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Abstract. Current protocols for Multi-Party Computation (MPC) consider the setting where all
parties have access to similar resources. For example, all parties have access to channels bounded by
the same worst-case delay upper bound ∆, and all channels have the same cost of communication.
As a consequence, the overall protocol performance (resp. the communication cost) may be heavily
affected by the slowest (resp. the most expensive) channel, even when most channels are fast (resp.
cheap). Given the state of affairs, we initiate a systematic study of asymmetric MPC. In asymmetric
MPC, the parties are divided into two categories: fast and slow parties, depending on whether they
have access to high-end or low-end resources.
We investigate two different models. In the first, we consider asymmetric communication delays:
Fast parties are connected via channels with small delay δ among themselves, while channels con-
nected to (at least) one slow party have a large delay ∆ ≫ δ. In the second model, we consider
asymmetric communication costs: Fast parties benefit from channels with cheap communication,
while channels connected to a slow party have an expensive communication. We provide a wide
range of positive and negative results exploring the trade-offs between the achievable number of
tolerated corruptions t and slow parties s, versus the round complexity and communication cost in
each of the models. Among others, we achieve the following results. In the model with asymmetric
communication delays, focusing on the information-theoretic (i-t) setting:

– An i-t asymmetric MPC protocol with security with abort as long as t + s < n and t < n/2,
in a constant number of slow rounds.

– We show that achieving an i-t asymmetric MPC protocol for t + s = n and with number
of slow rounds independent of the circuit size implies an i-t synchronous MPC protocol with
round complexity independent of the circuit size, which is a major problem in the field of
round-complexity of MPC.

– We identify a new primitive, asymmetric broadcast, that allows to consistently distribute a
value among the fast parties, and at a later time the same value to slow parties. We completely
characterize the feasibility of asymmetric broadcast by showing that it is possible if and only
if 2t + s < n.

– An i-t asymmetric MPC protocol with guaranteed output delivery as long as t + s < n and
t < n/2, in a number of slow rounds independent of the circuit size.

In the model with asymmetric communication cost, we achieve an asymmetric MPC protocol for
security with abort for t + s < n and t < n/2, based on one-way functions (OWF). The protocol
communicates a number of bits over expensive channels that is independent of the circuit size. We
conjecture that assuming OWF is needed and further provide a partial result in this direction.

1 Introduction

Secure Multi-Party Computation [Yao86, GMW87, BGW88, CCD88, RB89] allows a set of distrustful
parties to compute a function over their private inputs, in such a way that nothing about the inputs is
revealed beyond the output of the computation.
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Generally speaking, current MPC protocols consider the simplest setting where all parties have net-
work resources with the same guarantees. In particular, the most common synchronous network model
considers the setting where all channel delays are upper bounded by a single worst-case delay ∆ and all
channels have the same cost of communication. Even though this model is theoretically interesting, it
suffers from important practical limitations. In particular, ∆ has to be set large enough to accommodate
any possible delay: Even in cases where almost all parties have fast channels with delay δ ≪ ∆, the
protocols do not take advantage of this, and the running time of the protocol is affected by the slowest
party. This is particularly critical for information-theoretic protocols, where all current solutions have a
round complexity that depends on the depth of the circuit to evaluate. Similarly, the protocols designed
in this model also fail to take advantage of the cost of communication from channels that are cheap, and
the total communication cost is affected by the most expensive channel.

Given the state of affairs, we initiate the study of asymmetric MPC. In asymmetric MPC, the parties
are divided into two categories. We consider fast parties, which are parties that have access to high-end
network resources (e.g. channels with small delay, cheap channels, etc), and slow parties, which are par-
ties that have access only to low-end network resources. One can think about the fast parties as parties
that are in some sense privileged and have access to fast and cheap internet connection, e.g. with fiber,
while slow parties are not so privileged, and only have access to slow and expensive connectivity, e.g.
one may think of mobile devices or IoT devices such as sensors collecting data. Considering parties with
asymmetric resources allows us to not only model more realistic scenarios, where parties have access
to different levels of resources, but also to design more refined protocols that exploit such asymme-
tries, thereby improving the performance and communication cost of protocols, while at the same time
achieving more refined levels of security and assumptions.

2 Our Contributions

We initiate a systematic study of asymmetric MPC with respect to two different models for network
resources. In the first model, we consider a network with asymmetric communication delay. Fast parties
are connected via channels with small delay δ among themselves, while all other channels, which are con-
nected to a slow party, have a large delay ∆. In the second model, we consider a network with asymmetric
communication cost. This means that fast parties benefit from channels with cheap communication, while
other channels incur a high cost of communication.

Our focus is on minimizing the complexity from the slow parties (minimizing the number of slow
rounds, respectively the usage of expensive channels) while at the same time tolerating as many cor-
ruptions and slow parties as possible. This allows us to give a first overall study of asymmetric MPC
protocols in a clean manner.

What are the achievable trade-offs between the number of tolerated corruptions and slow parties
compared to the number of slow rounds in the model with asymmetric delays? And similarly,
trade-offs with respect to the number of bits transmitted over expensive channels in the model
with asymmetric communication cost?
To the best of our knowledge, no previous work has addressed the setting of asymmetric MPC,

for any of the resource models. For example, synchronous protocols assume that all channels have the
same worst-case delay and also that the cost of communication is the same for all channels. Similarly,
asynchronous protocols assume that all channels have eventual delivery, and that all channels have the
same cost of communication.

Note, however, that existing protocols using standard cryptographic assumptions do achieve a con-
stant number of slow rounds [Yao86, BMR90], and FHE-based protocols [MW16, AJL+12, GLS15]
achieve low communication over expensive channels, so our focus is on information-theoretic protocols
when minimizing the number of slow rounds, and non-FHE protocols when minimizing the communica-
tion over expensive channels. See a more detailed discussion in section 2.4.

2.1 MPC with Asymmetric Delays

The Model. As mentioned above, in this model we divide the parties into two categories: fast and
slow parties. Parties have access to a complete network of point-to-point (P2P) channels. The channels
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between fast parties have a small delay δ and are denoted fast channels, and all the other channels, i.e.
the channels that contain at least one slow party, have a large delay ∆ and are denoted slow channels.

We are interested in counting the number of slow P2P-rounds, which are the number of P2P communi-
cation steps via all channels, and the number of fast rounds, which are the number of P2P communication
steps via the fast channels. Optimally, we would like to find protocols that have a constant number of
slow P2P-rounds, or at least a number of slow P2P-rounds that is independent of the circuit to evaluate.
Throughout the paper, we will omit the P2P term, and simply denote such rounds as fast and slow
rounds.

Existing Solutions. Current constant-round solutions based on cryptographic assumptions [Yao86,
BMR90, Lin01, KOS03, PR03, KO04, GS18, BL18], are already asymmetric MPC protocols with a
constant number of slow rounds. This is because any constant-round synchronous MPC protocol trivially
implies an asymmetric MPC protocol in our setting with a constant number of slow rounds.

Information-Theoretic Protocols. Information-theoretic protocols are much more interesting, since
all current synchronous solutions require a number of rounds proportional to the depth of the circuit
to evaluate. This is in stark contrast with protocols in our model, where we will be able to achieve a
number of slow rounds that is independent of the circuit (sometimes even constant). We propose several
information-theoretic protocols for the setting of malicious security, with abort and with guaranteed
output delivery.

In the following, we let C be the circuit to evaluate, and let n, s, t be the number of parties, bound
on the number of slow parties, and bound on the number of corruptions.

Security with Abort. We first present a protocol that achieves security with abort and is secure as
long as t + s < n and t < n/2. The round complexity is O (1) slow rounds and O (depth(C)) fast rounds.

Theorem 1. Let n, s, t be natural numbers such that t + s < n and t < n/2. There is an information-
theoretic asymmetric MPC protocol among n parties that securely evaluates circuit C with security with
abort, in the presence of up to t malicious corruptions and s slow parties. The round complexity is O (1)
slow rounds and O (depth(C)) fast rounds.

