
A Guide to the Design of Digital Signatures
based on Cryptographic Group Actions

Giacomo Borin, Edoardo Persichetti, Federico Pintore,
Krijn Reijnders and Paolo Santini

IBM Research Zurich, Florida Atlantic University, University of Trento, Radboud
University and Marche Polytechnic University

Abstract. Cryptography based on group actions has been studied since
1990. In recent years, however, the area has seen a revival, partially due to
its role in post-quantum cryptography. For instance, several works have
proposed signature schemes based on group actions, as well as a variety
of techniques aimed at improving their performance and efficiency. Most
of these techniques can be explained as transforming one Sigma proto-
col into another, while essentially preserving security. In this work, we
present a unified taxonomy of such techniques. In particular, we describe
all techniques in a single fashion, show how they impact the performance
of the resulting protocols and analyse in detail how different techniques
can be combined for optimal performance. Furthermore, to provide a
tangible perspective, we apply the results of our analysis to the (group
action-based) candidates in the current NIST call for digital signatures.
This gives a full overview of the state of the art of signatures based on
group actions, as well as a flexible tool which is easy to adapt and employ
in the design of future schemes.

Keywords. Group Actions, Zero-Knowledge, Signature Scheme

1 Introduction

The recent standardization effort promoted by the National Institute of Stan-
dards and Technology (NIST) [1] has rekindled the community’s interest in the
design of efficient post-quantum cryptographic schemes from a variety of assump-
tions. In the latest call [35], NIST is explicitly looking for signature schemes that
are not based on lattices, which has led to an acceleration in the development
of schemes from other areas, such as coding theory, multivariate equations, iso-
genies and symmetric primitives.

Among these, cryptographic group actions represent a powerful tool. For-
mally introduced in 1990 by Brassard and Yung [15], cryptographic group actions
have seen a renewed interest in recent years, thanks to their flexibility in con-
structing post-quantum signature schemes and other primitives based on various
notions of isomorphism, be that isogenies between elliptic curves [16, 21], equiva-
lence of linear or matrix codes [5, 9, 19], isomorphism of lattices [25], alternating

trilinear forms [38] and others. At the same time, another trend to build effi-
cient signatures emerged, exploiting the MPC-in-the-head paradigm [33], leading
to the development of efficient schemes, again, from a variety of mathematical
assumptions [26, 27, 29], or even none, i.e. using only symmetric primitives [32].

Nowadays, the landscape of digital signatures based on group actions is
broad. The different signature schemes that have been proposed so far are all
built on a generic 3-pass identification protocol Π (more precisely, a Sigma pro-
tocol) which allow a prover to prove knowledge of a group element whose action
sends a public element of the set on which the group acts into another public set
element. The protocol Π has been instantiated from a variety of group actions,
leading to the current wide range of group action-based digital signatures. Fur-
thermore, several generic and instantiation-tailored techniques to increase the
performance or achieve trade-offs between scheme parameters have been pre-
sented [5, 7, 9, 19, 22, 38], with the most recent proposals including also an
adaptation of the MPC-in-the-head paradigm to the group action setting [31].

Thus, in practice, in the design of cryptographic primitives based on group
actions, one has to consider a vast array of literature and variables to achieve
optimal performance, as there is no unified description of these techniques and
no clear insight into the performance impact of their combinations.

Our Contributions. This work aims to fill this gap in the literature, by pre-
senting a complete taxonomy of the current techniques used in the design of
signature schemes based on group actions. We do this in all generality, by using
a unified description framework, and providing a detailed analysis of each tech-
nique’s impact on performance and security. Table 1 summarises the effective-
ness of all current techniques and fruitful combinations in terms of (maximum)
signature size, public key size, signing time and verification time. Our work is
organised as follows.

In Sections 3 and 4 we describe the individual optimisation techniques, divid-
ing them between well-established ones (Section 3) and more recent and novel
techniques (Section 4). Each of the discussed techniques will correspond to a
column in Table 1. In particular:

– Section 3 details the Multiple Keys, Fixed-Weight Challenges and Seed Tree
optimisations, corresponding to the columns in Table 1 labelled by MK,
FW and ST, respectively;

– Section 4 describes the MPC-in-the-Head, Skipping Edges and Hypercube
optimisations, corresponding to the columns in Table 1 labelled by MPC,
Skip and Cube, respectively;

– Skipping Edges and Hypercube are specific for the MPC-in-the-Head setting
and, to the best of our knowledge, they have not appeared in the literature
before.

2

The rows of Table 1 report the results obtained for digital signatures con-
structed by applying the Fiat-Shamir transform [28] to the Sigma protocol Π,
combined with various different choices of optimisation techniques. The efficiency
of signature schemes is assessed by means of different quantifiers, each of them
corresponding to a column in the table. In particular:

– the column labelled by Max Sig Size reports the maximum signature size
where, to simplify reading, we have removed the “static” part consisting of
salt and σ2 (the challenge string) which is identical for all cases;

– the column Pk Size reports the size of the public key;

– the columns Sign Time and Ver Time report, respectively, the time re-
quired to perform signing and verification, expressed as a function of the
system parameters.

– finally, the last column, labelled by Condition, describes the necessary con-
dition on parameters to be satisfied for each particular combination. The
first entry of each row provides the reference to the subsection of the paper
where the efficiency of the corresponding signature scheme is analysed in full
details.

The first row takes into consideration the signature from the basic proto-
col Π, which will thereafter serve as a reference, and comparison term. The next
rows, then, consider the signatures obtained from Π when combined with a sin-
gle optimisation: rows 2 to 4 consider one among Multiple Keys, Fixed-Weight
Challenges and Seed Tree, while rows 5 to 8 focus on the MPC-in-the-Head
optimisation, first by itself, and then combined with either Skipping Edges or
Hypercube, which are “direct improvements” (i.e. can be applied exclusively in
combination with MPC-in-the-Head).

In Section 5, we analyse more elaborate combinations of the optimisation
techniques. The results obtained therein are summarised in the last 15 rows
of Table 1. Furthermore, building on these, we show in Section 6 that several
combinations of techniques are always superseded by other combinations, and
can therefore be disregarded in most cryptographic designs. In particular, The-
orems 2 and 3 show that, informally, Fixed-Weight Challenges almost always
outperforms MPC-in-the-Head.

Lastly, based on our unified approach, we are able to effectively summarise
the state of the current digital signatures schemes based on group actions: we
do this in Section 7, where we also propose new parameters for some of these
schemes, according to the guidelines emerging from Table 1, which are effec-
tively an improvement over the original ones. This case of study shows how the
comprehensive analysis provided in this work might represent an effective tool
in designing and improving the efficiency of digital signatures based on group
actions.

3

Transformations Bandwidth Cost (after Fiat-Shamir) Comput. Cost

Section MK FW ST MPC Skip Cube Max Sig Size (excl. salt & σ2) Pk Size Sign Time Ver Time Condition

Sec. 2.4 - - - - - - tℓG ℓX ` λ t t t “ λ

Sec. 3.1 ✓ - - - - - tℓG sℓX ` λ t t ps` 1qt ě 2λ

Sec. 3.2 - ✓ - - - - pt´ wqλ` wℓG ℓX ` λ t t
`

t
w

˘

ě λ

Sec. 3.3 - - ✓ - - - Nseedλ` wℓG ℓX ` λ t t ps` 1qt ě 2λ

Sec. 4.1 - - - ✓ - - tppm´ 1qλ` ℓGq ℓX ` λ tm tm pm` 1qt ě 2λ

Sec. 4.2 - - - ✓ ✓L - t
`

pm´ 1qλ` ℓG ` 2λ
˘

ℓX ` λ tm t
`

1` m
2

˘

pm` 1qt ě 2λ

Sec. 4.2 - - - ✓ ✓R - tppm´ 1qλ` ℓGq ℓX ` λ tm t
`

1` m
2

˘

pm` 1qt ě 2λ

Sec. 4.3 - - - ✓ - ✓ tppm´ 1qλ` ℓGq ℓX ` λ t logpmq* t logpmq pm` 1qt ě 2λ

Sec. 5.1
- ✓ ✓ - - - Nseedλ` wℓG ℓX ` λ t t

`

t
w

˘

ě λ

✓ ✓ ✓ - - - Nseedλ` wℓG sℓX ` λ t t
`

t
w

˘

sw
ě λ

Sec. 5.2

- - ✓ ✓ - - tprlogpmqsλ` ℓGq ℓX ` λ tm tm pm` 1qt ě 2λ

✓ - ✓ ✓ - - tprlogpmqsλ` ℓGq sℓX ` λ tm tm psm` 1qt ě 2λ

- ✓ ✓ ✓ - - Nseedλ` wprlogpmqsλ` ℓGq ℓX ` λ tm tm
`

t
w

˘

mw
ě 2λ

✓ ✓ ✓ ✓ - - Nseedλ` wprlogpmqsλ` ℓGq sℓX ` λ tm tm
`

t
w

˘

psmqw ě 2λ

- - ✓ ✓ - ✓ tplogpmqλ` ℓGq ℓX ` λ t logpmq* t logpmq pm` 1qt ě 2λ

✓ - ✓ ✓ - ✓ tplogpmqλ` ℓGq sℓX ` λ t logpmq* t logpmq psm` 1qt ě 2λ

Sec. 5.3

- - ✓ ✓ ✓L - tprlogpmqsλ` ℓG ` 2λq ℓX ` λ tm tp1` m
2 q pm` 1qt ě 2λ

✓ - ✓ ✓ ✓L - tprlogpmqsλ` ℓG ` 2λq sℓX ` λ tm tp1` m
2 q psm` 1qt ě 2λ

- - ✓ ✓ ✓R - tpℓG ` 3λq ℓX ` λ tm tp1` m
2 q pm` 1qt ě 2λ

✓ - ✓ ✓ ✓R - tpℓG ` 3λq sℓX ` λ tm tp1` m
2 q psm` 1qt ě 2λ

- ✓ ✓ ✓ ✓L - Nseed3λ` wprlogpmqsλ` ℓG ` 2λq ℓX ` λ tm t` w m`1
2

`

t
w

˘

mw
ě 2λ

✓ ✓ ✓ ✓ ✓L - Nseed3λ` wprlogpmqsλ` ℓG ` 2λq sℓX ` λ tm t` w m`1
2

`

t
w

˘

psmqw ě 2λ

Table 1: A summary of all meaningful combinations of techniques, with resulting
maximum signature size, public-key size, signature time and verification time. The
asterisks in the last row indicates a possibly expensive Merkle tree computation must
be accounted for. As the Skipping Edges technique enjoys two variants (edges skipped
on the left or on the right), the subscripts L and R in the Skip column denote which
variant is considered. For more details on the parameters in the table, we refer to the
preliminaries and the sections listed in the first column.

4

2 Preliminaries

In this section, we recall definitions and some properties of the various objects
that will be at the center of our work.

2.1 Notation

We typically employ uppercase letters (e.g. A) for sets, groups etc. and lowercase
letters (e.g. a) for their elements. We use serif (e.g. A) to represent formal objects
such as parties, or algorithms, protocol components etc. The letter ℓ is used to
denote the size (i.e. bit-length) of elements in a certain set; for example ℓX refers
to the size of elements of a set X and ℓG to the size of elements of a group G.
To ease notation, we simply write log instead of log2 to denote the logarithm in
base 2. Finally, for notions that are relevant in cryptography, we adopt the usual
choice of notation: λ represents the security parameter and $

ÐÝ denotes the act of
sampling uniformly at random. Moreover, we assume the reader is familiar with
standard cryptographic functions (e.g. hash, PRF, commitment functions).

2.2 Sigma Protocols and Digital Signatures

The main objects discussed in this work are Sigma protocols, i.e. 3-round inter-
active protocols between two parties, where the first party (the prover) has the
goal of proving to the second party (the verifier) the knowledge of a witness w
to a public statement x for a binary relation R.

Definition 1 (Σ-Protocol). A Σ-protocol Π for a polynomially-computable
binary relation R is defined by three sets CmtSet, ChSet and RspSet (respectively
the commitment space, challenge space and response space) and two polynomial-
time algorithms: a probabilistic, two-stage algorithm P “ pP1,P2q, composed of
a commitment routine and a response routine, and a deterministic verification
algorithm V. When more than one Σ-protocol is discussed, we use a prefix (e.g.
Π.V) to clarify which protocol the various objects belong to. The flow of the
protocol is as follows.

Protocol 1 (Σ-Protocol)

1. On input px,wq P R, the prover computes a commitment cmt Ð P1px,wq and
sends it to the verifier.

2. The verifier samples uniformly at random a challenge ch P ChSet, and sends
it to the prover.

3. Given ch, the prover computes a response rsp Ð P2px,w, cmt, chq and sends
it to the verifier.

4. The verifier runs Vpx, cmt, ch, rspq and outputs 1 (pass), or 0 (fail).

A transcript pcmt, ch, rspq P CmtSet ˆ ChSet ˆ RspSet of the protocol is said to
be valid (relative to the statement x) if Vpx, cmt, ch, rspq outputs 1.

5

We require the following properties of a Σ-protocol:

1. Completeness. All honestly generated transcripts must be valid. Thus:

Pr

»

—

—

–

Vpx, cmt, ch, rspq “ 1

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

px,wq P R
cmt Ð P1px,wq,

ch $
ÐÝ ChSet,

rsp Ð P2px,w, cmt, chq

fi

ffi

ffi

fl

“ 1.

2. Honest-Verifier Zero-Knowledge (HVZK). Transcripts should be in-
distinguishable from random. More precisely, a Σ-protocol Π is statistically
HVZK if there exists a probabilistic polynomial-time (PPT) simulator al-
gorithm ZKSim such that, for any computationally unbounded adversary A,
any px,wq P R and ch P ChSet, it holds

Pr
„

Apx, cmt, ch, rspq “ 1
ˇ

ˇ

ˇ

ˇ

cmt Ð P1px,wq;
rsp Ð P2px,w, cmt, chq

ȷ

´

Pr rApx, cmt, ch, rspq “ 1 | pcmt, rspq Ð ZKSimpx, chqs “ neglpλq

where λ is the security parameter. If the identity above above holds only
for computationally-bounded adversaries, the protocol is instead said to be
computationally HVZK.

3. Special Soundness. A malicious prover should have a bounded probability
of passing verification. Formally, we say that Π is special sound if there
exists a polynomial-time algorithm Ex, called extractor, such that, for any
statement x and two valid transcripts (relative to x)

pcmt , ch , rspq , and
`

cmt , ch1 , rsp1
˘

,

with ch ‰ ch1, it outputs a witness w to x. Special soundness implies that a
malicious prover can make the verifier accept with probability at most

ε “
1

|ChSet| (1)

which is called soundness error.

To reduce the soundness error of a Σ-protocol Π, it is usual to make the
challenge space ChSet larger using parallel repetitions. Formally speaking, this
is a transformation of Π into a different Σ-protocol, as follows.

6

Transformation 1 (Parallel Repetitions)
This technique reduces the soundness error of a Σ-protocol via t independent
repetitions.
Given: a Σ-protocol Π.
Transform: a Σ-protocol Π1 with Π1.CmtSet “ pΠ.CmtSetqt, Π1.ChSet “
pΠ.ChSetqt and Π1.RspSet “ pΠ.RspSetqt. Given a statement x, a transcript
for Π1 is of the form

´

cmtpiq, chpiq, rsppiq
¯

i“1,¨¨¨ ,t

where each pcmtpiq, chpiq, rsppiqq is a transcript for Π. The algorithms are
defined as follows. First, Π1.P1 and Π1.P2 simply execute Π.P1 and Π.P2
each t times, respectively; then, Π1.V checks the entire transcript and outputs
1 if and only if

Π.V
´

cmtpiq, chpiq, rsppiq
¯

“ 1

for all 1 ď i ď t.

It is easy to see that, if Π is complete, HVZK and special sound with sound-
ness error ε, then so is Π1. In particular, the transform yields a soundness error
ε1 “ εt.

The Fiat-Shamir Transformation. Any Σ-protocol Π can be made non-
interactive using the Fiat-Shamir transformation [28]. In particular, the sam-
pling of a uniformly-random challenge by the verifier (see step 2 in Protocol 1)
is replaced by ch Ð Hpcmtq for a collision-resistant hash function H : t0, 1u˚ Ñ

Π.ChSet. This new protocol can in turn be transformed into a digital signa-
ture, which we will denote by FSpΠq, by concatenating the message msg to be
signed with cmt, in the evaluation of the hash function H. Before detailing the
resulting signature scheme in Transformation 2, we recall the definition of digital
signature.

Definition 2. A digital signature scheme consists of three probabilistic polynomial-
time algorithms pKeyGen,Sign,Verq such that:

– pvk, skq Ð KeyGenpλq: On input a security parameter λ, the key generation
algorithm outputs a pair of verification and signing keys pvk, skq;

– σ Ð Signpsk,msgq: On input a signing key sk and a message msg, the signing
algorithm outputs a signature σ;

– 1{0 Ð Verpvk,msg, σq: On input a verification key vk, a message msg and a
signature σ, the verification algorithm outputs 1 (accept) or 0 (reject).

We require a signature scheme to satisfy the following two properties and the
security model which is commonly considered.

7

1. Correctness. For any security parameter λ P N and any message msg the
following holds:

Pr
„

Verpvk,msg, σq “ 1
ˇ

ˇ

ˇ

ˇ

pvk, skq Ð KeyGenpλq,
σ Ð Signpsk,msgq

ȷ

“ 1.

2. Unforgeability. We define the Existential Unforgeability under Chosen Mes-
sage Attack (EUF-CMA) via a game played by an adversary A and a chal-
lenger. Within the game, the challenger runs pvk, skq Ð KeyGenpλq and pro-
vides the adversary A the verification key vk. It also prepares an empty
set Q. The adversary A may adaptively submit messages msg to the chal-
lenger. Upon reception of msg, the challenger responds by returning σ Ð
Signpsk,msgq to A and then updates the set Q Ð Q Y tmsgu. Finally,
A outputs a forgery pmsg˚, σ˚q and we say they win if msg˚ R Q and
Verpvk,msg˚, σ˚q “ 1. A’s advantage AdvEUF ´CMA

A is defined as the prob-
ability they win the game. We say the signature scheme is EUF ´ CMA
secure if, for all probabilistic polynomial-time adversaries A, it holds that
AdvEUF ´CMA

A pλq “ neglpλq, where again λ is the security parameter.

Transformation 2 (Fiat-Shamir)
This technique turns a Σ-protocol into a digital signature scheme.
Given: a Σ-protocol Π and a hash function H : t0, 1u˚ Ñ Π.ChSet.
Transform: a digital signature scheme pKeyGen,Sign,Verq where

– pvk, skq Ð KeyGenpλq: On input a security parameter λ, the key gen-
eration algorithm samples a statement-witness pair px,wq P R, sets
pvk, skq Ð px,wq and returns pvk, skq;

– σ Ð Signpsk,msgq: On input a signing key sk (with vk as corresponding
verification key) and a message msg, the signing algorithm computes
σ1 Ð P1pvk, skq, σ2 Ð Hpσ1,msgq and σ3 Ð Π.P2pvk, sk, σ1, σ2q, and
outputs the signature σ “ pσ1, σ3q ;

– 1{0 Ð Verpvk,msg, σq: On input a verification key vk, a message msg
and a signature σ “ pσ1, σ3q, the verification algorithm recomputes σ2 “
Hpσ1,msgq and then runs Π.Vpvk, σ1, σ2, σ3q.

