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ABSTRACT
Searchable encrypted systems enable privacy-preserving keyword
search on encrypted data. Symmetric Searchable Encryption (SSE)
achieves high security (e.g., forward privacy) and efficiency (i.e., sub-
linear search), but it only supports single-user. Public Key Search-
able Encryption (PEKS) supports multi-user settings, however, it
suffers from inherent security limitations such as being vulnerable
to keyword-guessing attacks and the lack of forward privacy. Recent
work has combined SSE and PEKS to achieve the best of both worlds:
support multi-user settings, provide forward privacy while having
sublinear complexity. However, despite their elegant design, the ex-
isting hybrid scheme inherits some of the security limitations of the
underlying paradigms (e.g., patterns leakage, keyword-guessing)
and might not be suitable for certain applications due to costly
public-key operations (e.g., bilinear pairing).

In this paper, we proposeMUSES, a new multi-user encrypted
search scheme that addresses the limitations in the existing hybrid
design, while offering user efficiency. Specifically, MUSES permits
multi-user functionalities (reader/writer separation, permission re-
vocation), prevents keyword-guessing attacks, protects search/result
patterns, achieves forward/backward privacy, and features minimal
user overhead. In MUSES, we demonstrate a unique incorpora-
tion of various state-of-the-art distributed cryptographic protocols
including Distributed Point Function, Distributed PRF, and Secret-
Shared Shuffle. We also introduce a new oblivious shuffle protocol
for the general 𝐿-party setting with dishonest majority, which can
be of independent interest. Our experimental results indicated that
the keyword search in our scheme is two orders of magnitude faster
with 13× lower user bandwidth overhead than the state-of-the-art.
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1 INTRODUCTION
Data outsourcing services (e.g., Dropbox, Google Drive,MSOneDrive)
have been increasingly prevalent because of their accessibility and
convenience. Commodity cloud storage (e.g., AWS IAM, Google
Cloud IAM) not only can provide users with data storage facilities,
but also support a fine-grained access control for data sharing across
a large number of users. Nevertheless, outsourcing data to external
clouds might lead to privacy concerns, especially for sensitive data
(e.g., health and financial records). This is because a compromised
cloud provider can access and exploit data illegitimately. Although

Conference’17, July 2017, Washington, DC, USA
2023. ACM ISBN 978-x-xxxx-xxxx-x/YY/MM. . . $15.00
https://doi.org/10.1145/nnnnnnn.nnnnnnn

end-to-end encryption can enable data confidentiality, it also pre-
vents data utility (e.g., querying, analytics), thereby invalidating
the benefits of data outsourcing services.

To address the data utilization and privacy dilemma, Searchable
Encryption (SE) was proposed to enable keyword search on en-
crypted data while respecting the confidentiality of the data and
the search query. There are two main lines of SE research including
Symmetric SE (SSE) [10, 25, 27, 37, 42, 46, 67] and Public-Key SE
(PEKS) [5, 8, 77]. While SSE offers high security guarantees (e.g., for-
ward privacy [10, 37, 53, 68, 72], backward privacy [37, 53, 68, 72]),
efficiency (e.g., sublinear search), and diverse query functionalities
(e.g., range query [26, 50, 72]), it mainly supports the single-user
setting, in which the data can only be searched by its owner. This
strictly limits its practicality when adopted in real-world settings,
where the data can be contributed by multiple users (e.g., emails).
On the other hand, PEKS enables encrypted search in the multi-user
setting, in which one user (the reader) can search on encrypted doc-
uments sent/shared by the other users (the writers). Unfortunately,
PEKS is known to suffer from various inherent security flaws in-
cluding the lack of forward privacy and vulnerability to dictionary
attacks. Meanwhile, forward privacy has been shown (via practical
attack demonstrations [79]) to become a de facto requirement in SE
for long-term security.

Recently, Wang et al. [73] proposed the notion of Hybrid SE
(HSE), which elegantly combines SSE and PEKS to achieve the
benefits of both SE paradigms: forward privacy and sublinear com-
plexity in SSE, and multi-user functionalities in PEKS. Despite
its merits and elegant design, the proposed HSE scheme acciden-
tally inherits the security weaknesses of both worlds, including the
keyword-guessing attack (KGA) vulnerabilities and search/result pat-
tern leakage. In addition, the proposed HSE instantiation does not
achieve backward privacy [11], which is necessary to prevent extra
information leakage during search. Many devastating attacks (e.g.,
[4, 14, 44, 48, 52, 54, 56, 62, 63]) have shown that search/access pat-
tern leakage reveals significant information about the query and the
data even though they are both encrypted. While some techniques
such as Oblivious RAM (ORAM) [66] can hide the search/result
pattern in SE, they incur high bandwidth cost to the user(s) [61].
Given that HSE is still in the early stages and there is a lack of
privacy-focused designs, we raise the following challenging and
practically relevant question:

Can we design a new SSE scheme that not only supports multi-
writer similar to HSE, but also addresses the inherent security limi-
tations of the existing paradigms (i.e., in both SSE and PEKS), while
achieving concrete efficiency?
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Table 1: Comparison ofMUSES with prior encrypted search systems.

Scheme #Servers Search Leakage Update Leakage Multi- Search Complexity Update Complexity
𝐿 LSearch LUpdate Writer Server Reader Comm. Writer Comm.

SSE [15] 1 {sp(𝑤 ), rp(𝑤 ), sv(𝑤 ) } {up(𝑢 ) } ✗ O(𝑛𝑠 ) O (𝜆) O (𝜆 + 𝑛𝑠 ) O (𝑊𝑢 ) O (𝑊𝑢 + |𝑊 | )
PEKS [8] 1 {𝑤, sp(𝑤 ), rp(𝑤 ), sv(𝑤 ) } {up(𝑢 ), (𝑡, 𝑤𝑖 ) ∈ O} ✓ O(𝑑𝑤𝑁

† ) O (𝜆) O (𝜆 + 𝑛𝑠 ) O (𝑊𝑢 ) O (𝑊𝑢 )
DORY [25] 2 {∅} {up(𝑢 ) } ✗ O(𝑚𝑁 ) O (log𝑚 + 𝑁 ) O (𝜆 log𝑚 + 𝑁 ) O (𝑚) O (𝑚)
FP-HSE [73] 1 {𝑤,W′, sp(𝑤 ), rp(𝑤 ), sv(𝑤 ) } {𝑖, up(𝑢 ) } ✓ O( |𝑊 |† ) O (𝜆) O (𝜆 + 𝑛𝑠 ) O (𝑊𝑢 ) O (𝑊𝑢 )
OurMUSES ≥ 2 {W′, sv(𝑤 ) } {𝑖, up(𝑢 ) } ✓ O(𝑚𝑁 ) O (𝜏 + 𝑁 ) O (𝜆𝜏 + 𝑛𝑠 ) O (𝑚) O (𝜆𝑚)
• LSearch: Search leakage function with 𝑤 as the input keyword andW′ as the writer subset when a search happens; LUpdate: Update leakage function with 𝑖 as the identifier of the
writer, op as the operation type (add/delete), 𝑢 as the updated document, and 𝑤 (resp., w) is the keyword to be added/deleted (resp., a vector of keywords in the updated document). sp:
Search pattern; rp: Result pattern; sv: Search volume; up: Document update pattern; O is a sequence of operations and (𝑡, 𝑤 ) as a search on keyword 𝑤 at the timestamp 𝑡 (see §3 for
more details). 𝜆: Security parameter; 𝑁 : Total number of documents; 𝑑𝑤 : Number of keywords per document.𝑊 : Total number of unique keywords over all documents (keyword
universe);𝑚: Size of keyword representation per document; 𝑛𝑠 : Number of documents matched per keyword search; In practice, 𝑑𝑤 <𝑚 ≪𝑊 , 𝑛𝑠 ≪ 𝑁 .𝑊𝑢 : Number of updated
keywords (added/deleted). Number of servers 𝐿 is considered as a constant number in complexity analysis.
‡ 𝜏 = O(log𝑚) when 𝐿 = 2, or O(

√
𝑚) when 𝐿 ≥ 3.

We assume document identifiers can be represented using a constant number of bits to skip this quantity in search and update complexity.
In update, server(s) in the above schemes mostly perform(s) I/O operations, therefore update complexity analysis on the server side is bypassed.
† Public-key pairing operations.

1.1 Our Contributions
We answer the above question affirmatively by proposingMUSES, a
new distributed multi-user SE database scheme that achieves a high
level of security with concrete efficiency simultaneously.MUSES
achieves the following desirable properties.

• Multi-user functionalities:MUSES allows multiple users with
reader and writer(s) separation similar to multi-user PEKS/HSE
schemes (e.g., [6, 8, 30, 73, 78]). MUSES enables the writers to
update their data that can be searched by the reader.MUSES also
permits the writers to revoke the reader’s search permission if
necessary with writer-efficiency.
• High security: MUSES is secure against KGA, offers forward
and backward privacy, and hides search/result patterns simulta-
neously. Thus, it offers a much higher security guarantee than
most priormulti-user SE schemes ([8, 49, 73, 75, 77]). OurMUSES of-
fers semi-honest security with dishonest majority. It can also
support any number 𝐿 of servers with 𝐿 − 1 privacy degree guar-
antee, meaning the confidentiality of users’ data and queries is
protected as long as one (out of 𝐿) server is honest. To our knowl-
edge, there is no prior PEKS/HSE scheme that achieves all the
aforementioned security properties.
• User-driven efficiency:MUSES is designed with user efficiency
inmind, and therefore, it is highly favorable to thin users with lim-
ited computing and network resources (e.g., mobile). In MUSES,
the reader only performs lightweight operations (e.g., modular
additions), and the search bandwidth inMUSES is proportional
to the number of matched documents, compared with linear w.r.t
entire database in prior oblivious SE schemes (e.g., [25, 32, 42]).
Evaluation results indicate thatMUSES achieves up to 13× lower
reader-bandwidth than state-of-the-art oblivious SE designs. On
the other hand, the writer in MUSES can revoke the reader’s ac-
cess efficiently by offloading entire re-encryption task securely to
the servers. This is more efficient than prior systems that do not
naturally support revocation and require writers to re-encrypt
the index themselves, which incurs high bandwidth for index
transmission and computation cost.
• Low server processing overhead: In MUSES, the servers only
perform low-cost operations (e.g., modular addition/multiplication,
rounding over small modulus). Therefore, it is more efficient than

prior designs that incur costly public-key operations (e.g., pairing
[5, 6, 8, 30, 73, 77, 78]).
• Fully-fledged implementation and evaluation: We fully im-
plemented our MUSES scheme and evaluated its performance
on commodity servers. Experimental results demonstrate that
our technique performs search 129.1×–137.2× faster than the
state-of-the-art multi-user SE technique (i.e., [73]).MUSES is also
faster than single-user SE counterparts (around 1.6×–1.7× faster
than [25]) under limitted bandwidth settings. Our implementation
is available and ready to be publicly released for reproducibility,
comparison, and adaptation (see the attached artifact).
Technique: Our Multi-party secret-shared shuffle. To con-
struct a new multi-user SE with user-driven efficiency, we come
up with a new oblivious shuffle technique that can be of inde-
pendent interest and can lead to other interesting applications.
Specifically, we construct a generic multi-party secret-shared
shuffle extended from the specific two-party one in [18], which
permits multiple parties to obtain randomly shuffled data from
their additive shares with dishonest majority.
Table 1 comparesMUSES with the state-of-the-art SE designs in

terms of security, functionality and complexity. To our knowledge,
we are the first to propose a multi-user SE scheme that can achieve
small leakage and high efficiency (optimal user bandwidth, low
reader and writer overhead) simultaneously.
Why distributed servers? Onemight wonder whyMUSESmakes
use of multiple servers rather than a single server as commonly
used in SE platforms (e.g., [8, 15, 73]). This is due to the fact that in
the multi-user setting with separate reader and writer roles, there
are inherent security vulnerabilities that cannot be prevented with
a single server. For instance, in the “rollback” attacks [33, 43, 47, 55,
59, 71], the malicious server can omit some update of the writer, and
present the old version of the writer’s data to the reader. Preventing
such realistic attacks requires coordination and communication
between the reader and the writer, or a separate system for integrity
such as blockchain [43, 71]. Given that it is costly to deploy such
a dedicated system, we use multiple servers to not only prevent
these attacks but also gain performance benefits of underlying
cryptographic building blocks (e.g., Distributed Point Function,
distributed PRF) used in our scheme. Also note that although we
only present the semi-honest MUSES scheme in the main body, it
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is straightforward to make it secure against rollback attacks (by
using more servers). We present such an extension in Appendix C.

