
Muckle+: End-to-End Hybrid Authenticated Key
Exchanges

Sonja Bruckner1⋆, Sebastian Ramacher2, and Christoph Striecks2

1 University of Applied Sciences Upper Austria, Hagenberg, Austria
2 AIT Austrian Institute of Technology, Vienna, Austria

{firstname.lastname}@ait.ac.at

Abstract. End-to-end authenticity in public networks plays a significant role. Namely, with-
out authenticity, the adversary might be able to retrieve even confidential information straight
away by impersonating others. Proposed solutions to establish an authenticated channel cover
pre-shared key-based, password-based, and certificate-based techniques. To add confidential-
ity to an authenticated channel, authenticated key exchange (AKE) protocols usually have
one of the three solutions built in. As an amplification, hybrid AKE (HAKE) approaches are
getting more popular nowadays and were presented in several flavors to incorporate classical,
post-quantum, or quantum-key-distribution components. The main benefit is redundancy,
i.e., if some of the components fail, the primitive still yields a confidential and authenticated
channel. However, current HAKE instantiations either rely on pre-shared keys (which yields
inefficient end-to-end authenticity) or only support one or two of the three above components
(resulting in reduced redundancy and flexibility).

In this work, we present an extension of a modular HAKE framework due to Dowling, Brandt
Hansen, and Paterson (PQCrypto’20) that does not suffer from the above constraints. While
their instantiation, dubbed Muckle, requires pre-shared keys (and hence yields inefficient end-
to-end authenticity), our extended instantiation called Muckle+ utilizes post-quantum digital
signatures. While replacing pre-shared keys with digital signatures is rather straightforward
in general, this turned out to be surprisingly non-trivial when applied to HAKE frameworks
(resulting in a significant model change with adapted proof techniques).

Keywords: end-to-end security, hybrid authenticated key exchange, post-quantum cryptog-
raphy

1 Introduction

Confidential and authenticated channels are a corner stone of today’s world [DH76,Mau93,BR95].
From user-to-user to server-to-server communication, any data exchanged between any two parties
is expected to be confidential even in the event of a potentially active man-in-the-middle attack.
Ensuring confidentiality between two parties first requires that one can distinguish friend from foe.
Specifically, if an adversary can impersonate a party in the system, all confidentiality guarantees
are void since in that case the communication with the adversary is secured against outsiders, but
the adversary itself may gain access to all data. Therefore, authenticity is a necessary requirement
for achieving confidentiality on any level in any system and in the specific context of communication
we thus require end-to-end authenticity. That is, both parties can directly verify the authenticity
of the other party regardless of how many untrusted network links are located between them.

For network protocols on public or untrusted networks, well-established protocols such as Trans-
port Layer Security (TLS) [Res18], IPsec [Kau05], QUIC [IT21], WireGuard [Don17] employ various
forms of an end-to-end authenticated key exchange (AKE) [BR95]; on the one hand to authenti-
cate the other peer and on the other hand to establish an ephemeral session key to secure the

⋆ The work was conducted while at AIT Austrian Institute of Technology.



communication channel. Depending on the concrete application, AKE protocols offer certificate-
based authentication, password-based authentication, pre-shared key-based authentication whereas
the secret keys are exchanged often using an ephemeral Diffie-Hellman key exchange or – on a more
abstract level – with a key exchange using ephemeral key encapsulation mechanism (KEM) keys.
Authentication in those protocols may be unilateral, e.g., only the initiator verifies the authenticity
of the responder which is the default deployment mode of TLS on the web as the authentication
of users is managed on the application layer, or mutual.

End-to-End Authentication Techniques. We will now discuss different techniques to achieve
authenticity for key exchange protocols: in a key exchange with pre-shared keys (PSK), both peers
are required to agree on a secret key off-channel. This key is then part of the key exchange protocol
(e.g., is used as input in the key derivation function to derive the session keys) and only if the key is
known, the protocol can be completed successfully. As a folklore consequence, networks with n peers
necessitate the initial set up of n2 PSKs to uniquely identify each peer. Otherwise, i.e., where 3 or
more peers share the same PSK, peers would be unable to distinguish one communication partner
from the other. Moreover, dynamically changing the network components becomes inefficient, e.g., if
a new peer is added to the network, fresh PSKs have to be distributed to all other peers off-channel.

Password-based authenticated key exchanges [BPR00,BMP00] are more interesting in a multi-
client, single-sever scenario where each client is uniquely identified using a (low-entropy) password.
Similar to the PSK approach, the password is an intrinsic part of the exchange and cannot be
completed without knowledge of the specific password. As the scenario we are considering is not a
multi-client single-server scenario, we will omit further discussions of this type of key exchange.

Finally, with certificate-based protocols, peers have long-term public keys (typically of a digital
signature scheme) whereas certificate authorities ensure the authenticity of these keys and establish
a chain of trust. During a protocol run, peers are then required to sign certain messages to authen-
ticate the exchange. A prominent example of such a protocol is SIGMA [Kra03] which serves as
a prototype for the key exchange deployed in IPsec, for example. Recently, due to the bandwidth
requirements of post-quantum secure signature schemes, variants with long-term KEM keys such
as KEMTLS [SSW20] are also gaining interest.

While PSK key exchanges can be implemented solely from symmetric-key primitives, managing
the required keys is a complex task. As no key material is available during system setup, those keys
need to be securely exchanged via trusted couriers, installed on devices in the fab, or other methods
are required to allow the keys be installed without relying on a yet unsecured communication
channel. This task becomes more complex as the network grows and infeasible if parties have no
trivial way to securely exchange the PSK.

Quantum-Safe Authenticated Key Exchanges. End-to-end post-quantum AKE protocols
have already been (experimentally) studied, e.g., most prominently in the area of Transport Layer
Security (TLS) [BCNS15,Lan16,KSL+19,PST20,SSW20]. Moreover, standardization efforts towards
post-quantum (hybrid) key exchanges is already in progress while NIST is expected to publish the
first standards on post-quantum key-exchange mechanisms and digital signatures soon.3 For most
practical use-cases that require security against cryptographically relevant quantum computers, the
post-quantum cryptography (PQC) paradigm seems to be a strong fit, although some techniques
are rather recent and severe attacks are happening [Beu22].

For highly secure use-cases, quantum-key distribution (QKD) [ABB+14,MNR+20] is gaining
quite some attention recently and some big companies even expect a market growth of 12 bil-
lion USD in 10 years.4 Moreover, there is the European initiative for a quantum communication

3 https://www.ietf.org/archive/id/draft-ietf-tls-hybrid-design-05.html, https://csrc.nist.

gov/projects/post-quantum-cryptography
4 https://www.reuters.com/article/us-toshiba-cyber-idUSKBN2730KW

2

https://www.ietf.org/archive/id/draft-ietf-tls-hybrid-design-05.html
https://csrc.nist.gov/projects/post-quantum-cryptography
https://csrc.nist.gov/projects/post-quantum-cryptography
https://www.reuters.com/article/us-toshiba-cyber-idUSKBN2730KW


infrastructure named EuroQCI.5 The benefit of a QKD system is that it guarantees information-
theoretic security compared to computational security of post-quantum primitives. However, QKD
comes with significant limitations such as range and costly hardware.

Moreover, QKD requires PSK-based authentication. Noteworthy, the PSKs for the individual
QKD links are not enough to establish authenticity for the full path through the network as
they only ensure authenticity for one link. Without end-to-end authenticity, all nodes in between
are turned into so-called trusted nodes [MNR+20]. With trusted nodes, however, deployment in
large-scale networks may become even more complex.6 Hence, practical end-to-end authenticity
guarantees for the to-be-anticipated QKD networks are still under investigation.

Since both, the PQC and QKD paradigms, have benefits and downsides, and following the
approach “Don’t put all eggs in your basket,” we are interested in how to achieve end-to-end
authentication and confidentiality for key exchanges with the best possible security guarantees
against future threats. One promising approach is using hybrid techniques.

Hybrid Authenticated Key Exchanges. Hybrid AKE (HAKE) approaches are getting more
popular nowadays and were presented in several flavors to incorporate classical, PQC, or QKD
components, e.g., [MSU13,BFG19,BBF+19,DHP20]. The main benefit is redundancy, i.e., if some
of the components fail, the primitive still yields a confidential and authenticated channel. Moreover,
HAKE provides an approach towards the transition of non-quantum secure networks to quantum-
secure ones.

Particularly interesting is the recently proposed HAKE framework with its instantiation dubbed
Muckle due to Dowling, Brandt Hansen, and Paterson [DHP20]. Muckle combines secret keys
obtained from a QKD network with session keys obtained from a classical and post-quantum
secure key encapsulation mechanisms (KEMs). The combination of the keys is performed using a
sequence of pseudo-random function evaluations.

Importantly, Muckle even achieves very desirable advanced security guarantees. Namely, forward
and post-compromise security (which are de-facto standard features in the literature on AKE
mechanisms nowadays). The first guarantees that prior session keys cannot be retrieved (even if
the current session key leaks) while the latter guarantees that future sessions are safe again (once
the adversary does not compromise the system anymore). For example, even if the classic KEM
fails (e.g., in the event of a cryptographically relevant quantum computer), at least old session
keys stay safe due to the PQC and QKD guarantees. Moreover, if additionally the post-quantum
KEM fails (e.g., in the event of a fundamental break of the underlying assumption), an adversary
cannot retrieve old sessions keys due to the QKD guarantees. Conversely, if the QKD component
fails (e.g., due to side-channel attacks [BBC+21]), the security guarantees of the PQC components
prevent an adversary from retrieving old session keys.

Such a forward-security guarantee is particularly important for future threats. Namely, solely
using such an AKE with a single primitive, e.g., post-quantum KEMs (without QKD), puts all
sessions immediately in danger, e.g., in the case that some post-quantum assumption does not hold.
Having “store-now-decrypt-later” attacks in mind, such a risk should be mitigated in many scenarios
and hybridization hedges against such threats. On the other side, even if the QKD guarantees are
void (e.g., by an attacker compromising a trusted node or failing hardware), the post-quantum
KEM guarantees end-to-end security for all sessions.

The Muckle authentication, however, solely relies on the presence of pre-shared keys. Conse-
quently, Muckle inherits the key management problem of PSKs in large-scale networks discussed

5 https://digital-strategy.ec.europa.eu/en/policies/european-quantum-communication-

infrastructure-euroqci
6 Interestingly, while some approaches even backed by patents (https://www.ipo.gov.uk/p-ipsum/Case/
PublicationNumber/GB2590064) claim to provide long-range QKD networks without trusted nodes (i.e.,
establishing a secure channel between any two nodes), a recent work [HAD+22] demonstrates that such
claim cannot be met.

3

https://digital-strategy.ec.europa.eu/en/policies/european-quantum-communication-infrastructure-euroqci
https://digital-strategy.ec.europa.eu/en/policies/european-quantum-communication-infrastructure-euroqci
https://www.ipo.gov.uk/p-ipsum/Case/PublicationNumber/GB2590064
https://www.ipo.gov.uk/p-ipsum/Case/PublicationNumber/GB2590064


above. In this work, we present an extension of the HAKE framework in [DHP20] and present an
amplification of their Muckle scheme with end-to-end authenticity and better efficiency while no
sacrifices on the security guarantees have to be made.

