . . , RLWEs (m ·𝐵𝑙−1)),

where 𝐵 ∈ Z is the decomposition base and 𝑙 = ⌈log𝐵 𝑄⌉. For any
u ∈ 𝑅𝑄 , there is a decomposition u =

∑𝑙−1
𝑖=0 u𝑖 · 𝐵𝑖 such that u𝑖 ’s

coefficients are all in [−𝐵
2
, 𝐵
2
]. Let Decomp(u) = (u0,u1, . . . ,u𝑙−1).

Then the product ⊙ : 𝑅𝑞 × RLWE
′ → RLWE can be defined as

u ⊙ RLWE
′
s (m) = ⟨Decomp(u), RLWE

′
s (m)⟩ = RLWEs (u ·m) .

The obtained RLWE ciphertext contains a noise much smaller than

the regular 𝑅𝑞 × RLWE multiplication due to the small coefficients

of u𝑖 ’s. Besides, the LWE
′
ciphertext can be defined similarly, but

we omit the details here.

An RGSW ciphertext is defined as

RGSWs (m) = (RLWE
′
s (m), RLWE

′
s (m · s)) .

Then the external product ⋄ : RLWE × RGSW→ RLWE between

(b, a) = RLWEs (u + e) and RGSWs (m) is defined as

(b, a) ⋄ RGSWs (m) = b ⊙ RLWE
′
s (m) + a ⊙ RLWE

′
s (m · s)),

which is equal to RLWEs ((b + a · s)m) = RLWEs ((u + e)m).

2.3 Homomorphic Operators
We introduce some basic homomorphic operations that will be used

in our later constructions.

2.3.1 Mod Down/Up and Modulus Switching. Let 𝑐 = (𝑏, ®𝑎) =

LWE®𝑠,𝑛,𝑞 (𝑚 + 𝑒) be an LWE ciphertext, and let 𝑞′ be a positive

modulus. For 𝑞′ | 𝑞, the ‘mod down’ is defined as

ModDown(𝑐, 𝑞′) = ( [𝑏]𝑞′ , [®𝑎]𝑞′ ) = LWE®𝑠,𝑛,𝑞′ ( [𝑚 + 𝑒]𝑞′ ).

For 𝑞 | 𝑞′, the ‘mod up’ is defined as

ModUp(𝑐, 𝑞′) = (𝑏, ®𝑎) = LWE®𝑠,𝑛,𝑞′ (𝑚 + 𝑒 + 𝑣𝑞),
where 𝑣 ∈ Z𝑞′/𝑞 .

For any modulus 𝑞′, the ‘modulus switching’ is defined as

ModSwitch(𝑐, 𝑞′) = (⌊𝑞
′

𝑞
𝑏⌉, ⌊𝑞

′

𝑞
®𝑎⌉) = LWE®𝑠,𝑛,𝑞′ (

𝑞′

𝑞
(𝑚 + 𝑒) + 𝑒𝑚𝑠 ),

where 𝑒𝑚𝑠 is the noise modulus switching introduces. The three

homomorphic operators described above can also be defined for

RLWE ciphertexts similarly, but specific details are not provided

here.

2.3.2 Sample Extract. Given an RLWE ciphertext 𝑐 = (b, a) =

RLWEs,𝑁 ,𝑄 (m + e) and an index 𝑖 ∈ ⟦𝑁⟧, define
SampleExtract(𝑐, 𝑖) = LWE®s,𝑁 ,𝑄 (m𝑖 + e𝑖 ),

which extracts the coefficient of the𝑋 𝑖
term into an LWE ciphertext.

2.3.3 Key Switching. Given an LWE ciphertext 𝑐 = (𝑏, ®𝑎) =

LWE®𝑠,𝑛,𝑞 (𝑚 + 𝑒), a decomposition base B and key switching keys

ksk𝑖, 𝑗,𝑘 = LWE®𝑠′,𝑛′,𝑞′ (⌊
𝑞′

𝑞 ®𝑠𝑖 · 𝑗 · 𝐵
𝑘 ⌉) for 𝑖 ∈ ⟦𝑛⟧, 𝑗 ∈ ⟦𝐵⟧ and

𝑘 ∈ ⟦⌈log𝐵 (𝑞)⌉⟧, define

KeySwitch(𝑐, {ksk𝑖, 𝑗,𝑘 }) = LWE®𝑠′,𝑛′,𝑞′ (⌊
𝑞′

𝑞
(𝑚 + 𝑒)⌉ + 𝑒𝑘𝑠 ),

where 𝑒𝑘𝑠 is the error key switching introduces.

Besides LWE-to-LWE key switching, it is possible to pack LWE

ciphertexts into an RLWE ciphertext with similar techniques [24, 9],

which can be viewed as a specific instance of the public functional

key switching method proposed in [13]. This homomorphic opera-

tor, denoted as PackingKS(𝑐, {ksk𝑖, 𝑗,𝑘 }), is detailed in Algorithm 1.

2.3.4 Blind Rotation and Functional Bootstrap. Blind rotation is the

key step in the bootstrap of FHEW/TFHE. Given an LWE ciphertext

𝑐 = LWE®𝑠 (𝑚+𝑒) with modulus 𝑞 |2𝑁 , a polynomial TV ∈ 𝑅𝑄 (often

called the test vector) and blind rotation keys {brk±𝑖 }, define

BlindRotate(𝑐,TV, {brk±𝑖 }) = RLWEs′ (TV · 𝑋 −
2𝑁
𝑞
(𝑚+𝑒 ) + e𝑎𝑐𝑐 ),

where e𝑎𝑐𝑐 is the noise that blind rotation introduces. In other

words, TV is rotated left by
2𝑁
𝑞 (𝑚 + 𝑒). In this paper, we assume

𝑞 = 2𝑁 and omit the {brk±𝑖 } in notations.

Note that the constant term of the rotated TV equals TV𝑚+𝑒 for

𝑚 + 𝑒 ∈ [0, 𝑁 − 1], and equals −TV[𝑚+𝑒 ]+
𝑁
for𝑚 + 𝑒 ∈ [𝑁, 2𝑁 − 1],
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Algorithm 1: PackingKS
input :Base 𝐵 and modulus 𝑞𝑘𝑠 for key switching

input :𝑑 , the number of coefficients to pack

input :An LWE ciphertext 𝑐 = LWE®𝑠,𝑛,𝑞 (𝑚 + 𝑒)
input :Packing keys ksk𝑖, 𝑗,𝑘 =

RLWEs′,𝑛′,𝑞′ (⌊ 𝑞
′

𝑞𝑘𝑠
®𝑠𝑖 · 𝑗 · 𝐵𝑘 · (1 +𝑋 + . . . +𝑋𝑑−1)⌉),

𝑖 ∈ ⟦𝑛⟧, 𝑗 ∈ ⟦𝐵⟧, 𝑘 ∈ ⟦⌈log𝐵 (𝑞𝑘𝑠 )⌉⟧
output :An RLWE ciphertext RLWEs′,𝑛′,𝑞′ (⌊𝑞

′

𝑞 (𝑚 + 𝑒) +
𝑞′

𝑞𝑘𝑠
𝑒𝑚𝑠 ⌉ (1 + 𝑋 + . . . + 𝑋𝑑−1) + e𝑘𝑠 )

1 (𝑏, ®𝑎) ← ModSwitch(𝑐, 𝑞𝑘𝑠 )
2 ct← (⌊ 𝑞

′

𝑞𝑘𝑠
𝑏⌉ · (1 + 𝑋 + . . . + 𝑋𝑑−1), 0)

3 for 𝑖 ← 0 to 𝑛 − 1 do
4 ®𝑎𝑖 =

∑⌈log𝐵 𝑞𝑘𝑠 ⌉−1
𝑘=0

𝑎𝑖,𝑘 · 𝐵𝑘 , 𝑎𝑖,𝑘 ∈ [−⌊ 𝐵2 ⌋, ⌊
𝐵−1
2
⌋]

5 for 𝑘 ← 0 to ⌈log𝐵 𝑞𝑘𝑠 ⌉ − 1 do
6 ct← ct + ksk𝑖,𝑎𝑖,𝑘 ,𝑘

7 return ct

Figure 1: The five steps of FHEW/TFHE bootstrapping: (1)
blind rotation of TV by input ciphertext; (2) extracting the
constant term of rotated TV; (3) modulus switching to 𝑞𝑘𝑠 ; (4)
key switching to the original secret key; (5) modulus switch-
ing to 𝑞. 𝐹 is an LUT from Z𝑝 to Z𝑝 .

then the blind rotation actually evaluates a negacyclic function

𝑓 : Z2𝑁 → Z𝑄 on𝑚+𝑒 . To evaluate a negacyclic LUT (or negacyclic

function) 𝐹 : Z𝑝 → Z𝑝 using blind rotation, the coefficients of TV

are arranged in a redundant way to eliminate the error in input

ciphertext. Specifically, by setting TV𝑖 = ⌊𝑄𝑝 𝐹 (⌊
𝑝
𝑞 𝑖⌉)⌉, the constant

term of BlindRotate(LWE®𝑠 (⌊
𝑞
𝑝𝑚
′ + 𝑒⌉),TV) is an encryption of

⌊𝑄𝑝 𝐹 (𝑚
′)⌉.

The entire process of the functional bootstrap is illustrated in

Figure 1. The noise introduced by the bootstrap process is denoted

as 𝑒𝑏𝑜𝑜𝑡 . We use Boot[𝑓 ] (𝑐) to represent the result of performing

functional bootstrap using function 𝑓 on an LWE ciphertext 𝑐 and

use BootRaw[𝑓 ] (𝑐) to represent the freshly extracted LWE cipher-

text after blind rotation (i.e., without any modulus switching or key

switching). It should be noted that each TV uniquely corresponds

to a negacyclic function 𝑓 , so either TV or 𝑓 can be used to pa-

rameterize the functional bootstrap. If the plaintext polynomial TV

is replaced with an RLWE ciphertext 𝑐𝑡𝑣 , we denote the resulting

output as Boot[𝑐𝑡𝑣] (𝑐) or BootRaw[𝑐𝑡𝑣] (𝑐).

2.3.5 Multi-Value Bootstrap. Multi-value bootstrap enables the

evaluation of multiple LUTs on the same input LWE ciphertext with

the cost of a single bootstrap [7]. In this approach, the unscaled

test vector is denoted as TV
′ ∈ 𝑅𝑝 , and the goal is to compute

⌊𝑄𝑝 TV
′⌉𝑋 −(𝑚+𝑒 ) , where 𝑝 is the plaintext modulus. To enable the

computation of multiple LUTs, multi-value bootstrap decomposes

⌊𝑄𝑝 TV
′⌉ approximately into TV0 · TV1, where TV0 = ⌊ 𝑄

2𝑝 ⌉ (1 +𝑋 +
. . .+𝑋𝑁−1) is a constant polynomial, and TV1 = TV

′−TV′ ·𝑋 ∈ 𝑅2𝑝
is LUT-specific. TV0 is first multiplied by 𝑋 −(𝑚+𝑒 ) using blind

rotation, and the resulting RLWE ciphertext is multiplied by TV1,

which also multiplies the output noise variance by |TV1 |2
2
≤ 𝑝 (𝑝 −

1)2.

2.3.6 BFV Multiplication. Let 𝑝 be the plaintext modulus. For two

RLWE ciphertexts 𝑐𝑖 = RLWEs,𝑁 ,𝑄 (𝑄𝑝 m
′
𝑖
+ e𝑖 ) where 𝑖 = 0, 1 and

re-linearization key RLWE
′
s,𝑁 ,𝑄

(s2), define

BFVMult(𝑐0, 𝑐1) = RLWEs,𝑁 ,𝑄 (
𝑄

𝑝
m′

1
m′

2
+ e𝑚𝑢𝑙𝑡 ),

where e𝑚𝑢𝑙𝑡 is the noise of BFV multiplication.

2.4 Noise Introduced by the Operators
The variances of 𝑒𝑚𝑠 , 𝑒𝑘𝑠 , 𝑒𝑎𝑐𝑐 , 𝑒𝑏𝑜𝑜𝑡 are denoted by 𝜎2𝑚𝑠 , 𝜎

2

𝑘𝑠
, 𝜎2𝑎𝑐𝑐 ,

𝜎2
𝑏𝑜𝑜𝑡

respectively. The values of these variances are well-known

in the literature and are listed in the following lemma.

Lemma 2.1. Let 𝜎2 be the variance of the encryption noise, and
𝑑𝑔 = ⌈log𝐵𝑔

𝑄⌉, 𝑑𝑘𝑠 = ⌈log𝐵𝑘𝑠
(𝑞𝑘𝑠 )⌉. Then 𝜎2𝑚𝑠 (𝑛) = 𝑛

18
+ 1

12
,

𝜎2
𝑘𝑠
(𝑛, 𝑞𝑘𝑠 , 𝐵𝑘𝑠 ) = 𝑑𝑘𝑠 (1 − 1

𝐵𝑘𝑠
)𝑛(𝜎2 + 1

4
),

𝜎2𝑎𝑐𝑐 (𝑛, 𝑁,𝑄, 𝐵𝑔) =
2𝑑𝑔𝐵

2

𝑔𝑛𝑁𝜎2

3
,

𝜎2
𝑏𝑜𝑜𝑡
(𝑛, 𝑁,𝑄, 𝑞, 𝐵𝑔, 𝑞𝑘𝑠 , 𝐵𝑘𝑠 ) = (

𝑞
𝑞𝑘𝑠
)2 (𝜎2𝑚𝑠 (𝑁 )+𝜎2𝑘𝑠 (𝑁,𝑞𝑘𝑠 , 𝐵𝑘𝑠 ))+

( 𝑞
𝑄
)2𝜎2𝑎𝑐𝑐 (𝑛, 𝑁,𝑄, 𝐵𝑔) + 𝜎2𝑚𝑠 (𝑛).

PackingKS introduces the same amount of noise as KeySwitch.

Besides, we denote 𝜎2𝑐𝑜𝑚 = ( 𝑞
𝑞𝑘𝑠
)2 (𝜎2𝑚𝑠 + 𝜎2𝑘𝑠 ) + 𝜎

2

𝑚𝑠 as the vari-

ance of noise introduced by the last three steps in the functional

bootstrap (Figure 1).