1.2 Technical Highlights
We present the technical highlights of our construction. MUSES is
inspired by DORY [25], a symmetric SE scheme, and HSE [73],
a framework that provides a generic transformation guideline to
adopt symmetric SE in the multi-user setting. We begin by giving
DORY’s overview, outline the challenges when transforming DORY
tomulti-user setting, and then present our high-level idea to address
these challenges.
Brief Overview of DORY. DORY is a (single-client) encrypted
search scheme that supports oblivious search and update capabil-
ities. Its high-level idea is to instantiate the index for searchable
keyword representation with a table data structure, in which the
keyword search operation occurs in one dimension (e.g., column),
while the document update occurs in the other dimension (i.e., row).
To reduce the index size, Bloom Filter (BF) is employed to compress
the keyword representation in the document, resulting in the total
index size of O(𝑁 ·𝑚), where 𝑁 and𝑚 is the number of documents
and the BF representation size, respectively. For confidentiality, the
search index is row-wise encrypted for efficient update. To search
for a keyword𝑤 , the user computes the BF representation of𝑤 , and
uses Private Information Retrieval (PIR) based on Distributed Point
Function (DPF) to retrieve 𝐾 encrypted columns in the search index
that are indicated by the BF representation (i.e., 𝐾 is the number
of elements “1” in the BF representation). To update a document,
the user replaces the corresponding row in the search index with
a new (encrypted) BF representation for all the keywords in the
updated document.

In principle, DORY can be extended to support multi-user setting
(separate reader/writer) by incorporating public-key cryptography
(as suggested in [73]) to distribute the key that is used to encrypt the
search index to the reader. However, it incurs inherit performance
limitations due to its underlying cryptographic building blocks.
Specifically, the reader incurs a linear complexity with respect
to the document collection size (i.e., 𝑂 (𝑁 · 𝐾)) in terms of both
network bandwidth and computation overhead (due to the PIR,
aggregation, and decryption sequence) to obtain the search result.
This overhead is significant especially in the context of thin reader
(e.g., mobile) and large-scale database (e.g., email), while an efficient
search should only return a small subset of the matched documents.

Second, as the symmetric key is shared with the reader directly,
it may not be easy to enable access control functionalities. For ex-
ample, a writer may want to restrict the reader’s search permission
on her index temporarily. A potential solution is to re-encrypt the
search index with a fresh key unknown to the reader. However,
this requires the writer to download the entire encrypted index,
re-encrypt it with a new key, and then transmit it back to the server.
This incurs significant bandwidth/processing costs to the writer.
Can we address all these challenges while maintaining efficiency?
Idea 1: Minimize reader overhead by delegating aggregation
and decryption tasks to the server. Our first idea is that in-
stead of performing decryption and aggregation after retrieving 𝐾
encrypted columns via PIR, the reader can delegate all these pro-
cessing tasks to the server in a privacy-preserving manner. Specifi-
cally, we utilize multiple servers and develop a new protocol that is

well-coordinated with Key-Homomorphic Pseudorandom Function
(KH-PRF) [9] and DPF-based PIR [12, 13, 38] together, which per-
mits each server to “partially” decrypt the encrypted columns and
perform secure aggregation, respectively. At the end of our protocol,
each server obtains a share of the final search result and therefore,
they can exchange their shares together to reconstruct the result
and return it to the reader. Our protocol ensures the servers do not
learn anything (e.g., what columns are being aggregated/decrypted,
decryption keys) apart from the final search result, given that all of
them do not collude with each other.

While this strategy reduces the reader’s processing and band-
width overhead, it permits the server to learn the particular docu-
ment identifiers that match the search query. These so-called result
patterns permit an adversarial server to infer the search pattern (e.g.,
whether the same/different keywords are being searched). Can we
hide such result patterns while still maintaining the reader efficiency?
Idea 2: Conceal result/search patterns via random shuffling.
To hide result patterns, our idea is to perform a random shuffling
on the shares of the (aggregated decrypted) search result across
multiple servers before they come together to open the final output.
We construct a generic 𝐿-party secret-shared shuffling technique
with dishonest majority based on [18], which enables 𝐿 parties to
randomly shuffle secret-shared data in a way that one party learns
the final shuffled result, while each other party learns a permutation
in a composition1 of 𝐿−1 permutations. We apply our 𝐿-party shuf-
fle protocol to obfuscate the order of the search result, where one
server learns the obfuscated document identifiers and each of the
other servers learns a permutation in a permutation composition.
Finally, the servers can individually send the obfuscated list and
the permutation information to the reader so that he can obtain
the final search result by computing the permutation inverse on
the obfuscated list. This strategy slightly increases the computation
overhead for the reader due to permutation inversion; however, the
communication complexity O(𝑛𝑠 ) (where 𝑛𝑠 ≪ 𝑁 is the number
of matched documents) is still maintained.
Idea 3: Minimize writer overhead in revoking reader’ permis-
sion via “key rotation” on the servers. To revoke the reader’s
search ability, we re-encrypt the writer’s search index on the servers
with fresh keys unknown to the reader. At a high level, we incorpo-
rate the homomorphic property of KH-PRF with random masking
techniques, which enables the servers to “rotate” the index that is
currently encrypted by the old KH-PRF keys to the new ones on
behalf of the writer in a privacy-preserving manner. The writer
only needs to share the old and the new fresh KH-PRF keys with
the servers, and does not need to stay involved in the later process.

2 PRELIMINARIES
Notation. | | denotes the concatenation operator. We denote by 𝜆
the security parameter and by Z𝑝 the ring of integers modulo 𝑝 .

We denote by [𝑛] the set {1, . . . , 𝑛}. 𝑥 $← [𝑛] means 𝑥 is selected
uniformly at random from the set {1, . . . , 𝑛}. For integers 𝑞 and 𝑝
where 𝑞 ≥ 𝑝 ≥ 2, we define ⌊·⌋𝑝 : Z𝑞 → Z𝑝 as a rounding function
as ⌊𝑥⌋𝑝 = 𝑖 where 𝑖 · ⌊𝑞/𝑝⌋ is the largest multiple of ⌊𝑞/𝑝⌋ that

1A permutation composition is formed by 𝐿 − 1 separate permutations 𝜋1, . . . , 𝜋𝐿−1
applied in sequence to a data vector d to be shuffled as: 𝜋𝐿−1 (𝜋𝐿−2 (...(𝜋1 (d) ) ...) ) .
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does not exceed 𝑥 . Bold small letters denote vectors, i.e., a ∈ Z𝑛𝑝 . We
denote by ⟨a, b⟩ the dot product of two vectors a and b. Capitalized
bold letters denote matrices, i.e., M ∈ Z𝑛×𝑚𝑝 . Given a matrix M,
M[𝑖, ∗] and M[∗, 𝑗] denote accessing the row 𝑖 and column 𝑗 of M,
respectively. M[𝑖, 𝑗] denotes accessing the cell indexed at row 𝑖 and
column 𝑗 . We denote 𝜋 as a permutation and 𝜋−1 as its inverse such
that 𝜋−1 (𝜋 (𝑥)) = 𝑥 . We denote the execution of protocol 𝐴 by 𝐿
parties (𝑜1;𝑜2; . . . ;𝑜𝐿) ← 𝐴(𝑖1; 𝑖2; . . . ; 𝑖𝐿), where the input/output
of each party is separated by a semicolon (;).

Let E = (Gen, Enc,Dec) be an IND-CPA symmetric encryption
scheme: 𝜅 ← E .Gen(1𝜆) generating a key with security parame-
ter 𝜆; 𝑐 ← E .Enc(𝜅, ct,𝑚) encrypting plaintext𝑚 with key 𝜅 and
counter ct;𝑚 ← E .Dec(𝜅, ct, 𝑐) decrypting ciphertext 𝑐 with key 𝜅
and counter ct. Let Π = (Gen, Enc,Dec) be a public-key encryption
scheme: (pk, sk) ← E .Gen(1𝜆) generating a public and private-key
pair with security parameter 𝜆; 𝑐 ← Π.Enc(pk,𝑚) encrypting plain-
text𝑚 with public key pk;𝑚 ← Π.Dec(sk, 𝑐) decrypting ciphertext
𝑐 with private key sk. Let BF = (Init,Gen,Vrfy) be a Bloom Filter
(BF) [7]: (𝐻1, . . . , 𝐻𝐾 ) ← BF.Init(𝑚,𝐾): generating 𝐾 mappings
𝐻𝑘 : S → [𝑚] ∀𝑘 ∈ [𝐾] with two parameters𝑚 (BF size) and 𝐾 ;
u← BF.Gen(S): computing the BF representation u ∈ {0, 1}𝑚 of a
given set S; {0, 1} ← BF.Vrfy(u, 𝑠): checking whether an element
𝑠 belongs to the set represented by BF vector u.
Secret Sharing. Secret sharing enables a secret to be shared among
𝐿 parties. We denote 𝑥 (𝑖 ) as the additive share of a secret 𝑥 ∈ Z𝑝
to party 𝑖 such that 𝑥 =

∑𝐿
𝑖=1 𝑥

(𝑖 ) (mod 𝑝).
Bit Operations. We denote ⊕ and ⊗ as the bit-wise XOR and AND
operations, respectively. 𝑥 ≪ 𝑡 and 𝑥 ≫ 𝑡 denote left-shift and
right-shit operations by 𝑡 bits of value 𝑥 .

2.1 Distributed Point Function
Distributed Point Function (DPF) [12, 13, 38] permits 𝐿 parties
to jointly evaluate a point function. For 𝑎, 𝑏 ∈ {0, 1}∗, let 𝑃𝑎,𝑏 :
{0, 1} |𝑎 | → {0, 1} |𝑏 | such that 𝑃𝑎,𝑏 (𝑎) = 𝑏 and 𝑃𝑎,𝑏 (𝑎′) = 0 |𝑏 | ∀ 𝑎′ ≠
𝑎. A DPF scheme contains the following PPT algorithms.

• (𝑘 (1) , · · · , 𝑘 (𝐿) ) ← DPF.Gen(1𝜆, 𝑎, 𝑏): Given security parameter
𝜆, and values 𝑎, 𝑏 ∈ {0, 1}∗, it outputs 𝐿 keys 𝑘 (1) , · · · , 𝑘 (𝐿) ∈ K .
• 𝑦 (ℓ ) ← DPF.Eval(𝑘 (ℓ ) , 𝑥): Given a key𝑘 (ℓ ) ∈ K and𝑥 ∈ {0, 1} |𝑎 | ,
it outputs 𝑦 (ℓ ) as the (arithmetic/binary) share of 𝑃𝑎,𝑏 (𝑥).

An application of DPF is to implement efficient private informa-
tion retrieval (PIR). We present an 𝐿-party DPF-based PIR scheme
to retrieve an item b𝑗 in B = (b1, b2, . . . , b𝑚) as follows. The client
creates 𝐿 keys (𝑘 (1) , . . . , 𝑘 (𝐿) ) ← DPF.Gen(1𝜆, 𝑗, 1) for 𝐿 parties,
where 𝑘 (1) , . . . , 𝑘 (𝐿) ∈ {0, 1}𝑛 (𝑛 = O(𝜆 log𝑚) for 𝐿 = 2, or
𝑛 = O(𝜆

√
𝑚) for 𝐿 ≥ 3) and 𝑘 (ℓ ) is sent to party Pℓ (ℓ ∈ [𝐿]).

Each party Pℓ returns r(ℓ ) ← ∑𝑚
𝑖=1 DPF.Eval(𝑘 (ℓ ) , 𝑖) × b𝑖 , and the

client reconstructs the retrieved item b𝑗 ←
∑𝐿
ℓ=1 r(ℓ ) .

2.2 Key-Homomorphic PRF (KH-PRF)
KH-PRF [9] enables distributed evaluation of a secure PRF function
𝐹 ∗ : K × X → Y such that (K, ∗) and (Y, •) are both groups and
for every 𝑘1, 𝑘2 ∈ K , 𝐹 ∗ (𝑘1 ∗ 𝑘2, 𝑥) = 𝐹 ∗ (𝑘1, 𝑥) • 𝐹 ∗ (𝑘2, 𝑥). We
define an 𝐿-party KH-PRF scheme as a tuple of PPT algorithms
KH-PRF = (Gen, Share, Eval) as follows.

• k← KH-PRF.Gen(1𝜆): Given a security parameter 𝜆, it outputs
a secret key k ∈ K .
• (k(1) , . . . , k(𝐿) ) ← KH-PRF.Share(k): Given a key k ∈ K , it out-
puts 𝐿 keys k(1) , . . . , k(𝐿) ∈ K such that k(1) ∗ · · · ∗ k(𝐿) = k.
• 𝑦 ← KH-PRF.Eval(k, 𝑠): Given a key k ∈ K and a seed 𝑠 ∈ {0, 1}∗,
it outputs the evaluation 𝑦 = 𝐹 ∗ (k, 𝑠) ∈ Y.
We present the extension of the 2-party (almost) KH-PRF scheme

based on Learning with Rounding (LWR) under Random Oracle
Model (ROM) by Boneh et al. [9] into 𝐿-party setting. Let 𝐻2 :
{0, 1}∗ → Z𝑛𝑞 be a hash function modeled as a random oracle. The
KH-PRF function 𝐹 ∗ : Z𝑛𝑞 × {0, 1}∗ → Z𝑝 is defined as 𝐹 ∗ (k, 𝑠) =⌊
⟨𝐻2 (𝑠), k⟩

⌋
𝑝
, where k(1) + · · · + k(𝐿) = k, 𝐹 ∗ is an almost key ho-

momorphic in the sense that 𝐹 ∗ (k, 𝑠) = 𝑒+∑𝐿ℓ=1 𝐹 ∗ (k(ℓ ) , 𝑠) (mod 𝑝)
where 𝑒 is a small error, i.e., 𝑒 ∈ {0, . . . , 𝐿}.