1.1 Contribution

Our contribution can be summarized as follows:

– We extend Muckle with certificate-based authentication mechanisms dubbed Muckle+ while
preserving quantum (i.e., post-quantum) security. While replacing pre-shared keys with digital
signatures is rather straightforward in general, this turned out to be surprisingly non-trivial
when applied to HAKE frameworks (resulting in a significant model change with adapted proof
techniques). The benefits are that we avoid the usage of PSKs (with its inherent quadratic
blow-up to achieve end-to-end authenticity) which results in more efficient end-to-end HAKE
instantiation than previously known.
While gaining significant efficiency and flexibility with our approach compared to Muckle, to
retrieve the same security guarantees, we need that the QKD keys are distributed via multi-path
techniques.

– We implement the Muckle+ protocol and validated its functionality using a small QKD network
in the field. To the best of our knowledge, such a proof-of-concept experiment for HAKEs is the
first one with QKD hardware. Thereby, we can demonstrate the added authenticity guarantees
that ensure an end-to-end secure connection between the initiator and responder.

More on Extending Muckle. The Muckle protocol uses a hybrid approach combining classical,
post-quantum, and QKD keys through the use of a key derivation function. Muckle requires a
classical and post-quantum KEM as well as data from a QKD channel to create the final shared
secret. Additionally, the protocol relies on a secure pseudorandom function and a MAC. The latter
is used in combination with a QKD pre-shared key to ensure the authenticity of the key exchange.
To avoid such pre-shared keys for authentication, we carefully extend Muckle to allow certificate-
based authentication. Technically, we use digital signatures as a building block instead of PSKs for
authentication.

However, replacing PSKs with digital signatures in HAKE is not straightforward. Using PSKs
yield an interesting cryptographic feature, namely, it guarantees that a sender and a receiver share
a common secret key for end-to-end authentication (leaving the quadratic blow-up in that case on
the side for a moment). Now, if digital signatures are used, we cannot build on such guarantee
anymore (as we are in the public-key setting).

The key observation in the HAKE realm is that in the latter case, we either require a post-
quantum KEM or we need multi-path approaches for the QKD part to guarantee end-to-end au-
thenticity again. As we want to allow that the post-quantum KEM components to fail (as in
Muckle), we need that the QKD keys are distributed using a multi-path approach (essentially, by
distributing key components via mutually disjoint paths from the initiator to the responder such
that no individual trusted node knows all of the key material depending on some bound of colluding
nodes).

Through this alteration, we achieve the desired security properties, i.e., we are able to endure all
security claims from original Muckle (in particular, forward and post-compromise security) while
avoiding PSKs, which we show by formally proving our variant Muckle+ secure in the HAKE frame-
work. Moreover, our instantiation allows for an efficient approach to achieve end-to-end security
which we justify via an implementation.

Implementing Muckle+. The implementation of Muckle+ to demonstrate its efficacy follows
the typical structure of both a QKD security application in the sense of the ETSI QKD GS standard

4



documents (and in particular, ETSI QKD GS 014 [ETS19]) and an authenticated key exchange
using application well-understood from their use on the modern web. Thereby, the initiator of the
connection obtains a key ID and the corresponding key material from a QKD device and transmits
the key ID as part of the initial authenticated key exchange message to the receiver.

By providing an interface the applications that follow the structure of deployed authenticated
key exchanges, we expect to reduce the required effort to integrate the use of QKD keys into
applications that are already using TLS [Res18], QUIC [LRW+17], or similar protocols. Except for
configuring the connection to the local QKD end-point, no further configuration will be necessary
to establish secure channels with any service deployed on the QKD network.

1.2 Related Work

Authenticated key exchanges have a long history and are still a very active area of research as they
represent the core component of any protocol for secure communication. Notably, Krawczyk’s Sign-
and-MAC (SIGMA) protocols [Kra03] serve as a template for many of the protocols used in practice.
The basic idea of this template is to combine an ephemeral key exchange using key encapsulation
methods (KEMs) to exchange a fresh shared secret, a signature scheme for authentication of the
communication parties as well as message authentication code (MAC) to authenticate the shared
secret. Keys are derived using a pseudorandom function (PRF). One execution then runs roughly
as follows: the initiator produces a new ephemeral KEM key and sends the public key to the
responder. The responder then performs the key encapsulation using the received public key, signs
the produced ciphertext together with the first message to authenticate itself, and derives a shared
secret to authenticate the session using the MAC. Ciphertext, authentication tag and signature
are sent to the initiator. The initiator then decapsulates the shared secret key, verifies the received
signature as well as the authentication tag. In a mutual authentication setting, the initiator also
authenticates itself using the signature scheme, but the session is also always authenticated by the
initiator using the MAC. This information is sent to the responder for verification. Afterwards, the
two parties share an authenticated and fresh secret key.

While SIGMA was originally proposed using Diffie-Hellman for the ephemeral key exchange,
presenting it in terms of KEMs allows us to consider it in a post-quantum setting as we then can
instantiate all build blocks using post-quantum secure schemes. It can also be extended with respon-
der or initiator privacy features [Zha16,SSL20,RSW21], whereas the latter be observed in practice
as part of the TLS handshake. With the migration towards post-quantum secure protocols, work on
adapting and improving key exchanges protocols based on the performance and bandwidth charac-
teristics of post-quantum secure key encapsulation mechanisms and digital signature schemes has
commenced [BCNS15,SM16,HKSU20,HNS+21], though. Notably, Schwabe, Stebila and Wiggers
proposed KEMTLS [SSW20], a unilaterally authenticated key exchange protocol where authenti-
cation of the responders is performed using a long-term KEM key. The basic idea is, that after
establishing an ephemeral key, the initiator encapsulates a secret with respect to the responder’s
long-term KEM key. The responder can only produce the authentication tags for session authen-
tication if it can decapsulate using its long term KEM key. Thereby, the responder is implicitly
authenticated via its knowledge of the corresponding private key.

In the area of QKD networks, proposals exist to address the trusted-node problem with secret-
sharing based multipath protocols, e.g. [RK11,RKJ+21], to exchange the secret key. In a similar
vein, multipath authentication protocols have been proposed too, whereas those are built on the
assumption that an adversary is unable to compromise multiple nodes in the network. When con-
sidering network topologies with many routes available for connecting any two nodes, it is therefore
possible to split sensitive information into parts (e.g., via secret sharing) and to send the shares
via multiple paths instead of one.

For example, Rass and Schartner [RS10] introduced a MAC-based multipath authentication
protocol specifically for the application in quantum networks. In the scenario they consider, two
nodes wanting to communicate in a QKD network may not necessarily establish pre-shared keys.

5



There are however shared QKD secrets between every node and each of its immediate neighbors.
The protocol uses those secrets in combination with a multipath approach to share an authenticated
message between the nodes and relies on the assumptions that (a) keys created by two adjacent
nodes via the QKD channel are secure, and (b) every node shares a secret key with its neighboring
nodes. While the protocol is secure against k < n compromised paths with executed with n disjoint
paths, it does not fit into the typical notion of an authenticated key exchange and it lacks end-to-end
authenticity.

Finally, secure multipath key exchange (SMKEX) [CCG+18] utilizes two disjoint paths to fa-
cilitate authentication and key exchange. The protocol is based on a typical key exchange, but
in addition the second channel is used to send a random nonce that is authenticated using the
secret key exchanged via the first channel. SMKEX therefore ensures unilateral authenticity and
computational security against an active adversary as long as only one path is compromised.

2 Preliminaries

In this section we briefly recall notions related to (hybrid) authenticated key exchanges.

2.1 Pseudo-random functions

Definition 1 (PRF). Let F : S × D → R be a family of functions and let Γ be the set of all
functions D → R. For a PPT distinguisher D we define the advantage function as

AdvPRFD,F (κ) =
∣∣∣Pr [s R←− S : DF(s,·)(1κ) = 1

]
− Pr

[
f

R←− Γ : Df(·)(1κ) = 1
]∣∣∣ .

F is a pseudorandom function (family) if it is efficiently computable and for all PPT distinguishers
D there exists a negligible function ε(·) such that

AdvPRFD,F (κ) ≤ ε(κ).

A PRF F is a dual PRF [BL15], if G : D × S → R defined as G(d, s) = F(s, d) is also a PRF.

2.2 Digital Signatures and Message Authentication Codes

We recall the notion of message authentication codes and digital signature schemes and the standard
unforgeability notions below.

Definition 2 (Message Authentication Codes). A message authentication code MAC is a
triple (KGen,Sign,Ver) of PPT algorithms, which are defined as:

KGen(1κ) : This algorithm takes a security parameter κ as input and outputs a secret key sk.
Auth(sk,m) : This algorithm takes a secret key sk ∈ K and a m ∈M and outputs an authentication

tag τ .
Ver(sk,m, τ) : This algorithm takes a secret key sk, a message m ∈ M and an authentication tag

τ as input and outputs a bit b ∈ {0, 1}.

A MAC is correct if for all κ ∈ N, for all sk ← KGen(1κ) and for all m ∈ M, it holds that
Pr [Ver(sk,m,Auth(sk,m)) = 1] = 1.

Definition 3 (EUF-CMA). For a PPT adversary A, we define the advantage function in the sense
of existential unforgeability under chosen message attacks (EUF-CMA) as

Adveuf-cma
A,MAC (1

κ) = Pr
[
Expeuf-cma
A,MAC (1

κ) = 1
]
,

where the corresponding experiment is depicted in Experiment 1. If for all PPT adversaries A there
is a negligible function ε(·) such that Adveuf-cma

A,MAC (1
κ) ≤ ε(κ), we say that MAC is EUF-CMA secure.

6



Expeuf-cma
A,MAC(1

κ):

sk← KGen(1κ), Q ← ∅

(m∗, τ∗)← AAuth′,Ver′()

where oracle Auth′(m):

Q ← Q∪ {m}
return Auth(sk,m)

where oracle Ver′(m, τ):

return Ver(sk,m, τ)

return 1, if Ver(sk,m∗, τ∗) = 1 ∧ m∗ /∈ Q, return 0 otherwise

Experiment 1: EUF-CMA security experiment for a MAC MAC.

Definition 4 (Signature Scheme). A signature scheme Σ is a triple (KGen,Sign,Ver) of PPT
algorithms, which are defined as follows:

KGen(1κ) : This algorithm takes a security parameter κ as input and outputs a secret (signing) key
sk and a public (verification) key pk with associated message space M (we may omit to make
the message spaceM explicit).

Sign(sk,m) : This algorithm takes a secret key sk and a message m ∈ M as input and outputs a
signature σ.

Ver(pk,m, σ) : This algorithm takes a public key pk, a message m ∈M and a signature σ as input
and outputs a bit b ∈ {0, 1}.

We require a signature scheme to be correct and to provide existential unforgeability under adap-
tively chosen message attacks (EUF-CMA security). For correctness, we require that for all κ ∈ N,
for all (sk, pk)← KGen(1κ) and for all m ∈M it holds that Pr [Ver(pk,m,Sign(sk,m)) = 1] = 1.

Definition 5 (EUF-CMA). For a PPT adversary A, we define the advantage function in the sense
of existential unforgeability under chosen message attacks (EUF-CMA) as

Adveuf-cma
A,Σ (1κ) = Pr

[
Expeuf-cma
A,Σ (1κ) = 1

]
,

where the corresponding experiment is depicted in Experiment 2. If for all PPT adversaries A there
is a negligible function ε(·) such that Adveuf-cma

A,Σ (1κ) ≤ ε(κ), we say that Σ is EUF-CMA secure.

