
ScionFL: Efficient and Robust Secure Quantized Aggregation
Yaniv Ben-Itzhak

Shay Vargaftik

Avishay Yanai

VMware Research

Benny Pinkas

Bar-Ilan University

Helen Möllering

Thomas Schneider

Hossein Yalame

Technical University of Darmstadt

Ajith Suresh

Technology Innovation Institute (TII)

Oleksandr Tkachenko

DFINITY Foundation

Christian Weinert

Royal Holloway, University of London

Abstract
Secure aggregation is commonly used in federated learning (FL) to

alleviate privacy concerns related to the central aggregator seeing

all parameter updates in the clear. Unfortunately, most existing

secure aggregation schemes ignore two critical orthogonal research

directions that aim to (i) significantly reduce client-server commu-

nication and (ii) mitigate the impact of malicious clients. However,

both of these additional properties are essential to facilitate cross-

device FL with thousands or even millions of (mobile) participants.

In this paper, we unite both research directions by introduc-

ing ScionFL, the first secure aggregation framework for FL that oper-

ates efficiently on quantized inputs and simultaneously provides ro-

bustness against malicious clients. Our framework leverages (novel)

multi-party computation (MPC) techniques and supports multiple

linear (1-bit) quantization schemes, including ones that utilize the

randomized Hadamard transform and Kashin’s representation.

Our theoretical results are supported by extensive evaluations.

We show that with no overhead for clients andmoderate overhead on

the server side compared to transferring and processing quantized

updates in plaintext, we obtain comparable accuracy for standard FL

benchmarks. Additionally, we demonstrate the robustness of our

framework against state-of-the-art poisoning attacks.

1 Introduction
Federated learning (FL) [91] is a paradigm for large-scale distributed

machine learning, where in each training round a subset of clients

locally updates a global model that is then centrally aggregated.

FL quickly gained popularity due to its promises of data privacy,

resource efficiency, and ability to handle dynamic participants.

However, in terms of privacy, the central aggregator learns the
individual client updates in the clear and thus can infer sensitive

details about the clients’ private input data [56, 92, 106, 117, 129].

Hence, many secure aggregation schemes, e.g., [26, 53, 96], have

been developed, where the aggregator only learns the aggregation

result, i.e., the global model (we refer to [68, 100] for a discussion

of differential privacy in FL as an orthogonal privacy-enhancing

paradigm). Most prominently, in the “SecAgg” protocol [26], clients

exchange masks with peers to blind their model updates such that

the masks cancel out during aggregation and reveal only the ex-

act result. However, this approach requires an interactive setup

between clients and thus is less reliable when dealing with real-

world problems such as client dropouts (except for special vari-

ants [67, 83, 133]). Moreover, recent research has shown that a single
malicious aggregator can reconstruct individual training data from

clients’ inputs, despite the use of secure aggregation [24, 25, 101].

In terms of resource efficiency of plain FL, clients have to send pa-

rameter updates (also known as gradients), which typically consist

of thousands or millions of coordinates with one floating point num-

ber per coordinate. For cross-device FL involving mobile clients

with limited upload bandwidth, this quickly becomes infeasible

when dealing with increasingly large model architectures, where

gradients consist of millions of coordinates. Therefore, quantiza-

tion schemes that exploit the noise resiliency of gradient-based FL

methods (e.g., federated averaging [91]) have been proposed to

significantly compress client updates (typically replacing the rep-

resentation of each coordinate by a single bit, instead of a 32-bit

floating point number), e.g., [4, 12, 18, 30, 114, 123, 126].

Unfortunately, so far the ML community has worked on optimiz-

ing FL for resource efficiency, whereas the security community has

worked separately on optimizing secure aggregation for privacy.

One of the very few exceptions is a work [35] that combines SecAgg

with sketching [111] for compression of gradients. Besides the men-

tioned disadvantages of SecAgg, their work considers only a single

compression method. However, due to the trade-offs between accu-

racy and computational efficiency provided by different forms of

quantization, which become especially relevant for gradients with

millions of coordinates, it is important to have a modular approach.

Beyond data privacy threats, FL was also shown to be vulner-

able to manipulations by malicious clients who alter their local

models/updates, affecting the characteristics of the final global

model [10, 20, 51, 115, 116, 132]. This highlights the need for ef-

fective defense measures capable of thwarting such attacks. While

there exists a plethora of such attacks and defenses in the FL litera-

ture (summarized in §A.6), we focus on defending against untar-
geted poisoning attacks, in which the attacker attempts to damage

the trained model’s performance for a large number of test in-

puts, typically resulting in a final global model with a high error

rate [11, 51, 115]. Unfortunately, existing defenses for such attacks

cannot be efficiently translated to secure aggregation in the quan-

tized setting [99, 137].

1.1 Our Contributions
We propose ScionFL, a framework that enables efficient and robust
secure aggregation for FL with a distributed aggregator that oper-

ates directly on quantized parameter updates. Specifically, ScionFL

has virtually no additional communication overhead for clients com-

pared to the insecure transfer of quantized plaintext updates. Achiev-

ing this is non-trivial for prior single-server solutions that are based

on masking techniques or homomorphic encryption (HE) [26, 136].

In ScionFL, we rely on outsourcedmulti-party computation (MPC),

where the clients apply computationally efficient secret-sharing

https://orcid.org/0000-0002-3844-5940
https://orcid.org/0000-0002-0982-7894
https://orcid.org/0000-0003-4060-0150
https://orcid.org/0000-0002-9053-3024
https://orcid.org/0000-0001-9371-3592
https://orcid.org/0000-0001-8090-1316
https://orcid.org/0000-0001-6438-534X
https://orcid.org/0000-0002-5164-7758
https://orcid.org/0000-0001-9232-6902
https://orcid.org/0000-0003-4906-6871

techniques to distribute their sensitive (quantized) parameter up-

dates among multiple servers that together form a distributed ag-

gregator. These servers then use interactive cryptographic MPC

protocols [17, 40, 41] to securely compute the aggregation and only

reveal the updated global model.

The distributed aggregator model is well established [53, 57,

89, 107] (although prior works cannot efficiently handle quantized

inputs) as it has many practical benefits over single-server solutions,

including not requiring an interactive setup between clients [96,

99] and the ability to handle dropouts efficiently. Moreover, in

recent years, numerous studies have demonstrated that single server

aggregation methods are susceptible to privacy attacks when an

aggregator is corrupt [24, 25, 54, 101, 118, 131]. The vulnerability

of these methods stems from the fact that the aggregator holds

complete authority in selecting clients and the data transmitted to

and received from them. On the other hand, with ourMPC protocols,

data privacy can be guaranteed even if all servers except one are

compromised or their operators receive subpoena requests.

As MPC protocols typically induce significant overhead in terms

of (inter-server) communication, we propose optimizations for se-

cure aggregation that support any “linear” quantization scheme,
including 1-bit quantization schemes that use preprocessing in the

form of random rotations [123] and Kashin’s representation [30].

Moreover, we study novel approximate MPC variants that exploit

the noise tolerance of FL and might be of independent interest.

We formally prove that our resulting secure aggregation scheme is

an unbiased estimator of the arithmetic mean and explore trade-offs

between efficiency and accuracy.

We implement a combined end-to-end FL evaluation and MPC

simulation environment, which we will open-source upon paper

publication. Our prototype implementation allows to assess the per-

formance and accuracy of our solution for stochastic quantization

schemes, including recent state-of-the-art distributed mean estima-

tion techniques [30, 123]. Our results demonstrate that standard FL

benchmarks’ accuracy is barely impacted while our optimizations

and approximation can significantly reduce inter-server commu-

nication. For example, when training the LeNet architecture for

image classification on the MNIST data set [82] using 1-bit sto-

chastic quantization with Kashin’s representation [30], training

accuracy is only slightly reduced from 99.04% to 98.71% after 1000

rounds, while inter-server communication drops from 16.14 GB

to 0.94 GB compared to naive MPC-based secure aggregation when

considering 500 clients per round, an improvement by factor 17.2×.
Since clients may act maliciously and try to degrade accuracy

with their updates, we design a novel bipartite defense mechanism

called ScionFL-Aura to ensure the robustness of our framework.

Specifically, we provide protection against state-of-the-art untar-

geted poisoning attacks [115], combining magnitude clipping and

directional filtering based on the gradients’ approximate L2-norms

and cosine distances. Notably, ScionFL-Aura is the first defense

mechanism to work directly on quantized inputs and thus enables a

highly efficient realization in MPC, whereas existing works require

expensive MPC conversions of all individual parameters [5, 99].

We summarize our contributions as follows:

(1) First secure aggregation framework to consider (1-bit) quantiza-

tion with almost no communication overhead for clients compared

to plaintext quantized FL.

(2) Novel optimizations and approximations to reduce MPC inter-

server communication, offering performance/accuracy trade-offs.

(3) End-to-end FL evaluation and MPC simulation environment,

demonstrating the efficiency and accuracy of our approach.

(4) First efficient and effective FL (poisoning) defense operating

directly on quantized updates.

Notably, while we study FL as our primary application, our se-

cure aggregation protocols have numerous other applications like

privacy-preserving aggregate statistics, for which there are cur-

rently (less efficient) real-world deployments that also rely on dis-

tributed aggregators (e.g., telemetry reporting in Mozilla’s Firefox

browser [1, 2]). For these settings, we achieve improvements in

communication of up to 4× over prior works like Prio+ [2] and the

details are provided in §3.5.

1.2 Related Work
We present a summary of the most relevant related works here,

with a more comprehensive discussion in §A.

Quantization and Compression in FL: In this work, we focus on

quantization to reduce communication in FL. However, an alterna-

tive line of work investigates compression techniques for the same

purpose. There are three main directions for gradient compression

in cross-device FL: (i) gradient sparsification (e.g., [3, 52, 75, 120]),

(ii) client-side memory and error-feedback (e.g., [4, 19, 109, 114]),

and (iii) entropy encodings (e.g., [4, 123, 125]). Reviews of current

state-of-the-art gradient compression techniques and some open

challenges can be found in [68].

Compression techniques are less suited for the requirements of

secure aggregation for cross-device FL than quantization, e.g., due to

computational overhead, incompatibility with secure aggregation,

and state-requirements on the client side. We discuss more details

in §2.2 and §A.2.

Secure Aggregation & Model Inference Attacks: In conven-

tional FL with a single aggregator, clients share locally trained

model updates with a central party to contribute to the training of

a global model. However, sharing those updates makes the system

vulnerable to data leakage. Attacks exploiting this leakage are called

inference attacks [23, 81, 98]. Even a semi-honest central server can

learn confidential information about the used private training data

by analyzing the received local model updates.

A common countermeasure against inference attacks is to use se-

cure aggregation [49, 80] (cf. §A.5). As FL poses specific challenges

such as a large number of clients and drop-out tolerance, tailored

secure aggregation protocols for FL have been proposed [16, 26,

53, 67, 113, 119]. Those hide individual updates, ensuring that the

server has only access to global updates, hence, effectively prohibit-

ing the analysis of individual updates for inference attacks. The

first scheme, SecAgg [26], combines secret sharing with authenti-

cated symmetric encryption, but requires 4 communication rounds

per training iteration among servers and client. Bell et al. [16] im-

prove upon SecAgg [26] by reducing client communication and

computation to poly-logarithmic complexity. However, from a prac-

tical point of view also [16] as well as other existing secure ag-

gregation protocols designed for FL still exhibit significant com-

putation and communication overhead: Due to underlying secret

sharing or encryption, those protocols typically encode each local

2

update in 32-bit and add computational overhead caused by the

required cryptographic operations. In contrast, ScionFL enables

highly communication-efficient secure aggregation thanks to 1-bit

quantization and causes almost no additional communication over-

head on the client side compared to plaintext FL. Fereidonni et

al. [53] provide more details by comparing several secure aggrega-

tion protocols with respect to efficiency and practicality. Mansouri

et al. [89] provide a comprehensive analysis of secure aggregation

schemes w.r.t. their suitability for FL.

To the best of our knowledge, only Chen et al. [35] and Be-

guier et al. [15] have considered both compression and secure

aggregation in combination for FL. Specifically, Chen et al. [35]

combine SecAgg [26] with sparse random projection and count-

sketching [111] for compression. Moreover, they add noise using a

distributed discrete Gaussian mechanism to generate a differential

private output. Beguier et al. [15] combine arithmetic secret-sharing

with Top-𝑘 sparsification [120] and 1-bit quantization [18]. As we

point out in §A.2, both sketching and sparsification are subopti-

mal for our envisioned cross-device setting given that they require

memory and error-feedback on the client side. In contrast, we focus

on a dynamic scenario where clients might drop-out at any time

and may contribute only once to the training.

Poisoning Attacks & Defenses: FL was also shown vulnerable

to manipulations by malicious clients [10, 11, 51, 115, 138]. Tar-

geted/backdoor attacks aim at manipulating the inference results

for specific attacker-chosen inputs [10, 138]. In contrast, untargeted

poisoning attacks [11, 51, 115] reduce the overall accuracy of the

global model. As untargeted attacks are considered to be more se-

vere (given they are harder to detect, cf. §4), we focus on defending

those using Byzantine-robust defenses like [99, 137]. In §A.6, we

provide a more detailed overview of poisoning attacks and defenses.

Comparison:We compare ScionFL qualitatively in Tab. 1 to the

state-of-the-art related work with respect to aggregation and quan-

tization, as well as robustness against poisoning.

Categories Reference Technique M.P. Quant. P.R.

Dist.

Servers

No Client

Interaction

Aggregation

[38] MPC ✓ ✗ ✗ ✓ ✓

[16] Masking ✓ ✗ ✗ ✗ ✗

Quantization

[123] – ✗ ✓ ✗ ✗ ✓

[15] MPC ✓ ✗ ✗ ✓ ✓

[35] Masking+DP ✓ ✓ ✗ ✗ ✗

Robustness

[99] MPC ✓ ✗ ✓ ✓ ✓

[137] – ✗ ✗ ✓ ✗ ✓

ScionFL This MPC ✓ ✓ ✓ ✓ ✓

Table 1: High-level comparison of ScionFL and previous works.
Notation: MPC—Secure Multi-Party Computation, DP—Differential
Privacy, M.P.—Model Privacy, Quant.—Quantization (refers to the
schemes where compressed gradients are communicated by the
clients to the aggregator(s)), P.R.—Poisoning Resilience, Dist.—
Distributed. Since the body of literature is vast, comparison is made
against only a subset representing each category.

2 Problem Statement
We now define the precise problem of secure quantized aggregation

for FL, which we address in our work. We first introduce the neces-

sary preliminaries on FL and quantization schemes, formalize the

functionality we want to compute securely, and finally define our

threat and system model for common (cross-device) FL scenarios.

2.1 Aggregation for Federated Learning
Google introduced federated learning (FL) as a distributed machine

learning (ML) paradigm in 2016 [75, 91]. In FL, 𝑁 data owners

collaboratively train a ML model 𝐺 with the help of a central ag-

gregator S while keeping their input data locally private. In each

training iteration 𝑡 , the following three steps are executed:

(1) The server S randomly selects n out of 𝑁 available clients and

provides the most recent global model 𝐺𝑡
.

(2) Each selected client C𝑖 , 𝑖 ∈ [n], sets its local model𝑤𝑡+1
𝑖

= 𝐺𝑡

and improves it using its local dataset 𝐷𝑖 for 𝐸 epochs (i.e., local

optimization steps):

𝑤𝑡+1
𝑖 ← 𝑤𝑡+1

𝑖 − 𝜂C𝑖

𝜕𝐿(𝑤𝑡+1
𝑖

, 𝐵𝑖,𝑒)
𝜕𝑤𝑡+1

𝑖

, (1)

where 𝐿 is a loss function,𝜂C𝑖
is the clients’ learning rate, and 𝐵𝑖,𝑒 ⊆

𝐷𝑖 is a batch drawn from 𝐷𝑖 in epoch 𝑒 , where 𝑒 ∈ [𝐸]. After
finishing the local training, C𝑖 sends its local update𝑤

𝑡+1
𝑖

to S.
(3) The server updates to a new global model 𝐺𝑡+1

by combining

all𝑤𝑡+1
𝑖

with an aggregation rule 𝑓agg:

𝐺𝑡+1 ← 𝐺𝑡 − 𝜂S · 𝑓agg (𝑤𝑡+1
1

, . . . ,𝑤𝑡+1
n), (2)

where 𝜂S is the server’s learning rate. The most commonly used

aggregation rule, which we also focus on, is FedAvg [91]. It averages
the local updates as follows:

FedAvg(𝑤𝑡+1
1

, . . . ,𝑤𝑡+1
n) =

n∑︁
𝑖=1

|𝐷𝑖 |
n

𝑤𝑡+1
𝑖 (3)

This process is repeated until some stopping criterion is met (e.g.,

a fixed number of training iterations or a certain accuracy is reached).

2.2 Stochastic Quantization
Quantization is a central building block in FL, where data trans-

mission is often a bottleneck. Thus, compressing the (thousands or

millions of) gradients is essential to adhere to client bandwidth con-

straints, reducing training time, and allowing better inclusion and

scalability. We now review the desired properties and constructions

of quantization schemes that will play a key role in our system

design and additional details are provided in §A.1.

Unbiasedness: A well-known and desired design property of gra-

dient compression techniques is being unbiased. That is, for an esti-

mate �̂� of a gradient𝑤 ∈ R𝑑 , being unbiased means that E[�̂�] = 𝑤 .

Unbiasedness is desired because it guarantees that themean squared

error (MSE) of the mean’s estimation decays linearly with respect to

the number of clients, which can be substantial in FL. In FL and other

optimization techniques based on stochastic gradient descent (SGD)

and its variants (e.g., [69, 85, 91]), the MSE measure (or normal-

ized MSE, a.k.a. NMSE, cf. §3.4) is indeed the quantity of interest

since it affects the convergence rate and often the final accuracy

of models. In fact, provable convergence rates for the non-convex

compressed SGD-based algorithms have a linear dependence on

the NMSE. Accordingly, to keep the estimates unbiased, modern

quantization techniques employ stochastic quantization (SQ) and

its variants to compress the gradients.

3

1-bit SQ: Our focus is on the appealing communication budget of

a single bit for each gradient entry, resulting in a 32× compression

ratio compared to regular 32-bit floating point entries. Using 1-bit

quantization has been the focus of many recent works concerning

distributed and FL network efficiency (e.g., [18, 64, 114, 124, 126]).

These works repeatedly demonstrated that a budget of 1-bit per co-

ordinate is sufficient to achieve model accuracy that is competitive

to that of a non-compressed baseline.