The literature generally assumes that error introduced by homo-

morphic operations follows a centered normal distribution. For a

centered normal variable 𝑥 ∼ 𝑁 (0, 𝜎2), its range can be bounded by

Pr[|𝑥 | > bnd · 𝜎] < 2
−32

, where bnd =
√
2 · erfc−1 (2−32) ≈ 6.338.

We denote the bound of bootstrapping error as 𝛽 = bnd · 𝜎𝑏𝑜𝑜𝑡 .

3 IMPROVED FDFB ALGORITHMS
This section introduces the four new FDFB algorithms and demon-

strates how to evaluate a continuous function with them when

the input ciphertext is approximate (e.g., extracted from a CKKS

ciphertext).

This section assumes that the plaintext modulus 𝑝 is a power

of 2 for better presentation. However, it’s important to note that

changing 𝑝 to any even number will not affect the correctness of the

algorithms presented. As assumed, the ciphertext modulus 𝑞 = 2𝑁

is a power of 2. In addition, we view the message as an integer

modulo 𝑞 in the positive form. For an LWE ciphertext 𝑐 encrypting

𝑚 =
𝑞
𝑝𝑚
′ + 𝑒 , we add 𝑞

2𝑝 to 𝑐 before performing any operations to

4
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ensure that 𝑒 + 𝑞
2𝑝 ∈ [0,

𝑞
𝑝 − 1]. To keep the description of the FDFB

algorithms concise, we focus on input arguments like the LUT 𝐹

and the input LWE ciphertext, omitting other arguments like the

bootstrap key.

3.1 FDFB Algorithms
3.1.1 FDFB-Compress. This algorithm employs the Type-

HalfRange strategy. Specifically, it first compresses the coded

message
𝑞
𝑝𝑚
′ + 𝑒 ∈ Z𝑞 into the range [0, 𝑞

2
] by evaluating the

negacyclic function 𝑓𝐶 (𝑥) : Z𝑞 → Z𝑞 via a functional bootstrap,

where

𝑓𝐶 (𝑥) =
{

𝑞
2𝑝 (⌊

𝑝
𝑞 𝑥⌋ +

1

2
) 𝑥 ∈ [0, 𝑞

2
− 1]

− 𝑞
2𝑝 (⌊

𝑝
𝑞 𝑥⌋ −

𝑝
2
+ 1

2
) 𝑥 ∈ [𝑞

2
, 𝑞 − 1]

. (1)

The design of 𝑓𝐶 serves two purposes. Firstly, it maps messages

encoding the same𝑚′ to the same value. Secondly, it ensures that

the outputs of 𝑓𝐶 for different𝑚′s are at least 𝑞
2𝑝 apart.

𝑞
2𝑝 must be

greater than 2𝛽 to prevent the bootstrapping noise from interfering

with the compressed message.

After compression, it is possible to bypass the negacyclicity

constraint and evaluate an arbitrary LUT 𝐹 : Z𝑝 → Z𝑝 on the

compressed message by using one functional bootstrap to compute

𝑓𝑒𝑣𝑎𝑙 : Z𝑞 → Z𝑞 , which is defined as

𝑓𝑒𝑣𝑎𝑙 (𝑥) =


⌊ 𝑞𝑝 𝐹 (⌊

2𝑝
𝑞 𝑥⌋)⌉ 𝑥 ∈ [0, 𝑞

4
− 1]

⌊ 𝑞𝑝 𝐹 (⌊
2𝑝
𝑞 (𝑞 − 𝑥)⌋ +

𝑝
2
)⌉ 𝑥 ∈ [ 3𝑞

4
, 𝑞 − 1]

−𝑓𝑒𝑣𝑎𝑙 (𝑥 −
𝑞
2
) 𝑥 ∈ [𝑞

4
,
3𝑞
4
− 1]

. (2)

The algorithm for FDFB-Compress is fully described in Alg. 2,

and its correctness is proved in Lemma 3.1.

Algorithm 2: FDFB-Compress
input :Plaintext modulus 𝑝 and an LUT 𝐹 : Z𝑝 → Z𝑝
input :An LWE ciphertext (𝑏, ®𝑎) = LWE®𝑠,𝑛,𝑞 (

𝑞
𝑝𝑚
′ + 𝑒)

output :An LWE ciphertext LWE®𝑠,𝑛,𝑞 (
𝑞
𝑝 𝐹 (𝑚

′) + 𝑒𝑏𝑜𝑜𝑡 )
1 ct← Boot[𝑓𝐶 ] ((𝑏 +

𝑞
2𝑝 , ®𝑎))

2 return Boot[𝑓𝑒𝑣𝑎𝑙 ] (ct)

Lemma 3.1. If 𝛽 <
𝑞
4𝑝 and |𝑒 | < 𝑞

2𝑝 , then FDFB-Compress(𝐹,
LWE®𝑠,𝑛,𝑞 (

𝑞
𝑝𝑚
′ + 𝑒)) = LWE®𝑠,𝑛,𝑞 (

𝑞
𝑝 𝐹 (𝑚

′) + 𝑒𝑏𝑜𝑜𝑡 ).

Proof. If𝑚 + 𝑞
2𝑝 ∈ [0,

𝑞
2
− 1], 𝑓𝑒𝑣𝑎𝑙 (𝑓𝐶 (

𝑞
𝑝𝑚
′ + 𝑒 + 𝑞

2𝑝 ) + 𝑒𝑏𝑜𝑜𝑡 ) =
𝑓𝑒𝑣𝑎𝑙 (

𝑞
2𝑝 (⌊

𝑝
𝑞 (

𝑞
𝑝𝑚
′ + 𝑒 + 𝑞

2𝑝 )⌋ +
1

2
) + 𝑒𝑏𝑜𝑜𝑡 ) = 𝑓𝑒𝑣𝑎𝑙 (

𝑞
2𝑝 (𝑚

′ + 1

2
) +

𝑒𝑏𝑜𝑜𝑡 ) = ⌊
𝑞
𝑝 𝐹 (⌊

2𝑝
𝑞 (

𝑞
2𝑝 (𝑚

′ + 1

2
) + 𝑒𝑏𝑜𝑜𝑡 )⌋)⌉ = ⌊

𝑞
𝑝 𝐹 (𝑚

′)⌉. The first
and third equations simply substitute 𝑓𝐶 for (1) and 𝑓𝑒𝑣𝑎𝑙 for (2); the

second equation uses the condition that |𝑒 | < 𝑞
2𝑝 ; the last equation

follows from |𝑒𝑏𝑜𝑜𝑡 | = 𝛽 <
𝑞
4𝑝 . The case of 𝑚 +

𝑞
2𝑝 ∈ [

𝑞
2
, 𝑞 − 1]

can be proven in a similar way. Thus the final output of FDFB-
Compress is LWE( 𝑞𝑝 𝐹 (𝑚

′) +𝑒𝑏𝑜𝑜𝑡 ). Again, since |𝑒𝑏𝑜𝑜𝑡 | = 𝛽 <
𝑞
4𝑝 ,

the output is a valid LWE ciphertext. □

3.1.2 FDFB-CancelSign. This algorithm employs the

Type-SelectMSB strategy. Given LWE®𝑠,𝑛,𝑞
2

( 𝑞
2𝑝𝑚

′ + 𝑒), FDFB-
CancelSign first executes ‘mod up’ to obtain a ciphertext

LWE®𝑠,𝑛,𝑞 (
𝑞
2
MSB + 𝑞

2𝑝𝑚
′ + 𝑒) and then performs a raw functional

bootstrap to evaluate

𝑓𝑐𝑠 =

{
⌊𝑄𝑝 𝐹 (⌊

2𝑝
𝑞 𝑥⌋)⌉ 𝑥 ∈ [0, 𝑞

2
− 1]

−𝑓𝑐𝑠 (𝑥 − 𝑞
2
) 𝑥 ∈ [𝑞

2
, 𝑞 − 1]

: Z𝑞 → Z𝑄 (3)

and obtain a ciphertext encrypting (−1)MSB ⌊𝑄𝑝 𝐹 (𝑚
′)⌉. Finally, an

LWE-to-RLWE packing key switching and another functional boot-

strap cancel the extra (−1)MSB
factor. The algorithm for FDFB-

CancelSign is fully described in Alg. 3, and its correctness is proved

in Lemma 3.2.

Algorithm 3: FDFB-CancelSign
input :Plaintext modulus 𝑝 and an LUT 𝐹 : Z𝑝 → Z𝑝
input :Base 𝐵𝑝𝑘 and modulus 𝑞𝑝𝑘 for PackingKS

input : {ksk′
𝑖, 𝑗,𝑘
}, packing keys for PackingKS with 𝑑 = 𝑁

input :An LWE ciphertext (𝑏, ®𝑎) = LWE®𝑠,𝑛,𝑞
2

( 𝑞
2𝑝𝑚

′ + 𝑒)
output :An LWE ciphertext LWE®𝑠,𝑛,𝑞

2

( 𝑞
2𝑝 𝐹 (𝑚

′) + 𝑒′)
1 ct← ModUp((𝑏 + 𝑞

4𝑝 , ®𝑎), 𝑞)
2 ct1 ← BootRaw[𝑓𝑐𝑠 ] (ct)
3 ct𝑝𝑘 ← PackingKS(ct1, {ksk′𝑖, 𝑗,𝑘 })
4 return Boot[ct𝑝𝑘 ] (ct)

Lemma 3.2. If |𝑒 | < 𝑞
4𝑝 and |𝑒′ | < 𝑞

4𝑝 , then FDFB-CancelSign(𝐹,
LWE®𝑠,𝑛,𝑞

2

( 𝑞
2𝑝𝑚

′ + 𝑒)) = LWE®𝑠,𝑛,𝑞
2

( 𝑞
2𝑝 𝐹 (𝑚

′) + 𝑒′).

Proof. |𝑒 | < 𝑞
4𝑝 and |𝑒′ | < 𝑞

4𝑝 ensures the validity of the input

and output ciphertext of FDFB-CancelSign. We prove the lemma

in two steps. (1) ct1 = LWE((−1)MSB ⌊𝑄𝑝 𝐹 (𝑚
′)⌉); (2) line 3 to 4

multiplies the message in ct1 by (−1)MSB
.

For the first step, let ct = LWE( 𝑞
2𝑝𝑚

′ + 𝑒 + 𝑞
4𝑝 +MSB

𝑞
2
). Then

when MSB = 0, ct1 = LWE(⌊𝑄𝑝 𝐹 (⌊
2𝑝
𝑞 (

𝑞
2𝑝𝑚

′ +𝑒 + 𝑞
4𝑝 )⌋)⌉ +𝑒𝑏𝑜𝑜𝑡 ) =

LWE(⌊𝑄𝑝 𝐹 (𝑚
′)⌉ + 𝑒𝑏𝑜𝑜𝑡 ), where the second equation follows from

|𝑒 | < 𝑞
4𝑝 . When MSB = 1, ct1 = LWE(−⌊𝑄𝑝 𝐹 (𝑚

′)⌉ + 𝑒𝑏𝑜𝑜𝑡 ) as
defined by (3), which finishes the proof.

For the second step, suppose ct1 = LWE®𝑠,𝑛,𝑞 (𝑚1) at line 3, then
ct𝑝𝑘 encrypts a polynomial whose coefficients are𝑚1+𝑒𝑝𝑘 . Since the
value encrypted in ct lies within [MSB

𝑞
2
,MSB

𝑞
2
+ 𝑞

2
−1], after blind

rotating ct𝑝𝑘 by ct, the constant term of ct𝑝𝑘 equals (−1)MSB (𝑚1 +
𝑒𝑝𝑘 ) + 𝑒𝑎𝑐𝑐 ≈ (−1)MSB𝑚1. □

3.1.3 FDFB-Select. This algorithm employs the Type-SelectMSB

strategy but does not perform the ‘mod up’ operation as in FDFB-
CancelSign. In particular, let 𝐹 : Z𝑝 → Z𝑝 be an arbitrary LUT,

let ct = LWE®𝑠,𝑛,𝑞 (
𝑞
𝑝𝑚
′ + 𝑒) be a ciphertext encrypting𝑚′, and let

MSB be the most significant bit of𝑚′. FDFB-Select first constructs
two sub-LUTs from Z𝑝/2 to Z𝑝 , which correspond to the LUT 𝐹

with MSB = 0 or MSB = 1 respectively. These two sub-LUTs can

5
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be extended to 𝐹0, 𝐹1 : Z𝑝 → Z𝑝 to fulfill the negacyclic constraint.

𝐹0 and 𝐹1 correspond to the functions in (4) and (5).

𝑓𝑝𝑜𝑠 =

{
⌊𝑄𝑝 𝐹 (⌊

𝑝
𝑞 𝑥⌋)⌉ 𝑥 ∈ [0, 𝑞

2
− 1]

−𝑓𝑝𝑜𝑠 (𝑥 − 𝑞
2
) 𝑥 ∈ [𝑞

2
, 𝑞 − 1]

: Z𝑞 → Z𝑄 , (4)

𝑓𝑛𝑒𝑔 =

{
−𝑓𝑛𝑒𝑔 (𝑥 + 𝑞

2
) 𝑥 ∈ [0, 𝑞

2
− 1]

⌊𝑄𝑝 𝐹 (⌊
𝑝
𝑞 𝑥⌋)⌉ 𝑥 ∈ [𝑞

2
, 𝑞 − 1]

: Z𝑞 → Z𝑄 . (5)

By evaluating these two functions on ct + 𝑞
2𝑝 using a single func-

tional bootstrap each, we can obtain two ciphertexts that encrypt

𝐹0 (𝑚′) and 𝐹1 (𝑚′), respectively. Additionally, we can obtain a ci-

phertext encryptingMSB by evaluating function (6) on ct+ 𝑞
2𝑝 using

a single functional bootstrap.