Remark 1. We note that the signature scheme in Transformation 2 can be im-
mediately and straightforwardly optimised if Π is commitment recoverable. In
fact, this property means that for any px,wq P R, any ch P Π.ChSet and any
rsp P Π.RspSet, there exists a unique commitment cmt P Π.CmtSet such that
pcmt, ch, rspq is a valid transcript, and it can be publicly computed by means
of a polynomial-time algorithm CmtRec taking px, ch, rspq as input. The recov-
ered commitment can be checked for equality against the challenge string in
the verification phase, and so does not need to be included in the signature. In
other words, we replace σ “ pσ1, σ3q with pσ2, σ3q, and adapt the verification
procedure accordingly, by recomputing σ1 via CmtRec.

8

The resulting digital signature scheme is EUF-CMA secure, given that the
challenge space is large enough [34].

Theorem 1. Let Π be a Σ-protocol with challenge space ChSet, whose cardinal-
ity is exponential in the security parameter λ. Then the digital signature scheme
FSpΠq is EUF-CMA secure.

2.3 Cryptographic Group Actions

Let X be a set and pG, ¨q a group. A group action of G on X is a function of the
form

‹ : GˆX Ñ X

pg, xq ÞÑ g ‹ x,

which is compatible with the group operation, that is, e ‹ x “ x for all x P X
for the neutral element e P G, and h ‹ pg ‹ xq “ ph ¨ gq ‹ x for all x P X and all
g, h P G. A group action is said to be:

– transitive if, for every x, y P X, there exists g P G such that y “ g ‹ x;
– faithful if there does not exist g P Gzteu such that x “ g ‹ x for all x P X;
– free if an element g P G is equal to e whenever there exists an x P X such

that x “ g ‹ x;
– regular if it is free and transitive.

The adjective cryptographic is used for group actions which enjoy additional
properties that are relevant to cryptography [3, 15]. Namely, a cryptographic
group action should be one-way, i.e., it should be easy to compute while, given
randomly chosen x, y P X, it should be hard to find g P G such that g ‹ x “ y
(if such a g exists). This computational problem is known as the vectorisation
problem, or as Group Action Inverse Problem (GAIP).

Problem 1 (GAIP) Given a group action ‹ : G ˆ X Ñ X and uniformly-
random elements x and y in X, find, if any, an element g P G such that y “ g‹x.

A related problem - equally required to be hard - asks to compute the action
of the product of two group elements, given the the individual actions on a
fixed element. This is known as the parallelisation problem and it essentially
corresponds to the computational version of the Diffie-Hellman problem [23],
formulated for generic group actions. A formal definition for the computational
Group Action Diffie-Hellman problem is given below.

Problem 2 (cGADH) Given a group action ‹ : GˆX Ñ X, x P X and g ‹ x
and h ‹ x for uniformly-random elements g, h P G, compute pg ¨ hq ‹ x.

In fact, the analogy with the discrete-logarithm case is easily drawn by ob-
serving that this is simply the group action given by the exponentiation map on
finite cyclic groups.

9

For cryptographic security, it may be required that group elements that fix set
elements, i.e. stabilisers, are hard to find [10]. This gives the following problem.

Problem 3 (Stabiliser-Computation Problem) Given a group action ‹ :
G ˆ X Ñ X, a uniformly-random element x P X, find g P Gzteu such that
g ‹ x “ x, if such a g exists.

Other cryptographic properties for group actions include those that make it
effective, for example, the existence of efficient (probabilistic polynomial-time)
algorithms for membership testing, sampling, and computation (of both the
group operation and the group action). More on these properties can be found
in [3]. Finally, more complex protocols often require a generalisation of GAIP to
multiple elements xi: the Multiple Group Action Inverse Problem (mGAIP).

Problem 4 (mGAIP) Given a collection x0, ..., xr´1 in X, find, if any, an
element g P G and two different indices j ‰ j1 such that xj1 “ g ‹ xj.

Clearly, solving GAIP allows to solve mGAIP. We show the equivalence be-
tween the two problems as Proposition 8 in Appendix D by showing the other
direction, through a generalisation of Theorem 3 from [6].

2.4 Digital Signatures from Group Actions

Any cryptographic group action ‹ : G ˆ X Ñ X can be used to construct
a secure digital signature via the aforementioned Fiat-Shamir transform [28],
with security based on GAIP. The main building block is a Σ-protocol Π for a
relation R Ă X ˆX, with CmtSet “ X, ChSet “ t0, 1u and RspSet “ G. Given
a statement x, i.e. a pair px, yq P X ˆ X, the goal is to prove knowledge of a
witness g P G such that y “ g ‹ x. That is done by committing to a random
element x̃ “ g̃ ‹x, with g̃ $

ÐÝ G, and then disclosing the link between either px, x̃q
or py, x̃q.
The flow of the protocol is as follows.

Protocol 2 (Group Action Σ-Protocol)

1. On input g, y “ g‹x, the prover runs P1, which samples g̃ $
ÐÝ G and computes

the commitment cmt “ x̃Ð g̃ ‹ x, then sends cmt to the verifier.
2. The verifier samples uniformly at random a challenge ch P ChSet, and sends

it to the prover.
3. Given ch, the prover runs P2 to compute the response as follows. If ch “ 0,

then rsp Ð g̃; else, if ch “ 1 then rsp Ð g̃g´1. Then, the prover sends rsp to
the verifier.

4. If ch “ 0, the verifies checks whether rsp ‹ x “ cmt; else, if ch “ 1 checks
whether rsp ‹ y “ cmt. Finally, it outputs 1 (pass) or 0 (fail) accordingly.

10

Remark 2. A crucial point is that, since g̃ is sampled uniformly at random, the
response rsp “ g̃ for the case ch “ 0 can in practice be replaced by a (smaller)
seed, of size λ, for a secure pseudorandom number generator PRF. Note, however,
that it is possible to consider a variant where the uniform distribution for sam-
pling g̃ is replaced by an alternative probability distribution on G. In transforma-
tions such as Parallel Repetitions, many seeds will end up being transmitted. It
is possible to use a Puncturable PRF [14] to do this efficiently, and further com-
press the size of the resulting signature. We present an instance in Section 3.3,
where we describe a transformation using the seed tree.

Remark 3. When length-λ seeds are employed, it is fundamental that the mes-
sage is salted with a random length-2λ string salt. This is necessary to prevent
attacks that can retrieve the witness after observation of Op2λ{2q signatures [17].
It is fundamental that the salt is sampled uniformly at random, independently
of the message-to-be-signed. Notice that this increases the signature size, as salt
must be included in the signature.

Proposition 1. Protocol 2 is complete, honest-verifier zero-knowledge and spe-
cial sound.

Proof. We go over each property one by one.
Completeness. A honest prover holding a private key g for the public key y “ g‹x
always passes verification.
Honest-verifier zero-knowledge. Consider a simple simulator Sim that, on input
x P X and a challenge ch, outputs the following.

– When ch “ 0, it samples h̃ $
ÐÝ G and outputs cmt “ h̃ ‹ x and rsp “ h̃. The

resulting transcript is exactly that of an honest execution of the protocol.
– When ch “ 1, it samples h̃ $

ÐÝ G and outputs cmt “ h̃ ‹ y and rsp “ h̃. The
resulting transcript leads to a distribution that is the same of the transcript
distribution obtained by running honestly the protocol. In fact, because the
multiplication by a group element determines a bijective map from G to G,
both h̃ and g´1g̃ have the same uniform distribution, thus h̃ and g´1g̃ are
indistinguishable also to an unbounded adversary.

Special soundness. Let pcmt, 0, g̃q and pcmt, 1, g̃g´1q be two valid transcripts.
Given g̃ and g̃g´1, we get g´1, and hence we can extract the witness g for y with
respect to statement ppx, yq, gq induced by GAIP. [\

Thanks to the special soundness, and considering the size of the challenge
set, the above protocol provides a soundness error of 1{2. This can intuitively
be amplified via Parallel Repetitions, setting t “ λ. Once the soundness error is
reduced to 2´λ, the protocol can be turned into a EUF-CMA-secure signature
via Fiat-Shamir. Using Theorem 1 with a commitment recoverable protocol Π,
the average signature size is given by

SigSizepFSpΠ1qq “ 2λ
salt
` λ

σ2

` t
´ 1

2λ

rsp for ch“0

`
1
2ℓG

rsp for ch“1

¯

. (2)

11

In practice, the maximum signature size is more relevant, as an imple-
mentation needs to allocate a certain amount of bits for a signature. In this
instance, this is given by

MaxSigSizepFSpΠ1qq “ 2λ
salt
` λ

σ2

` tℓG (3)

which corresponds to row 1 of Table 1. Whenever these values differ, we list both
the average and maximum signature size. As this work is practice-focused, we
list the maximum signature size in Table 1 to ease comparison between different
techniques for real-world applications.

The first cryptosystem using this generic construction, even if only sketched,
traces back to [37], while the first practical implementation is the SeaSign scheme
[22], using the CSIDH group action [16]. It is worth noting that SeaSign also
employ rejection-sampling techniques, because there is no efficient way to sam-
ple uniformly random group elements for the CSIDH group action. (i.e. realise
g

$
ÐÝ G). The rejection discards all elements with ideal powers over a thresh-

old, similarly to what is done in the CRYSTALS-Dilithium scheme [24]. Other
recently-designed signatures based on this construction are [8, 11, 19].

3 Known Optimisation Techniques

In the previous section, we have described a generic construction for a digital
signature scheme from a cryptographic group action. Several optimisation tech-
niques can be applied on top of this construction, in all generality. In this section,
we describe the most prominent techniques that have emerged in the literature.

The initial Σ-protocol (Protocol 2) has a public pair of nodes px, yq and
commits to a node x̃. The prover reveals how to compute x̃ either from x (i.e.
via g̃) or from y (i.e. via g̃g´1). To generalise this terminology into a unified
exposition of techniques for Σ-protocols based on group actions, we will describe
them using the language of action graphs.

Action Graphs. An action graph for a group action ‹ : G ˆ X Ñ X is the
graph where the nodes are elements of X, and an edge between x1 and x2 is
present whenever x2 “ g ‹ x1 for some g P G. A specific protocol, then, can be
represented via the corresponding subgraphs, consisting of the nodes and edges
involved.

Note that the use of a graph to study signature schemes induced by group
actions is not new: for example, in [12], this was used as a theoretical abstrac-
tion to model all the possible commitment strategies and bound the number of
set elements present in the transcript for a fixed soundness error. In our work,
instead, we use graphs in a constructive way, to define protocols with different
use cases and confront them with respect to different benchmarks. For instance,
Protocol 2 can be described via the following graph:

12

x y

x̃

Fig. 1: Action graph for Protocol 2.

Let us clarify the meaning of the graph above. First of all, the public key
is composed of an origin node x and a destination node y; the node x̃ is the
randomly-generated commitment. The action of a group element on a node is
seen as a map, and denoted via an arrow: for example, a dashed red arrow for
public-key pairs, a solid arrow for commitments, and a gray dashed arrow for
a map known only to those with the associated secret key. A challenge asks to
reveal a specific path between two nodes: for example, ch “ 0 asks for the path
between x and x̃, while ch “ 1 asks for the path between y and x̃. It follows, then,
that responses would consist of paths, represent by the corresponding arrows:
here, the solid line for the response to ch “ 0, and the dashed gray line for the
response to ch “ 1.

An elaborate introduction to action graphs, including a general description
of Σ-protocols, can be found in Appendix A.

Representations of Elements. The way that elements are represented is of
significant importance to the bandwidth efficiency of signature schemes based
on group actions.

– Group elements that are used to obtain commitments are always sampled
uniformly at random from G, thus can be generated and represented by a
seed of length λ.

– Challenges are usually simply represented as integers1.
– Responses consist of various non-random group elements, corresponding to

the matching path required. Efficient representations of such elements are
an active area of research [18, 20, 36] to reduce signature sizes.

Presentation of Techniques. We present each technique in a transform box
(as for Transformation 1). Each box contains a summary of the key information
of the transformation. The rest of each subsection includes a graphical repre-
sentation, the main features of the transformation, and a brief discussion on
security.

1 The integer 0 represents the challenge that asks to link each commitment to the
origin x. This particular challenge is referred to as the consistency check, as it asks
for the information to repeat the commitment generation.

13

3.1 Multiple Public Keys

De Feo and Galbraith [22] first presented the idea of using multiple public keys for
group actions to decrease the signature size by reducing the soundness error. This
transformation is meant to be applied before any iterations, i.e. to Protocol 2. By
using multiple public keys y1, . . . , ys associated to different secret keys g1, . . . , gs

such that yi “ gi ‹ xi, the challenge spaces increases from t0, 1u to t0, . . . , su as
we now reveal a path from ych to the commitment x̃.

Transformation 3 (Multiple Keys)
This technique reduces the soundness error by increasing the number of
public keys from only y to y1, . . . , ys.
Given: the Group Action Σ-Protocol Π.
Transform: the Σ-protocol Π1 with Π1.CmtSet “ Π.CmtSet, Π1.RspSet “
Π.RspSet and

Π1.ChSet “ t0, 1, ..., su .

The algorithms are defined as follows. First, we have Π1.P1 “ Π.P1.
Then, a challenge ch is sampled uniformly at random in Π1.ChSet. If ch “ 0,
then Π1.P2 “ Π.P2; else, Π1.P2 computes rsp as g̃g´1

ch . Finally, Π1.V verifies
validity as in Π.V, but with respect to the statement xch.

Graphical Representation. The resulting action subgraph can be seen in
Figure 2. By committing to a single set element x̃ we get s` 1 possible paths to
reveal by composing the random path xÑ x̃ with the secret paths xÑ yj .

x y1 y2 y3 y4

x̃

Fig. 2: Action subgraph with s “ 4 public keys; the commitment x̃ can be linked
to any of the public keys yi.

Features. The transformation can be seen as a generalisation of Group Action
Σ-Protocol, which corresponds to the special case s “ 1. The transformation
increases the size of the public key to λ`s ¨ ℓX , while decreasing the soundness
error to

ε1 “
1

|Π1.ChSet| “
1

s` 1 . (4)

14

This means that, in principle, this optimisation could be used alone, with-
out any iterations, if s was chosen large enough (e.g. s ` 1 “ 2λ). However,
due to the rapid increase in public key size, this approach is de facto not ap-
plicable in practice. This optimisation is therefore viable when used together
with multiple rounds. Namely, we can combine it with Parallel Repetitions, set-
ting t “ rλ{ logps ` 1qs. Then, when transformed into a signature scheme via
Fiat-Shamir, the resulting average signature size is given by

SigSizepFSpΠ1qq “ 2λ
salt
` λ

σ2

`t
´ 1

s` 1λ

rsp for ch“0

`
s

s` 1ℓG

rsp for ch‰0

¯

(5)

and the maximum signature size is therefore

MaxSigSizepFSpΠ1qq “ 2λ
salt
` λ

σ2

`tℓG (6)

which corresponds to row 2 of Table 1. Hence, this optimisation yields a
tradeoff between signature size and public key size. On the one hand, the num-
ber t of rounds required is now lower, thanks to the reduced soundness error,
while on the other hand, the size of the public key grows linearly in s.

To decrease the combined size of public key and signature, the optimal value
of s depends on the specific group action used, in particular on the balance
between ℓX and ℓG. For schemes where set elements are relatively large, such as
LESS or MEDS, the optimal value s is small (e.g. 4 or 5). Schemes with small set
elements, such as SeaSign or CSI-FiSh, use a much larger number of public keys,
compressed in a Merkle tree structure. For the response, only the set elements
required for the challenges are transmitted (and verified with a Merkle proof).
It should be noted that this strategy makes sense for the situations in which set
elements and group elements are of comparable size; moreover, it still requires
that all the public keys are computed during the key generation phase, so this
should be considered as an additional limitation.

Security. The new protocol is complete, honest-verifier zero-knowledge and
special sound. The proof is similar to the proof of Proposition 1, with the only
exception that the soundness is now based on mGAIP, rather than GAIP.

3.2 Fixed-Weight Challenges
As seeds are a compact representation of randomly sampled objects, we try
to represent objects by seeds whenever possible, while preserving the preimage
security of the scheme. In practice, we accomplish this by sampling challenges
from a skewed distribution, so that only a few challenges, say w, are non-zero,
and the rest are zero. In other words, we sample the string of challenges as a
vector of a pre-determined, fixed Hamming weight w (i.e. number of non-zero
positions). Hence, this optimisation is commonly referred to as Fixed-Weight
Challenges [7].

15

Transformation 4 (Fixed-Weight Challenges)
This technique increases the number of zero challenges by fixing the number
w of non-zero challenges, thereby decreasing the communication cost.
Given: a Σ-protocol Π.
Transform: a Σ-protocol Π1 with Π1.CmtSet “ pΠ.CmtSetqt, Π1.RspSet1

“

pΠ.RspSetqt and

Π1.ChSet “ t ch “ pch1, . . . , chtq P pΠ.ChSetqt | wtpchq “ w u.

The algorithms are defined as follows. First, as in Parallel Repetitions,
Π1.P1 and Π1.P2 simply execute Π.P1 and Π.P2 each t times, respectively;
then, Π1.V checks the entire transcript and outputs 1 if and only if

Π.V
´

cmtpiq, chpiq, rsppiq
¯

“ 1

for all 1 ď i ď t.

Graphical Representation. An example of the resulting graph can be seen
in Figure 3.

x y

x̃1

x̃2

x̃3

x̃4

x̃5

(a) Action graph with t “ 5 rounds.

x y

x̃1

x̃3

x̃5

x̃2

x̃4

(b) Response to ch “ 01010, with w “ 2.

Fig. 3: Action graph with chi P t0, 1u for t “ 5 rounds and weight w “ 2.
Responses in blue, starting from x when chi “ 0, and from y when chi “ 1.

Features. The transform yields a soundness error of:

ε1 “
1

|Π1.ChSet| “
ˆ

t

w

˙´1
. (7)

For each response, we send t group elements. Out of these, the pt ´ wq group
elements g̃i for chi “ 0 can be represented by a seed of size λ, whereas the

16

remaining w group elements g̃ig
´1 for chi ‰ 0 are communicated as a full group

element of size ℓG. After applying Fiat-Shamir, the exact signature size is
given by

SigSizepFSpΠ1qq “ 2λ
salt
` λ

σ2

` pt´ wq ¨ λ

rsp for chi“0

` w ¨ ℓG

rsp for chi‰0

(8)

which corresponds to row 3 of Table 1. Thus, Fixed-Weight Challenges meaning-
fully decreases signature size whenever there is a noticeable asymmetry between
λ, for chi “ 0, and ℓG for chi ‰ 0. To get λ-bit security, the values of t and w
have to be set so that ϵ1 ď 2´λ. In particular, t is larger than the obtained via
Parallel Repetitions.

Security. When Π is complete, honest-verifier zero-knowledge, and special
sound, then so is Π1. The only difference with Parallel Repetitions is the form of
the challenge string, which only requires adjusting the values of t and w.