In particular, 1-bit SQ (i.e., SQ using two quantization values)

can be done as follows: For a vector𝑋 with𝑚 dimensions, the client

sends each coordinate as 𝜎𝑖 = Bernoulli(𝑋𝑖−s𝑚𝑖𝑛
𝑋

s𝑚𝑎𝑥
𝑋
−s𝑚𝑖𝑛

𝑋

), where s𝑚𝑎𝑥
𝑋

=

max(𝑋) and s𝑚𝑖𝑛
𝑋

= min(𝑋). The coordinate is then reconstructed

by the receiver as ®𝑋 𝑖
𝜎 = s𝑚𝑖𝑛

𝑋
+ ®𝜎𝑖

𝑋
· (s𝑚𝑎𝑥

𝑋
− s𝑚𝑖𝑛

𝑋
). This sim-

ple technique results in an unbiased quantization as desired, i.e.,

E[®𝑋 𝑖
𝜎] = E[s𝑚𝑖𝑛

𝑋
+ ®𝜎𝑖

𝑋
· (s𝑚𝑎𝑥

𝑋
− s𝑚𝑖𝑛

𝑋
)] = 𝑋𝑖 .

Linear SQ Techniques: A key requirement of being able to per-

form secure aggregation efficiently is being able to aggregate client

gradients in their compressed (i.e., quantized) form. The schemes

with this property are called “linear” henceforth. Towards this,

clients can use a “global scales” approach, where they securely

learn the maximal and the minimal value across all gradients, i.e.,

each client uses s𝑚𝑎𝑥 = max𝑐 {s𝑚𝑎𝑥
𝑋𝑐
} and s𝑚𝑖𝑛 = min𝑐 {s𝑚𝑖𝑛

𝑋𝑐
}.1

While this approach is appealing due to its simplicity, it has sev-

eral drawbacks: (i) it requires a preliminary communication stage,

(ii) it reveals the global extreme values (even if they are computed

securely across all clients), and (iii) the reconstruction error (i.e.,

the NMSE) is increased as it now depends on the extreme values

across all round participants. Accordingly, we also consider a sec-

ond approach where each client continues to use its own “local

scales”. Since plainly using individual scales is not “linear”, i.e., it

does not allow for aggregating the quantized gradients efficiently

without decoding them, to realize this approach, we use a known

approximation [15] and adapt it to our setting (cf. §3.1).

While in this work we focus on the mentioned vanilla SQ, SQ

with random rotation [123] as well as SQ with Kashin’s representa-

tion [30, 87, 112], our framework seamlessly supports any “linear”

quantization scheme, namely, any quantization technique that al-

lows for aggregation in a compressed form (cf. §C.1).

Other Approaches: We acknowledge more recent advances in

gradient quantization (e.g., [13, 45, 125, 126]). However, these tech-

niques are not linear and thus less applicable to our framework.

2.3 MPC for Secure Aggregation
Secure computation in the form of multi-party computation (MPC)

allows a set of parties to privately evaluate any efficiently com-

putable function on confidential inputs. This paradigm can be uti-

lized to securely run the FedAvg aggregation algorithm [47, 53, 96,

99]: The set of selected FL clients uses additive secret sharing to

distribute their sensitive inputs among a set of MPC servers, which

resemble a distributed aggregator. The MPC servers securely add

the received shares and reconstruct the public result from the re-

sulting shares. In the next iteration, the public model is distributed

to a new set of clients chosen at random, and the process is repeated

1
This approach resembles “scaler sharing” in TernGrad [130].

until the desired accuracy is attained. A visualization of this out-

sourced MPC setting for secure aggregation is provided in Fig. 1.

2. Compute agg =

FedAvg({⟨𝑤𝑡+1⟩})

1. ⟨𝑤𝑡+1
𝑖
⟩

3. 𝐺𝑡+1 ← 𝐺𝑡 − 𝜂S · agg
MPC Servers

C1

C𝑖

Cn

Figure 1: Secure aggregation in FL for n clients using outsourced MPC; ⟨𝑤𝑡+1
𝑖
⟩

denotes the secret-shares of gradient 𝑤𝑡+1
𝑖

that client𝐶𝑖 has in round 𝑡 + 1;𝐺𝑡

is the model of the previous round and 𝜂S the server-side learning rate.

In the remainder of this paper, we work towards a secure aggre-

gation for FL using FedAvg on quantized inputs. In the following,

we give our assumptions in terms of the threat model and refine

the description of our system model.

MPC Servers: The MPC servers are assumed to be semi-honest.

This means, they follow the protocol specification, but may try to

learn additional information from the protocol messages that they

receive. This well-established assumption, both in theory [7, 22, 61,

66, 93, 99, 102] and in practice [1, 6, 127], is motivated by the fact

that companies who run FL with a secure aggregation scheme try

to actively protect their clients’ data but want to make sure that

someone who monitors or breaks into their systems cannot get

plaintext access to the data that is being processed. Additionally,

this assumption is justified as organizations usually cannot afford

the reputational and monetary risk when being caught betraying

their users’ trust. The protocols that we design provide this security

guarantee in a dishonest majority setting, where data is protected

even when an adversary A corrupts all except one of the involved

servers.. Furthermore, our framework is easily extendable to pro-

vide malicious privacy, which ensures input privacy even when the

corrupted servers try to actively cheat [107].

Malicious Clients: We anticipate that some clients might behave

maliciously to negatively affect the quality of the global model with

manipulated updates (i.e., poisoning attacks, cf. §4). This is because

there are significantly less incentives for clients to behave honestly.

Also, due to the sheer number of clients in cross-device FL, it is

hard to verify their reputation. We assume an honest majority of

clients as is standard in FL, yet our framework is secure even when

malicious clients collude with corrupted servers.

Preprocessing Model: We focus on MPC in the preprocessing

model [14, 42–44, 72]. This means, we try to shift as much compu-

tation and communication as possible to a data-independent prepro-
cessing or offline phase that can be executed at an arbitrary time

before the actual computation. This gives several advantages, e.g.,

service providers can exploit cheap spot instances. Furthermore, it

guarantees faster results when the data-dependent online phase of
the protocol is executed.

Shared Randomness: We assume that clients and MPC servers

have access to a shared randomness source, e.g., by agreeing on

a PRNG seed. Such a configuration has been widely employed

inMPC protocols [7, 33, 55, 77, 94] as well as inML systems [12, 123]

to optimize communication.

4

2.4 Secure Quantized Aggregation
To introduce the problem of secure quantized aggregation, without

loss of generality, we consider a simple stochastic binary quan-

tization scheme to begin with. In this scheme, a m-dimensional

vector of the form ®𝑋 = {𝑥1, . . . , 𝑥m} comprising of ℓ-bit values will

be quantized to obtain a triple ®𝑋𝜎 = (®𝜎𝑋 , s𝑚𝑖𝑛
𝑋

, s𝑚𝑎𝑥
𝑋
). Here, ®𝜎𝑋 is

an m-dimensional binary vector with a zero at an index indicat-

ing the value s𝑚𝑖𝑛
𝑋

and a one indicating the value s𝑚𝑎𝑥
𝑋

. Also, s𝑚𝑖𝑛
𝑋

and s𝑚𝑎𝑥
𝑋

correspond to the minimum and maximum values in the

vector ®𝑋 . With this binary quantization (cf. §2.2), the quantized

value at the 𝑖th dimension, denoted by ®𝑋 𝑖
𝜎 , can be written as

®𝑋 𝑖
𝜎 = s𝑚𝑖𝑛

𝑋 + ®𝜎𝑖𝑋 · (s
𝑚𝑎𝑥
𝑋 − s𝑚𝑖𝑛

𝑋) . (4)

Before going into the details of aggregation, we provide some of

the basic notation that will be utilized throughout the paper.

Notation: ®Y𝛼×𝛽 denotes a matrix of dimension 𝛼 × 𝛽 with ®Y𝑖 being
the 𝑖th row and ®Y𝑗

being the 𝑗 th column. An element in the 𝑖th row

and 𝑗 th column is denoted by Y𝑗
𝑖
. Also, Agg-R(®Y𝛼×𝛽) returns a row

vector corresponding to an aggregate of the rows of ®Y. Likewise,
Agg-C(®Y𝛼×𝛽) returns an aggregate of the columns of ®Y.

Given ®U𝛼×𝛽 and ®V𝛼×1, we use ®U ◦ ®V to denote the column-

wise Hadamard product. Similarly, ®U ⊕ ®V denote the sum of two

matrices in a column-wise fashion. Concretely, for ®M𝛼×𝛽 = ®U ◦ ®V
and ®N𝛼×𝛽 = ®U ⊕ ®V, we have

M𝑗
𝑖
= U𝑗

𝑖
· V1

𝑖 and N𝑗
𝑖
= U𝑗

𝑖
+ V1

𝑖 , where 𝑖 ∈ [𝛼], 𝑗 ∈ [𝛽] .

Quantized Aggregation: To perform aggregation on quantized

inputs, a set of n clients first locally prepares their quantized triples,

(®𝜎𝑋 , s𝑚𝑖𝑛
𝑋

, s𝑚𝑎𝑥
𝑋
), corresponding to their locally trained ML model

updates (i.e., gradients) and submits these to a parameter server

for aggregation. Let m be the dimension of the underlying ML

model. The quantized triples can then be consolidated to a matrix

triple of the form (®Bn×m, ®Un×1, ®Vn×1). Here, ®B is a binary matrix

that corresponds to the ®𝜎𝑋 vector of the clients. Similarly, ®U and ®V
correspond to the s𝑚𝑖𝑛

𝑋
and s𝑚𝑎𝑥

𝑋
values of the above-mentioned

triple. The aggregate of the quantized inputs is defined as

®X1×m = Agg-R
(
®Un×1 ⊕ ®Bn×m ◦ (®Vn×1 − ®Un×1)

)
. (5)

FSecAgg interacts with all the 𝜏 servers in S and an adversary A that controls a

subset of the servers in S.
Input: FSecAgg receives ⟨·⟩-shares of the matrix triple (®Bn×m, ®Un×1, ®Vn×1) from
the honest servers in S, while the adversary A provides the ⟨·⟩-shares on behalf

of the corrupt servers. Here B𝑗

𝑖
∈ {0, 1} and U𝑗

𝑖
,V𝑗

𝑖
∈ Z

2
ℓ .

Computation: FSecAgg reconstructs (®B, ®U, ®V) from its ⟨·⟩-shares.
– Set ®Sn×1 = ®Vn×1 − ®Un×1 and compute ®Wn×m = ®Bn×m ◦ ®Sn×1 .
– Compute ®Xn×m = ®Un×1 ⊕ ®Wn×m .

– Compute ®Y1×m = Agg-R(®Xn×m) , i.e., ®Y𝑗 =
∑n

𝑖=1 X
𝑗

𝑖
for 𝑗 ∈ [m].

Output: FSecAgg computes ⟨·⟩-shares of ®Y and sends the respective shares to the

servers in S.

Functionality FSecAgg

Figure 2: Ideal functionality for semi-honest secure quantized ag-
gregation for linear stochastic binary quantization.

Ideal Functionality: To perform secure aggregation of quantized

updates using MPC, we model the aggregation as an ideal func-

tionality FSecAgg, which is provided in Fig. 2. We consider a set

of 𝜏 servers to which the clients secret-share their quantized up-

dates. The goal is to compute the aggregate of the inputs as shown

in Eq. 5. Let ⟨·⟩ denote the underlying secret sharing scheme. Look-

ing ahead, we will use linear secret sharing techniques for MPC,

in which linear operations such as addition and subtraction are

local. As a result, we will concentrate on efficiently computing the

column-wise Hadamard product.

3 Our Framework: ScionFL
We now detail our framework “ScionFL” from an MPC standpoint.

We present the underlying sharing semantics, client interaction

with MPC servers, and methods for performing secure aggregation

of client updates. Our generic constructions utilize MPC in a black-

box fashion [17, 40, 41, 44, 110], however, the full MPC protocols,

including inner product computation, multiplication, and bit-to-

arithmetic conversion, are detailed in §B.1.

Masked Evaluation: In our MPC protocols, we use the masked

evaluation technique [17, 34, 59, 77, 90, 122], which enables costly

data-independent calculations to be completed in a preprocess-

ing phase, thus enabling a fast and efficient data-dependent on-
line phase (cf. §2.3). In this model, the secret-share of every el-

ement v ∈ Z
2
ℓ , denoted by ⟨v⟩, is associated with two values:

a random mask 𝜆v ∈ Z2ℓ and a masked value mv ∈ Z2ℓ such

that v = mv + 𝜆v. While 𝜆v is split and distributed as q shares as

per the underlying MPC scheme (cf. §B.1), mv is given to all MPC

servers.
2
Since 𝜆v is random and independent of v, all operations in-

volving 𝜆v values alone can be computed during the preprocessing

phase and thereby leading to a fast online phase.

Client Interaction: Before going into the details of aggregation

among the 𝜏 MPC servers, we discuss input sharing and the recon-

struction of the aggregated vector for clients.

To generate the ⟨·⟩-shares of a value v ∈ Z
2
ℓ owned by clientC, it

first non-interactively computes the additive shares of the mask 𝜆v
using the shared randomness setup discussed in §2.3. The masked

value is then computed as mv = v − 𝜆v and sent to a single desig-

nated MPC server, say S1. The input sharing is completed when S1
sends mv to all remaining MPC servers.

3
For Boolean values (i.e.,

in Z2) the procedure is similar except that addition/subtraction is

replaced with XOR and multiplication with AND. We use ⟨·⟩B to

denote the secret sharing over the domain Z2 .
After the servers have received all inputs in ⟨·⟩-shared form, they

instantiate the FSecAgg functionality specified in Fig. 2 and obtain

the aggregated vectors in ⟨·⟩-shared form. Recall from §2.1 that

the values to be aggregated in our case correspond to FL gradients,

and the aggregated result can also be made public. As a result, the

servers reconstruct the aggregated result towards a chosen server,

say S1, which updates the global model according to Eq. (3). In the

next iteration, S1 distributes the updated global model to a fresh

set of clients, and the process is repeated.

2
Due to differences in the underlying setting, there may be minor differences in how

the valuesmv and 𝜆v are distributed among the servers.

3
If malicious privacy is desired, C can send a hash digest of all themv values to the

remaining MPC servers, who can verify the correctness of messages from S1 .

5

From a client’s perspective, it is only interacting with a single

server (apart from a one-time shared-randomness setup), as is the

case in the privacy-free variant with a single parameter server [91].

3.1 MPC-based Aggregation
We now discuss three approaches for instantiating FSecAgg us-

ing MPC protocols that operate on secret-shared values. Recall

from Eq. (5) that the MPC servers for the aggregation of quantized

values possess ⟨·⟩-shares of matrices ®Un×1 and ®Vn×1 along with

the ⟨·⟩B-shares of ®Bn×m.
Approach I: A naive instantiation of FSecAgg would be to have the
servers convert binary shares of the matrix ®B to their arithmetic

shares first, as in Prio+ [2]. This is possible in MPC with a bit-to-

arithmetic conversion protocol [2, 77, 94, 104], denoted by ΠBitA,

which computes the arithmetic shares of b ∈ Z2 from its Boolean

sharing. Once the arithmetic shares are generated, the servers use

an instance of an inner-product protocol, denoted by ΠIP, on each

of them columns of matrix ®Bwith the column vector (®Vn×1− ®Un×1)
computed locally to obtain the row aggregate. They complete the

protocol by adding a row aggregate of ®U to each column of the

matrix computed in the previous step. The formal protocol ΠI

SecAgg
is given in Fig. 3.

1. Locally compute ⟨®Sn×1 ⟩ = ⟨ ®Vn×1 ⟩ − ⟨ ®Un×1 ⟩.
2. Compute ⟨ ®B⟩ = ΠBitA (⟨ ®B⟩B) .
3. Compute ⟨ ®W𝑗 ⟩ = ΠIP (⟨ ®B𝑗 ⟩, ⟨®S⟩) , for each 𝑗 ∈ [m].
4. Locally compute ⟨ ®Z1×1 ⟩ = Agg-R(⟨ ®Un×1 ⟩) .
5. Locally compute ⟨ ®Y1×m ⟩ = ⟨ ®Z1×1 ⟩ ⊕ ⟨ ®W1×m ⟩.

Protocol ΠI

SecAgg (⟨ ®Bn×m ⟩B, ⟨ ®Un×1 ⟩, ⟨ ®Vn×1 ⟩)

Figure 3: Secure aggregation – Approach I.

As shown in Fig. 3, ΠI

SecAgg invokes ΠBitA for each bit in ma-

trix ®B, resulting in n ·m invocations. Using the masked evaluation

technique [78, 122], the online communication of the inner product

protocol ΠIP can be made independent of the dimension n, which
in our case corresponds to the number of clients.

Approach II: We use the bit injection protocol [76, 94, 104], de-

noted by ΠBI, which computes the arithmetic sharing of b · s
given the Boolean sharing of b ∈ Z2 and the arithmetic sharing

of s ∈ Z
2
ℓ . Given ⟨ ®M𝛼×1⟩B and ⟨ ®N𝛼×1⟩, the high-level idea is to ef-

fectively combine the ΠBitA and ΠIP protocol to a slightly modified

instance of ΠBI that directly computes the sum [78, 122] (denoted

by

∑𝛼
𝑖=1M

1

𝑖
· N1

𝑖
) instead of the individual positions. This can be

achieved following Eq. (16) and the details appear in Fig. 17 in §B.1.

One significant advantage of this technique is that the overall online

communication is no longer dependent on the number of clients n.
ΠII

SecAgg denotes the resulting protocol and the formal details are

given in Fig. 4.

1. Locally compute ⟨®Sn×1 ⟩ = ⟨ ®Vn×1 ⟩ − ⟨ ®Un×1 ⟩.
2. Compute ⟨ ®W𝑗 ⟩ = ΠBI (⟨ ®B𝑗 ⟩B, ⟨®S⟩) , for each 𝑗 ∈ [m].
3. Locally compute ⟨ ®Z1×1 ⟩ = Agg-R(⟨ ®Un×1 ⟩) .
4. Locally compute ⟨ ®Y1×m ⟩ = ⟨ ®Z1×1 ⟩ ⊕ ⟨ ®W1×m ⟩.

Protocol ΠII

SecAgg (⟨ ®Bn×m ⟩B, ⟨ ®Un×1 ⟩, ⟨ ®Vn×1 ⟩)

Figure 4: Secure aggregation – Approach II.

Approach III using SepAgg: In a closely related work [15], the

authors combine the SIGNSGD compression technique of [18] with

additive secret sharing for FL. Unlike our work, which investigates

secure aggregation using various linear quantization algorithms

in a cross-device environment, they aim for a cross-silo setting

in which clients distribute arithmetically shared values to servers

rather than single bits. In terms of client-server communication, this

indicates a non-optimal communication overhead of factor log
2
2n,

where n is the number of involved participants each round.