We then show that improving the resiliency of our asymmetric MPC protocol requires a breakthrough.
Assume that t+s = n. Then, the following result implies that information-theoretic asymmetric MPC in
a constant number of slow rounds implies constant-round information-theoretic MPC in the synchronous
model resilient up to 1 corruption, which is known to be a major barrier in information-theoretic MPC.

Theorem 2. Let n, s, t > 0 be natural numbers such that t + s = n. Then n-party information-theoretic
asymmetric MPC with security with abort (resp. guaranteed output delivery), resilient up to t corruptions
and s slow parties in R slow rounds, implies (s + 1)-party information-theoretic synchronous MPC with
security with abort (resp. guaranteed output delivery), resilient up to 1 corruption in R rounds.

Guaranteed Output Delivery. In the setting of malicious security with guaranteed output delivery,
we present two results.

A Protocol for 2t + s < n and t < n/3. We start by presenting a solution for an information-theoretic
protocol with guaranteed output delivery in the regime where 2t + s < n and t < n/3 (with no setup nor
broadcast).

Theorem 3. Let κ be a security parameter. Let n, s, t be natural numbers such that 2t + s < n and
t < n/3. There is an asymmetric MPC protocol among n parties that securely evaluates circuit C with
guaranteed output delivery in the presence of up to t malicious corruptions and s slow parties. The round
complexity is O (κ) slow rounds and O (depth(C) · κ) fast rounds.

In the above theorem statement, if synchronous broadcast channels are assumed as setup (or alter-
natively, a setup for i-t signatures [PW92]), the condition t < n/3 is not necessary. The above protocol
inherently requires the condition 2t + s < n. However, optimally one would wish to require an honest
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majority overall, rather than among the fast parties. We therefore want to find protocols that deal with
a dishonest majority among the fast parties.

Broadcast with Asymmetric Delays. To overcome this bound, we identify a natural primitive in our
setting with asymmetric delays, called asymmetric broadcast. This primitive ensures that all the fast
parties obtain the output within dbc fast rounds, while slow parties obtain the same output much later,
within Dbc slow rounds. We call the quantity dbc the fast asymmetric broadcast delay, and Dbc the slow
asymmetric broadcast delay.

Our first step is to investigate the possible trade-offs for asymmetric broadcast. Our results completely
characterize the feasibility of asymmetric broadcast from point-to-point channels, by showing matching
positive and negative results.

First, in Section 5.2, we show a simple construction of n-party asymmetric broadcast with a fast
sender, where dbc and Dbc are O(κ), and security holds up to t corruptions and s slow parties, as long
as 2t + s < n, assuming a PKI setup for signatures. The theorem holds also unconditionally, if the setup
consists of information-theoretic signatures [PW92].

Theorem 4. Let n, s, t be natural numbers such that 2t + s < n. Assuming a PKI setup for signa-
tures, there is an n-party asymmetric broadcast protocol with dbc = Dbc = O(κ), tolerating t malicious
corruptions and s slow parties.

Perhaps surprisingly, this is the best trade-off one can achieve, and tolerating 2t + s = n for any
non-trivial parameters t > 0 and s > 0 is impossible, even with setup, and for any number of fast and
slow rounds.

Theorem 5. Let n, s, t > 0 be natural positive numbers such that 2t+s = n. Then, asymmetric broadcast
is impossible against t malicious corruptions and s slow parties, even with setup.

A Protocol for t + s < n and t < n/2. We now present an asymmetric MPC protocol where parties
have access to asymmetric broadcast channels with fast and slow delays dbc and Dbc, and achieve a
protocol that is secure as long as t + s < n and t < n/2. The round complexity is O (n · Dbc) slow
rounds and O (depth(C) · n · dbc) fast rounds. In the optimistic case where no party is corrupted, we save
a factor n in the round complexity. That is, in this case the protocol incurs O (Dbc) slow rounds and
O (depth(C) · dbc) fast rounds.

Theorem 6. Let n, s, t be natural numbers such that t + s < n and t < n/2. Assuming asymmetric
broadcast with slow and fast delays Dbc and dbc, there is an asymmetric MPC protocol among n parties
that securely evaluates circuit C with guaranteed output delivery, in the presence of up t corruptions and
s slow parties. The round complexity is O (n · Dbc) slow rounds and O (depth(C) · n · dbc) fast rounds.
In the optimistic case where no party is corrupted, the round complexity is O (Dbc) slow rounds and
O (depth(C) · dbc) fast rounds.

The number of rounds in the protocol above has a linear dependency in the number of parties in
the worst case. This linear dependency can be removed at the cost of requiring any constant fraction of
honest parties among the fast parties.

Corollary 1. Let ϵ > 0 and n, s, t be natural numbers such that t < min{(1 − ϵ)(n − s), n/2}. Assuming
asymmetric broadcast with slow and fast delays Dbc and dbc, there is an asymmetric MPC protocol
among n parties that securely evaluates circuit C with guaranteed output delivery, in the presence of up
to t corruptions and s slow parties. The round complexity is O (Dbc) slow rounds and O (depth(C) · dbc)
fast rounds.

2.2 MPC with Asymmetric Communication Cost

The Model. Similar to the previous model, we divide the parties into two categories: fast and slow
parties. Parties have access to a complete network of standard synchronous point-to-point channels with
the same delay upper bound. However, now the channels are differentiated with respect to the cost of
communication. The channels between fast parties have a small cost and are denoted by cheap channels,
and all other channels, i.e. the channels that contain at least one slow party as sender or receiver, have
a high cost and are denoted by expensive channels.
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We are interested in minimizing the number of bits transmitted over the expensive channels. Note that
slow parties need to distribute their inputs, so the number of transmitted bits over expensive channels
will definitely depend (at least) on the total number of slow parties and their input size. Our main focus
is therefore that the number of bits over expensive channels does not depend on the circuit to evaluate.

Existing Solutions. Current solutions that make use of (multi-key) fully-homomorphic encryption
(FHE) [MW16, AJL+12, GLS15] already transmit a number of bits over expensive channels that is
independent of the circuit to evaluate, given that the computation is performed under the homomorphic
evaluation with no interaction.

A Protocol From One-Way Functions. Our focus is then on protocols that do not make use of
FHE. Even more, we will focus on protocols that make use of as weaker cryptography assumptions as
possible (preferably one-way functions, or no assumptions).

We provide a protocol that is resilient as long as t + s < n and t < n/2 and achieves security
with abort. The protocol communicates O(poly(n, κ)) bits over the expensive channels and assumes the
existence of one-way functions.

Theorem 7. Let n, s, t be natural numbers such that t + s < n and t < n/2. Assuming the existence of
one-way functions, there is an asymmetric MPC protocol among n parties that securely evaluates circuit
C with security with abort, in the presence of up to t malicious corruptions and s slow parties. The
communication complexity is O (poly(n, κ)) bits of expensive communication and O (poly(n, κ)|C|) bits of
cheap communication.

Interestingly, our communication-efficient protocol requires the existence of one-way functions, in
contrast to our round-efficient protocols. We conjecture that this is necessary, and provide a partial
result in this direction.

Lemma 1. Assume an n-party asymmetric MPC, secure up to t semi-honest corruptions and s slow
parties such that the slow parties perform constant computation, for any n, s, t > 0 natural numbers such
that n − s > 1, t + s < n and t < n/2. Then, this implies the existence of one-way functions.

2.3 Open Questions

Our work initiates the area of asymmetric MPC and leaves several exciting new directions for future
research. We highlight some of them:

1. General network topologies: We divide the parties into slow and fast parties, where fast parties have
high-end channels among themselves, while all other channels are low-end. One can generalize this
setting and consider more general network topologies, where a party may at the same time have some
high-end and some low-end channels.

2. Other resource asymmetries: Our work considers models with respect to network asymmetries. One
can explore other types of resources. For example, one can explore trade-offs with respect to asym-
metric computation or memory resources.

3. Communication-efficient protocol with guaranteed output delivery: Our communication efficient pro-
tocols achieve security with abort. It would be interesting to see if our techniques extend to the case
of guaranteed output delivery.