3.3 Seed Trees

In this section, we describe the seed tree construction, which is a specific re-
alisation of a puncturable pseudorandom function (PRF) [14]. In a nutshell, a
puncturable PRF works by compressing the number of bits necessary to com-
municate many seeded elements, i.e. some pseudorandom data. In our use case,
a seeded element is simply represented by a length-λ seed. For our purposes,
we can define a puncturable PRF as a function PPRF taking as input an index
i P t1, ¨ ¨ ¨ , tu, where t is a positive integer, and a master seed seedroot P t0, 1uλ,
with the following properties:

1) for each i P t1, ¨ ¨ ¨ , tu, the output of PPRFpi, seedrootq is a length-λ binary
string;

2) there exists an efficient algorithm Recover such that, for any index i P
t1, ¨ ¨ ¨ , tu, there exists some (efficiently-computable) binary string seeds˚

i ,
of size less than or equal to pt´ 1qλ, such that

Recoverpj, seeds˚
i q “ PPRFpj, seedrootq, @j ‰ i;

3) given access to i and seeds˚
i , the value of PPRFpi, seedrootq must be indistin-

guishable from a uniformly-random binary length-λ string.

The definition can be extended by requiring that analogous properties hold when
puncturing on a set of indices ti1, ¨ ¨ ¨ , iwu of size w ą 1, instead of a single one.

Since the seed tree is the best-known example of puncturable PRF (and the
only one used so far when building signatures from Sigma protocols), we restrict
our attention to it from now on. Assuming new (and, perhaps, better performing)
examples of puncturable PRFs are found, these functions can be used to replace
the seed trees we consider in our treatment.

17

On input a positive integer t and a root seed seedroot, a seed tree generates
the required t seeds in a recursive way, constructing a binary tree. The tree is
built by setting each node as a λ-bit string and using it to generate two child
nodes using a secure function PRF : t0, 1uλ Ñ t0, 1u2λ, with the first λ bits of the
output string being the left child, and the last λ being the right child. With this
procedure, starting from a root seed seedroot, it is possible to obtain a complete
binary tree with t leaves in the base layer whenever t is a power of 2. Each of
these efficiently-generated leaves can then be used as a seed to obtain the various
pseudorandom objects which are required to be computed in a protocol.
More formally, a seed tree is composed of three functions [7]:

– tleafiu
t
i“1 Ð SeedTree pseedroot, tq : On input a root seed seedroot P t0, 1uλ and

a positive integer, constructs a complete binary tree with at least t leaves by
recursively expanding each seed using PRF, as described above.

– seedsinternal Ð ReleaseSeeds pseedroot, chq : On input a root seed seedroot P
t0, 1uλ, and a challenge ch P t0, 1ut, outputs a list of seeds seedsinternal asso-
ciated to nodes. These cover the set of leaves with index i satisfying chi “ 0.
This means that the leaves contained in the subtrees rooted at each of the
seeds which form seedsinternal coincide with the leaves with i such that chi “ 0.

– tleafiui s.t. chi“0 Ð RecoverLeaves pseedsinternal, chq : On input a list of seeds
seedsinternal and a challenge ch, it computes and outputs all the leaves covered
by the nodes in the list, that is, those leafi with index i such that chi “ 0.

Note that, to ensure collision resistance of the expander function PRF, we
need it to take as input node}salt}idx, where salt is a length 2λ uniformly random
sequence of bits (independent from the message) and idx is a unique predeter-
mined index for the call, as explained in [17].

Transformation 5 (Seed Tree)
This technique reduces the communication cost by using a tree structure to
generate seeds for pseudorandom objects.

Given: a Σ-protocol Π.
Transform: a Σ-protocol Π1 with Π1.CmtSet “ Π.CmtSet, Π1.ChSet “
Π.ChSet and Π1.RspSet “ Π.RspSet.

The algorithms are defined as follows. First, Π1.P1 generates a random
seedroot and invokes SeedTree pseedroot, tq to produce t leaves. These leaves
are then used by Π1.P1 as pseudorandom strings to generate the commit-
ment. Next, a challenge ch is sampled uniformly at random in Π1.ChSet.
Then, Π1.P2 computes seedsinternal using ReleaseSeeds pseedroot, chq and trans-
mits this list as part of the response. Finally, Π1.V recovers the relevant
leaves via RecoverLeaves pseedinternal, chq and verifies validity as in Π.V.

18

Graphical Representation. When t is not an integer power of 2, there are
several ways to build a seed tree. In this paper, we consider the construction
reported in Figure 4. Namely, we write t “ t1 ` ¨ ¨ ¨ ` tu, with each ti being a
power of 2 and such that t1 ą t2 ą ¨ ¨ ¨ ą tu. To each ti, we associate a tree with
ti leaves. The individual trees are then merged, starting from the ones with tu´1
and tu leaves.

leaf1 leaf2 leaf3 leaf4 leaf5 leaf6

seed1,1 seed1,2

Subtree with t1 “ 4 leaves Subtree with t2 “ 2 leaves

seed2,2

seed2,1

seedroot

(a) t “ 6

Subtree with t1 “ 8 leaves Subtree with t2 “ 4 leaves Subtree with t3 “ 2 leaves

(b) t “ 14

Fig. 4: Example of seed tree constructions, with t not being a power of 2.

Features. The effectiveness of using Seed Tree depends on several factors. First
of all, note that the soundness error is unchanged with this transformation.
The signature size is instead affected considerably, according to which scenario
presents itself, as we explain next. For convenience, in Figure 5 we present an
explicit visual description of the different scenarios for a seed tree.

First, we present our main result. For ease of the reader, we have included all
the relevant intermediate results, and their corresponding proofs, in Appendix B.

19

leaf1 leaf2 leaf3 leaf4 leaf7 leaf8leaf6leaf5

seed1,4seed1,1 seed1,2 seed1,3

seed2,2seed2,1

seedroot

(a) Example of a seed tree for t “ 8 and w “ 1

leaf1 leaf2 leaf7 leaf8leaf6leaf3 leaf4 leaf5

seed1,1 seed1,4seed1,2 seed1,3

seed2,1 seed2,2

seedroot

(b) Example of a seed tree for t “ 8 and w “ 3

Fig. 5: In this figure we can see 2 different possible scenarios for a seed tree. In
every subfigure, the green nodes are used to recover all the leaves except for the
grey ones.

Proposition 2. Let t “ t1 ` t2 ` ¨ ¨ ¨ tu, where t1 ą t2 ą ¨ ¨ ¨ ą tu and each ti is
an integer power of 2. Then, for any ch P t0, 1ut with Hamming weight w ď t,
the output of ReleaseSeeds is not greater than

Nseeds “ w logpt{wq ` u´ 1 . (9)

Proposition 2 gives an upper-bound to the size of ReleaseSeeds (i.e. the num-
ber of nodes required to recover the required leaves) for any fixed w and t. As
a consequence of Proposition 4, for the special case in which we reveal all seeds
but one, e.g. Figure 5a, the size can be bounded by

Nseeds “ rlogptqs. (10)

20

Remark 4. It is immediate to see that the same estimates from this section can
be applied to round Merkle proofs for the instances in which we commit to t
values and want to verify only w of them.

Lastly, we should also consider the case in which we reveal the first i “ t´w
adjacent leaves out of t, i.e.

ch “ p1, ..., 1
loomoon

i entries

, 0, ..., 0q .

To deal with this case, we could consider again the binary tree construction de-
scribed before; however, it is possible to get a better compression by considering
a sequential puncturable PRF, that from an initial seed seedt generates

seedj Ð PRFpseedj`1}salt}idxq, for j “ t´ 1, ..., 1 (11)

where salt is again a length-2λ uniformly random sequence of bits (independent
from the message) and idx is a unique predetermined index for the call. In this
way, thanks to the security of PRF, we can recover all seedj for j ď i, without
leaking any information on the previous seeds, by just revealing seedi (λ bits).
Clearly, the reverse construction can be used to reveal the last i leaves out of t.

Remark 5. Analogously to seed tree and Merkle proof, we can also sequentially
commit to all the t values c1, ..., ct, but verify only the first i one. Given a
commitment function C : t0, 1u˚ Ñ t0, 1u2λ we start from cmtt Ð Cpctq, then:

cmtj Ð Cpcj}cmtj`1q, for j “ t´ 1, ..., 1 (12)

so that the final committed value is cmt “ cmt1. It is clear that this value can
be recomputed via c1, ..., ci and cmti`1.

Security. Beullens, Katsumata, and Pintore [7, Lemma 1] show that, when
modelling the function PRF as a random oracle, the seeds obtained by the func-
tion ReleaseSeeds using seedroot are indistinguishable by the one generated via a
simulator without access to seedroot for any computationally unbounded adver-
sary making up to a polynomial number of calls to the random oracle.

4 Novel and Recent Techniques
In the previous section, we have described the most well-known optimisations
present in literature. In this section, we proceed instead to flesh out some other
ideas that emerged recently, or have only recently been applied to the context
of group actions, as well as new techniques and improvements.

4.1 MPC-in-the-Head for Group Actions

In the protocols described before we only perform walks of length one in the
action graph, starting from the origin x or one of the public keys yi. In this sec-
tion (and subsequent ones) we will explore what protocols may arise by instead
committing to a longer walk. In particular, such protocols are deeply linked with
the MPC-in-the-head technique [30, 31].

21

Transformation 6 (MPC-in-the-Head)
This technique decreases the communication cost by walking a longer path
in the action graph.
Given: the Group Action Σ-Protocol Π.
Transform: the Σ-protocol Π1 with Π1.CmtSet “ pΠ.CmtSetqm, Π1.ChSet “
t0, ...,mu and Π1.RspSet “ pΠ.RspSetqm`1.

The algorithms are defined as follows. First, Π1.P1 generates random
group elements g̃i for i “ 1, ...,m and computes:

x
g̃1
ÝÑ x̃1

g̃2
ÝÑ . . .

g̃m
ÝÝÑ x̃m and x̃m

g∆
ÝÝÑ y.

It then commits to x̃i for i “ 1, ...,m. Next, a challenge ch is sampled
uniformly at random in t0, ...,mu. If ch ‰ m, the prover leaves all g̃i un-
touched by setting g1

i “ g̃i except for g1
ch`1, which is set to g̃ch`1 ¨ ¨ ¨ g̃1 ¨ g

´1,
which maps y ÞÑ x̃ch`1. Then, the prover responds with pg1

1, . . . , g
1
mq. In

case ch “ m, the prover alters no g̃i and simply sends pg̃1, . . . , g̃mq. Using
pg1

1, . . . , g
1
mq, the verifier computes the path

x
g1

1
ÝÑ x̃1

1
g1

2
ÝÑ . . .

g1
ch
ÝÝÑ x̃1

ch ;

With g1
ch`1, it computes y Ñ x̃ch`1 and uses g1

j with j ą ch` 1 to compute
the remaining path

y
g1

ch`1
ÝÝÝÑ x̃1

ch`1
g1

ch`2
ÝÝÝÑ . . .

g1
m
ÝÝÑ x̃1

m .

Finally, the verifier checks that all x̃1
i are the committed values x̃i.

Graphical Representation. Figures 6 and 7 show an example of the action
subgraph derived from this technique.

x

x̃1 x̃2 x̃3 x̃4 x̃5

y

g̃1
g̃2 g̃3 g̃4 g̃5

g∆

Fig. 6: The MPC-in-the-head action graph with m “ 5 parties.

x

x̃1 x̃2 x̃3 x̃4 x̃5

y

g1
1

g1
2

g1
4

✗
g1

3 g1
5

Fig. 7: For ch “ 3, we reveal the paths xÑ x̃1 Ñ x̃2 Ñ x̃3 and y Ñ x̃4 Ñ x̃5.

22

Features. This technique is associated with MPC-in-the-Head because the pro-
tocol can be seen as the simulation of m` 1 users doing an MPC evaluation of
the group action g ‹ x by sequentially applying random group elements g̃i P G,
until the last user applies g̃∆ :“ g ¨ g̃´1

1 ¨ ¨ ¨ g̃´1
m to get the random walk

x
g̃1
ÝÑ x̃1

g̃2
ÝÑ . . .

g̃m
ÝÝÑ x̃m

g̃∆
ÝÝÑ y .

The response simulates the revealing of all steps except step ch ` 1, i.e.
x̃ch

g̃ch`1
ÝÝÝÑ x̃ch`1. Thus, the verifier recomputes the computations of all users

except user ch` 1. For the transformed protocol the soundness error is

ε1 “
1

|Π1.ChSet| “
1

m` 1 . (13)

For each response, we send m group elements. Out of these, m ´ 1 group
elements can be seeded (the unaffected g1

i with i ‰ ch`1). The remaining group
element, the affected g̃1

ch`1, is communicated as a full group element giving an
upper bound2 for the total communication cost as

pm´ 1qλ
seeded g̃i

` ℓG

g̃1
ch`1

.

To achieve a λ-bit secure signature scheme, we repeat the protocol t “
rλ{ logpm ` 1qs times and apply Fiat-Shamir. The final average signature
size is given by

SigSizepFSpΠ1qq “ 2λ
salt
` λ

σ2

`t
´ 1
m` 1 pmλq

rsp for ch“m

`
m

m` 1 ppm´ 1qλ` ℓGq

rsp for ch‰m

¯

, (14)

and thus, the maximal signature size becomes

MaxSigSizepFSpΠ1qq “ 2λ
salt
` λ

σ2

` tp pm´ 1qλ
seeded g̃j

` ℓG

g1
ch`1

q , (15)

which corresponds to row 5 of Table 1. Both the generation and the verifica-
tion of the signature requires

t ¨m “

R

λ

logpm` 1q

V

¨m

group action evaluations. For large m, this quickly becomes costly: for most
signature schemes based on group actions, the computational cost of verification
is dominated by these group action evaluations. A detailed version of the protocol
flow is given in Appendix C.
2 The case ch “ m uses only unaffected g1

i so can be communicated seeds for all g1
i.

23

Security. Joux [31, Thm. 2] shows that the unsalted and salted versions of
MPC-in-the-Head are statistical honest-verifier zero-knowledge, with soundness
error 1{m ` ζ, where 1{ζ is proportional to the runtime of the best adversary
for GAIP.

4.2 Skipping Edges

With the MPC-in-the-Head technique, the soundness error is reduced to 1{m
at the cost of computing, in each round, m group action evaluations. Both the
prover and the verifier compute these evaluations: this is a common feature of
all the techniques we saw, up to this point. By skipping edges, we show how to
unbalance these costs. Namely, with a mild increase in the signature size, we
can reduce the average number of group action evaluations for the verifier by a
factor of two on average. This can yield a considerable speed-up in verification.

Transformation 7 (Skipping Edges)
This technique decreases the verification cost by combining several individ-
ual paths g̃j P rsp in the verification into a single path.
Given: the MPC-in-the-Head protocol Π.
Transform: the Σ-protocol Π1 with Π1.CmtSet “ t0, 1uλ, Π1.ChSet “ Π.ChSet
and Π1.RspSet “ Π.RspSetˆ t0, 1u˚.

The protocol is sketched as follows. First, the prover generates m random
group elements g̃1 P G for i “ 1, ...,m and computes:

x
g̃1
ÝÑ x̃1

g̃2
ÝÑ . . .

g̃m
ÝÝÑ x̃m .

It commits sequentially to x̃i for i “ 1, ...,m ´ 1 as in Remark 5 starting
from x̃1. Next, a challenge ch is sampled uniformly random in t0, ...,mu.

When ch ‰ m, the prover leaves all g̃i untouched by setting g1
i “ g̃i except

for g1
ch`1, which is set to g̃ch`1 ¨ ¨ ¨ g̃1 ¨ g

´1, so that g̃ch`1 maps y ÞÑ x̃ch`1.
Then, the prover responds with pg1

1, . . . , g
1
ch`1, . . . , g

1
mq.

When ch “ m, the prover alters no g̃i and simply sends pg̃1, . . . , g̃mq.
When ch ą 1 the prover also adds the commitment cmtch´1 for the leaves
x̃1, ¨ ¨ ¨ , x̃ch´1. Using pg1

1, . . . , g
1
mq, the verifier first computes g2 “ g1

ch ¨ ¨ ¨ g
1
1

and computes the path
x

g2

ÝÑ x̃1
ch .

With g1
ch`1, it computes y Ñ x̃ch`1 and uses g1

j with j ą ch` 1 to compute
the remaining path

y
g1

ch`1
ÝÝÝÑ x̃1

ch`1
g1

ch`2
ÝÝÝÑ . . .

g1
m
ÝÝÑ x̃1

m .

Finally, the verifier checks that all x̃1
i are the committed values x̃i using

Remark 5.

24

Remark 6. This description assumes we skip the left edges x̃i with i ă ch. One
can also consider skipping the right edges x̃i with i ą ch` 1, mutatis mutandi,
where the verifier computes instead:

x
g̃1

1
ÝÑ x̃1

g̃2
ÝÑ . . .

g̃1
ch
ÝÝÑ x̃1

ch and y
g1

ch`1
ÝÝÝÑ x̃1

ch`1 .

Later we highlight the differences in these two approaches.

Graphical Representation. Figure 8 and Figure 9 show examples of action
subgraphs for Skipping Edges. We visualise left skip in Figure 8, and right skip
in Figure 9. The orange edges correspond to the group actions being evaluated,
whereas the (unmarked) gray edges are the ones that we skip.These figures show
how the number of group action evaluations changes depending on the challenge.
For instance, in the left skip case, when ch “ 0 (visualised in Figure 8a), the
verifier computes m “ 5 group action evaluations to verify y Ñ x̃1 Ñ . . .Ñ x̃5,
hence no intermediate commitment value cmt˚ is required for any x̃j . For larger
ch, the verifier computes fewer group action evaluations, as seen in Figures 8b
to 8d, while x̃1, ..., x̃ch´1 are verified with cmtch´1. A similar effect, but reversed,
can be seen for the right skip case in Figure 9.

x

x̃1 x̃2 x̃3 x̃4 x̃5

y

g1
1

✗

(a) ch “ 0

x

x̃1 x̃2 x̃3 x̃4 x̃5

y

g1
3

✗

g1
2 ¨ g

1
1

(b) ch “ 2

x

x̃1 x̃2 x̃3 x̃4 x̃5

y

✗
g1

5

commit proof

(c) ch “ 4

x

x̃1 x̃2 x̃3 x̃4 x̃5

y

✗

commit proof

(d) ch “ 5

Fig. 8: Examples of responses for the MPC-in-the-head action graph with m “ 5
parties, using Skipping Edges on left side.

Features. Compared to MPC-in-the-Head, the soundness error, public key size
and signing time of Π1 in comparison to Π does not change by any considerable
factor, as the prover side only has negligible differences. Verification time, how-
ever, changes accordingly to ch: for the left skip variant, when ch “ 0, verification
requires m group action evaluations, similar to MPC-in-the-Head. However, for
ch ą 0, this reduces to m` 1´ ch group action evaluations. Thus, the verifica-
tion time, on average, requires

1
m` 1

´

m
ch“0

`

m
ÿ

ch“1
pm´ ch` 1

chą0

q

¯

25

x

x̃1 x̃2 x̃3 x̃4 x̃5

y

g1
1

✗

commit proof

(a) ch “ 0

x

x̃1 x̃2 x̃3 x̃4 x̃5

y

g1
3

✗

commit proof

(b) ch “ 2

x

x̃1 x̃2 x̃3 x̃4 x̃5

y

✗

g1
5

(c) ch “ 4

x

x̃1 x̃2 x̃3 x̃4 x̃5

y

✗

(d) ch “ 5

Fig. 9: Examples of responses for the MPC-in-the-head action graph with m “ 5
parties, using Skipping Edges on right side.

group action evaluations. As this average is upper bounded by 1`m{2, we de-
crease from an average of m, for MPC-in-the-Head, by a factor of almost two.
However, the verifier also computes ch ´ 1 multiplications in the group to get
g2 “ g1

ch ¨ ¨ ¨ g
1
1. Phrased differently, the transformation turns ch´1 group action

evaluations into group multiplications. This optimisation therefore decreases the
computation cost for verification whenever group multiplications are faster than
group action evaluations, which is the case for most group actions.