However, the authors of [15] introduce an interesting approxi-

mation called “SepAgg” for computing the averaged inner product

between bits and scales:

1

n

n∑︁
𝑖

®𝜎𝑖𝑋 · ®s
𝑖
𝑋 ≈

1

n2

(
n∑︁
𝑖

®𝜎𝑖𝑋

) (
n∑︁
𝑖

®s𝑖𝑋

)
. (6)

We adopt the SepAggmethod to our setting to computeAgg-R(®B◦
(®V − ®U)) in Eq. (5). In particular, we aggregate the matrices ®B
and (®V− ®U) independently and then perform one secure multiplica-

tion per coordinate, with the other operations being linear and free

in our MPC protocol. As a result, we can utilize linear quantization

schemes with local scales at the cost of global scales (ignoring the

overhead for global scales to securely determine s𝑚𝑖𝑛
𝑋

and s𝑚𝑖𝑛
𝑋

across all participants). The formal protocol ΠIII

SecAgg utilizing Sep-

Agg appears in Fig. 5.

1. Locally compute ⟨®S1×1 ⟩ = Agg-R(⟨ ®Vn×1 ⟩ − ⟨ ®Un×1 ⟩) .
2. Compute ⟨®T𝑗 ⟩ = Πsum

BitA (⟨ ®B
𝑗 ⟩B) , for each 𝑗 ∈ [m].

3. Compute ⟨ ®W𝑗 ⟩ = ΠMult (⟨ ®T𝑗 ⟩, ⟨®S⟩) , for each 𝑗 ∈ [m].
4. Locally compute ⟨ ®Z1×1 ⟩ = Agg-R(⟨ ®Un×1 ⟩) .
5. Locally compute ⟨ ®Y1×m ⟩ = ⟨ ®Z1×1 ⟩ ⊕ 1

n · ⟨ ®W1×m ⟩.

Protocol ΠIII

SecAgg (⟨ ®Bn×m ⟩B, ⟨ ®Un×1 ⟩, ⟨ ®Vn×1 ⟩)

Figure 5: Secure aggregation – Approach III (SepAgg [15]).

Accuracy Evaluation: We next provide strong empirical evidence

that applying SepAgg for SQ with preprocessing preserves the

linear NMSE decay with respect to the number of clients (i.e., unbi-

ased estimates). For this, we simulate the aggregation of random

vectors ®𝑣𝑖 with dimension𝑑 drawn from a (0, 1)-log-normal distribu-

tion.
4
Then, we measure the normalized mean square error (NMSE)

when comparing the averaged aggregation result agg computed on

secret-shared and quantized inputs to the plain averaged aggrega-

tion aggorig =
∑n
𝑖 ®𝑣𝑖/n. Concretely, we measure

NMSE =
∥aggorig − agg∥22∑n

𝑖 ∥®𝑣𝑖 ∥22/n
, (7)

where agg is computed using various linear quantization schemes

for (i) a regular dot product between converted bits and scales

and (ii) with SepAgg. Our results shown in Fig. 6 are the average

of 10 trials for each experiment with q = 3 shares (representing a

three-server dishonest majority setting using themasked evaluation

technique). While for smaller dimensions we observe a visible effect

for SQ without preprocessing, there is only a minor difference for

the other two quantization schemes, and sometimes the NMSE

for SepAgg is even smaller than for the exact computation.

4
We use this distribution for preliminary measurements as it was commonly observed

in neural network gradients, e.g., [37].

6

10
−3

10
−1
10

1
NMSE SQ 𝑑 = 2

10
Exact

𝑑 = 2
15

SepAgg

𝑑 = 2
20

10
0

10
2

10
4

10
−3

10
−1
10

1
NMSE HSQ

number of clients n

10
0

10
2

10
4

NMSE KSQ

number of clients n

Figure 6: NMSE comparison between exact and SepAgg-based aggre-
gation for vanilla SQ, SQ using the randomized Hadamard trans-
form (HSQ), and SQ using Kashin’s representation (KSQ) for various
vector dimensions 𝑑 and number of clients n.

Formally proving that applying SepAgg after different prepro-

cessing techniques (e.g., random rotation and Kashin’s representa-

tion) results in an unbiased aggregation is a significant theoretical

challenge. We leave this intriguing endeavor for future work.

Communication Costs: Tab. 2 provides the theoretical commu-

nication costs for our approaches when aggregating n quantized

single-dimension vectors. Clearly, our Approach-III (cf. Fig. 5) is the

most efficient, with the multiplication-related cost being completely

independent of the number of clients n due to SepAgg [15]. The

concrete communication costs are provided in §3.5.

The communication costs are primarily determined by the cost

of BitApre. In our masked evaluation technique (cf. §B.1), this re-

lates to the conversion of a random secret-shared bit from Boolean

sharing to its additive sharing form [41, 110]. Thus, we propose

approximate variants for improving the cost of this operation.

Approach Offline Online

Approach-I n · BitApre + n ·Multpre n · BitAon +Multon

Approach-II n · BitApre + n ·Multpre Multon

Approach-III n · BitApre + Multpre Multon

Table 2: Communication costs for aggregating quantized vectorswith
a single dimension for n clients. Protocols ΠBitA and ΠMult are treated
as black-boxes, and their costs are represented as BitA and Mult,
respectively. The superscript pre in the costs denotes preprocessing
and on denotes the online phase.

3.2 Approximate Bit Conversion in MPC
We reduce our communication and computation costs using a

novel approximate bit conversion method. For this, consider a

bit b represented using two Boolean shares b1, b2 ∈ {0, 1}, such
that b = b1 ⊕ b2. Note that when embedding b1 and b2 in a

larger field/ring
5
, it holds that b = b1 + b2 − 2b1b2. Similarly,

for b = b1⊕b2⊕b3, b = b1+b2+b3−2b1b2−2b1b3−2b2b3+4b1b2b3
holds true. In fact, this concept can be generalized to an arbitrary

number of shares, denoted by q, as discussed below.

For b = ⊕q
𝑖=1

b𝑖 , let Q = {b𝑖 }𝑖∈[q] denote the set of all q shares

of b, and ˜b𝑖 the arithmetic equivalent of the share b𝑖 . Let 2Q be the

powerset of Q and Q |𝑐 | the set of all size-𝑐 subsets in 2
Q
, that is,

5
The bit (either 0 or 1) is treated as a ring element in Z

2
ℓ in our protocols.

2
Q =

∑𝑞

𝑖=0
Q |𝑖 | . The arithmetic equivalent of b, denoted by

˜b, is
given as

˜b =
∑︁

{b𝑒 }∈Q |1|
˜b𝑒 − 2 ·

∑︁
{b𝑒

1
,b𝑒

2
}∈Q |2|
˜b𝑒1 ˜b𝑒2 + 4 ·

∑︁
{b𝑒

1
,b𝑒

2
,b𝑒

3
}∈Q |3|
˜b𝑒1 ˜b𝑒2 ˜b𝑒3 . . . + (−2)q−1 ·

∏
{b𝑒

1
,...,b𝑒𝑞 }∈Q |𝑞 |

˜b𝑒

=

q∑︁
𝑘=1

(−2)𝑘−1
∑︁

{b𝑒
1
,...,b𝑒𝑘 }∈Q |𝑘 |

˜b𝑒1 ˜b𝑒2 . . . ˜b𝑒𝑘 (8)

Note that the Eq. (8) can be viewed as sum of three terms:

Sum (terms), Middle (termm), and Product (termp) as shown in

Eq. (9) below. (Note that Q |𝑞 | = Q).

˜b =
∑︁

{b𝑒 }∈Q |1|

˜b𝑒︸︷︷︸
Sum Term: terms

+
q−1∑︁
𝑘=2

(−2)𝑘−1
∑︁

{b𝑒
1
,...,b𝑒𝑘 }∈Q

|𝑘 |

˜b𝑒1 ˜b𝑒2 . . . ˜b𝑒𝑘︸ ︷︷ ︸
Middle Term: termm

+ (−2)q−1
∏
b𝑒 ∈Q

˜b𝑒︸ ︷︷ ︸
Product Term: termp

(9)

Our Approach. Performing this conversion in MPC requires many

additions and multiplications. While linear operations like addi-

tions can be calculated for “free” in most MPC protocols, non-linear

operations such as multiplications require some form of commu-

nication between the MPC servers. Hence, computing the middle

term is costly, especially when a large number of shares is involved.

To approximate
˜b in Eq. (9), we replace only themiddle term termm

with its expected value E[termm] such that the approximate value

of
˜b, denoted by

ˆb, retains E[ˆb] = b. The expectation of terms
and termp in Eq. (9) is first calculated, andE[termm] is inferred us-
ing the fact that E[ˆb] = b. This analysis is summarised in Lem. 3.1.

Lemma 3.1 (Expected Values). Given a bit b = ⊕q
𝑖=1

b𝑖 and 𝑏 =

terms + termm + termp with

terms =
∑︁

{b𝑒 }∈Q |1|
˜b𝑒 , termm =

q−1∑︁
𝑘=2

(−2)𝑘−1
∑︁

{b𝑒
1
,...,b𝑒𝑘 }∈Q |𝑘 |

˜b𝑒1 ˜b𝑒2 . . . ˜b𝑒𝑘 ,

termp = (−2)q−1
∏
b𝑒 ∈Q

˜b𝑒 ,

we have E[terms | b] = q/2, E[termm | b] = (q-1) mod 2 − q/2,
and E[termp | b] = b − (q-1) mod 2.

Proof. For the analysis, we use the truth table of b, denoted
by𝑇b, which has 2

q
rows. Half of the rows in𝑇b correspond to b = 0,

while the other half correspond to b = 1. The truth table for three

shares (q = 3) is given in Tab. 3 as a reference.

Sum Term (terms): For each row of the form (b1, . . . , bq) in 𝑇b,

terms equals ˜b1 + . . . + ˜bq, which can be interpreted as the number

of
˜b𝑖 ’s selected out of the q possible. Furthermore, there are a total

of

(q
𝑘

)
rows with sums equal to 𝑘 , with 𝑘 being odd corresponding

to the row for b = 1 and 𝑘 being even corresponding to the row

for b = 0. As a result, given b = 0, the expectation of the sum term

can be calculated as the product of 1/2q−1 (corresponding to rows

in 𝑇b with b = 0) and the sum of terms of the form 𝑘 ·
(q
𝑘

)
with 𝑘

being even. Using Lem. B.1 in §B, we get

E[terms | (b = 0)] = 1

2
q−1 ·

⌊q/2⌋∑︁
𝑘=0

2𝑘

(
q
2𝑘

)
=

1

2
q−1 · q · 2

q−2 = q/2.

Similarly, we obtain E[terms | (b = 1)] = q/2. To summarize, we

have E[terms | b] = q/2.
7

b b1 b2 b3 terms termm termp ˜b
0 0 0 0 0 0 0 0

1 0 0 1 1 0 0 1

1 0 1 0 1 0 0 1

0 0 1 1 2 -2 0 0

1 1 0 0 1 0 0 1

0 1 0 1 2 -2 0 0

0 1 1 0 2 -2 0 0

1 1 1 1 3 -6 4 1

Table 3: Truth table for b = b1 ⊕ b2 ⊕ b3. The rows corresponding to
b = 0 are highlighted . ˜b denotes the arithmetic equivalent of b.

Product Term (termp): The product of all the q shares will be 1 only

if all the shares are 1, otherwise it will be 0. Moreover, all shares of b
being 1 correspond to b = 1 if q is odd, and b = 0 otherwise. Now,

when q is odd then termp = (−2)q−1 with probability
1

2
q−1 (when

all the shares of b are 1, given that at least one share is 1 as we are

in the case 𝑏 = 1), and 0 otherwise. In this case, we can write

E[termp | (b = 0 ∧ q is odd)] = 1

2
q−1 · 0 = 0

E[termp | (b = 1 ∧ q is odd)] = 1

2
q−1 · (−2)

q−1 = 1

Similarly, the case for even q can be written as

E[termp | (b = 0 ∧ q is even)] = 1

2
q−1 · (−2)

q−1 = −1

E[termp | (b = 1 ∧ q is even)] = 1

2
q−1 · 0 = 0

The above observation can be summarized as E[termp | b] =
b − (q-1) mod 2.

Middle Term (termm):GivenE[b] = b,E[terms | b] andE[termp |
b], the expectation of termm can be calculated as

E[termm | b] = E[b] − E[terms | b] − E[termp | b]
= b − q/2 − (b − (q-1) mod 2) = (q-1) mod 2 − q/2.

This concludes the proof of Lem. 3.1. □

Our Approximation. With the aforementioned observations, the

approximate arithmetic equivalent of b, denoted by
ˆb, is as follows:

ˆb =
∑︁
b𝑒 ∈Q

˜b𝑒︸︷︷︸
terms

+
(
(q-1) mod 2 − q

2

)
︸ ︷︷ ︸

terma
m

+ (−2)q−1
∏
b𝑒 ∈Q

˜b𝑒︸ ︷︷ ︸
termp

(10)

While terms is kept because it only involves linear operations on

the shares of b (which are free in MPC for any linear secret sharing

scheme), we observe that termp is required to keep the expected

values for b = 0 and b = 1 different. This is evident from Lem. 3.1

where E[termp | b] is the only term that depends on b.
In general, if a term that depends on all the q shares of b is

missing from the approximation, we get E[b = 0] = E[b = 1]. The
intuition is that only such a term can differentiate between b = 0

and b = 1, while all other terms will be symmetrically distributed.

For instance, consider q = 3 and let
˜b = 𝑐1 ˜b1+𝑐2 ˜b2+𝑐3 ˜b3+𝑐4 ˜b1 ˜b2+

𝑐5 ˜b2 ˜b3+𝑐6 ˜b1 ˜b3+𝑐7 for some random combiners 𝑐𝑖 ∈ Z2ℓ and 𝑖 ∈ [7].
Using the truth table 𝑇b given in Tab. 3, it is easy to verify that

E[˜b = 0] = E[˜b = 1] = 1

4

· (2𝑐1 + 2𝑐2 + 2𝑐3 + 𝑐4 + 𝑐5 + 𝑐6 + 4𝑐7) (11)

This argument can be generalized to any value of q.

Claim 3.2. The approximate arithmetic equivalent ˆb in Eq. (10)
preserves the expectation of the exact bit b in Eq. (8), i.e.,E[ˆb = 0] = 0

and E[ˆb = 1] = 1.

Proof. The proof is straightforward as we replace the middle

term (termm) in Eq. (8) with its expected value terma
m. □

Efficiency Analysis: We measure the efficiency gains achieved

by our approximation method, discussed in §3.2, by counting the

number of cross terms6 that must be computed securely using MPC.

Cross terms are terms that compute the product of two or more

shares. While the exact amount of computation and communication

varies depending on the MPC protocol and setting (e.g., honest

vs. dishonest majority or semi-honest vs. malicious security), we

believe cross terms can provide a protocol-independent and realistic

assessment of scalability.
7

Computation

#cross-terms

Exact (
˜b) Approximate (

ˆb)

Bit-to-Arithmetic 2
q − q − 1 1

Bit Injection 2
q + q2 − 2q − 1 q2 − q + 1

Table 4: Efficiency analysis via approximate bit conversion with
respect to the #cross-terms involved.

Tab. 4 provides details regarding the number of cross terms

involved in obtaining the arithmetic equivalent of b = ⊕q
𝑖=1

b𝑖 . The
gains increase significantly with a higher number of shares q due to
the exponential growth in the number of cross terms for the exact

computation. Tab. 4 also provides details for a bit injection operation

in which the product of a Boolean bit b and a scale value s is securely
computed. Given s =

∑q
𝑖=1

s𝑖 , the value b · s can be computed by

first computing either
˜b or

ˆb (depending on whether an exact or

approximate value is required) and then multiplying by s.

3.3 Secure Bit Aggregation with Global Scales
Here, we consider the secure bit aggregation problem in the context

of “global scales”, as discussed in §2.2. In this case, all the clients use

the same set of scales for quantization, denoted by s𝑚𝑖𝑛
𝐺

and s𝑚𝑎𝑥
𝐺

.

Therefore, it is sufficient to compute

®X1×m = s𝑚𝑖𝑛
𝐺 ⊕ Agg-R

(
®Bn×m

)
◦ (s𝑚𝑎𝑥

𝐺 − s𝑚𝑖𝑛
𝐺) (12)

as the aggregation result. Interestingly, when s𝑚𝑖𝑛
𝐺

= 0 and s𝑚𝑎𝑥
𝐺

=

1, this can also be viewed as an instance of privacy-preserving

aggregate statistics computation, as demonstrated in the works

of Prio [38] and Prio+ [2].

As shown in Eq. (12), the computation becomes simpler in the

case of global scales since all clients utilize the same set of pub-

lic scales, denoted by s𝑚𝑖𝑛
and s𝑚𝑎𝑥

, to compute their quantized

vector that corresponds to the rows of ®B. Hence, we just need to

compute the column-wise aggregate of the ®B matrix and use proto-

col Πsum
BitA (Fig. 16 in §B.1) to do so. The resulting protocol ΠGlobal

SecAgg
appears in Fig. 7.

6
Terms for which interaction among MPC servers is necessary.

7
We acknowledge that the analysis cannot provide an exact comparison, owing to the

presence of the product term in the approximation. e.g., depending on the underly-

ing MPC setup, the product term (termp) may require more communication than the

middle terms (termm), and therefore the effect of approximation may be minimized.

8

1. Compute ⟨ ®W𝑗 ⟩ = Πsum
BitA (⟨ ®B

𝑗 ⟩B) , for each 𝑗 ∈ [m].
2. Locally compute ⟨ ®Y1×m ⟩ = s𝑚𝑖𝑛 ⊕

(
⟨ ®W1×m ⟩ · (s𝑚𝑎𝑥 − s𝑚𝑖𝑛)

)
.

Protocol ΠGlobal
SecAgg (⟨ ®Bn×m ⟩B, s𝑚𝑖𝑛, s𝑚𝑎𝑥)

Figure 7: Secure aggregation – Global Scales.

3.4 Accuracy Evaluation
In §3.2, we showed that our approximate bit conversion preserves

the expectation of the exact bits. However, we also want to under-

stand the concrete accuracy impact on the aggregation result due to

the increased variance. For this, we run a simulation similar to the

one described in §3.1. Here, we compare the NMSE computed as

in Eq. (7) for an aggregation agg when using various linear quanti-

zation schemes with global scales (i) with an exact bit-to-arithmetic

conversion and (ii) with our approximation enabled. Our results

shown in Fig. 8 are the average of 10 trials for each experiment

with q = 3 shares. Consistently, we observe that applying our

approximation increases the NMSE by about three orders of mag-

nitude for stochastic quantization without rotation, and by about

one and a half orders of magnitude for rotation-based algorithms.

10
−3

10
1

10
5

NMSE SQ 𝑑 = 2
10

Exact

𝑑 = 2
15

Approx.

𝑑 = 2
20

10
0

10
2

10
4

10
−3

10
1

10
5

NMSE HSQ

number of clients n

10
0

10
2

10
4

NMSE KSQ

number of clients n

Figure 8: NMSE comparison between exact and approximation-based
aggregation for vanilla SQ, SQ using the randomized Hadamard
transform (HSQ), and SQ using Kashin’s representation (KSQ) for
global scales with q = 3 shares and various vector dimensions 𝑑 and
number of clients n.