Expeuf-cma
A,Σ (1κ):

(sk, pk)← KGen(1κ), Q ← ∅
(m∗, σ∗)← ASign(pk)

where oracle Sign′(m):

Q ← Q∪ {m}
return Sign(sk,m)

return 1, if Ver(pk,m∗, σ∗) = 1 ∧ m∗ /∈ Q, return 0 otherwise

Experiment 2: EUF-CMA security experiment for a digital signature scheme Σ.

7



Expkem-ind-T
A,KEM (κ):

(sk, pk)← KGen(1κ)

(c∗,K0)← Enc(pk),K1
R←− K

Q ← ∅, b R←− {0, 1}κ

b∗ ← AO(pk, c∗,Kb)

where O = {Dec′} if T = cca with oracle Dec′(c):

Q ← Q∪ {c}
return Dec(sk, c)

return 1, if b = b∗ ∧ c∗ /∈ Q, return otherwise 0

Experiment 3: KEM-IND-T security experiments for KEM with T ∈ {cpa, cca}.

2.3 Key-Encapsulation Mechanisms

Definition 6. A key-encapsulation mechanism (KEM) scheme KEM with key space K consists of
the three PPT algorithms (KGen,Enc,Dec):

KGen(1κ) : On input security parameter κ, outputs public and secret keys (pk, sk).

Enc(pk) : On input pk, outputs a ciphertext c and key K.

Dec(sk, c) : On input sk and c, outputs K or {⊥}.

We call a KEM correct if for all κ ∈ N, for all (pk, sk)← KGen(κ), for all (c,K)← Enc(pk), we have
that

Pr[Dec(sk, c) ̸= K] = 0.

Definition 7. For a PPT adversary A, we define the advantage function in the sense of indistin-
guishability under chosen plaintext attacks (KEM-IND-CPA) and indistinguishability under chosen
ciphertexts attacks (KEM-IND-CCA) as

Advkem-ind-cpa
A,KEM (1κ) =

∣∣∣∣Pr [Expkem-ind-cpa
A,KEM (1κ) = 1

]
− 1

2

∣∣∣∣ , and
Advkem-ind-cca

A,KEM (1κ) =

∣∣∣∣Pr [Expkem-ind-cca
A,KEM (1κ) = 1

]
− 1

2

∣∣∣∣
where the corresponding experiments are depicted in Experiment 3, respectively. If for all PPT
adversaries A there is a negligible function ε(·) such that

Advkem-ind-cpa
A,KEM (1κ) ≤ ε(κ), orAdvkem-ind-cca

A,KEM (1κ) ≤ ε(κ)

we say that KEM is KEM-IND-CPA or KEM-IND-CCA secure, respectively.

2.4 Authenticated Key Exchange

We recall the hybrid authenticated key exchange (HAKE) security model by Dowling et al. [DHP20].
For a general treatment of authenticated key exchanges (AKE), we refer the reader to [DvOW92,KL14].

8



Execution Environment. We consider a set of nP parties P1, . . . , PnP
which are able to run up

to nS sessions of a key exchange protocol between them, where each session may consist of nT

different stages of the protocol. Each party Pi has access to its long-term key pair (ski, pki) and to
the public keys of all other parties. Each session is described by a set of session parameters:

– ρ ∈ {init, resp}: The role (initiator or responder) of the party during the current session
– pid ∈ nP : The communication partner of the current session
– stid ∈ nT : The current stage of the session
– α ∈ {active, accept, reject,⊥}: The status of the session. Initialized with ⊥.
– mi[stid], i ∈ {s, r}: All messages sent (i = s) or received (i = r) by a session up to the stage

stid. Initialized with ⊥.
– k[stid]: All session keys created up to stage stid. Initialized with ⊥.
– exk[stid], x ∈ {q, c, s}: All ephemeral post-quantum(q), classical(c) or symmetric(s) secret keys

created up to stage stid. Initialized with ⊥.
– pss[stid]: The per session secret state (SecState) that is created during the stage stid for the

use in the next stage.
– st[stid]: Storage for other states used by the session in each stage.

We describe the protocol as a set of algorithms (f,KGenXY,KGenZS):

– f(λ, pki, ski, pskidi, pski, π,m) → (m′, π′): a probabilistic algorithm that represents an honest
execution of the protocol. It takes a security parameter λ, the long-term keys pki, ski, the session
parameters π representing the current state of the session and a message m and outputs the
updated session state π′ and a response m′.

– KGenXY (λ) → (pk, sk): a probabilistic asymmetric key generation algorithm that takes a se-
curity parameter λ and creates a public-key, secret-key pair (pk, sk). X ∈ {E,L} determines
whether the created key is an ephemeral (E) or long-term (L) secret. Y ∈ {Q,C} determines
whether the key is classical (C) or post-quantum(Q).

– KGenZS(λ) → (psk, pskid): a probabilistic symmetric key generation algorithm that takes a
security parameter λ and outputs symmetric keying material (psk). Z ∈ {E,L} determines
whether the created key is an ephemeral (E) or long-term (L) secret.

For each party P1, . . . , PnP
, classical as well as post-quantum long-term keys are created using

the corresponding KGenXY algorithms. The challenger then randomly chooses a bit b ∈ 0, 1 that
will determine the key returned by the Test query. From this point on the adversary may interact
with the challenger using the queries defined in the next section. At some point during the execution
of the protocol, the adversary A may issue the Test query and present a guess for the value of b.
If A guesses correctly and the session satisfies the cleanness predicate, the adversary wins the key
indistinguishability Game.

Adversarial Interaction. The HAKE framework defines a range of queries that allow the attacker
to interact with the communication

– Create(i, j, role) → {(s),⊥}: Initializes a new session between party Pi with role ’role’ and
the partner Pj . If the session already exists the query returns ⊥ otherwise the session (s) is
returned.

– Send(i, s,m) → {m′,⊥}: Enables A to send messages to sessions and receive the response m′

by running f for the session πs
i . Returns ⊥ if the session is not active.

– Reveal(i, s, t): Provides A with the session keys corresponding to a session πs
i if the session is

in the accepted state. Otherwise, ⊥ is returned.
– Test(i, s, t) → {kb,⊥}: Provides A with the real (if b=1) or random (b=0) session key for the

key indistinguishably game.
– CorruptXY (i)→ {key,⊥}: Provides A with the long-term XY ∈ { SK,QK,CK} keys for Pi. If

the key has been corrupted previously, ⊥ is returned. Specifically:

9



• CorruptSK: Reveals the pre-shared key
• CorruptQK: Reveals the post-quantum long-term key
• CorruptCK: Reveals the classical long-term key

– CompromiseXY (i, s, t) → {key,⊥}: Provides A with the ephemeral XY ∈ {QK,CK,SK,SS}
keys created during the session πs

i prior to stage t. If the ephemeral key has already been
compromised, ⊥ is returned. Specifically:
• CompromiseQK: Reveals the ephemeral post-quantum key
• CompromiseCK: Reveals the ephemeral classical key
• CompromiseSK: Reveals the ephemeral quantum key
• CompromiseSS: Reveals the ephemeral per session state (SecState)

Matching Sessions. Furthermore, we recall the definitions of matching sessions [LKZC07] and origin
sessions [CF12] which covers that the two parties involved in a session have the same view of their
conversation.

Definition 8 (Matching sessions). We consider two sessions πs
i and πr

j in stage t to be matching
if all messages sent by the former session πs

i .ms[t] match those received by the later πr
j .mr[t] and

all messages sent by the later session πr
j .ms[t] are received by the former πs

i .mr[t].
πs
i considered to be prefix-matching with πr

j if πs
i .ms[t] = πr

j .mr[t]
′ where πr

j .mr[t] is truncated
to the length of πs

i .ms[t] resulting in πr
j .mr[t]

′.

Definition 9 (Origin sessions). We consider a session πs
i to have an origin session with πr

j if
πs
i matches πr

j or if πs
i prefix-matches πr

j .

Security. Dowling et al. define key indistinguishability with respect to a predicate clean. However,
their predicate is specific to Muckle and hence we therefore only give the security notion and
postpone the discussion of the predicate to Section 3.3.

Definition 10. Let Π be a key-exchange protocol and nP , nS , nT ∈ N. For a predicate clean and
an adversary A, we define the advantage of A in the HAKE key-indistinguishability game as

AdvHAKE,clean,A
Π,nP ,nS ,nT

(κ) =
∣∣∣Pr [ExpHAKE,clean,A

Π,nP ,nS ,nT
(κ) = 1

]∣∣∣ .
We say that Π is HAKE-security if AdvHAKE,clean,A

Π,nP ,nS ,nT
(κ) is negligible in the security parameter κ

for all A.

If security also holds against any quantum algorithm A, then we call Π post-quantum secure.

3 Extending Muckle with Signature-Based Authentication

In this section, we recap Muckle [DHP20] and present our novel variant Muckle+.

3.1 Muckle

The Muckle protocol uses a hybrid approach combining classical, post-quantum, and QKD keys
through the use of a key derivation function. More concretely, Muckle requires classical and post-
quantum key encapsulation mechanisms (KEMs) as well as data from a QKD channel (key kq) to
create the final shared secret between communication partners.

Muckle is a multi-stage protocol. While a Muckle instance is active between two parties, a single
stage is run repeatedly, creating a pair of session keys during each execution. The communication
that occurs during one stage of the protocol is detailed in Figure 1.

The Muckle key exchange requires a symmetric pre-shared key PSK and unique party identifiers
(implicit in ℓI and ℓR) to be distributed to the communication partners before the key exchange.

10



Initiator Responder
PSK, headerI , SecState, ℓI , ℓR, ℓc, ℓpq, kq PSK, headerR, SecState, ℓI , ℓR, ℓc, ℓpq, kq

(pkc, skc)← KEMc.KGen(1
κ)

(pkpq, skpq)← KEMpq.KGen(1
κ)

m0 ← (headerI , pkc, pkpq)
mkeyI ← F(F(PSK, SecState), ℓI) mkeyI ← F(F(PSK, SecState), ℓI)

τ0 ← MAC.Auth(mkeyI ,m0) MAC.Ver(mkeyI ,m0, τ0)
?
= 1

m0, τ0−−−−−−−−−−→ cc, rkeyc ← KEMc.Enc(pkc)
cpq, rkeypq ← KEMpq.Enc(pkpq)

m1 ← (headerR, cc, cpq)
mkeyR ← F(F(PSK, SecState), ℓR) mkeyR ← F(F(PSK, SecState), ℓR)

MAC.Ver(mkeyR,m1, τ1)
?
= 1 τ1 ← MAC.Auth(mkeyR,m1)

rkeyc ← KEMc.Dec(skc, cc)
m1, τ1←−−−−−−−−−−

rkeypq ← KEMpq.Dec(skpq, cpq)
kc ← F(rkeyc, ℓc)

kpq ← F(rkeypq, ℓpq)

k0 ← F(kpq,m0∥m1)
k1 ← F(kc, k0)
k2 ← F(kq, k1)

k3 ← F(SecState, k2)
SecState′, kI , kR ← F(k3,m0∥m1∥ctr)

SecState← SecState′

ctr ← ctr + 1

Fig. 1. One stage of the Muckle protocol [DHP20] with a classical KEM KEMc, a post-quantum KEM
KEMpq, a MAC MAC, and a PRF F whereas kq represents the key provided by the QKD link which is
provided out-of-band.

The parties also have to set an initial value for the session secret state SecState. To begin a new
session, the initiator uses the classical KEM KEMc and post-quantum KEM KEMpq to create a
classical key pair (pkc, skc) and a post-quantum key pair (pkpq, skpq), respectively. Both public keys
are then combined with a header containing meta-data into the message m0. The PRF F is applied
over PSK and SecState to create a unique value for the current session, which is then used as an
input in another round of the PRF with the value ℓI resulting in the message key mkeyI . The key
mkeyI is used as the MAC key to create a tag τ0 for the message m0. The message m0 and the tag
τ0 are then sent to the responder.