𝑓𝑠𝑔𝑛 =

{
𝑞
8

𝑥 ∈ [0, 𝑞
2
− 1]

−𝑞
8

𝑥 ∈ [𝑞
2
, 𝑞]

: Z𝑞 → Z𝑞 . (6)

Finally, we use the encryption of MSB to select 𝐹MSB (𝑚′) from
𝐹𝑖 (𝑚′) by a single functional bootstrap. The algorithm for FDFB-
Select is fully described in Alg. 4, and its correctness is proved in

Lemma 3.3.

The first three functional bootstraps have the same input cipher-

text 𝑐𝑡 , thus can be accomplished via a single multi-value bootstrap

at the cost of increased noise growth. Therefore, when the parame-

ter settings enable multi-value bootstrap, FDFB-Select needs only
two functional bootstraps, otherwise it requires four functional

bootstraps. In the case where multi-value bootstrap is unavailable,

we develop a variant of FDFB-Select, called FDFB-SelectAlt, de-
scribed in Alg. 5, which uses only three bootstraps. The correctness

of FDFB-SelectAlt is proved in Lemma 3.4.

Remark. We actually use an improved version of the base-

aware LWE-to-RLWE packing proposed by [24] to pack ct𝑝𝑜𝑠

and −ct𝑛𝑒𝑔 into ct𝑝𝑘 . To pack 𝑀 |𝑁 messages LWE(𝑚𝑖 ) into
RLWE(∑𝑀−1

𝑖=0 𝑚𝑖 (1 + 𝑋 + 𝑋 2 + . . . + 𝑋
𝑁
𝑀
−1)𝑋

𝑁
𝑀
𝑖 ), [24] generates

𝑀 key switching keys, with each key corresponding to an index

𝑖 ∈ ⟦𝑀⟧. However, we observe that generating the key switching

key for 𝑖 = 0 is sufficient since the keys for 𝑖 ≠ 0 can be obtained

by multiplying the key for 𝑖 = 0 by 𝑋
𝑁
𝑀
𝑖
. The storage cost of this

optimized version of PackingKS is only
1

𝑀
that of [24].

Lemma 3.3. If |𝑒 | <
𝑞
2𝑝 , 𝛽 <

𝑞
8

and |𝑒′ | <
𝑞
2𝑝 , then

FDFB-Select(𝐹, LWE®𝑠,𝑛,𝑞 (
𝑞
𝑝𝑚
′ + 𝑒)) = LWE®𝑠,𝑛,𝑞 (

𝑞
𝑝 𝐹 (𝑚

′) + 𝑒′).

Proof. |𝑒 | < 𝑞
2𝑝 and |𝑒′ | < 𝑞

2𝑝 ensures the validity of input and

output ciphertext of FDFB-Select. The desired value is encrypted

in ct𝑝𝑜𝑠 when MSB = 0 and in ct𝑛𝑒𝑔 when MSB = 1. Then it only

remains to prove that line 4 to line 6 selects the correct ciphertext

from ct𝑝𝑜𝑠 and ct𝑛𝑒𝑔 . Since |𝑒 | < 𝑞
2𝑝 , ct𝑠𝑔𝑛 = LWE(𝑓𝑠𝑔𝑛 ( 𝑞𝑝𝑚

′ + 𝑒 +
𝑞
2𝑝 ) +𝑒𝑏𝑜𝑜𝑡 ) lies in [

𝑞
8
(−1)MSB−𝛽, 𝑞

8
(−1)MSB +𝛽]. Applying 𝛽 <

𝑞
8

and 𝑞 = 2𝑁 , the value encrypted in ct𝑠𝑔𝑛 belongs to [0, 𝑁
2
− 1]

or [−𝑁
2
,−1] when MSB = 0 or 1 respectively. Denote the values

encrypted in ct𝑝𝑜𝑠 and ct𝑛𝑒𝑔 as𝑚𝑝𝑜𝑠 and𝑚𝑛𝑒𝑔 . Then ct𝑝𝑘 encrypts

a polynomial whose 𝑖-th coefficient is𝑚𝑝𝑜𝑠 + 𝑒𝑝𝑘 for 𝑖 ∈ [0, 𝑁
2
− 1]

and −𝑚𝑛𝑒𝑔 + 𝑒𝑝𝑘 for 𝑖 ∈ [𝑁
2
, 𝑁 − 1]. After blind-rotated by ct𝑠𝑔𝑛 ,

Algorithm 4: FDFB-Select
input :Plaintext modulus p and an LUT 𝐹 : Z𝑝 → Z𝑝
input :Base 𝐵𝑝𝑘 and modulus 𝑞𝑝𝑘 for PackingKS

input : {ksk′
𝑖, 𝑗,𝑘
}, packing keys for PackingKS with 𝑑 = 𝑁

2

input :An LWE ciphertext (𝑏, ®𝑎) = LWE®𝑠,𝑛,𝑞 (
𝑞
𝑝𝑚
′ + 𝑒)

output :An LWE ciphertext LWE®𝑠,𝑛,𝑞 (
𝑞
𝑝 𝐹 (𝑚

′) + 𝑒′)
1 ct← (𝑏 + 𝑞

2𝑝 , ®𝑎)
2 ct𝑝𝑜𝑠 ← BootRaw[𝑓𝑝𝑜𝑠 ] (ct)
3 ct𝑛𝑒𝑔 ← BootRaw[𝑓𝑛𝑒𝑔] (ct)
4 ct𝑠𝑔𝑛 ← Boot[𝑓𝑠𝑔𝑛] (ct)
5 ct𝑝𝑘 ← PackingKS(ct𝑝𝑜𝑠 , {ksk′𝑖, 𝑗,𝑘 }) +

PackingKS(−ct𝑛𝑒𝑔, {ksk′𝑖, 𝑗,𝑘 }) · 𝑋
𝑁
2

6 return Boot[ct𝑠𝑔𝑛] (ct𝑝𝑘 )

ct𝑝𝑘 has a constant term of 𝑚𝑝𝑜𝑠 + 𝑒𝑝𝑘 + 𝑒𝑎𝑐𝑐 for MSB = 0 and

𝑚𝑛𝑒𝑔 − 𝑒𝑝𝑘 + 𝑒𝑎𝑐𝑐 for MSB = 1. □

Algorithm 5: FDFB-SelectAlt
input :Plaintext modulus p and an LUT 𝐹 : Z𝑝 → Z𝑝
input :Base 𝐵𝑝𝑘 and modulus 𝑞𝑝𝑘 for PackingKS

input : {ksk′
𝑖, 𝑗,𝑘
}, packing keys for PackingKS with 𝑑 = 𝑁

input :An LWE ciphertext (𝑏, ®𝑎) = LWE®𝑠,𝑛,𝑞 (
𝑞
𝑝𝑚
′ + 𝑒)

output :An LWE ciphertext LWE®𝑠,𝑛,𝑞 (
𝑞
𝑝 𝐹 (𝑚

′) + 𝑒′)
1 ct← (𝑏 + 𝑞

2𝑝 , ®𝑎)
2 ctℎ𝑑𝑖 𝑓 𝑓 ← BootRaw[(𝑓𝑛𝑒𝑔 − 𝑓𝑝𝑜𝑠 )/2] (ct)
3 ctℎ𝑠𝑢𝑚 ← BootRaw[(𝑓𝑛𝑒𝑔 + 𝑓𝑝𝑜𝑠 )/2] (ct)
4 ct𝑝𝑘 ← PackingKS(ctℎ𝑑𝑖 𝑓 𝑓 , {ksk′𝑖, 𝑗,𝑘 })
5 return ctℎ𝑠𝑢𝑚 − Boot[ct] (ct𝑝𝑘 )

Lemma 3.4. If |𝑒 | < 𝑞
2𝑝 and 𝑒′ < 𝑞

2𝑝 , then FDFB-SelectAlt(𝐹,
LWE®𝑠,𝑛,𝑞 (

𝑞
𝑝𝑚
′ + 𝑒)) = LWE®𝑠,𝑛,𝑞 (

𝑞
𝑝 𝐹 (𝑚

′) + 𝑒′).

Proof. |𝑒 | <
𝑞
2𝑝 and |𝑒′ | <

𝑞
2𝑝 ensures the valid-

ity of input and output ciphertext of FDFB-SelectAlt.
ctℎ𝑑𝑖 𝑓 𝑓 and ctℎ𝑠𝑢𝑚 encrypt 𝑚ℎ𝑑𝑖 𝑓 𝑓 =

𝑓𝑛𝑒𝑔 (𝑚)−𝑓𝑝𝑜𝑠 (𝑚)
2

and

𝑚ℎ𝑠𝑢𝑚 =
𝑓𝑛𝑒𝑔 (𝑚)+𝑓𝑝𝑜𝑠 (𝑚)

2
respectively. Similar to the proof of

Lemma 3.2, Boot[ct] (ct𝑝𝑘 ) = LWE((−1)MSB𝑚ℎ𝑑𝑖 𝑓 𝑓 ). Then the re-

turned result encrypts

𝑓𝑛𝑒𝑔 (𝑚)+𝑓𝑝𝑜𝑠 (𝑚)
2

− (−1)MSB
𝑓𝑛𝑒𝑔 (𝑚)−𝑓𝑝𝑜𝑠 (𝑚)

2
,

which equals 𝑓𝑝𝑜𝑠 (𝑚) when MSB = 0 and 𝑓𝑛𝑒𝑔 (𝑚) when

MSB = 1. Applying 𝑚 =
𝑞
𝑝𝑚
′ + 𝑒 + 𝑞

2𝑝 and |𝑒 | < 𝑞
2𝑝 , we have

𝑓𝑛𝑒𝑔 (𝑚) = 𝑓𝑝𝑜𝑠 (𝑚) = ⌊𝑄𝑝 𝐹 (𝑚
′)⌉ whenMSB = 0, 1 respectively. □

3.1.4 FDFB-BFVMult. This algorithm employs the Type-

SelectMSB strategy but uses BFV multiplication to handle the MSB.

It contains FDFB-BFVMult1 and FDFB-BFVMult2.
FDFB-BFVMult1 first obtains a ciphertext that encrypts

(−1)MSB ⌊𝑄𝑝 𝐹 (𝑚
′)⌉ in the same way as FDFB-CancelSign. Then

it evaluates the function (7) via a functional bootstrap to acquire

6
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the encryption of ⌊𝑄𝑝 (−1)
MSB⌉. Finally, it computes the product of

the two LWE ciphertexts using LWE-to-RLWE packing and BFV

multiplication. The algorithm is fully described in Alg. 6, and its

correctness is proved in Lemma 3.5.

𝑓𝑠𝑔𝑛1 =

{
⌊𝑄𝑝 ⌉ 𝑥 ∈ [0, 𝑞

2
− 1]

𝑄 − ⌊𝑄𝑝 ⌉ 𝑥 ∈ [𝑞
2
, 𝑞 − 1]

: Z𝑞 → Z𝑄 (7)

FDFB-BFVMult2 first constructs two LUTs 𝐹0 and 𝐹1 in the

sameway as FDFB-Select. Next, by using two functional bootstraps
to evaluate 𝑓𝑝𝑜𝑠 and 𝑓𝑛𝑒𝑔 − 𝑓𝑝𝑜𝑠 (defined in (4) and (5)), it obtains

encryptions of𝑚𝑝𝑜𝑠 = ⌊𝑄𝑝 𝐹0 (𝑚
′)⌉ and𝑚𝑑𝑖 𝑓 𝑓 = ⌊𝑄𝑝 (𝐹1 − 𝐹0) (𝑚

′)⌉.
Then it evaluates the function (8) via a functional bootstrap to ac-

quire the encryption of𝑚𝑠𝑔𝑛 = ⌊− 𝑄
2𝑝 (−1)

MSB⌉ + ⌊ 𝑄
2𝑝 ⌉ ≈ ⌊

𝑄
𝑝 MSB⌉

Finally, it computes MSB ·𝑚𝑑𝑖 𝑓 𝑓 +𝑚𝑝𝑜𝑠 ≈ ⌊𝑄𝑝 𝐹MSB (𝑚′)⌉ using
LWE-to-RLWE packing and BFV multiplication. The algorithm is

fully described in Alg. 7, and its correctness is proved in Lemma 3.6.

𝑓𝑠𝑔𝑛2 =

{
𝑄 − ⌊ 𝑄

2𝑝 ⌉ 𝑥 ∈ [0, 𝑞
2
− 1]

⌊ 𝑄
2𝑝 ⌉ 𝑥 ∈ [𝑞

2
, 𝑞 − 1]

: Z𝑞 → Z𝑄 (8)

When parameter settings allow for multi-value bootstrap,

the number of bootstraps in both FDFB-BFVMult1 and

FDFB-BFVMult2 can be decreased to one using multi-value

bootstrap.

The improved efficiency of FDFB-BFVMult is mainly due to

our fine-grained noise analysis for BFV multiplication. Our core

observation is that in LWE-to-RLWE packing, only the constant

term of the output polynomial message is assigned the value of the

input LWE message, while the coefficients of non-constant terms

are close to 0. In contrast to conventional BFVmultiplication, where

messages are stored in all coefficients, this results in approximately

1/𝑁 noise growth compared to FDFB-BFVMult. Refer to Appendix
B for a complete analysis.

Algorithm 6: FDFB-BFVMult1
input :Plaintext modulus 𝑝 and an LUT 𝐹 : Z𝑝 → Z𝑝
input :Base 𝐵𝑘𝑠 and modulus 𝑞𝑘𝑠 for key switching

input :Base 𝐵𝑝𝑘 and modulus 𝑞𝑝𝑘 for PackingKS

input : {ksk𝑖, 𝑗,𝑘 }, key switching keys

input : {ksk′
𝑖, 𝑗,𝑘
}, packing keys for PackingKS with 𝑑 = 1

input :An LWE ciphertext (𝑏, ®𝑎) = LWE®𝑠,𝑛,𝑞
2

( 𝑞
2𝑝𝑚

′ + 𝑒)
output :An LWE ciphertext LWE®𝑠,𝑛,𝑞

2

( 𝑞
2𝑝 𝐹 (𝑚

′) + 𝑒′)
1 ct← ModUp((𝑏 + 𝑞

4𝑝 , ®𝑎), 𝑞)
2 ct0 ← PackingKS(BootRaw[𝑓𝑐𝑠 ] (ct), {ksk′𝑖, 𝑗,𝑘 })
3 ct𝑠𝑔𝑛 ← PackingKS(BootRaw[𝑓𝑠𝑔𝑛1] (ct), {ksk′𝑖, 𝑗,𝑘 })
4 ct𝑝𝑟𝑜𝑑 ← SampleExtract(BFVMult(ct0, ct𝑠𝑔𝑛), 0)
5 ct𝑟𝑒𝑠 ← KeySwitch(ModSwitch(ct𝑟𝑒𝑠 , 𝑞𝑘𝑠 ), {ksk𝑖, 𝑗,𝑘 })
6 return ModSwitch(ct𝑟𝑒𝑠 , 𝑞

2
)

Lemma 3.5. If |𝑒 | < 𝑞
4𝑝 and 𝑒′ < 𝑞

4𝑝 , then FDFB-BFVMult1 (𝐹,
LWE®𝑠,𝑛,𝑞

2

( 𝑞
2𝑝𝑚

′ + 𝑒)) = LWE®𝑠,𝑛,𝑞
2

( 𝑞
2𝑝 𝐹 (𝑚

′) + 𝑒′).

