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Abstract. In this paper we propose a new construction for building
universal hash functions, a specific instance called multi-265, and pro-
vide proofs for their universality. Our construction follows the key-then-
hash parallel paradigm. In a first step it adds a variable length input
message to a secret key and splits the result in blocks. Then it applies
a fixed-length public function to each block and adds their results to
form the output. The innovation presented in this work lies in the public
function: we introduce the multiply-transform-multiply-construction that
makes use of field multiplication and linear transformations. We prove
upper bounds for the universality of key-then-hash parallel hash func-
tions making use of a public function with our construction provided the
linear transformation are maximum-distance-separable (MDS). We ad-
ditionally propose a concrete instantiation of our construction multi-265,
where the underlying public function uses a near-MDS linear transfor-
mation and prove it to be 2−154-universal. We also make the reference
code for multi-265 available.

Keywords: Primitive · Keyed hashing · Parallel · Forgery · Multi-
265

1 Introduction

Message authentication code (MAC) functions strive to provide protection against
forgery where forgery is defined according to the following scenario. An adversary
gains access to a generation oracle and a verification oracle, where the generation
oracle returns a tag given an input of a message (and nonce) and the verification
oracle for a given tag, message (and nonce) returns whether the tag is valid or
not. Forgery consists of a successfull verification query where the message (and
nonce) was not used in any generation query.

There are two mainstream approaches to build MAC functions: the nonce
based Wegman-Carter-Shoup (WCS) construction[18][20] or hash-then-encrypt
construction[11]. In both approaches MAC functions consist of two phases: a
⋆ Corresponding author
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compression phase that converts a variable-length input into a fixed-size state
under a secret key and a scrambling phase that takes this state and turns it into
an output by the use of a pseudorandom function (PRF) or permutation (PRP).
In this paper we consider only the compression phase and will refer to it as a
keyed hash function.

The security of the compression phase of a hash-then-encrypt MAC function
FK depends on the success probability, taken over the key space of an optimal
attacker, to generate collisions at the output of FK : Finding M and M∗ such
FK(M) = FK(M∗). The ε-universality[19] of FK upper bounds the probability of
obtaining such a collision. This can further be generalised to ε-∆universality[19],
which is an upper bound for the success probability, taken over the key space of
an optimal attacker, to find a particular output difference at the output of FK:
Finding M and M∗ such FK(M) − FK(M∗) = ∆. The latter is relevant for the
security of WC(S) MAC functions.

In the literature we see three main categories of keyed hash function construc-
tions. The first category builds them as modes of strong cryptographic primitive,
like constructions based on cryptographic hash functions such as HMAC[2] and
NMAC[2], or block ciphers such as CBC-MAC[3], CMAC[6] and PMAC[7]. The
second category builds more efficient functions by applying simple algebraic con-
structions using multiplication and addition in a finite field such as GHASH[16]
and Poly1305[4]. The third category does the same but in a different way: by
using public permutations with a relatively small number of rounds.

In keyed hash functions of this third category, a message of variable length
is parsed into blocks of a fixed size and added block-by-block to a long key. The
latter is typically generated from a short key by means of a stream cipher or a
key-schedule like computation. The resulting string can be processed in essen-
tially two ways: parallel or serial. The parallel construction applies the public
permutation to the blocks in parallel and adds the corresponding results to form
the output. We see this construction in the compression phases of Kravatte[5]
and Xoofff[8]. The serial construction applies the permutation serially to each
block with the permutation result of the previous block added to it, much like
CBC-MAC. This construction is an idealized version of the compression phase
of Pelican-MAC[9], in the sense that in Pelican-MAC there is no key added to
the message prior to compression, but rather it starts from a secret IV.

Fuchs et al. investigated the security of both constructions in[11]. They show
that the universality of the parallel construction is at least as good as that of the
serial construction, and can be much better. Moreover, both constructions have
the same workload per block but the serial construction cannot be parallelized
and therefore the parallel construction is superior.

In this paper we study a variant of the permutation-based parallel keyed
hashing: instead of a public permutation we make use of a public function that
is not invertible.
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1.1 Our Contribution

In this paper we first generalize the results of [11] to the parallelization of a
public function. The main innovation in this work lies in the public function: we
introduce the multiply-transform-multiply-construction that makes use of field
multiplication and linear transformations. We prove upper bounds for the uni-
versality of key-then-hash parallel hash functions making use of a public func-
tion with our construction provided the linear transformations are maximum-
distance-separable (MDS)[10]. We prove that they are 2/pn-∆universal with the
multiplication taking place in the field with p elements, where p is a prime,
provided that the linear transformations employed are n × n MDS matrices.

In secure multi-party computation (MPC), fully homomorphic encryption
(FHE), zero-knowledge (ZK) schemes, data is typically encoded in large prime
fields. In various application, part of such a function or circuit call on symmetric
cryptographic primitives such as a PRF, a symmetric encryption scheme, or a
collision resistant keyed hash function. In such applications, the main bottleneck
comes from the number of field applications in the underlying primitive[1][12].
The computational cost of our construction per input word, where word is an
element of the chosen prime field, is only one field multiplication and a small
number of field additions depending on the chosen linear transformation. There-
fore, our construction, with a very low multiplicative cost, is especially suitable
for use as a collision-resistant keyed hash function in such applications.

Furthermore this low multiplicative cost is also beneficial when masking is
applied as protection against differential power analysis (DPA)[15]. In masking,
each variable x is encoded in a number of shares x0, x1, . . . , xd−1, such that
x = x0 + x1 + . . . + xd−1, where any subset of d − 1 shares have a random
distribution with the addition taking place in the underlying field. The linear
parts of the algorithm, such as the MDS matrix and the key additions, can be
performed on the shares separately. There are two main approaches for comput-
ing multiplications: the Ishai-Sahai-Wagner (ISW) approach[14] and threshold
implementations[17]. In both techniques, the total computational cost increases
quadratically with the number of shares d and linearly with the number of multi-
plications. Furthermore, ISW requires randomness, which also increases quadrat-
ically with the number of shares and linearly with the number of multiplications.

The additive cost of our construction can be further optimized by using
specific types of near-MDS matrices, instead of MDS matrices. To that end we
additionally propose a concrete instantiation of our construction called multi-
265. Its public function makes use of the prime field with p elements, where p =
226 −5 and a 6×6 lightweight circulant near-MDS matrix with branch number 6.
We prove it gives rise to a keyed hash function that is 2−154-∆universal. Despite
the fact that its matrix is not MDS, it is still 2/p6-∆universal.