10
−3

10
1

10
5

𝑑 = 2
10

Exact

𝑑 = 2
15

Approx.

𝑑 = 2
20

NMSE SQ

10
0

10
2

10
4

10
−3

10
1

10
5

number of clients n

NMSE HSQ

10
0

10
2

10
4

number of clients n

NMSE KSQ

Figure 9: NMSE comparison between exact and approximation-based
aggregation for SQ, Hadamard SQ (HSQ), and Kashin SQ (KSQ) for
local scales with q = 3 shares, various vector dimensions 𝑑 , and
number of clients n.

In Fig. 9, we provide results considering local scales. In contrast

to global scales, we can observe that for stochastic quantization

without rotation the effect on the NMSE is reduced from three to one

order of magnitude. Also, for rotation-based algorithms there are

significant concrete improvements. Furthermore, as shown in §3.6,

the error is still so small that the impact on the accuracy in com-

mon FL settings is negligible.

3.5 Detailed Communication Costs
Here, we provide more insights into the concrete communication

costs for our secure aggregation protocols described in §3.1.

Exact Approx.

n Method Offline Online Offline Online

20

Approach-I 644.50 1.70 620.27 1.70

Approach-II 644.50 0.59 620.27 0.59

Approach-III 89.77 0.59 65.54 0.59

100

Approach-I 3222.51 6.12 3101.36 6.12

Approach-II 3222.51 0.59 3101.36 0.59

Approach-III 332.08 0.59 210.93 0.59

500

Approach-I 16112.56 28.24 15506.80 28.24

Approach-II 16112.56 0.59 15506.80 0.59

Approach-III 1543.62 0.59 937.85 0.59

Table 5: Inter-server communication per round in MiB for
our MNIST/LeNet benchmark for different numbers of clients n
per round. Training is done using 1-bit SQ with Kashin’s represen-
tation (KSQ). We compare Approach-I (cf. Fig. 3 in §3.1), Approach-
II (cf. Fig. 4 in §3.1), and Approach-III (cf. Fig. 5 in §3.1). Additionally,
we distinguish between using an exact bit-to-arithmetic conversion
and our approximation (cf. §3.2).

In Tab. 5 we provide the detailed communication costs for the

secure aggregation approaches discussed in §3.1 when training

the LeNet architecture for image classification on the MNIST data

set [82] using 1-bit SQ with Kashin’s representation [30]. We in-

stantiate the OT instances required in the preprocessing phase, as

discussed in §B.1, with silent OT [39], following Prio+ [2]. Here,

we can observe the significant impact of including SepAgg [15]

in practice with performance improvements between Approach-II

and Approach-III of up to 16.6× in the offline phase.

Approach n = 10
2 n = 10

3 n = 10
4 n = 10

5

Prio+ [2] 9.45 94.50 945.04 9450.44

Approach-III (Exact) 3.94 39.42 394.17 3941.66

Approach-III (Approx.) 2.37 23.75 237.45 2374.53

Table 6: Total communication in MiB of our Approach-III (cf. Fig. 5
in §3.1) compared to Prio+ [2] to calculate the sumof bits for different
numbers of clients n and dimension m = 1000. For our Approach-III,
we distinguish between using an exact bit-to-arithmetic conversion
as in Prio+ [2] and our approximation (cf. §3.2).

In Tab. 6, we compare the aggregation of bits (i.e., when not

considering quantized inputs that require scale multiplication and

hence without SepAgg [15] being applicable) to Prio+ [2]. For a fair

comparison, we translate the approach in Prio+ [2] to our three

party dishonest-majority setting. As we can see, even for exact

bit-to-arithmetic conversion, we improve over Prio+ by factor 2.4×
for n = 10

5
. When applying our approximate bit-to-arithmetic

conversion (cf. §3.2), this improvement increases to a factor of 4×.
9

3.6 Performance Evaluation
We implemented an extensive end-to-end FL evaluation and MPC

simulation framework. We first describe our implementation, then

the parameters used for our accuracy evaluation, and finally the

obtained results.

Implementation: Our implementation is written in Python based

on PyTorch. It supports multi-GPU acceleration, also for our MPC

simulation. We used a subset of this framework for measuring

the accuracy of SepAgg (cf. §3.1) and our approximate bit conver-

sion (cf. §3.4), and we will describe extensions in §4.2 to incorporate

evaluations of poisoning attacks and defenses.

Our framework provides a command-line interface to run FL

training tasks and observe the resulting training as well as test

accuracy. Upon execution, the framework distributes training data

among the specified number of virtual clients that locally perform

training. The server(s) perform aggregation using FedAvg. When

the MPC simulation is enabled, the clients’ input will be secret-

shared before aggregation and the protocol described in §3.1 will

be executed locally. Note that our goal is not to assess the run-time

performance of the MPC protocol but rather precisely measure the

impact on accuracy. Our implementation supports all exact and

approximate secure aggregation variants described in this paper.

Parameters: We evaluate the accuracy on the following standard

FL tasks for image classification: training (i) LeNet on MNIST [82]

for 1000 rounds and (ii) ResNet9 on CIFAR-10 [79] for 8000 rounds.

For all tasks, we set a client batch size of 8, a learning rate of 0.05,

and perform 5 local client train steps per round. For MNIST, we

run training using 𝑁 ∈ {200, 1000, 5000} clients and choose 10% of

the clients at random per round. Due to the memory constraints

of our system (that simulates all clients at once), we restrict train-

ing for CIFAR10 to 𝑁 = 1000 clients and select n = 40 per round.

As we observed a significant loss in accuracy for plain SQ in our

accuracy evaluation for approximate bit conversion as well as Sep-

Agg (cf. §3.4), we focus our evaluation onmore accurate linear quan-

tization schemes, i.e., HSQ and KSQ. For the MPC simulation of our

approximate secure aggregation following Approach-III (cf. Fig. 5),

we choose a three-server dishonest majority setting.

Results:The results for theMNIST/LeNet training are given in Fig. 10.

Validation accuracy for our approximate version converges to al-

most the same final accuracy as the insecure exact aggregation.

Specifically, in the final round of training, the difference between

the two is diminished to 0.77% and 0.33% for HSQ and KSQ for 𝑁 =

5000, respectively. Similar observations apply to CIFAR10/ResNet9

in Fig. 11. However, here the difference between the exact and

approximate version for KSQ is higher with 3.14% in the final

round. This gap is expected due to the significantly lower num-

ber of clients per round, for which our approximate bit conversion

and SepAgg technique result in a comparatively highNMSE over the

baseline (cf. Figs. 6 and 8). We expect this effect to vanish for a real

cross-device setting with thousands of participants per round (due

to the demonstrated linear decay of the NMSE when increasing n),
which we unfortunately cannot simulate with complex model ar-

chitectures due to hardware limitations. Additionally, one may use

a hybrid approach, where training uses the approximate version for

initial rounds until a baseline accuracy is reached, whereas secure

30
40
50
60
70
80
90

100

V
al

id
at

io
n

A
cc

u
ra

cy

HSQ with 200 clients / 20 per-round

Exact

Approx.

KSQ with 200 clients / 20 per-round

Exact

Approx.

30
40
50
60
70
80
90

100

V
al

id
at

io
n

A
cc

u
ra

cy

HSQ with 1000 clients / 100 per-round

Exact

Approx.

KSQ with 1000 clients / 100 per-round

Exact

Approx.

0 200 400 600 800 1000
Round

30
40
50
60
70
80
90

100

V
al

id
at

io
n

A
cc

u
ra

cy

HSQ with 5000 clients / 500 per-round

Exact

Approx.

0 200 400 600 800 1000
Round

KSQ with 5000 clients / 500 per-round

Exact

Approx.

Val. Accuracy: LeNet on MNIST data

Figure 10: Validation accuracy for training LeNet on the MNIST
data set for n ∈ {200, 1000, 5000} clients when selecting 10% of the
clients at random per round (n) for SQ with Hadamard (HSQ, left)
and with Kashin’s representation (KSQ, right); “Exact” denotes the
insecure baseline, “Approx” the simulation of our MPC-based ap-
proximate secure aggregation including SepAgg (cf. Fig. 5).

exact training (potentially including only the SepAgg [15] approx-

imation but not our approximate bit-to-arithmetic conversion) is

used for fine tuning up to the desired target accuracy.

0 1 2 3 4 5 6 7 8
Round ×103

20

40

60

80

100

V
al

id
at

io
n

A
cc

u
ra

cy

HSQ with 1000 clients / 40 per-round

Exact

Approx.

0 1 2 3 4 5 6 7 8
Round ×103

KSQ with 1000 clients / 40 per-round

Exact

Approx.

Val. Accuracy: ResNet9 on CIFAR10 data

Figure 11: Validation accuracy for training ResNet9 on the CIFAR10
data set for 𝑁 = 1000 clients with random n = 40 selected per round
for quantization techniques and protocols as in Fig. 10.

In Tab. 7, we additionally compare the exact inter-server MPC

communication cost for a naive MPC implementation of the exact

computation to our optimized approximate version including Sep-

Agg. As we can see, we improve the offline communication by fac-

tor ≈ 15×. For the online communication, we can see a wide range

of improvement factors from 2.9× to 48× for MNIST with n = 500.

This highlights the positive impact when utilizing the SepAgg ap-

proach for aggregating an increasingly large number of rows non-

interactively. Note that there are slight differences in communica-

tion overhead for HSQ and KSQ. This is because for an efficient GPU-

friendly implementation of the randomized Hadamard transform,

which we use for both rotating the gradients in HSQ and for calcu-

lating Kashin’s coefficients in KSQ, we require that the gradients’

size are a power of 2. In §B.3, we detail how we can minimize the

resulting overhead by dividing the gradients into chunks, and we

also give the exact number of bits per gradient that we assume in

our calculations for each algorithm.

10

Naive Exact (cf. Fig. 3) Our Approx. (cf. Fig. 5)

Benchmark n Method Offline Online Offline Online

MNIST/

LeNet

20

HSQ 572.89 1.51 58.26 0.52

KSQ 644.50 1.70 65.54 0.59

MNIST/

LeNet

100

HSQ 2864.46 5.44 187.49 0.52

KSQ 3222.51 6.12 210.93 0.59

MNIST/

LeNet

500

HSQ 14322.28 25.10 833.64 0.52

KSQ 16112.56 28.24 937.85 0.59

CIFAR10/

ResNet9

40

HSQ 87079.45 189.27 6883.13 39.85

KSQ 100828.84 219.15 7969.94 46.14

Table 7: Inter-server communication per round for our benchmarks
for different numbers of clients n in MiB.

4 Defending Untargeted Poisoning Attacks
Our defense called ScionFL-Aura is designed to mitigate untargeted

poisoning attacks in the context of secure quantized aggregation.

These attacks pose a significant threat to the deployment of FL for

two reasons: (i) Untargeted attacks are particularly difficult to detect

because, ignorant of the attack, service providers are unaware that

they could have achieved a greater accuracy. (ii) Even a minor drop

in accuracy can cause enormous (competitive) damage [116].

Most proposed untargeted poisoning attacks on FL use the (un-

realistic) assumption that the adversary A is aware of either the

aggregation rule [51] or all benign updates [11]. However, the Min-
Max attack proposed by [115] defies this assumption and constitutes

the state-of-the-art attack. This attack prevents the manipulations

from being detected by allowing the adversary to compute represen-

tative benign updates using some clean training data; the attacker

can then limit the maximum distance of the manipulated update

to any other update by the maximum distances of any two benign

updates. This ensures that the malicious gradients are sufficiently

similar to the set of benign gradients. We refer to [115, §IV] for

more specifics on the attack.

In addition to removing assumptions about the adversary’s knowl-

edge, [115] empirically shows that theMin-Max attack outperforms

the former state-of-the-art poisoning attack [11] for almost all

tested datasets. However, since all benchmarks in [11, 115] were per-

formed on FL schemes without quantization, the impact of theMin-
Max attack on quantized FL schemes is unclear. Hence, we first test

the attack’s effectiveness in our framework using the open-sourced

code
8
as baseline. As we discuss in §4.2, we observe that the attacks

are effective even in the context of quantization.

4.1 Our Defense: ScionFL-Aura
From an intuitive standpoint, the adversary in an untargeted poi-

soning attack seeks to manipulate the global update with malicious

updates to deviate it as much as possible from the result of an ideal

benign training while evading potentially deployed detection mech-

anisms. This baseline observation was also used by earlier works

to propose defense mechanisms [99, 115], however, those cannot

be combined trivially with ScionFL without having to de-quantize

all updates and running expensive secure computation machinery.

We now outline the general design of ScionFL-Aura and show

its effectiveness against the Min-Max attack [115]. In §C.2, we

8
https://github.com/vrt1shjwlkr/NDSS21-Model-Poisoning

describe how to efficiently instantiate it in an MPC-friendly manner

to reduce communication overhead.

Algorithm 1 Our Defense: ScionFL-Aura

1: procedure ScionFL-Aura({ ®𝜎𝑋𝑖
, s𝑚𝑖𝑛

𝑋𝑖
, s𝑚𝑎𝑥

𝑋𝑖
}𝑖∈ [n])

// Gradient Aggregation including poisoned ones.

2:
®𝑋 agg ← Aggregate({ ®𝜎𝑋𝑖

, s𝑚𝑖𝑛
𝑋𝑖

, s𝑚𝑎𝑥
𝑋𝑖
}𝑖∈n)

// L
2
-norm Computation

3: Lavg
2
← 0

4: for 𝑘 ← 1 to n do
5: L𝑘

2
← L2-NormQ(®𝜎𝑋𝑘

, s𝑚𝑖𝑛
𝑋𝑘

, s𝑚𝑎𝑥
𝑋𝑘
)

6: Lavg
2
← Lavg

2
+ L𝑘

2

7: end for
// L

2
-norm based Scaling

8: Lavg
2
← Lavg

2
/n // Average of L

2
-norms

9: for 𝑘 ← 1 to n do
10: if L𝑘

2
> 𝜇th · L

avg
2

then
11: s𝑚𝑖𝑛

𝑋𝑘
← s𝑚𝑖𝑛

𝑋𝑘
· (𝜇th · L

avg
2
)/L𝑘

2

12: s𝑚𝑎𝑥
𝑋𝑘

← s𝑚𝑎𝑥
𝑋𝑘

· (𝜇th · L
avg
2
)/L𝑘

2

13: end if
14: end for

// Cosine-distance based Filtering

15: for 𝑘 ← 1 to n do
16: 𝜃𝑘 ← Cosine((®𝜎𝑋𝑘

, s𝑚𝑖𝑛
𝑋𝑘

, s𝑚𝑎𝑥
𝑋𝑘
), ®𝑋 agg)

17: end for
18: X ← Top-K(®𝜃,𝜓) // Returns 𝑘 for which 𝜃𝑘 > 𝜓

// Aggregation of filtered updates

19:
®𝑋 aggd ← Aggregate({ ®𝜎𝑋𝑖

, s𝑚𝑖𝑛
𝑋𝑖

, s𝑚𝑎𝑥
𝑋𝑖
}𝑖∈ [n],𝑖∉X)

20: end procedure

Approach: ScionFL-Aura uses a hybrid approach by combining

ideas from existing FL defenses based on the L
2
-norm [10, 99, 121]

and cosine similarity [31, 99]. Several works like [99] compute these

metrics for each pair of clients, resulting in expensive computation.

In contrast, we first aggregate all updates, including the poisoned

ones, to produce the vector ®𝑋 agg
, which we then utilize as the refer-

ence. At a high level, L
2
-norm based scaling of the gradient vectors

is used at first to bound the impact of malicious contributions that

are potentially overlooked (i.e., not filtered) in later stages. In a

second step, local updates that significantly deviate from the aver-

age update direction are considered to be manipulated and, thus,

excluded. Concretely, ScionFL-Aura consists of the following steps:

(1) L
2
-norm-based Scaling. In this step, the L

2
-norm of each gradient

vector is compared against a public threshold multiplied with the

average of the L
2
-norms. Let 𝜇th denote the threshold and Lavg

2

denote the average of the L
2
-norms across all clients. If L𝑋

2
>

𝜇th · L
avg
2

for a gradient vector ®𝑋 , the vector is scaled9 by a factor

of 𝜇th · L
avg
2
/L𝑋

2
. This ensures that no gradient has an L

2
-norm

greater than 𝜇th · L
avg
2

.

(2) Cosine-distance-based Filtering. This step involves computing

the cosine distance of each gradient from the reference vector ®𝑋 agg

discussed above. Following that, another round of aggregation is

performed on the updated vectors, but without the top-𝜓 vectors

with the highest cosine distances, which are considered malicious.

9
Scaling a quantized vector requires simply scaling the scales (cf. §2.4).

11

https://github.com/vrt1shjwlkr/NDSS21-Model-Poisoning

0 500 1000 1500

0.6

0.8
V

al
id

at
io

n
A

cc
u

ra
cy

No compression

0 500 1000 1500

0.6

0.8

HSQ

0 500 1000 1500

0.6

0.8

KSQ

0 500 1000 1500

0.75

1.00

T
ra

in
A

cc
u

ra
cy

0 500 1000 1500

0.75

1.00

0 500 1000 1500

0.75

1.00

0 500 1000 1500
0

2

N
u

m
of

at
ta

ck
er

s

0 500 1000 1500
0

2

0 500 1000 1500
0

2

Baseline

Attack only

Attack + defense

Num of attackers with defense

Num of attackers w/o defense

Figure 12: Effect of Min-Max attack [115] on training ResNet9 with CIFAR10 with and without our defense ScionFL-Aura assuming 20%
of 𝑁 = 50 clients are corrupted. The number of attackers included in the global update varies even without defense due to random client
selection.

In this case,𝜓 is either a known bound (i.e., defined in advance by

the service provider) or an accepted percentile determined based

on an assumed attacker ratio that follows a normal distribution.

Alg. 1 provides the formal details of ScionFL-Aura, including

support for quantized aggregation. Note that we use an optimizer

with momentum for FedAvg which ensures that even if the majority

of clients picked at random in a training round happens to be

malicious, the optimization is still based on benign contributions

from the previous round. §C.2 provides details on the sub-protocols

utilized in our defense algorithm given in Alg. 1.

4.2 Effectiveness Evaluation
To analyze the effectiveness of ScionFL-Aura, we test it against

the Min-Max attack [115].

Setup: Training involves 𝑁 = 50 clients of which 20% (as in [115])

are corrupted.
10

Per training iteration, a random subset of n = 10

clients is chosen to train the global model. Each client C runs its

local training for 10 iterations with batches of 𝐵 = 128 samples and

a learning rate of 𝜂C = 0.1. The defense threshold 𝜇th is set to 3

and the momentum is 0.9.

Experimental Results: Our results when training ResNet9 on CI-

FAR10 (i) without an attack, (ii) under attack without defense,

and (iii) under attack with ScionFL-Aura in place are given in Fig. 12.