2.3 Secret-Shared Shuffle
Secret-shared shuffle permits multiple parties to obliviously shuffle
a set and obtain additive secret shares of the result. We recall a Two-
party Secret-shared Shuffle (TSS) [18], which permits two parties
P1,P2 to jointly shuffle a set and obtain two additive shares. TSS
scheme in [18] is a tuple of PPT algorithms TSS = (Gen, ShrTrns,
Shffl) defined as follows.

• 𝜋 ← TSS.Gen(1𝜆, 𝑛): Given a security parameter 𝜆 and a set size
𝑛, it outputs a pseudorandom permutation 𝜋 for 𝑛 elements.
• (𝚫; a, b) ← TSS.ShrTrns(𝜋 ; 1𝜆): Given a permutation 𝜋 for 𝑛 el-
ements to P1, and a security parameter 𝜆 to P2, it outputs 𝚫 =

b − 𝜋 (a) ∈ Z𝑛𝑝 to P1 and a, b ∈ Z𝑛𝑝 to P2.
• (x′; b) ← TSS.Shffl(𝜋,𝚫; x, a, b): Given a permutation 𝜋 and its
corresponding 𝚫 from P1, a set x and masks a, b from P2, it
outputs x′ = 𝜋 (x) + b ∈ Z𝑛𝑝 as a masked permutation of x to P1,
and the mask value b to P2.

3 MODELS
System Model. Our system consists of a reader, 𝑛𝑤 independent
writers, and 𝐿 servers. WLOG, we identify each writer as a member
of [𝑛𝑤] so thatW = [𝑛𝑤]. Each writer 𝑖 ∈ W owns a separate
collection of𝑁 documents and would like to share it with the reader.
We identify each document in the database as a member of [𝑁 ].
We consider the reader would like to perform encrypted keyword
search over all document collections of a writer subsetW′ ⊆ W.
On the other hand, the writer can revoke the permission of the
reader if needed. The reader and writers are independent parties
and they do not have to communicate directly with each other. Our
scheme is a Multi-User SE scheme (MUSES) defined as follows.

Definition 1 (Multi-User SE). AMUSES scheme is a tuple of PPT al-
gorithms defined as follows:

• (pk, sk) ← RSetup(1𝜆): Given a security parameter 𝜆, it outputs
a public and private key pair (pk, sk).
• (𝜅𝑤𝑖 , EIDX𝑖 , st𝑖 , STkn𝑖 , PTkn𝑖 ) ←WSetup(1𝜆, 𝑖, pk): Given a se-
curity parameter 𝜆, a writer identifier 𝑖 , and the public key pk, it
outputs a writer key 𝜅𝑤𝑖 , an encrypted search index EIDX𝑖 , a state
st𝑖 , a secret token STKn𝑖 encrypted under 𝜅𝑤𝑖 , and a private token
PTkn𝑖 encrypted under pk.
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• 𝔰 ← SearchToken(𝑤,W′): Given a keyword 𝑤 and a subset of
writersW′, it outputs a search token 𝔰.
• O ← Search(𝔰, sk, {(𝑖, st𝑖 , EIDX𝑖 , PTkn𝑖 )}𝑖∈[𝑛𝑤 ] ) : Given a search
token𝔰, the reader’s private key sk, a set of tuples (𝑖, st𝑖 , EIDX𝑖 , PTkn𝑖 )
as the identifier, the state, the encrypted search index and the pri-
vate token, respectively, of writers 𝑖 ∈ [𝑛𝑤], it outputs the search
result O.
• 𝔲 ← UpdateToken(w, 𝑢, 𝑖, 𝜅𝑤𝑖 , {st𝑖 , STkn𝑖 }𝑖∈[𝑛𝑤 ] ): Given a set of
keywords w for a document𝑢, a writer identifier 𝑖 , a writer key 𝜅𝑤𝑖 ,
states st𝑖 , and secret tokens STkn𝑖 of writers 𝑖 ∈ [𝑛𝑤], it outputs
an update token 𝔲.
• (EIDX′

𝑖
, st′

𝑖
) ← Update(𝔲, {EIDX𝑖 , st𝑖 }𝑖∈[𝑛𝑤 ] ): Given an update

token 𝔲, encrypted indices EIDX𝑖 and states st𝑖 of writers 𝑖 ∈ [𝑛𝑤],
it outputs updated search index EIDX′

𝑖
and updated state st′

𝑖
.

• (EIDX′
𝑖
, STkn′𝑖 )← RevokePerm(𝑖 , 𝜅𝑤𝑖 , {EIDX𝑖 , st𝑖 , STkn𝑖 }𝑖∈[𝑛𝑤 ] ):

Given a writer identifier 𝑖 and the corresponding writer’s secret key
𝜅𝑤𝑖 , encrypted search indices EIDX𝑖 , states st𝑖 , and secret tokens
STkn𝑖 of writers 𝑖 ∈ [𝑛𝑤], it outputs updated search index EIDX′

𝑖
,

and updated secret token STkn′𝑖 .

Definition 2 (Correctness ofMUSES). For all 𝜆, (pk, sk) ←RSetup(1𝜆),
(𝜅𝑤𝑖 , st𝑖 , EIDX𝑖 , STkn𝑖 , PTkn𝑖 ) ← WSetup(1𝜆, 𝑖, pk), 𝑖 ∈ W, and
all sequences of Search, Update operations over {EIDX𝑖 }𝑖∈[𝑛𝑤 ] us-
ing tokens generated respectively from SearchToken(𝑤,W′), and
UpdateToken(w, u, 𝑖 ,𝜅𝑤𝑖 , {st𝑖 , STkn𝑖 }𝑖∈[𝑛𝑤 ] ), as well asRevokePerm
operations over 𝑖 ∈ W̃ ⊆ W, Search returns the correct results w.r.t
the inputs (w, 𝑢, 𝑖) of UpdateToken when 𝑖 ∈ W′ \ W̃, except with
negligible probability in 𝜆.

Threat and Security Models. We assume the adversary can cor-
rupt up to 𝐿 − 1 out of the 𝐿 servers, and an arbitrary number of
writers. We assume the adversary is semi-honest, meaning that it is
curious about the query of other honest writers/reader but follows
the protocols faithfully.We concentrate on the security of the search
index and its related operations. Let EIDX𝑖 = (I𝑖,1,I𝑖,2, . . . ,I𝑖,𝑁 ) be
an encrypted search index of writer 𝑖 , where I𝑖,𝑢 contains informa-
tion about keywords of the 𝑢-th document. Let O𝑖 be a sequence
of operations on EIDX𝑖 . We denote 𝑡 as the timestamp when an
operation happens, O𝑖 records (𝑡,𝑤) for a search on keyword 𝑤 ,
and (𝑡,𝑢,w) for an update of document 𝑢 with its new keywords w
on EIDX𝑖 .
Definition 3 (Search Pattern [23, 73]). The search pattern sp
indicates the frequency of search operations on some keywords, i.e.,
sp(𝑤) = {𝑡 : (𝑡,𝑤) ∈ O𝑖 )}.

Definition 4 (Result Pattern). The result pattern rp reveals what
documents match the queried keyword𝑤 , i.e., rp(𝑤) = {𝑢1, . . . , 𝑢𝑁 ′ :
𝑤 ∈ 𝐼𝑖,𝑢𝑙 ∀ 𝑙 ∈ [𝑁 ′] ⊆ [𝑁 ]}.

Definition 5 (Search Volume). The search volume sv indicates the
number of documents matching the queried keyword, i.e., sv(𝑤) = 𝑁 ′
s.t.𝑤 ∈ 𝐼𝑖,𝑢 ∀ 𝑢 ∈ [𝑁 ′] ⊆ [𝑁 ].

Definition 6 (Document Update Pattern). The update pattern
up records the update frequency on documents, i.e., up(𝑢) = {𝑡 :
(𝑡,𝑢,⊥) ∈ O𝑖 }

The adversary can issue a sequence of queries to the MUSES or-
acle for any of the following: (i) writer corruption query, which

IND𝑏MUSES,A,L (1
𝜆 ) :

1: (𝑛𝑟 , 𝑛𝑤 ) ← A(1𝜆 )
2: (pk,msk) ← SysInit(1𝜆, 𝑛𝑤 )
3: (𝜅𝑤𝑖 , EIDX𝑖 , st𝑖 , STkn𝑖 , PTkn𝑖 ) ←WSetup(1𝜆, 𝑖, pk) , ∀ 𝑖 ∈ [𝑛𝑤 ]
4: 𝜅𝑟 𝑗 ← RSetup(W′

𝑗 ,msk) , ∀ 𝑗 ∈ [𝑛𝑟 ]
5: H0 ← {∅}, H1 ← {∅}
6: O ← {CorruptWriterO𝑏 , SearchO𝑏 ,UpdateO𝑏 ,RevokeO𝑏 }
7: 𝑏′ ← AO (pk, {EIDX𝑖 , st𝑖 , STkn𝑖 , PTkn𝑖 }𝑖∈ [𝑛𝑤 ] )
8: return 𝑏′

SearchO𝑏 ({𝑤𝑘 ,W′
𝑘
}𝑘∈{0,1} ) :

1: if LSearch
H0

(𝑤0,W′
0 ) = LSearch

H1
(𝑤1,W′

1 )
2: ∀ 𝑘 ∈ {0, 1},H𝑘 ← H𝑘 ∪ (Search, 𝑤𝑘 ,W′

𝑘
)

3: return SearchToken(𝑤𝑏 ,W′
𝑏
)

4: else return ⊥

UpdateO𝑏 ({𝑖𝑘 ,𝑢𝑘 ,w𝑘 }𝑘∈{0,1} ) :

1: if LUpdate
H0

(𝑖0,𝑢0,w0 ) = LUpdate
H1

(𝑖1,𝑢1,w1 )
2: ∀ 𝑘 ∈ {0, 1}, H𝑘 ← H𝑘 ∪ (Update, 𝑖𝑘 ,𝑢𝑘 ,w𝑘 )
3: return UpdateToken(w𝑏 ,𝑢𝑏 , 𝑖𝑏 , 𝜅𝑤𝑖𝑏 , st𝑖𝑏 , STkn𝑖𝑏 )
4: else return ⊥

RevokeO𝑏 ({𝑖𝑘 }𝑘∈{0,1} ) :

1: if LRevoke
H0

(𝑖0 ) = LRevoke
H1

(𝑖1 )
2: ∀ 𝑘 ∈ {0, 1}, H𝑘 ← H𝑘 ∪ (Revoke, 𝑖𝑘 )
3: return (EIDX′𝑖𝑏 , STkn

′
𝑖𝑏
)

4: else return ⊥

CorruptWriterO𝑏 (𝑖0, 𝑖1 ) :

1: if LCorruptWriter
H0

(𝑖0 ) = LCorruptWriter
H1

(𝑖1 )
2: ∀ 𝑘 ∈ {0, 1}, H𝑘 ← H𝑘 ∪ (CorruptWriter, 𝑖𝑘 )
3: return 𝜅𝑤𝑖𝑏
4: else return ⊥

Figure 1: Security Game forMUSES

returns the secret key of a specific writer; (ii) search query, which
returns the search token of the queried keyword under a writer
subset; (iii) update query, which returns the update token for a
document of a specific writer; and (iv) revoke query, which returns
the updated search index and secret tokens of a specific writer. The
adversary can issue queries based on prior outcomes. To define
security, we define the notion of history that captures a sequence
of queries issued by the adversary intoMUSES as follows.

Definition 7 (History). A history ofMUSES is a sequence of queries
H = {Hist𝑡 }, where sequence number 𝑡 denotes the timestamp when
the query happens andHist𝑡 ∈ {(CorruptWriter, 𝑖), (Search,𝑤,W′),
(Update, 𝑖, 𝑢,w), (Revoke, 𝑖)}.

We introduce a leakage function family LH = {LSetup
H , LSearch

H ,

LUpdate
H , LRevoke

H , LCorruptWriter
H } to cover the information of his-

toryH leaked during setup, search, update, permission revocation,
and writer corruption, respectively. When an oracle is queried for
the 𝑡-th operation, any function in LH is initialized withH , which
is the history consisting of the previous (𝑡 − 1) operations and the
𝑡-th operation as the function input. It captures the leakage incurred
by the current operation and all historical operations. Before any
query (i.e.,H = {∅}), LH = LSetup

H . We also implicitly assume that
MUSES histories are non-singular as defined in [46, 73].

Definition 8 (Adaptive Security ofMUSES). For all PPT adver-
sary A and the game IND𝑏MUSES,A,L (1

𝜆) in Figure 1, MUSES is
5
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LH-adaptively-secure if:
|Pr[IND0

MUSES,A,L (1
𝜆) = 1]−Pr[IND1

MUSES,A,L (1
𝜆) = 1] | ≤ negl(1𝜆) .

Corruption leakage. To capture corruption leakage, we introduce
the following function:
• UpdateBy(𝑖): This function lists all updates by the writer 𝑖 in the
history. Formally, UpdateBy(𝑖) = {Hist𝑡 : Hist𝑡 = (Update, 𝑖 , 𝑢,
w) ∈ H}.