Using Remark 5, the first ch ´ 1 leaves can be verified with only 2λ bits in
the communication cost. To achieve a λ-bit secure signature scheme, we repeat
the protocol t “ rλ{ logpm`1qs times and apply Fiat-Shamir. The final average
signature size for the left skip case is given by

SigSizepFSpΠ1qq “ 2λ
salt
` λ

σ2

`

` t
´ 1
m` 1 pmλq

rsp for ch“m

`
m

m` 1 ppm´ 1qλ` ℓGq

rsp for ch‰m

` 2λ
cmt˚

¯

“

“ SigSizepFSpΠqq
from (14)

` t ¨ 2λ. (16)

The signature size is maximised when ch “ m´ 1, which requires us to send all
g̃i for 1 ď i ă m using a seed, and g̃1

m as a full group element, and additionally
the Merkle proof for all x̃i except x̃m. Thus the maximum signature size is

MaxSigSizepFSpΠ1qq “ 2λ
salt
` λ

σ2

`t ¨
`

pm´ 1qλ
seeded g̃j

` ℓG

g1
m

` 2λ
cmt˚

˘

, (17)

which corresponds to row 6 of Table 1. When group elements are small, it is
possible to replace g1

1, . . . , g
1
ch in the response by g2 “ g1

ch ¨ ¨ ¨ g
1
1. However, in

26

many cases, the g1
i elements can be seeded compactly whereas communicating a

full group element g2 is costly. Again a detailed version of the protocol flow is
given in Appendix C.

For the right skip case the average verification time is reduced as before, and
additionally we can avoid sending all g̃i for i ą ch` 1, since g1

ch`1 is enough to
compute the path y Ñ x̃ch`1. Thus, the communication cost of the responses for
ch ‰ m is, on average:

1
m` 1

m´1
ÿ

ch“0
pchλ` ℓGq . (18)

With some algebraic manipulations, we can see that the final average signature
size is

SigSizepFSpΠ1qq “ 2λ
salt
` λ

σ2

`tm
´ ℓG

m` 1 `
λ

2

¯

` t ¨ 2λ. (19)

The worst case for the communications cost is ch “ m´ 1, where we send all g̃i

for 1 ď i ă m using a seed, and g̃1
m as a full group element. Thus the maximum

signature size is

MaxSigSizepFSpΠ1qq “ MaxSigSizepFSpΠqq
from (15)

“ 2λ
salt
` λ

σ2

` tppm´ 1qλ
seeded g̃j

` ℓG

g1
m

q (20)

which corresponds to row 7 of Table 1.

Security. Assuming the hardness of GAIP, the protocol resulting from Skipping
Edges is a secure zero-knowledge identification protocol, in the random oracle
model, with soundness error 1

m`1 . This is a new result, not appearing before in
the literature. We provide the theorem and proof in Appendix D.

4.3 Hypercube

When the group action is commutative, we can improve MPC-in-the-Head by
reusing the same edges, i.e. group elements, after rearranging them. This saves
both signing and verification time, if computing the group operation is much
faster than computing a group action evaluation. What we present here is a
generalisation of the Hypercube MPC-in-the-Head technique [2]. We illustrate it
using an additive notation for the group operation, i.e. g ‹ ph ‹ xq “ pg` hq ‹ x.

The core idea is simple. The scenario is similar to MPC-in-the-Head, that is,
we have m randomly generated elements g̃i. Thanks to commutativity, we can
commit to combinations of

ř

g̃i instead of only the m values g̃i ‹x, as long as we
never reveal the full path xÑ y to the verifier in the response. We thus commit
to the values

x̃j :“
`

ÿ

iPS0pjq

g̃i

˘

‹ x, 0 ď j ă m

where S0pjq denotes the integers from 0 to m´ 1 with j-th bit equal to 0. The
challenge is an n-bit string, where each bit j simulates a round of the Group

27

Action Σ-Protocol: when chj “ 0, the path x Ñ x̃j is revealed by
ř

iPS0pjq g̃i,
whereas when chj “ 1, we reveal the path x̃j Ñ y by g̃m `

ř

iPS1pjq g̃i. Here,
S1pjq denotes the integers with j-th bit equal to 1, and g̃m plays a similar role
to g∆ in MPC-in-the-Head.

Transformation 8 (Hypercube)
This technique decreases signing and verification cost by rearranging paths
in the graph.
Given: the MPC-in-the-Head protocol Π with m “ 2n ´ 1 parties.
Transform: the Σ-protocol Π1 with Π1.CmtSet “ Π.CmtSet, Π1.RspSet “
Π.RspSet and

Π1 “ t0, 1un.

The algorithms are defined as follows. First, the prover generates m random
group elements g̃0, . . . g̃m´1, computes

x

ř

iPS0pjq g̃i

ÝÝÝÝÝÝÝÑ x̃j 0 ď j ă n,

and commits to all x̃j. Furthermore, the prover sets g̃m “ g ´
řm´1

i“0 g̃j.
Next, a challenge ch is sampled uniformly random in t0, 1un. For each bit
of the challenge, the prover sends g̃i for all i P S0pjq if chj “ 0, and sends
g̃i for all i P S1pjq if chj “ 1. This allows a verifier to recompute x̃1

j when
chj “ 0 as

x

ř

iPS0pjq g̃i

ÝÝÝÝÝÝÝÑ x̃1
j ,

and when chj “ 1 as

y
´g̃m´

ř

iPS1pdq g̃i

ÝÝÝÝÝÝÝÝÝÝÝÑ x̃1
j .

Finally, the verifier checks that all x̃1
i are the committed values.

Graphical Representation. An example of how the Hypercube is applied for
with n “ 2 can be seen in Figure 10. Here we have 4 “ 2n parties that in
Figure 10a, by rearranging the order of the group elements (distinguished by
the colors of the arrows), commit to x̃0 “ pg̃0 ` g̃1q ‹ x and x̃1 “ pg̃0 ` g̃2q ‹ x.
The intermediate nodes x̃˚ in gray are not actually computed. In Figures 10b
to 10d we see how, by sending all but one group elements, we can recompute the
required paths using a share of them (dashed coloured lines are known but not
used).

Features. The soundness error of the transformed protocol is the same as
for MPC-in-the-Head,

ε “
1

|Π1.ChSet| “
1
2n
“

1
m` 1 .

Thus, we still need t “ rλ{ns rounds to reach λ-bit security.

28

x

x̃˚ x̃0 x̃˚

x̃˚ x̃1 x̃˚

y

g̃0
g̃1 g̃2

g̃3

(a) Commitment generation.

x

x̃˚ x̃0 x̃˚

x̃˚ x̃1 x̃˚

y

✗

✗

(b) ch “ p0, 0q, we reveal g̃0, g̃1, g̃2.

x

x̃˚ x̃0 x̃˚

x̃˚ x̃1 x̃˚

y

✗

✗

(c) ch “ p1, 0q, we reveal g̃0, g̃2, g̃3.

x

x̃˚ x̃0 x̃˚

x̃˚ x̃1 x̃˚

y

✗

✗

(d) ch “ p1, 1q, we reveal g̃1, g̃2, g̃3.

Fig. 10: Settings for the Hypercube MPCitH with 4 “ 2n “ 22 parties.

The response is composed of all group elements g̃j except for a single group
element g̃k (the “gap”), where k is such that the j-th bit of k differs from each
chj . In other words, k is the integer represented by flipping each bit of ch.
Thus, the response contains m ´ 1 randomly generated group elements g̃j and
additionally the full group element g̃m required to compute paths y Ñ x̃j . When
ch “ 1...1, i.e. only 1s, the response contains just the random elements g̃j , and
g̃m is the “gap” that is left out. Thus, we get an average signature size, equal
to m-party MPC-in-the-Head, of

SigSizepFSpΠ1qq “ 2λ
salt
` λ

σ2

`t
´ 1
m` 1 pmλq

rsp for ch“1...1

`
m

m` 1 ppm´ 1qλ` ℓGq

rsp for ch‰1...1

¯

(21)

and similarly a maximal signature size of

MaxSigSizepFSpΠ1qq “ 2λ
salt
` λ

σ2

` tp pm´ 1qλ
g̃j ,with j‰k

` ℓG

g̃m

q (22)

which corresponds to row 8 of Table 1.

The major difference between MPC-in-the-Head and Hypercube is in the
signing and verification cost. Whereas MPC-in-the-Head needs m group action
evaluations for commitment and verification, this reduces to n “ logpm ` 1q
using Hypercube, as we only need one group action evaluation per bit of the
challenge. Hence, the signing and verification costs drop down to

t ¨ logpm` 1q

group action evaluations. However, both signer and verifier are required to com-
pute nm{2 additions in the group, hence Hypercube mostly makes sense where

29

group operations are very fast compared to group action evaluations, as is the
case in CSI-FiSH. Furthermore, as we need to generate m “ 2n ´ 1 random
group elements, extreme parameters such as n “ λ are not feasible. A detailed
version of the protocol flow is given in Appendix C.

Security. Given the similarity with the repeated version of the MPC-in-the-
Head construction it is clear that soundness can be proved in the same way.
However, part of the commitment and response are joined, hence we still need to
verify the zero-knowledge property independently. This is done in Proposition 9
in Appendix D.

5 Combining Optimisation Techniques

Having presented both traditional and more recent transformations in Sections 3
and 4, this section describes how these individual optimisations combine to-
gether. We show the most common combinations seen in the current literature,
as well as other efficient ones. The results in Table 1 are a concise summary of
this section, and each subsection describes several rows of this table.

The general method is based on the three main transformations, combined
with minor transformations. For each of these cases, we assume that the starting
point is Protocol 2, plus the indicated transformation, organised as follows:

– Section 5.1 analyses combinations of Fixed-Weight Challenges with other
transformations, giving rows 9 and 10.

– Section 5.2 analyses combinations of MPC-in-the-Head with other transfor-
mations, giving rows 11 to 16.

– Section 5.3 analyses the performance improvement gained from using Skip-
ping Edges, whenever possible, giving rows 17 to 20.

From such a starting point, the other analysed transformations are applied
sequentially (and interchangeably) until the final protocol is reached.

5.1 Fixed-Weight Challenges Combinations

We analyse combinations of Fixed-Weight Challenges with Seed Tree and Mul-
tiple Keys.

Seed Trees. Fixed-Weight Challenges naturally combines with Seed Tree to
generate the t random group elements g̃i used in the commitment. This allows
us to represent the t´ w elements for chi “ 0 in the response using the (small)
list of seeds seedsinternal to generate precisely those leaves g̃i. This combination
leads to a soundness error of

ε1 “

ˆ

t

w

˙´1
. (23)

30

Given t and w such that ε1 ď 2´λ and applying Fiat-Shamir, we get a signature
size of

SigSizepFSpΠ1qq “ 2λ
salt
` λ

σ2

` Nseedsλ
rsp for chi“0

` w ¨ ℓG

rsp for chi‰0

(24)

where Nseeds are the number of nodes we need to release in the seed tree, from
Equation (9). This equation corresponds to row 9 of Table 1.

Multiple Keys and Seed Trees. Additionally, one can also combine Fixed-
Weight Challenges with Multiple Keys using s public keys, and exploiting Seed
Tree to generate the t random group elements g̃i used in the commitment. We
again represent the t´w elements for chi “ 0 in the response using the (small)
list of seeds seedsinternal. This combination leads to a soundness error of

ε1 “

ˆ

t

w

˙´1
s´w . (25)

Given t, s and w such that ε1 ď 2´λ and applying Fiat-Shamir, we get a signa-
ture size of

SigSizepFSpΠ1qq “ 2λ
salt
` λ

σ2

` Nseedsλ
rsp for chi“0

` w ¨ ℓG

rsp for chi‰0

(26)

where Nseeds are the number of nodes we need to release in the seed tree from
Equation (9). This equation corresponds to row 10 of Table 1. The combination
of these three transformations is the most common in the current literature.
For example, LESS [4, 6], MEDS [18, 19], and ALTEQ [11, 38] all use this
combination, as described in more detail in Section 7.

5.2 MPC-in-the-Head Combinations

We analyse combinations of MPC-in-the-Head with the transformations from
Sections 3 and 4.

Seed Trees. In Section 3.3, Equation (10) shows that, a seed tree with m leaves
requires sending rlogpmqs seeds to reveal all-but-one leaves. This is precisely
the situation encountered in the MPC-in-the-Head, with or without Skipping
Edges. More precisely, when ch ‰ m, we can represent the m´ 1 random group
elements g̃i using the rlogpmqs seeds of size λ, and when ch “ m we simply send
the root of the tree. Thus, at the cost of a negligible overhead computation, we
get a protocol Π1 with t “ rλ{logpm` 1qs rounds to reach λ-bit security. After
applying Fiat-Shamir, we get an average signature size of

SigSizepFSpΠ1qq “ 2λ
salt
` λ

σ2

`t
´ 1

m` 1λ

rsp for ch“m

`
m

m` 1 prlogpmqsλ` ℓGq

rsp for ch‰m

¯

(27)

31

and therefore a maximum signature size of

MaxSigSizepFSpΠ1qq “ 2λ
salt
` λ

σ2

` tp rlogpmqsλ
seeded g̃j

` ℓG

g1
ch`1

q (28)

which corresponds to row 11 of Table 1.

Seed Trees and Multiple Keys. If, next to Seed Tree, we use Multiple Keys
with s public keys (again with or without Skipping Edges), the challenge space
per round becomes t0, ...,m´ 1u ˆ t1, ..., su Y tmu , and so, the soundness error
is reduced from 1

m`1 to 1
sm`1 . This reduces the number of rounds to t such that

psm`1qt ě 2λ and after applying Fiat-Shamir, the resulting average signature
size becomes

SigSizepFSpΠ1qq “ 2λ
salt
` λ

σ2

`t
´ 1
sm` 1λ

rsp for ch“m

`
sm

sm` 1 prlogpmqsλ` ℓGq

rsp for ch‰m

¯

(29)

and therefore, a maximum signature size of

MaxSigSizepFSpΠ1qq “ 2λ
salt
` λ

σ2

` tp rlogpmqsλ
seeded g̃j

` ℓG

g1
ch`1

q (30)

which corresponds to row 12 of Table 1. We are again in a particular case of the
general Action Subgraph Σ-Protocol so the security is granted by Proposition 3.

Fixed-Weight and Seed Trees. By a similar logic as before, the large dif-
ference in communication cost between ch “ m and ch ‰ m allows us to apply
Fixed-Weight Challenges to set the number of times ch “ m occurs. Let Π1 be
the resulting protocol, where t denotes the number of rounds, and w the number
of rounds with chi “ m; then the corresponding challenge set becomes

t ch “ pch1, . . . , chtq P t0, ...,mut | wt1pchq “ w u

where wt1 is essentially the same as the Hamming weight, but counting the
number of entries that are different from m, rather than 0. It follows that, using
(7), the soundness error reduces to

`

t
w

˘´1
m´w. We use Seed Tree to generate the

g̃j per round, and another meta-Seed Tree to generate the root seeds seedroot,i
of each seed tree per round. Whenever chi “ m, we only need to release the root
seed seedroot,i, hence we can disclose the t´ w leaves seedroot,i of the meta-seed
tree using Nseeds nodes (see (9)) to release all the required g̃j for rounds i with
chi “ m. Hence, given t, w,m such that ε1 ď 2´λ we get a signature size of

SigSizepFSpΠ1qq “ 2λ
salt
` λ

σ2

` Nseedsλ
rsp for chi“m

`wprlogpmqsλ` ℓGq

rsp for chi‰m

. (31)

which corresponds to row 13 of Table 1. In both generation and verification,
the number of group action evaluations increases to tm. By setting m “ 1, we
recover the combination from Section 5.1.

32

Fixed-Weight, Seed Trees, and Multiple Keys. If, next to Fixed-Weight
Challenges and Seed Tree, we use Multiple Keys with s public keys, the challenge
space per round is

t0, ...,m´ 1u ˆ t1, ..., su Y tmu

where the full challenge space requires w challenges with ch “ m. Since the
protocol is still special sound by counting all the admissible sequence of chal-
lenges we see that the soundness error is reduced to

`

t
w

˘´1
psmq´w. Hence, given

t, w,m, s such that ε1 ď 2´λ, after applying Fiat-Shamir, we get a signature
size of

SigSizepFSpΠ1qq “ 2λ
salt
` λ

σ2

` Nseedsλ
rsp for chi“m

`wprlogpmqsλ` ℓGq

rsp for chi‰m

. (32)

which corresponds to row 14 of Table 1. Note that the difference between (31)
and (32) lies in the improved soundness error obtained via multiple keys.

Hypercube and Seed Trees. Using Hypercube with t such that pm ` 1qt “
2nt ě 2λ, we can further rewrite Equation (28) to get an average signature
size of

SigSizepFSpΠ1qq “ 2λ
salt
` λ

σ2

` t
´ 1

m` 1λ

rsp for ch“1...1

`
m

m` 1 pnλ` ℓGq

rsp for ch‰1..1

¯

(33)

and thus a maximum signature size of

MaxSigSizepFSpΠ1qq “ 2λ
salt
` λ

σ2

` tp nλ
g̃j ,with j‰k

` ℓG

g̃m

q (34)

which corresponds to row 15 of Table 1. Note that for n ą 1 we have n “
rlogpmqs.

Hypercube, Seed Trees and Multiple Keys. Applying Multiple Keys with
s public keys to the previous combination, the challenge space per round becomes
ChSet “ t0, 1un to

ChSet1
“ tch P ChSet | ch ‰ p1, ..., 1qu

m“2n´1 elements

ˆt1, ..., su Y tp1, ..., 1qu.

Hence, the soundness error is reduced from 1
m`1 to 1

sm`1 . It follows that, given t
such that psm`1qt ě 2λ and applying Fiat-Shamir, we obtain a signature scheme
that performs a total of tn group action evaluations and yields an average
signature size

SigSizepFSpΠ1qq “ 2λ
salt
` λ

σ2

`t
´ 1

sm` 1λ

rsp for ch“p1,...,1q

`
sm

sm` 1 pnλ` ℓGq

rsp for ch‰p1,...,1q

¯

(35)

33

and consequently a maximal signature size of

MaxSigSizepFSpΠ1qq “ 2λ
salt
` λ

σ2

` tp nλ
g̃j ,with j‰ch

` ℓG

g̃ch

q (36)

which corresponds to row 16 of Table 1.

5.3 Skipping Edges Combinations

We analyse the performance improvement when combining Skipping Edges with
the previous techniques. We describe the left skip combinations first, and shortly
discuss the right skip variants.