1.2 Outline of the Paper

This paper is organised as follows. In Section 2, we remind the readers of key-
then-hash functions and their universalities[11]. In Section 3, we generalize the
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parallel construction of a public permutation[11] to a public function. In Sec-
tion 4, we introduce the notations that will be used throughout this paper. In
Section 5 we describe the propagation properties of field multiplication. In Sec-
tion 6 we look at a simple construction for the public function that we call the
duplicated field multiplication. In Section 7 we introduce the multiply-transform-
multiply and prove bounds on its universality if the underlying linear transfor-
mation is MDS. In Section 8 we introduce our proposed keyed hash function
multi-265, study its security and report on the implementation aspects.

2 Preliminaries

Security analysis in this work builds upon the results of [11] and to that end
we adopt a terminology similar to that paper. We denote a public function as
f : G → G′ where G and G′ are abelian groups ⟨G, +⟩ and ⟨G′, +⟩.

The elements of G are called blocks. The set containing ℓ-block string is
denoted as Gℓ, i.e., Gℓ = {(x0, x1, . . . , xℓ−1) | xi ∈ G for each i = 0, 1, . . . , ℓ−1}.
The set of strings of length 1 upto κ is denoted as BS(G, κ) = ∪κ

ℓ=1Gℓ. We denote
strings in bold uppercase letters, like M, its blocks by Mi, where indexing starts
from 0 and the length of that string by |M|.

Let X ∈ G be a discrete random variable that has a value that depends on the
key K. We denote the probability that a variable X has value x by Pr(X = x).
In words, Pr(X = x) is the fraction of the keyspace for which variable X has
value x. We call two variables independent if Pr(X = x, X ′ = x′) = Pr(X =
x) Pr(X ′ = x′) for all x, x′ ∈ G.

The probability mass function (PMF) of a variable X, denoted as gX , is the
array of values Pr(X = x) over all values x. We have gX(x) = Pr(X = x).
Clearly, ∀x : 0 ≤ gX(x) ≤ 1 and

∑
x gX(x) = 1. As such, a PMF can be seen as

a mapping g : G → [0, 1].
For two independent random variables X and Y , let Z = X + Y . The PMF

gZ is given by the convolution of two PMFs gX , gY and is denoted as gX ∗ gY .

gZ = gX ∗ gY ⇐⇒ ∀z : gZ(z) =
∑

x

gX(x)gY (x − z) ,

with − is determined by the group operation of G and the summation done over
R. We further let g∗n

X with n ∈ N denote the convolution of gX n-times.

2.1 ε and ε-∆universality

Let FK denote a keyed hash function where the key K is sampled uniformly at
random from the key space. The security of a keyed hash function is measured
by the probability of generating a collision at the output of FK: distinct M, M∗

such that FK(M) = FK(M∗). This probability is upper-bounded by the so
called ε-universality. We further look at an even stronger notion of universality:
ε-∆universality, which gives an upper-bound on the probability taken over all
keys of two distinct inputs strings exhibiting a specific output difference.
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Definition 1 (ε-universality[19]). == A keyed hash function F is said to be
ε-universal if for any distinct strings M, M∗

Pr[FK(M) = FK(M∗)] ≤ ε .

Definition 2 (ε-∆universality[19]). A keyed hash function F is said to be
ε-∆universal if for any distinct strings M, M∗ and for all ∆ ∈ G

Pr[FK(M) − FK(M∗) = ∆] ≤ ε .

2.2 Key-then-hash Functions

We study keyed hash functions that take as input elements of BS(G, κ) and
return an element of G′. The keys are elements of Gκ. When processing an in-
put, the key is first added to the input and then an unkeyed function is applied
to the result. This is a special case of keyed hash functions and such func-
tions are called key-then-hash functions. A key-then-hash function is defined as:
F: BS(G, κ) → G′ with FK(M) := F(K + M). The addition of two strings M =
(M0, M1, . . . , M|M|−1) and M∗ = (M∗

0 , M∗
1 , . . . , M∗

|M∗|−1) with |M| ≤ |M∗| is
defined as M′ := M + M∗ = (M0 + M∗

0 , M1 + M∗
1 , . . . , M|M|−1 + M∗

|M|−1) with
|M′| = |M|. In Section 3 we demonstrate how to build such functions using a
public function as the underlying primitive.

3 Parallel Universal Hashing

We first note that ε-universality of a key-then-hash function is upper bounded
by the ε-∆universality of that function. To that end we now see how a public
function can be parallelized to form a key-then-hash function and further prove
upper bound on the ε-∆universality of such construction.

The analysis of a parallel universal hash construction using public permuta-
tions has been presented by Fuchs et al. in [11]. Using a similar approach, we
generalize their results to a parallel universal hash construction built on a public
function as its underlying primitive.

3.1 Construction

We adapt the parallelization of a public permutation to public functions in Al-
gorithm 1 and depict it in Figure 1. The construction takes as parameters a
public function f : G → G′ and a maximum string length κ. The inputs to the
construction are a key K ∈ Gκ and a string M ∈ BS(G, κ). The construction
returns a digest h ∈ G′.

Given any public function f, its parallelization is the key-then-hash function
denoted as Parallel [f]. Since these are the key-then-hash functions we study, for
the rest of the paper F and Parallel [f] will be used interchangeably to denote
parallelized public functions. The key space of Parallel [f] is Gκ and as such we
assume the existence of long keys with independent key blocks.
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Algorithm 1: The parallelization Parallel [f]
Parameters: A public function f : G→ G′ and a maximum string length κ
Inputs : A key K ∈ Gκ and a message M ∈ BS(G, κ)
Output : A digest h ∈ G′

x←M + K
h← 0
for i← 0 to |M| − 1 do

h← h + f(xi)
end
return h

M0 M1 M|M|−2 M|M|−1

K0 K1 K|M|−2 K|M|−1

f f f f

. . .

. . .

h

Fig. 1: The parallelization Parallel [f] adapted from [11].

3.2 Propagation Probabilities of Fixed-length Functions

Before we can investigate the universality of Parallel [f], we first look at the
differential properties of the underlying fixed length function f.

Classically, a differential defined over the fixed input-length public function
f : G → G′ is the tuple (A, ∆), where A ∈ G/{0} is called the input difference and
∆ ∈ G′ is called the output difference. We now remind the reader of differential
probability of a differential over fixed-length public functions.
Definition 3 (Differential probability). Let f : G → G′ be a public function.
The differential probability of a differential (A, ∆) of f, denoted as DPf(A, ∆),
is:

DPf(A, ∆) = #{X ∈ G | f(X + A) − f(X) = ∆}
#G .