4. Concrete efficiency: Our protocols serve as a basis for feasibility of asymmetric MPC, and our focus
is on minimizing the complexity coming from the slow parties. In practice, one may consider more
refined settings where the cost difference is explicit (for example, expensive channels cost as twice as
cheap channels). Understanding which concrete cost differences are relevant in practice and designing
protocols tailored to such settings is an exciting open research direction.
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2.4 Related Work

To the best of our knowledge, all current protocols consider a symmetric network resource model, where
all parties have access to the same types of channels: all channels have the same delay and the same
communication cost. In contrast, we consider a more refined asymmetric resource model, by making a
distinction between two party categories. In the following, we show how our results compare to previous
existing results.

Round Complexity of Information-Theoretic Synchronous MPC. The round complexity of MPC
has a significant line of works. We focus on the information-theoretic setting. Here, all known protocols
incur a number of rounds, that is linear in the depth of the computed circuit [BGW88, CCD88, RB89],
and each round corresponds to the worst-case delay upper bound ∆. This is the case even when only one
channel has delay ∆, and all other channels have delay δ ≪ ∆. In contrast, we provide protocols where
the number of slow ∆-rounds is independent of the circuit size (even constant in some cases). Note that
a constant number of slow rounds is necessary in order to distribute the inputs of all slow parties.

Responsive MPC. A line of works focused on the problem of obtaining MPC protocols that are
responsive. These are protocols where the running time is as fast as the actual network delay. Note that
any asynchronous protocol is responsive, but there are also synchronous protocols that remain responsive
when the number of corruptions is small [PS18, LZLM+20]. These protocols inherently cannot achieve
input completeness, i.e., the inputs of up to t honest parties may be ignored from the computation, and
are responsive up to t < n/3 corruptions (above n/3 corruptions, the running time is similar to that of
synchronous protocols). In contrast, our protocols achieve input completeness, and benefit from the fast
channels even up to t < n/2 corruptions.

Communication Complexity of MPC. The communication complexity of MPC has a significant
line of works as well. Traditional solutions incur poly(n)|C| communication, and since then, there has
been a significant progress in the communication efficiency (see e.g. [DN07, BTH08, GLS19, GSZ20,
BKLZL20, CHLZ21]). All these works consider the communication cost to be the same for all channels,
and, as a consequence, their communication depends on the circuit size. Our work makes a distinction
between cheap and expensive channels, and we provide protocols where the amount of bits transmitted
over expensive channels is independent of the circuit size.

MPC with Sporadic Participation. A line of works [GPS19, BJMS20, BKLZL20, CGG+21, GHK+21,
DEP21] considered MPC protocols where not all parties need to be online and/or participate at all
steps of the protocol. In such protocols, a main challenge is to keep the state of the honest parties
consistent throughout the protocol execution, and the protocol efficiency is counted uniformly (there
is no asymmetry between network resources). In our case all parties are always online, and the main
challenge is on minimizing the use of resources from a fixed known set of (slow) parties.

Synchronous Protocols with Asynchronous Fallback. A recent line of work [BKL19, BZL20,
DHLZ21, BKL21, ACC22, BCLZL22, GLZW22, DLZ22, GLZW23] considered the setting where protocols
achieve a high resilience when the network is synchronous and all messages are delivered within a known
bound δ, and at the same time a lower resilience when the network is asynchronous, i.e. when some
messages are delivered with a higher delay. In these protocols, even when a single channel has a higher
delay than δ, the achieved resiliency is below n/3 corruptions. In our protocols, we instead consider a
single network that consists of fast channels with delay δ, and slow channels with delay ∆ ≥ δ. We do
assume that parties know a bound on the slow channels, but we provide protocols that achieve a higher
resiliency of up to n/2 corruptions, even when many of the channels are slow.

3 Technical Overview

In this section we describe the techniques used to achieve our theorem statements.

3.1 Information-Theoretic MPC with Asymmetric Delays

We present several information-theoretic solutions for the settings of security with abort and guaranteed
output delivery.
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Security with Abort. We provide a simple solution that achieves security with abort in a constant
number of slow rounds, when t + s < n and t < n/2. The protocol lets all parties generate during
a pre-processing phase OT correlations among the fast parties, using an information-theoretic MPC
protocol for honest majority and security with abort, with round complexity linear in the depth of the
circuit (e.g. [RB89, GIP+14]). Since the OTs can be generated in parallel and can be computed with
a constant-depth circuit, this takes a constant number of slow rounds. Then, the parties execute an
information-theoretic MPC protocol in the client-server model, that achieves security with abort against
a dishonest majority in the OT-hybrid model: The parties (acting as clients) distribute their inputs to
the fast parties (acting as servers), who will compute the corresponding outputs and send them back to
the respective parties. Existing protocols [Kil88, CvT95] run in a constant number of rounds during the
input and output phases, and the number of rounds during the computation is linear in the depth of the
circuit to evaluate. This leads to Theorem 1.

We then show that our protocol achieves the optimal resilience: any asymmetric MPC protocol secure
when t + s = n among n parties and with constant number of slow rounds, implies a synchronous MPC
protocol with security with abort, resilient up to 1 corruption in constant number of rounds, which is a
major open problem in round complexity of MPC. The proof implication follows from a simple emulation
argument: In order to design a synchronous MPC protocol among s + 1 parties, we simply let s parties
emulate each of the slow parties in the asymmetric MPC protocol, and the last party to emulate all fast
parties altogether (in total t parties). The resulting synchronous protocol has a round-complexity that is
the same as the number of slow rounds in the asymmetric MPC protocol, and therefore the implication
follows. This corresponds to Theorem 2.

Asymmetric Broadcast. We briefly sketch the arguments that exactly characterize the feasibility of
asymmetric broadcast.

First observe that it is clear that for a sender that is a slow party, it is impossible to expect the fast
parties to obtain output fast, even when all parties are honest. Therefore, we focus on the case where
the sender is a fast party.

The protocol to achieve asymmetric broadcast (for a fast sender), for any 2t + s < n, assuming a
PKI for signatures, is quite simple: Fast parties run a synchronous broadcast protocol [KK06] among
themselves, and reach agreement on a value v. All fast parties send the value v to the slow parties, who
take a majority decision. Since there is honest majority among the fast parties, all slow parties output
the same value. This is presented in Theorem 4.

In order to show that asymmetric broadcast (for a fast sender) is impossible when 2t + s = n, even
with setup, we make use of two ideas. First, observe that fast parties must output before the slow parties
are even able to communicate with any fast party. This is because fast rounds may be much faster
than slow rounds, i.e., the delay δ ≪ ∆ of fast channels could be much smaller than the delay ∆ of
slow channels, and asymmetric broadcast requires fast parties to output fast. Let v denote the value
that the fast parties output. Second, since there is a dishonest majority among the fast parties, the
corrupted parties (including the sender) can simulate towards the slow parties an execution with input
value v′ ̸= v. As a consequence, the honest slow parties cannot decide on a consistent output value. A
precise scenario-based proof is presented in Theorem 5.

Guaranteed Output Delivery. We present two results. We first present a somewhat simple solution
for an information-theoretic protocol in the regime where 2t + s < n and t < n/3. The protocol works
as follows: First, since t < n/3, the protocol generates a setup for information-theoretic signatures to
emulate synchronous broadcast channels with guaranteed termination [PW92, KK06] from slow parties
to all parties in O(κ) slow rounds, and from fast parties to themselves in O(κ) fast rounds, where κ
is the security parameter. Using these broadcast channels, parties can execute an existing synchronous
protocol in the client-server model as follows: All parties initially play the role of a client, while each
fast party in addition plays the role of a server. The clients distribute their inputs towards the n − s
servers, where each synchronous round corresponds to a slow round. The servers then perform the protocol
computation, where each synchronous round corresponds to a fast round. Finally, the fast parties robustly
reconstruct each output to the respective clients, where each synchronous round corresponds to a slow
round. Standard information-theoretic protocols [RB89, CDD+99] tolerate up to half of the corrupted
servers (we assume 2t < n − s) and any number of clients, and have a constant number of rounds and
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broadcast invocations, during the input and the output phase, and a number of rounds proportional to
the circuit depth during the computation phase. This results in an asymmetric MPC protocol with O(κ)
slow rounds and a number of fast rounds proportional to the circuit depth times κ, corresponding to
Theorem 3.