Proof. |𝑒 | < 𝑞
4𝑝 and |𝑒′ | < 𝑞

4𝑝 ensures the validity of input

and output ciphertext of FDFB-BFVMult1. Similar to the proof of

Lemma 3.2, ct0 = RLWE((−1)MSB ⌊𝑄𝑝 𝐹 (𝑚
′)⌉). Moreover, ct𝑠𝑔𝑛 =

RLWE(𝑓𝑠𝑔𝑛1 ( 𝑞
2𝑝𝑚

′ + 𝑒 + 𝑞
4𝑝 )) = RLWE((−1)MSB ⌊𝑄𝑝 ⌉). Computing

their BFV product gives ct𝑝𝑟𝑜𝑑 = RLWE(⌊𝑄𝑝 𝐹 (𝑚
′)⌉). Finally, sam-

ple extraction, key switching and modulus switching convert ct𝑝𝑟𝑜𝑑

into the desired output format. □

Algorithm 7: FDFB-BFVMult2
input :Plaintext modulus 𝑝 and an LUT 𝐹 : Z𝑝 → Z𝑝
input :Base 𝐵𝑘𝑠 and modulus 𝑞𝑘𝑠 for key switching

input :Base 𝐵𝑝𝑘 and modulus 𝑞𝑝𝑘 for PackingKS

input : {ksk𝑖, 𝑗,𝑘 }, key switching keys

input : {ksk′
𝑖, 𝑗,𝑘
}, packing keys for PackingKS with 𝑑 = 1

input :An LWE ciphertext (𝑏, ®𝑎) = LWE®𝑠,𝑛,𝑞 (
𝑞
𝑝𝑚
′ + 𝑒)

output :An LWE ciphertext LWE®𝑠,𝑛,𝑞 (
𝑞
𝑝 𝐹 (𝑚

′) + 𝑒′)
1 ct← (𝑏 + 𝑞

2𝑝 , ®𝑎)
2 ct𝑝𝑜𝑠 ← BootRaw[𝑓𝑝𝑜𝑠 ] (ct)
3 ct𝑑𝑖 𝑓 𝑓 ← PackingKS(BootRaw[𝑓𝑛𝑒𝑔 − 𝑓𝑝𝑜𝑠 ] (ct), {ksk′𝑖, 𝑗,𝑘 })
4 ct𝑠𝑔𝑛 ← PackingKS(BootRaw[𝑓𝑠𝑔𝑛2] (ct) + ⌊ 𝑄

2𝑝 ⌉, {ksk
′
𝑖, 𝑗,𝑘
})

5 ct𝑝𝑟𝑜𝑑 ← SampleExtract(BFVMult(ct𝑑𝑖 𝑓 𝑓 , ct𝑠𝑔𝑛), 0)
6 ct𝑟𝑒𝑠 ← ct𝑝𝑟𝑜𝑑 + ct𝑝𝑜𝑠
7 ct𝑟𝑒𝑠 ← KeySwitch(ModSwitch(ct𝑟𝑒𝑠 , 𝑞𝑘𝑠 ), {ksk𝑖, 𝑗,𝑘 })
8 return ModSwitch(ct𝑟𝑒𝑠 , 𝑞

2
)

Lemma 3.6. If |𝑒 | < 𝑞
2𝑝 and 𝑒′ < 𝑞

2𝑝 , then FDFB-BFVMult2 (𝐹,
LWE®𝑠,𝑛,𝑞 (

𝑞
𝑝𝑚
′ + 𝑒)) = LWE®𝑠,𝑛,𝑞 (

𝑞
𝑝 𝐹 (𝑚

′) + 𝑒′).

Proof. |𝑒 | <
𝑞
2𝑝 and |𝑒′ | <

𝑞
2𝑝 ensures the valid-

ity of input and output ciphertext of FDFB-BFVMult2.
Denote the plaintext encrypted in ct𝑑𝑖 𝑓 𝑓 and ct𝑝𝑜𝑠 as

𝑚𝑑𝑖 𝑓 𝑓 = 𝑓𝑛𝑒𝑔 (𝑚) − 𝑓𝑝𝑜𝑠 (𝑚) and𝑚𝑝𝑜𝑠 = 𝑓𝑝𝑜𝑠 (𝑚) respectively. Also,
ct𝑠𝑔𝑛 = RLWE(𝑓 ′𝑠𝑔𝑛 (𝑚) + ⌊

𝑄
2𝑝 ⌉) = RLWE(⌊ 𝑄

2𝑝 ⌉ (1 − (−1)
MSB)) =

RLWE(MSB⌊𝑄𝑝 ⌉). Then BFVMult(ct𝑠𝑔𝑛, ct𝑑𝑖 𝑓 𝑓 ) + ct𝑝𝑜𝑠 encrypts

MSB(𝑓𝑛𝑒𝑔 (𝑚) − 𝑓𝑝𝑜𝑠 (𝑚)) + 𝑓𝑝𝑜𝑠 (𝑚), which equals 𝑓𝑛𝑒𝑔 (𝑚) when
MSB = 1 and 𝑓𝑝𝑜𝑠 (𝑚) when MSB = 0. Finally, the result is

converted to the output format as in FDFB-BFVMult1. □

3.2 FDFBs for Continuous Functions
This subsection describes how to evaluate a continuous function

𝐹 ′ : R→ R on an approximate LWE ciphertext (e.g., extracted from

a CKKS ciphertext) using the modified FDFB algorithms FDFB-
Compress, FDFB-CancelSign and FDFB-Select. EvalFunc and
Comp in prior works can also be adapted for continuous purposes,

whose details we leave to Appendix A. As a useful optimization,

when 𝐹 ′ is a vertically translated odd or even function (i.e., can be

expressed as the sum of a constant and an odd or even function),

the number of bootstraps in Comp can be reduced from 4 to 2. This

alternative version of Comp is referred to as Comp (fast).

7
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Evaluating a continuous function is inherently incompatible with

multi-value bootstrap because the multiplication of TV1 greatly

amplifies the variance of blind rotation noise. While it is possible

to select an intermediate modulus 𝑝𝑚𝑖𝑑 and discretize the con-

tinuous function 𝐹 ′ as a Z𝑞 → Z𝑝𝑚𝑖𝑑
mapping, the 2-norm of

TV1 = TV
′ (1 − 𝑋 ) ∈ 𝑅2𝑝𝑚𝑖𝑑

can still be large, leading to a con-

siderable output noise. The same problem also exists for other

polynomial multiplication operations (such as BFV multiplication

and 𝑅𝑞 × RLWE
′
product), making FDFB algorithms that use these

operations unsuitable for continuous function evaluation.

For continuous function evaluation, the input scaling factor Δ𝑖𝑛 ,
output scaling factor Δ𝑜𝑢𝑡 and output modulus 𝑞𝑜𝑢𝑡 are introduced

as new parameters. Refer to Section 5 and Appendix A for proof of

the following algorithms’ output noise variances.

3.2.1 FDFB-Compress (Continuous Case). In this algorithm, the

compression function 𝑓𝐶 in (1) is substituted with 𝑓 ′
𝐶
, which is

defined in (9) and illustrated in Figure 2.

𝑓 ′𝐶 =


⌊

𝑞

4
−2𝛽

𝑞

2
−1 𝑥 + 𝛽⌉ 𝑥 ∈ [0, 𝑞

2
− 1]

𝑞 − 𝑓 ′
𝐶
(𝑥 − 𝑞

2
) 𝑥 ∈ [𝑞

2
, 𝑞 − 1]

: Z𝑞 → Z𝑞 (9)

The strategy adopted to construct 𝑓 ′
𝐶
is called ‘𝛽-padding’, which

creates a 2𝛽 distance between 𝑓 ′
𝐶
(0) and 𝑓 ′

𝐶
( 𝑞
2
) to separate the cases

where the input is 0 and
𝑞
2
. Otherwise, the bootstrapping error may

intermix the two cases, making it impossible for 𝑓𝑒𝑣𝑎𝑙 to distinguish

between them. As a result, when the input is positive and near 0,

FDFB-Compress may yield an incorrect result 𝐹 ′ (− 𝑞

2Δ𝑖𝑛
) instead

of 𝐹 ′ (0). Also, 𝑓 ′
𝐶
( 𝑞
2
− 1) and 𝑓 ′

𝐶
(𝑞 − 1) must be 𝛽 away from

𝑞
4
and

𝑞 respectively to ensure that the output message of 𝑓 ′
𝐶
always lies

within half of Z𝑞 .
The function 𝑓𝑒𝑣𝑎𝑙 in (2) is replaced by 𝑓 ′

𝑒𝑣𝑎𝑙
: Z𝑞 → Z𝑄 , which

is defined as

𝑓 ′
𝑒𝑣𝑎𝑙

=



⌊𝐹 ′ ( 𝑥−𝛽
slopeΔ𝑖𝑛

)𝑄Δ𝑜𝑢𝑡

𝑞𝑜𝑢𝑡
⌉ 𝑥 ∈ [𝛽, 𝑞

4
− 𝛽]

⌊𝐹 ′ (( 𝑞−𝑥−𝛽
slope

− 𝑞
2
)Δ−1

𝑖𝑛
)𝑄Δ𝑜𝑢𝑡

𝑞𝑜𝑢𝑡
⌉ 𝑥 ∈ [ 3𝑞

4
+ 𝛽, 𝑞 − 𝛽]

⌊𝐹 ′ (0)𝑄Δ𝑜𝑢𝑡

𝑞𝑜𝑢𝑡
⌉ 𝑥 ∈ [0, 𝛽 − 1]

⌊𝐹 ′ (( 𝑞
2
− 1)Δ−1

𝑖𝑛
)𝑄Δ𝑜𝑢𝑡

𝑞𝑜𝑢𝑡
⌉ 𝑥 ∈ [𝑞

4
− 𝛽 + 1, 𝑞

4
− 1]

⌊𝐹 ′ (− 𝑞

2Δ𝑖𝑛
)𝑄Δ𝑜𝑢𝑡

𝑞𝑜𝑢𝑡
⌉ 𝑥 ∈ [ 3𝑞

4
,
3𝑞
4
+ 𝛽 − 1]

⌊𝐹 ′ (− 1

Δ𝑖𝑛
)𝑄Δ𝑜𝑢𝑡

𝑞𝑜𝑢𝑡
⌉ 𝑥 ∈ [𝑞 − 𝛽 + 1, 𝑞 − 1]

𝑄 − 𝑓 ′
𝑒𝑣𝑎𝑙
(𝑥 + 𝑞

2
) 𝑥 ∈ [𝑞

4
,
3𝑞
4
− 1]

,

where slope =
𝑞

4
−2𝛽

𝑞

2
−1 . Essentially 𝑓 ′

𝑒𝑣𝑎𝑙
aims to recover the original

input to 𝑓 ′
𝐶
, carry out an evaluation of 𝐹 ′ on the recovered input,

and subsequently scales the result by Δ𝑜𝑢𝑡 . As the evaluation of

𝑓 ′
𝐶
introduces a bootstrapping error, the input recovered by 𝑓 ′

𝑒𝑣𝑎𝑙
also contains a bootstrapping error (multiplied by some constant),

which means that the output error of FDFB-Compress depends
on the Lipschitz constant of 𝐹 ′.

3.2.2 FDFB-CancelSign (Continuous Case). To extend FDFB-
CancelSign to continuous functions, we replace 𝑓𝑐𝑠 with 𝑓 ′𝑐𝑠 de-
fined in (10), which interprets each 𝑥 ∈ [0, 𝑞

2
− 1] as a signed

fixed-point integer.

Figure 2: Compression function 𝑓 ′
𝐶
for continuous function

evaluation.

𝑓 ′𝑐𝑠 =

⌊𝐹
′ (
[𝑥 ] 𝑞

2

Δ𝑖𝑛
)𝑄Δ𝑜𝑢𝑡

𝑞𝑜𝑢𝑡
⌉ 𝑥 ∈ [0, 𝑞

2
− 1]

𝑄 − 𝑓 ′𝑐𝑠 (𝑥 −
𝑞
2
) 𝑥 ∈ [𝑞

2
, 𝑞 − 1]

: Z𝑞 → Z𝑄 (10)

The output error of FDFB-CancelSign is determined by the boot-

strap error and irrelevant to the Lipschitz constant of 𝐹 ′.

3.2.3 FDFB-Select (Continuous Case). The adjustments made to

FDFB-Select and FDFB-SelectAlt are almost identical to those

applied to FDFB-CancelSign, and the output error remains inde-

pendent of the Lipschitz constant of 𝐹 ′.

4 IMPROVED HOMOMORPHIC DIGIT
DECOMPOSITION

This section presents two algorithms HomDecomp-Reduce and
HomDecomp-FDFB to decompose an LWE ciphertext with a large

modulus 𝑞0 into multiple LWE ciphertexts with a smaller modulus

𝑞, each encrypting a digit of the original message. HomDecomp-
Reduce creates buffer space for modulus switching noise by re-

ducing the range of lower bits by half. It can handle digits of up

to 4 bits and requires one bootstrap operation per decomposed

digit. In contrast, HomDecomp-FDFB clears the lower bits (up to

a bootstrapping error) and can handle digits of up to 5 bits, but it

requires two bootstrap operations per digit. We still assume 𝑞 = 2𝑁

as in the previous section.