We say that input difference A propagates to output difference ∆ with probability
DPf(A, ∆).

The universality of a parallelized public permutation depends on the unifor-
mity of the public permutation by Lemma 3[11]. Unlike a public permutation, the
relative frequency of outputs of a non-bijective public function f is not constant.
Thus in order to generalize the universality of parallelized public permutation
to public function, we introduce the definition of image probability of f.
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Definition 4 (Image probability). Let f : G → G′ be a public function. The
image probability of an output Z ∈ G′ of f, denoted as IPf(Z), is the number of
inputs that f maps to Z divided by the total number of possible inputs, namely,

IPf(Z) = #{X ∈ G | f(X) = Z}
#G .

To obtain the ε-∆universality of F = Parallel [f], we need to obtain an upper
bound of the maximum possible value of DPf and IPf over all differentials and
outputs of the underlying fixed length public function f respectively. As such we
denote them as:

MDPf = max
(A,∆)

DPf(A, ∆) and MIPf = max
Z

IPf(Z) .

Furthermore we denote by DPA and IP the probability mass functions DPf(A, Z)
with A ∈ G fixed and IPf(Z) respectively.

3.3 Differentials over Parallel [f ] and Their Differential Probability
The inputs to F = Parallel [f] are of variable lengths and as such the classical
definition of differentials no longer work since two distinct strings may now differ
in both value and length. With this distinction in mind, a difference between two
strings is defined in [11] that is relevant to our approach.

Definition 5 (Difference between two strings [11]). The difference between
two strings M, M∗ with |M| ≤ |M∗| is defined as the pair (A, λ) ∈ G|M| ×Z≥0,
where A = M − M∗ = (M0 − M∗

0 , M1 − M∗
1 , . . . , M|M|−1 − M∗

|M|−1) and λ =
|M∗| − |M|.

Now, given two strings M and M∗, the probability that the strings result in
an output difference ∆ through F is determined by the difference between the
strings.
Proposition 1 (Proposition 1[11]). Given two strings M, M∗ with |M| ≤
|M∗|, the probability that the strings result in an output difference ∆ through
FK is given by:

Pr[FK(M) − FK(M∗) = ∆] = #{K ∈ Gκ | F(A + K) − F(0|A|+λ + K) = ∆}
#Gκ

,

where (A, λ) is the difference between the strings M and M∗.
This naturally leads to the following definitions of generalised differentials

and their DP.

Definition 6 (Generalized differentials and their DP [11]). Given an
input difference (A, λ) and output difference ∆, the differential probability of the
differential (A, λ, ∆) over F, denoted as DPF(A, λ, ∆) is given by

DPF(A, λ, ∆) = #{K ∈ Gκ | F(A + K) − F(0|A|+λ + K) = ∆}
#Gκ

.
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Lemma 1 (DP of differentials over Parallel [f] ). The differential probability
of a differential (A, λ, ∆) over Parallel [f] is given by

DPF(A, λ, ∆) = DPA0 ∗ DPA1 ∗ . . . ∗ DPA|A|−1 ∗ IP∗λ(∆) .

Proof. Since the keys that are added to each of the blocks are mutually inde-
pendent, the difference in the outputs of the first |A| blocks can be seen as the
outcomes of independent stochastic variables whose distributions are given by
the PMFs DPAi

respectively, while the outputs of the last λ blocks can be seen
as the outcomes of independent stochastic variables whose distribution is given
by the PMF IP. Naturally the PMF of the input difference (A, λ) to F denoted
as DPF(A, λ) is given by

DPF(A, λ) = DPA0 ∗ DPA1 ∗ . . . ∗ DPA|A|−1 ∗ IP∗λ . ⊓⊔

Theorem 1 (ε-∆universality of Parallel [f]). The parallelization of a public
function f, Parallel [f], is max {MDPf , MIPf}-∆universal.

Proof. We first note that if for independent random variables gX , gY and gZ ,
gZ = gX ∗ gY , then it follows directly from the definition of gZ , that

max
z

gZ(z) ≤ max
(

max
x

gX(x), max
y

gY (y)
)

.

By applying this relation to Lemma 1, we can upper bound DPF as

max
A,λ,∆

DPF(A, λ, ∆) ≤ max
{

max
A,∆∈G

DPf(A, ∆), max
Z∈G′

IPf(Z)
}

= max {MDPf , MIPf} .

⊓⊔

The tightness of the ε-∆universality bound in Theorem 1 depends solely on
the tightness of the bounds for MDPf and MIPf of the underlying public function
f since for single block inputs, Parallel [f] = f. Furthermore the bound obtained
for the ε-∆universality in Theorem 1 is consistent with the results obtained
by Fuchs et al. for the ε-∆universality of a parallelized public permutation in
Theorem 2[11]. Indeed when f is a public permutation, the PMF IP for f is simply
the uniform distribution and as such, the ε-∆universality of a parallelized public
permutation is determined solely by its MDPf .

4 Notations

Fp denotes the prime field with p elements and F2n
p denotes the cartesian product

of Fp 2n-times. For the public functions proposed in this paper, G = F2n
p and

G′ = F2n
p for some prime p and integer n ≥ 1. As such the input and the output

to our public function are both 2n-tuples, where all elements of the tuple are
elements from the finite field Fp and the block string space is BS(F2n

p , κ).
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We represent X ∈ G = F2n
p as X = (x0, x1, . . . , xn−1, y0, y1, . . . , yn−1)⊺.

For simplicity, we slightly abuse the notations to denote X = (x, y), where
x = (x0, x1, . . . , xn−1)⊺ ∈ Fn

p and y = (y0, y1, . . . , yn−1)⊺ ∈ Fn
p . Similarly input

differences and key blocks are denoted as A = (a, b) and K = (h, k) respectively.
An output Z ∈ G′ = F2n

p is denoted as Z = (z0, z1, . . . , z2n−1)⊺ and similarly
output difference ∆ is given by ∆ = (δ0, δ1, . . . , δ2n−1).

The number of non-zero components in a vector x ∈ Fn
p is the hamming

weight of x that is denoted as w(x) and we denote (0, 0, . . . , 0)⊺ ∈ Fn
p as 0n.

Since multiplication in Fp is an integral part of our public function, we first look
at its differential properties.

5 Differential Properties of Field Multiplication

We first consider as public function f : Fp ×Fp → Fp to denote the multiplication
in Fp. We remind the reader of the differential properties of field multiplication.

Lemma 2. When f is the field multiplication, the image probabilities of its out-
puts are given by

IPf(Z) =
{

2p−1
p2 , when Z = 0

p−1
p2 , otherwise.