Receiving the transmission, the responder will check the authenticity of the message m0 by
verifying the tag τ0 with its mkeyI (where mkeyI is derived via PSK, shared SecState, and ℓI). If
the verification succeeds, the responder can now use the encapsulation functions of the KEMs to
create the keys rkeyc and rkeypq as well as the ciphertexts cc and cpq, respectively. The responder
proceeds to create a message m1 and a tag τ1 analogously to the initiator’s MAC procedure, but
using the ciphertexts instead of the public keys and the responder value headerR.

m1 and τ1 are then transmitted to the initiator, who can use them in the KEM decapsulation
function to get the keys rkeyc and rkeypq (after successful verification of m1). From this point on,
the initiator and responder share the same information and proceed with the same steps.

First the both keys are entered into the PRF F together with labels ℓc and ℓpq to create the
further keys. Then the key schedule starts combining all the keys into a final shared secret kI , kR
and setting a new session state as well as incrementing the session counter.

Muckle offers mutual authentication, perfect forward secrecy (PFS) and post-compromise secu-
rity (PCS). Post-compromise security is guaranteed under the condition that at least one previous
stage has been completed without the attacker compromising all the ephemeral (classical, quantum,
post-quantum and session secret) secrets, and that the attacker has been only acting passively since
then.

11



Table 1. Comparison of the protocols in terms of provided security guarantees:
KC (key confirmation), PFS (perfect forward secrecy), PCS (post-compromise
security).

protocol authentication KC PFS PCS

multipath
MAC-based [RS10] ? initiator
SMKEX [CCG+18] ? responder ∗ ∗

post-quantum
SIGMA [Kra03] explicit mutual ✓ ✓
KEMTLS [SSW20] explicit1 responder/mutual ✓2 ✓ ?3

Muckle [DHP20] explicit mutual ✓ ✓ ✓4

∗ not applicable (no long term secret)
1 implicit for client during mutual authentication
2 only for responder authentication
3 PCS is not explicitly shown
4 under the conditions discussed in Section 3.1

Table 2. Values for the contexts used in the Muckle+ key schedule. The context inputs follow the choices
in the TLS 1.3 handshake [DFGS21].

Label Context Input Label Context Input

Hε “” H0 H(“”)
H1 H(m1∥m2) H2 H(m1∥ . . . ∥m3)
H3 H(m1∥ . . . ∥m4)

3.2 Extending Muckle with Signature-Based Authentication

In Table 1, we compare the security properties of the protocols we have discussed in Section 1.2
and Muckle. From this comparison, we can conclude that Muckle offers the most features and is
therefore a suitable candidate for realizing end-to-end secure hybrid authenticated key exchanges.
However, the protocol relies on PSKs for end-to-end authentication. As the other components
including the QKD layer do not provide end-to-end authentication (cf. Section 3.1), we extend
Muckle to also offer mutual signature-based authentication. Through this alteration, we preserve
the desirable security whilst avoiding the issues associated with PSKs. We will from now on refer
to this new protocol as Muckle+.

Like Muckle, Muckle+ is a multi-stage protocol. One such stage is detailed in Figure 2. The basic
structure of Muckle+ is very similar to the original Muckle protocol. Up to the computation of the
final chaining key, the PSK-based authentication is replaced with signature-based authentication
and the addition of two random nonces nI and nR to avoid issues with the reuse of signatures.
We note that the modifications essentially correspond to changing to a SIGMA-style key exchange
with multiple KEMs and an additional PSK that is provided by the QKD link.

3.3 Security of Muckle+

Similar to Muckle, Muckle+ achieves the same security properties including post-compromise se-
curity (PCS) and perfect forward secrecy (PFS). In this section, we formally proof this claim. The
presented security analysis of the Muckle+ protocol is based on the HAKE framework as introduced
by Dowling et al. [DHP20]. We will use the definitions and notations use in the HAKE framework
in this analysis unless stated otherwise.

An adversary A has access all queries defined in the HAKE framework. As no pre-shared key
exists in the Muckle+ protocol, the query CorruptSK will return ⊥ if called. As multiple sessions

12



Initiator Responder
skI , SecState skR, SecState

nI
R←− {0, 1}κ

pkc, skc ← KEMc.KGen()
pkpq, skpq ← KEMpq.KGen()

m1 : pkc, pkpq, nI
−−−−−−−−−−−−−→ nR

R←− {0, 1}κ
cc, ssc ← KEMc.Enc(pkc)

cpq, sspq ← KEMpq.Enc(pkpq)
m2 : cc, cpq, nR←−−−−−−−−−−−−−

ssc ← KEMc.Dec(skc, cc)
sspq ← KEMpq.Dec(skpq, cpq)

kc ← F(ssc, ℓ0∥H1)
kpq ← F(sspq, ℓ1∥H1)

k0 ← F(kpq, ℓ2∥H1)
k1 ← F(kc, ℓ3∥k0)
k2 ← F(kq, ℓ4∥k1)

k3 ← F(SecState, ℓ5∥k2)

CHTS ← F(k3, ℓ7∥H1)
SHTS ← F(k3, ℓ8∥H1)
dHS ← F(k3, ℓ6∥H0)
tkchs ← F(CHTS)
tkshs ← F(SHTS)

fkC ← F(CHTS, ℓ9∥Hε)
fkS ← F(SHTS, ℓ9∥Hε)

σR ← Σ.Sign(skR, ℓ13∥H2)
τR ← MAC.Auth(fkS , H2)

Σ.Ver(pkR, ℓ13∥H2)
?
= 1

m3 : {certR, σR, τR}tkshs←−−−−−−−−−−−−−
MAC.Ver(fkS , H2, τR)

?
= 1

MS ← F(dHS, 0)
CATS ← F(MS, ℓ10∥H2)
SATS ← F(MS, ℓ11∥H2)
SecState← F(MS, ℓ12∥H2)

σI ← Σ.Sign(skI , ℓ14∥H3)
τI ← MAC.Auth(fkC , H3)

m4 : {certI , σI , τI}tkchs−−−−−−−−−−−−−→ Σ.Ver(pkI , ℓ14∥H3, σI)
?
= 1

MAC.Ver(fkC , H3, τI)
?
= 1

Fig. 2. One stage of the Muckle+ protocol. Messages m : {m1, . . .}k denote that m1, . . . is encrypted with
an authenticated encryption scheme using the secret key k. The various contexts and labels are given in
Tables 2 and 3.

13



Table 3. Values for the labels used in the Muckle+ key schedule for domain separation. Some of these
labels are directly based on the corresponding labels in the TLS 1.3 handshake [DFGS21]. The concrete
value of these labels is unimportant as long as they are unique.

Label Label Input Label Label Input

ℓ0 “derive k c” ℓ1 “derive k pq”
ℓ2 “first ck” ℓ3 “second ck”
ℓ4 “third ck” ℓ5 “fourth ck”
ℓ6 “derived” ℓ7 “c hs traffic”
ℓ8 “s hs traffic” ℓ9 “finished”
ℓ10 “c ap traffic” ℓ11 “s ap traffic”
ℓ12 “secstate” ℓ13 “TLS 1.3, server CertificateVerify”
ℓ14 “TLS 1.3, client CertificateVerify”

keys are created in the new protocol, we specify that the key to be guessed during the Test query
is the master secret MS.

We define a new cleanness predicate cleanMuckle+ for our protocol that captures the same goals
– post-compromise security and perfect forward secrecy – but adapt it to match our setting. As our
protocol does not require a long term PSK, we can omit handling compromise of the PSK in our
predicate. We however have to take care of long-term signature keys instead. Hence, we consider
their compromise in cleanMuckle+ as well. Overall, the goal of the cleanness predicate is to handle
the compromise of as many combinations as possible as long as one set of keys – the post-quantum
secure keys or the keys obtained from the QKD link – stay secure.

More formally, we define the cleanness of a session as follows: A session πs
i in stage t is considered

clean under the predicate cleanMuckle+ if:

– Reveal(i, s, t) has not been issued for session πs
i .

– Reveal(j, r, t) has not been issued for all sessions πr
j matching πs

i at stage t.
– If πs

i has a matching session πr
j , at least one of the following conditions has been met:

• No CompromiseQK(i, s, t) or CompromiseQK(j, r, t) have been issued.
• No CompromiseSK(i, s, t) or CompromiseSK(j, r, t) have been issued.
• No CompromiseQK(i, s, t′) or CompromiseQK(j, r, t) have been issued with πs

i matching πr
j

in stages u where t′ ≤ u ≤ t. No CompromiseSS(i, s, u) or CompromiseSS(j, r, u) have been
issued.

• No CompromiseSK(i, s, t′) or CompromiseSK(j, r, t′) have been issued with πs
i matching πr

j

in stages u where t′ ≤ u ≤ t. No CompromiseSS(i, s, u) or CompromiseSS(j, r, u) have been
issued.

– If there exists no (j, r, t) ∈ [nP ]×[nS ]×[nT ] such that πr
j is an origin session of πs

i in stage t, then
either CompromiseSK(i, j, t) and CompromiseSK(j, i, t) or CorruptQK(i) and CorruptQK(j) have
not been issues before πs

i .α[t]← accept. If there exists (j, r, t) ∈ [nP ]× [nS ]× [nT ] such that πr
j

is an origin session of πs
i in stage t, then either CompromiseSK(i, j, t) and CompromiseSK(j, i, t)

or CorruptQK(i) and CorruptQK(j) have not been issued before πr
i .α[t]← accept.

We note that similar to cleanMuckle, we can define classical and quantum variants of the predicate
to also reflect compromise of the classical keys. In that case, cleancMuckle+ is extended to include
the following two conditions for matching sessions πs

i and πr
j :

– No CompromiseCK(i, s, t) or CompromiseCK(j, r, t) have been issued.
– No CompromiseCK(i, s, t′) or CompromiseCK(j, r, t′) have been issued with πs

i matching πr
j in

stages u where t′ ≤ u ≤ t. No CompromiseSS(i, s, u) or CompromiseSS(j, r, u) have been issued.

We will now proof that the proposed protocol is secure with the cleanness predicate cleanMuckle+.
In order to do so, we analyze the five cases corresponding to the conditions that are necessary to
fulfil the cleanMuckle+ predicate.

14



Theorem 1. The Muckle+ key exchange protocol is HAKE-secure with the cleanness predicate
cleanMuckle+ assuming that the PRF F is a dual PRF, the MAC MAC is EUF-CMA secure, the
KEMs KEMc and KEMpq are IND-CPA secure and the signature scheme Σ is EUF-CMA secure. If
the security of F , MAC, KEMpq and Σ or of QKD hold against a quantum adversary, then so does
the security of Muckle+.

Proof. We divide the proof into different cases where the query Test(i, s, t) has been issued and
prove them separately:

1. The session πs
i (where πs

i .ρ = init) has no origin session in stage t.
2. The session πs

i (where πs
i .ρ = resp) has no origin session in stage t.

3. The session πs
i in stage t has a matching session.

Similar to the proof of Muckle, we show the first and the third case. The second case follows
analogously to the first case.

Case 1: Test init session without origin session. In case 1 we show, that A has negligible chance of
getting a session to reach the accept state if a CorruptQK or a CompromiseSK query has been issued.
If the session does not reach the accept stage, the Test query will always return ⊥, preventing A
from winning the indistinguishability game. First we consider the case that no CorruptQK query
has been issue.