We then present our information-theoretic asymmetric MPC protocol with guaranteed output deliv-
ery, and resilience t + s < n and t < n/2, which assumes asymmetric broadcast.

The protocol follows the sharing-based paradigm, and has a preprocessing phase and an online phase.
During the preprocessing phase, the parties generate raw data that is independent of the inputs. During
the online phase, the parties receive their inputs and perform the protocol evaluation.

In the preprocessing phase, we generate certified Beaver multiplication triples, using the MPC protocol
by Cramer et. al. [CDD+99].

Background. Let us first recap their VSS protocol Πvss [CDD+99]. The protocol follows traditional ver-
ifiable secret sharing schemes [FM88, BGW88] with bivariate polynomials, but uses so-called information-
checking (IC) signatures, instead of error correction. One can think about such signatures as information-
theoretic signatures that can only be forwarded once. These can be generated unconditionally without
setup, and also have a linearity property, where given signatures for values x and y, one can compute a
signature on x + y.

In order to share a value v, the dealer D creates a random bivariate polynomial f(x, y) of de-
gree at most t, with f(0, 0) = v. The univariate polynomial projections f(x, i) and f(i, y) are sent
to party Pi in a signed manner (by sending all the points (ai1, . . . , ain) = (f(i, 1), . . . , f(i, n)) and
(b1i, . . . , bni) = (f(1, i), . . . , f(n, i)), where each point is signed using IC-signatures). After this, the par-
ties can bilaterally compare the cross-point values between them, and expose inconsistent behavior by
the dealer by broadcasting the signatures. If an inconsistency is detected, the dealer is disqualified.

After the checking process, the values held by honest parties are consistent, and since there are at
least n − t ≥ t + 1 honest parties, these values uniquely define a bivariate polynomial f ′(x, y) of degree
at most t, which in turn defines a fixed secret v′ (which is v′ = v if the dealer is honest). Therefore, this
already ensures that the dealer is committed to a value after the sharing phase.

Still, the reconstruction might fail if the adversary sends corrupted shares (the adversary can send
arbitrary shares). To avoid that, each share of Pi is also signed by the other parties. This will in turn
prevent the adversary from corrupting the secret at reconstruction time.

At the end of the VSS, each party Pi holds sub-shares (ai1, . . . , ain), where aij is signed by Pj . This
implicitly defines a share ai, which in the case of an honest dealer is f(i, 0).

With the above VSS, one can process addition gates locally (using the fact that the IC-signatures
are linear). The multiplication gates are processed using the well-known method by Gennaro, Rabin and
Rabin [GRR98]: Each party Pi locally multiplies his shares ai and bi of the input wires a and b, and
shares the result di = aibi using VSS. This results in n VSSs and a proper sharing of the output wire c
can be computed as a fixed linear combination of these. The authors show a way for Pi to share a secret
di, such that di = aibi and to prove that he has done so properly. The details can be found in [CDD+99].

The Online Protocol. At the start of the online phase, enough triples (x, y, z) have been shared using
the protocol described above, where each of the shares xi, yi, zi are held (implicitly) by party Pi via the
corresponding sub-shares, which are IC-signed by the other parties. Note that generating such certified
Beaver triples takes O(1) invocations of broadcast, since they can be generated in parallel.

The online phase proceeds as follows. Parties distribute their inputs using Πvss. The addition gates
are locally computed (simply adding the shares and the IC-signatures, since they are linear). In the
multiplication gates, fast parties publicly open two random values, (a − x) and (b − y), where a and b are
the values of the input wires to the multiplication gate, by running the same reconstruction procedure of
Πvss, except that they distribute their shares using asymmetric broadcast. Since the values are IC-signed,
corrupted fast parties can only withhold their shares. Since fast parties distribute their shares via the
asymmetric broadcast channel, this implies that all parties, fast and slow, reach agreement on the set of
parties that did not contribute their share and are corrupted.

Note that since the threshold is t < n − s, if all fast parties contribute their shares, the slow parties
do not need to participate (and the protocol can proceed between between the fast parties, without
incurring additional slow rounds). However, if not all shares are received, a process to identify and kick
out corrupted parties is performed: fast parties wait for the slow parties to help opening the shares (note
that n − t > t, and therefore all honest parties can jointly open the shares). The corrupted identified
parties are then kicked out of the computation, and the protocol is restarted without the kicked parties.
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This process incurs and overhead of a constant number of slow asymmetric broadcast delays. And since
every time at least one corrupted party is kicked out, the incurred overhead on the total number of slow
rounds is linear in the number of parties. This corresponds to Theorem 6.

3.2 MPC with Asymmetric Communication Cost

We describe the protocol for MPC that communicates O(poly(n, κ)) bits over slow connections, and
achieves resilience t + s < n and t < n/2. The protocol is based on one-way functions, and is similar to
the simple protocol mentioned in Theorem 1 in the asymmetric delay model.

In that protocol, the step that is communication expensive, is the generation of the OT correlations,
which depends on the circuit size. In order to solve that, we will make use of OT-extension protocols
[NNOB12, ALSZ15], which can be based on one-way functions. More concretely, since t < n/2, parties
can jointly create κ OT correlations among each pair of fast parties using an honest-majority MPC
protocol [RB89, CDD+99]. This step communicates O(poly(n, κ)) bits over slow connections. The fast
parties then perform an OT-extension protocol to set up an OT channel between each pair of fast parties
[NNOB12, ALSZ15]. With this setup, parties can then perform an unconditional protocol achieving
dishonest majority in the OT-hybrid model [Kil88, CvT95] among the fast parties. This is stated in
Theorem 7.

The protocol described above makes use of one-way functions. We conjecture that this is necessary,
and provide a partial result: we show that any asymmetric MPC protocol containing at least two fast
parties, where the slow parties perform little computation, and with resilience t + s < n, implies the
existence of one-way functions.

The high-level idea is to build an OT extension protocol from an asymmetric MPC protocol. Since
OT extension implies the existence of one-way functions [LZ13], the claim follows. Assume that there
is an asymmetric MPC protocol that outputs a large number of OTs. We can emulate the computation
of each slow party using a protocol for dishonest majority (e.g. [GMW87]). Note that since each slow
party performs a small amount of computation, the circuit that is used to emulate the computation uses
a small number of (seed) OTs as well. This is stated in Lemma 1.

4 Models and Definitions

We consider a set of n parties P = {P1, . . . , Pn}. We partition the set of parties into two known categories,
slow parties and fast parties, P = S ⊔ F . Let κ be the security parameter.

4.1 Communication Network and Adversary

We consider a complete network of point-to-point secure channels. Parties have access to synchronized
clocks, and messages sent by honest parties are guaranteed to be delivered within some known upper
bound delay. We consider two asymmetric network models.

Network with Asymmetric Delays. In the first model, we consider a network with asymmetric
delays. The channels between fast parties deliver messages within a small delay δ, and are denoted fast
channels. And all channels containing at least one slow party have a large delay ∆, and are denoted slow
channels. We measure the round complexity as the number of slow P2P-rounds (communication steps
via all channels), and the number of fast P2P-rounds (communication steps via fast channels). We will
omit mentioning the P2P term, and simply denote such rounds as fast and slow rounds.

Network with Asymmetric Communication Cost. In the second model, we consider a network
with asymmetric communication cost. Here, all the channels have the same delay upper bound, similar
to the standard synchronous network model, but the cost of communication is asymmetric. We will
consider expensive communication, the number of bits transmitted via channels that contain at least one
slow party, and cheap communication, the number of bits transmitted via channels that contain only
fast parties.

Adversary. We consider a static adversary who corrupts parties in an arbitrary manner at the beginning
of the protocol.
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4.2 Broadcast

Broadcast allows a designated party called the sender to consistently distribute a message among a set
of receivers.