Proof. For Z = 0, f(x, y) = xy = 0 implies x = 0 or y = 0. So IPf(0) = 2p−1
p2 .

For Z = z ̸= 0, xy = z implies x = z/y with y ̸= 0 and thus IPf(Z) = p−1
p2 . ⊓⊔

So, for field multiplication we have MIPf = 2p−1
p2 and is achieved only for Z = 0.

Lemma 3. When f is the field multiplication, DPf(A, ∆) = 1
p for any A ∈ F2

p

and any ∆ ∈ Fp.

Proof. An input difference A = (a, b) propagates to the output difference ∆ = δ
under a key K = (h, k) for f if:

(a + h)(b + k) − hk = δ =⇒ bh + ak + ab = δ . (1)

(1) describes a line in Fp × Fp with p points and thus DP(A, ∆) = 1/p. ⊓⊔

So, when f is the field multiplication, MDPf = 1/p and MIPf = (2p − 1)/p2.
Thus by Theorem 1, we see that Parallel [f] is ε-∆universal, where ε = 2p−1

p2 .

6 Duplicated Multiplication as Public Function

In our quest to build a public function based on field multiplication, we now
look at a slightly more complicated public function, that we call duplicated field
multiplication. It is defined as follows:

f : F2
p → F2

p : f(x, y) = (xy, (x + u)(y + v)) . (2)
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for some constants u, v ∈ Fp \ {0}. Here instead of computing only one mul-
tiplication, we compute two multiplications in parallel, where the input of the
second multiplication is offset by (u, v).

Lemma 4. When f is the duplicated multiplication, maxZ∈F2
p

IPf(Z) = 2
p2

Proof. Let Z = 02 = (0, 0). f(x, y) = (0, 0) implies (xy, (x + u)(y + v)) = (0, 0).
Thus

xy = 0 and (x + u)(y + v) = 0 .

This holds only for (0, −v) and (−u, 0). Thus, in this case the IPf(02) = 2
p2 .

When Z = (z0, z1) ̸= (0, 0), f(x, y) = Z implies xy = z0 and (x + u)(y + v) = z1
. Now since u ̸= 0,

(x + u)(y + v) = z1 =⇒ y = u−1(z1 − z0 − vx − uv) .

Substituting the value of y in xy = z0, we obtain a quadratic equation in y. This
has at most 2 solutions. So for Z ̸= (0, 0), IPf(Z) ≤ 2

p2 . ⊓⊔

So, for the duplicated field multiplication, MIPf = 2
p2 , which is indeed achieved

for Z = 02.

Lemma 5. When f is the duplicated multiplication, DPf(A, ∆) is given by:

DPf(A, ∆) =
{

1
p , when va + ub = δ2 − δ1

0 , otherwise.

Proof. An input difference A = (a, b) propagates to an output difference ∆ =
(δ1, δ2) under a key K = (h, k) if

(a + h)(b + k) − hk = δ1 ,

(a + h + u)(b + k + v) − (h + u)(k + v) = δ2 .

This simplifies to

bh + ak + ab = δ1 and va + ub = δ2 − δ1 . (3)

Thus DPf(A, ∆) > 0 iff va + ub = δ2 − δ1 and in that case we must have
bh +ak +ab = δ1, which again describes a line in Fp ×Fp, i.e., DPf(A, Z) = 1/p.

⊓⊔

So MDPf = 1
p > MIPf = 2

p2 . Thus we conclude by Theorem 1 that paral-
lelized duplicated multiplication is 1/p-∆universal.



Universal Hashing Based on Field Multiplication and (Near-)MDS Matrices 11

7 The Multiply-transform-multiply Construction

We now define a construction for building a public function from finite field mul-
tiplication and two linear transformations, that we call the multiply-transform-
multiply (MTM) construction. We show that instances of this construction with
maximum-distance-separable (MDS) linear transformations provide very good
uniformity in the parallelization. As such we briefly remind the reader of the
branch number of a matrix[10] and the definition of MDS matrices in terms of
their branch numbers.

Definition 7 (Branch number). Given a n × n matrix N defined over a field
Fp, its branch number is defined as min

x∈Fn
p /{0n}

(w(x) + w(N · x)).

We have a trivial upper-bound for the branch number of a matrix given by:
branch number of N ≤ n + 1.

Definition 8 (MDS matrix). An n × n matrix N defined over a over a field
Fp is said to be MDS if N has branch number n + 1.

Before looking at the multiply-transform-multiply construction, we define the
coordinate-wise product of vectors that will help us to explain the construction.

Definition 9 (Coordinate-wise product). Given x = (x0, x1, . . . , xn−1)⊺
and y = (y0, y1, . . . , yn−1)⊺, their coordinate wise product denoted as x ⊙ y is
given by

x ⊙ y = (x0y0, x1y1, . . . , xn−1yn−1)⊺ .

Definition 10 (MTM(n, p)). For a positive integer n > 1 and prime p such
that log2 p ≥ n, MTM(n, p) denotes a family of functions where any function
f[α, β] ∈ MTM(n, p) is given by:

f[α, β] : F2n
p 7→ F2n

p : f[α, β](X) = f[α, β](x, y) = (x ⊙ y, Nα · x ⊙ Nβ · y) ,

where Nα, Nβ are any n × n matrices.

To simplify notations, we will denote Nα · x = p and Nβ · y = q, which means
f[α, β](x, y) = (x⊙y, p⊙q). The matrices Nα and Nβ are denoted as Nα =

[
αi,j

]
and Nβ =

[
βi,j

]
with 0 ≤ i, j ≤ n − 1.

We now provide an intuitive design rationale for our construction. Our goal
is to build a key-then-hash function that is close to 1/pn-∆universal, i.e., by
Theorem 1 we must have MDPf[α,β] ≤ 1

pn and MIPf[α,β] ≤ 1
pn . f[α, β] computes

a total of 2n multiplications and this requires that for any input difference A
to f[α, β], that difference propagates to maximal number of multiplications in
f[α, β].
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Definition 11 (Active multiplication). A multiplication in f[α, β] is said to
be active corresponding to an input difference if that multiplication has a non-
zero input difference in at least one of its multiplicands as a result of propagation
of that difference inside f[α, β].

The minimum number of active multiplications over all possible input differences
is determined by the minimum of the branch numbers of Nα and Nβ . To that
end, we show that when Nα and Nβ are both MDS, Parallel [f[α, β]] is 2/pn-
∆universal.