Game 0: Standard HAKE-Game

Adv
HAKE,cleanMuckle+,A,C1

Muckle+,nP ,nS ,nT
(κ) = Pr[S0]

Game 1: In Game 1, the parameters (i, s, t) for a session and its matching session (j, r, t) are
guessed. If a Test(i′, s′, t) query is issued for any session πs′

i′ that is not the test session πs
i the

game aborts.
Pr[S0] ≤ n2

PnSnT · Pr[S1]

Game 2: Game 2 aborts, if the test session πs
i ever reaches the status reject. As the Test query

will always return ⊥ is the session reaches this status, the advantage gained by A is 0.

Pr[S0] ≤ n2
PnSnT · Pr[S2]

Game 3: Game 3 aborts, if the session reaches the status accept.

Pr[S0] ≤ n2
PnSnT · Pr[S3]

We now bound the probability of A reaching the abort event. Assuming that the session reaches
the status accept, we construct an EUF-CMA adversary against Σ. The challenge pk is used as the
party’s public key. For all other sessions, the signing oracle is used to produce the corresponding
signatures. Now, if the test session reaches accept stage, we output the signature σI as forgery on
the message ℓ14∥H3. The signature verifies since accept stage was reached and has not been queried
to the signing oracle (except for collisions of the hash function H). Hence, we obtain:

Pr[S0] ≤ n2
PnSnT ·

(
Adveuf-cma

Σ,A (κ)
)

The case that no CompromiseSK query has been issued before reaching the accept stage, follows
analogously to [DHP20, Theorem 1, Case 1] and is not repeated here.

Case 3: Test session with matching session. We will show that any adversary A has a negligible
chance of winning the key-indistinguishability game using a sequence of games for each of the four
cases. We denote with Si the event of the adversary winning game i. Note that the proofs are the
same regardless of whether KEM ∈ {KEMc,KEMpq}, whereas security against a quantum adversary
can only be achieved for KEM = KEMpq. We split the proof into several subcases.

15



Subcase 1: No CompromiseQK(i, s, t) or CompromiseQK(j, r, t) have been issued. Subcase 1 shows,
that if the attacker issues a Test query to a session that is clean due to the secrecy of the ephemeral
post-quantum key, he has a negligible advantage in guessing the test bit. In this scenario all
ephemeral secrets except the post-quantum key as well as the long-term classical and post-quantum
secrets are known to the attacker.

Game 0: Standard HAKE-Game

Adv
HAKE,cleanMuckle+,A,C2

Muckle+,nP ,nS ,nT
(κ) = Pr[S0]

Games 1-7: Games 1 to 7 for Muckle are equivalent to the Games 1 to 7 of the proof of case 3.1
as described in [DHP20], resulting in the following advantage:

Pr[S0] ≤ n2
Pn

2
SnT ·

(
Advind−cpaKEM,A (κ) + 2 · AdvprfF,A(λ) + 3 · Advdual−prfF,A (λ)

)
Game 8: In Game 8 the computation of the derived handshake secret dHS is replaced by a uni-

formly random value. To achieve this, ℓ6 is queried together with the context input H0 and
a PRF challenger is initialized for the computation. The output of the challenger is used to
replace the dHS secret. As k3 is uniformly random by Game 7, this is a valid replacement. To

distinguish between the case where dHS ← F(k3, ℓ6, H0) or dH
R←− {0, 1}κ the attacker would

have to break the prf security of PRF and thus has the following advantage:

Pr[S0] ≤ n2
Pn

2
SnT ·

(
Advind−cpaKEM,A (κ) + 3 · AdvprfF,A(λ) + 3 · Advdual−prfF,A (λ)

)
Game 9: In Game 9 the derivation of the master secret MS is replaced by a uniformly random

value. A PRF challenger is initialised and its output used to replace MS. Since dHS is already
random by Game 8, this is a valid substitution. To distinguish between the case, where MS ←
F(dHS, 0) or M

R←− {0, 1}κ, A would have to break the prf security of PRF which leafs the
attacker with the following advantage:

Pr[S0] ≤ n2
Pn

2
SnT ·

(
Advind−cpaKEM,A (κ) + 4 · AdvprfF,A(λ) + 3 · Advdual−prfF,A (λ)

)
Game 10: In Game 10 the application traffic secrets (CATS,SATS) and the session state SecState

are replaced by a uniformly random value. This is done by initializing a PRF challenger for each
computation and querying the labels 10,11 and 12 as well as the context input H3 and replacing
the corresponding value with the output from the challenger. Since the master secret MS is
already random by Game 9, this is a valid substitution. For A to distinguish between the case

where CATS, SATS,SecState ← F(MS, ℓ{10,11,12}, H3) or CATS, SATS,SecState
R←− {0, 1}F

he would have to break the prf security of PRF.
At this point the application traffic secrets and the session state are shown to be uniformly
random under the condition of case 2 and A has an advantage of

Pr[S0] ≤ n2
Pn

2
SnT ·

(
Advind−cpaKEM,A (κ) + 5 · AdvprfF,A(λ) + 3 · Advdual−prfF,A (λ)

)
Subcase 2: No CompromiseSK(i, s, t) or CompromiseSK(j, r, t) have been issued. This case shows,
that if the attacker issues a Test query to a session that is clean due to the secrecy of the ephemeral
quantum key, he has a negligible advantage in guessing the test bit. In this scenario all ephemeral
secrets except the quantum key as well as the long-term classical and post-quantum secrets are
known to the attacker.

Game 0: Standard HAKE-Game

Adv
HAKE,cleanMuckle+,A,C3

Muckle+,nP ,nS ,nT
(κ) = Pr[S0]

16



Games 1-3: Games 1 to 3 for Muckle are equivalent to Games 1 to 3 of the proof of case 3.2 as
described in [DHP20], resulting in the following advantage:

Pr[S0] ≤ n2
Pn

2
SnT ·

(
AdvprfF,A(κ) + Advdual−prfF,A (λ)

)
Games 4-6: Games 4 to 6 are equivalent to Games 8 to 10 in subcase 1, resulting in the final

advantage of

Pr[S0] ≤ n2
Pn

2
SnT ·

(
4 · AdvprfF,A(κ) + Advdual−prfF,A (λ)

)
Subcase 3: No CompromiseQK(i, s, t′) or CompromiseQK(j, r, t′) have been issued with πs

i matching
πr
j in stages u where t′ ≤ u ≤ t. No CompromiseSS(i, s, u) or CompromiseSS(j, r, u) have been

issued. This case shows, that if a previous session has been completed cleanly under the predicate
cleanMuckle+ and A has not compromised the session state SecState since then, the attacker has a
negligible advantage in guessing the test bit of the current session.

Game 0: Standard HAKE-Game

Adv
HAKE,cleanMuckle+,A,C4

Muckle+,nP ,nS ,nT
(κ) = Pr[S0]

Game 1: In Game 1 the parameters (i, s, t) for a session and its matching session (j, r, t), as well
as the stage t′ are guessed. If A issues a Test(i′, s′, t) query for any session πs′

i′ that is not the
test session πs

i the game aborts.
Pr[S0] ≤ n2

Pn
2
Sn

2
T

Games 2-10: Games 2 to 10 are equivalent to Games 2 to 10 in subcase 1.

Pr[S0] ≤ n2
Pn

2
Sn

2
T ·

(
Advind−cpaKEM,A (κ) + 5 · AdvprfF,A(λ) + 3 · Advdual−prfF,A (λ)

)
After Game 10 the session πs

i has been completed cleanly in stage t′. The following Games take
place in each stage u and are therefore executed not once, but u-times. To represent the worst
case scenario where A has compromised every stage after the first one, we replace the factor u
by nT .

Game 11: In Game 11 the computation of k3 is replaced by a uniformly random value. This is
done by initializing a post-quantum PRF challenger with the value k2 and replacing k3 with the
output. As SecState is uniformly random by Game 10, this is a valid substitution. To distinguish

between the case of k3 ← F(SecState, k2) or k3
R←− {0, 1}F the attacker would have to break

the prf security of the PRF resulting in the advantage:

Pr[S0] ≤ n2
Pn

2
Sn

2
T ·

(
Advind−cpaKEM,A (κ) + (5 + nT ) · AdvprfF,A(λ) + 3 · Advdual−prfF,A (λ)

)
Games 12-14: Games 12 to 14 are equivalent to Games 8 to 10 in case 2

Pr[S0] ≤ n2
Pn

2
Sn

2
T ·

(
Advind−cpaKEM,A (κ) + (5 + 4nT ) · AdvprfF,A(λ) + 3 · Advdual−prfF,A (λ)

)
Subcase 4: No CompromiseSK(i, s, t′) or CompromiseSK(j, r, t′) have been issued with πs

i matching
πr
j in stages u where t′ ≤ u ≤ t. No CompromiseSS(i, s, u) or CompromiseSS(j, r, u) have been

issued. This case shows, that if a previous session has been completed cleanly under the predicate
cleanMuckle+ and A has not compromised the session state SecState since then, the attacker has a
negligible advantage in guessing the test bit of the current session.

Game 0: Standard HAKE-Game

Adv
HAKE,cleanMuckle+,A,C5

Muckle+,np,ns,nt
(κ) = Pr[S0]

17



Game 1: In Game 1 the parameters (i, s, t) for a session and its matching session (j, r, t), as well
as the stage t′ are guessed. If A issues a Test query for any session that is not the test session
πs
i the game aborts.

Pr[S0] ≤ n2
Pn

2
Sn

2
T · Pr[S1]

Games 2-6: Games 2 to 6 are equivalent to Games 2 to 6 in subcase 2

Pr[S0] ≤ n2
Pn

2
Sn

2
T ·

(
4 · AdvprfF,A(κ) + Advdual−prfF,A (λ)

)
After Game 6 the session πs

i has been completed cleanly in stage t′. The following Games take
place in each stage u and are therefore executed not once, but u-times. To represent the worst
case scenario where A has compromised every stage after the first one, we replace the factor u
by nT .

Games 7-10: Games 7 to 10 are equivalent to Games 11 to 14 in subcase 3.

Pr[S0] ≤ n2
Pn

2
Sn

2
T ·

(
(4 + 4nT ) · AdvprfF,A(κ) + Advdual−prfF,A (λ)

)
Finally, we obtain the following advantage.

Adv
HAKE,cleanMuckle+,A
Muckle+,nP ,nS ,nT

(κ) ≤
n2
PnSnT ·

(
Adveuf-cma

Σ,A (κ)
)
+

n2
Pn

2
SnT ·

(
Advind−cpaKEM,A (κ) + 9 · AdvprfF,A(λ) + 4 · Advdual−prfF,A (λ)

)
+

n2
Pn

2
Sn

2
T ·

(
Advind−cpaKEM,A (κ) + (9 + 8nT ) · AdvprfF,A(κ) + 4 · Advdual−prfF,A (λ)

)
3.4 Instantiating Muckle+

Finally, we discuss some possible choices when instantiating the primitives used in Muckle+.
Especially in QKD networks providing high bandwidth communication, the sizes of ciphertexts
and signatures might not be a limiting factor. For the choice of signature schemes, we can thus
consider candidates that are built from hash functions such as XMSS [BDH11,HBG+18] and
SPHINCS+ [BHK+19] or block ciphers such as Picnic [CDG+17,KKW18] and its variant built
from AES named Banquet [BdK+21]. Considering that in high bandwidth networks, the use of
these symmetric primitives is perfectly valid to reduce the consumption of QKD keys, the use of
these signature schemes does not require the addition of any new hardness assumptions to the
overall system.