We compare the attack’s effect when no compression is in place as

well as when applying SQ with the randomized Hadamard trans-

form (HSQ) or with Kashin’s representation (KSQ). We also provide

similar results for training VGG11 in §C.2. As shown in Fig. 12, our

re-implementation of the Min-Max attack substantially reduces the

validation accuracy by up to 20% when no defense is in place. This

10
[116] points out that assuming more than 1% of corrupted clients is unrealistic for

most scenarios. However, in our experiments the attack failed to notably reduce the

accuracy with such a low corruption level. Thus, we tested against 20% of corrupted

clients as in the original attack paper [115].

is in line with [115], where the authors report an accuracy degra-

dation between 10.1% and 42.1% for CIFAR10, depending on the

model architecture and the aggregation scheme. Furthermore, our

experiments show that quantization does not significantly change

the impact of the attack. When ScionFL-Aura is enabled, we can

removemore than half of the malicious updates in each training iter-

ation compared to when no defense is in place. In fact, quantization

supports our defense as the additional noise added to synchronized

malicious updates overturns the attacker’s ability of staying just

below the detection threshold. As a result, compared to unprotected

training, the validation accuracy decreases by at most 7.7% for HSQ

and 10.7% for KSQ.

5 Conclusion
In this paper, we proposed ScionFL, the first secure aggregation

framework for FL that can efficiently process quantized updates

with an optimal client-server communication as low as 1-bit per

coordinate. Together with our novel defense against state-of-the-

art (untargeted) poisoning attacks, this is the first work to unite

security, efficiency, and robustness in a single and coherent frame-

work. As part of future work, we plan to investigate how to effi-

ciently extend our MPC protocols to guarantee also correctness

and not “only” privacy when dealing with malicious MPC servers.

Acknowledgments
This project received funding from the European Research Coun-

cil (ERC) under the European Union’s Horizon 2020 research and

innovation program (grant agreement No. 850990 PSOTI). It was

co-funded by the Deutsche Forschungsgemeinschaft (DFG) within

SFB 1119 CROSSING/236615297 and GRK 2050 Privacy & Trust/

251805230, by the German Federal Ministry of Education and Re-

search and the Hessen State Ministry for Higher Education, Re-

search and the Arts within ATHENE, and by the Private AI Collab-

orative Research Institute, funded by Intel, Avast, and VMware.

12

References

[1] Josh Aas and Tim Geoghegan. [n. d.]. Introducing ISRG Prio Services for Privacy
Respecting Metrics. https://www.abetterinternet.org/post/introducing-prio-

services/.

[2] Surya Addanki, Kevin Garbe, Eli Jaffe, Rafail Ostrovsky, and Antigoni Polychro-

niadou. 2022. Prio+: Privacy Preserving Aggregate Statistics via Boolean Shares.

In SCN.
[3] Alham Fikri Aji and Kenneth Heafield. 2017. Sparse Communication for Dis-

tributed Gradient Descent. In EMNLP.
[4] Dan Alistarh, Torsten Hoefler, Mikael Johansson, Nikola Konstantinov, Sarit

Khirirat, and Cédric Renggli. 2018. The Convergence of Sparsified Gradient

Methods. In NeurIPS.
[5] Sébastien Andreina, Giorgia Azzurra Marson, Helen Möllering, and Ghassan

Karame. 2021. BaFFLe: Backdoor Detection via Feedback-based Federated

Learning. In IEEE ICDCS.
[6] Apple and Google. [n. d.]. Exposure Notification Privacy-preserving Analyt-

ics (ENPA) White Paper. https://covid19-static.cdn-apple.com/applications/

covid19/current/static/contact-tracing/pdf/ENPA_White_Paper.pdf.

[7] Toshinori Araki, Jun Furukawa, Yehuda Lindell, Ariel Nof, and Kazuma Ohara.

2016. High-Throughput Semi-Honest Secure Three-Party Computation with an

Honest Majority. In ACM CCS.
[8] Gilad Asharov, Shai Halevi, Yehuda Lindell, and Tal Rabin. 2018. Privacy-

Preserving Search of Similar Patients in Genomic Data. PETS 2018 (2018).
[9] Gilad Asharov, Yehuda Lindell, Thomas Schneider, and Michael Zohner. 2013.

More efficient oblivious transfer and extensions for faster secure computation.

In ACM CCS.
[10] Eugene Bagdasaryan, Andreas Veit, Yiqing Hua, Deborah Estrin, and Vitaly

Shmatikov. 2020. How To Backdoor Federated Learning. In AISTATS.
[11] Gilad Baruch, Moran Baruch, and Yoav Goldberg. 2019. A Little Is Enough:

Circumventing Defenses For Distributed Learning. In NeurIPS.
[12] Ran Ben Basat, Michael Mitzenmacher, and Shay Vargaftik. 2021. How to Send

a Real Number Using a Single Bit (And Some Shared Randomness). In ICALP.
[13] Ran Ben Basat, Shay Vargaftik, Amit Portnoy, Gil Einziger, Yaniv Ben-Itzhak,

and Michael Mitzenmacher. 2022. QUIC-FL: Quick Unbiased Compression for

Federated Learning. (2022). https://arxiv.org/abs/2205.13341.

[14] Carsten Baum, Ivan Damgård, Tomas Toft, and Rasmus Winther Zakarias. 2016.

Better Preprocessing for Secure Multiparty Computation. In ACNS.
[15] Constance Beguier, Mathieu Andreux, and Eric W. Tramel. 2020. Efficient Sparse

Secure Aggregation for Federated Learning. (2020). https://arxiv.org/abs/2007.

14861.

[16] James Henry Bell, Kallista A. Bonawitz, Adrià Gascón, Tancrède Lep-

oint, and Mariana Raykova. 2020. Secure Single-Server Aggregation with

(Poly)Logarithmic Overhead. In ACM CCS.
[17] Aner Ben-Efraim, Michael Nielsen, and Eran Omri. 2019. Turbospeedz: Double

Your Online SPDZ! Improving SPDZ Using Function Dependent Preprocessing.

In ACNS.
[18] Jeremy Bernstein, Yu-Xiang Wang, Kamyar Azizzadenesheli, and Animashree

Anandkumar. 2018. SIGNSGD: Compressed Optimisation for Non-Convex

Problems. In ICML.
[19] Aleksandr Beznosikov, Samuel Horváth, Peter Richtárik, and Mher Safaryan.

2020. On Biased Compression for Distributed Learning. (2020). https://arxiv.

org/abs/2002.12410.

[20] Arjun Nitin Bhagoji, Supriyo Chakraborty, Prateek Mittal, and Seraphin B. Calo.

2019. Analyzing Federated Learning through an Adversarial Lens. In ICML.
[21] Peva Blanchard, El Mahdi El Mhamdi, Rachid Guerraoui, and Julien Stainer.

2017. Machine Learning with Adversaries: Byzantine Tolerant Gradient Descent.

In NeurIPS.
[22] Fabian Boemer, Rosario Cammarota, Daniel Demmler, Thomas Schneider, and

Hossein Yalame. 2020. MP2ML: a mixed-protocol machine learning framework

for private inference. In ARES.
[23] Franziska Boenisch, Adam Dziedzic, Roei Schuster, Ali Shahin Shamsabadi, Ilia

Shumailov, and Nicolas Papernot. 2021. When the Curious Abandon Honesty:

Federated Learning Is Not Private. (2021). https://arxiv.org/abs/2112.02918.

[24] Franziska Boenisch, Adam Dziedzic, Roei Schuster, Ali Shahin Shamsabadi,

Ilia Shumailov, and Nicolas Papernot. 2022. All You Need Is Matplotlib. http:

//www.cleverhans.io/2022/04/17/fl-privacy.html.

[25] Franziska Boenisch, Adam Dziedzic, Roei Schuster, Ali Shahin Shamsabadi, Ilia

Shumailov, and Nicolas Papernot. 2023. Is Federated Learning a Practical PET

Yet? CoRR (2023).

[26] Kallista A. Bonawitz, Vladimir Ivanov, Ben Kreuter, AntonioMarcedone, H. Bren-

dan McMahan, Sarvar Patel, Daniel Ramage, Aaron Segal, and Karn Seth. 2017.

Practical Secure Aggregation for Privacy-Preserving Machine Learning. In ACM
CCS.

[27] Elette Boyle, Geoffroy Couteau, Niv Gilboa, Yuval Ishai, Lisa Kohl, and Pe-

ter Scholl. 2019. Efficient Pseudorandom Correlation Generators: Silent OT

Extension and More. In CRYPTO.

[28] Lennart Braun, Daniel Demmler, Thomas Schneider, and Oleksandr Tkachenko.

2022. MOTION - A Framework for Mixed-Protocol Multi-Party Computation.

ACM Trans. Priv. Secur. (2022).
[29] Megha Byali, Harsh Chaudhari, Arpita Patra, and Ajith Suresh. 2020. FLASH:

Fast and Robust Framework for Privacy-preserving Machine Learning. PETS
(2020).

[30] Sebastian Caldas, Jakub Konečný, H. Brendan McMahan, and Ameet Talwalkar.

2018. Expanding the Reach of Federated Learning by Reducing Client Resource

Requirements. (2018). http://arxiv.org/abs/1812.07210.

[31] Xiaoyu Cao, Minghong Fang, Jia Liu, and Neil Zhenqiang Gong. 2021. FLTrust:

Byzantine-robust Federated Learning via Trust Bootstrapping. In NDSS.
[32] Octavian Catrina and Amitabh Saxena. 2010. Secure Computation with Fixed-

Point Numbers. In FC.
[33] Harsh Chaudhari, Ashish Choudhury, Arpita Patra, and Ajith Suresh. 2019.

ASTRA: High Throughput 3PC over Rings with Application to Secure Prediction.

In ACM Conference on Cloud Computing Security Workshop, CCSW@CCS.
[34] Harsh Chaudhari, Rahul Rachuri, and Ajith Suresh. 2020. Trident: Efficient 4PC

Framework for Privacy Preserving Machine Learning. In NDSS.
[35] Wei-Ning Chen, Christopher A. Choquette-Choo, Peter Kairouz, and

Ananda Theertha Suresh. 2022. The Fundamental Price of Secure Aggrega-

tion in Differentially Private Federated Learning. In ICML.
[36] Jung Hee Cheon, Andrey Kim, Miran Kim, and Yong Soo Song. 2017. Homo-

morphic Encryption for Arithmetic of Approximate Numbers. In ASIACRYPT.
Springer.

[37] Brian Chmiel, Liad Ben-Uri, Moran Shkolnik, Elad Hoffer, Ron Banner, and

Daniel Soudry. 2021. Neural gradients are near-lognormal: improved quantized

and sparse training. In ICLR.
[38] Henry Corrigan-Gibbs and Dan Boneh. 2017. Prio: Private, Robust, and Scalable

Computation of Aggregate Statistics. In USENIX NSDI.
[39] Geoffroy Couteau, Peter Rindal, and Srinivasan Raghuraman. 2021. Silver: Silent

VOLE and Oblivious Transfer from Hardness of Decoding Structured LDPC

Codes. In CRYPTO.
[40] Ronald Cramer, Ivan Damgård, Daniel Escudero, Peter Scholl, and Chaoping

Xing. 2018. SPDZ2
k
: Efficient MPC mod 2

k
for Dishonest Majority. In CRYPTO.

[41] Ivan Damgård, Daniel Escudero, Tore Kasper Frederiksen, Marcel Keller, Peter

Scholl, and Nikolaj Volgushev. 2019. New Primitives for Actively-Secure MPC

over Rings with Applications to Private Machine Learning. In IEEE S&P.
[42] Ivan Damgård, Marcel Keller, Enrique Larraia, Valerio Pastro, Peter Scholl, and

Nigel P. Smart. 2013. Practical Covertly Secure MPC for Dishonest Majority -

Or: Breaking the SPDZ Limits. In ESORICS.
[43] Ivan Damgård, Claudio Orlandi, and Mark Simkin. 2018. Yet Another Compiler

for Active Security or: Efficient MPC Over Arbitrary Rings. In CRYPTO.
[44] Ivan Damgård, Valerio Pastro, Nigel Smart, and Sarah Zakarias. 2012. Multiparty

computation from somewhat homomorphic encryption. In CRYPTO.
[45] Peter Davies, Vijaykrishna Gurunanthan, Niusha Moshrefi, Saleh Ashkboos,

and Dan Alistarh. 2021. New Bounds For Distributed Mean Estimation and

Variance Reduction. In ICLR.
[46] Daniel Demmler, Thomas Schneider, and Michael Zohner. 2015. ABY - A Frame-

work for Efficient Mixed-Protocol Secure Two-Party Computation. In NDSS.
[47] Ye Dong, Xiaojun Chen, Kaiyun Li, Dakui Wang, and Shuai Zeng. 2021. FLOD:

Oblivious Defender for Private Byzantine-Robust Federated Learning with

Dishonest-Majority. In ESORICS.
[48] Tariq Elahi, George Danezis, and Ian Goldberg. 2014. PrivEx: Private Collection

of Traffic Statistics for Anonymous Communication Networks. In ACM CCS.
[49] Zekeriya Erkin, Juan Ramón Troncoso-Pastoriza, Reginald L. Lagendijk, and

Fernando Pérez-González. 2013. Privacy-Preserving Data Aggregation in Smart

Metering Systems: An Overview. IEEE Signal Process. Mag. (2013).
[50] Daniel Escudero, Satrajit Ghosh, Marcel Keller, Rahul Rachuri, and Peter Scholl.

2020. Improved Primitives for MPC over Mixed Arithmetic-Binary Circuits. In

CRYPTO.
[51] Minghong Fang, Xiaoyu Cao, Jinyuan Jia, and Neil Zhenqiang Gong. 2020. Local

Model Poisoning Attacks to Byzantine-Robust Federated Learning. In USENIX
Security.

[52] Jiawei Fei, Chen-Yu Ho, Atal Narayan Sahu, Marco Canini, and Amedeo Sapio.

2021. Efficient sparse collective communication and its application to accelerate

distributed deep learning. In ACM SIGCOMM Conference.
[53] Hossein Fereidooni, Samuel Marchal, Markus Miettinen, Azalia Mirhoseini, He-

len Möllering, Thien Duc Nguyen, Phillip Rieger, Ahmad-Reza Sadeghi, Thomas

Schneider, Hossein Yalame, and Shaza Zeitouni. 2021. SAFELearn: Secure Ag-

gregation for private FEderated Learning. In IEEE S&P Workshops.
[54] Liam H. Fowl, Jonas Geiping, Wojciech Czaja, Micah Goldblum, and Tom Gold-

stein. 2022. Robbing the Fed: Directly Obtaining Private Data in Federated

Learning with Modified Models. In ICLR.
[55] Jun Furukawa, Yehuda Lindell, Ariel Nof, and Or Weinstein. 2017. High-

Throughput Secure Three-Party Computation for Malicious Adversaries and an

Honest Majority. In EUROCRYPT.

13

https://www.abetterinternet.org/post/introducing-prio-services/
https://www.abetterinternet.org/post/introducing-prio-services/
https://covid19-static.cdn-apple.com/applications/covid19/current/static/contact-tracing/pdf/ENPA_White_Paper.pdf
https://covid19-static.cdn-apple.com/applications/covid19/current/static/contact-tracing/pdf/ENPA_White_Paper.pdf
https://arxiv.org/abs/2205.13341
https://arxiv.org/abs/2007.14861
https://arxiv.org/abs/2007.14861
https://arxiv.org/abs/2002.12410
https://arxiv.org/abs/2002.12410
https://arxiv.org/abs/2112.02918
http://www.cleverhans.io/2022/04/17/fl-privacy.html
http://www.cleverhans.io/2022/04/17/fl-privacy.html
http://arxiv.org/abs/1812.07210

[56] Karan Ganju, QiWang, Wei Yang, Carl A. Gunter, and Nikita Borisov. 2018. Prop-

erty Inference Attacks on Fully Connected Neural Networks using Permutation

Invariant Representations. In ACM CCS.
[57] Till Gehlhar, Felix Marx, Thomas Schneider, Tobias Wehrle, Ajith Suresh, and

Hossein Yalame. 2023. SafeFL: MPC-friendly framework for Private and Robust

Federated Learning. In IEEE S&P Workshops.
[58] Oded Goldreich, Silvio Micali, and Avi Wigderson. 1987. How to Play any

Mental Game or A Completeness Theorem for Protocols with Honest Majority.

In ACM STOC.
[59] S. Dov Gordon, Samuel Ranellucci, and Xiao Wang. 2018. Secure Computation

with Low Communication from Cross-Checking. In ASIACRYPT.
[60] Vipul Goyal, Hanjun Li, Rafail Ostrovsky, Antigoni Polychroniadou, and Yifan

Song. 2021. ATLAS: Efficient and Scalable MPC in the Honest Majority Setting.

In CRYPTO.
[61] Aditya Hegde, Helen Möllering, Thomas Schneider, and Hossein Yalame. 2021.

SoK: Efficient Privacy-preserving Clustering. PETS (2021).
[62] Ehsan Hesamifard, Hassan Takabi, Mehdi Ghasemi, and Rebecca N. Wright.

2018. Privacy-preserving Machine Learning as a Service. PETS (2018).
[63] Nikita Ivkin, Daniel Rothchild, Enayat Ullah, Vladimir Braverman, Ion Sto-

ica, and Raman Arora. 2019. Communication-efficient Distributed SGD with

Sketching. In NeurIPS.
[64] Richeng Jin, Yufan Huang, Xiaofan He, Huaiyu Dai, and Tianfu Wu. 2020.

Stochastic-Sign SGD for Federated Learning with Theoretical Guarantees. (2020).

https://arxiv.org/abs/2002.10940.

[65] Marc Joye and Benoît Libert. 2013. A Scalable Scheme for Privacy-Preserving

Aggregation of Time-Series Data. In FC.
[66] Chiraag Juvekar, Vinod Vaikuntanathan, and Anantha Chandrakasan. 2018.

GAZELLE: A low latency framework for secure neural network inference. In

USENIX Security.
[67] Swanand Kadhe, Nived Rajaraman, Onur Ozan Koyluoglu, and Kannan Ram-

chandran. 2020. FastSecAgg: Scalable Secure Aggregation for Privacy-Preserving

Federated Learning. (2020). https://arxiv.org/abs/2009.11248.

[68] Peter Kairouz, H. Brendan McMahan, Brendan Avent, Aurélien Bellet, Mehdi

Bennis, and et al. 2021. Advances and Open Problems in Federated Learning.

Found. Trends Mach. Learn. (2021).
[69] Sai Praneeth Karimireddy, Satyen Kale, Mehryar Mohri, Sashank J. Reddi, Se-

bastian U. Stich, and Ananda Theertha Suresh. 2020. SCAFFOLD: Stochastic

Controlled Averaging for Federated Learning. In ICML.
[70] Marcel Keller, Emmanuela Orsini, and Peter Scholl. 2016. MASCOT: Faster

Malicious Arithmetic Secure Computation with Oblivious Transfer. In ACM
SIGSAC.