ε = 2/pn instead of 1/pn is due to the fact that MIPf[α,β] = 2/pn by Corol-
lary 1. As we saw in Section 6, the maximum value of IPf[α,β] can indeed be
reduced if the entries to some of the multiplications were offset by a non-zero
quantity, or in other words, if we used affine maps instead of the linear maps
Nα and Nβ . However such an offset will not have any bearing on the DP of the
differentials and thus by using offsets ε is only improved by a factor of 2. So the
gain by having an offset is insignificant and thus we decided that none of the
multiplications in MTM(n, p) family of functions will have any offsets.

For the remainder of this section, we assume f[α, β] ∈ MTM(n, p) is chosen
such that the underlying matrices Nα and Nβ are both MDS.

7.1 Maximum Image Probability of f[α, β]

In this section we obtain the value of MIPf[α,β] and show that the value is
obtained when output Z = 02n.

Lemma 6. Let f[α, β] ∈ MTM(n, p) be chosen such that both Nα and Nβ are
MDS. Then, IPf[α,β](02n) = 2pn−1

p2n .

Proof. We prove that f[α, β](x, y) = 02n if and only if x = 0n or y = 0n.
If x = 0n, then we must have p = 0n and if y = 0n, we must have q = 0n

since the matrices Nα and Nβ , being MDS, are invertible. Thus if x = 0n or
y = 0n, then x ⊙ y = 0n and p ⊙ q = 0n, i.e., f[α, β](x, y) = 02n.

We now show that if both x ̸= 0n, y ̸= 0n, then f[α, β](x, y) ̸= 02n. Indeed,

f[α, β](x, y) = (x ⊙ y, p ⊙ q) = 02n =⇒ x ⊙ y = 0n and p ⊙ q = 0n .

Let w(x) = w for some some w ∈ {1, . . . , n}. We will argue only on the basis
of w(x) and thus we assume without loss of generality that x0, x1, . . . , xw−1 ̸= 0
and xw = xw+1 = . . . = xn−1 = 0. Thus for x ⊙ y = 0n, we must have
y0 = y1 = . . . = yw−1 = 0, which means w(y) ≤ n − w. Now Nα and Nβ are
both n × n MDS matrix. Thus we have

w(x) + w(p) ≥ n + 1 =⇒ w(p) ≥ n − w + 1 , (4.1)
w(y) + w(q) ≥ n + 1 and w(y) ≤ n − w =⇒ w(q) ≥ w + 1 . (4.2)

But, (4.1) together with p ⊙ q = 0n implies that w(q) ≤ w − 1, a contradic-
tion with (4.2). Thus f[α, β](x, y) = 02n iff either x = 0n or y = 0n. Hence,
IPf[α,β](02n) = pn+pn−1

p2n = 2pn−1
p2n . ⊓⊔
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Lemma 7. Let f[α, β] ∈ MTM(n, p) be chosen such that both Nα and Nβ are
MDS. Then, for any Z ̸= 02n, IPf[α,β](Z) ≤ 2(2p−1)n−1+p−3

p2n .

Proof. Since Z ̸= 02n, zi ̸= 0 for some i ∈ {0, . . . , 2n − 1}. First let zi ̸= 0 for
some i ∈ {0, . . . n−1}. Without loss of generality we assume z0 ̸= 0. This implies
y0 = z0/x0. The (n − 1) equations xiyi = zi for i = 1, . . . , (n − 1) can have at
most (2p − 1)n−1 solutions. Let one such solution be

xi = λi, yi = µi for i = 1, . . . (n − 1) . (5)

Now, we see that all the variables xi, yi for i ∈ {1, 2, . . . , n − 1} have been
evaluated and the only unknowns are x0 and y0. We now find out the number
of possible values of x0 and y0 corresponding to each solution in (5).

Substituting the values of xi, yi for i ∈ {1, . . . , n−1} from (5) and y0 = z0/x0
in piqi = zn+i for i ∈ {0, 1, . . . , n − 2}, we have a system of n − 1 equations,
where the i-th equation is given by:

(αi,0x0 + αi,1λ1 + . . . + αi,n−1λn−1)(βi,0
z0

x0
+ βi,1µ1 + . . . + βi,n−1µn−1) = zn+i .

(6)

Now, for i ∈ {0, 1, . . . , n−2} let us denote by αi = αi,1λ1 + . . .+αi,n−1λn−1 and
βi = βi,1µ1 + . . . + βi,n−1µn−1. Then the set of (n − 1) linear equations in (6)
converts to:

(αi,0x0 + αi)(βi,0
z0

x0
+ βi) = zn+i for i ∈ {0, 1, . . . , n − 2} . (7)

Now, whenever one of αi ̸= 0 or βi ̸= 0, (αi,0x0 + αi)(βi,0
z0
x0

+ βi) = zn+i

describes a quadratic equation. But whenever both αi = 0 and βi = 0, this
becomes independent of x0. This leads to the following two possibilities:

1. αi = βi = 0 ∀ i ∈ {0, . . . n − 2}.
2. ∃0 ≤ i ≤ n − 2 such that αi ̸= 0 or βi ̸= 0.

We first look at the case αi = βi = 0 for each i ∈ {0, . . . n − 2}. Let λ =
(λ1, λ2, . . . , λn−1)⊺ ∈ Fn−1

p , µ = (µ1, µ2, . . . µn−1)⊺ ∈ Fn−1
p . Furthermore let N′

α

and N′
β denote the (n − 1) × (n − 1) submatrices of Nα and Nβ respectively,

where N′
α and N′

β are obtained by removing the 0-th column and (n − 1)-th row
from Nα and Nβ respectively. So, N′

α =
[
αi,j

]
and N′

β =
[
βi,j

]
with 0 ≤ i ≤

n − 2, 1 ≤ j ≤ n − 1. Now the set of (n − 1) linear equations αi = βi = 0 for
i ∈ {0, . . . n − 2} can be written as:

N′
α · λ = 0n and N′

β · µ = 0n . (8)

N′
α and N′

β are submatrices of the MDS matrices Nα and Nβ . Thus from (8),
N′

α and N′
β both must be invertible. Thus λ = µ = 0n. In this case (7) converts

to αi,0βi,0z0 = zn+i for i ∈ {0, . . . , n − 2}, i.e., the equations are independent
of x0. Thus, the number of solutions, if it exists, is bounded by the number of
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solutions to x0y0 = z0, i.e., p − 1. In other words when each of xi = yi = 0 for
i ∈ {1, . . . , n − 1}, there can be at most (p − 1) values of the pair (x0, y0)

When there exists 0 ≤ i ≤ n − 2 such that αi ̸= 0 or βi ̸= 0, for that value
of i, (9) is a quadratic equation.