Definition 9 (Forward Privacy ofMUSES). An LH-adaptively-
secureMUSES is forward-private if the update leakageLUpdate

H (𝑖, 𝑢,w)
of any update (𝑖, 𝑢,w) by writer 𝑖 s.t. (CorruptWriter, 𝑖) ∉ H can be
written as L′ (𝑖, 𝑢) or L′′ (𝑖), where L′, L′′ are stateless functions.
Definition 10 (BackwardPrivacy ofMUSES). AnLH-adaptively-
secure MUSES is backward-private if the search and update leak-
age functions LSearch

H ,LUpdate
H can be written as LUpdate

H (𝑖, 𝑢,w) =
L′′ (𝑖, 𝑢) = L′′′ (𝑖), LSearch

H (𝑤,W′) = L′ (W′), where L′, L′′,
and L′′′ are stateless functions.

Document retrieval/update leakage. In this paper, we focus
only on the security of the search index component in encrypted
search. Retrieving/updating actual documents from the writer’s
database is out-of-scope. Sealing leakage from actual document
retrieval/update is an independent study and some oblivious tech-
niques (e.g., PIR [57, 58], ORAM [19–21]) can be applied orthogo-
nally to our scheme to achieve system-wide end-to-end security.

4 OUR PROPOSED SCHEME
We introduce our new building block for 𝐿-party oblivious shuffle.
We then present our proposedMUSES scheme.

4.1 New Building Block: 𝐿-party Shuffle
We present a generic 𝐿-party shuffle protocol extended from the
two-party shuffle in [18] that permits 𝐿 parties to randomly shuffle
their 𝐿-additive shares of a data vector together in a way that one
party learns the output of the permuted data while each of other
parties learns a permutation of a permutation composition. Note
that this input/output of our scheme is opposite to that of the two-
party protocol in [18], wherein one party has a plaintext data vector
(x) as input, and the output is the shares of permuted data, i.e., P1
has 𝜋 (x) + b and P2 has b.

Recall that in the two-party shuffle in [18], there is a prepro-
cessing phase, where one party P2 generates two random masking
vectors a and b and interacts with the other party P1 owning a ran-
dom permutation 𝜋 in a way that P1 learns a translation function
∆ demonstrating the relation of b and the permutation of a with
respect to 𝜋 , i.e., ∆ = b − 𝜋 (a).

To extend into 𝐿-party shuffle setting, our high-level idea for
precomputation is to have each party P𝑖 with 1 ≤ 𝑖 < 𝐿 obtain
the translation function ∆𝑖 w.r.t its chosen random permutation 𝜋𝑖 ,
each party P𝑖 with 2 ≤ 𝑖 ≤ 𝐿 keeps the share of the mask vector a𝑖 ,
and the last party P𝐿 keeps a mask vector b𝐿 such that:

𝜋𝐿−1
(
. . .

(
𝜋2 (∆1) + ∆2

)
. . .

)
+ ∆𝐿−1 = 𝜋𝐿−1

(
. . .

(
𝜋2

(
𝜋1 (

∑𝐿
𝑖=2 a𝑖 )

) )
. . .

)
+ b𝐿 .

Specifically, each party P𝑖 (1 ≤ 𝑖 < 𝐿) first generates independent
permutation 𝜋𝑖 then interacts with each other (as well as with party
P𝐿) to compute the translation function ∆𝑖 such that:

LSS.ShrTrns(1𝜆, 𝑛) :
1: Parties P𝑖 : (𝜋𝑖 ;⊥) ← TSS.Gen(1𝜆, 𝑛) , for 𝑖 ∈ [𝐿 − 1]
2: for 𝑖 = 1 to 𝐿 − 1 do
3: for 𝑗 = 𝑖 + 1 to 𝐿 do
4: P𝑖 ↔ P𝑗 : (∆( 𝑗 )𝑖 ; a(𝑖 )

𝑗
, b(𝑖 )
𝑗
) ← TSS.ShrTrns(𝜋𝑖 ; 1𝜆 )

5: for 𝑖 = 3 to 𝐿 do
6: for 𝑗 = 2 to 𝑖 − 1 do
7: P𝑖 → P𝑗 : ∆′(𝑖 )

𝑗
← b( 𝑗−1)

𝑖
− a( 𝑗 )

𝑖

8: for 𝑖 = 1 to 𝐿 − 1 do
9: P𝑖 : ∆𝑖 ←

∑𝐿
𝑗=𝑖+1 ∆( 𝑗 )

𝑖
(mod 𝑝 )

10: if 𝑖 > 1 then
11: P𝑖 : ∆𝑖 ← ∆𝑖 − 𝜋𝑖 (

∑𝐿
𝑗=𝑖+1 ∆′( 𝑗 )

𝑖
) − 𝜋𝑖 (b(𝑖−1)𝑖

) (mod 𝑝 )
12: return (𝜋1,𝚫1;𝜋2,𝚫2, a

(1)
2 ; . . . ; a(1)

𝐿
, b(𝐿−1)
𝐿

)

LSS.Shffl(x(1) , 𝜋1,𝚫1; x(2) , 𝜋2,𝚫2, a
(1)
2 ; . . . ; x(𝐿) , a(1)

𝐿
, b(𝐿−1)
𝐿

):

1: P𝑖 → P1 : z𝑖 ← x(𝑖 ) + a(1)
𝑖
(mod 𝑝 ) , for 𝑖 = 2, . . . , 𝐿

2: P1 : o1 ← x(1) +∑𝐿𝑖=2 z𝑖 (mod 𝑝 )
3: for 𝑖 = 1, . . . , 𝐿 − 1 do
4: P𝑖 → P𝑖+1 : o𝑖+1 ← 𝜋𝑖 (o𝑖 ) + 𝚫𝑖 (mod 𝑝 )
5: P𝐿 : r← o𝐿 − b(𝐿−1)

𝐿
(mod 𝑝 )

6: return (𝜋1;𝜋2; . . . ;𝜋𝐿−1; r)

Figure 2: Our 𝐿-party Oblivious Secret-Shares Shuffle (LSS).

∆𝑖 = x𝑖+1 − 𝜋𝑖 (x𝑖 ) (1)

with:

x𝑖 =

{∑𝐿
𝑗=𝑖+1 a(𝑖 )

𝑗
, if 𝑖 = 1∑𝐿

𝑗=𝑖 b(𝑖−1)
𝑗

, otherwise

where a(𝑖 )
𝑗

and b(𝑖 )
𝑗

are the shares of random masks known by

party P𝑗 while its corresponding translation function ∆( 𝑗 )
𝑖

= b(𝑖 )
𝑗
−

𝜋𝑖 (a(𝑖 )𝑗 ) is known by party P𝑖 . To achieve this, we execute the
two-party share translation protocol between P𝑖 and P𝑗 , for 𝑗 =
𝑖 + 1, . . . , 𝐿, to generate ∆( 𝑗 )

𝑖
= b(𝑖 )

𝑗
− 𝜋𝑖 (a(𝑖 )𝑗 ) for P𝑖 , and a(𝑖 )

𝑗
, b(𝑖 )
𝑗

for P𝑗 (Figure 2, LSS.ShrTrns algorithm, lines 1–4). Then, for each
party P𝑖 (2 ≤ 𝑖 < 𝐿), each party P𝑗 , for 𝑗 = 𝑖 + 1, . . . , 𝐿, sends
∆′( 𝑗 )
𝑖

= b(𝑖−1)
𝑗

− a(𝑖 )
𝑗

to P𝑖 (lines 5–7). From ∆( 𝑗 )
𝑖

and ∆′( 𝑗 )
𝑖

, each
party P𝑖 (1 ≤ 𝑖 < 𝐿) can obtain ∆𝑖 as shown in (1) (lines 8–11).

Upon completing the above precomputation, the parties can
shuffle their secret-shared data as follows. Let d(ℓ ) be the share
of d held by Pℓ . First, each party Pℓ (ℓ ≥ 2) sends its mask value
zℓ ← d(ℓ ) + a(1)

ℓ
to P1 (Figure 2, LSS.Shffl algorithm, line 1). Then

P1 computes o1 ← d(1) + ∑𝐿ℓ=2 zℓ , and forwards o2 ← 𝜋1 (o1) +
∆1 = 𝜋1 (d) +

∑𝐿
ℓ=2 b(1)

ℓ
to P2 (line 2), who in turn computes o3 ←

𝜋2 (o2) + ∆2 = 𝜋2 (𝜋1 (d)) +
∑𝐿
ℓ=3 b(2)

ℓ
and forwards it to P3, and so

on (lines 3–4). The above process continues until the final party P𝐿
receives o𝐿 = 𝜋𝐿−1 (. . . (𝜋1 (d) . . . )) + b(𝐿−1)

𝐿
from P𝐿−1. Finally,

as P𝐿 holds the mask b(𝐿−1)
𝐿

, it can compute r ← o𝐿 − b(𝐿−1)
𝐿

=

𝜋𝐿−1 (. . . (𝜋1 (d))), which is the permutation of d (line 5).
As each party P𝑖 holds an independent permutation, and the

final vector (when sent to P𝐿) is shuffled with 𝐿 − 1 independent
permutations and masked with a random vector, it is easy to see our
𝐿-party shuffle achieves dishonest majority security in the sense
that the collusion of 𝐿 − 1 parties does not learn the information of
the whole permutation sequence applied on the data vector.
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RSetup(1𝜆 ) :
1: (pk, sk) ← Π.Gen(1𝜆 )
2: return (pk, sk)

WSetup(1𝜆, 𝑖, pk) :
1: 𝜅𝑤𝑖 ← E .Gen(1

𝜆 )
2: for 𝑣 = 1 to𝑚 do
3: r𝑖,𝑣 ← KH-PRF.Gen(1𝜆 )
4: STkn𝑖,𝑣 ← E .Enc(𝜅𝑤𝑖 , 𝑣, r𝑖,𝑣 )
5: PTkn𝑖,𝑣 ← Π.Enc(pk, r𝑖,𝑣 )
6: st𝑖 ← (st𝑖,1, st𝑖,2, . . . , st𝑖,𝑁 ) , where st𝑖,𝑢 ← 0, for 𝑢 ∈ [𝑁 ]
7: EIDX𝑖 [𝑢, 𝑣 ] ← 𝐹 ∗ (r𝑖,𝑣 ,𝑢 | |st𝑖,𝑢 ) , for 𝑢 ∈ [𝑁 ] and 𝑣 ∈ [𝑚]
8: STkn𝑖 ← (STkn𝑖,1, STkn𝑖,2, . . . , STKn𝑖,𝑚 )
9: PTkn𝑖 ← (PTkn𝑖,1, PTkn𝑖,2, . . . , PTkn𝑖,𝑚 )
10: return (𝜅𝑤𝑖 , EIDX𝑖 , st𝑖 , STkn𝑖 , PTkn𝑖 )

Figure 3: Our MUSES setup.

4.2 DetailedMUSES Construction
We describe MUSES scheme. We first present necessary data struc-
tures followed by detailed operations.

4.2.1 Data Structures. InMUSES, there are two main data struc-
tures including the search index and auxiliary components.
Search Index. Similar to [73], each writer 𝑖 ∈ W in our scheme
has an independent search index representing keyword-document
relationship in her document collection.Wemake use of BF to create
an efficient search index for each writer 𝑖 ∈ [𝑛𝑤]. Suppose that
there are 𝑁 documents, the writer extracts a set of unique keywords
V𝑢 for each document 𝑢 ∈ [𝑁 ] and computes its BF representation
as w𝑢 ← BF.Gen(V𝑢 ) ∈ {0, 1}𝑚 . The search index contains 𝑁 BF
vectors, which can be interpreted as a binary matrix of size 𝑁 ×𝑚
as IDX𝑖 = [w1,w2, . . . ,w𝑁 ] ∈ {0, 1}𝑁×𝑚 . By this representation,
searching a keyword incurs checking its membership with BF by
reading 𝐾 columns in IDX𝑖 , where 𝐾 is the BF parameter. On the
other hand, updating a document 𝑢 incurs recreating a new BF
representation of the updated keywords in 𝑢 and writing it to the
corresponding row IDX𝑖 [𝑢, ∗].

For confidentiality, IDX𝑖 needs to be encrypted. For reader ef-
ficiency, the writer needs to encrypt her index in a way that the
reader can delegate the decryption task securely to the servers
during search.MUSES makes use of KH-PRF for such a decryption
delegation, where the writers’ indices are encrypted with almost
KH-PRF function denoted as 𝐹 ∗.

First, the writer 𝑖 interprets the search index as a matrix IDX𝑖 =[
d1 d2 . . . d𝑚

]
∈ {0, 1}𝑁×𝑚 , where d𝑣 ∈ {0, 1}𝑁 ∀ 𝑣 ∈ [𝑚].