Synchronous Broadcast. The synchronous broadcast channel with guaranteed termination delivers
the output to the set of receivers after a fixed number of rounds.4 Synchronous broadcast protocols with
guaranteed termination can be achieved within O(κ) rounds, when there are up to a third fraction of
corrupted parties [FM88]. This is also the case for honest majority, if a setup is available [KK06]. In the
dishonest majority setting, synchronous broadcast is achievable in O(n) rounds with a PKI setup [DS83],
and even unconditionally with a setup for information-theoretic signatures [PW92].

These protocols, when run in the asymmetric network delay model, achieve an actual number of
rounds that is proportional to the slowest channel. This means, that if all the parties involved (sender
and receivers) are connected via fast channels, the output is received after a fixed number of fast rounds.
However, when some of the channels between the considered parties are slow, the protocols guarantee
that the receivers obtain the output in a fixed number of slow rounds.

4.3 Secret Sharing

In some of our protocols, we make use of Shamir secret sharing scheme [Sha79]. This is a t-out-of-n
linear secret-sharing scheme over a finite field F , consisting of two protocols, (Sh, Rec), called share and
reconstruct.

Protocol Sh allows a designated party, called the dealer, to distribute a value s ∈ F among n parties,
P1, . . . , Pn. For that, the dealer samples a uniform random polynomial f ∈ F [x] with degree at most t,
and subject to the fact that f(0) = s. Then, the dealer sends the value f(i) = si to Pi. We denote si the
share of Pi, and the vector [s]t = (s1, . . . , sn) is called a degree-t sharing of s. We may omit the degree
if it is clear from the context. Note that any set of t shares does not reveal anything about the secret.
Protocol Rec allows parties to jointly reconstruct a secret s′, which corresponds to the original secret s
if the dealer is honest. Shamir secret sharing scheme satisfies in addition the following properties:

– Additive Homomorphism: ∀[x]t, [y]t, [x + y]t = [x]t + [y]t.
– Local Multiplication of Degree-t Sharings: ∀[x]t, [y]t, [x · y]2t = [x]t · [y]t.

4.4 Oblivious Transfer

Oblivious transfer [Rab05] is a two-party primitive between a sender S, and a receiver R. The sender
has two inputs x0, x1 ∈ {0, 1}, called the messages, and the receiver R has an input c ∈ {0, 1}, called the
selection bit. The oblivious transfer guarantees that R outputs xc = c(x0 ⊕ x1) ⊕ x0, and that no party
learns any other information.

5 MPC with Asymmetric Delays

In this section we introduce protocols in the model with asymmetric delays. We are interested in pro-
tocols that incur as few slow rounds as possible, preferably a constant, and tolerating a high number of
corruptions and slow parties.

5.1 Security with Abort

Protocol Description. We present a naive protocol that achieves security with abort in a constant
number of slow rounds, when t + s < n and t < n/2.

The protocol lets all parties generate during a pre-processing phase OT correlations among the fast
parties, using a (synchronous) information-theoretic MPC protocol for honest majority and security with
abort (e.g. [RB89, GIP+14]), with round complexity linear in the circuit depth to evaluate. Note that
4 There are also protocols with probabilistic termination [FM88, KK06], where the parties obtain output after

an expected-constant number of rounds. However, composing such protocols involves many subtleties. See for
example [CCGZ16] for a nice discussion.
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since the OTs can be generated in parallel and can be computed with a constant-depth circuit, this is
possible in a constant number of slow rounds. Then, the parties execute an information-theoretic MPC
protocol in the client-server model, that achieves security with abort against a dishonest majority in
the OT-hybrid model: All parties act as clients and distribute their inputs to the fast parties, who also
act as servers. The fast parties will then compute the corresponding outputs and send them back to
the respective parties. Existing protocols [Kil88, CvT95] run in a constant number of rounds during the
input and output phases, and the number of rounds during the computation is linear in the depth of the
circuit to evaluate. As a consequence, the overall protocol incurs a constant number of slow rounds, and
a number of fast rounds proportional to the depth of the circuit. This leads to the following theorem,
and the proof follows from the security of [RB89, GIP+14] and [CvT95].

Theorem 1. Let n, s, t be natural numbers such that t + s < n and t < n/2. There is an information-
theoretic asymmetric MPC protocol among n parties that securely evaluates circuit C with security with
abort, in the presence of up to t malicious corruptions and s slow parties. The round complexity is O (1)
slow rounds and O (depth(C)) fast rounds.

Barrier Result. Our result shows that improving the resiliency achieved by the protocols in the above
sections would be a breakthrough in the area of information-theoretic synchronous MPC. In particular, if
there is an information-theoretic protocol that is constant in the number of slow rounds for t+s = n, this
implies a constant-round information-theoretic synchronous MPC protocol secure up to 1 corruption.

Theorem 2. Let n, s, t > 0 be natural numbers such that t + s = n. Then n-party information-theoretic
asymmetric MPC with security with abort (resp. guaranteed output delivery), resilient up to t corruptions
and s slow parties in R slow rounds, implies (s + 1)-party information-theoretic synchronous MPC with
security with abort (resp. guaranteed output delivery), resilient up to 1 corruptions in R rounds.

Proof. Let Π be the protocol for fast and slow parties with R slow rounds. We want to construct a
synchronous protocol Π ′ among s + 1 parties with R rounds.

Let us call the s + 1 virtual parties P1, . . . , Ps+1. Each party Pi, i ∈ [s] emulates a slow party, and
the last party Ps+1 emulates all the fast parties. The parties then execute the protocol Π, where the
messages between fast parties are emulated internally by Ps+1.

The resulting protocol Π ′ is a secure synchronous protocol up to 1 corruption and with R rounds.
This follows from the fact that Π is a secure protocol tolerating t corruptions, and each virtual party
contains at most t parties from Π.

⊓⊔

5.2 Broadcast with Asymmetric Delays

The asymmetric broadcast channel guarantees the delivery of a consistent message fast to the fast parties
and slow to the slow parties. More precisely, an asymmetric broadcast channel achieves guaranteed output
after Dbc slow rounds for slow parties, and dbc fast rounds for the fast parties. We will make use of this
channel in the protocol for guaranteed output delivery with resilience t + s < n and t < n/2, but in this
section we study the feasibility of this primitive from a complete network of point-to-point channels as
a stand-alone question.

Functionality FsBC

1: On input x from the sender P ∗, output x to the adversary. Then, output x to all parties in S after Dbc

slow rounds and all parties in F after dbc fast rounds.

First, note that when the sender is slow, it is impossible to achieve asymmetric broadcast, since one
needs at least a slow round to distribute the value towards the fast parties. Therefore, in the following
we focus on the more interesting case where the sender is a fast party.

Feasibility. Assuming setup, if 2t+s < n, it is easy to see that asymmetric broadcast with a fast sender
is achievable. The protocol proceeds as follows: The sender with input s uses a synchronous broadcast
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protocol to distribute his value among all the fast parties. Since there is an honest majority of fast parties,
one can for example use the protocol by Katz and Koo [KK06]. All the fast parties reach agreement on
a value s′ (which is s if the sender is honest) within O(κ) fast rounds, and they send their value to the
slow parties, who will take a majority decision and output the result. Therefore, the slow parties output
after O(κ) fast rounds, and 1 slow round.

Theorem 4. Let κ be a security parameter. Further let n, s, t be natural numbers such that 2t + s < n.
Assuming a PKI setup for signatures, there is an n-party asymmetric broadcast protocol with dbc = Dbc =
O(κ), tolerating t malicious corruptions and s slow parties.

The protocol can be achieved with unconditional security, if a setup for information-theoretic signa-
tures is assumed [PW92].

Impossibility. We show that asymmetric broadcast is impossible when 2t+s = n for a fast sender (even
with setup), for any non-trivial parameters t > 0 and s > 0. Note that this is in contrast to synchronous
broadcast, which is achievable for any number of corruptions assuming a PKI setup [DS83]. (Or even
unconditionally, assuming information-theoretic signatures [PW92].) The main challenge is to achieve
agreement between fast and slow parties. Intuitively, since asymmetric broadcast requires fast parties to
obtain the output fast, they need to decide their output value (let us denote it v) without having received
any value from the slow parties. Moreover, since there is dishonest majority among the fast parties, they
can act towards the slow parties as if their output value was v′ ̸= v. As a consequence, the honest slow
parties will not output v and consistency is broken.