4.1 HomDecomp-Reduce
InHomDecomp-Reduce, the range of lower bits is first reduced by
half using one bootstrap operation to accommodate the subsequent

modulus switching noise. The reduction function 𝑓𝑟𝑒𝑑 : Z𝑞 → Z𝑞0
is defined in (11), with different input and output ranges.

𝑓𝑟𝑒𝑑 =

{
𝑞
4

𝑥 ∈ [0, 𝑞
2
− 1]

𝑞0 − 𝑞
4

𝑥 ∈ [𝑞
2
, 𝑞 − 1]

: Z𝑞 → Z𝑞0 (11)

The complete algorithm is described in Alg. 8 and its correctness

is proved in Lemma 4.1. Figure 3 illustrates a comparison of the

naive approach (i.e., switch the modulus without reserving any

room for modulus switching noise), HomFloor of [33] and our

HomDecomp-Reduce.

Lemma 4.1. If bnd
√︃
𝐵−2𝜎2

𝑏𝑜𝑜𝑡
+ 𝜎2𝑚𝑠 <

𝑞

4𝐵
, HomDecomp-

Reduce outputs the decomposed digits correctly.
8
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ModSwitch
Naive

LMP22ModSwitch

ModSwitch HomDecomp
-Reduce

Figure 3: Comparison of the naive approach, HomFloor and
our HomDecomp-Reduce. The blue parts stand for higher
bits, while the green and red parts stand for lower bits before
and after modulus switching.

Algorithm 8: HomDecomp-Reduce
input :A base 𝐵 for homomorphic decomposition

input :An LWE ciphertext 𝑐𝑡 = LWE®𝑠,𝑛,𝑞0 (
𝑞0
𝑝 𝑚
′ + 𝑒)

output :LWE ciphertexts {𝑐𝑡𝑖 } encrypting the digits of𝑚′
1 𝑖 ← 0

2 while 𝑞0 > 𝑞 do
3 ct𝑖 ← ModDown(ct, 𝑞)
4 ct← ct + ( 𝑞0

2𝑝 ,
®0)

5 ct′ ← ModDown(ct, 𝑞)
6 ct← ct + Boot[𝑓𝑟𝑒𝑑 ] (ct′) − (

𝑞
2
, ®0)

7 ct← ModSwitch(ct, 𝑞0
𝐵
)

8 𝑖 ← 𝑖 + 1
9 ct𝑖 ← ct

10 return {ct𝑖 }

Proof. It suffices to prove that the modulus switching noise will

not cause an overflow to the higher digits. Denote the message

encrypted in ct at line 4 as𝑚ℎ𝑖𝑔ℎ𝑞 +𝑚𝑙𝑜𝑤 (𝑚𝑙𝑜𝑤 ∈ [0, 𝑞 − 1]). Note
that𝑚𝑙𝑜𝑤 is the message encrypted in ct

′
. Then ct encrypts𝑚1 =

𝑚ℎ𝑖𝑔ℎ𝑞 +𝑚𝑙𝑜𝑤 + 𝑓𝑟𝑒𝑑 (𝑚𝑙𝑜𝑤) + 𝑒𝑏𝑜𝑜𝑡 −
𝑞
2
at line 6. By the definition

of 𝑓𝑟𝑒𝑑 ,𝑚𝑙𝑜𝑤 + 𝑓𝑟𝑒𝑑 (𝑚𝑙𝑜𝑤) ∈ [
𝑞
4
,
3𝑞
4
− 1],∀𝑚𝑙𝑜𝑤 ∈ Z𝑞 , meaning

𝑚𝑒𝑟𝑟 =𝑚1 − (𝑚ℎ𝑖𝑔ℎ𝑞 + 𝑒𝑏𝑜𝑜𝑡 ) ∈ [−
𝑞
4
,
𝑞
4
− 1]. Modulus switching ct

down by 𝐵 will produce an encryption of𝑚ℎ𝑖𝑔ℎ
𝑞

𝐵
+ 𝑒𝑏𝑜𝑜𝑡

𝐵
+𝑒𝑚𝑠+𝑚𝑒𝑟𝑟

𝐵
.

𝑒𝑏𝑜𝑜𝑡
𝐵
+ 𝑒𝑚𝑠 + 𝑚𝑒𝑟𝑟

𝐵
needs to be bounded by

𝑞

2𝐵
to prevent𝑚ℎ𝑖𝑔ℎ

from being destroyed by an overflow. Applying |𝑚𝑒𝑟𝑟 | ≤ 𝑞
4
gives

the desired result. □

4.2 HomDecomp-FDFB
In HomDecomp-FDFB, we use FDFB-Compress to evaluate the

continuous identity function 𝑓𝑖𝑑 (𝑥) = 𝑥 : Z𝑞 → Z𝑞0 (where the
input 𝑥 is in the positive form), and the obtained result is used to

approximately clear the lower bits in input ciphertext. See Alg. 9

for a full description of HomDecomp-FDFB and Lemma 4.2 for

proof of its correctness. The scaling factors for both the input and

output (Δ𝑖𝑛 and Δ𝑜𝑢𝑡 ) of the FDFB-Compress function are set to

1, while 𝑞𝑜𝑢𝑡 is set to 𝑞0.

Algorithm 9: HomDecomp-FDFB
input :A base 𝐵 for homomorphic decomposition

input :An LWE ciphertext 𝑐𝑡 = LWE®𝑠,𝑛,𝑞0 (
𝑞0
𝑝 𝑚
′ + 𝑒)

output :LWE ciphertexts {𝑐𝑡𝑖 } encrypting the digits of𝑚′
1 𝑖 ← 0

2 while 𝑞0 > 𝑞 do
3 ct𝑖 ← ModDown(ct, 𝑞)
4 ct← ct + ( 𝑞0

2𝑝 ,
®0)

5 ct′ ← ModDown(ct, 𝑞)
6 ct← ct − FDFB-Compress[𝑓𝑖𝑑 ] (ct′)
7 ct← ModSwitch(ct, 𝑞0

𝐵
)

8 𝑖 ← 𝑖 + 1
9 ct𝑖 ← ct

10 return {ct𝑖 }

Lemma 4.2. Let 𝑒𝑓 be the output error of FDFB-Compress, and
𝜎2
𝑓
be its variance (Refer to Section 5 for noise analysis of FDFB-

Compress). If bnd
√︃
𝐵−2𝜎2

𝑓
+ 𝜎2𝑚𝑠 <

𝑞

2𝐵
, HomDecomp-FDFB out-

puts the decomposed digits correctly.

Proof. Denote the message encrypted in ct at line 4 as𝑚ℎ𝑖𝑔ℎ𝑞0+
𝑚𝑙𝑜𝑤 (𝑚𝑙𝑜𝑤 ∈ [0, 𝑞 − 1]). Note that𝑚𝑙𝑜𝑤 is also the message en-

crypted in ct
′
. Then ct encrypts𝑚1 =𝑚ℎ𝑖𝑔ℎ𝑞+𝑚𝑙𝑜𝑤−(𝑚𝑙𝑜𝑤+𝑒𝑓 ) =

𝑚ℎ𝑖𝑔ℎ𝑞−𝑒𝑓 at line 6. Modulus switching ct down by 𝐵 will produce

an encryption of𝑚ℎ𝑖𝑔ℎ
𝑞

𝐵
− 𝑒𝑓

𝐵
+𝑒𝑚𝑠 . −

𝑒𝑓
𝐵
+𝑒𝑚𝑠 needs to be bounded

by
𝑞

2𝐵
to prevent𝑚ℎ𝑖𝑔ℎ from being destroyed by an overflow, which

leads to our conclusion directly. □

5 ANALYSIS AND COMPARISON
This section analyzes the FDFB and the homomorphic decompo-

sition algorithms, both ours and previous ones, concerning their

noise growth, maximum plaintext space, and the number of re-

quired bootstraps.

The analysis shows that our noise reduction techniques, such

as refined noise analysis for BFV multiplication and replacing BFV

multiplications with functional bootstraps, significantly reduce the

output error variance of the FDFB algorithms. As a result, we can

use more compact parameters, especially larger 𝐵𝑔 in bootstraps,

which significantly improves the efficiency.

5.1 Analysis of FDFB Algorithms
Table 1 presents the (core) output variance 𝜎2𝑐𝑜𝑟𝑒 and the number

of required bootstraps for all FDFB algorithms, where the final

output variance is 𝜎2𝑜𝑢𝑡 = 𝜎2𝑐𝑜𝑟𝑒 + 𝜎2𝑐𝑜𝑚 and 𝜎2𝑐𝑜𝑚 is defined in

Section 2. Note that the efficiency of an FDFB algorithm is not

solely determined by the number of bootstraps it requires. The

output and the intermediate noises also impact the compactness of

parameters, and thus determine the final efficiency. In particular,

the output error with variance 𝜎2𝑜𝑢𝑡 should be bounded by
𝑞
2𝑝 (or

𝑞
4𝑝
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if the output ciphertext modulus is
𝑞
2
) to ensure that the ciphertext

can be correctly decrypted. Intermediate errors (if any) should also

be bounded, as listed below Table 1.

The main advantage of our FDFB algorithms is the reduced out-

put noise, which allows more compact and efficient parameters.

For instance, in Table 1, we can observe that FDFB-BFVMult1 and
FDFB-BFVMult2 use significantly tighter noise analysis for BFV

multiplication thanWoP-PBS, reducing the noise growth to 1/𝑁
the original value. Moreover, while performing the MSB-related

selection in Type-SelectMSB, FDFB-CancelSign and FDFB-Select
(FDFB-SelectAlt) use LWE-to-RLWE packing and blind rotation

instead of BFVmultiplication, thereby reducing the noise to 1/𝑁 2𝑝2

that ofWoP-PBS1 andWoP-PBS2. Although FDFB-CancelSign
and FDFB-Select (FDFB-SelectAlt) require an additional boot-

strap to replace the BFV multiplication, we demonstrate in Section

6 that they are still faster than WoP-PBS1 and WoP-PBS2 due to
their slow noise growth. Additionally, FDFB-Compress reduces
the input noise variance to the second bootstrap by half, resulting in

0.5 more bits of plaintext modulus compared to EvalFunc. Notably,
among Type-HalfRange FDFB algorithms, FDFB-Compress is op-
timal. This observation is derived from the fact that all methods in

this category must obtain an encryption of
𝑞
2𝑝𝑚

′
under modulus

𝑞 using functional bootstraps. This encryption is valid only when

𝛽 <
𝑞
4𝑝 , which is also the only requirement for FDFB-Compress.

Besides the efficiency in discrete LUT evaluation, the reduction

in output noise offered by our FDFB algorithms also enables high-

precision continuous LUT evaluation. The output noise of previous

FDFB algorithms is either related to the Lipschitz constant of the

evaluated function (EvalFunc, Comp) or significantly amplified by

polynomial multiplication (FDFB-KS, WoP-PBS). In contrast, our

FDFB-CancelSign, FDFB-Select and FDFB-SelectAlt avoid both

defects, thus achieving the smallest output noise. In terms of FDFB-
Compress, it has roughly the same output error as EvalFunc
because 𝑘1 ≈ 1

2
and the Δ𝑖𝑛 of FDFB-Compress is twice that

of EvalFunc. However, the input ciphertext modulus of FDFB-
Compress is also twice that of EvalFunc, thus making FDFB-
Compress less affected by input ciphertext noise (e.g., modulus

switching noise).

5.2 Analysis of Homomorphic Decomposition
Table 2 presents the noise growth and maximum plaintext mod-

ulus of decomposed digits for all homomorphic decomposition

algorithms. For the parameters used in [33], the maximum decom-

position base 𝐵 is 2
4
for HomFloor and HomDecomp-Reduce

and 2
5
for HomFloorAlt and HomDecomp-FDFB. Our proposed

homomorphic decomposition algorithms HomDecomp-Reduce
and HomDecomp-FDFB can achieve the same effect as [33] for

concrete parameters, but with one less bootstrap, resulting in at

least 2.0x and 1.5x running speed compared to previous algorithms

HomFloor and HomFloorAlt respectively.

6 IMPLEMENTATION
We implement all the FDFB algorithms and homomorphic decom-

position algorithms, including both ours and previous ones, in

OpenFHE [2] (commit id 745a492). We disable multi-threading,

except during key generation. We build OpenFHE using the g++

compiler of version 12.2.1 with flag WITH_NATIVEOPT=ON (as the

authors did in [33]). The performance of algorithms is tested on a

machine with Intel(R) Xeon(R) Gold 6248R CPU @ 3.00GHz and

125G of RAM, running Fedora Release 36.

We use three parameter sets in our LWE schemes, i.e.,

PARAM
decomp

, PARAM
fast

and PARAMcontinuous, which have

been verified to meet 128-bit security using lattice-estimator [1]

(commit id 48fa49b). Table 3 presents the details of these parameter

sets, and we briefly explain the selection criteria of 𝑞𝑘𝑠 below, since

𝑛 can be determined from 𝑞𝑘𝑠 . For PARAMdecomp
, the maximum

ciphertext modulus is set to 2
35

such that the ciphertext to be

digit-decomposed has a large modulus. This choice for 𝑞𝑘𝑠 is also

consistent with [33]. For PARAM
fast

, we focus on FDFB algorithms

for discrete LUTs. Thus 𝑞𝑘𝑠 can be set to a smaller value to

accelerate FDFB. However, if 𝑞𝑘𝑠 is too small, it may lead to large

key switching noise, corrupting the correctness of FDFB. Therefore,

we set 𝑞𝑘𝑠 = 2
20

in PARAM
fast

. Finally, for PARAMcontinuous, we

focus on FDFB algorithms for continuous LUTs. 𝑞𝑘𝑠 must be

large enough to make the impact of key switching noise on the

output error negligible. Therefore, we set a larger 𝑞𝑘𝑠 = 2
25

for

PARAMcontinuous than for PARAM
fast

.