(αi,0x0 + αi)(βi,0
z0

x0
+ βi) = zn+i . (9)

Thus (9) has at most 2 solutions and this holds true for each solution from (5)
except when each xi = yi = 0 for i ∈ {1, . . . , n − 1}.

Now, each xi = yi = 0 for i ∈ {1, . . . , n − 1} implies that zi = 0 for each
i ∈ {1, . . . , n − 1}. Thus we can conclude that for a Z ̸= 02n ,

IPf[α,β](Z) ≤

{
2(2p−1)n−1+p−3

p2n , if zi ̸= 0 for exactly one i ∈ {0, . . . , n− 1}
2(2p−1)n−1

p2n , if zi ̸= 0 for more than one i ∈ {0, . . . , n− 1}.

Now let zi ̸= 0 for some i ∈ {n, . . . , 2n − 1}. Since inverse of an MDS matrix
is necessarily MDS and invertible, we can apply the same arguments as when
zi ̸= 0 for some i ∈ {0, . . . , n − 1} to obtain a solution in pi, qi and the number
of such solutions is again at most 2(2p−1)n−1+p−3

p2n . Since N−1
α and N−1

β are both
invertible, each solution in pi, qi corresponds to a unique solution in xi, yi and
hence for such a Z as well IPf[α,β](Z) ≤ 2(2p−1)n−1+p−3

p2n . ⊓⊔

Corollary 1. For any f[α, β] ∈ MTM(n, p), where Nα and Nβ are both MDS,
MIPf[α,β] = 2pn−1

p2n ≤ 2
pn

Proof. By Lemmas 6 and 7, we see that IPf[α,β](02n) = 2pn−1
p2n and for any Z ̸=

02n, IPf[α,β](Z) ≤ 2(2p−1)n−1+p−3
p2n . Now, since p is chosen such that log2 p > n,

we have

2pn − 2(2p − 1)n−1 > 2pn−1(p − 2n−1) > 2npn−1 > p − 2 .

So, 2pn − 1 > 2(2p − 1)n−1 + p − 3 and thus MIPf[α,β] = 2pn−1
p2n ≤ 2

pn . ⊓⊔

7.2 Maximum Differential Probability of f[α, β]

Before looking into the differential probability of f[α, β], we introduce some
new notation. For an input difference A = (a, b), we denote Nα · a = c =
(c0, c1, . . . , cn−1) and Nβ ·b = d = (d0, d1, . . . , dn−1) respectively. Due to Nα, Nβ

being MDS, for any choice of a and b, we must have w(a) + w(c) ≥ (n + 1) and
w(b) + w(d) ≥ (n + 1). For any vector x ∈ Fn

p , Dx denotes the n × n diagonal
matrix with i-th diagonal entry being xi.

Lemma 8. An input difference A = (a, b) propagates to the output difference
∆ = (δ0, δ1, . . . , δ2n−1)⊺ under f[α, β] for a key K = (h, k) if

NA · K + OA = ∆ . (10)
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Here NA and OA are given by:

NA =
[

Db Da

Nα · Dd Nβ · Dc

]
,

OA =
[
a0b0 . . . an−1bn−1 c0d0 . . . cn−1dn−1

]⊺
.

Proof. An input difference A = (a, b) propagates to an output difference ∆ =
(δ0, δ1, . . . , δ2n−1)⊺ under a key K = (h, k) if

f[α, β](h + a, k + b) − f[α, β](h, k) = ∆ .

From the definition of f[α, β] we have,

((h + a) ⊙ (k + b), Nα · (h + a) ⊙ Nβ · (k + b)) − (h ⊙ k, Nα · h ⊙ Nβ · k) = ∆ .

This leads to two sets of n equations, where for i ∈ {0, . . . , n − 1} the i-th such
equations are given by:

(hi + ai) · (ki + bi)− hi · ki = δi ,(
n−1∑
j=0

αi,j(hj + aj)

)
·

(
n−1∑
j=0

βi,j(kj + bj)

)
−

(
n−1∑
j=0

αi,jhj

)
·

(
n−1∑
j=0

βi,jkj

)
= δn+i .

For each 0 ≤ i ≤ n − 1, these sets of equations respectively simplify to:

bihi + aiki + aibi = δi ,

di

n−1∑
j=0

αi,jhi + ci

n−1∑
j=0

βi,jkj + cidi = δn+i .

Thus, we now have a set of 2n linear equations in 2n variables hi, ki. Writing
this set of equations in terms of matrices, we arrive at our desired lemma. ⊓⊔

We call the matrix NA the difference matrix corresponding to the input
difference A. Given any A we denote by CA the column space generated by NA .

Corollary 2. Given a differential (A, ∆) to f[α, β], DPf[α,β](A, ∆) is given by:

DPf[α,β](A, ∆) =
{

0 , when (∆ − OA) ̸∈ CA

1
pr , otherwise.

Here r denotes the rank of NA .

Proof. When (∆ − OA) ̸∈ CA , (10) is inconsistent and thus DPf[α,β](A, ∆) = 0.
Otherwise (10) has p2n−r solutions and hence DPf[α,β](A, ∆) = p2n−r

p2n = 1
pr . ⊓⊔
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Lemma 9. Given any input difference A to f[α, β] where the underlying matri-
ces are MDS, the rank of NA is at least n.

Proof. Since A ̸= 02n, at least one of a and b must be non-zero. Let us assume
without loss of generality that b ̸= 0. For i ∈ {0, 1, . . . , n − 1}, let Ci denote the
i-th column of NA , i.e.,

Ci =
[
0 . . . bi . . . 0 α0,id0 . . . αi,idi . . . αn−1,idn−1

]⊺
.

We show that {C0, C1, . . . , Cn−1} is a set of n linearly independent column vec-
tors and thus rank(NA)≥ n. So, we show that for scalars λ0, λ1, . . . , λn−1 ∈ Fp

λ0C0 + λ1C1 + . . . + λn−1Cn−1 = 0n =⇒ λ0 = λ1 = . . . = λn−1 = 0 .

Now,
∑n−1

i=0 λiCi = 0n simplifies to:

λ0b0

λ1b1
...

λn−1bn−1

(λ0α0,0 + λ1α0,1 + . . . λn−1α0,n−1)d0

(λ0α1,0 + λ1α1,1 + . . . λn−1α1,n−1)d1
...