[71] Marcel Keller, Valerio Pastro, and Dragos Rotaru. 2018. Overdrive: Making

SPDZ Great Again. In EUROCRYPT.
[72] Marcel Keller, Peter Scholl, and Nigel P. Smart. 2013. An architecture for practical

actively secure MPC with dishonest majority. In ACM CCS.
[73] Duhyeong Kim, Yongha Son, Dongwoo Kim, Andrey Kim, Seungwan Hong, and

Jung Hee Cheon. 2019. Privacy-preserving Approximate GWAS computation

based on Homomorphic Encryption. (2019). https://eprint.iacr.org/2019/152.

[74] Vladimir Kolesnikov and Thomas Schneider. 2008. Improved Garbled Circuit:

Free XOR Gates and Applications. In ICALP.
[75] Jakub Konečný, H. Brendan McMahan, Felix X. Yu, Peter Richtárik,

Ananda Theertha Suresh, and Dave Bacon. 2016. Federated Learning: Strategies

for Improving Communication Efficiency. (2016). http://arxiv.org/abs/1610.

05492.

[76] Nishat Koti, Mahak Pancholi, Arpita Patra, and Ajith Suresh. 2021. SWIFT: Super-

fast and Robust Privacy-Preserving Machine Learning. In USENIX Security.
[77] Nishat Koti, Shravani Patil, Arpita Patra, and Ajith Suresh. 2022. MPClan:

Protocol Suite for Privacy-Conscious Computations. https://eprint.iacr.org/

2022/675.

[78] Nishat Koti, Arpita Patra, Rahul Rachuri, and Ajith Suresh. 2022. Tetrad: Actively

Secure 4PC for Secure Training and Inference. In NDSS.
[79] Alex Krizhevsky. 2009. Learning multiple layers of features from tiny images.

Technical Report.

[80] Klaus Kursawe, George Danezis, and Markulf Kohlweiss. 2011. Privacy-Friendly

Aggregation for the Smart-Grid. In PETS.
[81] Maximilian Lam, Gu-Yeon Wei, David Brooks, Vijay Janapa Reddi, and Michael

Mitzenmacher. 2021. Gradient Disaggregation: Breaking Privacy in Federated

Learning by Reconstructing the User Participant Matrix. In ICML.
[82] Yann LeCun, Léon Bottou, Yoshua Bengio, and Patrick Haffner. 1998. Gradient-

based learning applied to document recognition. Proc. IEEE (1998).

[83] Kwing Hei Li, Pedro Porto Buarque de Gusmão, Daniel J. Beutel, and Nicholas D.

Lane. 2021. Secure aggregation for federated learning in flower. In ACM Inter-
national Workshop on Distributed Machine Learning.

[84] Liping Li,Wei Xu, Tianyi Chen, Georgios B. Giannakis, andQing Ling. 2019. RSA:

Byzantine-Robust Stochastic Aggregation Methods for Distributed Learning

from Heterogeneous Datasets. In AAAI.
[85] Tian Li, Anit Kumar Sahu, Manzil Zaheer, Maziar Sanjabi, Ameet Talwalkar,

and Virginia Smith. 2020. Federated Optimization in Heterogeneous Networks.

In MLSys.
[86] Yehuda Lindell, Benny Pinkas, Nigel P. Smart, and Avishay Yanai. 2015. Effi-

cient Constant Round Multi-party Computation Combining BMR and SPDZ. In

CRYPTO.
[87] Yurii Lyubarskii and Roman Vershynin. 2010. Uncertainty principles and vector

quantization. IEEE Trans. Inf. Theory (2010).

[88] Eleftheria Makri, Dragos Rotaru, Frederik Vercauteren, and Sameer Wagh. 2021.

Rabbit: Efficient Comparison for Secure Multi-Party Computation. In FC.
[89] Mohamad Mansouri, Melek Önen, Wafa Ben Jaballah, and Mauro Conti. 2023.

SoK: Secure aggregation based on cryptographic schemes for federated Learning.

In PETS.
[90] Sahar Mazloom, Phi Hung Le, Samuel Ranellucci, and S. Dov Gordon. 2020.

Secure parallel computation on national scale volumes of data. In USENIX
Security.

[91] Brendan McMahan, Eider Moore, Daniel Ramage, Seth Hampson, and

Blaise Agüera y Arcas. 2017. Communication-Efficient Learning of Deep Net-

works from Decentralized Data. In AISTATS.
[92] Luca Melis, Congzheng Song, Emiliano De Cristofaro, and Vitaly Shmatikov.

2019. Exploiting Unintended Feature Leakage in Collaborative Learning. In IEEE
S&P.

[93] Pratyush Mishra, Ryan Lehmkuhl, Akshayaram Srinivasan, Wenting Zheng, and

Raluca Ada Popa. 2020. Delphi: A cryptographic inference service for neural

networks. In USENIX Security.
[94] Payman Mohassel and Peter Rindal. 2018. ABY

3
: A Mixed Protocol Framework

for Machine Learning. In ACM CCS.
[95] Payman Mohassel and Yupeng Zhang. 2017. SecureML: A System for Scalable

Privacy-Preserving Machine Learning. In IEEE S&P.
[96] Arup Mondal, Yash More, Prashanthi Ramachandran, Priyam Panda, Harpreet

Virk, and Debayan Gupta. 2022. Scotch: An Efficient Secure Computation

Framework for Secure Aggregation. (2022). https://arxiv.org/abs/2201.07730.

[97] Jean-Pierre Münch, Thomas Schneider, and Hossein Yalame. 2021. VASA: Vector

AES Instructions for Security Applications. In ACM ACSAC.
[98] Milad Nasr, Reza Shokri, and Amir Houmansadr. 2019. Comprehensive Privacy

Analysis of Deep Learning: Passive and Active White-box Inference Attacks

against Centralized and Federated Learning. In IEEE S&P.
[99] Thien Duc Nguyen, Phillip Rieger, Huili Chen, Hossein Yalame, Helen Möllering,

Hossein Fereidooni, Samuel Marchal, Markus Miettinen, Azalia Mirhoseini, Fari-

naz Koushanfar, Ahmad-Reza Sadeghi, Thomas Schneider, and Shaza Zeitouni.

2022. FLAME: Taming Backdoors in Federated Learning. In USENIX Security.
[100] Ahmed El Ouadrhiri and Ahmed Abdelhadi. 2022. Differential Privacy for Deep

and Federated Learning: A Survey. IEEE Access (2022).
[101] Dario Pasquini, Danilo Francati, and Giuseppe Ateniese. 2022. Eluding Secure

Aggregation in Federated Learning via Model Inconsistency. In CCS.
[102] Arpita Patra, Thomas Schneider, Ajith Suresh, andHossein Yalame. 2021. ABY2.0:

Improved Mixed-Protocol Secure Two-Party Computation. In USENIX Security.
[103] Arpita Patra, Thomas Schneider, Ajith Suresh, and Hossein Yalame. 2021. Syn-

Circ: Efficient Synthesis of Depth-Optimized Circuits for Secure Computation.

In IEEE HOST.
[104] Arpita Patra and Ajith Suresh. 2020. BLAZE: Blazing Fast Privacy-Preserving

Machine Learning. In NDSS.
[105] Raluca A. Popa, Andrew J. Blumberg, Hari Balakrishnan, and Frank H. Li. 2011.

Privacy and accountability for location-based aggregate statistics. In ACM CCS.
[106] Apostolos Pyrgelis, Carmela Troncoso, and Emiliano De Cristofaro. 2018. Knock

Knock, Who’s There? Membership Inference on Aggregate Location Data. In

NDSS.
[107] Mayank Rathee, Conghao Shen, Sameer Wagh, and Raluca Ada Popa. 2023.

ELSA: Secure Aggregation for Federated Learning with Malicious Actors. In

IEEE S&P Workshops.
[108] M. Sadegh Riazi, Mohammad Samragh, Hao Chen, Kim Laine, Kristin E. Lauter,

and Farinaz Koushanfar. 2019. XONN: XNOR-based Oblivious Deep Neural

Network Inference. In USENIX Security.
[109] Peter Richtárik, Igor Sokolov, and Ilyas Fatkhullin. 2021. EF21: A New, Simpler,

Theoretically Better, and Practically Faster Error Feedback. In NeurIPS.
[110] Dragos Rotaru and Tim Wood. 2019. MArBled Circuits: Mixing Arithmetic and

Boolean Circuits with Active Security. In INDOCRYPT.
[111] Daniel Rothchild, Ashwinee Panda, Enayat Ullah, Nikita Ivkin, Ion Stoica,

Vladimir Braverman, Joseph Gonzalez, and Raman Arora. 2020. FetchSGD:

Communication-Efficient Federated Learning with Sketching. In ICML.
[112] Mher Safaryan, Egor Shulgin, and Peter Richtárik. 2020. Uncertainty Principle

for Communication Compression in Distributed and Federated Learning and

the Search for an Optimal Compressor. (2020). https://arxiv.org/abs/2002.08958.

[113] Sinem Sav, Apostolos Pyrgelis, Juan R Troncoso-Pastoriza, David Froelicher,

Jean-Philippe Bossuat, Joao Sa Sousa, and Jean-Pierre Hubaux. 2021. POSEIDON:

Privacy-preserving federated neural network learning. In NDSS.
[114] Frank Seide, Hao Fu, Jasha Droppo, Gang Li, and Dong Yu. 2014. 1-bit stochastic

gradient descent and its application to data-parallel distributed training of

speech DNNs. In INTERSPEECH.

14

https://arxiv.org/abs/2002.10940
https://arxiv.org/abs/2009.11248
https://eprint.iacr.org/2019/152
http://arxiv.org/abs/1610.05492
http://arxiv.org/abs/1610.05492
https://eprint.iacr.org/2022/675
https://eprint.iacr.org/2022/675
https://arxiv.org/abs/2201.07730
https://arxiv.org/abs/2002.08958

[115] Virat Shejwalkar and Amir Houmansadr. 2021. Manipulating the Byzantine:

Optimizing Model Poisoning Attacks and Defenses for Federated Learning. In

NDSS.
[116] Virat Shejwalkar, Amir Houmansadr, Peter Kairouz, and Daniel Ramage. 2022.

Back to the Drawing Board: A Critical Evaluation of Poisoning Attacks on

Production Federated Learning. In IEEE S&P.
[117] Reza Shokri, Marco Stronati, Congzheng Song, and Vitaly Shmatikov. 2017.

Membership Inference Attacks Against Machine Learning Models. In IEEE S&P.
[118] Jinhyun So, Ramy E. Ali, Basak Guler, Jiantao Jiao, and Salman Avestimehr.

2021. Securing Secure Aggregation: Mitigating Multi-Round Privacy Leakage

in Federated Learning. AAAI (2021).
[119] Jinhyun So, Basak Güler, and Amir Salman Avestimehr. 2021. Turbo-Aggregate:

Breaking the Quadratic Aggregation Barrier in Secure Federated Learning. IEEE
J. Sel. Areas Inf. Theory (2021).

[120] Sebastian U. Stich, Jean-Baptiste Cordonnier, and Martin Jaggi. 2018. Sparsified

SGD with Memory. In NeurIPS.
[121] Ziteng Sun, Peter Kairouz, Ananda Theertha Suresh, and H Brendan McMahan.

2019. Can you really backdoor federated learning?. In NeurIPS FL Workshop.
[122] Ajith Suresh. 2021. MPCLeague: Robust MPC Platform for Privacy-Preserving

Machine Learning. PhD Thesis. https://arxiv.org/abs/2112.13338.

[123] Ananda Theertha Suresh, Felix X. Yu, Sanjiv Kumar, and H. Brendan McMahan.

2017. Distributed Mean Estimation with Limited Communication. In ICML.
[124] Hanlin Tang, Shaoduo Gan, Ammar Ahmad Awan, Samyam Rajbhandari, Con-

glong Li, Xiangru Lian, Ji Liu, Ce Zhang, and Yuxiong He. 2021. 1-bit Adam:

Communication Efficient Large-Scale Training with Adam’s Convergence Speed.

In ICML.
[125] Shay Vargaftik, Ran Ben Basat, Amit Portnoy, Gal Mendelson, Yaniv Ben-Itzhak,

and Michael Mitzenmacher. 2022. EDEN: Communication-Efficient and Robust

Distributed Mean Estimation for Federated Learning. In ICML.
[126] Shay Vargaftik, Ran Ben-Basat, Amit Portnoy, Gal Mendelson, Yaniv Ben-Itzhak,

and Michael Mitzenmacher. 2021. DRIVE: One-bit Distributed Mean Estimation.

In NeurIPS.
[127] Tanya Verma and Sudheesh Singanamalla. 2020. Improving DNS Privacy with

Oblivious DoH in 1.1.1.1. https://blog.cloudflare.com/oblivious-dns/l.

[128] Jianyu Wang, Zachary Charles, Zheng Xu, Gauri Joshi, H. Brendan McMahan,

and et al. 2021. A Field Guide to Federated Optimization. (2021). https:

//arxiv.org/abs/2107.06917.

[129] Lixu Wang, Shichao Xu, Xiao Wang, and Qi Zhu. 2019. Eavesdrop the

Composition Proportion of Training Labels in Federated Learning. (2019).

http://arxiv.org/abs/1910.06044.

[130] WeiWen, Cong Xu, Feng Yan, ChunpengWu, YandanWang, Yiran Chen, andHai

Li. 2017. TernGrad: Ternary Gradients to Reduce Communication in Distributed

Deep Learning. In NeurIPS.
[131] Yuxin Wen, Jonas Geiping, Liam Fowl, Micah Goldblum, and Tom Goldstein.

2022. Fishing for User Data in Large-Batch Federated Learning via Gradient

Magnification. In ICML.
[132] Huang Xiao, Battista Biggio, Gavin Brown, Giorgio Fumera, Claudia Eckert, and

Fabio Roli. 2015. Is Feature Selection Secure against Training Data Poisoning?.

In ICML.
[133] Chien-Sheng Yang, Jinhyun So, Chaoyang He, Songze Li, Qian Yu, and Salman

Avestimehr. 2021. LightSecAgg: Rethinking Secure Aggregation in Federated

Learning. (2021). https://arxiv.org/abs/2109.14236.

[134] Andrew Chi-Chih Yao. 1982. Protocols for Secure Computations (Extended

Abstract). In FOCS.
[135] Dong Yin, Yudong Chen, Kannan Ramchandran, and Peter L. Bartlett. 2018.

Byzantine-Robust Distributed Learning: Towards Optimal Statistical Rates. In

ICML.
[136] Chengliang Zhang, Suyi Li, Junzhe Xia, Wei Wang, Feng Yan, and Yang Liu.

2020. BatchCrypt: Efficient Homomorphic Encryption for Cross-Silo Federated

Learning. In USENIX ATC.
[137] Zaixi Zhang, Xiaoyu Cao, Jinyuan Jia, and Neil Zhenqiang Gong. 2022. FLDe-

tector: Defending Federated Learning Against Model Poisoning Attacks via

Detecting Malicious Clients. In KDD.
[138] Zhengming Zhang, Ashwinee Panda, Linyue Song, Yaoqing Yang, Michael W.

Mahoney, Prateek Mittal, Kannan Ramchandran, and Joseph Gonzalez. 2022.

Neurotoxin: Durable Backdoors in Federated Learning. In ICML.

A Related Work & Background Information

A.1 Stochastic Quantization
This section provides additional details regarding stochastic quan-

tization schemes discussed in §2.2.

Preprocessing via Random Rotations: To deal with possible

limitations of vanilla SQ, recent state-of-the-art works suggest

to randomly rotate the input vector prior to SQ [123]. That is, the

clients and the aggregator draw rotationmatrices according to some

known distribution; the clients then send the quantization of the

rotated vectors while the aggregator applies the inverse rotation

on the estimated rotated vector. Intuitively, the coordinates of a

randomly rotated vector are identically distributed, and thus the ex-

pected difference between the coordinates is smaller, allowing for a

more accurate quantization. For n clients and a gradient with m co-

ordinates, this approach achieves a NMSE
11

of𝑂 (logmn) using𝑂 (m)
bits, which asymptotically improves over the 𝑂 (mn) NMSE bound

of vanilla SQ. The computational complexity, on the other hand,

is increased from 𝑂 (m) to 𝑂 (m logm) when utilizing the random-

ized Hadamard transform for rotations.

Preprocessing via Kashin’s Representation: The rotation ap-

proach was recently improved using Kashin’s representation [30, 87,

112]. Roughly speaking, it allows representing an m-dimensional

vector using a slightly larger vector with 𝜆 · m smaller coeffi-

cients (𝜆 > 1). It can be shown that applying SQ to the Kashin

coefficients allows for an optimal NMSE of𝑂 (1n) using𝑂 (𝜆 ·m) bits.
Compared with [123], Kashin’s representation yields a lower NMSE

bound by a factor of logm at the cost of increasing the computa-

tional complexity by the same factor [13, 30].

A.2 Additional Compression Techniques
In this work, we focus on quantization as a means to reduce band-

width.We nevertheless briefly overview some additional techniques

considered for FL gradient compression.

Sparsification: Some works like [3, 52, 75, 120] consider spar-

sifying the gradients. Quantization can also be applied to these

sparsified gradients as it reduces the number of bits used per entry,

while sparsification reduces the number of entries.

Client-sideMemory-based Techniques: Some compression tech-

niques, including Top-𝑘 [120] and sketching [63], rely on client-

side memory and error-feedback [4, 19, 109, 114] to ensure con-

vergence. We consider the cross-device FL setup where clients are

stateless (e.g., a client may appear only once during a training

procedure). Therefore, client-side-memory-based techniques are

mostly designed for the cross-silo FL setup and are less applicable

to cross-device FL.

Entropy Encodings: Some techniques use entropy encoding such

as arithmetic encoding and Huffman encoding (e.g., [4, 123, 125]).

While such techniques are appealing in their bandwidth-to-accuracy

trade-offs, it is unclear how to allow for an efficient secure aggre-

gation as gradients must be decoded before being averaged. Also,

such techniques usually incur a higher computational overhead at

the clients than fixed-length representations. An additional review

of current state-of-the-art gradient compression techniques and

some open challenges can be found in [68, 75, 128].