The performance of discrete LUT evaluation with FDFB variants

is tested with the plaintext modulus set to 2
4
and 2

5
. The input

ciphertext is error-free for continuous function evaluation because

we only measure the noise introduced by the FDFB algorithms.

Figure 4 displays the benchmark results for our algorithms,

where the red lines or dots represent the performance of our al-

gorithms and the blue ones correspond to previous algorithms.

To ensure fair comparisons, we have only recorded the best per-

formance among the parameters for FDFB variants with multiple

parameter choices (e.g., multi-value or not). Refer to Appendix C

for a complete list of the parameters used in the benchmark.

Performance of Discrete LUT Evaluation. Figure 4a to 4d and

Table 4 shows that our FDFB variants reduce the running time of

their predecessors up to 40%, and the best of our FDFB variants

outperforms the best known results at least by 23.4% and up to

39.2%.

FDFB-BFVMult2* runs the fastest (or almost the fastest) under

all four scenarios since it needs only one bootstrap using 𝐵𝑔 = 2
18
.

However, it cannot be applied to continuous function evaluation

because the multi-value bootstrap and BFV multiplication used by

it will drastically increase the output noise, thus decreasing the

output precision.

For all the scenarios but 4a, FDFB-Select outperforms its pre-

decessor WoP-PBS2. Although it takes one more bootstrap than

WoP-PBS2, the small noise growth achieved by replacing BFV

multiplication with blind rotation allows it to use more efficient

parameters. The same reason explains why FDFB-CancelSign
outperforms WoP-PBS1 in 4a and 4c even though it needs one

more bootstrap. FDFB-Compress and EvalFunc have the same

computational cost (as shown in 4c), but since FDFB-Compress
has a plaintext space 0.5 bits larger than the latter, it is available in

scenario 4a while EvalFunc is not.
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Table 1: Output error variance and the number of bootstraps required for all FDFB algorithms. Those below the mid-line are
proposed in this paper. For discrete LUT evaluation, we assume the error variance of input ciphertext is equal to 𝜎2

𝑏𝑜𝑜𝑡
as

in [33]. The final output variance 𝜎2𝑜𝑢𝑡 = 𝜎2𝑐𝑜𝑟𝑒 + 𝜎2𝑐𝑜𝑚 . FDFB algorithms that cannot reach the maximum plaintext modulus
𝑝𝑚𝑎𝑥 =

𝑞

2𝛽
= 𝑁

𝛽
are explicitly footnoted, and those unmentioned can reach 𝑝𝑚𝑎𝑥 . We assume the input ciphertext is error-free

for continuous function evaluation because we are only interested in the noise introduced by FDFB. 𝜎′2𝑜𝑢𝑡 is measured on the
outputted real-valued message. 𝐿 is the Lipschitz constant of the evaluated function.

FDFB Variant Core Output Variance 𝜎2𝑐𝑜𝑟𝑒 Num of BTS Output Variance 𝜎′2𝑜𝑢𝑡 (Continuous Case)

EvalFunc [33]1 ( 𝑞
𝑄
)2𝜎2𝑎𝑐𝑐 , intermediate: 2𝜎2

𝑏𝑜𝑜𝑡
2 ( 𝐿

Δ𝑖𝑛
)2𝜎2

𝑏𝑜𝑜𝑡
+ Δ−2𝑜𝑢𝑡𝜎

2

𝑏𝑜𝑜𝑡

FDFB-KS [28]
2 ( 𝑞

𝑄
)2 (𝜎2𝑎𝑐𝑐 + 𝑑𝑔1

𝐵2

𝑔1

4
𝑁 (𝜎2𝑎𝑐𝑐 + (

𝑄
𝑞𝑝𝑘
)2𝜎2𝑚𝑠 + 𝜎2𝑘𝑠 )) 𝑑𝑔1 + 1 -

Comp [17]
3

2( 𝑞
𝑄
)2𝜎2𝑎𝑐𝑐 , intermediate

6
: ( 𝑞

𝑄
)2𝜎2𝑎𝑐𝑐 4 ( 𝐿

𝑘1Δ𝑖𝑛
)2𝜎2

𝑏𝑜𝑜𝑡
+ Δ−2𝑜𝑢𝑡 (2(

𝑞𝑜𝑢𝑡
𝑄
)2𝜎2𝑎𝑐𝑐 + 𝜎2𝑐𝑜𝑚)

Comp [17]
∗4

2( 𝑞
𝑄
)2𝜎2𝑎𝑐𝑐 , intermediate

6
: ( 𝑞

𝑄
)2 (2𝑝2 − 4)𝜎2𝑎𝑐𝑐 3 -

WoP-PBS1 [16]§† ( 𝑞
𝑄
)2 𝑁 2

9
𝑝2𝜎2𝑎𝑐𝑐 2 -

WoP-PBS1 [16]§ † ∗ ( 𝑞
𝑄
)2 𝑁 2

18
𝑝3 (𝑝 − 1)2𝜎2𝑎𝑐𝑐 1 -

WoP-PBS2 [16]† ( 𝑞
𝑄
)2 2𝑁 2

9
𝑝2𝜎2𝑎𝑐𝑐 3 -

WoP-PBS2 [16]†∗ ( 𝑞
𝑄
)2 2𝑁 2

9
𝑝3 (𝑝 − 1)2𝜎2𝑎𝑐𝑐 1 -

FDFB-BFVMult1§† ( 𝑞
𝑄
)2 𝑁

9
𝑝2𝜎2𝑎𝑐𝑐 2 -

FDFB-BFVMult1§ † ∗ ( 𝑞
𝑄
)2 𝑁

18
𝑝3 (𝑝 − 1)2𝜎2𝑎𝑐𝑐 1 -

FDFB-BFVMult2† ( 𝑞
𝑄
)2 𝑁

9
𝑝2𝜎2𝑎𝑐𝑐 3 -

FDFB-BFVMult2†∗ ( 𝑞
𝑄
)2 2𝑁

9
𝑝3 (𝑝 − 1)2𝜎2𝑎𝑐𝑐 1 -

FDFB-Compress §5 ( 𝑞
𝑄
)2𝜎2𝑎𝑐𝑐 , intermediate: 𝜎2

𝑏𝑜𝑜𝑡
2 ( 𝐿

𝑘2Δ𝑖𝑛
)2𝜎2

𝑏𝑜𝑜𝑡
+ Δ−2𝑜𝑢𝑡𝜎

2

𝑏𝑜𝑜𝑡

FDFB-CancelSign § ( 𝑞
𝑄
)2 (2𝜎2𝑎𝑐𝑐 + 𝜎2𝑘𝑠 ) + (

𝑞
𝑞𝑝𝑘
)2𝜎2𝑚𝑠 2

𝜎2

𝑐𝑜𝑟𝑒+𝜎2

𝑐𝑜𝑚

Δ2

𝑜𝑢𝑡

, replace 𝑞 in 𝜎2𝑐𝑜𝑟𝑒 with 𝑞𝑜𝑢𝑡

FDFB-Select ( 𝑞
𝑄
)2 (2𝜎2𝑎𝑐𝑐 + 2𝜎2𝑘𝑠 ) + (

𝑞
𝑞𝑝𝑘
)2𝜎2𝑚𝑠 4

𝜎2

𝑐𝑜𝑟𝑒+𝜎2

𝑐𝑜𝑚

Δ2

𝑜𝑢𝑡

, replace 𝑞 in 𝜎2𝑐𝑜𝑟𝑒 with 𝑞𝑜𝑢𝑡

FDFB-Select ∗ ( 𝑞
𝑄
)2 (2𝑝 (𝑝 − 1)2𝜎2𝑎𝑐𝑐 + 2𝜎2𝑘𝑠 ) + (

𝑞
𝑞𝑝𝑘
)2𝜎2𝑚𝑠 2 -

FDFB-SelectAlt ( 𝑞
𝑄
)2 (3𝜎2𝑎𝑐𝑐 + 𝜎2𝑘𝑠 ) + (

𝑞
𝑞𝑝𝑘
)2𝜎2𝑚𝑠 3

𝜎2

𝑐𝑜𝑟𝑒+𝜎2

𝑐𝑜𝑚

Δ2

𝑜𝑢𝑡

, replace 𝑞 in 𝜎2𝑐𝑜𝑟𝑒 with 𝑞𝑜𝑢𝑡

FDFB-SelectAlt ∗ ( 𝑞
𝑄
)2 ((6𝑝 (𝑝 − 1)2 + 1)𝜎2𝑎𝑐𝑐 + 𝜎2𝑘𝑠 ) + (

𝑞
𝑞𝑝𝑘
)2𝜎2𝑚𝑠 2 -

§
FDFB algorithms that introduce an additional MSB. The maximum plaintext modulus 𝑝 is 1 bit less than 𝑝𝑚𝑎𝑥 , and the parameters 𝑞

and Δ𝑖𝑛 are halved compared to the cases where the additional MSB is not required.

†
FDFB algorithms that use BFV multiplication. 𝜎2𝑐𝑜𝑟𝑒 is merely given a simplified version for brevity (see Appendix B for the details).

*
FDFB algorithms that make use of multi-value bootstrap.

1
For EvalFunc, besides doubling the input modulus, it is also required that the intermediate error after preprocessing is bounded by

2𝜎2
𝑏𝑜𝑜𝑡
≤ 𝑞

4𝑝 to ensure correctness. Consequently, the maximum 𝑝 of EvalFunc is 1.5 bits less than 𝑝𝑚𝑎𝑥 .

2 𝑑𝑔1 = ⌈log𝐵𝑔1
(𝑄)⌉, 𝐵𝑔1 is the decomposition base for RLWE

′
.

3 𝑘1 =
𝑁−2𝛽
𝑁−1 . A continuous function that is vertically translated can be computed using two bootstraps.

4
For Comp ∗, the two TV1’s used in multi-value bootstrap are constant polynomials independent of the LUT. |TV1 |2

2
≤ 2𝑝2 − 4.

5 𝑘2 =
𝑁
2
−2𝛽

𝑁−1 . The intermediate error has a variance of 𝜎2
𝑏𝑜𝑜𝑡

and needs to be bounded by
𝑞
4𝑝 for correctness.

6
In Comp, it is required that bnd ·

√︃
𝜎2
𝑖𝑛𝑡𝑒𝑟

+ 𝜎2𝑐𝑜𝑚 ≤
𝑞
2𝑝 for correctness, where 𝜎2

𝑖𝑛𝑡𝑒𝑟
is the variance of the core intermediate error.

Performance of Continuous LUT Evaluation. Figure 4e illustrates
the performance and output standard deviation of different FDFB al-

gorithms applied to continuous function evaluation. The evaluated

function is Sigmoid, with its input and output range set to (−8, 8)
and (−2, 2). The output standard deviation is measured at input

point 𝑥 = 0 because Sigmoid has the largest derivative, thus having

the largest output error (if the output error is Lipschitz-dependent).

The graph shows that FDFB-Select, FDFB-SelectAlt and FDFB-
CancelSign introduce a noise 1/15 ∼ 1/13 that of previous meth-

ods because their output error is independent of the Lipschitz con-

stant of the evaluated function. The noise introduced by FDFB-
Compress is also smaller than its predecessor EvalFunc but still
depends on the Lipschitz constant.

In practice, the input is not error-free and may contain modu-

lus switching noise. As the input noise grows larger compared to

the magnitude of the input message, it will dominate the output
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Table 2: Maximum decomposition base and the number of bootstraps required for homomorphic decomposition algorithms.

Name of Variant Requirement for Decomposition Base 𝐵 Num of BTS Other Requirements

HomFloor [33] bnd

√︃
(1 + 𝐵−2)𝜎2

𝑏𝑜𝑜𝑡
+ 𝜎2𝑚𝑠 <

𝑞

2𝐵
2 Cannot decompose extracted CKKS ciphertexts

HomFloorAlt [33] bnd

√︃
𝐵−2𝜎2

𝑏𝑜𝑜𝑡
+ 𝜎2𝑚𝑠 <

𝑞

2𝐵
3 𝑞 > 8

√
2𝛽

HomDecomp-Reduce bnd

√︃
𝐵−2𝜎2

𝑏𝑜𝑜𝑡
+ 𝜎2𝑚𝑠 <

𝑞

4𝐵
1 -

HomDecomp-FDFB bnd

√︃
𝐵−2 (1 + 𝑘−2

2
)𝜎2

𝑏𝑜𝑜𝑡
+ 𝜎2𝑚𝑠 <

𝑞

2𝐵
2 -
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Figure 4: 4a to 4d show the performance of FDFB variants under PARAMdecomp and PARAMfast, 𝑝 = 2
4 or 𝑝 = 2

5. 4e shows
the performance and output standard deviation near 𝑥 = 0 of continuous Sigmoid evaluation. 4f shows the performance of
homomorphic decomposition algorithms and the running time ratio between prior methods and ours.

error and weaken the advantage of our methods. Also, Comp (fast)

only applies to vertically translated odd and even functions and is

unavailable otherwise.

Performance of Homomorphic Decomposition. Figure 4f illustrates
the performance of different homomorphic decomposition algo-

rithms. Data for 𝐵 = 2
4
is drawn in solid lines, while those for

𝐵 = 2
5
are drawn in dashed lines. The green lines represent the run-

ning time ratio between prior decomposition methods and ours. For

𝐵 = 2
4
, HomDecomp-Reduce runs twice as fast as HomFloor,

and for 𝐵 = 2
5
, HomDecomp-FDFB runs at 1.5 times the speed of

HomFloorAlt. Such speedup in homomorphic decomposition di-

rectly leads to speedup in the large-precision sign/ReLU/max/ABS

evaluation, as they all require extracting the MSB of the input

message.

Table 3: Parameter sets for LWE scheme and their use cases.

LWE Param Sets 𝑛 𝑞𝑘𝑠 Use Cases

PARAM
decomp

1340 2
35

HomDecomp, Discrete FDFB

PARAM
fast

760 2
20

Discrete FDFB

PARAMcontinuous 955 2
25

Continuous FDFB

7 CONCLUSION
This paper develops four FDFB algorithms and two homomorphic

decomposition algorithms. Our FDFB algorithms achieve a running

time shorter than the best known results by up to 39.2%. For con-

tinuous functions evaluation, our FDFB algorithms can achieve a

standard deviation of output error as small as 0.008 when evaluating

Sigmoid under typical parameter settings, which is 1/13 to 1/15 that
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Table 4: Performance improvement of our FDFB variants.