Seed Trees and Multiple Keys (left skip). We already pointed out that we
can use both Seed Tree and Multiple Keys together with Skipping Edges, in the
same way as usual. Given s public keys and m users for the left skip case, we
obtain, as before, a soundness of 1

1`sm and an average signature size of

SigSizepFSpΠ1qq “ 2λ
salt
` λ

σ2

`t
´ 1
sm` 1λ

rsp for ch“m

`
sm

sm` 1 prlogpmqsλ` ℓGq

rsp for ch‰m

` 2λ
cmt˚

¯

“

“ SigSizepFSpΠ1qq

from (29)

` t ¨ 2λ (37)

that is the same term as (29), plus the additional term due to the Merkle proof.
By combining (30), we get a maximum signature size, independent of the
number of public keys s, of

MaxSigSizepFSpΠ1qq “ MaxSigSizepFSpΠqq
from (30)

` t ¨ 2λ
cmt˚

(38)

which corresponds to rows 17 and 18 of Table 1. The difference between using
Multiple Keys or not is represented again by the trade off in the number of
rounds t, and the size of the public key: in fact, for s public keys, the number
of rounds is such that psm ` 1qt ě 2λ, thus decreases, but the public key size
becomes sℓX ` λ, hence increases.

Fixed-Weight, Seed Trees and Multiple Keys (left skip). When addi-
tionally applying the Fixed-Weight Challenges optimisation to the above, we get
again the same improvements in soundness and signature size as in (32), with the
additional cost of the Merkle proof. Using left skip, the number of group action
evaluations during signing remains tm; however, the average number of group ac-
tion evaluations during verification is reduced, via some algebraic manipulation,
to

pt´ wq

ch“m

`w

˜

1
m

m´1
ÿ

ch“0
pm` 1´ chq

¸

ch“0,...,m´1

“ t` w ¨
m` 1

2 . (39)

34

A direct comparison between the number of node commitments during signing
and verification gives

η “
t` wm`1

2
tm

«
1
m
`
w

2t ă 1 . (40)

We show in Section 6.3 that this leads to a reduction in the computational com-
plexity for verification when compared not only to the combinations involving
MPC-in-the-Head (Section 5.2), as seen in (40), but also to the combinations
involving Fixed-Weight Challenges (Section 5.1).

To further reduce the signature size, we adapt the strategy used for commit-
ting to the intermediate nodes. For each round we commit to the first m ´ 1
nodes x̃1, ..., x̃m´1 using again Remark 5 and obtain cmtm´1, while the last one
x̃m is committed separately as cmtm “ Cpx̃mq. The values cmtm´1 obtained in
the t rounds are again committed via another Merkle Tree with t leaves. The
final commitment cmt is derived from the root of this tree and the other t round
values cmtm.

Recall that the weight w in this case is defined as the number of rounds with
chj ‰ m, i.e. the rounds in which we recompute cmtm´1. For the remaining t´w
rounds, we instead use a cover for the binary tree as described in Remark 4, so
Nseeds nodes are enough to verify the m rounds (see (9)). In the end, we get a
signature size of

SigSizepFSpΠ1qq “ 2λ
salt
` λ

σ2

` Nseedsλ
rsp for chi“m

` Nseeds2λ
Merkle proof for chi“m

`

` wprlogpmqs ¨ λ` ℓG

rsp for chi‰m

` 2λ
cmt˚ for chi‰m

q “

“ SigSizepFSpΠqq
from (32)

`pNseeds ` wq ¨ 2λ . (41)

which corresponds to rows 19 and 20 of Table 1.

Seed Trees and Multiple Keys (right skip). For the right skip variant with
m users we can clearly use Multiple Keys with s public keys and the sequential
PPRF from Section 3.3 described in (11). This way we obtain, as before, a
soundness of 1

1`sm and an average signature size of

SigSizepFSpΠ1qq “ t
! sm

sm` 1
ch‰m

”

λ
seq. PPRF

` ℓG

g1
ch`1

` 2λ
cmt˚

ı

`
1

sm` 1λ

ch“m

)

. (42)

By considering only the most expensive challenges, we get a maximum signa-
ture size of

MaxSigSizepFSpΠ1qq “ t ¨
`

ℓG ` 3λ
˘

(43)
which corresponds to rows 21 and 22 of Table 1. The number of round t is again
such that p1` smq´t ď 2´λ.

35

Fixed-Weight (right skip). When applying Fixed-Weight Challenges to the
right skip variant we encounter a problematic trade-off between signature size
and verification time.

– when chi “ m, we send only the root of the seed tree, but we need to perform
m group action evaluations in verification;

– when chi “ 0, we send at least one full group element, and perform only 1
group action evaluations in verification;

– when 0 ă chi ă m, we send one full group element, plus 3λ bits of additional
information, and perform chi`1 ď m group action evaluations in verification.

This trade off makes the use of Fixed-Weight Challenges counterproductive
with this variant. In fact, the main advantage would consist of decreasing as
much as possible the ratio w{t of rounds with lightweight representations, i.e.
the ones with chi “ m, since all the others requires at least one non-seeded
group element. However, this would actually imply an increase in the number of
group action evaluations, since now at least mpt ´ wq of them are required. It
follows that one cannot get optimal signature size while simultaneously reducing
verification time, as in the left skip case. Due to this stalemate, this combination
is best avoided.

6 Comparison between Optimisation Techniques

In this section, we scrutinise the effectiveness of transformations from Sections 3
to 5 from different points of view, showing (quite remarkably) that some of
them are incompatible, or superseded in performance by combinations of other
transformations. These general results offer to cryptographic designers clear and
substantiated indications on which (combinations of) transformations using in
order to make their scheme more efficient.

As a first result, we show in Section 6.1 that, in practice, Fixed-Weight Chal-
lenges is almost always better than MPC-in-the-Head, when used in combination
with Seed Tree. We then examine this comparison when considering the more
general construction of puncturable PRFs in Section 6.2. Finally, we show that
Skipping Edges, combined as in Section 5.3, can improve on the current state of
the art for group action-based signatures by decreasing the verification cost in
comparison to Fixed-Weight Challenges.

6.1 Fixed-Weight Challenges vs MPC-in-the-Head

To compare Fixed-Weight Challenges and MPC-in-the-Head we provide a three-
step argument. We give some high-level intuition by comparing Π1, obtained
from a combination of MPC-in-the-Head and Fixed-Weight Challenges with m
parties and t1 rounds with m-weight w1, with Π2, which only uses Fixed-Weight
Challenges with t2 “ t1m rounds with 0-weight w2.

36

1. We show that, when using only a single public key, the challenge space of Π1
can be interpreted as a subset of the challenge space of Π2, even though Π1
and Π2 have both the same response size and the same computational cost.

2. We formalise this intuition in Theorem 2 for any number of public keys,
by direct computation of the response sizes, computational complexity, and
challenge spaces of Π1 and Π2.

3. We remove Fixed-Weight Challenges, i.e. we consider a pure MPC-in-the-
Head protocol Π1, and show in Theorem 3 that there always exists a protocol
Π2 using only Fixed-Weight Challenges with similar computational cost and
response size, but a larger challenge space than Π1.

High-level Intuition. Let us consider the protocol Π1 using MPC-in-the-Head
with m parties, combined with the Fixed-Weight Challenges optimisation with
t1 rounds, and let w1 be the protocol’s weight3. For simplicity, we start with the
case of s “ 1 public keys. For each round i, we denote the randomly-generated
group elements by g̃

piq

1 , . . . , g̃
piq
m . Then, the challenge vector chp1q consists of t1

integers chp1q

i P t1, . . . ,mu such that chp1q

i “ m for exactly t1 ´ w1 indices, and
chp1q

i ‰ m for exactly w1 indices. In this case, the response consists of t1 ¨ m
group elements, with all but w1 generated by a seed, precisely those g̃piq

j where
chp1q

i “ j ‰ m.

Consider now the protocol Π2, using only Fixed-Weight Challenges with
t2 “ t1m rounds and weight4 w2 “ w1 . For each round i, we have a single
randomly generated g̃i and the challenge vector chp2q is a string of t2 “ t1m bits
with chp2q

i “ 0 for t2 ´ w2 indices, and chp2q

i “ 1 for w2 indices. Thus, we can
interpret chp2q also as a subset of t1, ¨ ¨ ¨ , t2u “ t1, ¨ ¨ ¨ , t1mu, of size w2 “ w1,
indicating the non-zero rounds. In this case, the response consists of t2 “ t1m
group elements, with t2´w1 “ t1m´w1 generated by a seed, and w2 described
by a full group element.

Using a slightly different representation, every challenge for protocol Π1 can
be interpreted as a challenge for protocol Π2. Let chp1q be a challenge for Π1
and write each round challenge chp1q

j P t1, ...,mu as a binary vector of length m

with a 1 in position chp1q

j and 0 in all other positions. Hence, the full challenge
chp1q becomes a binary vector chp2q of length t1m, subdivided into t1 chunks of
size m and weight 1, yielding a total (Hamming) weight of w1. Then, chp2q is
a valid challenge for Π2 with weight w2 “ w1. See Figure 11 for a graphical
representation of the situation.
3 Recall that here the word “weight” refers to the number of challenges that are

different from m.
4 In this instance, this is exactly the Hamming weight, thus counting the non-zero

challenges.

37

x y

x̃
p1q

1 x̃
p1q

2 x̃
p1q

3 x̃
p1q

4

x̃
p2q

1 x̃
p2q

2 x̃
p2q

3 x̃
p2q

4

x̃
p3q

1 x̃
p3q

2 x̃
p3q

3 x̃
p3q

4

(a)

x y

x̃1

x̃2

x̃3

x̃4

x̃5

x̃6

x̃7

x̃8

x̃9

x̃10

x̃11

x̃12

(b)

Fig. 11: Visualisation of challenges for protocols Π1 and Π2. Figure 11a shows
an example for Π1, which uses MPC-in-the-Head and Fixed-Weight Challenges,
with t1 “ 3 rounds, m “ 4 parties and weight w1 “ 2. Figure 11b shows the
equivalent example for the protocol Π2, which uses Fixed-Weight Challenges,
with t2 “ t1m “ 12 rounds subdivided into t1 “ 3 ‘meta’-rounds of m “ 4
rounds, with an overall weight w2 “ 2.

This reasoning shows that the challenge space Π1.ChSet can be interpreted
as a subset of the challenge space Π2.ChSet. However, the latter contains all
possible vectors of length t1m with weight w1, whereas the former contains only
those vectors having exactly t1 chunks of length m and weight 1. Hence, Π2 has
a larger challenge space. Furthermore, both protocols have the same response
size and are expected to have the same computational cost, as in both cases
t1m “ t2 group actions are evaluated by both the prover and the verifier.

Formalising the High-level Intuition. We formalise this intuition in the
following theorem, addressing also the more general case of s ą 1.

Let Π1 denote a protocol obtained using a combination of Multiple Keys,
MPC-in-the-Head and Fixed-Weight Challenges, with s1 public keys, m parties,
and t1 rounds, out of which w1 rounds have a non-zero challenge, and let Π2
denote the protocol obtained using Multiple Keys and Fixed-Weight Challenges,
with s2 “ s1 public keys, t2 “ t1m rounds, out of which w2 “ w1 rounds have a
non-zero challenge.

Theorem 2. For any tuple of values s1,m, t1 and w1, with m ě 2 and t1 ě w1,
the following holds.

1. The response sizes of Π1 and Π2 are equal.
2. The computational costs of Π1 and Π2 are equal.
3. The challenge space Π1.ChSet is smaller than Π2.ChSet.

38

Proof. We explicitly compute the three listed quantities for both Π1 and Π2.

Response size. For protocol Π1, the response size |rspp1q| is

|rspp1q| “ w1
`

pm´ 1qλ` ℓG

˘

` pt1 ´ w1qmλ

“ pt1m´ w1qλ` w1ℓG

“ |rspp2q|

where |rspp2q| denotes the response size for Π2.

Computational cost. In both protocols, both the signer and verifier compute t1m
group action evaluations5 to derive the x̃i.

Challenge space. For the challenge spaces, we get

|Π2.ChSet| “
ˆ

t2
w2

˙

sw2
2 “

ˆ

t1m

w1

˙

sw1
1 “ sw1

1

w1´1
ź

i“0

t1m´ i

w1 ´ i

ą sw1´1
1

w1´1
ź

i“0

mpt1 ´ iq

w1 ´ i
“

ˆ

t1
w1

˙

mw1´1sw1´1
1

“ |Π1.ChSet|

where the crucial observation is simply that mpt1 ´ iq ď t1m´ i. [\

The Impact on Signature Schemes. When considering signature schemes,
the protocols that get transformed via Fiat-Shamir must have a challenge space
of size at least 2λ. As a consequence of Theorem 2, we have that FSpΠ1q al-
ways results in a signature scheme whose performance is not better than that
of FSpΠ2q. This result can be interpreted in different ways, depending on which
performance aspect is considered. For instance, to have the same challenge space
size when w2 “ w1, Π1 requires a larger complexity (i.e. mt1 ą t2); equivalently,
if the two protocols have the same computational complexity (i.e. t2 “ mt1),
then we can choose w2 ă w1, which means that FSpΠ2q ultimately has shorter
signatures (since the number of non ephemeral group elements is smaller).

To visualize these considerations, see Figure 12, where we report, as a func-
tion of w “ w1 “ w2, the minimum number of group action evaluations to
achieve a challenge space of size at least 2λ, for λ “ 128. For both Π1 and Π2,
we have computed the smallest values of t1 and t2 yielding a desired challenge
space size; for Π1 the number of computations is mt1, while for Π2 is t2. The
figure highlights the fact that Π2 is always a preferable choice since it always
leads lower complexities.
5 We do not take parallelisation into account for the computational cost. As Π1 com-

putes its commitments per round in series, parallelisation improves the performance
of Π2 more than Π1.

39

20 30 40 5025

26

27

28

29

210

211

Weight w

#
gr

ou
p

ac
tio

n
ev

al
ua

tio
ns

(a) s “ 1

20 30 40 5025

26

27

28

29

210

211

Weight w

#
gr

ou
p

ac
tio

n
ev

al
ua

tio
ns

(b) s “ 2

20 30 40 5025

26

27

28

29

210

211

Weight w

#
gr

ou
p

ac
tio

n
ev

al
ua

tio
ns

(c) s “ 4

20 30 40 5025

26

27

28

29

210

211

Weight w

#
gr

ou
p

ac
tio

n
ev

al
ua

tio
ns

(d) s “ 8

Π2 Π1, m “ 4 Π1, m “ 8 Π1, m “ 16 Π1, m “ 32

Fig. 12: Number of group action evaluations for FSpΠ1q and FSpΠ2q, for w1 “
w2 “ w and λ “ 128.

Removing Fixed-Weight from Π1. We now tackle the case where protocol
Π1 uses just MPC-in-the-Head with m parties, Multiple Keys with s1 public keys
and t1 rounds to reach the required λ-bit security, that is, with no assumptions
on the weight of chp1q

P Π1.ChSet. In this case, the equivalence with a protocol
Π2 using just Fixed-Weight Challenges, Multiple Keys with s2 public keys and t2
rounds is not guaranteed. In fact, when we represent a challenge vector chp1q

P

Π1.ChSet1 as a challenge chp2q for Π2, we are not assured that there is fixed
number of chp1q

j “ m; instead, each one is sampled uniformly from a set of size
sm ` 1. However, chp2q still contains enough structure, as we know that each
chunk of size t1 has weight at most 1 and the weight of chp2q is therefore upper
bounded by t1. It is therefore natural to analyse the gap between such a protocol
Π1 and a protocol Π2 using Fixed-Weight Challenges with t2 “ t1m rounds and
weight w2 “ t1. The following theorem shows that when the number of rounds
t1 for Π is large enough, then Π2 has the same computational complexity and
almost the same response size, but a larger challenge space.

40

Theorem 3. Let Π1 be a protocol obtained using a combination of Multiple Keys
and MPC-in-the-Head, with parameters s1, m ě 2 and t1 as usual. Let Π2 be a
protocol obtained using Multiple Keys and Fixed-Weight Challenges, with s2 “ s1
public values in the public key, t2 “ t1m rounds of which w2 “ t1 rounds with
non-zero challenge chp2q

j ‰ 0. Then, the difference between the response size of
Π2 and the average response size for Π1 is t1pℓG´λq

s1m`1 . Moreover, the two protocols
have the same computational complexity and, for any number of keys, m ě 2
and t ě 7, protocol Π2 has a larger challenge space than Π1.

The proof is given in Appendix D.

Remark 7. Because of the bounds we have used within the proof, the condition
t1 ě 7 is a bit loose. For instance, with a single public key and m “ 2, the initial
inequality is already satisfied by any t1 ě 5. Moreover, we have conservatively
considered only the case of s1 “ 1, but when s1 increases the inequality starts
being satisfied by lower values of t1. For instance, for s1 “ 2 and m “ 2, t1 ě 3
is enough to guarantee that |Π2.ChSet| ą |Π1.ChSet|.

6.2 MPC-in-the-Head with Puncturable PRFs

The previous section does not take into account the use of a puncturable PRF,
such as Seed Tree, to communicate the values g̃j . Still, taking into account such
a puncturable PRF does not change the overall picture. We will now briefly give
some motivations, considering the seed tree technique and, for simplicity, the
approximation w log2pt{wq for the number of released nodes.

For the protocol Π1 from Theorem 3 with w1 “ w and t1 rounds combined
with Seed Tree, we get a response size of

|Π1.rspp2q| “ w log
ˆ

t1
w

˙

λ` w
`

logpmqλ` ℓG

˘

“ w log
ˆ

t1m

w

˙

λ` wℓG

Now, taking Π2 with w2 “ w and t2 “ t1m and using Seed Tree with the same
approximation, we get the very same signature size, as we release w logpt1m{wq
nodes of size λ for the pt2´wq zero rounds, and w group elements of size ℓG for the
non-zero rounds. Hence, considerations analogous to the ones in previous section
hold: the resulting signature schemes FSpΠ1q and FSpΠ2q would either have the
same signature size, with FSpΠ1q requiring more group actions computations,
or, the same computational complexity, with FSpΠ1q requiring larger values of
w1, hence, larger signatures.

41

6.3 Faster Verification using Skipping Edges with Fixed-Weight

This section compares the verification cost of Skipping Edges with Fixed-Weight
Challenges, compared to only using Fixed-Weight Challenges. Although Theo-
rems 2 and 3 show that Fixed-Weight Challenges almost always outperforms
MPC-in-the-Head in response size, computation cost, and challenge space, this
no longer holds when we consider Skipping Edges. We show that the verification
cost of Skipping Edges combined with Fixed-Weight Challenges can outperform
a protocol using only Fixed-Weight Challenges. To do this, we compare the
number of group action evaluations in verification, where we vary the value of
the weight w, and increase t accordingly to reach λ-bit security for different
configurations of the following protocols.

1. The protocol Π1 using Fixed-Weight Challenges with t rounds and weight
w, combined with Seed Tree, and Multiple Keys using s public keys (Sec-
tion 5.1),

2. The protocol Π2 using Skipping Edges with m parties, Fixed-Weight Chal-
lenges with t rounds and weight w, Seed Tree, and Multiple Keys with s
public keys (Section 5.3).

For Π1, the number of group action evaluations in signing and verification,
which we denote by n1, are equal, whereas for Π2 there is a significant difference
in the number of group action evaluations between signing, which we denote by
nsign

2 , and verification, which we denote by nverif
2 . Figure 13 shows n1, nsign

2 and
nverif

2 for different values of w, s and m.

As Figure 13 shows, the smaller w is, the larger the difference between nverif
2

and n1 is, while keeping nsign
2 reasonable. This happens because a small weight

w requires a larger number of rounds t which reduces the ratio η from (40).
When we furthermore consider the number of public keys s for Multiple Keys,
we see that for some values s, m and w, we may even get nverif

2 ą n1, hence no
improvement in verification cost. This happens because the number of rounds t
decreases with larger s hence making Skipping Edges less effective overall.