For each column 𝑣 ∈ [𝑚], the writer generates a KH-PRF key as
r𝑣 ← KH-PRF.Gen(1𝜆) ∈ Z𝑛𝑞 for column-wise encryption. Our
work emphasizes on proper handling “almost” attribute of KH-PRF
to achieve user efficiency. Notice that since 𝐹 ∗ is an almost KH-PRF,
there exists a small error 𝑒 as shown in §2.2 during the KH-PRF
evaluation. Thus, it is necessary to reserve several bits for the error
in the column data before being encrypted with KH-PRF so that
such error can be “ruled out” after KH-PRF decryption to obtain the
original data. Moreover, since the server will also perform secure
addition of𝐾 columns after KH-PRF evaluations for BF membership
check, we need to reserve enough space for the aggregated error.
Let 𝑧 = ⌈log2 (𝑒 ·𝐾)⌉ be the number of bits for the aggregated error
when adding 𝐾 columns encrypted by KH-PRF together. For each
𝑢 ∈ [𝑁 ], the writer encrypts the element d𝑣 [𝑢] as

d̂𝑣 [𝑢] ← (d𝑣 [𝑢] ≪ 𝑧) + 𝐹 ∗ (r𝑣, 𝑢 | | st𝑖,𝑢 ) (mod 𝑝) (2)

where st𝑖,𝑢 is the update state of document𝑢 (initialized with 0). The
final encrypted index is EIDX𝑖 =

[
d̂1 d̂2 . . . d̂𝑚

]
∈ Z𝑁×𝑚𝑝 ,

where d̂𝑣 ∈ Z𝑁𝑝 ∀ 𝑣 ∈ [𝑚].
Auxiliary Information. In MUSES, each writer 𝑖’s encrypted in-
dex EIDX𝑖 is associated with three auxiliary components as follows.

• Private token PTkn𝑖 : It contains information for the reader to
search on EIDX𝑖 , which are the KH-PRF keys r𝑣 that the writer 𝑖
uses to encrypt IDX𝑖 as discussed above. Let (pk, sk) ← Π.Gen(1𝜆)
be the public-key and private-key pair of the reader. The pri-
vate token is PTkn𝑖 = (PTkn𝑖,1, . . . , PTkn𝑖,𝑚), where PTkn𝑖,𝑣 ←
Π.Enc(pk, r𝑣) for 𝑣 ∈ [𝑚].
• Secret token STkn𝑖 : It contains information for the writer 𝑖 to
update her index, which is also the KH-PRF keys r𝑣 , for 𝑣 ∈ [𝑚],
but encrypted with the writer’s secret key. Let 𝜅𝑤𝑖 ← E .Gen(1𝜆)
be the secret key of the writer 𝑖 . The secret token is STkn𝑖 =

(STkn𝑖,1, . . . , STkn𝑖,𝑚), where STkn𝑖,𝑣 ← E .Enc(𝜅𝑤𝑖 , 𝑣, r𝑣) for
𝑣 ∈ [𝑚]. The secret token is stored at the servers to achieve
stateless writers.
• Update state st𝑖 : It contains information concatenated with doc-
ument identifier as seed value for KH-PRF evaluation. Specifi-
cally, the update state is st𝑖 = (st𝑖,1, . . . , st𝑖,𝑁 ), where st𝑖,𝑢 is the
counter value (initialized with 0) for document 𝑢 that is incre-
mented after each update operation on that document happens.

4.2.2 Setup protocol. Figure 3 presents the setup algorithms for
the reader and the writers inMUSES with the following highlights.

• Reader: The reader executes RSetup algorithm to generate a pub-
lic and private key pair (pk, sk). The reader keeps sk private, and
distributes pk to all writers to setup necessary components.
• Writer: Each writer 𝑖 executes WSetup algorithm on reader’s
public key pk to generate four components including the en-
crypted search index EIDX𝑖 , a secret token STkn𝑖 , a private token
PTkn𝑖 , and the update state st𝑖 as discussed above. Specifically,
the writer first generates a secret key 𝜅𝑤𝑖 (line 1), and𝑚 KH-PRF
keys (r𝑖,1, . . . , r𝑖,𝑚) to encrypt 𝑚 columns of the search index
(line 3). These KH-PRF column keys are then encrypted under
the writer’s secret key 𝜅𝑤𝑖 as the secret token STkn𝑖 , and also en-
crypted under the reader’s public key pk as private token PTkn𝑖
(line 5). The writer initializes counter values as 0 stored in st𝑖 (line
6). Finally, the writer encrypts an empty search index cell-by-cell
by evaluating the almost KH-PRF function 𝐹 ∗ with KH-PRF col-
umn keys r𝑖,𝑣 and the seeds formed by the update counters and
row indices (line 7). To this end, the writer sends the encrypted
index (EIDX𝑖 ) and auxiliary components (st𝑖 , STkn𝑖 , PTkn𝑖 ) to 𝐿
servers, while keeping 𝜅𝑤𝑖 private.

4.2.3 Keyword search protocol. We present the search protocol of
MUSES in Figure 4. Specifically, to search for a keyword𝑤 on the
index of a writer subsetW′, the reader first executes SearchToken
algorithm to compute its BF representation as column indices
(𝑣1, . . . , 𝑣𝐾 ), then creates correspondingDPF keys {𝑞 (ℓ )1 , . . . ,𝑞 (ℓ )

𝐾
}ℓ∈[𝐿]

(lines 1–4), and sends them to servers P1, . . . , P𝐿 as search to-
ken 𝔰, where server Pℓ receives the corresponding token 𝔰ℓ =

(W′, {𝑞 (ℓ )
𝑘
}𝑘∈[𝐾 ] ). Next, upon receiving the search token, the
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SearchToken(𝑤,W′ ) :
1: for 𝑘 = 1 to 𝐾 do
2: 𝑣𝑘 ← 𝐻𝑘 (𝑤 ) , (𝑞 (1)𝑘 , . . . , 𝑞

(𝐿)
𝑘
) ← DPF.Gen(1𝜆, 𝑣𝑘 , 1)

3: 𝔰ℓ ← (W′, {𝑞 (ℓ )
𝑘
}𝑘∈ [𝐾 ] ) , for ℓ ∈ [𝐿]

4: return 𝔰 ← (𝔰1, . . . , 𝔰𝐿 )

Search(𝔰, sk, { (𝑖, st𝑖 , EIDX𝑖 , PTkn𝑖 ) }𝑖∈ [𝑛𝑤 ] ) :
P1, . . . , P𝐿 : for each 𝑖 ∈ W′

(𝜋𝑖,1,𝚫𝑖,1;𝜋𝑖,2,𝚫𝑖,2, a𝑖,2; . . . ; a𝑖,𝐿, b𝑖,𝐿 ) ← LSS.ShrTrns(1𝜆, 𝑁 )
Each server Pℓ :
5: for each 𝑖 ∈ W′ , 𝑘 = 1 to 𝐾 do
6: d̂(ℓ )

𝑖,𝑣𝑘
← ∑𝑚

𝑣=1 DPF.Eval(𝑞
(ℓ )
𝑘
, 𝑣) × EIDX𝑖 [∗, 𝑣 ]

7: PTkn(ℓ )
𝑖,𝑣𝑘
← ∑𝑚

𝑣=1 DPF.Eval(𝑞
(ℓ )
𝑘
, 𝑣) ) × PTkn𝑖,𝑣

Pℓ → Reader : PTkn(ℓ )
𝑖,𝑣𝑘

, for 𝑖 ∈ W′ and 𝑘 ∈ [𝐾 ]
Reader:
8: for each 𝑖 ∈ W′ , 𝑘 = 1 to 𝐾 do
9: PTkn𝑖,𝑣𝑘 ←

∑𝐿
ℓ=1 PTkn

(ℓ )
𝑖,𝑣𝑘

10: r𝑖,𝑣𝑘 ← Π.Dec(sk, PTkn𝑖,𝑣𝑘 )
11: (r(1)

𝑖,𝑣𝑘
, . . . , r(𝐿)

𝑖,𝑣𝑘
) ← KH-PRF.Share(r𝑖,𝑣𝑘 )

12: Reader→ Pℓ : r(ℓ )
𝑖,𝑣𝑘

, for ℓ ∈ [𝐿], 𝑖 ∈ W′ , and 𝑘 ∈ [𝐾 ]
Each server Pℓ :
13: for each 𝑖 ∈ W′ do
14: d̃(ℓ )

𝑖
← {0}𝑁

15: for 𝑘 = 1 to 𝐾 do
16: for 𝑢 = 1 to 𝑁 do
17: d̃(ℓ )

𝑖,𝑣𝑘
[𝑢 ] ← d̂(ℓ )

𝑖,𝑣𝑘
[𝑢 ] − 𝐹 ∗ (r(ℓ )

𝑖,𝑣𝑘
,𝑢 | | st𝑖,𝑢 ) (mod 𝑝 )

18: d̃(ℓ )
𝑖
← d̃(ℓ )

𝑖
+ d̃(ℓ )

𝑖,𝑣𝑘
(mod 𝑝 )

19: (𝜋𝑖,1;𝜋𝑖,2; . . . ;𝜋𝐿−1; d̃′𝑖 ) ← LSS.Shffl(d̃(1)
𝑖

, 𝜋𝑖,1 , 𝚫𝑖,1; d̃(2)
𝑖

, 𝜋𝑖,2 , 𝚫𝑖,2 , a𝑖,2;
. . . ; d̃(𝐿)

𝑖
, a𝑖,𝐿 , b𝑖,𝐿 )

Server P𝐿 : O𝑖 ← {}, for 𝑖 ∈ W′

20: for each 𝑖 ∈ W′ , 𝑢 = 1 to 𝑁 do
21: if d̃′𝑖 [𝑢 ] ≫ 𝑧 = 𝐾 then
22: O𝑖 ← O𝑖 ∪ {𝑢}
Pℓ → Reader: 𝜋𝑖,ℓ , for ℓ ∈ [𝐿 − 1] and 𝑖 ∈ W′

P𝐿 → Reader: O𝑖 , for 𝑖 ∈ W′

Reader: O ← {}
23: for each 𝑖 ∈ W′ , 𝑢 ∈ O𝑖 do
24: 𝑢′ = 𝜋−1𝑖,1 (𝜋−1𝑖,2 (. . . 𝜋−1𝑖,𝐿−1 (𝑢 ) . . . ) ) , O ← O ∪ { (𝑖,𝑢

′ ) }
25: return O

Figure 4: Our MUSES search.

servers execute Search algorithm as follows. Each server Pℓ per-
forms DPF evaluation on its received DPF keys with search in-
dices EIDX𝑖 to privately retrieve the additive shares of requested
columns EIDX𝑖 [∗, 𝑣𝑘 ] as (d̂

(ℓ )
𝑖,𝑣1
, . . . , d̂(ℓ )

𝑖,𝑣𝐾
), and with private tokens

PTkn𝑖 to retrieve the additive shares of requested private tokens
(PTkn𝑖,𝑣1 , . . . , PTkn𝑖,𝑣𝐾 ) as (PTkn

(ℓ )
𝑖,𝑣1
, . . . , PTkn(ℓ )

𝑖,𝑣𝐾
), for 𝑘 ∈ [𝐾],

and 𝑖 ∈ W′ (lines 5–7).
The servers return the shares of private tokens corresponding to

the queried columns to the reader, who reconstructs and decrypts
them to retrieve the secret keys r𝑖,𝑣𝑘 , for 𝑖 ∈ W′ and 𝑘 ∈ [𝐾] (lines
9–10), By using KH-PRF, the servers can be allowed to evaluate to
obtain the final search result directly without leaking the search
index’s encryption keys and search patterns. In particular, the reader
creates additive secret-shares of each r𝑖,𝑣𝑘 as (r(1)

𝑖,𝑣𝑘
, . . . , r(𝐿)

𝑖,𝑣𝑘
) ←

KH-PRF.Share(r𝑖,𝑣𝑘 ) and sends r(ℓ )
𝑖,𝑣𝑘

toPℓ , for each ℓ ∈ [𝐿],𝑘 ∈ [𝐾]
and 𝑖 ∈ W′ (lines 11–12). The servers use these secret-shared keys
along with values contained in state st𝑖 for KH-PRF evaluation to
obtain secret shares of the queried columns (lines 13–18), where
each server Pℓ computes the following for each 𝑢 ∈ [𝑁 ], 𝑘 ∈ [𝐾]

and 𝑖 ∈ W′:
d̃(ℓ )
𝑖,𝑣𝑘
[𝑢] ← d̂(ℓ )

𝑖,𝑣𝑘
[𝑢] − 𝐹 ∗ (r(ℓ )

𝑖,𝑣𝑘
, 𝑢 | | st𝑖,𝑢 ) (mod 𝑝) (3)

When using BF, the servers have to merge retrieved columns to
obtain the final search output. Otherwise, unwrapping each column
(even when being shuffled) during search process may reveal the
patterns of retrieved columns, which leads to search pattern leakage.
Therefore, each server Pℓ computes its share of the aggregated
column as d̃(ℓ )

𝑖
← ∑𝐾

𝑘=1 d(ℓ )
𝑖,𝑣𝑘
∈ Z𝑁𝑝 . After this step, the servers can

broadcast d̃(ℓ )
𝑖

to reconstruct d̃𝑖 ←
∑𝐿
ℓ=1 d̃(ℓ )