Scenario in Figure 4 4a 4b 4c 4d

Best Running Time (Old, ms) 1160 1760 598 942

Best Running Time (New, ms) 777 1150 458 573

Reduction in Running Time 33.0% 34.7% 23.4% 39.2%

of previous results. Our homomorphic decomposition algorithms

run 1.5x to 2x as fast as those presented in [33], leading to speedup

in large-precision ReLU, sign, max and ABS evaluation. We give

a thorough theoretical noise analysis for FDFB and homomorphic

decomposition algorithms, both in prior works and ours. We also

implement all the algorithms in OpenFHE for a fair comparison

between them.
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A FDFB FOR CONTINUOUS FUNCTION
EVALUATION

A.1 Algorithms
When porting FDFB-Compress, FDFB-CancelSign, FDFB-Select
and FDFB-SelectAlt to the case of continuous function evalua-

tion, the applied modifications are well explained in the paper.

Here we only describe our changes to EvalFunc and Comp. They
have a similar problem to FDFB-Compress and need to use the

𝛽-padding technique to avoid outputting completely wrong results.

Although [30] has already used these two methods to evaluate con-

tinuous functions, the mentioned issue is not taken into account.

A.1.1 EvalFunc. The input ciphertext is 𝑐 = LWE®𝑠,𝑛,𝑞
2

(𝑚), where
𝑚 ∈ [0, 𝑞

4
− 1− 𝛽]⋃[𝑞

4
+ 𝛽, 𝑞

4
− 1] by our assumption, which repre-

sents a two’s complement fixed-point number in (−( 𝑞
4
−𝛽)Δ−1

𝑖𝑛
, ( 𝑞

4
−

𝛽)Δ−1
𝑖𝑛
). This assumption that the fixed-point value is 𝛽 away from

its lower and upper bounds is quite reasonable in practice.

First, 𝑐 is added with ( 𝑞
4
, ®0), resulting in 𝑐1 = LWE®𝑠,𝑛,𝑞

2

(𝑚1),
where𝑚1 ∈ [𝛽, 𝑞

2
− 1− 𝛽]. The range of𝑚1 corresponds linearly to

the range of the input fixed-point value. Then 𝑐1 is raised tomodulus

𝑞, giving 𝑐2 = LWE®𝑠,𝑛,𝑞 (𝑚1 + 𝑞
2
MSB). The first bootstrap computes

an encryption of
𝑞
2
MSB + 𝑒𝑏𝑜𝑜𝑡 . After subtracting it from 𝑐2, the

result is 𝑐3 = LWE®𝑠,𝑛,𝑞 (𝑚1 − 𝑒𝑏𝑜𝑜𝑡 ). Since |𝑒𝑏𝑜𝑜𝑡 | = 𝛽 ,𝑚1 − 𝑒𝑏𝑜𝑜𝑡
lies within [0, 𝑞

2
− 1] . Finally, we can compute BootRaw[𝑓𝑎] (𝑐3)

to obtain the desired result.

𝑓𝑎 (𝑥) =
{
⌊𝐹 ′ ( [𝑥 − 𝑞

4
] 𝑞
2

Δ−1
𝑖𝑛
)𝑄Δ𝑜𝑢𝑡

𝑞𝑜𝑢𝑡
⌉ 𝑥 ∈ [0, 𝑞

2
− 1]

𝑄 − 𝑓𝑎 (𝑥 − 𝑞
2
) 𝑥 ∈ [𝑞

2
, 𝑞 − 1]

: Z𝑞 → Z𝑄

A.1.2 Comp. Before using Comp to evaluate continuous func-

tions, we introduce the concept of pseudo-odd and pseudo-even

LUTs (defined in [17]).

For an LUT 𝑓 : Z𝑞 → Z𝑄 , we call it as pseudo-odd if 𝑓 (𝑖) =
−𝑓 (𝑞 − 1 − 𝑖) and call it as pseudo-even if 𝑓 (𝑖) = 𝑓 (𝑞 − 1 − 𝑖).
Informally speaking, a pseudo-odd LUT is anti-symmetric about

𝑞−1
2

while a pseudo-even LUT is symmetric about
𝑞−1
2

. An arbitrary

LUT 𝑓 can be expressed as the sum of a pseudo-odd LUT 𝑓𝑝𝑠𝑜 and

a pseudo-even LUT 𝑓𝑝𝑠𝑒 . When evaluating a continuous function

𝐹 ′ : R→ R, we can also treat 𝑓 (𝑥) = 𝐹 ′ ( [𝑥 ]𝑞Δ𝑖𝑛
)𝑄Δ𝑜𝑢𝑡

𝑞𝑜𝑢𝑡
as continuous.

Then its corresponding 𝑓𝑝𝑠𝑜 and 𝑓𝑝𝑠𝑒 are defined as follows.

𝑓𝑝𝑠𝑜 (𝑥) =
𝑓 (𝑥) − 𝑓 (𝑞 − 1 − 𝑥)

2

: R→ R

𝑓𝑝𝑠𝑒 (𝑥) =
𝑓 (𝑥) + 𝑓 (𝑞 − 1 − 𝑥)

2

: R→ R

To compute 𝑓𝑝𝑠𝑜 , the ciphertext is first preprocessed by boot-

strapping it using the function 𝑓0 : Z𝑞 → Z𝑞 , which is independent

of 𝐹 ′. Then we evaluate the LUT-specific function 𝑓 ′𝑝𝑠𝑜 : Z𝑞 → Z𝑄
on the obtained result. Similarly, we evaluate 𝑓1 and 𝑓 ′𝑝𝑠𝑒 consecu-
tively to compute 𝑓𝑝𝑠𝑒 . The functions used in bootstraps are defined

as follows.

𝑓0 (𝑥) =
{
⌊𝛽 + 𝑞/2−2𝛽−1

𝑞/2−1 𝑥⌉ 𝑥 ∈ [0, 𝑞
2
− 1]

𝑞 − 𝑓0 (𝑥 − 𝑞
2
) 𝑥 ∈ [𝑞

2
, 𝑞 − 1]

𝑓 ′𝑝𝑠𝑜 (𝑥) =


⌊𝑓𝑝𝑠𝑜 (0)⌉ 𝑥 ∈ [0, 𝛽]
⌊𝑓𝑝𝑠𝑜 ( 𝑞/2−1

𝑞/2−2𝛽−1 (𝑥 − 𝛽))⌉ 𝑥 ∈ [𝛽 + 1, 𝑞
2
− 𝛽 − 1]

⌊𝑓𝑝𝑠𝑜 ( 𝑞
2
− 1)⌉ 𝑥 ∈ [𝑞

2
− 𝛽, 𝑞

2
− 1]

𝑄 − 𝑓𝑝𝑠𝑜 (𝑥 − 𝑞
2
) 𝑥 ∈ [𝑞

2
, 𝑞 − 1]

𝑓1 (𝑥) =
{
⌊𝛽 + 𝑞

4
+ 𝑞/2−2𝛽−1

𝑞/2−1 𝑥⌉ 𝑥 ∈ [0, 𝑞
2
− 1]

𝑞 − 𝑓1 (𝑥 − 𝑞
2
) 𝑥 ∈ [𝑞

2
, 𝑞 − 1]

𝑓 ′𝑝𝑠𝑒 (𝑥) =


⌊𝑓𝑝𝑠𝑒 (0)⌉ 𝑥 ∈ [𝑞

4
,
𝑞
4
+ 𝛽]

⌊𝑓𝑝𝑠𝑒 ( 𝑞/2−1
𝑞/2−2𝛽−1 (𝑥 −

𝑞
4
− 𝛽))⌉ 𝑥 ∈ [𝑞

4
+ 𝛽 + 1, 3𝑞

4
− 𝛽 − 1]

⌊𝑓𝑝𝑠𝑒 ( 𝑞
2
− 1)⌉ 𝑥 ∈ [ 3𝑞

4
− 𝛽, 3𝑞

4
− 1]

𝑄 − 𝑓𝑝𝑠𝑒 (𝑥 − 𝑞
2
) 𝑥 ∈ [0, 𝑞

4
− 1]⋃[ 3𝑞

4
, 𝑞 − 1]

A.1.3 Comp (fast). When 𝐹 ′ is an odd function, it can be treated

approximated as a pseudo-odd function to reduce the number of

bootstraps from four to two (or from three to two when multi-value

bootstrap is used). Similarly, when 𝐹 ′ can be treated as pseudo-even

when it is even.

We focus on the case when 𝐹 ′ is odd for brevity since the two

cases are very similar. To make the pseudo-even part disappear (i.e.,

𝑓𝑝𝑠𝑒 = 0), the trick is to compute 𝑓 (𝑥 + 0.5) instead of 𝑓 (𝑥).

A.2 Output Noise Variances
We briefly prove the output variances of FDFB-Compress, Eval-
Func and Comp. They differ from other FDFB methods when

evaluating continuous functions because their preprocessing of the

input ciphertext introduces an input error to 𝐹 ′. This makes their

output variances dependent on the Lipschitz constant of 𝐹 ′. i.e.,
an input error of 𝐹 ′ with a variance of 𝜎2

𝑖𝑛
can increase the output

error variance by at most
𝐿2

Δ2

𝑖𝑛

𝜎2
𝑖𝑛
, where 𝐿 is the Lipschitz constant

of 𝐹 ′. The proof for other FDFB methods is omitted because the

output noise variance is the same as the discrete case.
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A.2.1 FDFB-Compress. The input to 𝐹 ′ in FDFB-Compress
can be roughly expressed as ⌊𝑓 ′−1

𝐶
(⌊𝑓 ′

𝐶
(𝑥)⌉ + 𝑒𝑏𝑜𝑜𝑡 )⌉, where 𝑓 ′𝐶 is

a two-piece linear function, and the slope of both pieces have the

same absolute value 𝑘2 =
𝑞/4−2𝛽
𝑞/2−1 . Then the input error to 𝐹 ′ is

𝑘−1
2
(𝑒𝑏𝑜𝑜𝑡 + 𝑒𝑟𝑛𝑑,0) + 𝑒𝑟𝑛𝑑,1, where 𝑒𝑟𝑛𝑑,𝑖 is the rounding error of

the 𝑖-th rounding operator and has a variance of
1

4
. The input error

to 𝐹 ′ has a variance of 𝑘−2
2
(𝜎2

𝑏𝑜𝑜𝑡
+ 1

4
) + 1

4
≈ 𝑘−2

2
𝜎2
𝑏𝑜𝑜𝑡

. The final

output error is
𝐿2

Δ2

𝑖𝑛
𝑘2

2

𝜎2
𝑏𝑜𝑜𝑡
+ 𝜎2

𝑏𝑜𝑜𝑡
.

A.2.2 EvalFunc. The input error to 𝐹 ′ in EvalFunc is 𝑒𝑏𝑜𝑜𝑡 . Con-
sequently, the final output variance is

𝐿2

Δ2

𝑖𝑛

𝜎2
𝑏𝑜𝑜𝑡
+ 𝜎2

𝑏𝑜𝑜𝑡
.

A.2.3 Comp. Denote the derivative of 𝐹 ′ (𝑥), 𝑓 ′𝑝𝑠𝑜 = 𝑓𝑝𝑠𝑜 ( 𝑥
Δ𝑖𝑛
)

and 𝑓 ′𝑝𝑠𝑒 = 𝑓𝑝𝑠𝑒 ( 𝑥
Δ𝑖𝑛
) as 𝑑 (𝑥), 𝑑𝑜 (𝑥) and 𝑑𝑒 (𝑥). Note that 𝐹 ′ =

𝑓 ′𝑝𝑠𝑜 + 𝑓 ′𝑝𝑠𝑒 . The input errors to 𝑓 ′𝑝𝑠𝑜 and 𝑓 ′𝑝𝑠𝑒 are both 𝑘−1
1

𝑒𝑏𝑜𝑜𝑡 =

𝑞/2−1
𝑞/2−2𝛽 𝑒𝑏𝑜𝑜𝑡 (rounding errors are omitted). Then the final output

error variance is
𝑑2

𝑜+𝑑2

𝑒

𝑘2

1
Δ2

𝑖𝑛

𝜎2
𝑏𝑜𝑜𝑡
+ 2𝜎2𝑎𝑐𝑐 + 𝜎2𝑐𝑜𝑚 . Note that 𝑑 = 𝑑𝑜 + 𝑑𝑒

and |𝑑𝑜 |, |𝑑𝑒 | ≤ |𝑑 | = 𝐿, we have 𝑑2𝑜 + 𝑑2𝑒 ≤ 𝐿2. i.e., the output error

variance is
𝐿2

𝑘2

1
Δ2

𝑖𝑛

𝜎2
𝑏𝑜𝑜𝑡
+ 2𝜎2𝑎𝑐𝑐 + 𝜎2𝑐𝑜𝑚 .

A.2.4 Comp (fast). Comp (fast) has nearly the same output vari-

ance as Comp. The only difference is that the input to Comp (fast)

is added by
1

2Δ𝑖𝑛
at the beginning, leading to an extra noise of

𝐿
2Δ𝑖𝑛

at most. In practice, this extra noise is very small compared to the

output variance, and we omit it in our analysis.

B NOISE ANALYSIS FOR FDFB METHODS
B.1 Refined Noise Analysis of BFV

Multiplication
Below is our refined noise analysis of BFV multiplication. In our

analysis, only the constant terms of encrypted polynomials are used

to store messages, while non-constant coefficients are close to zero.

See [25] for more discussion on BFV multiplication.

Theorem B.1. Let 𝑐𝑖 = (b𝑖 , a𝑖 )RLWEs,𝑁 ,𝑄 (𝑄𝑝𝑚𝑖 + 𝑒𝑖 + e𝑖 ) for
𝑖 = 0, 1, where 𝑒𝑖 ∼ 𝑁 (0, 𝜎2

𝑖
) and e𝑖 ∼ 𝑁 (0, 𝜎′2

𝑖
)𝑁 and𝑚0 ∈ {0,±1}.