A.3 Secure Multi-party Computation
The field of secure multi-party computation (MPC) started with

the seminal work of Yao [134] in 1982. It enables to securely com-

pute arbitrary functions on private inputs without leaking any-

thing beyond what can be inferred from the output. Since then,

11
The normalized MSE is the mean’s estimate MSE normalized by the mean clients’

gradient squared norms

15

https://arxiv.org/abs/2112.13338
https://blog.cloudflare.com/oblivious-dns/l
https://arxiv.org/abs/2107.06917
https://arxiv.org/abs/2107.06917
http://arxiv.org/abs/1910.06044
https://arxiv.org/abs/2109.14236

the field of MPC has seen a variety of advancements of used prim-

itives effectively improving communication and computation ef-

ficiency, e.g., [9, 27, 50, 74, 97]. Also, tailored efficient optimiza-

tions for varying number of computation parties have been ex-

plored, e.g., [33, 34, 46, 78, 102, 103]. Moreover, MPC research con-

siders different assumptions regarding adversarial behavior such

as the well-known semi-honest [28, 46] and malicious security

model [41, 70–72]) aswell as numbers of corrupted computation par-

ties (e.g., honest majority [58, 60] or dishonest majority/full thresh-

old security [28, 40, 46, 72, 102]). Beyond running the computation

among several non-colluding parties, another well-established sys-

tem model (which we use in our work) is outsourcing, where the

data owners secret-share their private input data among a set of

non-colluding computing parties which then run the private com-

putation on their behalf [1, 6, 127].

A.4 Approximate Secure Computation
To improve efficiency ofMPC, fewworks already considered approx-

imations of the exact computation. Such approximations in MPC

include using integer or fixed-point instead of floating-point opera-

tions (toomanyworks to cite), approximations in genomic computa-

tion [8], and in privacy-preservingmachine learning such as for divi-

sion [32], activation functions [29, 62, 95], and completely changing

the classifier to be MPC-friendly [108]. Also, for FHE, approxima-

tions are used such as in the approximate HE scheme CKKS [36],

which is implemented in the HEAAN library
12

and was used for ap-

proximate genomic computations in [73]. In this work, we propose

for the first time to use approximations to substantially improve

efficiency of FL when combined with MPC and give detailed evalu-

ations on the errors introduced thereby.

A.5 Secure Aggregation
Performing secure aggregation without revealing anything about

the aggregated input values beyond what can be inferred from

the output was already investigated more than 10 years ago, for

example, in the context of smart metering, e.g., [49, 80]. It has come

a long way since then, resulting in practical solutions for real-world

applications nowadays.

For example, Prio [38] introduces secure protocols for aggre-

gate statistics such as sum, mean, variance, standard deviation,

min/max, and frequency. It uses additive arithmetic secret sharing,

offers full-threshold security among a small set of servers running

the secure computation, and validates inputs to protect against

malicious clients. Prio+ [2] optimizes client computation and com-

munication compared to [38] with a Boolean secret sharing-based

client input validation and an additional conversion from Boolean

to arithmetic sharing. Similar to our work, it has a multi-server

setup to jointly compute statistical functions on private inputs.

Compared to Prio+ [2], we optimize the naive bit-to-arithmetic con-

version presented in [2] for our FSecAgg protocol (cf. §3.1), resulting
in reduced communication cost of 2.4× with exact results and 4×
with our novel approximating variant for n = 10

5
, where n is the

number of clients. Popa et al. [105] specifically focus on secure

location-based aggregation statistics, Joye et al. [65] on time-series

data, and PrivEx [48] on traffic data in anonymous communication.

12
https://github.com/snucrypto/HEAAN

So et al. [118] point out that differences among securely ag-

gregated updates across multiple training iterations can also leak

information about the contribution of individual clients. Most ex-

isting secure aggregation schemes are executed on one training

iteration, i.e., they cannot protect against multi-round attacks. An

exception is POSEIDON [113] which runs FL fully under encryption,

but at the cost of significant computational overhead on clients’

and server’s side. Instead, So et al. [118] propose to organize clients

in batches that can only be chosen together for a training iteration.

This approach is orthogonal and fully compatible with ScionFL.

A.6 Poisoning Attacks & Defenses
Poisoning attacks can be categorized into untargeted and targeted

attacks based on the goals of the attacker [51]. In the former case,

the attacker aims to corrupt the global model so that it reduces

or even destroys the performance of the trained model for a large

number of test inputs, yielding a final global model with a high er-

ror rate [11, 51, 115]. In the latter case, the attacker aims to activate

attacker-defined triggers that cause a victim model to do targeted

misclassifications, which can then be activated in the inference

phase [20, 121]. Notably, other classification results without the

trigger behave normally and main task accuracy remains high. The

second class of attacks is sometimes also referred to as backdoor
attacks [10]. As discussed in §4, we consider only untargeted poi-

soning following the argument in [116]: This class of attacks is

particularly challenging as service providers may not notice they

are under attack given they do not know which accuracy is achiev-

able in a fresh training of a new model. Also, even small accuracy

reductions can lead to serious economical losses.

Below, we detail three state-of-the-art untargeted poisoning at-

tacks, LIE [11], Fang [51], and Shejwalkar et al. [115], which are

most relevant to our work.

– Little is Enough (LIE) attack [11]: In LIE [11], malicious clients

manipulate their local updates by adding noise drawn from the

normal distribution to “clean” updates they created following the

normal training process to cause a disorientation. LIE assumes

independent and identically distributed (iid) data and was tested

against various robust aggregations such as trimmed-mean [135].

– Fang et al. [51]: The authors of [51] formulate their untargeted

poisoning attack as an optimization problem where the manipu-

lated updates aim at maximally disorienting the global model from

the benign direction. However, they assume the adversary to ei-

ther know or guess the deployed (robust) aggregation mechanism.

Additionally, the attack was shown to be ineffective for iid as well

as severely unbalanced non-iid training datasets [115].

– Shejwalkar and Houmansadr [115]: The attacks of [115] follow
a similar idea as [51]: they maximize the distances between benign

and malicious updates while using the evasion of outlier-based

detection mechanisms as a boundary. Concretely, they formalize

the following “Min-Max” optimization problem:

argmax

𝛾
max

𝑖∈[𝑛]
∥∇𝑚 − ∇𝑖 ∥2 ≤ max

𝑖, 𝑗∈[𝑛]
∥∇𝑖 − ∇𝑗 ∥2 (13)

∇𝑚 = favg (∇{𝑖∈[𝑛] }) + 𝛾∇𝑝 , (14)

where favg (∇{𝑖∈[𝑛] }) is the average gradient and 𝛾 ∇𝑝 is the ad-

versary’s perturbation vector, i.e., either the inverse unit vector

16

https://github.com/snucrypto/HEAAN

of the (simulated) benign gradients, the inverse average standard

deviations, or the average gradient with flipped sign of all updates.

For details, we refer to §IV in [115].

Note that although the authors of [115] suggest several flavours

of their attack based on different levels of adversarial knowledge,

we compare to their Min-Max attack as it (i) does not make the unre-

alistic assumption that an adversary knows defenses in place and (ii)

it is more destructive than LIE [11] for almost all datasets [115].

We do not consider Fang et al. [51]’s attack as it requires the guess

of the robust aggregation rule, i.e., defense mechanism, which is

unrealistic in a real-world deployment. Taking those considerations

into account, we evaluate the robustness of ScionFL-Aura against

the state-of-the-art Min-Max attack of [115] in §4.2.

PoisoningDefenses: Simple parameter-wise averaging is very sen-

sitive to outliers and, thus, can easily hamper accuracy. Therefore,

Byzantine-robust defenses aim to make FL robust against (untar-

geted) attacks. To do so, Krum [21] selects only one local update,

namely the one with the closest 𝑛 −𝑚 − 2 local updates as up-

date for the global model, where 𝑛 is the number of clients and𝑚

the number of anticipated malicious clients. Multi-krum [21] ex-

tends this idea to a selection of 𝑐 (instead of just one) updates.

Median [135] is an another coordinate-wise aggregation selecting

the coordinate-wise median of each update parameter. A straight-

forward idea to assess (to some extent) if a specific gradient is

malicious is to use an auxiliary dataset (rootset) at the aggrega-

tor to validate the performance of the updated global model [31,

47, 84]. FLTrust [31] and FLOD [47] use the ReLU-clipped cosine-

similarity/Hamming distance between each received update and

the aggregator-computed baseline update based on the auxiliary

dataset. FLDetector [137] detects malicious clients by checking

their model updates’ consistency based on historical model up-

dates. RSA [84] uses an L1-norm-based regularization, which is

also comparing to the aggregator-computed baseline update. The

recently proposed Divider and Conquer (DnC) aggregation [115]

combines dimensionality reduction using random sampling with

an outlier-based filtering.

The so far discussed poisoning defenses are not compatible with

secure aggregation protocols in a straight-forward manner or lead

to an intolerable overhead. Only two works, namely FLAME [99]

and BaFFLe [5] simultaneously consider both threats. Concretely,

FLAME [99] uses a density-based clustering to remove updates

with significantly different cosine distances (i.e., different directions)

combined with clipping (for more subtle manipulations). BaFFLe [5]

introduces a feedback loop enabling a subset of clients to evaluate

each global model update, while being compatible with arbitrary

secure aggregation schemes.

In our work, we combine (1) communication efficiency due to

quantization, (2) data privacy due to secure aggregation, and (3) ro-

bustness due to a novel poisoning defense.

B Preliminaries
This section provides relevant details regarding the primitives used

in this work. We begin with providing the necessary MPC back-

ground and protocols. The protocols are presented in a generic

manner because our approach is not restricted to any specific MPC

setting. Hence, some of the sub-protocols are treated as black-boxes

that can be instantiated using any efficient protocols in the under-

lying MPC setting. Since we consider dishonest majority setting

to work with, we utilize the (semi-honest variant of) primitives

from [17, 40, 41, 44] in a black-box manner.

B.1 MPC Protocols
In this section, we go over the details of the underlying MPC

protocols used in our scheme. We consider three MPC servers,

S = {S1, S2, S3}, to which the clients delegate the aggregation com-

putation, as shown in Fig. 1. All the operations are carried out in

either an ℓ-bit ring, Z
2
ℓ , or a binary ring, Z2 . Before we go into

the protocols, we provide additional details regarding the masked

evaluation scheme [17, 86, 122] discussed in §3, starting with the

sharing semantics.

Sharing Semantics:We use two different sharing schemes:

(1) [·]-sharing. A value v ∈ Z
2
ℓ is said to be [·]-shared among MPC

servers in S, if each server S𝑖 , for 𝑖 ∈ [3], holds v𝑖 ∈ Z2ℓ such

that v1 + v2 + v3 = v.
(2) ⟨·⟩-sharing. In this sharing, every v ∈ Z

2
ℓ is associated with

two values: a random mask 𝜆v ∈ Z2ℓ and a masked value mv ∈ Z2ℓ ,
such that v = mv + 𝜆v. Here, the share of an MPC server is defined

as a tuple of the form (mv, [𝜆v]).
Handling Decimal Values:While the MPC protocol that we uti-

lize is designed over a ring architecture, the underlying FL algo-

rithms handle decimal numbers. To address this compatibility is-

sue, we employ the well-known Fixed-Point Arithmetic (FPA) tech-

nique [32, 94, 95], which encodes a decimal number in ℓ-bits using

the 2’s complement representation. The sign bit is represented by

the most significant bit, while the f least significant bits are kept
for the fractional component. We use ℓ = 32 bit values with f = 16

in this work.

We will now go over the MPC protocols used in our scheme. We

assume that the protocols’ inputs are in ⟨·⟩-shared form, and that

the output is generated in ⟨·⟩-shared form among the MPC servers.

Inner Product Computation: For simplicity, consider the multi-

plication of two values 𝑥,𝑦 ∈ Z
2
ℓ as per the ⟨·⟩-sharing semantics.

We have

𝑧 = 𝑥𝑦 = (m𝑥 + 𝜆𝑦) (m𝑥 + 𝜆𝑦)
= m𝑥m𝑦 +m𝑥𝜆𝑦 +m𝑦𝜆𝑥 + 𝜆𝑥𝜆𝑦 .

Since the 𝜆 values are independent of the underlying secret, the

servers can compute [·]-shares of the term 𝜆𝑥𝜆𝑦 during preprocess-

ing [17, 40]. This enables the servers to locally compute [·]-shares
of 𝑧 during the online phase.

In addition to the above observation, since we operate over FPA

representation, truncation [32, 95] must be performed in order to

keep the result 𝑧 in FPA format after a multiplication. For this,

we use the truncation pair method [94], wherein a tuple of the

form (𝑟, 𝑟/2f) is generated in ⟨·⟩-shared form among the servers

during preprocessing using the ΠTr protocol [41]. Then, with very

high probability, we have

𝑧/2f = (𝑧 − 𝑟)/2f + 𝑟/2f .
Hence, during the online phase, servers publicly open the value (𝑧−
𝑟) and apply the above transformation to obtain the ⟨·⟩-shares of
truncated 𝑧, completing the protocol.

17

Now, in the case of the inner-product (Fig. 13), the task can be

split into d multiplications and the result obtained accordingly.

Furthermore, because the desired result is the sum of the individual

multiplication results, servers can sum them and communicate in a

single shot, saving communication cost [102].

Preprocessing:

1. Execute ΠPre
IP ([®𝜆X], [®𝜆Y]) to obtain [𝛾𝑧] with 𝛾𝑧 = ®𝜆X ⊙ ®𝜆Y .

2. Execute ΠTr () to generate ([𝑟], ⟨𝑟/2f ⟩) .
Online:
1. S𝑗 , for 𝑗 ∈ [𝜏], locally computes the following (Δ = 1 if 𝑗 = 1, else 0):

• [(𝑧 − 𝑟)] 𝑗 = Δ · (m®X ⊙ m®Y) +m®X ⊙ [𝜆®Y] 𝑗 +m®Y ⊙ [𝜆 ®X] 𝑗 + [𝛾𝑧] 𝑗 − [𝑟] 𝑗 .
2. S𝑗 , for 𝑗 ∈ [𝜏], sends [(𝑧 − 𝑟)] 𝑗 to S1 , who computes (𝑧 − 𝑟) and sends to all

the servers.

3. Locally compute ⟨𝑧⟩ = ⟨ (𝑧 − 𝑟)/2f ⟩ + ⟨𝑟/2f ⟩.

Protocol ΠIP (⟨ ®Xd×1 ⟩, ⟨ ®Yd×1 ⟩, f)

Figure 13: Inner product protocol.

Bit-to-Arithmetic Protocol: Given the Boolean sharing of b ∈ Z2 ,
protocolΠBitA computes the arithmetic sharing of the bit b over Z

2
ℓ .

As shown in Eq. 15, the arithmetic equivalent
˜b for a bit b = mb⊕𝜆b

can be obtained as

˜b = mb ⊕ 𝜆b = Mb + (1 − 2mb) · Λb . (15)

Here,Mb and Λb denote the arithmetic equivalents of mb and 𝜆b
respectively. In our protocol shown in Fig. 14, MPC servers in-

voke ΠPre
BitA protocol [41, 102] on the Boolean [·]-shares of 𝜆b in the

preprocessing phase to obtain its respective arithmetic shares. This

enables the servers to locally compute an additive sharing of
˜b dur-

ing the online phase, as shown above. The rest of the steps proceed

similar to the inner-product protocol and we omit the details.

Preprocessing:

1. Execute ΠPre
BitA ([𝜆b]

B) to obtain [𝜆b].
2. Locally generate ([𝑟], ⟨𝑟 ⟩) for a random 𝑟 ∈ Z

2
ℓ .

Online:
1. S𝑗 , for 𝑗 ∈ [𝜏], locally computes the following (Δ = 1 if 𝑗 = 1, else 0):

• [(𝑧 − 𝑟)] 𝑗 = Δ · mb + (1 − 2mb) · [𝜆b] 𝑗 − [𝑟] 𝑗 .
2. S𝑗 , for 𝑗 ∈ [𝜏], sends [(𝑧 − 𝑟)] 𝑗 to S1 , who computes (𝑧 − 𝑟) and sends to all

the servers.

3. Locally compute ⟨𝑧⟩ = ⟨ (𝑧 − 𝑟) ⟩ + ⟨𝑟 ⟩.

Protocol ΠBitA (⟨b⟩B)

Figure 14: Bit-to-arithmetic conversion protocol.

To instantiate ΠPre
BitA, we use SPDZ-style computations [70, 110],

where oblivious transfer (OT) instances [9, 27, 39] are used among

every pair of servers. Let Π
ij
OT denote an instance of 1-out-of-2 OT

with Si being the sender and Sj being the receiver. Here, Si inputs
the sender messages (𝑥0, 𝑥1) while Sj inputs the receiver choice
bit 𝑐 ∈ Z2 and obtains 𝑥𝑐 as the output, for 𝑥0, 𝑥1 ∈ Z2ℓ .

To generate the arithmetic sharing of 𝜆b from its Boolean shares

in [·]-shared form, a simple method would be to apply a 3-XOR us-

ing a daBit-style approach [110], but would result in 12 executions

of 1-out-of-2 OTs. However, as pointed out in Prio+ [2], the cost

could be further optimized due to the semi-honest security model

being considered in this work rather than the malicious in [110].

Since Prio+ operates over two MPC servers, we extend their opti-

mized daBit-generation protocol (cf. [2, daBitGen𝑝]) to our setting

with three servers.

Given two bits bi, bj ∈ Z2 , the arithmetic share correspond-

ing to their product can be generated using one instance of Π
ij
OT

with (𝑥0 = 𝑟, 𝑥1 = 𝑟 + bi) as the OT-sender messages and bj as
the OT-receiver choice bit. With this observation and using Eq. 8,

servers can compute [·]-shares corresponding to the bit 𝜆b using
five OT invocations. The formal details appear in Fig. 15.

OT Instance - I: [b]1 [b]2
1. S1 samples random 𝑟12 ∈ Z2ℓ .
2. S1 and S2 executes Π12

OT ((𝑟12, 𝑟12 + [b]1), [b]
B
2
) .

3. S1 sets 𝑦1

12
= −𝑟12 and S2 sets the OT output as 𝑦2

12
.

OT Instances - II & III: [b]1 [b]3, [b]2 [b]3
These are similar to the computation of [b]1 [b]2 discussed above.

OT Instances - IV & IV: [b]1 [b]2 [b]3
1. Computation can be broken down to ([b]1 [b]2) · [b]3 = (𝑦1

12
+ 𝑦2

12
) · [b]3 .

2. Execute Π13
OT for 𝑦1

12
· [b]B

3
. Let 𝑧1

13
and 𝑧2

13
denote the respective shares of S1

and S3 .
3. Execute Π23

OT for 𝑦2

12
· [b]B

3
. Let 𝑧1

23
and 𝑧2

23
denote the respective shares of S2

and S3 .
Computation of final shares

S1 : [b]1 = b1 − 2𝑦1

12
− 2𝑦1

13
+ 4𝑧1

13
.

S2 : [b]2 = b2 − 2𝑦2

12
− 2𝑦1

23
+ 4𝑧1

23
.

S3 : [b]3 = b3 − 2𝑦2

13
− 2𝑦2

23
+ 4𝑧2

13
+ 4𝑧2

23
.

Protocol ΠPre
BitA ([b]

B)

Figure 15: Bit-to-arithmetic preprocessing.

For the case of approximate bit conversion discussed in §3.2,

the number of OT instances can be further reduced to three fol-

lowing Eq. 10. Concretely, the conversion involves computation

of just [b]1 [b]2 [b]3 and hence the OT instances II & III described

in Fig. 15 are no longer needed.