(λ0αn−1,0 + λ1αn−1,1 + . . . λn−1αn−1,n−1)dn−1


=



0
0
...
0
0
0
...
0


. (11)

Let w(b) = w for some w ∈ {1, . . . , n}. Without loss of generality we assume
that b0, b1, . . . , bw−1 ̸= 0. Then clearly from (11) we see that λ0 = λ1 = . . . =
λw−1 = 0. Thus (11) now reduces to the following set of n linear equations in
n − w variables λw, λw+1, . . . , λn−1.

(λwα0,w + λw+1α0,w+1 + . . . λn−1α0,n−1)d0

(λwα1,w + λw+1α1,w+1 + . . . λn−1α1,n−1)d1
...

(λwαn−1,w + λw+1αn−1,w+1 + . . . λn−1αn−1,n−1)dn−1

 =


0
0
...
0

 . (12)

Since, w(b) = w and w(b) + w(d) ≥ n + 1, at least n − w + 1 components of d
must be non-zero. Again for simplicity we assume d0, d1, . . . , dn−w ̸= 0. But this
would imply 

α0,w α0,w+1 . . . α0,n−1
...

...
. . .

...
αn−w,w αn−w,w+1 . . . αn−w,n−1

 ·


λw

...
λn−1

 =


0
...
0

 . (13)
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But, the (n − w + 1) × (n − w) matrix in the left hand side of (13) is a submatrix
of Nα and thus has full rank, i.e., rank of this matrix is n − w. Thus this system
of equations has a unique solution given by: λw = . . . = λn−1 = 0.

Thus, we have shown that {C0, . . . , Cn−1} is a set of n linearly independent
column vectors. Hence rank(NA)≥ n. ⊓⊔

Corollary 3. For any f[α, β] where the underlying matrices are MDS, MDPf[α,β] =
1

pn .

Proof. It follows from Corollary 2 that for any differential (A, ∆) to f[α, β],
DPf[α,β](A, ∆) ≤ 1

pr where rank(NA) = r. By Lemma 9 it follows that r ≥ n

and consequently DPf[α,β](A, ∆) ≤ 1
pn .

This bound is also attained for a well chosen differential. Indeed it can be
seen that if A is chosen such that a = 0n, then rank(NA) = n. In this case if ∆
is chosen such that (∆ − OA) ∈ CA (in particular one can choose ∆ = 02n), then
DPf[α,β](A, ∆) = 1

pn . ⊓⊔

7.3 ε-∆universality of Parallel [f[α, β]]

Theorem 2. Let f[α, β] ∈ MTM(n, p) be such that its underlying matrices are
MDS. Then Parallel [f[α, β]] is 2

pn -∆universal.

Proof. From Corollaries 1 and 3 it follows that for such a f[α, β], MIPf[α,β] ≤ 2
pn

and MDPf[α,β] ≤ 1
pn . Thus it follows from Theorem 1 that Parallel [f[α, β]] is

2
pn -∆universal. ⊓⊔

Thus, whenever Nα and Nβ are MDS, Parallel [f[α, β]] is 2
pn -∆universal. How-

ever while the matrices being MDS is sufficient to obtain this universality, it is
not strictly necessary. It is possible to choose a member of MTM(n, p), whose
parallelization is 2

pn -∆universal, but the underlying matrices Nα and Nβ are not
MDS. However this requires more detailed security analysis. We look at such a
public function in the next section.

8 Multi-265

We now introduce the key-then-hash function multi-265 . This is the paralleliza-
tion of a public function that we denote as f-265 belonging to MTM(6, 226 − 5),
i.e., multi-265 =Parallel [f-265]. The specifications of f-265 is as follows.

Definition 12. The public function of multi-265 denoted as f-265 is defined as:

f-265: F12
p 7→ F12

p : f-265(X) = f-265(x, y) = (x ⊙ y, N · x ⊙ N · y) ,

where N is the 6 × 6 circulant matrix whose first row is given by
(

1 1 3 1 3 0
)

.
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We will now motivate the design choices we made. We want to use fast
32-bit integer multiplication instructions and apply lazy modular reductions.
Therefore we take a prime significantly smaller than 232. Still, we want this
modular reduction to be efficient and for that purpose we take the prime of our
field to be a pseudo-mersenne prime[13], i.e., of the form 2l − λ, for a small λ
and we chose for p = 226 − 5. Now, for the dimension n, we wanted ε = 2/pn

to be smaller than 2−128, i.e., n ≥ 5 for our chosen prime p. Thus a 5 × 5 MDS
matrix would guarantee ε = 2p−5 ≈ 2−129. However, these dimensions are not
well suited in the SIMD architecture and therefore we chose for 6 × 6 matrices.
Now, a 6 × 6 MDS matrix is quite expensive and thus we instead looked for
a 6 × 6 matrix with branch number 6. Any 6 × 6 matrix with branch number
6 however does not assure us of ε = 2p−6. Thus another added restriction, as
we will soon see, is that matrices should have branch number at least 7 when
restricted to inputs with weight at least 3.

So, we finally chose N to be a circulant matrix and chose both the matrices in
f-265 to be the same to simplify our security analysis. We limited the entries in N
to the set {−1, 0, 1, 2, 3} so matrix multiplication can be efficiently implemented
with only addition and subtraction. We found N by exhaustive search over all
candidates checking the branch number is 6 and then selecting the ones that
have branch number 7 when restricted to inputs with weight 3 or more. We
did this by finding all full rank matrices having at most one entry 0 such that
all 3 × 3, 4 × 4 and 5 × 5 submatrices have full rank. Sage code to find all
matrices that satisfy these requirements can be found at https://github.com/
KoustabhGhosh/Multi-265.

In this section, we use similar notations as in Section 7. So we have N ·x = p,
N · y = q and for an input difference A = (a, b), N · a = c and N · b = d.

8.1 Maximum Image Probability of f-265

In this section we show that similar to f[α, β], MIPf-265 ≤ 2
p6 and is obtained for

the output 012.

Lemma 10. For the public function f-265, IPf-265(012) = 2p6−1
p12 .

Proof. We show that f-265(x, y) = 012 if and only if x = 06 or y = 06. Clearly
if x = 06 or y = 06, f-265(X) = 012

We now show that when both x ̸= 06 and y ̸= 06, f-265(x, y) ̸= 012. Let
w(x) = w for some some w ∈ {1, . . . , 6}.