𝑖
∈ Z𝑁𝑝 . However, it

also permits the servers to obtain document identifiers matching
the search query, which is known as result pattern leakage. We
show how to further hide result pattern leakage on the search index
in our scheme as follows. We utilize 𝐿-party secret-shared shuffle
(LSS) (Figure 2) to securely permute the document identifiers in
the search output. Our high-level idea is that after shuffling, each
server ℓ ∈ 1, . . . , 𝐿 − 1 holds an independent permutation, and the
other server 𝐿 holds shuffled opened (unmasked) output which
is permuted by a permutation composition of servers 1, . . . , 𝐿 − 1.
As a result, only the reader who receives all permutations and
the shuffled opened output can recover the actual data. So after
obtaining the share of the aggregated column d̃(ℓ )

𝑖
above, 𝐿 servers

P1, . . . , P𝐿 interact to perform oblivious shuffle (line 19) such that
at the end of this process, each server Pℓ , for ℓ ∈ [𝐿 − 1], holds
an independent permutation 𝜋𝑖,ℓ , and server P𝐿 holds d̃′

𝑖
, which is

shuffled opened (unmasked) d̃𝑖 . From (2) and (3), we can see that
d̃′
𝑖
[𝑢] contains an aggregated error as

d̃′𝑖 [𝑢] ←
𝐾∑︁
𝑖=1

d̂𝑖,𝑣𝑘 [𝜋𝑖 (𝑢)] +
𝐾∑︁
𝑖=1

𝑒𝑖,𝑣𝑘 ,𝜋𝑖 (𝑢 ) (mod 𝑝) (4)

where 𝜋𝑖 = 𝜋𝑖,𝐿−1 (𝜋𝑖,𝐿−2 (. . . (𝜋𝑖,1) . . . )) is the permutation com-
position constituted by 𝐿 − 1 permutations 𝜋𝑖,1, . . . , 𝜋𝑖,𝐿−1, and
𝑒𝑖,𝑣𝑘 ,𝜋𝑖 (𝑢 ) is the error during the KH-PRF evaluation of each d̂𝑖,𝑣𝑘 [𝑢]
in (2). Therefore, the server 𝐿 can perform d̃′

𝑖
[𝑢] ← d̃′

𝑖
[𝑢] ≫ 𝑧

for each 𝑢 ∈ [𝑁 ] to remove 𝑧 bits of the small aggregated errors
in (4), thereby obtaining the final search result as O𝑖 = {𝑢 ∈ [𝑁 ] :
d̃′
𝑖
[𝑢] = 𝐾} (lines 20–22).
Finally, the server Pℓ , for ℓ = 1, . . . , 𝐿 − 1 sends 𝜋𝑖,ℓ 2, while P𝐿

sends O𝑖 to the reader, for 𝑖 ∈ W′, and the reader can recover the
actual search output by reversing each permutation sequentially
(lines 23–25).
4.2.4 Access revocation protocol. MUSES permits a writer to re-
voke access permission of the reader on her search index. The idea
is to re-encrypt the writer’s index with refreshed (column) KH-PRF
keys unknown to the reader. Figure 5 presents our revocation pro-
tocol, where the re-encryption operation is delegated securely to
the servers for writer efficiency. Its high-level idea is as follows.

To re-encrypt EIDX𝑖 , the writer 𝑖 first retrieves and decrypts
STkn𝑖 to obtain current column keys r𝑖,𝑣 (line 2). Also, the writer
generates new secret column keys r′

𝑖,𝑣
and encrypts them as the

updated secret token STkn′𝑖,𝑣 (line 3). The writer creates secret-

shares of these keys as (r(1)
𝑖,𝑣
, . . . , r(𝐿)

𝑖,𝑣
), (r′(1)

𝑖,𝑣
, . . . , r′(𝐿)

𝑖,𝑣
) (lines 4–5),

and sends {STkn′𝑖 , r(ℓ )
𝑖,𝑣

, r′(ℓ )
𝑖,𝑣
} to server Pℓ , for 𝑣 ∈ [𝑚] and ℓ ∈ [𝐿].

2This can be done efficiently by sending a PRP seed.
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RevokePerm(𝑖, 𝜅𝑤𝑖 , {EIDX𝑖 , st𝑖 , STkn𝑖 ) }𝑛∈ [𝑛𝑤 ] :
Writer 𝑖 → Server P0 : 𝑖
Server P0 →Writer 𝑖 : secret tokens STkn𝑖
Writer 𝑖 :
1: for 𝑣 = 1 to𝑚 do
2: r𝑖,𝑣 ← E .Dec(𝜅𝑤𝑖 , 𝑗, STkn𝑖,𝑗 ) , r′𝑖,𝑣 ← KH-PRF.Gen(1𝜆 )
3: STkn′𝑖,𝑣 ← E .Enc(𝜅𝑤𝑖 , 𝑣, r

′
𝑖,𝑣 )

4: (r(1)
𝑖,𝑣
, . . . , r(𝐿)

𝑖,𝑣
) ← KH-PRF.Share(r𝑖,𝑣 )

5: (r′(1)
𝑖,𝑣

, . . . , r′(𝐿)
𝑖,𝑣
) ← KH-PRF.Share(r′𝑖,𝑣 )

6: STkn′𝑖 ← (STkn′𝑖,1, . . . , STkn′𝑖,𝑚 )
Writer 𝑖 → Server Pℓ : {STkn′𝑖 , r

(ℓ )
𝑖,𝑣

, r′(ℓ )
𝑖,𝑣
}, for 𝑣 ∈ [𝑚] and ℓ ∈ [𝐿]

Server Pℓ :
7: STkn𝑖 ← STkn′𝑖
8: for 𝑢 = 1 to 𝑁 do
9: for 𝑣 = 1 to𝑚 do
10: 𝑥𝑢,𝑣

$← Z𝑝 , M(ℓ ) [𝑢, 𝑣 ] ← 𝑥𝑢,𝑣 ≪ 𝑧

11: T(ℓ )1 [𝑢, 𝑣 ] ← M(ℓ ) [𝑢, 𝑣 ] − 𝐹 ∗ (r(ℓ )
𝑖,𝑣
,𝑢 | |st𝑖,𝑢 ) +max𝑒 (mod 𝑝 )

12: T(ℓ )2 [𝑢, 𝑣 ] ← −M(ℓ ) [𝑢, 𝑣 ] + 𝐹 ∗ (r′(ℓ )
𝑖,𝑣

,𝑢 | |st𝑖,𝑢 ) (mod 𝑝 )
∀ 𝑗 ∈ [𝐿] and 𝑗 ≠ 𝑖 : Server P𝑖 → Server P𝑗 : T(𝑖 )1 ,T(𝑖 )2 , for 𝑖 ∈ [𝐿]
Server Pℓ :
13: for 𝑢 = 1 to 𝑁 do
14: for 𝑣 = 1 to𝑚 do
15: T′ [𝑢, 𝑣 ] ← EIDX𝑖 [𝑢, 𝑣 ] +

∑𝐿
ℓ=1 T(ℓ )1 [𝑢, 𝑣 ]

16: T̂[𝑢, 𝑣 ] ← ( (T′ [𝑢, 𝑣 ] ≫ 𝑧 ) ≪ 𝑧 )
17: EIDX′𝑖 [𝑢, 𝑣 ] ← T̂[𝑢, 𝑣 ] +∑𝐿ℓ=1 T(ℓ )2 [𝑢, 𝑣 ] +max𝑒 (mod 𝑝 )
18: return (EIDX′𝑖 , STkn

′
𝑖 )

Figure 5: Our MUSES permission revocation.

Each server Pℓ replaces STkn𝑖 by STkn′𝑖 (line 7), computes T(ℓ )1
and T(ℓ )2 , where T(ℓ )1 is themasked component to remove the shared
encryption computed by the secret-shared key r(ℓ )

𝑖,𝑣
, and T(ℓ )2 is the

component to unmask the value M(ℓ ) added by T(ℓ )1 and add the
shared encryption computed by the new secret-shared key r′(ℓ )

𝑖,𝑣

(lines 8–12). The server Pℓ then distributes T(ℓ )1 and T(ℓ )2 to the
other servers. Next, each server Pℓ obtains the masked value with
error denoted as T′ (lines 13–15), where T′ [𝑢, 𝑣] = (IDX[𝑢, 𝑣] ≪
𝑧) +∑𝐿ℓ=1 M(ℓ ) [𝑢, 𝑣] + 𝑒𝑢,𝑣 . The random mask M(ℓ ) generated by
each server Pℓ is to hide the plaintext data (IDX[𝑢, 𝑣] ≪ 𝑧) when
the servers remove the current encryption by adding EIDX with∑𝐿
ℓ=1 T(ℓ )1 to obtain T′. By clearing 𝑧 LSBs of each value T′ [𝑢, 𝑣] to

0, the error value part 𝑒𝑢,𝑣 can be removed, and the servers now
hold the masked plaintext value T̂[𝑢, 𝑣] (line 16). Finally, to retrieve
the final EIDX′

𝑖
encrypted by the new secret-key, each server Pℓ

computes EIDX′
𝑖
[𝑢, 𝑣] based on T̂[𝑢, 𝑣] and∑𝐿ℓ=1 T(ℓ )2 [𝑢]. The value

max𝑒 = 𝐿 is the max error when using LWR-based KH-PRF (line
17). It is necessary for decryption in keyword search later. At the
end of this protocol, all servers hold the same updated EIDX′

𝑖
, which

is the search index encrypted with the new column keys, as well as
updated secret tokens STkn′𝑖 .

4.2.5 Document update protocol. Given an updated document with
identifier 𝑢 and a list of its keywords w, the writer 𝑖 retrieves the
state value st𝑖,𝑢 corresponding to the document𝑢, and secret tokens
STkn𝑖 = (STkn𝑖,1, . . . , STkn𝑖,𝑚) (Figure 6). Then, the writer uses
her 𝜅𝑤𝑖 to decrypt STkn𝑖 (lines 1–2) and obtain the secret keys of
data columns as r𝑖,𝑣 ← E .Dec(𝜅𝑤𝑖 , 𝑣 , STkn𝑖,𝑣), for 𝑣 ∈ [𝑚]. Next,
the writer computes the new BF representation u ∈ {0, 1}𝑚 of
the updated document with input keywords w (lines 3–5). Finally,

UpdateToken(w,𝑢, 𝑖, 𝑘𝑤𝑖 , {st𝑖 , STkn𝑖 }𝑖∈ [𝑛𝑤 ] ) :
Writer 𝑖 → Server P0 : (𝑖,𝑢 )
Server P0 →Writer 𝑖 : state st𝑖,𝑢 , secret tokens STkn𝑖
Writer 𝑖 :
1: for 𝑣 = 1 to𝑚 do
2: r𝑣 ← E .Dec(𝜅𝑤𝑖 , 𝑣, STkn𝑖,𝑣 )
3: u← {0}𝑚 , u′ ← {0}𝑚
4: for each 𝑤𝑗 ∈ w, 𝑘 = 1 to 𝐾 do
5: cid𝑗,𝑘 ← 𝐻𝑘 (𝑤𝑗 ) , u[cid𝑗,𝑘 ] ← 1
6: for 𝑣 = 1 to𝑚 do
7: u′ [𝑣 ] ← (u[𝑣 ] ≪ 𝑧 ) + 𝐹 ∗ (r𝑣 ,𝑢 | | (st𝑖,𝑢 + 1) ) (mod 𝑝 )
8: return 𝔲 ← (𝑖,𝑢, u′ )

Update(𝔲, {EIDX𝑖 , st𝑖 }𝑖∈ [𝑛𝑤 ] ) :
Each server Pℓ : parse 𝔲 = (𝑖,𝑢, u′ )
9: EIDX𝑖 [𝑢, ∗] ← u′ , st𝑖,𝑢 ← st𝑖,𝑢 + 1
10: return (EIDX𝑖 , st𝑖 )

Figure 6: Our MUSES document update.

the writer encrypts the updated row u with column keys and the
incremented counter value for KH-PRF evaluation as u′ [𝑣] ←
u[𝑣] +𝐹 ∗ (r𝑣, 𝑢 | | (st𝑖,𝑢 +1)) for each 𝑣 ∈ [𝑚] (lines 6–7). Finally, the
writer sends the update token 𝔲 = (𝑖, 𝑢, u′) to the servers to update
the search index of the writer accordingly as EIDX𝑖 [𝑢, ∗] ← u′ and
st𝑖,𝑢 ← st𝑖,𝑢 + 1 (lines 9–10).