Theorem 5. Let n, s, t > 0 be natural positive numbers such that 2t+s = n. Then, asymmetric broadcast
is impossible against t malicious corruptions and s slow parties, even with setup.

Proof. We prove by contradiction. Assume that there is such a secure asymmetric broadcast protocol
resilient up to t corruptions and s slow parties such that 2t + s = n, for s, t > 0 and n − s > 1. We
partition the set of parties into three sets: the slow parties S, and two sets of size t F0 and F1 for the
fast parties. We make the argument for an external fast sender role P ∗.

The adversary corrupts the sender P ∗ and chooses a random bit b. Then, it corrupts Fb. In addition,
the adversary runs the following two executions Exec0 and Exec1 at the same time.

– In Execb, the corrupted parties Fb and the corrupted sender P ∗ run an execution with the other
parties where the sender has input b, but where Fb ignores every message from F1−b and does not
communicate with them either.

– In Exec1−b, the corrupted sender P ∗ runs an execution with the slow parties and parties in F1−b,
where the sender has input 1 − b, and the parties in Fb do not send any message to F1−b.

Consider an execution with the above adversary strategy. First, note that no matter what value b is
chosen, the view of the slow parties S is exactly the same. This is because the view of the slow parties
consist of two independent executions, where Fb and F1−b do not communicate, but otherwise follow an
execution where the sender has input b and 1 − b, respectively.

Second, note that when the bit b is chosen, the parties in F1−b output 1 − b. This is because the view
of F1−b is identically distributed as in an execution where the sender is honest with input 1 − b, and
parties in Fb crashed. Note that F1−b must output fast, before receiving any message from S.

The above observations imply that the slow parties output a value that is inconsistent with F1−b,
with probability 1/2. Note that even though S sees the sender is corrupted, he does not see whether F0
or F1 is honest (these sets output different bits).

⊓⊔

5.3 Guaranteed Output Delivery

In this section, we present two protocols. The first protocol achieves a lower resilience, but operates
only assuming point-to-point channels. The second protocol has a higher resilience, but makes use of
asymmetric broadcast.
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Protocol for 2t + s < n and t < n/3. In the regime where 2t + s < n and t < n/3, it is easy to
design an asymmetric MPC protocol, by simply delegating the computation to the fast parties. Note that
since t < n/3, the parties can create a setup of information-theoretic signatures, which can be used to
construct a synchronous broadcast channel [PW92, KK06] from slow parties to all parties in O(κ) slow
rounds, and from fast parties among themselves in O(κ) fast rounds. With the emulated synchronous
broadcast channels, parties can then execute an honest majority protocol such as [RB89] as follows:
the slow parties, using the emulated broadcast channel, use a verifiable secret sharing scheme to share
their input towards the fast parties (with threshold t), who will robustly evaluate the circuit among
themselves. The fast parties can then robustly reconstruct the output towards the respective recipients.
The total round complexity is O (κ) slow rounds and O (depth(C) · κ) fast rounds. The proof of the
following theorem follows from the security of [RB89] and [KK06].

Theorem 3. Let κ be a security parameter. Let n, s, t be natural numbers such that 2t + s < n and
t < n/3. There is an asymmetric MPC protocol among n parties that securely evaluates circuit C with
guaranteed output delivery in the presence of up to t malicious corruptions and s slow parties. The round
complexity is O (κ) slow rounds and O (depth(C) · κ) fast rounds.

We note that if a synchronous broadcast channel is given (or alternatively a setup for information-
theoretic signatures), the condition t < n/3 is not necessary.

Protocol for t + s < n and t < n/2. In this section, we present a protocol that achieves guar-
anteed output delivery with the higher trade-off t + s < n and t < n/2. The resulting protocol has
round complexity O (n · Dbc) slow rounds and O (depth(C) · n · dbc) fast rounds, assuming asymmetric
broadcast.

Generating Certified Beaver Triples. We generate Beaver multiplication triples (a, b, c), that are
shared among all parties. The triples are certified, in the sense that all shares are signed via information-
checking signatures. There can be thought of as signatures that are information-theoretic, and can only
be forwarded once. The signatures are also homomorphic, in the sense that for two values that can be
verified by the scheme, any linear combination of them can also be verified with no additional information.
See [CDD+99] for a concrete construction.

We generate the triples using the protocol by Cramer et al. [CDD+99], which makes use of such a
IC-signature scheme. The protocol takes O(1) invocations to asymmetric broadcast (incurring a total
of O(Dbc) slow rounds), since the multiplication triples can be generated in parallel. In this protocol, a
value s is shared using a bivariate polynomial f(x, y) with degree at most t. At the end of the sharing
protocol, each honest party Pi holds the values si1, . . . , sin that lie on a degree-t polynomial, which in the
case the dealer is honest, corresponds to the values f(i, 1), . . . , f(i, n). This implicitly defines the share of
Pi, which is si = f(i, 0). Moreover, each value sij is signed by party Pj , and we denote such a signature
(from Pj to Pi) by σ(sij , Pj , Pi). This signature allows Pi to forward the value sij in an authentic way.
In appendix A, we recap the protocol in detail.

The Online Phase. At the start of the online phase, enough triples (a, b, c) have been shared using the
protocol in [CDD+99]. This means, that each party Pi implicitly holds each of the shares ai, bi, ci via
the corresponding sub-shares, which are signed by the other parties.

The online phase proceeds as follows. Parties distribute their inputs using Πvss, the VSS scheme in
[CDD+99]. The addition gates can locally be computed (simply by locally adding the shares and locally
adding the signatures, since they are linear). In the multiplication gates, fast parties robustly open two
random values, (x − a) and (y − b), where x and y are the values of the input wires to the multiplication
gate, by running the same reconstruction procedure of Πvss, except that they distribute their shares
using asymmetric broadcast. Since the values are signed, corrupted fast parties can only withhold their
shares. Since fast parties distribute their shares via the asymmetric broadcast channel, this implies that
all parties, fast and slow, reach agreement on the set of parties that did not contribute their share and
are corrupted. Note that since the threshold is t < n − s, if all fast parties contribute their shares, the
slow parties do not need to participate (and therefore we do not need to incur additional slow rounds).
However, if not all shares are received, a process to identify and kick out corrupted parties is performed:
fast parties wait for the slow parties to help opening the shares (note that n − t > t, and therefore all
honest parties can jointly open the shares). The corrupted identified parties are then kicked out of the
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computation, and the protocol is restarted without the kicked parties. This process involves O(Dbc) slow
rounds. And since every time at least one corrupted party is kicked out, the incurred total number of
slow rounds is linear in the number of parties times the broadcast slow delay. We formally describe the
protocol below.

Protocol Πrgod

Initialize t′ = t, F ′ = F .
Preprocessing Phase

1: Parties use the protocol [CDD+99] to create:
– nm random sharings of certified Beaver triples ([ak], [bk], [ck]), where nm is the number of multi-

plication gates, as explained before. This means, that for each triple (a, b, c), each honest party Pi

implicitly holds his share ai by holding sub-shares ai1, . . . , ain, where each sub-share is IC-signed by
Pj . These sub-shares lie on a degree-t polynomial; and the shares ai also lie on a degree-t polynomial
f with f(0) = a. And similarly, for the values b and c = ab.

Input Phase Let xj be the input from party Pj .

1: Pj uses the protocol Πvss (described in Section A) to share his input xj .
Addition Gates

1: Fast parties locally add the shares using linearity of the sharing scheme, and compute the corresponding
IC-signatures using its linearity property.

Multiplication Gates Let [x] and [y] be sharings of the inputs to the gate.

1: Fast parties in F ′ use a multiplication triple ([a], [b], [c]) to publicly reconstruct the values x − a and
y − b among the fast parties, using the reconstruction procedure of Πvss (where only the fast parties
start). That is, the fast parties use asymmetric broadcast to distribute their share towards all parties,
and the corresponding IC-signatures.

2: After time dbc, all the fast parties reach agreement on whether all the shares received have correct
IC-signatures are t-consistent. If not, they keep waiting for a total of 2Dbc time. Otherwise, execute
Step 5.