In practice, w only gives a heuristic comparison for the signature sizes of
Π1 and Π2, as it influences the largest part of signature size whenever ℓG " λ.
In a real-use scenario, in particular scenarios with efficient representations of
group elements and hence ℓG only slightly larger than λ, the size of the seed
and commitment strings has to be taken into account carefully. This is shown in
Section 7, where we apply such a precise analysis to existing protocols.

7 Analysis of Signature Schemes based on Group Actions

This section analyses some instantiations of the protocols based on group actions,
using the language and results laid out in the previous sections. Specifically, we
give a high-level overview of the candidates of the additional call for signatures
issued by NIST based on group actions, namely LESS [4], MEDS [18], and AL-
TEQ [11], using the unified terminology developed in this work.

42

19 20 21 22 23 24 25 26 27 28 29 30
150

250

350

450

550

650

750

850

950

Weight w

#
gr

ou
p

ac
tio

n
ev

al
ua

tio
ns

(a) s “ 1, m “ 4

19 20 21 22 23 24 25 26 27 28 29 30
150

250

350

450

550

650

750

850

950

Weight w

#
gr

ou
p

ac
tio

n
ev

al
ua

tio
ns

(b) s “ 1, m “ 8

14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

450

850

1,250

1,650

2,050

2,450

2,850

Weight w

#
gr

ou
p

ac
tio

n
ev

al
ua

tio
ns

(c) s “ 1, m “ 32

12 13 14 15 16 17 18 19 20 21 22 23

300

600

900

1,200

1,500

1,800

2,100

2,400

2,700

3,000

Weight w

#
gr

ou
p

ac
tio

n
ev

al
ua

tio
ns

(d) s “ 4, m “ 4

12 13 14 15 16 17 18 19 20 21 22 23

300

600

900

1,200

1,500

1,800

2,100

2,400

2,700

3,000

Weight w

#
gr

ou
p

ac
tio

n
ev

al
ua

tio
ns

(e) s “ 4, m “ 16

10 11 12 13 14 15 16 17 18 19 2050

450

850

1,250

1,650

2,050

2,450

2,850

Weight w

#
gr

ou
p

ac
tio

n
ev

al
ua

tio
ns

(f) s “ 16, m “ 32

Sign./verif. cost fixed-weight, Sign. cost skip. edges, Verif. cost skip. edges,

Fig. 13: Comparison between the number of group action evaluations for Π1,
using only Fixed-Weight Challenges, and Π2, using Fixed-Weight Challenges
and Skipping Edges, while varying the weight w.

43

So far, we have only considered group actions as a black box. In this section,
we dive into specific group actions and explain how they gain efficiency on two
levels: first, using the generic techniques for group-action based Σ-protocols as
described in Sections 3 to 5, and second, using techniques which are specific to
each group action, such as more compact representations of group elements or
set elements.

7.1 LESS

LESS [4, 6] is a signature scheme based on the hardness of the Linear (code)
Equivalence Problem (LEP). At its core, linear code equivalence can be seen as
a group action: the group G of monomial maps acts on the set of k-dimensional
linear codes of length n over the finite Fq, with k ě n positive integers. These
monomial maps are isometries (i.e. weight preserving) for the Hamming metric
and consist of a permutation combined with non-zero scaling factors. Thus, G
can be seen as the composition of a permutation matrix with a diagonal matrix
of non-zero entries, that is, G “ Sn ˆ pF˚

q q
n.

Hardness Assumption. The linear code equivalence problem asks, given two
rn, ksq linear codes C, C1, to find a monomial map µ such that C1 “ µpCq. Let G
denote a generator matrix for C, and similarly G1 for C1, then the problem can
be re-framed as finding the monomial matrix Q such that G1 and GQ have the
same systematic form, i.e. generate the same linear subspace. For NIST Security
Category I, the LESS specification document uses the parameters

q “ 127, n “ 252, k “ 126.

Size of Elements. A random monomial map in SnˆpF˚
q q

n can be represented
in ℓG “ n ¨plogn`rlog qsq bits. A random rn, ks linear code over Fq in systematic
form can be represented by a k ˆ n matrix in Fq containing the identity matrix
of dimension k as a submatrix, so kpn´kqrlog qs bits are enough to represent it.

Scheme Optimisation. The LESS scheme instantiates Protocol 2 with the
group action described above, and applies the transformations Fixed-Weight
Challenges with Seed Tree, as well as Multiple Keys. The current NIST Security
Category I specification proposes three sets of values:

– balanced has t “ 247 rounds, fixed-weight w “ 30, and s`1 “ 2 public keys;
– intermediate has t “ 244 rounds, fixed-weight w “ 20, and s` 1 “ 4 public

keys;
– short has t “ 198 rounds, fixed-weight w “ 17, and s` 1 “ 8 public keys.

Note that, in [4], the authors use s to indicate the total number of linear
codes used as public keys, included the randomly-generated one.

44

The MPC-in-the-Head and Skipping Edges techniques are not used; indeed,
these would not improve the signature size performance of the scheme, as detailed
in Section 6. Note that the group action is not commutative, hence Hypercube
would not apply.

Specific LESS Improvements. To improve the performance of LESS beyond
the above description, Chou, Persichetti, and Santini [20] introduce the concept
of canonical forms, which allow to compress the information contained in the
monomial map Q. While more information on this can be found in [4, 20], here
we only briefly point out the most relevant results:

– if two linear codes can be mapped to equivalent codes with the same canon-
ical forms, then the equivalence between the two codes can be found in
polynomial time;

– the equivalence can be verified up to canonical form by using much less
information than the one contained in Q (the exact compression depends on
the choice of the canonical form).

In this way, the communication cost required to verify the equivalence is
substantially reduced, for example from 473 bytes to 237 bytes using a weaker
form of canonical forms (see [4, 36]) to just 32 bytes in [20], using the most
well-known choice for a canonical form. However, this also implies that the com-
pressed monomial maps cannot be composed anymore, since this way ℓG « 2λ.
Thus, using this optimisation limits us to paths of length 1 during verification,
making it impossible to combine this optimisation with MPC-in-the-Head and
in particular with Skipping Edges.

Concrete Values. For NIST Security Category I, the specification submitted
to round 1 [4] yields

ℓG “ 237 bytes, ℓX “ 13, 892 bytes, λ “ 128,

and therefore sizes for the public key and signature are

pk “ 13, 7 Kbytes, sig “ 8, 4 Kbytes (balanced),
pk “ 41, 1 Kbytes, sig “ 6, 1 Kbytes (intermediate),
pk “ 95, 9 Kbytes, sig “ 5, 2 Kbytes (short).

7.2 MEDS

MEDS [18, 19] is a signature scheme based on Matrix Code Equivalence (MCE).
At its core, matrix code equivalence can be seen as the action of the group
G “ GLnpqq ˆ GLmpqq on the set of k-dimensional matrix codes over Fq. The
group elements pA,Bq P GLnpqqˆGLmpqq are isometries and map a code C, given
by a basis C1, . . . ,Ck P Fnˆm

q , to an equivalent code D given by Di “ ACiB.

45

Hardness Assumption. The matrix code equivalence problem asks to find
pA,Bq given the two (scrambled) bases pC1, . . . ,Ckq and pD1, . . . ,Dkq for the
k-dimensional matrix codes C and D such that A ¨ C ¨ B “ D, i.e. that there
exists an invertible matrix T P GLkpqq such that for all i “ 1, ..., k:

Di “

k
ÿ

j“1
ti,j A ¨Cj ¨B .

For NIST Security Category I, the MEDS specifications [18] use the parameters

q “ 4093, n “ 14, m “ 14, k “ 14.

Size of Elements. A random isometry pA,Bq P GLnpqq ˆ GLmpqq can be
represented in ℓG “ pn

2`m2q ¨ rlog qs bits. A random k-dimensional matrix code
C Ď Fnˆm

q can be represented by k matrices Ci P Fnˆm
q . By vectorising these

matrices, one gets a generator matrix G of size kˆmn, which can be represented
in standard form using ℓX “ k ¨ pn ¨m ´ kqrlog qs bits. For the NIST Security
Category I parameters above we would get ℓG “ 588 bytes and ℓX “ 3822 bytes.

Scheme Optimisation. The MEDS scheme instantiates Protocol 2 with the
group action described above, and applies the transformations Fixed-Weight
Challenges with Seed Tree, and Multiple Keys. The current NIST Security Cat-
egory I specification proposes two sets of values:

– set 1 has t “ 1152 rounds, fixed-weight w “ 14, and s` 1 “ 4 public keys;
– set 2 has t “ 192 rounds, fixed-weight w “ 20, and s` 1 “ 5 public keys.

For both sets MPC-in-the-Head is not used, and this aligns with our argu-
ments presented in Section 6.1. Furthermore, the group action is not commuta-
tive, hence Hypercube does not apply. However, as ℓG is quite a bit larger than
λ, Skipping Edges combined with Fixed-Weight Challenges, Multiple Keys and
Seed Tree has the potential to improve on both parameter sets for some aspects
of the scheme. We readily compute

– set 3 with t “ 129 rounds, fixed-weight w “ 10, m “ 87 parties and s “ 3
public keys.

Specific MEDS Improvements. Two techniques improve the performance of
MEDS beyond the description above, using techniques specifically tailored for
the MCE group action.
1. Section 3 of [18] details how to reduce the public key size, i.e. set elements,

to k´ 2 matrices instead of k, reducing ℓX to pk´ 2q ¨ pnm´ kq ¨ rlog qs bits.
2. Section 8 of [18] details how to reduce the isometry representation size, e.g.

group elements, using only two matrices C,C1 P Fnˆm
q . Both can be defined

in terms of the (known) basis pCi, . . . ,Ckq as C “
ř

λiCi with λi P Fq,
hence, both C and C1 can be represented in k ¨ rlog qs bits. This reduces ℓG

to 2k ¨ rlog qs.

46

Concrete Values. For NIST Security Category I, the MEDS specifications do
not apply the second optimalization yet. To give a fair comparison, we stick with
the numbers as given in the specification. This gives us

ℓG “ 588 bytes, ℓX “ 3, 297 bytes, λ “ 128,

and therefore sizes for the public key and signature as

pk “ 9, 923 bytes, sig “ 9, 896 bytes (set 1),
pk “ 13, 220 bytes, sig “ 12, 976 bytes (set 2),
pk “ 9, 923 bytes, sig “ 9, 192 bytes (set 3, new).

We see that the third set of parameters decreases the signature size and
requires roughly only half the average group action evaluations in verification
(569 against 1152). Signing, however, is negatively impacted, and becomes about
10 times slower. If we include the above optimisation, ℓG decreases substantially
to 42 bytes and the ratio with λ drops to only 2.6ˆ. This makes Skipping Edges
much less effective, and we find that set 3 does not improve anymore.

7.3 ALTEQ

ALTEQ [11, 38] is a signature scheme based on the hardness of the Alternate
Trilinear Form Equivalence (ATFE) problem. At its core, the alternate trilinear
form equivalence can be seen as a group action, where the group G “ GLnpqq
acts on the set of alternating trilinear forms

φ : Fn
q ˆ Fn

q ˆ Fn
q Ñ Fq.

Group elements A P GLnpqq map φ to ψpx,y, zq “ φpAx,Ay,Azq.

Hardness Assumption. The alternate trilinear form equivalence problem asks
to find A P GLnpqq given two equivalent trilinear forms φ and ψ. For NIST
Security Category I, the ALTEQ specification document uses the parameters

q “ 232 ´ 5, n “ 13.

Size of Elements. A random A P GLnpqq can be represented in ℓG “ n2 ¨
rlog qs bits. A random alternating trilinear form φ can be described as a linear
combination of e˚

i ^e
˚
j ^e

˚
k , where 1 ď i ă j ă k ď n, which form a (known) basis

of the space of alternating trilinear forms. The form φ can thus be represented
using

`

n
3
˘

coefficients in Fq, giving ℓX “
`

n
3
˘

¨ rlog qs.

Scheme Optimisation. The ALTEQ scheme instantiates Protocol 2 with the
group action described above, and applies the transformations Fixed-Weight
Challenges and Multiple Keys. The current NIST Security Category I specifica-
tion proposes two sets of values:

47

– set 1 has t “ 84 rounds, fixed-weight w “ 22, and s “ 7 public keys;
– set 2 has t “ 16 rounds, fixed-weight w “ 14, and s “ 458 public keys.

The technique MPC-in-the-Head is not applied in the specification. Altough
in [11, Remark 1.4], the authors propose to analyse MPC-in-the-Head to improve
the scheme, the results in Section 6 show this will not improve the performance
of ALTEQ. Note that the group action is not commutative, hence Hypercube
does not apply.

The current submission of ALTEQ does not use Seed Tree, although in [11,
Remark 1.4] the authors write that more understanding is required. Using Propo-
sition 2, we can quantify the gain of using Seed Tree as 272 bytes for set 1
parameters while for set 2 there is no improvement.

Currently, the representation of group elements in ALTEQ is a major lim-
itation. For example, the current NIST Security Category I parameters have
ℓG « 40 ¨ λ. Hence, we can use the combination of Skipping Edges and Fixed-
Weight Challenges (Section 5.3) to improve the signature size while controlling
the verification time. We readily compute

– set 3 with t “ 164 rounds, fixed-weight w “ 10, m “ 29 parties and s “ 7
public keys.

To find this set, we capped the average number of group action evaluations during
verification to 4 ˆ 84 (for this set we need 314), so that we expect verification
to be 4 times slower for set 3 parameters than for set 1 parameters. Signature
generation requires 4756 group action evaluations, making it roughly 60 times
slower than set 1. However, the parameter set allows us to reach a signature size
below 10, 000 Kbytes while still keeping the size of the public key reasonable. We
stress that, when using only Fixed-Weight Challenges and not Skipping Edges,
we require at least 1234 rounds to get such small signatures.

Concrete Values. For NIST Security Category I, this gives us

ℓG “ 676 bytes, ℓX “ 1144 bytes, λ “ 128,

and therefore the following sizes for public keys and signatures:

pk “ 8, 024 bytes, sig “ 15, 640 bytes (set 1, with Seed Tree),
pk “ 523, 968 bytes, sig “ 9, 528 bytes (set 2),
pk “ 8, 024 bytes, sig “ 9, 992 bytes (set 3, new).

48

References

[1] https : / / csrc . nist . gov / Projects / Post - Quantum - Cryptography.
2017.

[2] C. Aguilar-Melchor, N. Gama, J. Howe, A. Hülsing, D. Joseph, and D.
Yue. “The return of the SDitH”. In: Annual International Conference on
the Theory and Applications of Cryptographic Techniques. Springer. 2023,
pp. 564–596.

[3] N. Alamati, L. De Feo, H. Montgomery, and S. Patranabis. “Crypto-
graphic Group Actions and Applications”. In: ASIACRYPT. Springer.
2020, pp. 411–439.

[4] M. Baldi, A. Barenghi, L. Beckwith, J.-F. Biasse, A. Esser, K. Gaj, K.
Mohajerani, G. Pelosi, E. Persichetti, M.-J. O. Saarinen, P. Santini, and
R. Wallace. Matrix Equivalence Digital Signature. https://www.less-
project.com/LESS-2023-08-18.pdf. Accessed: 2023-09-15. 2023.

[5] A. Barenghi, J.-F. Biasse, E. Persichetti, and P. Santini. “LESS-FM: fine-
tuning signatures from the code equivalence problem”. In: Post-Quantum
Cryptography: 12th International Workshop, PQCrypto 2021, Daejeon, South
Korea, July 20–22, 2021, Proceedings 12. Springer. 2021, pp. 23–43.

[6] A. Barenghi, J.-F. Biasse, E. Persichetti, and P. Santini. “LESS-FM: fine-
tuning signatures from the code equivalence problem”. In: Post-Quantum
Cryptography: 12th International Workshop, PQCrypto 2021, Daejeon, South
Korea, July 20–22, 2021, Proceedings 12. Springer. 2021, pp. 23–43.

[7] W. Beullens, S. Katsumata, and F. Pintore. “Calamari and Falafl: Loga-
rithmic (Linkable) Ring Signatures from Isogenies and Lattices”. In: Ad-
vances in Cryptology – ASIACRYPT 2020. Ed. by S. Moriai and H. Wang.
Cham: Springer International Publishing, 2020, pp. 464–492. isbn: 978-3-
030-64834-3.

[8] W. Beullens, T. Kleinjung, and F. Vercauteren. “CSI-FiSh: efficient isogeny
based signatures through class group computations”. In: Advances in Cryptology–
ASIACRYPT 2019: 25th International Conference on the Theory and Ap-
plication of Cryptology and Information Security, Kobe, Japan, December
8–12, 2019, Proceedings, Part I. Springer. 2019, pp. 227–247.

[9] J.-F. Biasse, G. Micheli, E. Persichetti, and P. Santini. “LESS is More:
Code-Based Signatures Without Syndromes”. In: AFRICACRYPT. Ed.
by A. Nitaj and A. Youssef. Springer, 2020, pp. 45–65.

[10] M. Bläser, Z. Chen, D. H. Duong, A. Joux, N. T. Nguyen, T. Plantard,
Y. Qiao, W. Susilo, and G. Tang. “On digital signatures based on isomor-
phism problems: QROM security, ring signatures, and applications”. In:
Cryptology ePrint Archive (2022).

[11] M. Blaser, D. H. Duong, A. K. Narayanan, T. Plantard, Y. Qiao, A.
Sipasseuth, and G. Tang. ALTEQ Signature Specification. https://csrc.
nist.gov/csrc/media/Projects/pqc- dig- sig/documents/round-
1/spec-files/ALTEQ-Spec-web.pdf. Accessed: 2023-10-11. 2023.

[12] D. Boneh, J. Guan, and M. Zhandry. “A Lower Bound on the Length of
Signatures Based on Group Actions and Generic Isogenies”. In: Advances

49

https://csrc.nist.gov/Projects/Post-Quantum-Cryptography
https://www.less-project.com/LESS-2023-08-18.pdf
https://www.less-project.com/LESS-2023-08-18.pdf
 https://csrc.nist.gov/csrc/media/Projects/pqc-dig-sig/documents/round-1/spec-files/ALTEQ-Spec-web.pdf
 https://csrc.nist.gov/csrc/media/Projects/pqc-dig-sig/documents/round-1/spec-files/ALTEQ-Spec-web.pdf
 https://csrc.nist.gov/csrc/media/Projects/pqc-dig-sig/documents/round-1/spec-files/ALTEQ-Spec-web.pdf

in Cryptology–EUROCRYPT 2023: 42nd Annual International Confer-
ence on the Theory and Applications of Cryptographic Techniques, Lyon,
France, April 23-27, 2023, Proceedings, Part V. Springer. 2023, pp. 507–
531.

[13] D. Boneh, J. Guan, and M. Zhandry. “A Lower Bound on the Length
of Signatures Based on Group Actions and Generic Isogenies”. In: Annual
International Conference on the Theory and Applications of Cryptographic
Techniques. Springer. 2023, pp. 507–531.

[14] D. Boneh and B. Waters. “Constrained Pseudorandom Functions and
Their Applications”. In: Advances in Cryptology - ASIACRYPT 2013. Ed.
by K. Sako and P. Sarkar. Berlin, Heidelberg: Springer Berlin Heidelberg,
2013, pp. 280–300. isbn: 978-3-642-42045-0.