4.3 Analysis
4.3.1 Complexity. Weanalyze the online3 asymptotic cost ofMUSES.
We consider the number of servers 𝐿 as a small constant and omit it
in the following analysis. Let𝑚,𝐾 be the BF parameters and 𝑁 be
the number of documents. To search for a keyword𝑤 in a writer’s
database, the reader creates a query of size O(𝐾 · 𝜆 · 𝜏) ∼ O(𝜆𝜏),
where 𝜏 = O(log𝑚) for 𝐿 = 2, and 𝜏 = O(

√
𝑚) for 𝐿 ≥ 3 (as 𝐾

is a constant BF parameter), and with the corresponding compu-
tation complexity O(𝐾 · 𝜏) ∼ O(𝜏). Also, for each writer inW′,
the reader sends shares of KH-PRF keys to 𝐿 servers, which costs
O(𝐿 · 𝐾 · 𝑛 · log𝑞) ∼ O(𝜆) in total (as 𝑛, 𝑞 ∼ O(𝜆) are the LWR pa-
rameters of KH-PRF). Let 𝑛𝑠 be the bound on the size of the search
output. To obtain the search result, the reader receives seed values
from P1, . . .P𝐿−1, and shuffled output from P𝐿 , then re-generates
the permutations 𝜋1, . . . , 𝜋𝐿−1, and reverses permutations to obtain
the final search output, which incurs O((𝐿 − 1)𝜆 +𝑛𝑠 ) ∼ O(𝜆 +𝑛𝑠 )
communication and O((𝐿−1) .𝑁 ) ∼ O(𝑁 ) computation cost. Over-
all, to search for a keyword on a writer subsetW′, the computation
complexity at the reader is O(𝜏 + |W′ |𝑁 ), and the bandwidth cost
between the reader and the servers is O(𝜆𝜏 + |W′ | (𝜆 + 𝑛𝑠 )).

To update a document, the writer retrieves and decrypts secret
tokens to obtain the secret keys, which is O(𝑚 ·𝑛 · log𝑞) ∼ O(𝑚 ·𝜆)
in bandwidth and O(𝑚) in computation cost. The writer retrieves
the counter value of size O(𝜆) of the updated document, creates a
new BF representation of size O(𝑚), and re-encrypts it with the
secret keys and the incremented counter value. Therefore, the total
writer’s bandwidth cost and computation cost per document update
is O(𝑚 · 𝜆) and O(𝑚), respectively.

For keyword search, each server incurs (𝐾 · 𝑁 ·𝑚) ∼ O(𝑁 ·𝑚)
modulo additions and multiplications. Each server performs O(𝐾 ·
𝑁 ) ∼ O(𝑁 ) KH-PRF evaluation invocations and the oblivious shuf-
fle incurs O(𝑁 ) arithmetic additions. The overall server computa-
tion cost per search on the writer setW′ is O(|W′ | · (𝑁 ·𝑚+𝑁 )) ∼
3We do not consider the precomputation cost in this analysis.
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O(|W′ | ·𝑁 ·𝑚). For document update, the servers replace one row
in EIDX and increment a counter value, and thus do not incur
computation.

For permission revocation, the writer’s bandwidth and computa-
tion cost is similar to the overhead of document update, which is
O(𝑚 · 𝜆) and O(𝑚), respectively. Since the servers are responsible
for updating the encrypted search index with new secret keys on be-
half of the writer, the computation and inter-server communication
costs are O(𝑁 ·𝑚).

For the storage, the reader and each writer stores a private/secret
key of size O(𝜆). For each writer, the servers store an index of size
O(log𝑝 · 𝑁 ·𝑚) ∼ O(𝑁 ·𝑚), a state st of size O(𝜆 · 𝑁 ), private
tokens PTkn and secret tokens STkn, both are of the same size
O(𝑚 · 𝑛 · log𝑞) ∼ O(𝑚 · 𝜆). The total server cost is O(𝑛𝑤 · 𝑁 ·𝑚 +
𝑛𝑤 · 𝜆 · 𝑁 + 𝑛𝑤 ·𝑚 · 𝜆), where 𝑛𝑤 is the number of writers.
4.3.2 Security Analysis.

Theorem 1. Assuming that the adversary can statically corrupt at
most 𝐿 − 1 out of the 𝐿 servers and some writers, MUSES is LH-
adaptively-secure by Definition 8 with forward privacy by Defini-
tion 9, and backward privacy by Definition 10, where LSetup

H (1𝜆) =
{𝑖, 𝑁 ,𝑚}𝑖∈[𝑛𝑤 ] ,L

CorruptWriter
H (𝑖) = {UpdateBy(𝑖)},LSearch

H (𝑤,W′) =
{W′, sv(𝑤)}, LUpdate

H (𝑖, 𝑢,w) = {𝑖, up(𝑢)}, and LRevoke
H (𝑖) = {𝑖},

whereW′ is a writer subset.
We present the proof in Appendix A.

5 EXPERIMENTAL EVALUATION
Implementation. We fully implemented all our proposed tech-
niques in C++ consisting of approximately 2,500 lines of code. We
used standard cryptographic libraries, including OpenSSL [1] for
IND-CPA encryption and hash functions, libsecp256k1 [76] for
public-key encryption in our scheme, and EMP-Toolkit [74] for
IKNP OT protocol. We implemented KH-PRF and OS3 from scratch.
We used libzeromq [2] to implement network communication be-
tween servers and client. Our implementation is available and ready
for public release (see the attached artifact).
Hardware and network. We used two EC2 r5n.4xlarge in-
stances each equipped with 8-core Intel Xeon Platinum 8375C CPU
@ 2.90 GHz and 128 GB memory as servers. For the reader, we
used a laptop with an Intel i7-6820HQ CPU @ 2.7 GHz and 16 GB
RAM. The bandwidth between servers is 3 Gbps and the bandwidth
between the servers and the client is 20Mbps with 10ms RTT.
Dataset. We used the Enron email dataset [3] which includes about
500K emails of 150 employees. We extract unique keywords using
the standard tokenization method as described in [25]. Each email
has an average of 73.18 keywords. The average number of keywords
in each writer database is 11,017.
Counterparts and Parameters Selection. We compare MUSES
with the state-of-the-art schemes including FP-HSE [73] and DORY
[25]. We select their parameters as follows.
• MUSES: For KH-PRF, we select 𝑞 = 213, 𝑝 = 210, and 𝑛 = 256, 𝑙 =
2 as suggested in [29] for secure LWRwith 118-bit security, where
each KH-PRF key is of 1 KB. We use SHA-256 for the hash func-
tion. We used 128-bit keys for IND-CPA encryption and PRF/PRG
seeds. Each folder in the dataset is considered as a writer. We
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Figure 7: Keyword search performance (log scale on y-axis).

create a reader that can perform search over all databases to run
experiments. To cover the largest folder in the dataset which
contains 28, 229 documents, we let 𝑁 = 215 be the bound on
the number of documents. We choose BF parameters such that
𝑁×FP rate < 1. For𝐾 = 7, we choose𝑚 = 2000 to achieve FP rate
≈ 3𝑒−5. To evaluate the performance of permission revocation
with various database sizes, we run experiments with the num-
ber of documents 𝑁 from 210 to 219 (∼ 500𝐾). For the number of
documents from 210 to 219, the corresponding BF parameter𝑚 is
from 1120 to 3120 (with 𝐾 = 7) to satisfy the condition of low FP
rate above.
• FP-HSE [73]: We selected the originally suggested parameters
with 96-bit security level, where PRFs and keyed hash functions
are instantiated with HMAC-SHA-256, and MNT224 curve for pair-
ings. We measure the latency of FP-HSE in document update in
two cases. The worst case is when all keywords of the updated
document are new (FP-HSE-new), and the best case is when
all keywords have appeared (FP-HSE-exist). Each folder in the
dataset is considered as a separate writer.
• DORY [25]. We run experiments with DORY in the semi-honest
setting similar to ourMUSES and FP-HSE. We configure BF pa-
rameters of DORY similar to our scheme because DORY uses
DPF-based PIR scheme for oblivious search, and 128-bit keys for
IND-CPA encryption, and PRG seeds.

5.1 Overall Results
5.1.1 Keyword search.
Reader’s Bandwidth. Figure 7a shows the search bandwidth be-
tween the reader and the servers of ourMUSES,DORY and FP-HSE.
The network overhead in MUSES increases from 0.3MB to 2.1MB,
corresponding to the cases of 25 to 150 writers mostly due to trans-
mitting KH-PRF key shares. For DORY, it incurs 4.6MB–27.6MB
network overhead per search operation depending on the writer
subset size, which is 12.8×–13.0× larger than the communication
cost of MUSES. FP-HSE incurs the lowest bandwidth as the reader
only sends a search token of 65 B to the server and receives the re-
sults. Although FP-HSE achieves theminimum bandwidth overhead
among all schemes, it suffers from many security vulnerabilities
and leaks more information than the others.
Keyword Search. Figure 7b illustrates the end-to-end delay in
keyword search of our scheme with DORY and FP-HSE for differ-
ent numbers of writers. The latency of all schemes grows almost
linearly to the number of writers.MUSES is about 129.1×–137.2×
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Figure 9: E2E permission revocation delay (log scale on y-axis).

faster than FP-HSE, and 1.6×-1.7× faster than DORY. With 25 writ-
ers,MUSES takes approximately 1.8s to accomplish a search, and
increases to about 10.9s for 150 writers. The overhead of FP-HSE
mainly comes from pairing operations, in which decrypting each
encrypted search token needs two pairing operations, while the
overhead of our scheme mainly stems from KH-PRF evaluation. By
contrast, the overhead of DORY is mostly due to network overhead.

Three factors contributing to the delay include reader process-
ing, communication latency, and server processing. Our scheme
incurs a low reader processing cost in search, in which it only takes
12.7𝑚𝑠–64.3𝑚𝑠 , attributing 0.5%–0.7% to the total delay. By con-
trast, the server cost in MUSES to search a keyword takes about
1.8𝑠-9.9𝑠 , corresponding to 91.3%–91.7% of the total delay. The com-
munication overhead during search inMUSES is about 0.1𝑠–0.9𝑠 ,
which attributes about 7.6%–8.1% to the total delay.
5.1.2 Permission revocation. Weevaluate the performance ofMUSES
when a writer wants to update secret column keys to revoke access
permission of the reader on her database, and compare it with other
schemes. For DORY and FP-HSE, as these schemes do not offer ac-
cess revocation function for a user/writer’s database by offloading
re-encrypting work to the servers as ours, we measure their latency
to re-encrypt a user/writer’s search index on the user/writer side.
For FP-HSE, the writer only re-encrypts her underlying SSE with
another secret key and ignores updating encrypted search tokens
to stop sharing her database with the reader.
Writer’s Bandwidth. Figure 8a demonstrates the bandwidth cost
of all schemes in permission revocation. The bandwidth overhead of
MUSES grows slightly when increasing BF size (from 1120 to 3120
corresponding to the cases from 1K to 500K documents) as thewriter
just needs to transmit secret-shares of KH-PRF keys, together with
current and updated secret tokenswhileDORY and FP-HSE requires
downloading and uploading the whole search index.MUSES incurs
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Figure 10: E2E delay with varying bandwidths (log scale on y-axis).

5.5MB-15.4MB communication overhead, while DORY produces
0.4MB-587.0MB, which is 1.2× -38.2× larger thanMUSES starting
from 214 documents. The network overhead of FP-HSE is about
3.9MB–1833.4MB, which is 2.2×–119.3× larger than ourMUSES.
The high overhead in FP-HSE is due to transmitting the search
index back and forth similar to DORY.
Writer’s Latency. Figure 8b presents the computing time on
the writer side to re-encrypt her search index. MUSES requires
the minimum amount of time on the writer side, which is 43.3ms–
116.6ms for the database size increasing from 1K to 500K documents,
where most overhead is for transferring secret tokens and the secret
shares of the current and new secret column keys. By contrast, a
user in DORY takes 0.3s–335.5s to download, re-encrypt the search
index with a new secret key and upload it again, which is 7.7×–
2876.8× larger than the computing time of the writer in MUSES.
FP-HSE incurs longer latency on the writer side due to its larger
search index size, where it takes 1.6s–734.3s, corresponding to
36.3×–6296.7× longer than ourMUSES.
Permission revocation. Figure 9 illustrates the end-to-end de-
lay to finish re-encryption of the search index of FP-HSE, DORY,
and MUSES. It is noticeable that when increasing the number of
documents, the end-to-end delay of all schemes grows linearly but
by varying degrees. MUSES takes about 2.5𝑠 (resp. 184.8𝑠) to up-
date a search index including keyword representations of 1K (resp.
500K) documents. For DORY, its latency is around 0.3s and 336.6s,
respectively, which is 1.4×–1.9× slower thanMUSES starting from
214 documents. FP-HSE incurs the largest overhead to re-encrypt
the search index due to its larger index size. As a result, it takes
1.6s–736.1s, which is 1.9×–5.8× larger than MUSES.