Given 𝑐𝑖 , an auxiliary modulus 𝑃 and a base for re-linearization 𝐵𝑟𝑙 ,
SampleExtract(BFVMult(𝑐0, 𝑐1)) = 𝑄

𝑝𝑚0𝑚1 + 𝑒 , where the variance
of 𝑒 is

𝜎2
1
+ 𝑝

2

4
𝜎2
0
+ 𝑃2

𝑄2
𝜎2
0
𝜎2
1
+𝜎′2

1
+𝑄

2

𝑃2
𝜎2𝑚𝑠 +

𝑝2

4
𝜎′2
0
+ 𝑝2

𝑄2
𝜎2
0
𝜎′2
1
+ 𝑝2

𝑃2
𝜎2
0
𝜎2𝑚𝑠 +

𝑝2

𝑄2
𝜎2
1
𝜎′2
0
+𝑝2𝜎2𝑚𝑠 (𝜎20 +𝜎

2

1
) +𝑁 ( 𝑝

2

𝑄2
𝜎′2
0
𝜎′2
1
+ 𝑝2

𝑃2
𝜎′2
0
𝜎2𝑚𝑠 +𝑝2𝜎2𝑚𝑠 (𝜎′20 +

𝜎′2
1
) + 𝑝2𝑄2

𝑃2
𝜎2𝑚𝑠𝜎

′2
0
) + 𝜎2𝑚𝑠 + 𝑁 2

27
+ 𝑑𝑟𝑙

𝐵2

𝑟𝑙

4
𝑁𝜎2

Proof. First 𝑐1 is modulus-switched to Z𝑃 , producing 𝑐1 =

RLWEs,𝑁 ,𝑃 ( 𝑃𝑝𝑚1 + 𝑃
𝑄
𝑒1 + 𝑃

𝑄
e1 + e𝑚𝑠 ). Then 𝑐0 and 𝑐1 are mod-

ded up to Z𝑃𝑄 . The messages encrypted in them are added by u0𝑄
and u1𝑃 respectively, where u0𝑄 = b0 + a0s − [b0 + a0s]𝑄 and

u1𝑃 = b1 + a1s − [b1 + a1s]𝑃 . Then a tensor product between 𝑐0

and 𝑐1 outputs an RLWE encryption of𝑚𝑝𝑟𝑜𝑑 = (𝑄𝑝𝑚0 + 𝑒0 + e0 +
u0𝑄) ( 𝑃𝑝𝑚1 + 𝑃

𝑄
𝑒1 + 𝑃

𝑄
e1 +e𝑚𝑠 +u1𝑃) ∈ Z𝑃𝑄 under extended secret

keys. Finally, the ciphertext is multiplied by 𝑝 , modulus-switched

to Z𝑄 and re-linearized using the re-linearization keys. The output

ciphertext is an RLWE encryption of
𝑝

𝑃
𝑚𝑝𝑟𝑜𝑑 + e′𝑚𝑠 + e𝑟𝑙 , where

𝑒𝑟𝑙 is the re-linearization error. The constant term of the encrypted

polynomial is extracted as the output LWE ciphertext. Expanding

𝑝

𝑃
𝑚𝑝𝑟𝑜𝑑 gives the following.

𝑝

𝑃
𝑚𝑝𝑟𝑜𝑑 =

𝑄

𝑝
𝑚0𝑚1

+𝑚0𝑒1 +𝑚1𝑒0 +
𝑝

𝑄
𝑒0𝑒1

+𝑚0e1 +
𝑄

𝑃
e𝑚𝑠 +𝑚1e0

+ 𝑝
𝑄
𝑒0e1 +

𝑝

𝑃
𝑒0e𝑚𝑠 +

𝑝

𝑄
𝑒1e0 + 𝑝 (𝑒0u1 + 𝑒1u0)

+ 𝑝
𝑄
e0e1 +

𝑝

𝑃
e0e𝑚𝑠 + 𝑝 (u0e1 + u1e0) +

𝑝𝑄

𝑃
u0e𝑚𝑠

The first line of RHS is the desired message. Terms on line 2 are

products between scalar values; those on lines 3 and 4 are products

between scalars and polynomials; those in the last line are products

between polynomials.

Each coefficient of u𝑖 can be viewed as an inner product be-

tween the coefficients of s and 𝑁 random variables sampled from

𝑈 (−0.5, 0.5), which means u𝑖 ∼ 𝑁 (0, 𝜎2𝑚𝑠 )𝑁 . Then the variance of

the constant term of
𝑝

𝑃
𝑚𝑝𝑟𝑜𝑑 is

𝜎2𝑚

=𝜎2
1
+ 𝑝2

4

𝜎2
0
+ 𝑃2

𝑄2
𝜎2
0
𝜎2
1

+𝜎′2
1
+ 𝑄

2

𝑃2
𝜎2𝑚𝑠 +

𝑝2

4

𝜎′2
0

+ 𝑝
2

𝑄2
𝜎2
0
𝜎′2
1
+ 𝑝2

𝑃2
𝜎2
0
𝜎2𝑚𝑠 +

𝑝2

𝑄2
𝜎2
1
𝜎′2
0
+ 𝑝2𝜎2𝑚𝑠 (𝜎20 + 𝜎

2

1
)

+𝑁 ( 𝑝
2

𝑄2
𝜎′2
0
𝜎′2
1
+ 𝑝2

𝑃2
𝜎′2
0
𝜎2𝑚𝑠 + 𝑝2𝜎2𝑚𝑠 (𝜎′20 + 𝜎

′2
1
) + 𝑝2𝑄2

𝑃2
𝜎2𝑚𝑠𝜎

′2
0
)

The modulus switching from Z𝑃𝑄 to Z𝑄 is slightly different from

a regular one since a part of the rounding error is multiplied with s2.
Heuristically we can estimate its error variance as 𝜎′2𝑚𝑠 = 𝜎2𝑚𝑠 + 𝑁 2

27
.

The re-linearization process of BFV is essentially a

𝑅𝑄 × RLWE
′ (s2) multiplication. Its error variance 𝜎2

𝑟𝑙
is

given by 𝑑𝑟𝑙
𝐵2

𝑟𝑙

4
𝑁𝜎2, where 𝑑𝑟𝑙 = ⌈log𝐵𝑟𝑙

(𝑄)⌉ and 𝜎2 is the

encryption error variance.

Summing up𝜎2𝑚 ,𝜎′2𝑚𝑠 and𝜎
2

𝑟𝑙
gives the variance of 𝑒 in the output

ciphertext. □

Remark. For ordinary BFV multiplication where𝑚0 and𝑚1 are

polynomials instead of scalars, the terms in line 1 ∼ 3 in the expres-

sion of 𝜎2𝑚 needs to be multiplied by 𝑁 . The overflow of𝑚0𝑚1 mod-

ulo 𝑝 also introduces an additional term. In FDFB-BFVMult, the
bootstrapping error 𝑒𝑖 is magnitudes larger than the key switching

error e𝑖 . This means the dominating term of 𝜎2𝑚 is 𝑝2𝜎2𝑚𝑠 (𝜎20 + 𝜎
2

1
).

In contrast, WoP-PBS estimates this term to be 𝑁 times larger,

which leads to inefficient parameters. We state this observation as

Lemma B.2.

15
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Lemma B.2. For WoP-PBS and FDFB-BFVMult, the dominating
terms of output variance are 𝑝2𝜎2𝑚𝑠 (𝜎20 + 𝜎

2

1
) and 𝑁𝑝2𝜎2𝑚𝑠 (𝜎20 + 𝜎

2

1
)

respectively, where 𝜎2
𝑖
are the error variances in LWE ciphertexts

being multiplied.

B.2 Simple Proofs of Table 1
B.2.1 FDFB-BFVMult. Applying Lemma B.2 and the noise

growth formula for multi-value bootstraps gives the output

variances of FDFB-BFVMult. For non-multi-value versions of

FDFB-BFVMult, replacing 𝜎2𝑚𝑠 with
𝑁
18

and 𝜎2
𝑖
with 𝜎2𝑎𝑐𝑐 gives

the expression listed in Table 1.

For the multi-value version of FDFB-BFVMult1, the TV1 for

𝑓𝑠𝑔𝑛1 has an L2 norm of 4. Thus, 𝜎2
0
is close to 4𝜎2𝑎𝑐𝑐 instead of 𝑝 (𝑝−

1)2𝜎2𝑎𝑐𝑐 . Note that for the multi-value version of FDFB-BFVMult2,
we need to compute an encryption of

𝑄
2𝑝 SGN to obtain

𝑄
𝑝 MSB

(where SGN = 1 − 2MSB), which means the output plaintext space

for multi-value bootstrap is 2𝑝 instead of 𝑝 . The TV1 for 𝑓𝑠𝑔𝑛2 still

has an L2 norm of 4, while the TV1 for 𝑓𝑑𝑖 𝑓 𝑓 has an L2 norm of

4𝑝 (𝑝 − 1)2 at most.

B.2.2 FDFB-Compress. Since FDFB-Compress computes two

consecutive functional bootstraps, the output and intermediate

errors are the same as bootstrapping errors. The requirements for

these two errors are well explained in Lemma 3.1.

B.2.3 FDFB-CancelSign. The output of the first functional

bootstrap has an error variance of 𝜎2𝑎𝑐𝑐 . After modulus switch-

ing to 𝑞𝑝𝑘 and LWE-to-RLWE packing, the variance becomes

𝜎2𝑎𝑐𝑐 + (
𝑄
𝑞𝑝𝑘
)2𝜎2𝑚𝑠 + 𝜎2𝑝𝑘 . The second bootstrap adds 𝜎2𝑎𝑐𝑐 to the

error variance.

B.2.4 FDFB-Select. In the non-multi-value version of FDFB-
Select, two bootstrap results are modulus-switched to 𝑞𝑝𝑘 and

packed into an RLWE ciphertext. Hence, each coefficient of the

packed polynomial has an error variance of 𝜎2𝑎𝑐𝑐 +(
𝑄
𝑞𝑝𝑘
)2𝜎2𝑚𝑠 +2𝜎2𝑝𝑘 .

As in FDFB-CancelSign, the final bootstrap adds another 𝜎2𝑎𝑐𝑐 to

the error variance.

For the multi-value version, ct𝑝𝑜𝑠 , ct𝑛𝑒𝑔 and ct𝑠𝑔𝑛 have error

variances of 𝑝 (𝑝 − 1)2𝜎2𝑎𝑐𝑐 . However, the error in ct𝑠𝑔𝑛 will not

affect the error in the output ciphertext as long as it is bounded

by
𝑁
4
. Then the packed polynomial has an error variance of 𝑝 (𝑝 −

1)2𝜎2𝑎𝑐𝑐 + (
𝑄
𝑞𝑝𝑘
)2𝜎2𝑚𝑠 + 2𝜎2𝑝𝑘 .

B.2.5 FDFB-SelectAlt. For the non-multi-value version of FDFB-
SelectAlt, the error variance of the blind-rotated packed polyno-

mial is the same as that in FDFB-CancelSign. The addition by

ctℎ𝑠𝑢𝑚 in the last step of FDFB-SelectAlt adds 𝜎2𝑎𝑐𝑐 to this vari-

ance.

Themulti-value version of FDFB-SelectAlt has a different work-
flow from the non-multi-value version. It computes

1−SGN
2
(𝑓𝑛𝑒𝑔 −

𝑓𝑝𝑜𝑠 ) + 𝑓𝑝𝑜𝑠 instead of

𝑓𝑛𝑒𝑔+𝑓𝑝𝑜𝑠
2

− SGN

𝑓𝑛𝑒𝑔−𝑓𝑝𝑜𝑠
2

. In this way, the

error variance of

𝑓𝑛𝑒𝑔−𝑓𝑝𝑜𝑠
2

is 𝑝 (𝑝 − 1)2𝜎2𝑎𝑐𝑐 and that of 𝑓𝑝𝑜𝑠 is

4𝑝 (𝑝 − 1)2𝜎2𝑎𝑐𝑐 . Along with the error in SGN

𝑓𝑛𝑒𝑔−𝑓𝑝𝑜𝑠
2

, the total er-

ror is 6𝑝 (𝑝−1)2𝜎2𝑎𝑐𝑐 . In contrast, if we follow the original workflow,

the error variance will be 8𝑝 (𝑝 − 1)2𝜎2𝑎𝑐𝑐 , which is slightly larger.

C TABLES
This section presents the full table of parameters used in the bench-

marks and the results of the benchmarks. 𝐵𝑔0 is the base of RLWE
′

ciphertexts used in FDFB-KS. 𝑃 is the auxiliary prime used in BFV

multiplication [25]. 𝐵𝑟𝑙 is the base of re-linearization keys for BFV

multiplication. The non-multi-value bootstraps in FDFB methods

that use the multi-value bootstrap are accelerated with larger 𝐵𝑔 .

This extra 𝐵𝑔 is listed as 𝐵′𝑔 in the table. The LWE dimensions

𝑛35 = 1340, 𝑛25 = 955, and 𝑛20 = 760 correspond to the parameter

sets in Table 3. 𝑃53 and 𝑄53 are primes that approximately equal

to 2
53
. The "𝑑 = 1, 𝑁

2
, 𝑁 " columns represent whether packing keys

for the given value of 𝑑 are generated.
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Table 5: Running Time of Homomorphic Digit Decomposition Methods under
PARAMdecomp.

log
2
(𝑞) Running Time (ms)

HomFloor HomFloorAlt HomDecomp-Reduce HomDecomp-FDFB

13 1070 1600 533 1060

14 1060 1590 534 1060

15 1060 1600 537 1060

16 1060 1600 540 1060

17 2130 1590 1070 1060

18 2130 3200 1060 2130

19 2130 3230 1060 2130

20 2130 3210 1060 2130

21 3190 3190 1600 2120

22 3190 3190 1600 2120

23 3190 4800 1600 3190

24 3190 4790 1600 3190

25 4260 4780 2130 3190

26 4260 4790 2130 3190

27 4260 4790 2130 3180

28 4250 6380 2130 4250

29 5310 6380 2660 4250
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