3: After time Dbc, all slow parties reach agreement on whether the shares distributed by the fast parties
were correct (t-consistent and with correct signatures). If not, slow parties participate in the reconstruc-
tion by broadcasting their shares and IC-signatures.

4: After time 2Dbc, either there were enough shares to reconstruct at Step 2, or all honest parties (fast and
slow) identify at least one corrupted fast party Pk ∈ F ′ that did not contribute its share. In this case,
parties kick out the identified corrupted party, and restart the protocol, now with threshold t′ = t′ − 1,
and set F ′ = F \ {Pk}.

5: Fast parties in F ′ locally compute a share of the output to the gate as [z] = (x − a)[b] + (y − b)[a] +
[c] + (x − a)(y − b) (via locally adding each of the sub-shares), and update the IC-signatures accordingly
using the linearity property.

Output Phase

1: To reconstruct a sharing [x] towards Pj , parties robustly reconstruct the secret to the Pj , using the VSS
reconstruction protocol in Πvss.

The proof of the following theorem appears in Section B.

Theorem 6. Let n, s, t be natural numbers such that t + s < n and t < n/2. Assuming asymmetric
broadcast with slow and fast delays Dbc and dbc, Πrgod is an asymmetric MPC protocol among n parties
that securely evaluates circuit C with guaranteed output delivery, in the presence of up t corruptions and
s slow parties. The round complexity is O (n · Dbc) slow rounds and O (depth(C) · n · dbc) fast rounds.
In the optimistic case where no party is corrupted, the round complexity is O (Dbc) slow rounds and
O (depth(C) · dbc) fast rounds.

Although the number of slow rounds is independent of the depth of the circuit, it has the drawback
that it depends on the number of parties in the worst case. However, if we assume that among the fast
parties there is a constant fraction of parties that are honest, then we can modify the above protocol to
achieve round complexity O (Dbc) slow rounds and O (depth(C) · dbc) fast rounds. Then, the adversary
needs ϵ(n−s) corrupted parties to not send messages in order to execute Steps 3 and 4 in a multiplication
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step, which will be all identified and kicked out of the computation. This can only happen at most 1/ϵ
times.

Corollary 1. Let ϵ > 0 and n, s, t be natural numbers such that t < min{(1 − ϵ)(n − s), n/2}. Assuming
asymmetric broadcast with slow and fast delays Dbc and dbc, there is an asymmetric MPC protocol
among n parties that securely evaluates circuit C with guaranteed output delivery, in the presence of up
to t corruptions and s slow parties. The round complexity is O (Dbc) slow rounds and O (depth(C) · dbc)
fast rounds.

6 MPC with Asymmetric Communication Cost

In this section we introduce protocols in the model with asymmetric communication cost. We are inter-
ested in protocols that transmit as few bits as possible over expensive channels (channels containing at
least one slow party), and that tolerate a high number of corrupted parties and slow parties. Looking
closer, our protocol from Theorem 3 already achieves small expensive communication, independent of
the circuit since expensive communication only occurs in the input and output stages. However, the
resiliency is only 2t + s < n. Therefore, we turn our attention to protocols achieving resiliency t + s < n
and t < n/2.

6.1 Security with Abort

We provide a protocol that achieves security with abort and communicates O(poly(n, κ)) bits over the
expensive channels. The protocol assumes the existence of one-way functions, and follows from existing
results. The idea is to generate pair-wise OT correlations among the fast parties during a pre-processing
phase. This is possible [RB89, GIP+14] since there is an honest majority t < n/2 of parties, and the total
number of communicated bits over expensive channels is independent of the circuit size. More concretely,
all parties will prepare κ OT correlations per fast connection (in total O(n2κ) OTs5. Each pair of fast
parties can then use OT extension protocols [Bea96, IKNP03, NNOB12] to set up OT channels between
them. Once the OT channels are prepared, we can execute a standard unconditional OT-based protocols
for dishonest majority [Kil88, CvT95] to perform the computation among the fast parties, and deliver
the outputs to all the parties, leading to the following theorem statement.

Theorem 7. Let n, s, t be natural numbers such that t + s < n and t < n/2. Assuming the existence of
one-way functions, there is an asymmetric MPC protocol among n parties that securely evaluates circuit
C with security with abort, in the presence of up to t malicious corruptions and s slow parties. The
communication complexity is O (poly(n, κ)) bits of expensive communication and O (poly(n, κ)|C|) bits of
cheap communication.

6.2 Barriers on Communication Complexity

In this section, we show that if one assumes an asymmetric MPC, where the slow parties perform a small
amount of computation, then this implies OT extension.

Lemma 1. Assume an n-party asymmetric MPC, secure up to t semi-honest corruptions and s slow
parties such that the slow parties perform constant amount of computation, for any n, s, t > 0 natural
numbers such that n−s > 1, t+s < n and t < n/2. Then, this implies the existence of one-way functions.

Proof. The proof strategy is to build a semi-honest OT extension protocol from a semi-honest asymmetric
MPC protocol. Since OT extension for semi-honest corruption implies the existence of one-way functions
[LZ13], the claim follows. Let c the total circuit size to represent the computation of the slow parties
(this has polynomial size). Assume that there is an n-party asymmetric MPC protocol Π with at least
2 fast parties and secure up to t = n − s − 1 and t < n/2. Further assume that the protocol outputs
5 This can be reduced to O(nκ) OTs if there is a constant fraction of honest fast parties, i.e. t < (1−ϵ)(n−s), for

ϵ > 0 constant, using the results of Harnik, Ishai and Kushilevitz [HIK07], which combines from distributing
computations among several committees from Bracha [Bra87], techniques for combining oblivious transfers
from Harnik et al. [HKN+05], and constructions of dispersers [GW97, RVW00])
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c + 1 OT correlations. We first describe an (n − s)-party reactive functionality Fslow that emulates the
computation of the slow parties. Concretely, this is a reactive functionality which keeps the internal joint
state of the slow parties, and which, upon giving inputs from the fast parties, it updates its internal
joint state and computes the outputs to the fast parties according to the protocol description Π for the
slow parties. Now we create a two-party protocol Π ′ for OT extension, where both parties have access
to the reactive functionality described above, and where: P1 emulates n − s − 1 fast parties, and P2
emulates the 1 remaining fast party. The two parties execute the asymmetric MPC protocol, where any
interaction with the slow parties is performed via the reactive functionality Fslow instead. First, note
that the reactive functionality can be realized using a dishonest majority synchronous MPC protocol
such as GMW among the fast parties. Further note that since we are assuming that the slow parties
performs computation represented by a total circuit size c. This means that the number of OTs needed
to realize Fslow is c. Finally, in terms of security, note that since the asymmetric MPC protocol tolerates
t = n − s − 1 corruptions, the resulting two-party protocol tolerates 1 corruption. In conclusion, the
resulting two-party protocol where the reactive functionality is emulated among the two fast parties is
a secure OT extension protocol against a semi-honest static adversary, which implies one-way functions.
This concludes the proof. ⊓⊔

References

[ACC22] Ananya Appan, Anirudh Chandramouli, and Ashish Choudhury. Perfectly-secure synchronous mpc
with asynchronous fallback guarantees. In Proceedings of the 2022 ACM Symposium on Principles
of Distributed Computing, pages 92–102, 2022.
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Appendix

A Recap of Protocol [CDD+99]

In this section, we describe the details of the protocol by Cramer et al. [CDD+99], which is used in the
preprocessing phase of the protocol Πrgod in Section 5.3.

A.1 Information-Checking

Information checking (IC) is a tool for authenticating data that is information-theoretic. An IC scheme
consists of the following protocols among three parties (called the dealer D, the intermediary INT and
the receiver R):

– Dist: The dealer with input s, sends s to INT and and some auxiliary information to INT and R.
– AuthVal: INT (with input s), ensures that R will output s in protocol Reveal.
– Reveal: R receives a value s′ from INT with some auxiliary data, and either accepts s′ or rejects.