Preprocessing:

1. Execute ΠPre
BitA ([𝜆 ®M]

B) to obtain [𝜆 ®M].
2. Locally generate ([𝑟], ⟨𝑟 ⟩) for a random 𝑟 ∈ Z

2
ℓ .

Online:
1. S𝑗 , for 𝑗 ∈ [𝜏], locally computes the following (Δ = 1 if 𝑗 = 1, else 0):

• [(𝑧 − 𝑟)] 𝑗 = Δ · Agg-R(m ®M) + (1 − 2m®X) ⊙ [𝜆®Y] 𝑗 − [𝑟] 𝑗 .
2. S𝑗 , for 𝑗 ∈ [𝜏], sends [(𝑧 − 𝑟)] 𝑗 to S1 , who computes (𝑧 − 𝑟) and sends to all

the servers.

3. Locally compute ⟨𝑧⟩ = ⟨ (𝑧 − 𝑟) ⟩ + ⟨𝑟 ⟩.

Protocol Πsum
BitA (⟨ ®Md×1 ⟩B)

Figure 16: Bit-to-arithmetic sum protocol.

When computing the sum of bits directly, the online communi-

cation can be optimized following inner-product protocol and the

resulting protocol Πsum
BitA is given in Fig. 16.

Bit Injection Protocol: Given a bit b = mb ⊕ 𝜆b and s = Ms + Λs,

the bit injection operation involves computing the value b · s that
can be obtained as

b · s = (Mb + (1 − 2mb) · Λb) · (Ms + Λs)
= MbMs +MbΛs + (1 − 2mb) · (ΛbMs + ΛbΛs). (16)

Given a boolean vector ®Md×1 and an arithmetic vector ®Nd×1 in
the secret-shared form, protocol ΠBI computes the inner product

of the two vectors, defined as 𝑧 = ®M ⊙ ®N. This protocol is similar to

the inner product protocol ΠIP presented in Fig. 13, with the main

difference being that ®M is a boolean vector.

18

During the preprocessing, servers first generate the arithmetic

shares of 𝜆 ®M
from its boolean shares, similar to the bit-to-arithmetic

protocol ΠBitA in Fig. 14. In this case, ΠPre
BI is same as the ΠPre

IP
primitive discussed in Fig. 13. The remaining steps are similar to

the ΠIP in Fig. 13 and we omit the details.

Preprocessing:

1. Execute ΠPre
BitA ([𝜆 ®M]

B) to obtain [𝜆 ®M].
2. Execute ΠPre

BI ([𝜆 ®M], [𝜆 ®N]) to obtain [𝛾 ®Q] with 𝛾 ®Q = 𝜆 ®M
◦ 𝜆 ®N .

3. Execute ΠTr () to generate ([𝑟], ⟨𝑟/2f ⟩) .
Online:
1. S𝑗 , for 𝑗 ∈ [𝜏], locally computes the following (Δ = 1 if 𝑗 = 1, else 0):

• 𝑇 1

𝑗 = Δ · (m ®M ⊙ m®N) + m ®M ⊙ [𝜆 ®N] 𝑗 .
• 𝑇 2

𝑗 = ((1 − 2m ®M) ◦m®N) ⊙ [𝜆 ®M] 𝑗 + (1 − 2m ®M) ⊙ [𝛾 ®Q] 𝑗 .
• [(𝑧 − 𝑟)] 𝑗 = 𝑇 1

𝑗 +𝑇 2

𝑗 − [𝑟] 𝑗 .
2. S𝑗 , for 𝑗 ∈ [𝜏], sends [(𝑧 − 𝑟)] 𝑗 to S1 , who computes (𝑧 − 𝑟) and sends to all

the servers.

3. Locally compute ⟨𝑧⟩ = ⟨ (𝑧 − 𝑟)/2f ⟩ + ⟨𝑟/2f ⟩.

Protocol ΠBI (⟨ ®Md×1 ⟩B, ⟨ ®Nd×1 ⟩, f)

Figure 17: Bit injection (sum) protocol.

B.2 Binomial Sum
Lemma B.1 (Expected Values). Given 𝑛, 𝑝 ∈ Z, we have

(1)
𝑛∑

𝑝=0
𝑝 ·

(𝑛
𝑝

)
= 𝑛 · 2𝑛−1 .

(2)
⌊𝑛/2⌋∑
𝑝=0

2𝑝 ·
(𝑛
2𝑝

)
=
⌊𝑛/2⌋∑
𝑝=0
(2𝑝 + 1) ·

(𝑛
2𝑝+1

)
= 𝑛 · 2𝑛−2 .

Proof. Consider the binomial formula for (1 + 𝑦)𝑛 , given by

𝑛∑︁
𝑝=0

(
𝑛

𝑝

)
𝑦𝑝 = (1 + 𝑦)𝑛 (17)

Differentiating Eq. (17) with respect to 𝑦 will give

𝑛∑︁
𝑝=0

(
𝑛

𝑝

)
𝑝 · 𝑦𝑝−1 = 𝑛 · (1 + 𝑦)𝑛−1 (18)

Substituting 𝑦 = 1 in Eq. (18) gives the first result (1). Similarly,

setting 𝑦 = −1 in Eq. (18) gives

𝑛∑︁
𝑝=0

(−1)𝑝−1𝑝 ·
(
𝑛

𝑝

)
= 0 (19)

Combining Eq. (19) with the first result (1) will give the second

result (2). □

B.3 Overhead of HSQ and KSQ Quantization
For being able to use an efficient GPU-friendly implementation

of the randomized Hadamard transform, which we use for both

rotating the gradients in HSQ and for calculating Kashin’s coef-

ficients in KSQ, we require that the gradients’ size to be a power

of 2. A simple solution to meet this requirement is padding. For

example, for the LeNet architecture with ≈ 60𝑘 parameters, we can

pad the gradient to 2
16 = 65536 entries with a small resulting over-

head of ≈ 6.2% (i.e., using ≈ 1.06 bits per coordinate instead of 1).

However, a more sophisticated approach is to divide the gradient

into decreasing power-of-two-sized chunks and inflate only the

last (smallest) chunk.
13

For example, for the LeNet architecture, we

can decompose it into chunks of size 32768, 16384, 8192, 4096, 512,

that sum up to 61952 (with an additional overhead of two floats per

chunk) with a resulting overhead of only ≈ 1.44%. Also, for Kashin’s

representation, we use 𝜆 = 1.15 for each chunk (an extra 15% of

space) as used in previous works (e.g., [126]). To summarize, we

state these resulting overheads in Tab. 8.

Architecture 𝑛 SQ HSQ KSQ

LeNet 61706 61706 62272 73024

ResNet9 4903242 4903242 4915456 5767424

ResNet18 11220132 11220132 11272192 12583040

Table 8: Exact number of bits used for different network architec-
tures and quantization schemes compared to the baseline number
of coordinates 𝑛.

C ScionFL: Additional Details
This section provides addition details of our FL framework ScionFL

presented in §3. We begin with providing additional details regard-

ing the approximate bit conversion discussed in §3.2.

C.1 Multi-bit Quantization Schemes
This section describes how our scheme ScionFL can be extended

to support multi-bit linear quantization schemes, in which each

coordinate is classified into more than two levels, resulting in each

coordinate being represented by more than a single bit.

For instance, consider the quantization in TernGrad [130], where

each coordinate is compressed to one of the three levels {−1, 0, 1}.
Here, each coordinate can be represented using two bits, say b1
and b2 and the quantized level can be computed as 2b1 − b2.

To use our scheme, each client C𝑖 share the bits separately using

the underlying boolean secret sharing scheme, i.e., ⟨b1⟩B𝑖 and ⟨b2⟩B𝑖 .
MPC servers use our instantiations of FSecAgg functionality dis-

cussed in §3.1 to aggregate each of the bits and obtain the result in

arithmetic sharing format, i.e, ⟨b1⟩ and ⟨b2⟩. The final result can
be locally computed by the MPC servers as 2⟨b1⟩ + ⟨b2⟩, since the
underlying MPC protocol used in ScionFL is linear.

C.2 ScionFL-Aura: Additional Details
In this subsection, we provide additional details of our ScionFL-

Aura. We begin with discussing some optimizations that could be

incorporated to our defense presented in Alg. 1.

MPC-friendlyVariant:Anaive secure realization of ScionFL-Aura

outlined in Alg. 1 utilizing MPC will yield an inefficient solution,

particularly over a ring architecture. This is due to some of the al-

gorithm’s non-MPC friendly primitives, which are discussed below.

(1) (Line 5 in Alg. 1).The computation of L
2
-normwithin L2-NormQ

(cf. Alg. 3 in §C.2) involves calculating the square root of a ring

element, which corresponds to a decimal value. To alleviate this, we

ask the clients to submit the L
2
-norm of their gradient vectors and

the MPC servers verify them. To be more specific, the provided L
2
-

norm is squared and compared to a squared-L
2
-norm computed by

the MPC servers via a secure comparison protocol [32, 88].

13
The size of the last chunk is kept above some threshold, e.g., 2

9
to keep the overhead

of the scales small.

19

0 500 1000 1500

0.25

0.50

0.75

V
al

id
at

io
n

A
cc

u
ra

cy
No compression

0 500 1000 1500

0.25

0.50

0.75

HSQ

0 500 1000 1500

0.25
0.50
0.75

KSQ

0 500 1000 1500

0.5

1.0

T
ra

in
A

cc
u

ra
cy

0 500 1000 1500

0.5

1.0

0 500 1000 1500

0.5

1.0

0 500 1000 1500
0

2

N
u

m
of

at
ta

ck
er

s

0 500 1000 1500
0

2

0 500 1000 1500
0

2

Baseline

Attack only

Attack + defense

Num of attackers with defense

Num of attackers w/o defense

Figure 18: Effect ofMin-Max attack [115] on training VGG11 with CIFAR10 with and without our defense ScionFL-Aura assuming 20% of 𝑁 = 50

clients being corrupted.

(2) (Lines 11 & 12 in Alg. 1).When using L
2
-norm scaling, the scales

of the gradient vector must be bounded if the corresponding L
2
-

norm is greater than the limit. In particular, the procedure entails

dividing the vector by its L
2
-norm. Because division is expensive

in MPC over rings, we ask the client to submit the reciprocal of

the L
2
norm as well, similar to the method suggested above. The pro-

vided value is validated by multiplying it by the L
2
norm supplied

by the client and checking whether the product is a 1.

(3) (Line 16 in Alg. 1). The calculation of the cosine-distance be-

tween the gradient vector and the reference ®𝑋 agg
requires comput-

ing the L
2
-norm of ®𝑋 agg

and dividing by it, as shown in Cosine

in Alg. 4. However, cosine distances are used to filter out the top-𝜓

vectors with the highest cosine distance, as shown in Alg. 1 (Line

18). As a result, we may safely disregard the division by the L
2
-norm

of ®𝑋 agg
when computing the cosine distance for our purpose.

In addition to the aforementioned optimizations, we notice that

most of the values computed as part of the ®𝑋 agg
computation in

the Aggregate function (Line 2 in Alg. 1) can be reused in the

next steps, thus lowering the overhead of the defense scheme over

simple aggregation.

Sub-protocols: Here, we provide the details of the sub-protocols
used in ScionFL-Aura (cf. Alg. 1 in §4.1).

Alg. 2 computes the aggregation of 𝛼 quantized vectors. As

shown in Eq. 4, the dequantized value of a vector ®𝑌 , given its

quantized form (®𝜎𝑌 , s𝑚𝑖𝑛
𝑌

, s𝑚𝑎𝑥
𝑌
), can be computed as

®𝑌 = s𝑚𝑖𝑛
𝑌 ⊕ ®𝜎𝑌 ◦ (s𝑚𝑎𝑥

𝑌 − s𝑚𝑖𝑛
𝑌) .

The above operation essentially places s𝑚𝑖𝑛
𝑌

in those positions of

the vector ®𝑌 with the corresponding bit in ®𝜎𝑌 being zero, and the

rest with s𝑚𝑎𝑥
𝑌

.

Algorithm 2 Quantized Aggregation

1: procedure Aggregate({ ®𝜎𝑌𝑖 , s𝑚𝑖𝑛
𝑌𝑖

, s𝑚𝑎𝑥
𝑌𝑖
}𝑖∈𝛼)

2:
®𝑍 ← ®0

3: for 𝑘 ← 1 to 𝛼 do
4:

®𝑍 ← ®𝑍 +
(
s𝑚𝑖𝑛
𝑌𝑘
⊕ ®𝜎𝑌𝑘 ◦ (s

𝑚𝑎𝑥
𝑌𝑘

− s𝑚𝑖𝑛
𝑌𝑘
)
)

5: end for
6:

®𝑍 ← ®𝑍/𝛼
7: return ®𝑍
8: end procedure

Algorithm 3 L2-Norm Computation (Quantized)

1: procedure L2-NormQ(®𝜎𝑌 , s𝑚𝑖𝑛
𝑌

, s𝑚𝑎𝑥
𝑌

)

2: 𝛽 ← Len(®𝜎𝑌) // Dimension of ®𝜎𝑌
3: 𝑁𝑂 ← Sum(®𝜎𝑌) // Number of ones in ®𝜎𝑌
4: 𝑁𝑍 ← 𝛽 − 𝑁𝑂 // Number of zeros in ®𝜎𝑌
5: return

√︃
𝑁𝑍 · (s𝑚𝑖𝑛

𝑌
)2 + 𝑁𝑂 · (s𝑚𝑎𝑥

𝑌
)2

6: end procedure

Alg. 3 computes the L
2
-norm of a quantized vector. As discussed

in §2.4, a quantized vector ®𝑌𝜎 consists of a binary vector ®𝜎𝑌 and

the respective min. and max. scales s𝑚𝑖𝑛
𝑌
/s𝑚𝑎𝑥

𝑌
. In this case, we

observe that the squared L
2
-norm can be obtained by first counting

the number of zeroes and ones in the vector, denoted by 𝑁𝑍 and

and 𝑁𝑂 respectively, followed by multiplying them with the square

of the respective scales and adding the results, i.e. 𝑁𝑍 · (s𝑚𝑖𝑛
𝑌
)2 +

𝑁𝑂 · (s𝑚𝑎𝑥
𝑌
)2. Furthermore, computing the number of ones 𝑁𝑂

corresponds to the bit-aggregation of the vector ®𝑌 , for which our

aggregation methods discussed in §3.1 can be utilized.

Alg. 4 is used to compute the cosine distance between a quantized

vector ®𝑌𝜎 and a reference vector ®𝑆 . The cosine distance is given
20

Algorithm 4 Cosine Distance Calculation

1: procedure Cosine((®𝜎𝑌 , s𝑚𝑖𝑛
𝑌

, s𝑚𝑎𝑥
𝑌
) , ®𝑆)

2: L𝑌
2
← L2-NormQ(®𝜎𝑌 , s𝑚𝑖𝑛

𝑌
, s𝑚𝑎𝑥

𝑌
)

3: L𝑆
2
← ∥ ®𝑆 ∥ // Computes L

2
-norm

4: 𝛼 ← Sum(®𝑆) // Sum of elements of ®𝑆
5: 𝛽 ← Inner-Product(®𝜎𝑌 , ®𝑆)
6: 𝛾 = s𝑚𝑖𝑛

𝑌
· 𝛼 + 𝛽 · (s𝑚𝑎𝑥

𝑌
− s𝑚𝑖𝑛

𝑌
)

7: return 𝛾/(L𝑌
2
· L𝑆

2
)

8: end procedure

by

®𝑌𝜎⊙ ®𝑆
∥ ®𝑌𝜎 ∥ · ∥ ®𝑆 ∥

, where ∥·∥ corresponds to the L
2
-norm of the input

vector. Using Eq. 4, we can write

®𝑌𝜎 ⊙ ®𝑆 = (s𝑚𝑖𝑛
𝑌 ⊕ ®𝜎𝑌 ◦ (s𝑚𝑎𝑥

𝑌 − s𝑚𝑖𝑛
𝑌)) ⊙ ®𝑆

= s𝑚𝑖𝑛
𝑌 ⊙ ®𝑆 + (®𝜎𝑌 ⊙ ®𝑆) · (s𝑚𝑎𝑥

𝑌 − s𝑚𝑖𝑛
𝑌) .

Thus, the inner product computation of ®𝑌𝜎 ⊙ ®𝑆 reduces to comput-

ing ®𝜎𝑌 ⊙ ®𝑆 , followed by two multiplications.

Evaluation on VGG11: In addition to our results in §4.2, we evalu-

ate theMin-Max attack on VGG11 trained with CIFAR10. The exper-
imental setup is identical to §4.2. The results are shown in Fig. 18.

Similarly as for ResNet9 (cf. Fig. 12), the Min-Max attack sub-

stantially reduces the validation accuracy when training VGG11:

We observe drops of up to 36.8%. However, on average, VGG11

is less impacted by the attack. Concretely, only 15% of the itera-

tions observe a validation accuracy reduction of about 10% or more

when using no compression. One third of the training rounds are

impacted by about 10% or more when using Kashin’s representa-

tion (KSQ) while with the Hadamard transform (HSQ) only very

few training rounds showed a significant accuracy reduction. Thus,

HSQ seems to be more robust against untargeted poisoning.

With ScionFL-Aura, the accuracy reduction is still smaller for all

variants. With HSQ, on average 0.28 malicious updates are included

in global updated instead of 2.24 without defense. With respect to

the validation accuracy, the difference between having no attack

and employing ScionFL-Aura when under attack is less than 4%

in almost all training iterations. When using KSQ, a global update

includes just 0.44 malicious updates on average, and the attack

impact is at least halved in two third of the training iterations.

21

	Abstract
	1 Introduction
	1.1 Our Contributions
	1.2 Related Work

	2 Problem Statement
	2.1 Aggregation for Federated Learning
	2.2 Stochastic Quantization
	2.3 MPC for Secure Aggregation
	2.4 Secure Quantized Aggregation

	3 Our Framework: ScionFL
	3.1 MPC-based Aggregation
	3.2 Approximate Bit Conversion in MPC
	3.3 Secure Bit Aggregation with Global Scales
	3.4 Accuracy Evaluation
	3.5 Detailed Communication Costs
	3.6 Performance Evaluation

	4 Defending Untargeted Poisoning Attacks
	4.1 Our Defense: ScionFL-Aura
	4.2 Effectiveness Evaluation

	5 Conclusion
	References
	A Related Work & Background Information
	A.1 Stochastic Quantization
	A.2 Additional Compression Techniques
	A.3 Secure Multi-party Computation
	A.4 Approximate Secure Computation
	A.5 Secure Aggregation
	A.6 Poisoning Attacks & Defenses

	B Preliminaries
	B.1 MPC Protocols
	B.2 Binomial Sum
	B.3 Overhead of HSQ and KSQ Quantization

	C ScionFL: Additional Details
	C.1 Multi-bit Quantization Schemes
	C.2 ScionFL-Aura: Additional Details