5.1.3 Scalability.
Varying network bandwidths. Figure 10 demonstrates the end-
to-end latency of keyword search, and permission revocation of
different schemes w.r.t various connection bandwidths. The search
delay (Figure 10a) is measured in the case of 150 writers and the per-
mission revocation delay (Figure 10b) is measure in the typical case
of 216 ≈ 64K documents. As presented above, search operations of
FP-HSE incur the lowest communication overhead, thus its perfor-
mance is barely affected by varying network bandwidths, where it
takes around 1.5×103s to finish a search operation.MUSES slightly
increases when rising the network bandwidth, where it takes 13.5s
with 5Mbps, and decreases to 10.6s with 30Mbps, while DORY
takes 52.6s and 14.9s, respectively. In permission revocation, since
both DORY and FP-HSE need to download and upload the search
index again, their latency decreases significantly when the network
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Figure 11: E2E delay with varying numbers of servers.

bandwidth is higher, in which DORY takes 99.6s–25.8s, and FP-
HSE takes 402.6s–67.2s, corresponding to the bandwidths 5Mbps–
30Mbps. By contrast,MUSES incurs a delay of 31.4s–15.9s to finish
a permission revocation, where most communication overhead is
for transmitting encrypted KH-PRF keys and their secret-shares to
the servers.
Varying numbers of servers. To achieve higher security level,
more servers can be added to the system. Figure 11 illustrates the
end-to-end delay of keyword search and permission revocation
with different numbers of servers increasing from 2 to 6. InMUSES,
adding more servers does not significantly increase the online com-
putation work of each server. Instead, it just requires more com-
munication rounds between the servers to forward and open the
shuffled search output. In addition, a small amount of extra over-
head in search operations is put on the reader to create and send
more DPF keys, as well as secret-shares of KH-PRF keys when
there are more servers joining the system. In particular, with 2 to 6
servers, the total delay to search for a keyword over the databases of
100 writers are 7.3s, 7.6s, 7.9s, 8.2s and 8.4s, respectively. Similarly,
in permission revocation, the additional computation overhead on
each server, when adding more counterparts, is insignificant as the
servers have to broadcast their masked results to each other. Also,
the writer has to create more secret-shares of KH-PRF keys, and
upload secret tokens to more servers, which slightly increases com-
munication overhead on the writer. Specifically, for the typical case
of 216 documents, the end-to-end latencies to finish a permission
revocation corresponding to the number of servers growing from 2
to 6 are 17.5s, 19.4s, 21.2s, 23.1s and 24.9s, respectively.
5.1.4 Document update. Figure 12 presents the update delay of
MUSES and FP-HSE. For each new keyword, FP-HSE-new needs
two pairings to generate a new token, thus its cost is linear to
the number of new keywords, while DORY, FP-HSE-exist and our
scheme remain nearly unchanged.MUSES takes about 0.9s to finish
a document update, while FP-HSE-new takes 202.6ms-1.2s for the
cases increasing from 25 to 150 keywords, and DORY takes about
0.5ms–0.8ms. Most of the overhead in MUSES is due to download-
ing secret tokens and decrypting them to obtain secret column keys
of the search index. The update latency of FP-HSE-exist slightly
grows from 43.9ms to 47.1ms as it does not incur pairing operations.

5.1.5 Storage overhead. In MUSES, each writer stores a 128-bit se-
cret key and the reader stores a 256-bit private key. As MUSES uti-
lizes LWR-based KH-PRF in [9], each bit in Z2 is encrypted to
ciphertext in Z𝑝 with 𝑝 = 210 by 10 bits. As a result, for each writer
with an EIDX including 32,768 documents and BF size of 2000, the
size of EIDX is ≈ 78.1MB. Each column of EIDX is encrypted by a
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separate key, in which each key is of 1 KB. In total, the database
size of each writer including EIDX, PTkn, STkn, and st is ≈ 82.5𝑀 ,
which goes up to ≈ 12.4GB for 150 writers.

6 RELATEDWORK
SSE. Song et al. [65] were the first to propose and formalize search-
able encryption, followed by a line of SSE schemes proposed that
offer secure search over encrypted data plus dynamic update via
an encrypted index [10, 11, 16, 17, 27, 37, 39, 45, 46, 50, 53, 67–69].
However, these schemes might be susceptible to many types of
leakage-abuse attacks [4, 14, 44, 48, 52, 54, 56, 62, 63] and mainly
support single-user setting. The multi-client SE exploited in [49]
uses KH-PRF as a mechanism to share a secret key between the
trusted and “helping” users to protect the confidentiality of search
tokens, as well as to remove the interaction with the data owner
in search operations. However, the proposed system might be im-
practical as each search operation requires the presence of certain
“helping” users. In addition, the “almost” property of current KH-
PRF schemes has been ignored in that design, which might require
proper and subtle treatment in many circumstances.
PEKS. PEKS schemes such as [6, 8, 30, 77] can support multi-writer
setting, but they do not adapt to forward privacy, which might lead
to injection attacks [79]. Although hybrid-based architecture (e.g.,
FP-HSE [73]) can ensure forward privacy, it requires each writer
to be stateful and present to rebuild encrypted tokens periodically.
In addition, most PEKS systems are vulnerable to KGA. PEKS in
2-server setting [51] can protect the privacy of the given trapdoor to
prevent KGA, but it still incurs a large number of pairing operations
in search (which runs linear to the number of keyword-document
pairs). Single-key SSEs [25, 32] require that all users are trusted or
assume a secure deploy environment with authenticated mecha-
nisms. Multi-key SSE [49, 75] can provide decentralization between
users but does not prevent pattern leakages.
Oblivious platforms. Some oblivious storage platforms employ
ORAM and/or PIR primitives to hide search access patterns dur-
ing data operations (e.g., data sharing/access [19–21, 25, 57, 58],
search [28, 32, 36, 42, 61]. However, these schemes incur a large
communication overhead, which costs O(𝑁 ) with 𝑁 is the number
of documents in the database. Differential Privacy-based technique
[64] can obfuscate search access patterns, but it incurs high com-
putation and latency.
Hardware-assisted SE. Trusted hardware (e.g., Intel SGX [22])
has been used to build practical oblivious platforms with diverse
functionalities [24, 31, 34, 35, 40, 41, 60, 70]. These platforms re-
quire a strong security assumption on the hardware (e.g., isolation,
tamper-free, side-channel resistance).
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A SECURITY PROOF OF MUSES (THEOREM 1)
We derive a (𝑡 + 1)-hybrid sequence starting from Hybrid0 =

IND0
MUSES, and the last hybrid Hybrid𝑡 is exactly IND1

MUSES. For
𝑙 ∈ {0, . . . , 𝑡−1}, the only difference betweenHybrid𝑙 andHybrid𝑙+1
is that the oracle responds to the (𝑙 + 1)-th query in Hybrid𝑙 with
input 𝑏 = 0, while responding to the (𝑙 + 1)-th query in Hybrid𝑙+1
with input 𝑏 = 1.

We prove thatA cannot distinguish IND0
MUSES from IND1

MUSES
with non-negligible probability by showing that each hybrid (except
the first) is indistinguishable from its previous.

For 𝑙 ∈ {0, . . . , 𝑡 − 1}, Hist𝑙+1 can fall into four cases:
(1) CorruptWriterO𝑏 on (𝑖0, 𝑖1): It will only be answered when

identifier 𝑖 = 𝑖0 = 𝑖1. As the update token provided by the corrupted
writer is revealed, it requires that the update tuples provided by the
writer 𝑖 (i.e., UpdateBy(𝑖)) are the same for either 𝑏 = 0 or 𝑏 = 1.
We have Hybrid𝑙 = Hybrid𝑙+1 as the views of A are identical.

(2) SearchO𝑏 on ({W′𝑘 ,𝑤𝑘 }𝑘∈{0,1} ): As the target writers of any
search leaks, it will only be answered whenW′ = W′0 = W′1 .
Because at most 𝐿 − 1 out of 𝐿 servers are corrupted, A cannot
learn the search output unless there are corrupted writers. If servers
P1, . . . ,P𝐿−1 are corrupted, permutations 𝜋1, . . . , 𝜋𝐿−1 are the only
leaked information. Otherwise, if server P𝐿 is included in the cor-
rupted servers together with 𝐿 − 2 remaining servers who hold
permutations, the search volume of 𝑤𝑘 (i.e., sv(𝑤𝑘 )) is revealed,
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Figure 13: Preprocessing phase of MUSES in 2-server setting.

and the oracle only answers when sv(𝑤0) = sv(𝑤1) in this case.
The adversary still lacks a permutation of the honest (uncorrupted)
server to completely recover the search output.

Depending on whether any writer inW′ has been corrupted,
there are two following cases:

• If ∃ Writer 𝑖 : 𝑖 ∈ W′ ∧ (CorruptWriter, 𝑖) ∈ H , A will have
knowledge of the correct search output of the corresponding
corrupted writer, and the oracle only answers when𝑤 = 𝑤0 = 𝑤1
in this case.
• Otherwise, because the adversary only gets access to at most
𝐿 − 1 out of 𝐿 servers, the adversary cannot tell the difference
between the indices corresponding to the search queries, as well
as whether the search output is correct or not.

The indistinguishability between Hybrid𝑙 and Hybrid𝑙+1 is guar-
anteed by the computationally indistinguishable security of DPF-
based PIR, KH-PRF, and LSS schemes.

(3) UpdateO𝑏 on ({𝑖𝑘 , 𝑢𝑘 ,w𝑘 }𝑘∈{0,1} ): The oracle answers the
queries when 𝑖 = 𝑖0 = 𝑖1 and 𝑢 = 𝑢0 = 𝑢1 (i.e., up(𝑢)), as the writer
identifier and the position of the updated row (i.e., EIDX[𝑢, ∗], as
well as the position of the updated state (i.e., st𝑢 ) will be leaked
during update.

Obviously, if (CorruptWriter, 𝑖) ∈ H , A will have the knowl-
edge of the update token. In particular, if writer 𝑖 has been corrupted,
the BF representation of keywords in w𝑘 , as well as the position 𝑢𝑘
is divulged. Thus, the oracle only answers when two update tuples
are similar in this case.

The indistinguishability between Hybrid𝑙 and Hybrid𝑙+1 is guar-
anteed by IND-CPA security of the symmetric encryption scheme
E and computationally indistinguishable security of KH-PRF.

(4) RevokeO𝑏 on ({𝑖𝑘 }𝑘∈{0,1} ): The oracle answers the queries
when 𝑖 = 𝑖0 = 𝑖1, since the writer identifier will be leaked in per-
mission revocation. In addition, if (CorruptWriter, 𝑖) ∈ H , A will
still have the knowledge of the updated secret tokens. Specifically,
if writer 𝑖 has been corrupted,A who holds 𝜅𝑤𝑖 can still decrypt to
obtain secret keys contained in secret tokens of the writer 𝑖 even
after they are updated.

The indistinguishability between Hybrid𝑙 and Hybrid𝑙+1 is guar-
anteed by IND-CPA security of the symmetric encryption scheme
E and computationally indistinguishable security of KH-PRF.

By repeating the above procedure for 𝑙 ∈ [𝑡 − 1], we conclude
that A cannot distinguish Hybrid0 = IND0

MUSES from Hybrid𝑡 =
IND1

MUSES. Thus,MUSES is LH-adaptively-secure.
□

B QUERY-INDEPENDENT PREPROCESSING
Figure 13 presents the time for preprocessing of ourMUSES to run
LSS.ShrTrns in the two-sever setting, which shows that it is linear
to the number of writers. The overhead of the preprocessing phase
mostly comes from Share Translation protocol between two servers:
(∆; a, b) ← TSS.ShrTrns(𝜋 ; 1𝜆), which lets one server obtain a, b,
and the other server learn the corresponding translation function
∆← b − 𝜋 (a) without revealing the permutation 𝜋 . However, as
the preprocessing phase is independent with the search queries, it
can be performed in the offline phase, then the results are stored
in a temporary memory and used when a search happens. We
implement the primitive version of Share Translation protocol in
[18] for our evaluation. The advanced version of it uses special
structure of Benes permutation network to accelerate and achieve
better performance [18].

C PREVENTING ROLLBACK ATTACKS
We present a (simple) extension to our semi-honest MUSES con-
struction to prevent rollback attacks, where a corrupt server may
omit some updates from the writers or use a tampered writer’ index
to process the reader’s request. The high-level idea is to employ ad-
ditional servers and perform “pair-wise” checking of the responses
from different subsets of servers in processing the reader’s request.
For simplicity, assume our originalMUSES scheme uses two servers.
We add one more server to detect rollback attacks as follows. Let
W′ be the writer subset and𝑤 is the keyword that the reader wants
to search. For each pair of servers P𝑖 ,P𝑗 ∈ {P1,P2,P3}, the reader
executes the following:
• 𝔰𝑖 𝑗 = (𝔰𝑖 , 𝔰 𝑗 ) ← SearchToken(𝑤,W′)
• O𝑖 𝑗 ← Search(𝔰𝑖 𝑗 , sk, {(𝑖, st𝑖 , EIDX𝑖 , PTkn𝑖 )}𝑖∈[𝑛𝑤 ] )
WLOG, assume (P2,P3) are honest and P1 is corrupt, in which it
uses a mutated search index EIDX′

𝑖
= EIDX𝑖 + 𝜖 (compared with

EIDX𝑖 in P2 and P3). As DPF and KH-PRF are computed on EIDX′
𝑖
,

there will be an error in P1’s computation, making the responses
O12, O13 ≠ O23.

By checking the consistency of O12, O13, and O23, the reader
can tell whether there is a rollback attack happens, and abort the
protocol accordingly. Note that this strategy can only detect the
rollback attack, a special case of malicious behavior on integrity, but
is unable to tell which server is corrupted. Meanwhile, a malicious
adversary can deviate from the protocol to not only compromise the
integrity but also the privacy of the reader’s query. That requires a
more comprehensive investigation to completely achieve malicious
security, which we leave as our future work.
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