We however want to note, that with the introduction of a signature-based authentication mecha-
nism, the question arises on how to authenticate the other peer’s public key. Note though, that even
if all public keys are shared a priori, the complexity is reduced to n keys instead of n2 pre-shared
keys. With the introduction of a Public Key Infrastructure (PKI) such as PKIX [CSF+08], the
amount of pre-installed public keys that then serve as certificate authority (CA) can be drastically
reduced. In a setting with only one provider, this can be a single CA. With more providers, various
different scenarios can be considered with one external CA or multiple CAs where, for example,
each provider handles the certification of the public keys used by their network components.

For QKD networks with trusted networks, we note that all trusted nodes have access to the QKD
key. In the HAKE security model, we thus need to assume that CompromiseSK has been queried and
therefore the security of Muckle+ solely relies on the security of the KEM and signature scheme.
To achieve fault tolerance in such a setting, we can consider multipath QKD systems that apply a
typical secret-sharing-based approaches, e.g., [KGSR02,FFGV07]. Thereby, the QKD key is shared
on the initiator side and the shares are transported via mutually disjoint paths in the QKD network
to the receiver. Such an approach has been considered to some extent in the literature specifically
for QKD networks, e.g., to boost throughput [YLL+21] and with semi-trusted and fully-trusted

18



paths [CCCZ23] to increase the security of the network. The latter focuses specifically on the
routing algorithms without going into details on the method to share the keys. By applying the
techniques, e.g., from [KGSR02] to the QKD keys, and under the assumption that at least one path
is non-compromissed or more specifically – similar to the non-collusion in multiparty computation
systems – that none of the nodes on disjunct paths collude, the risk stemming from trusted nodes
can be mitigated.

4 Implementation and Evaluation

In order to evaluate the performance of Muckle+ in practical application, we implemented a proto-
type of the protocol. This prototype was implemented in Python using bindings7 of liboqs [SM16]
for the support of post-quantum primitives and the cryptography8 module for all classically-secure
schemes. As displayed Figure 3, the Muckle+ protocol operates on the application layer. The quan-
tum key material is fetched by all endpoints by their respective key managements services (KMS)
that provide key material to applications via the interfaces from ETSI GS QKD 014 [ETS19].

QKD QKD
QKD link

QKD QKD
QKD link

KM KM
KM link

KM
KM link

Application Application

Muckle+
kq kq

kc

kpq

ETSI GS QKD 014

trusted node trusted node trusted node

Fig. 3. Architecture of a Muckle+ Implementation with a single intermediate node.

While the Muckle+ protocol allows for server-only, as well as mutual authentication, we bench-
marked the implementation with mutual authentication. Authentication of both parties is achieved
through the use of hybrid certificates containing both post-quantum and classical long term public
keys. Certificates were signed with classical (EdDSA [BDL+11]) and post-quantum signatures. We
assumed a 2-tier certificate hierarchy to simulate a PKI hierarchy for Muckle+ closer to the current
practice on the web, e.g., similar to certificates issued by Let’s Encrypt [ABC+19].

Our Muckle+ implementation was set up using a small network with three QKD links offer-
ing two mutually disjoint paths between endpoints. Initiator and responder of the protocol were
executed on a notebook running Windows 10 with an Intel i5 2.60GHz CPU and 8 GB of RAM.
Several instantiations of the protocol using different post-quantum KEMs and signature schemes
were tested, resulting in the execution times displayed in Figure 4 for directly linked nodes. For all
executions of the protocol, the remaining primitives have been instantiated with X25519 [Ber06]
as KEMc, HKDF-SHA2 as PRF and HMAC-SHA2 as MAC.

As there was only marginal difference in execution time between the initiator and responder,
time values in Figure 4 reflect the runtime for the initiator. Our experiments showed, that for

7 https://github.com/open-quantum-safe/liboqs-python
8 https://pypi.org/project/cryptography/

19

https://github.com/open-quantum-safe/liboqs-python
https://pypi.org/project/cryptography/


the majority of tested schemes, the execution time for a single Muckle+ stage ranged from 0.4
to 1.6 seconds. An average of ≈ 0.3 seconds of this runtime can be attributed to the retrieval of
the QKD key. Hence, we could demonstrate, that the determining factor in the performance of the
Muckle+ protocol is the key rate of the QKD link. An exception to this observation are the s-robust
SHA256 and SHAKE variants of SPHINCS+ where the slower runtime is attributed to the lack of
implementations making use of the AVX2 instruction set in liboqs on Windows. Hence, with an
optimized implementation of SHA256 and SHAKE we expect the performance of SPHINCS+ to
be closer to those of the other signature schemes.

SP
H
IN
C
S+

-S
H
A
25
6-
25
6f
-r
ob
us
t

SP
H
IN
C
S+

-S
H
A
25
6-
25
6f
-s
im
pl
e

SP
H
IN
C
S+

-S
H
A
25
6-
25
6s
-r
ob
us
t

SP
H
IN
C
S+

-S
H
A
25
6-
25
6s
-s
im
pl
e

SP
H
IN
C
S+

-S
H
A
K
E
25
6-
25
6f
-r
ob
us
t

SP
H
IN
C
S+

-S
H
A
K
E
25
6-
25
6f
-s
im
pl
e

SP
H
IN
C
S+

-S
H
A
K
E
25
6-
25
6s
-r
ob
us
t

SP
H
IN
C
S+

-S
H
A
K
E
25
6-
25
6s
-s
im
pl
e

D
ili
th
iu
m
5

D
ili
th
iu
m
5-
A
E
S

Fa
lc
on
-1
02
4

P
ic
ni
c-
L
5-
F
S

P
ic
ni
c-
L
5-
fu
ll

P
ic
ni
c3
-L
5

0

2

4

6

8

10

12

1
.0
5
s

0
.6
7
s

6
.9
2
s

3
.2

s

1
.3
2
s

0
.8
6
s

8
.8
8
s

5
.0
8
s

0
.3
4
s

0
.3
4
s

0
.3
7
s

0
.4
2
s

0
.3
8
s

0
.5
2
s

1
.0
6
s

0
.6
5
s

6
.9
1
s

3
.2
2
s

1
.3
5
s

0
.9
1
s

9
.0
1
s

5
.0
8
s

0
.3
4
s

0
.3
5
s

0
.3
8
s

0
.4
2
s

0
.3
7
s

0
.5
4
s

Kyber1024

NTRU-HPS-2048-509

Fig. 4. Execution time of a single Muckle+ stage with mutual authentication. Times are in seconds.

In Figure 5, the results of the same experiment with a multi-path setup are depicted. The
additional delay is caused by the intermediate nodes fetching additional key material in a serial
manner. The overall execution time of the protocol is thus influenced by the slowest path which in
our setup corresponds to the longest path. Overall, we can thus conclude that the overhead of our
end-to-end secure protocol for hybrid networks is mainly influenced by the performance of the key
rate provided by the QKD network.

5 Conclusion and Outlook

With Muckle+, we extend the hybrid authenticated key exchange protocol Muckle with signature-
based authentication. Thereby, we are able to provide both certificate-based mutual or unilateral
authentication depending on the intended use-case. Our implementation and evaluation of the
protocol within a small QKD network demonstrates its practical feasibility. With our intended
message flow of the protocol, Muckle+ may be integrated in typical scenarios where especially the
authenticity of the responder is essential. We however note that there might be other trade-offs in
the order and structure the messages if different privacy properties are required for an application,
e.g., SIGMA with responder privacy or a protocol with forward privacy [SSL20,RSW21].

Note also that the Muckle+ protocol offers features that are interesting for a wide range of
applications in a similar setting as found in many of today’s applications. Indeed, if one considers

20



SP
H
IN
C
S+

-S
H
A
25
6-
25
6f
-r
ob
us
t

SP
H
IN
C
S+

-S
H
A
25
6-
25
6f
-s
im
pl
e

SP
H
IN
C
S+

-S
H
A
25
6-
25
6s
-r
ob
us
t

SP
H
IN
C
S+

-S
H
A
25
6-
25
6s
-s
im
pl
e

SP
H
IN
C
S+

-S
H
A
K
E
25
6-
25
6f
-r
ob
us
t

SP
H
IN
C
S+

-S
H
A
K
E
25
6-
25
6f
-s
im
pl
e

SP
H
IN
C
S+

-S
H
A
K
E
25
6-
25
6s
-r
ob
us
t

SP
H
IN
C
S+

-S
H
A
K
E
25
6-
25
6s
-s
im
pl
e

D
ili
th
iu
m
5

D
ili
th
iu
m
5-
A
E
S

Fa
lc
on
-1
02
4

P
ic
ni
c-
L
5-
F
S

P
ic
ni
c-
L
5-
fu
ll

P
ic
ni
c3
-L
5

0

2

4

6

8

10

12

1
.8
5
s

1
.4

s

7
.6
7
s

4
.0
1
s

2
.1
2
s

1
.6
6
s

9
.6
4
s

5
.8
4
s

1
.1
2
s

1
.1
2
s

1
.1
6
s

1
.2
2
s

1
.1
5
s

1
.2
7
s

1
.8
8
s

1
.5

s

7
.6
6
s

3
.9
4
s

2
.1
1
s

1
.6
8
s

9
.8
6
s

5
.9
2
s

1
.1
1
s

1
.1

s

1
.1
5
s

1
.1
7
s

1
.1
9
s

1
.3
3
s

Kyber1024

NTRU-HPS-2048-509

Fig. 5. Execution time of a single Muckle+ stage with mutual authentication. Times are in seconds.

classical client-server uses on the web, it is expected that one can connect to almost any server on
the network without additional configuration. Hence, handling shared state such as the pre-shared
keys is not desired to scalability issues as well as the out-of-band communication. Considering
more high-level use-cases that are envisioned in EuroQCI where network-wide key management
systems will provide QKD keys to security applications, ensuring authenticity with certificate-
based mechanisms will provide better scalability especially considering that nowadays process for
certificate management can be fully automated [ABC+19].

Acknowledgements. The authors want to thank Christian Rechberger and Felix Wissel for insight-
ful discussions, and Florian Kutschera for helping with the setup of the QKD devices. This work
received funding from the Austrian Research Promotion Agency (FFG) under grant agreement
number FO999886370 (“QKD4GOV”), from the European Defence Industrial Development Pro-
gramme (EDIDP) under grant agreement number SI2858093 (“DISCRETION”), and from Digital
Europe Program under grant agreement number 101091642 (“QCI-CAT”).

References

ABB+14. Romain Alléaume, Cyril Branciard, Jan Bouda, Thierry Debuisschert, Mehrdad Dianati, Nico-
las Gisin, Mark Godfrey, Philippe Grangier, Thomas Länger, Norbert Lütkenhaus, Christian
Monyk, Philippe Painchault, Momtchil Peev, Andreas Poppe, Thomas Pornin, John G. Rarity,
Renato Renner, Gregoire Ribordy, Michel Riguidel, Louis Salvail, Andrew Shields, Harald We-
infurter, and Anton Zeilinger. Using quantum key distribution for cryptographic purposes: A
survey. Theor. Comput. Sci., 560:62–81, 2014. doi:10.1016/j.tcs.2014.09.018.