[15] G. Brassard and M. Yung. “One-way group actions”. In: Conference on
the Theory and Application of Cryptography. Springer. 1990, pp. 94–107.

[16] W. Castryck, T. Lange, C. Martindale, L. Panny, and J. Renes. “CSIDH:
An Efficient Post-Quantum Commutative Group Action”. In: Advances in
Cryptology – ASIACRYPT 2018. Springer. 2018, pp. 395–427.

[17] A. Chailloux. “On the (In) security of optimized Stern-like signature schemes”.
In: WCC. 2022.

[18] T. Chou, R. Niederhagen, E. Persichetti, L. Ran, T. H. Randrianarisoa, K.
Reijnders, S. Samardjiska, and M. Trimoska. Matrix Equivalence Digital
Signature. https : / / meds - pqc . org / spec / MEDS - 2023 - 05 - 31 . pdf.
Accessed: 2023-09-12. 2023.

[19] T. Chou, R. Niederhagen, E. Persichetti, T. H. Randrianarisoa, K. Reijn-
ders, S. Samardjiska, and M. Trimoska. “Take your MEDS: Digital Signa-
tures from Matrix Code Equivalence”. In: AFRICACRYPT (2023).

[20] T. Chou, E. Persichetti, and P. Santini. On Linear Equivalence, Canonical
Forms, and Digital Signatures. Cryptology ePrint Archive, Paper 2023/1533.
https://eprint.iacr.org/2023/1533. 2023. url: \url{https://
eprint.iacr.org/2023/1533}.

[21] L. De Feo and S. Galbraith. “SeaSign: Compact Isogeny Signatures from
Class Group Actions”. In: EUROCRYPT 2019. Ed. by Y. Ishai and V.
Rijmen. Vol. 11478. Lecture Notes in Computer Science. Springer, 2019,
pp. 759–789. doi: 10.1007/978- 3- 030- 17659- 4_26. url: https:
//doi.org/10.1007/978-3-030-17659-4_26.

[22] L. De Feo and S. D. Galbraith. “SeaSign: compact isogeny signatures from
class group actions”. In: Advances in Cryptology–EUROCRYPT 2019: 38th
Annual International Conference on the Theory and Applications of Cryp-
tographic Techniques, Darmstadt, Germany, May 19–23, 2019, Proceed-
ings, Part III 38. Springer. 2019, pp. 759–789.

[23] W. Diffie and M. Hellman. “New directions in cryptography”. In: IEEE
Transactions on Information Theory 22.6 (1976), pp. 644–654. doi: 10.
1109/TIT.1976.1055638.

[24] L. Ducas, E. Kiltz, T. Lepoint, V. Lyubashevsky, P. Schwabe, G. Seiler, and
D. Stehl é. “Crystals-dilithium: A lattice-based digital signature scheme”.

50

https://meds-pqc.org/spec/MEDS-2023-05-31.pdf
https://eprint.iacr.org/2023/1533
\url{https://eprint.iacr.org/2023/1533}
\url{https://eprint.iacr.org/2023/1533}
https://doi.org/10.1007/978-3-030-17659-4_26
https://doi.org/10.1007/978-3-030-17659-4_26
https://doi.org/10.1007/978-3-030-17659-4_26
https://doi.org/10.1109/TIT.1976.1055638
https://doi.org/10.1109/TIT.1976.1055638

In: IACR Transactions on Cryptographic Hardware and Embedded Systems
(2018), pp. 238–268.

[25] L. Ducas and W. van Woerden. “On the lattice isomorphism problem,
quadratic forms, remarkable lattices, and cryptography”. In: Advances
in Cryptology–EUROCRYPT 2022: 41st Annual International Conference
on the Theory and Applications of Cryptographic Techniques, Trondheim,
Norway, May 30–June 3, 2022, Proceedings, Part III. Springer. 2022,
pp. 643–673.

[26] T. Feneuil, A. Joux, and M. Rivain. “Shared permutation for syndrome
decoding: New zero-knowledge protocol and code-based signature”. In: De-
signs, Codes and Cryptography 91.2 (2023), pp. 563–608.

[27] T. Feneuil, A. Joux, and M. Rivain. “Syndrome Decoding in the Head:
Shorter Signatures from Zero-Knowledge Proofs”. In: Advances in Cryp-
tology – CRYPTO 2022. Vol. 13508. LNCS. Springer, 2022, pp. 541–572.

[28] A. Fiat and A. Shamir. “How To Prove Yourself: Practical Solutions to
Identification and Signature Problems”. In: Advances in Cryptology —
CRYPTO’ 86. Ed. by A. M. Odlyzko. Berlin, Heidelberg: Springer Berlin
Heidelberg, 1987, pp. 186–194.

[29] S. Gueron, E. Persichetti, and P. Santini. “Designing a Practical Code-
Based Signature Scheme from Zero-Knowledge Proofs with Trusted Setup”.
In: Cryptography 6.1 (2022), p. 5.

[30] Y. Ishai, E. Kushilevitz, R. Ostrovsky, and A. Sahai. “Zero-knowledge
from secure multiparty computation”. In: Proceedings of the thirty-ninth
annual ACM symposium on Theory of computing. 2007, pp. 21–30.

[31] A. Joux. MPC in the head for isomorphisms and group actions. Cryptology
ePrint Archive, Paper 2023/664. https://eprint.iacr.org/2023/664.
2023. url: https://eprint.iacr.org/2023/664.

[32] D. Kales and G. Zaverucha. “Improving the performance of the picnic
signature scheme”. In: IACR Transactions on Cryptographic Hardware and
Embedded Systems (2020), pp. 154–188.

[33] J. Katz, V. Kolesnikov, and X. Wang. “Improved non-interactive zero
knowledge with applications to post-quantum signatures”. In: Proceedings
of the 2018 ACM SIGSAC Conference on Computer and Communications
Security. 2018, pp. 525–537.

[34] E. Kiltz, D. Masny, and J. Pan. “Optimal security proofs for signatures
from identification schemes”. In: In Annual International Cryptology Con-
ference. Springer. 2016, pp. 33–61.

[35] NIST. Call for Additional Digital Signature Schemes for the Post-Quantum
Cryptography Standardization Process. URL: https://csrc.nist.gov/
projects/pqc-dig-sig/standardization/call-for-proposals. 2023.

[36] E. Persichetti and P. Santini. “A New Formulation of the Linear Equiva-
lence Problem and Shorter LESS Signatures”. In: Cryptology ePrint Archive
(2023).

[37] A. Stolbunov. “Cryptographic schemes based on isogenies”. In: (2012).

51

https://eprint.iacr.org/2023/664
https://eprint.iacr.org/2023/664
https://csrc.nist.gov/projects/pqc-dig-sig/standardization/call-for-proposals
https://csrc.nist.gov/projects/pqc-dig-sig/standardization/call-for-proposals

[38] G. Tang, D. H. Duong, A. Joux, T. Plantard, Y. Qiao, and W. Susilo.
“Practical post-quantum signature schemes from isomorphism problems
of trilinear forms”. In: Advances in Cryptology–EUROCRYPT 2022: 41st
Annual International Conference on the Theory and Applications of Cryp-
tographic Techniques, Trondheim, Norway, May 30–June 3, 2022, Proceed-
ings, Part III. Springer. 2022, pp. 582–612.

A Action Graphs Protocols

Protocol 2 is a very elementary construction which is used as a building block
in the construction of many digital signature schemes. The introduction of Sec-
tion 3 describes action graphs as a framework to capture the transformations
presented in Sections 3 and 4. This appendix describes such action graphs in
more generality and in particular describes Σ-protocols in much broader gener-
ality, so that every transformed Σ-protocol can be seen as an instance of such a
general Σ-protocol. Furthermore, we prove security of such a Σ-protocol.

Recall that for a group action ‹ : G ˆX Ñ X on a finite set, Opxq denotes
the orbit of x P X under the action of G, that is

Opxq “ tg ‹ x | x P Gu ,

and that if the action of G is free then Opxq contains |G| elements. If ‹ is also
transitive, then Opxq “ X. We define the action graph GX as the graph with
nodes X and an edge between x1, x2 P X if there is a g P G such that x2 “ g‹x1.
When considering only the orbit Opxq of an x P X, we denote the corresponding
action graph by Gx. As the action is transitive on the orbit, Gx is connected, as
any pair of vertices px1, x2q is connected by an edge g such that x2 “ g ‹ x1.
When ‹ is free on Ox, this g is moreover unique.

The 1-bit scheme Group Action Σ-Protocol can be interpreted as a subgraph
of Gx, where we perform a length-one path starting from x to get x̃. The secret
path is y “ g ‹ x for a secret g P G and we reveal either the edge px, x̃q or
py, x̃q in the protocol. We may wonder what happens if we consider more general
subgraphs of Gx or we reveal different paths on it. A similar approach was used by
Boneh, Guan, and Zhandry [13] to prove a lower bound on the size of signatures
based on group actions. However, the authors only use subgraphs for a theoretical
bound on the size of the transcript, and do not consider other optimisations such
as puncturable PRFs to generate random group elements.

A.1 A Generalized Σ-Protocol for Action Subgraphs

For a generalized Σ-protocol, we sample random group elements g̃1, g̃2, ...,and
compute the path on the edges of Gx by

x ÞÑ g̃1x̃1 ÞÑ g̃2 . . .

52

Additionally, we can consider other paths starting from x or other intermediate
nodes x̃i. The public keys are represented by the particular nodes yi “ gi ‹

x, where the gi P G are the associated secret keys. In this way, we obtain a
directed subgraph of Gx that we can use for an identification protocol to prove
knowledge on the secret paths gi. The intuitive idea behind this construction is
that, assuming λ ! ℓG, the randomly-generated paths x Ñ x̃i on the subgraph
can be revealed efficiently using methods such as Seed Tree or other puncturable
PRFs. The following protocol describes the identification protocol in detail.

Protocol 3 (Action Subgraph Σ-Protocol) Consider an origin x P X,
then a public key is another node yi P X with associated secret key a walk
gi P G such that gi ‹ x “ yi. Consider s public keys y1, ..., ys and a positive
integer t representing the number of rounds. Relabel the origin x as y0. Then the
generalized Σ-protocol on Gx is given as follows.

1. a commitment is composed by a list of nodes x̃j P X for j “ 1, ..., t not
equal to any public key yi. To construct x̃j, the prover performs paths of
length one given by randomly generated g̃j P G, starting from the origin x
or other nodes previously reached by other walks.

2. a challenge is a map c : r1, ts Ñ r0, ss, where s is the number of public keys,
that encodes a request for all the links ycpjq to x̃j for j P r1, ts. The challenge
is sampled randomly from a predefined challenge set.

3. a response for a challenge c is a list of g1
j P G for j P r1, ts where each g1

j

gives a path x̃j

g1
j
ÝÑ ycpjq.

4. the verifier checks that all recomputed nodes corresponds to the committed
ones.

The above protocol generalizes most transformations in Sections 3 and 4. By
giving a single proof of its security properties, we give an alternative proof to
the security of each transformation in the main body.

Proposition 3. Protocol 3 is complete, honest-verifier zero-knowledge, and 2-
special sound for the mGAIP problem.

Proof. We prove each property one by one.
Completeness. Since each node x̃j is sampled via a random walk from the origin
x the Prover can link it to ycpjq using the knowledge of the secret key gcpjq, i.e.
by the group action properties he can always render:

ycpjq

gcpjq

ÐÝÝÝ x
g̃˚
ÝÝÑ ¨ ¨ ¨

g̃˚
ÝÝÑ x̃j to ycpjq

g̃˚¨¨¨g̃˚¨g´1
cpjq

ÝÝÝÝÝÝÝÝÑ x̃j .

Special honest-verifier zero knowledge. Since the random walk during the com-
mitment phase is sampled uniformly the elements in the response are always
uniformly random on G, in fact for any j:

53

– when cpjq “ 0 the response is a product or a combination of uniformly
random group elements;

– when cpjq ‰ 0 the response is a product of the secret key by at least one
uniformly random group element, eventually combined with other uniformly
random group elements.

So, given any challenge map c : r1, ts Ñ 0,M s, we simulate an indistinguish-
able transcripts by executing the verification procedure feeding as input random
group elements. This way the output corresponds to the commitment while the
input random group elements are the simulated response.
2-Special soundness. Suppose the prover can answer two different challenges map
c, c1 : r1, ts Ñ r1,M s on the same commitment. Let j be such that cpjq ‰ c1pjq,
so from the response we retrieve r, r1 P G such that x̃j “ r ‹ ycpjq “ r1 ‹ yc1pjq,
by group action properties this implies that ycpjq “ pr

´1r1q ‹ yc1pjq, so we have
extracted a solution to mGAIP.

B Results for Seed Tree

This section derives the upper bounds used in on the number of nodes required
to release the right leaves in a seed tree. We start from following well-known
result [7, 31].

Proposition 4. When t is a power of 2, for any ch P t0, 1ut with Hamming
weight w “ 1, the size of the output produced by ReleaseSeeds is logptq. More
generally, for any t ą 1 the output size is bounded by rlogptqs.

Propositions 5 to 7 show that the size of an output of ReleaseSeeds on input
a challenge with weight w ą 1 is always smaller than w times the case of weight
1, by first considering the case where t is a power of 2, and then generalizing to
any t, using the binary expansion of t.

Proposition 5. Let w be any positive integer, and t “ 2rlogpwqs, that is, the
smallest power of 2 such that t ě w. Then, for any ch P t0, 1ut with Hamming
weight w, the size of an output of ReleaseSeeds is not greater than w logpt{wq.

Proof. The output size of ReleaseSeeds cannot exceed t ´ w. Let rlogpwqs “
logpwq ` γ, where 0 ď γ ă 1. Since by hypothesis t “ 2rlogpwqs, we get t “
2logpwq`γ “ w2γ and t´ w “ wp2γ ´ 1q. Now

t´ w ď wγ “ w logpt{wq

as 2γ ´ 1 ď γ holds for 0 ď γ ă 1. [\

We now show that w logpt{wq is an upper bound for the output size of ReleaseSeeds
when t is a power of 2.

Proposition 6. Let t be an integer power of 2. Then, for any ch P t0, 1ut with
Hamming weight w ď t, the output of ReleaseSeeds is not greater than w logpt{wq.

54

Proof. Let t be a power of 2, t ě w, and WCtpwq denote the biggest num-
ber of released seeds when the input challenge has Hamming weight w. For
w “ 1 the theorem follows from Proposition 4. For w ě 2 we prove the state-
ment, i.e. WCtpwq ď w logpt{wq, by an inductive procedure. In particular, we
show below that, if WCxp rwq ď rw logpx{ rwq for every rw ď w and every x P
␣

2rlogpwqs, 2 ¨ 2rlogpwqs, 4 ¨ 2rlogpwqs ¨ ¨ ¨ , t{2
(

, then WCtpwq ď w logpt{wq. To prove
this, we split the seed tree into two subtrees:

- the tree SubTree1 formed by all nodes that are ancestors of leaf1, ¨ ¨ ¨ , leaft{2,
i.e., the tree whose root is seed2,1;

- the tree SubTree2 formed by all nodes that are ancestors of leaft{2`1, ¨ ¨ ¨ , leaft,
i.e., the tree whose root is seed2,2.

An example of these subtrees is depicted in Figure 14.

leaf1 leaf2 leaf3 leaf4 leaf5 leaf6 leaf7 leaf8

seed1,1 seed1,2 seed1,3 seed1,4

SubTree1 SubTree2

seed2,2seed2,1

seedroot

Fig. 14: Example of SubTree1 and SubTree2 for t “ 8.

Given a generic pair pw, tq, let J Ď t1, ¨ ¨ ¨ , tu, of size w, be the set of indices
corresponding to the set bits of ch, i.e., for any i P J , we have chi “ 1. There
are three possible cases, which we analyse in the following; for each of them, we
prove that w logpt{wq is an upper for WCtpwq under the inductive hypothesis.

a) Case J Ď t1, ¨ ¨ ¨ , t{2u: the function outputs seed2,2 (that is, the root of
SubTree2), plus some seeds from SubTree1. Note that, if w “ t{2, then no
seed is released from SubTree1, thus the number of output seeds is 1 ď
t
2 log

´

t
t{2

¯

“ t
2 . Instead, if w ă t{2, then we get a worst case given by

WCt{2pwq ` 1. By the inductive hypothesis, we have

WCt{2pwq ď w log
ˆ

t

2w

˙

“ w logpt{wq ´ w.

Hence

WCt{2pwq ` 1 ď w logpt{wq ´ w ` 1 “ w logpt{wq ´ pw ´ 1q ď w logpt{wq.

b) Case J Ď tt{2` 1, ¨ ¨ ¨ , tu: analogous to the previous one.

55

c) Case 1 ď |JXtt{2`1, ¨ ¨ ¨ , tu| “ y ă w: in this case, we have y leaves coming
from SubTree1 and w´y leaves coming from SubTree2. Hence the worst case
is obtained as

WCtpwq “ max
yPt1,¨¨¨ ,w´1u

␣

WCt{2pyq `WCt{2pw ´ yq
(

.

Again, if the inductive hypothesis holds, then WCt{2pyq ď y log
´

t
2y

¯

and

WCt{2pw ´ yq ď pw ´ yq log
´

t
2pw´yq

¯

; thus

WCt{2pyq `WCt{2pw ´ yq ď y log
ˆ

t

2y

˙

` pw ´ yq log
ˆ

t

2pw ´ yq

˙

.

We now show that, for any y P t1, ¨ ¨ ¨ , w ´ 1u, the above quantity is not
greater than w logpt{wq. Indeed, consider that

y log
ˆ

t

2y

˙

` pw ´ yq log
ˆ

t

2pw ´ yq

˙

´ w log
ˆ

t

w

˙

“ y log
ˆ

1
2y

˙

` pw ´ yq log
ˆ

1
2pw ´ yq

˙

´ w log
ˆ

1
w

˙

“ y log
ˆ

w

2y

˙

` pw ´ yq log
ˆ

w

2pw ´ yq

˙

“ ´y log
´ y

w

¯

´ pw ´ yq log
ˆ

w ´ y

w

˙

´ w

“ w ¨
´

´
y

w
log

´ y

w

¯

´

´

1´ y

w

¯

log
´

1´ y

w

¯

´ 1
¯

“ w ¨
´

h
´ y

w

¯

´ 1
¯

,

which is always ď 0 since h
`

y
w

˘

, which is the binary entropy function com-
puted on y

w , is bounded above by 1.

Before concluding the proof, we discuss the initial case and how to use the
inductive step. Let w “ 2. If t “ 4, then cases a) and b) leads to the desired
inequality, since w “ t{2. In case c), we have only the possibility y “ 1, thus
we only need WCt{2p1q “ WC2p1q ď 1 ¨ logp2{1q “ 1. Again, this is guaranteed
by Proposition 4, since WC2p1q “ 1. For t ě 4 we reason by induction. Namely,
knowing that the bound holds for w “ 2 and t{2, we get that it holds also for
t thanks to what we discussed in case a), b) and c). All the other values of w
are treated similarly. Namely, we start from the fact that the theorem holds for
every w1 ă w and every t and for w and the smallest power of 2 such that t ě w
(as seen in Proposition 5). [\

We now describe how to deal with the case of t not being an integer power of 2.
We start with the easy case of t being the sum of two powers of 2, then extend
the proof (again, by induction) on the general case.