When w ≥ 3, since N has branch number 7 for all inputs with weight at least
3, we have

w(x) + w(p) ≥ 7 =⇒ w(p) ≥ 7 − w . (14)

From (14), x ⊙ y = 06 and p ⊙ q = 06 we see that

w(y) ≤ 6 − w , (15.1)
w(q) ≤ 6 − (7 − w) = w − 1 . (15.2)

https://github.com/KoustabhGhosh/Multi-265
https://github.com/KoustabhGhosh/Multi-265
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But, (15.1) together with the fact that N has branch number 6 implies that
w(q) ≥ 6 − (6 − w) = w, a contradiction with (15.2).

When w < 3, we have

w(x) + w(p) ≥ 6 =⇒ w(p) ≥ 6 − w .

From p ⊙ q = 06 it follows that

w(q) ≤ 6 − (6 − w) = w.

But, w(q) ≤ w < 3 implies that w(y) must also be greater than 3 due to N
having branch number 6. But since w(y) > 3, we must have

w(y) + w(q) ≥ 7 =⇒ w(y) ≥ 7 − w . (16)

From x ⊙ y = 06 we have w(y) ≤ 6 − w, a contradiction with (16).
Thus f-265(X) = 012 iff either x = 06 or y = 06. ⊓⊔

Lemma 11. Let Z ̸= 012. Then for the public function f-265, IPf-265(Z) ≤
2(2p−1)5+p−3

p12

Proof. When Z ̸= 012, IPf-265(Z) ≤ 2(2p−1)5+p−3
p12 follows directly from Lemma 7.

The only property of n×n MDS matrices that we used in proof to Lemma 11 was
that the MDS matrix itself and all its (n − 1) × (n − 1) are invertible. N follows
these properties since N itself and all its 5 × 5 submatrices are invertible. ⊓⊔

Corollary 4. For the public function f-265, MIPf-265 = 2p6−1
p12 ≤ 2

p6 .

Proof. The proof follows directly from Lemmas 10 and 11. ⊓⊔

8.2 Maximum Differential Probability of f-265
By applying Lemma 8, we see that an input difference A = (a, b) propagates to
the output difference ∆ = (δ0, δ1, . . . , δ11) under f-265 for a key K = (h, k) if
NA · K + OA = ∆. For f-265, NA is given by

NA =



b0 0 0 0 0 0 a0 0 0 0 0 0
0 b1 0 0 0 0 0 a1 0 0 0 0
0 0 b2 0 0 0 0 0 a2 0 0 0
0 0 0 b3 0 0 0 0 0 a3 0 0
0 0 0 0 b4 0 0 0 0 0 a4 0
0 0 0 0 0 b5 0 0 0 0 0 a5

d0 d0 3d0 d0 3d0 0 c0 c0 3c0 c0 3c0 0
0 d1 d1 3d1 d1 3d1 0 c1 c1 3c1 c1 3c1

3d2 0 d2 d2 3d2 d2 3c2 0 c2 c2 3c2 c2

d3 3d3 0 d3 d3 3d3 c3 3c3 0 c3 c3 3c3

3d4 d4 3d4 0 d4 d4 3c4 c4 3c4 0 c4 c4

d5 3d5 d5 3d5 0 d5 c5 3c5 c5 3c5 0 c5



.
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We know by Corollary 2 that for a differential (A, ∆), its DP is upper
bounded by 1/pr, where r is the rank of NA . Before we can obtain a lower
bound for NA , we first look at an important property of N.

Lemma 12. For r ∈ {1, 2, 3, 4, 5}, all the (r+1)×r submatrices of N have rank
r.

Proof. For r = 1, all 2 × 1 submatrices of N has rank 1 since
[
0 0
]⊺

is not a
submatrix of N. For r = 2, all 3×2 submatrices must have rank 2 since otherwise
there must exist a 3 × 3 submatrix with rank 2, a contradiction. For r ≥ 3, the
proof is trivial since all r × r submatrices of N have rank r for r ≥ 3. ⊓⊔

Lemma 13. Given any input difference A, rank (NA) ≥ 6.

Proof. Since A = (a, b) ̸= 012, we assume without loss of generality that b ̸= 06.
Let w(b) = w. In the proof to Lemma 9 we used the following facts about

the underlying n × n MDS matrix Nα of f[α, β]:

1. For any b with w(b) = w, we must have w(d) ≥ n − w + 1.
2. Every (n − w + 1) × (n − w) submatrix of Nα has rank (n − w).

In this case, N however is not MDS and has branch number 6. But, we can use
the fact that for w ≥ 3, its branch number is 7.

Indeed when w < 3, we must have w(d) ≥ 6 − w > 3. Consequently arguing
similarly to the proof of Lemma 9, we see that instead of requiring that every
(7−w)× (6−w) submatrix of N have rank (6−w), we instead require that each
(6 − w) × (6 − w) submatrix of N must have rank 6 − w. This is true since for
w < 3, all (6 − w) × (6 − w) submatrices of N have full rank by design.

For w ≥ 3, since N has branch number 7, we only require that each (7−w)×
(6 − w) have rank 6 − w, which is indeed true by Lemma 12. ⊓⊔

8.3 ε-∆universality of Multi-265

Theorem 3. multi-265 is 2−154-∆universal.

Proof. From Lemmas 10 and 13, it follows that MIPf-265 ≤ 2
p6 and MDPf-265 ≤

1
p6 . Now, since 2

p6 = 2
(226−5)6 ≤ 2−154, it follows from Theorem 1 that multi-265

is 2−154-∆universal. ⊓⊔

8.4 Implementation Aspects

Multi-265 can be implemented on any platform with SIMD architecture. These
instructions process vectors of the same type elements that are packed together
in parallel. As a result, operations like addition, multiplication etc. can be per-
formed on multiple entries at the same time and this increases the performance of
the implementation. Newer SIMD architecture has 128-bit vector registers that
can be seen as 16, 8, 4, or 2 elements with size 8, 16, 32, and 64 bits respectively
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by defining the arrangement-specifier accordingly. This specifier determines the
packing unit of data.

A message block being an element of F12
p can be treated as 288-bits since

p = 226 − 5. Now, each message block can be stored in 3 128-bit vector registers.
Thus, a rearranging procedure is done after loading each block of message from
memory. The first byte of each 32-bit word in the Neon vectors is set to zero and
the remaining 3-bytes are filled with the corresponding 3-bytes of the message
block.

Each 32-bit word contains 24-bits of data initially. So we can defer modular
reductions for all the linear operations to the output of each call to f-265 and we
are only required to do 12 modular reductions at the end of each round. Moreover
our choice of prime p = 226 − 5, being a pseudo mersenne prime, means that the
reduction can be done very efficiently[13].

The reference code for multi-265 in a keyless setting is available at https:
//github.com/KoustabhGhosh/Multi-265.
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