ABC+19. Josh Aas, Richard Barnes, Benton Case, Zakir Durumeric, Peter Eckersley, Alan Flores-López,
J. Alex Halderman, Jacob Hoffman-Andrews, James Kasten, Eric Rescorla, Seth D. Schoen, and
Brad Warren. Let’s encrypt: An automated certificate authority to encrypt the entire web. In
Lorenzo Cavallaro, Johannes Kinder, XiaoFeng Wang, and Jonathan Katz, editors, ACM CCS
2019, pages 2473–2487. ACM Press, November 2019. doi:10.1145/3319535.3363192.

BBC+21. Ayan Biswas, Anindya Banerji, Pooja Chandravanshi, Rupesh Kumar, and Ravindra P. Singh.
Experimental side channel analysis of bb84 qkd source. IEEE Journal of Quantum Electronics,
57(6):1–7, 2021. doi:10.1109/JQE.2021.3111332.

21

https://doi.org/10.1016/j.tcs.2014.09.018
https://doi.org/10.1145/3319535.3363192
https://doi.org/10.1109/JQE.2021.3111332


BBF+19. Nina Bindel, Jacqueline Brendel, Marc Fischlin, Brian Goncalves, and Douglas Stebila. Hybrid
key encapsulation mechanisms and authenticated key exchange. In Jintai Ding and Rainer
Steinwandt, editors, Post-Quantum Cryptography - 10th International Conference, PQCrypto
2019, pages 206–226. Springer, Heidelberg, 2019. doi:10.1007/978-3-030-25510-7_12.

BCNS15. Joppe W. Bos, Craig Costello, Michael Naehrig, and Douglas Stebila. Post-quantum key ex-
change for the TLS protocol from the ring learning with errors problem. In 2015 IEEE Sym-
posium on Security and Privacy, pages 553–570. IEEE Computer Society Press, May 2015.
doi:10.1109/SP.2015.40.

BDH11. Johannes A. Buchmann, Erik Dahmen, and Andreas Hülsing. XMSS - A practical forward
secure signature scheme based on minimal security assumptions. In Bo-Yin Yang, editor, Post-
Quantum Cryptography - 4th International Workshop, PQCrypto 2011, pages 117–129. Springer,
Heidelberg, November / December 2011. doi:10.1007/978-3-642-25405-5_8.

BdK+21. Carsten Baum, Cyprien de Saint Guilhem, Daniel Kales, Emmanuela Orsini, Peter Scholl,
and Greg Zaverucha. Banquet: Short and fast signatures from AES. In Juan Garay, edi-
tor, PKC 2021, Part I, volume 12710 of LNCS, pages 266–297. Springer, Heidelberg, May 2021.
doi:10.1007/978-3-030-75245-3_11.

BDL+11. Daniel J. Bernstein, Niels Duif, Tanja Lange, Peter Schwabe, and Bo-Yin Yang. High-speed
high-security signatures. In Bart Preneel and Tsuyoshi Takagi, editors, CHES 2011, volume 6917
of LNCS, pages 124–142. Springer, Heidelberg, September / October 2011. doi:10.1007/978-
3-642-23951-9_9.

Ber06. Daniel J. Bernstein. Curve25519: New Diffie-Hellman speed records. In Moti Yung, Yevgeniy
Dodis, Aggelos Kiayias, and Tal Malkin, editors, PKC 2006, volume 3958 of LNCS, pages 207–
228. Springer, Heidelberg, April 2006. doi:10.1007/11745853_14.

Beu22. Ward Beullens. Breaking Rainbow takes a weekend on a laptop. Cryptology ePrint Archive,
Report 2022/214, 2022. https://eprint.iacr.org/2022/214.

BFG19. Jacqueline Brendel, Marc Fischlin, and Felix Günther. Breakdown resilience of key exchange
protocols: NewHope, TLS 1.3, and hybrids. In Kazue Sako, Steve Schneider, and Peter Y. A.
Ryan, editors, ESORICS 2019, Part II, volume 11736 of LNCS, pages 521–541. Springer, Hei-
delberg, September 2019. doi:10.1007/978-3-030-29962-0_25.

BHK+19. Daniel J. Bernstein, Andreas Hülsing, Stefan Kölbl, Ruben Niederhagen, Joost Rijneveld, and
Peter Schwabe. The SPHINCS+ signature framework. In Lorenzo Cavallaro, Johannes Kinder,
XiaoFeng Wang, and Jonathan Katz, editors, ACM CCS 2019, pages 2129–2146. ACM Press,
November 2019. doi:10.1145/3319535.3363229.

BL15. Mihir Bellare and Anna Lysyanskaya. Symmetric and dual PRFs from standard assumptions:
A generic validation of an HMAC assumption. Cryptology ePrint Archive, Report 2015/1198,
2015. https://eprint.iacr.org/2015/1198.

BMP00. Victor Boyko, Philip D. MacKenzie, and Sarvar Patel. Provably secure password-authenticated
key exchange using Diffie-Hellman. In Bart Preneel, editor, EUROCRYPT 2000, volume 1807
of LNCS, pages 156–171. Springer, Heidelberg, May 2000. doi:10.1007/3-540-45539-6_12.

BPR00. Mihir Bellare, David Pointcheval, and Phillip Rogaway. Authenticated key exchange secure
against dictionary attacks. In Bart Preneel, editor, EUROCRYPT 2000, volume 1807 of LNCS,
pages 139–155. Springer, Heidelberg, May 2000. doi:10.1007/3-540-45539-6_11.

BR95. Mihir Bellare and Phillip Rogaway. Provably secure session key distribution: The three party
case. In 27th ACM STOC, pages 57–66. ACM Press, May / June 1995. doi:10.1145/225058.
225084.

CCCZ23. Liquan Chen, Jing-Qi Chen, Qian-Ye Chen, and Yong-Li Zhao. A quantum key distribution
routing scheme for hybrid-trusted QKD network system. Quantum Inf. Process., 22(1):75, 2023.
doi:10.1007/s11128-022-03825-x.

CCG+18. Sergiu Costea, Marios O. Choudary, Doru Gucea, Björn Tackmann, and Costin Raiciu. Secure
opportunistic multipath key exchange. In David Lie, Mohammad Mannan, Michael Backes,
and XiaoFeng Wang, editors, ACM CCS 2018, pages 2077–2094. ACM Press, October 2018.
doi:10.1145/3243734.3243791.

CDG+17. Melissa Chase, David Derler, Steven Goldfeder, Claudio Orlandi, Sebastian Ramacher, Christian
Rechberger, Daniel Slamanig, and Greg Zaverucha. Post-quantum zero-knowledge and signa-
tures from symmetric-key primitives. In Bhavani M. Thuraisingham, David Evans, Tal Malkin,
and Dongyan Xu, editors, ACM CCS 2017, pages 1825–1842. ACM Press, October / November
2017. doi:10.1145/3133956.3133997.

22

https://doi.org/10.1007/978-3-030-25510-7_12
https://doi.org/10.1109/SP.2015.40
https://doi.org/10.1007/978-3-642-25405-5_8
https://doi.org/10.1007/978-3-030-75245-3_11
https://doi.org/10.1007/978-3-642-23951-9_9
https://doi.org/10.1007/978-3-642-23951-9_9
https://doi.org/10.1007/11745853_14
https://eprint.iacr.org/2022/214
https://doi.org/10.1007/978-3-030-29962-0_25
https://doi.org/10.1145/3319535.3363229
https://eprint.iacr.org/2015/1198
https://doi.org/10.1007/3-540-45539-6_12
https://doi.org/10.1007/3-540-45539-6_11
https://doi.org/10.1145/225058.225084
https://doi.org/10.1145/225058.225084
https://doi.org/10.1007/s11128-022-03825-x
https://doi.org/10.1145/3243734.3243791
https://doi.org/10.1145/3133956.3133997


CF12. Cas J. F. Cremers and Michele Feltz. Beyond eCK: Perfect forward secrecy under actor com-
promise and ephemeral-key reveal. In Sara Foresti, Moti Yung, and Fabio Martinelli, editors,
ESORICS 2012, volume 7459 of LNCS, pages 734–751. Springer, Heidelberg, September 2012.
doi:10.1007/978-3-642-33167-1_42.

CSF+08. David Cooper, Stefan Santesson, Stephen Farrell, Sharon Boeyen, Russell Housley, and W. Tim-
othy Polk. Internet X.509 public key infrastructure certificate and certificate revocation list
(CRL) profile. RFC, 5280:1–151, 2008. doi:10.17487/RFC5280.

DFGS21. Benjamin Dowling, Marc Fischlin, Felix Günther, and Douglas Stebila. A cryptographic analysis
of the TLS 1.3 handshake protocol. Journal of Cryptology, 34(4):37, October 2021. doi:

10.1007/s00145-021-09384-1.
DH76. Whitfield Diffie and Martin E. Hellman. New directions in cryptography. IEEE Transactions

on Information Theory, 22(6):644–654, 1976. doi:10.1109/TIT.1976.1055638.
DHP20. Benjamin Dowling, Torben Brandt Hansen, and Kenneth G. Paterson. Many a mickle makes a

muckle: A framework for provably quantum-secure hybrid key exchange. In Jintai Ding and Jean-
Pierre Tillich, editors, Post-Quantum Cryptography - 11th International Conference, PQCrypto
2020, pages 483–502. Springer, Heidelberg, 2020. doi:10.1007/978-3-030-44223-1_26.

Don17. Jason A. Donenfeld. WireGuard: Next generation kernel network tunnel. In NDSS 2017. The
Internet Society, February / March 2017.

DvOW92. Whitfield Diffie, Paul C. van Oorschot, and Michael J. Wiener. Authentication and authenti-
cated key exchanges. Des. Codes Cryptogr., 2(2):107–125, 1992. doi:10.1007/BF00124891.

ETS19. ETSI. Quantum key distribution (qkd): Protocol and data format of rest-based key delivery
api, 2019. URL: https://www.etsi.org/deliver/etsi_gs/QKD/001_099/014/01.01.01_60/

gs_qkd014v010101p.pdf.
FFGV07. Matthias Fitzi, Matthew K. Franklin, Juan A. Garay, and S. Harsha Vardhan. Towards optimal

and efficient perfectly secure message transmission. In Salil P. Vadhan, editor, TCC 2007,
volume 4392 of LNCS, pages 311–322. Springer, Heidelberg, February 2007. doi:10.1007/978-
3-540-70936-7_17.

HAD+22. Bruno Huttner, Romain Alléaume, Eleni Diamanti, Florian Fröwis, Philippe Grang-
ierand Hannes Hübel, Vicente Martin, Andreas Poppe, Joshua A. Slater, Tim Spiller, Wolfgang
Tittel, Benoit Tranier, Adrian Wonfor, and Hugo Zbinden. Long-range qkd without trusted
nodes is not possible with current technology. npj Quantum Information, 8(1):1–5, 2022.

HBG+18. Andreas Hülsing, Denis Butin, Stefan-Lukas Gazdag, Joost Rijneveld, and Aziz Mohaisen.
XMSS: extended merkle signature scheme. RFC, 8391:1–74, 2018. doi:10.17487/RFC8391.

HKSU20. Kathrin Hövelmanns, Eike Kiltz, Sven Schäge, and Dominique Unruh. Generic authenticated
key exchange in the quantum random oracle model. In Aggelos Kiayias, Markulf Kohlweiss,
Petros Wallden, and Vassilis Zikas, editors, PKC 2020, Part II, volume 12111 of LNCS, pages
389–422. Springer, Heidelberg, May 2020. doi:10.1007/978-3-030-45388-6_14.

HNS+21. Andreas Hülsing, Kai-Chun Ning, Peter Schwabe, Florian Weber, and Philip R. Zimmermann.
Post-quantum WireGuard. In 2021 IEEE Symposium on Security and Privacy, pages 304–321.
IEEE Computer Society Press, May 2021. doi:10.1109/SP40001.2021.00030.