56

Proposition 7. Let t “ t1 ` t2, with t1 and t2 being integers powers of 2,
t1 ą t2. Then, for any ch P t0, 1ut with Hamming weight w ď t, the output of
ReleaseSeeds is not greater than w logpt{wq ` 1.

Proof. Let us first consider the case in which all the ones in ch are referred to
the subtree with t1 leaves. In such a case, we just have to release seed2,2 plus
the seeds for the subtree of size t1. Using the same notation as in the proof for
Proposition 6, we have that the worst case number of seeds is

1`WCt1pwq ď 1` w logpt1{wq.

Note that this value can be greater than w logpt{wq, since

1` w logpt1{wq ą w logpt{wq ùñ w ă
1

logp1{γq .

Note that this inequality is not unrealistic: for instance, it is satisfied by γ “ 0.8
and w “ 2. However, we show that it is never greater than 1` logpt{wq. Indeed

1` w logpt1{wq ď 1` w logpt{wq ùñ w logpγq ď 0,

which is always true since logpγq is negative.
We now consider the case in which the w ones in ch are referred to both

trees, and show that the resulting worst case is never greater than w logpt{wq.
Let x P t1, ¨ ¨ ¨ , wu denote the number of ones which fall in the right tree, having
t2 “ p1´ γqt leaves. Then

max
xPt1,¨¨¨ ,mintw,t2uu

tWCt1pw ´ xq `WCt2pxqu .

We now show that, for any x, this is not greater than w logpt{wq. Indeed,

WCt1pw ´ xq `WCt2pxq ´ w logpt{wq

ď pw ´ xq log
ˆ

t1
w ´ x

˙

` x log
ˆ

t2
x

˙

´ w log
ˆ

t

w

˙

.

“ pw ´ xq log
ˆ

γt

w ´ x

˙

` x log
ˆ

p1´ γqt
x

˙

´ w log
ˆ

t

w

˙

“ pw ´ xq log
ˆ

γw

w ´ x

˙

` x log
ˆ

p1´ γqw
x

˙

.

The above quantity is ď 0 if

1 ě
ˆ

γw

w ´ x

˙w´x

¨

ˆ

p1´ γqw
w ´ x

˙x

“
p1´ γqxγw´x

`

x
w

˘x `w´x
w

˘w´x “
rγxp1´ rγqw´x

`

x
w

˘x `1´ x
w

˘w´x .

Considering the numerator as a function fprγq, we see that it has a maximum
in rγ “ x

w . 6 However, the denominator is exactly fpx{wq, thus the numerator is
never greater than the denominator and the above inequality is satisfied. [\

6 Indeed, its derivative is rγx´1
p1 ´ rγqw´x´1

pxp1´ rγq ´ pw ´ xqrγq, which has three
roots: rγ “ 0, rγ “ 1 and rγ “ x{w. Since fprγq is positive for rγ P r0; 1s and fp0q “
fp1q “ 0, rγ “ x{w corresponds to a maximum.

57

We are now ready to prove Proposition 2.

Proof. The proof is an immediate consequence of Proposition 7, and can be pro-
vided, again, with an inductive procedure. Namely, we start from the hypothesis
that WC

rtpwq ď w logpt{wq ` u ´ 2, whenever rt “ rt1 ` ¨ ¨ ¨rtu´1, and show that
this implies that for any t “ t1 ` ¨ ¨ ¨ ` tu, then WC

rtpwq ď w logpt{wq ` u ´ 1.
Since the cases u “ 1 and u “ 2 has been treated in Propositions 2 and 6, this
is enough to derive all cases by induction. To this end, let us split again the
tree into two substructures: the left one, with t1 leaves, and the right one with
rt “ t2 ` ¨ ¨ ¨ ` tu leaves. We bound the worst case as

WCtpwq ď 1` max
xPt1,¨¨¨ ,wu

tWCt1pw ´ xq `WC
rtpxqu .

Since t1 is a power of 2, from Proposition 6 we get WCt1pw ´ xq ď pw ´

xq log
´

t1
w´x

¯

, while WC
rtpxq ď u ´ 2 ` x logprt{xq from the inductive hypoth-

esis.

1`WCt1pw ´ xq `WC
rtpxq ď 1` pw ´ xq log

ˆ

t1
w ´ x

˙

` u´ 2` x log
˜

rt

x

¸

“ u´ 1` pw ´ xq log
ˆ

t1
w ´ x

˙

` x log
˜

rt

x

¸

.

This is not greater than u´ 1` w logpt{wq if

pw ´ xq log
ˆ

t1
w ´ x

˙

` x log
˜

rt

x

¸

ď w logpt{wq.

We already proved this type of inequality for the proof of Proposition 7, using
t1 “ γt and rt “ p1´ γqt, so the inequality holds and the theorem follows. [\

C Protocols

This section contains a precise description of the protocols introduced in Sec-
tion 4 and Section 5.3. It is immediate to transform these protocols into digital
signatures using Fiat-Shamir from the given algorithmic description.
The precise protocol of MPC-in-the-Head is as follows.

Protocol 4 (MPC-in-the-Head Group Action Σ-Protocol)

1. On input g, y “ g ‹ x, m ě 1 the prover:
– samples m random group elements g̃i

$
ÐÝ G;

– starting from x̃0 “ x computes sequentially x̃i Ð g̃i ‹ x̃i´1 for i “ 1;
– computes and forward to the verifier the commitment cmt Ð cmtpx̃1, ..., x̃mq.

58

2. The verifier samples uniformly at random a challenge ch P t0, ...,mu, and
sends it to the prover.

3. Given ch, the prover compute the response composed by m group elements
as follows:

– if ch ‰ m sets g1
ch`1 Ð g̃ch`1 ¨ ¨ ¨ g̃1 ¨ g

´1;
– for i “ 1, ...,m with i ‰ ch` 1 sets g1

i Ð g̃i;
– forward to the verifier the responses rsp Ð pg̃1

1, ..., g̃
1
mq.

4. The verifies to check cmt, ch, rsp:
– computes x̃0 “ x and x̃i Ð g1

i ‹ x̃i´1 for i “ 1, ..., ch;
– if ch ‰ m sets x̃ch`1 Ð g1

ch`1 ‹ y;
– computes x̃i Ð g1

i ‹ x̃i´1 for i ą ch` 1;
– verifies cmt “ cmtXpx̃1, ..., x̃mq and outputs 1 (pass) or 0 (fail) accord-

ingly.

The following protocol describe instead the left case for Skipping Edges. The
similiarity with Protocol 4 is clear.

Protocol 5 (Skipping edges Σ-Protocol)

1. On input g, y “ g ‹ x, m ě 1 the prover:
– samples m random group elements g̃i

$
ÐÝ G;

– starting from x̃0 “ x computes sequentially x̃i Ð g̃i‹x̃i´1 for i “ 1, ...,m;
– set cmt1 “ Compx̃1q (we are reversing Remark 5);
– set cmtj Ð Cpx̃j}cmtj`1q for j “ 2, ...,m;
– computes and forward to the verifier the commitment cmt Ð cmtm.

2. The verifier samples uniformly at random a challenge ch P t0, ...,mu, and
sends it to the prover.

3. Given ch, the prover compute the response composed by m group elements
as follows:

– if ch ‰ m sets g1
ch`1 Ð g̃ch`1 ¨ ¨ ¨ g̃1 ¨ g

´1;
– for i “ 1, ...,m with i ‰ ch` 1 sets g1

i Ð g̃i;
– forward to the verifier the responses rsp Ð pg̃1

1, ..., g̃
1
mq and cmtch´1 when

ch ą 1.
4. The verifies to check cmt, ch, rsp:

– computes x̃1
ch Ð pg̃1

ch ¨ ¨ ¨ g̃
1
iq ‹ x;

– if ch ‰ m sets x̃1
ch`1 Ð g1

ch`1 ‹ y;
– computes x̃1

i Ð g1
i ‹ x̃

1
i´1 for i ą ch` 1;

– if ch “ 1 computes cmt1
1 “ Cpx̃1

1q;
– computes cmt1

i Ð Cpx̃1
i}cmti´1q for i “ ch, ...,m;

– verifies cmt “ cmt1
m.

Finally, it outputs 1 (pass) or 0 (fail) accordingly.

59

Hypercube We will now delve into the detailed explanation of the Hypercube
protocol outlined previously. Note that since we are assuming commutativity for
the group action we usa an additive notation for the group operation. Also, here
S0pjq denotes the integers from 0 to m´ 1 with j-th bit equal to 0, while S1pjq
the one with j-th bit equal to 1. Assume that n is such that m` 1 “ 2n.

The protocol can then be instantiated as follows.

Protocol 6 (Hypercube MPC-in-the-Head)

1. On input g, y “ g ‹ x, n,m ě 1 the prover:
– samples m random group elements g̃i

$
ÐÝ G for i “ 0, ...,m´ 1;

– define g̃m “ g ´ pg̃m´1 ` ¨ ¨ ¨ ` g̃0q;
– for all j “ 0, ..., n´ 1 compute

x

ř

iPS0pjq g̃i

ÝÝÝÝÝÝÝÑ x̃j ;

– computes and forward to the verifier the commitment cmt Ð cmtpx̃1, ..., x̃nq.
2. The verifier samples uniformly at random a challenge ch P t0, 1un, and sends

it to the prover.
3. Given ch, the prover compute the response composed by m group elements

as follows:
– computes ich using the negation7 of the binary digits of ch, i.e.

ich “ p␣ch0q ` p␣ch1q2` ¨ ¨ ¨ ` p␣chn´1q2n´1 ,

– sets as rsp all group elements g̃i for i “ 0, ...,m with i ‰ ich;
– forward rsp to the verifier.

4. The verifier parse ch as ch0, ..., chn´1 and for all j “ 0, ..., n´ 1 do:
– if chj “ 0 computes:

x

ř

iPS0pjq g̃i

ÝÝÝÝÝÝÝÑ x̃1
j ;

– if chj “ 1 computes:

y
´g̃m´

ř

iPS1pdq g̃i

ÝÝÝÝÝÝÝÝÝÝÝÑ x̃1
j .

5. verifies cmt Ð cmtpx̃1
1, ..., x̃

1
nq. Finally it outputs 1 (pass) or 0 (fail) accord-

ingly.

D Security Proofs

D.1 Reduction from mGAIP to GAIP

Proposition 8. Given an algorithm to solve mGAIP, that runs in time T and
succeeds with probability p, it is possible to solve GAIP, in time approximately
equal to T `Oppolypnqq, with probability of success equal to p{2.
7
␣ch “ ch` 1 mod 2

60

Proof. Let A be an adversary for mGAIP. We show how to construct an adver-
sary A1 that can solve GAIP using A as a subroutine. From a GAIP instance
px, y “ g ‹xq, A1 samples uniformly at random g

p0q

i , ..., g
pr´1q

i . Then, it computes
(in polynomial time) half of the elements starting from x, and half starting from
y; wlog, we can imagine that xi “ g

piq

i ‹ x for i P r0; r{2´ 1s, while xi “ g
piq

i ‹ y
for i P rr{2; r ´ 1s are generated from y. Since the new instances are randomly
generated, they are indistinguishable from the original one. At this point, A1

runs A on input x0, ..., xr´1, and outputs, with probability p, a response g˚, j, j1

such that xj1 “ g˚ ‹ xj . Now, if the two indices lie in the two different halves
of r0, rs, it is possible to use the random group element to get g; for example if
j ă r{2 ă j1 then g “

´

g
pj1

q

i

¯´1
¨ g˚ ¨ g

pjq

i . Since this happens with probability
1{2, we get the result. [\

D.2 Security Proofs for the New Protocols

For almost all the constructions in the main body their security can be derived as
a corollary of Proposition 3, however since both Skipping Edges and Hypercube
cannot be framed as special cases of Protocol 3 we need to prove their security
separately.

Theorem 4. For any n ą 0, the identification protocol Skipping Edges for the
GAIP relation y “ g ‹x is complete, honest-verifier zero knowledge and 2-special
sound with soundness error 1

m`1 .

Proof. The completeness of the protocol is trivial from the description.
Zero knowledge. To prove zero knowledge, we can use the same simulator as
in Proposition 3 to generate the group elements. To generate the commitment
values tclulăch, we can simply consider random values on the cmtX co-domain
since we are in the random oracle model.

Special soundness. The 2-special soundness can also be proven with similar
strategies as in Proposition 3, with the difference of focusing on the final tail. Let
us consider two accepting transcripts with the same commitment, but different
challenge values, without loss of generality ch0 ă ch1. By the collision resistance
of Merkle.Root, we get the same committed value c1, ..., cm. From the response to
ch1, we get r̃ such that cch1 “ cmtXpr̃‹xq. By combining the responses to ch0, we
have instead r̂ such that cch1 “ cmtXpr̂ ‹ yq since ch1 ě ch0 + 1. By the collision
resistance of the cmtX function, we have r̃ ‹x “ r̂ ‹ y and so y “ pr̂´1r̃q ‹x, thus
we have extracted the secret g proving the special soundness.

Once again, the 2-special soundness immediately implies that the soundness
error is the reciprocal of the cardinality of the challenge space, as claimed by the
Theorem.

61

x

x̃1 x̃2 x̃3 x̃4 x̃5

y

(a) Case ch0 “ 2 in blue and ch1 “ 4 in orange, with m “ 5.
x

x̃1 x̃2 x̃3 x̃4 x̃5

y

(b) Case ch0 “ m “ 5 in blue and ch1 “ 4 in orange.

Fig. 15: Representation of the action graph available to the knowledge extractor,
for two pairs of accepting transcripts. blue is relative to knowledge provided only
in transcript ch0, orange to knowledge provided only in transcript ch1. Dashed
orange and blue edges are known to the extractor, but not used in the extraction.

Example. A graphical representation of the extractor’s behavior is given in Fig-
ure 15. For instance, for the case ch0 “ 2 and ch1 “ 4, which is reported in the
top half of the figure, the extractor can recover the secret g using the following
path x ÞÑ x̃4 ÞÑ x̃3 ÞÑ y.

For the case ch0 “ 4, ch1 “ 5, the secret can be extracted from the path
x ÞÑ x̃5 ÞÑ y.

Note that commitment verification after the interruption plays a crucial role,
as this implies that there are common nodes in the paths associated to the two
transcripts. Without this, the knowledge extractor would not work. For instance,
let us consider again the case depicted in Figure (a) and assume that only the
final element x̃5 is verified. Elements for the transcript ch1 are denoted with ˚.
In this case, the extractor would know the following four paths

x ÞÑ x̃4, y ÞÑ x̃5 ;
x ÞÑ x̃˚

2 , y ÞÑ x̃˚
3 ÞÑ x̃˚

4 ÞÑ x̃5 .

Notice that only the element x̃5 is guarantee to be shared, but this would give
only information about a circular loop that starts and ends in y. Instead the
others, in particular it may be that x̃4 ‰ x̃˚

4 .

D.3 Hypercube Security Proof

Proposition 9. For any n ą 0, the identification protocol Hypercube (Proto-
col 4) for the GAIP relation y “ g ‹x is complete, honest-verifier zero knowledge
and 2-special sound with soundness error 2´n.

Proof. For the correctness observe that for each j we need all the g̃i with j-
th digit equal to chj , so in particular not ich since the j-th digit is ␣chj , so

62

the verifier has all the required information to recompute the commitment. The
other details are trivial from the protocol description.

Special soundness: Given the response of two different challenges ch ‰ ch1 to the
same commitment consider one d with chd ‰ ch1

d and use the same extractor of
Proposition 1.

Honest-verifier zero knowledge: To simulate the protocol on a known challenge
ch consider the index ich represented by the negation of the digits of ch, like in
the protocol. Then generate uniformly random g̃i P G for i ‰ ich and repeat
the response procedure using them. Then use the resulting set elements as com-
mitment. This clearly lead to a valid transcript. The group elements g̃i P G for
i ă m are generated as in the protocol, moreover in the honest protocol g̃m is
uniformly random in G since it is a sum containing elements uniformly random
in G, so the transcript is also indistinguishable.

D.4 Proof of Theorem 3

Proof. Protocol Π has challenge space of size size |ChSet| “ pms ` 1qt and the
number of computed group actions, which is the same for the verifier and the
prover, is equal to mt. The average response size per round is given by

sm

sm` 1

´

pm´ 1qλ` ℓG

¯

`
1

sm` 1 ¨mλ “
sm

sm` 1

ˆ

λ

ˆ

m´ 1` 1
s

˙

` ℓG

˙

.

So, considering t parallel executions, one gets an average response size of

|rsp| “ smt

sm` 1

ˆ

λ

ˆ

m´ 1` 1
s

˙

` ℓG

˙

.

We now consider protocol Π1. The computational complexity is given by t1 “ mt,
which is the same as that of protocol Π. The response size is instead

|rsp1| “ pt1 ´ w1qλ` w1ℓG “ pmt´ tqλ` tℓG “ tpm´ 1qλ` tℓG.

In particular
|rsp1| ´ |rsp| “ t

sm` 1 pℓG ´ λq.

The challenge space of Π1 has size

|ChSet1
| “

ˆ

t1

w1

˙

sw1

“

ˆ

mt

t

˙

st.

We now show that, whenever t ě 7, we get |ChSet1
| ą |ChSet|. Notice that

ˆ

mt

t

˙

st ą p1`msqt ùñ
ˆ

mt

t

˙

ą

ˆ

1`ms
s

˙t

“ mt

ˆ

1` 1
ms

˙t

.

63

Since the right-hand term is a decreasing function of s, it is enough to prove the
inequality for s “ 1, that is,

ˆ

mt

t

˙

ě mt

ˆ

1` 1
m

˙t

. (44)

Let hpxq :“ ´x logpxq ´ p1 ´ xq logpxq denote the binary entropy function, and
consider that

ˆ

x

αx

˙

ě
1

2
a

2xαp1´ αq
¨ 2x¨hpαq, @α P r0; 1s.

In our case, we have x “ mt and α “ 1{m, hence
ˆ

mt

t

˙

ě
1

2
a

2tp1´ 1{mq
¨ 2mt¨hp1{mq

ą
1

2
?

2t
¨ 2mt¨hp1{mq

“
1

2
?

2t
¨

´

2hp1{mq
¯mt

“
1

2
?

2t
¨

´

2
1
m logpmq`pm´1

m q logp m
m´1 q

¯mt

“
1

2
?

2t
¨ 2t logpmq`tpm´1q logp m

m´1 q

“
1

2
?

2t
¨mt ¨

ˆ

m

m´ 1

˙tpm´1q

.

So, (44) is satisfied whenever

1
2
?

2t
¨mt

ˆ

m

m´ 1

˙tpm´1q

ě mt

ˆ

1` 1
m

˙t

ùñ

ˆ

m

m´ 1

˙tpm´1q

ě 2
?

2t
ˆ

1` 1
m

˙t

.

With simple manipulations, we rewrite it as
ˆ

m´ 1
m` 1

ˆ

m

m´ 1

˙m˙t

ě 2
?

2t,

from which

log
ˆ

m´ 1
m` 1

ˆ

m

m´ 1

˙m˙

ě
1
t

ˆ

1.5` 1
2 logptq

˙

.

In the considered range 2 ď m ď 8, the left-hand term is an increasing function,
hence has minimum value for m “ 2, equal to logp4{3q “ 0.4150. Instead, the
right-hand term is a decreasing function of t when t ě 1: for t “ 7, it has value
0.4148 ă logp4{3q. [\

64

	A Guide to the Design of Digital Signatures based on Cryptographic Group Actions