Definition 1. An IC scheme is a triple of protocols (Dist, AuthVal, Reveal) among parties D, INT , R,
where D starts with an input s in Dist and R outputs a value in Reveal, that satisfy the following properties
with overwhelming probability:

– Correctness:
• If D, INT and R are honest, and D has input s in Dist, then R outputs s in Reveal.
• If INT and R are honest, then after executing Dist and AuthVal, INT outputs a value s such

that if Reveal is executed, R outputs s.
• If D and R are honest, and D has input s in Dist, then R does not output s′ ̸= s in Reveal.

– Privacy: R has no information about the secret s after Dist.
– Linearity: Let s1 and s2 be input values of D so that D, INT and R executed Dist and AuthVal on

both inputs. Then, with no interaction, parties can locally emulate an execution with input s1 + s2.

IC-Signatures Later, we make use of information checking among n parties P1, . . . , Pn. Protocol Dist
will be carried out by the dealer D with intermediary INT and the receivers P1, . . . , Pn, each with the
same input value s. The information sent by D to INT will be called an IC-signature and we denote
such a signature as σ(s, D, INT ).

In order to verify a signature among n parties, the AuthVal protocol is executed bilaterally by INT
and each party Pi. Then, in protocol Reveal, INT broadcasts s and the authentication information, and
if t + 1 parties accept s then we say that the signature has been confirmed.

These signatures enable D to give INT a signature which only INT can use to convince the other
parties about the authenticity of a value received from the dealer. Therefore, we can use these IC-
signatures as signatures given specifically from D to INT , so that INT can prove authenticity of a
received value to any party.

A.2 Verifiable Secret Sharing

We recall the definition of verifiable secret sharing (VSS).

Definition 2. A t-secure VSS scheme for sharing a secret s ∈ F is a pair (Sh, Rec) n-party protocols
that satisfy the following properties, even in the presence of an adversary corrupting up to t parties:

– Correctness: Once all honest parties terminate protocol Sh, there exists a fixed value, s′ ∈ F∪⊥, such
that the following requirements hold:

• If the dealer D is honest, then s′ = s, and each honest party outputs s′ in protocol Rec.
• If the dealer is corrupted then each honest party outputs s′ in protocol Rec.

– Privacy: If the dealer is honest and no honest party has yet started Rec, then the adversary has no
information about the shared secret s.

– Termination: If the dealer D is honest then all honest parties terminate Sh, and if the honest parties
invoke Rec, then each honest party eventually terminates Rec.
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Protocol Description. The protocol is based on classical protocols [FM88, BGW88], but using IC-
signatures, instead of error correction.

In order to share a value s, the dealer D will make use of a bivariate polynomial f(x, y) of degree
at most t. The projections f(x, i) and f(i, y) will be sent to party Pi (where all the points are signed
using IC-signatures). The parties can now bilaterally compare the cross-point values between them, and
expose inconsistent behavior by the dealer using the signatures. This implies that the values held by
honest parties are consistent, and since there are at least n − t > t + 1 honest parties, these values
uniquely define a bivariate polynomial f ′(x, y) of degree at most t, which in turn defines the secret.
Therefore, this already ensures that the dealer is committed to a value after the sharing phase.

However, the reconstruction might still fail if the adversary sends corrupted shares. In order to avoid
that, each share of Pi is also signed by the other parties. This will in turn prevent the adversary from
corrupting the secret at reconstruction time.

Protocol Πvss

Share Let s be the input for the dealer D.

1: D chooses a random bivariate polynomial f(x, y) of degree at most t in each variable, such that
f(0, 0) = s. Let sij = f(i, j). The dealer sends to party Pi the values a1i = s1i, . . . , ani = sni and
bi1 = si1, . . . , bin = sin. For each value aji, bij , D attaches IC-signatures σ(aji, D, Pi), and σ(bij , D, Pi).

2: Party Pi checks that the two sets a1i, . . . , ani and bi1, . . . , bin are t-consistent. If the values are not
t-consistent, Pi broadcasts these values with D’s signature on them. If a party hears a broadcast of
inconsistent values with the dealer’s signature then D is disqualified and execution is halted.

3: Pi sends aji and a signature which he generates on aij , σ(aji, Pi, Pj) privately to Pj .
4: Party Pi compares the value aij which he received from Pj in the previous step to the values bij received

from D. If there is an inconsistency, Pi broadcasts bij and σ(bij , D, Pi).
5: Party Pi checks if Pj broadcasted a value bji, σ(bji, D, Pj) which is different than the value aji which

he holds. If such a broadcast exists then Pi broadcasts aji and σ(aji, D, P i).
6: If for an index pair (i, j) a party hears two broadcasts with signatures from the dealer on different

values, then D is disqualified and execution is halted.
Reconstruct

1: Party Pi broadcasts the values bi1, . . . , bin with the signature for value bij which he received from party
Pj .

2: Party Pi checks whether Pj ’s shares broadcasted in the previous step are t-consistent and all the signa-
tures are valid. If not then Pj is disqualified.

3: The values of all non-disqualified parties are taken and interpolated to compute the secret.

A.3 Multi-Party Computation

Using the VSS scheme Πvss from above, it is easy to come up with an MPC protocol.

Addition Gates. Addition gates are straightforward and parties can process them locally (using the
fact that the IC-signatures are linear).

Multiplication Gates. The multiplication gates are processed using the well-known method by Gen-
naro, Rabin and Rabin [GRR98]: Each party Pi locally multiplies his shares ai and bi of the input wires
a and b, and shares the result di = aibi using VSS. This results in n VSSs and a proper sharing of the
output wire c can be computed as a fixed linear combination of these. The authors show a way for Pi

to share a secret di, such that di = aibi and to prove that he has done so properly. The details can be
found in [CDD+99].

B Proof of Theorem 6

We describe the simulator for the online phase of the protocol, as the preprocessing phase is executed
using the protocol [CDD+99] and can also be simulated.

Simulation of the Input Phase. For each honest party Pi, the simulator emulates an execution of Πvss
with input 0 towards the adversary. This includes sending random projected univariate polynomials to
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the adversary, along with IC-signatures. Each time a complain is received by the adversary, the simulator
responds by broadcasting the corresponding stored share and signature.

For each corrupted party Pi, the simulator emulates an honest execution of Πvss on behalf of the
honest parties: it receives univariate polynomials with signatures on behalf of the honest parties. It then
checks that they are all of degree-t, and if not, it broadcasts the values with Pi’s signatures. Finally, for
any share and signature that are broadcasted, if the corresponding party holding the cross-point share
is honest, it checks whether that received share is consistent, and if not, it broadcasts these values with
Pi’s signature on them.

Simulation of Addition Gates. The addition gates require no simulation, since they constitute local
computation only.

Simulation of Multiplication Gates. During each multiplication gate, the simulator emulates the
reconstruction procedure of Πvss from the fast parties. That is, it emulates an execution of asymmetric
broadcast, and gives to the adversary the shares and signatures corresponding to x − a and y − b, where
x and y are the input wire values in the simulated execution, and (a, b, c) is a multiplication triple. (Note
that since a and b are random, the reconstructed values are also random.)

Simulation of the Output Stage. During the output phase, the simulator receives the output yi for
Pi, and the shares of the corrupted parties. With these, the simulator can consistently reconstruct the
shares of the honest parties and send them to the adversary.

Analysis of the Simulation. We first argue about correctness. First, the pre-processing phase is suc-
cessful, and all parties hold correct shares of the multiplication triples with correct signatures (with high
probability). Similarly, after the input phase, parties hold correct shares of their inputs and signatures.
This correctness trivially propagates to the rest of the wires in the circuit, since all operations are linear.

Now let us argue that the protocol securely computes the function. During the input phase for an
honest party Pi, the adversary receives the projections of univariate polynomials f(x, j) and f(j, y), for
up to t indices j. By properties of bivariate polynomials, this reveals no information about the secret,
and is therefore identically distributed as the univariate polynomials that the simulator reveals. In the
multiplication phase, as hinted above, since the multiplication triple (a, b, c) contains uniform random
values a and b, the reconstructed values are also distributed uniformly at random, identically as the
simulated execution. This is also the case for the output gates, where the simulator outputs honest
shares and signatures that are consistent with the corresponding reconstructed output.
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