IT21. Jana Iyengar and Martin Thomson. QUIC: A udp-based multiplexed and secure transport.
RFC, 9000:1–151, 2021. doi:10.17487/RFC9000.

Kau05. Charlie Kaufman. Internet key exchange (ikev2) protocol. RFC, 4306:1–99, 2005. doi:10.

17487/RFC4306.
KGSR02. M. V. N. Ashwin Kumar, Pranava R. Goundan, K. Srinathan, and C. Pandu Rangan. On

perfectly secure cmmunication over arbitrary networks. In Aleta Ricciardi, editor, 21st ACM
PODC, pages 193–202. ACM, July 2002. doi:10.1145/571825.571858.

KKW18. Jonathan Katz, Vladimir Kolesnikov, and Xiao Wang. Improved non-interactive zero knowledge
with applications to post-quantum signatures. In David Lie, Mohammad Mannan, Michael
Backes, and XiaoFeng Wang, editors, ACM CCS 2018, pages 525–537. ACM Press, October
2018. doi:10.1145/3243734.3243805.

KL14. Jonathan Katz and Yehuda Lindell. Introduction to Modern Cryptography, Second Edition. CRC
Press, 2014. URL: https://www.crcpress.com/Introduction-to-Modern-Cryptography-

Second-Edition/Katz-Lindell/p/book/9781466570269.
Kra03. Hugo Krawczyk. SIGMA: The “SIGn-and-MAc” approach to authenticated Diffie-Hellman and

its use in the IKE protocols. In Dan Boneh, editor, CRYPTO 2003, volume 2729 of LNCS,
pages 400–425. Springer, Heidelberg, August 2003. doi:10.1007/978-3-540-45146-4_24.

23

https://doi.org/10.1007/978-3-642-33167-1_42
https://doi.org/10.17487/RFC5280
https://doi.org/10.1007/s00145-021-09384-1
https://doi.org/10.1007/s00145-021-09384-1
https://doi.org/10.1109/TIT.1976.1055638
https://doi.org/10.1007/978-3-030-44223-1_26
https://doi.org/10.1007/BF00124891
https://www.etsi.org/deliver/etsi_gs/QKD/001_099/014/01.01.01_60/gs_qkd014v010101p.pdf
https://www.etsi.org/deliver/etsi_gs/QKD/001_099/014/01.01.01_60/gs_qkd014v010101p.pdf
https://doi.org/10.1007/978-3-540-70936-7_17
https://doi.org/10.1007/978-3-540-70936-7_17
https://doi.org/10.17487/RFC8391
https://doi.org/10.1007/978-3-030-45388-6_14
https://doi.org/10.1109/SP40001.2021.00030
https://doi.org/10.17487/RFC9000
https://doi.org/10.17487/RFC4306
https://doi.org/10.17487/RFC4306
https://doi.org/10.1145/571825.571858
https://doi.org/10.1145/3243734.3243805
https://www.crcpress.com/Introduction-to-Modern-Cryptography-Second-Edition/Katz-Lindell/p/book/9781466570269
https://www.crcpress.com/Introduction-to-Modern-Cryptography-Second-Edition/Katz-Lindell/p/book/9781466570269
https://doi.org/10.1007/978-3-540-45146-4_24


KSL+19. Krzysztof Kwiatkowski, Nick Sullivan, Adam Langley, Dave Levin, and Alan Mislove. Mea-
suring tls key exchange with post-quantum kem. Workshop Record of the Second PQC
Standardization Conference, 2019. https://csrc.nist.gov/CSRC/media/Events/Second-

PQC-Standardization-Conference/documents/accepted-papers/kwiatkowski-measuring-

tls.pdf.
Lan16. Adam Langley. Cecpq1 results. Blog post, 2016. https://www.imperialviolet.org/2016/11/

28/cecpq1.html.
LKZC07. Jin Li, Kwangjo Kim, Fangguo Zhang, and Xiaofeng Chen. Aggregate proxy signature and

verifiably encrypted proxy signature. In Willy Susilo, Joseph K. Liu, and Yi Mu, editors,
ProvSec 2007, volume 4784 of LNCS, pages 208–217. Springer, Heidelberg, November 2007.

LRW+17. Adam Langley, Alistair Riddoch, Alyssa Wilk, Antonio Vicente, Charles Krasic, Dan Zhang,
Fan Yang, Fedor Kouranov, Ian Swett, Janardhan R. Iyengar, Jeff Bailey, Jeremy Dorfman,
Jim Roskind, Joanna Kulik, Patrik Westin, Raman Tenneti, Robbie Shade, Ryan Hamilton,
Victor Vasiliev, Wan-Teh Chang, and Zhongyi Shi. The QUIC transport protocol: Design and
internet-scale deployment. In Proceedings of the Conference of the ACM Special Interest Group
on Data Communication, SIGCOMM 2017, Los Angeles, CA, USA, August 21-25, 2017, pages
183–196. ACM, 2017. doi:10.1145/3098822.3098842.

Mau93. Ueli M. Maurer. Protocols for secret key agreement by public discussion based on common
information. In Ernest F. Brickell, editor, CRYPTO’92, volume 740 of LNCS, pages 461–470.
Springer, Heidelberg, August 1993. doi:10.1007/3-540-48071-4_32.

MNR+20. Miralem Mehic, Marcin Niemiec, Stefan Rass, Jiajun Ma, Momtchil Peev, Alejandro Aguado,
Vicente Mart́ın, Stefan Schauer, Andreas Poppe, Christoph Pacher, and Miroslav Voznák. Quan-
tum key distribution: A networking perspective. ACM Comput. Surv., 53(5):96:1–96:41, 2020.
doi:10.1145/3402192.

MSU13. Michele Mosca, Douglas Stebila, and Berkant Ustaoglu. Quantum key distribution in the clas-
sical authenticated key exchange framework. In Philippe Gaborit, editor, Post-Quantum Cryp-
tography - 5th International Workshop, PQCrypto 2013, pages 136–154. Springer, Heidelberg,
June 2013. doi:10.1007/978-3-642-38616-9_9.

PST20. Christian Paquin, Douglas Stebila, and Goutam Tamvada. Benchmarking post-quantum cryp-
tography in TLS. In Jintai Ding and Jean-Pierre Tillich, editors, Post-Quantum Cryptogra-
phy - 11th International Conference, PQCrypto 2020, pages 72–91. Springer, Heidelberg, 2020.
doi:10.1007/978-3-030-44223-1_5.

Res18. Eric Rescorla. The transport layer security (TLS) protocol version 1.3. RFC, 8446:1–160, 2018.
doi:10.17487/RFC8446.

RK11. Stefan Rass and Sandra König. Indirect eavesdropping in quantum networks. In ICQNM 2011:
The Fifth International Conference on Quantum, Nano and Micro Technologies, 10 2011.

RKJ+21. Leila Rashidi, Daniel Kostecki, Alexander James, Anthony Peterson, Majid Ghaderi, Samuel
Jero, Cristina Nita-Rotaru, Hamed Okhravi, and Reihaneh Safavi-Naini. More than a fair
share: Network data remanence attacks against secret sharing-based schemes. In NDSS 2021.
The Internet Society, February 2021.

RS10. Stefan Rass and Peter Schartner. Multipath authentication without shared secrets and with
applications in quantum networks. In Hamid R. Arabnia, Kevin Daimi, Michael R. Grimaila,
George Markowsky, Selim Aissi, Victor A. Clincy, Leonidas Deligiannidis, Donara Gabrielyan,
Gevorg Margarov, Ashu M. G. Solo, Craig Valli, and Patricia A. H. Williams, editors, Proceed-
ings of the 2010 International Conference on Security & Management, SAM 2010, July 12-15,
2010, Las Vegas Nevada, USA, 2 Volumes, pages 111–115. CSREA Press, 2010.

RSW21. Sebastian Ramacher, Daniel Slamanig, and Andreas Weninger. Privacy-preserving authenti-
cated key exchange: Stronger privacy and generic constructions. In Elisa Bertino, Haya Shul-
man, and Michael Waidner, editors, ESORICS 2021, Part II, volume 12973 of LNCS, pages
676–696. Springer, Heidelberg, October 2021. doi:10.1007/978-3-030-88428-4_33.

SM16. Douglas Stebila and Michele Mosca. Post-quantum key exchange for the internet and the open
quantum safe project. In Roberto Avanzi and Howard M. Heys, editors, SAC 2016, volume 10532
of LNCS, pages 14–37. Springer, Heidelberg, August 2016. doi:10.1007/978-3-319-69453-5_2.

SSL20. Sven Schäge, Jörg Schwenk, and Sebastian Lauer. Privacy-preserving authenticated key ex-
change and the case of IKEv2. In Aggelos Kiayias, Markulf Kohlweiss, Petros Wallden, and
Vassilis Zikas, editors, PKC 2020, Part II, volume 12111 of LNCS, pages 567–596. Springer,
Heidelberg, May 2020. doi:10.1007/978-3-030-45388-6_20.

24

https://csrc.nist.gov/CSRC/media/Events/Second-PQC-Standardization-Conference/documents/accepted- papers/kwiatkowski-measuring-tls.pdf
https://csrc.nist.gov/CSRC/media/Events/Second-PQC-Standardization-Conference/documents/accepted- papers/kwiatkowski-measuring-tls.pdf
https://csrc.nist.gov/CSRC/media/Events/Second-PQC-Standardization-Conference/documents/accepted- papers/kwiatkowski-measuring-tls.pdf
https://www.imperialviolet. org/2016/11/28/cecpq1.html
https://www.imperialviolet. org/2016/11/28/cecpq1.html
https://doi.org/10.1145/3098822.3098842
https://doi.org/10.1007/3-540-48071-4_32
https://doi.org/10.1145/3402192
https://doi.org/10.1007/978-3-642-38616-9_9
https://doi.org/10.1007/978-3-030-44223-1_5
https://doi.org/10.17487/RFC8446
https://doi.org/10.1007/978-3-030-88428-4_33
https://doi.org/10.1007/978-3-319-69453-5_2
https://doi.org/10.1007/978-3-030-45388-6_20


SSW20. Peter Schwabe, Douglas Stebila, and Thom Wiggers. Post-quantum TLS without handshake
signatures. In Jay Ligatti, Xinming Ou, Jonathan Katz, and Giovanni Vigna, editors, ACM
CCS 2020, pages 1461–1480. ACM Press, November 2020. doi:10.1145/3372297.3423350.

YLL+21. Xiaosong Yu, Xiang Liu, Yuhang Liu, Avishek Nag, Xingyu Zou, Yongli Zhao, and Jie Zhang.
Multi-path-based quasi-real-time key provisioning in quantum-key-distribution enabled optical
networks (qkd-on). Opt. Express, 29(14):21225–21239, Jul 2021. doi:10.1364/OE.425562.

Zha16. Yunlei Zhao. Identity-concealed authenticated encryption and key exchange. In Edgar R.
Weippl, Stefan Katzenbeisser, Christopher Kruegel, Andrew C. Myers, and Shai Halevi, editors,
ACM CCS 2016, pages 1464–1479. ACM Press, October 2016. doi:10.1145/2976749.2978350.

25

https://doi.org/10.1145/3372297.3423350
https://doi.org/10.1364/OE.425562
https://doi.org/10.1145/2976749.2978350

	Muckle+: End-to-End Hybrid Authenticated Key Exchanges

