
Scaling Mobile Private Contact Discovery
to Billions of Users

Laura Hetz1, Thomas Schneider1, and Christian Weinert2

1 ENCRYPTO, Technical University of Darmstadt, Germany
{laura.hetz, schneider}@encrypto.cs.tu-darmstadt.de
2 Royal Holloway, University of London, United Kingdom

christian.weinert@rhul.ac.uk

Abstract. Mobile contact discovery is a convenience feature of messen-
gers such as WhatsApp or Telegram that helps users to identify which of
their existing contacts are registered with the service. Unfortunately, the
contact discovery implementation of many popular messengers massively
violates the users’ privacy as demonstrated by Hagen et al. (NDSS ’21,
ACM TOPS ’23). Unbalanced private set intersection (PSI) protocols
are a promising cryptographic solution to realize mobile private contact
discovery, however, state-of-the-art protocols do not scale to real-world
database sizes with billions of registered users in terms of communication
and/or computation overhead.
In our work, we make significant steps towards truly practical large-scale
mobile private contact discovery. For this, we combine and substantially
optimize the unbalanced PSI protocol of Kales et al. (USENIX Secu-
rity ’19) and the private information retrieval (PIR) protocol of Ko-
gan and Corrigan-Gibbs (USENIX Security ’21). Our resulting protocol
has a total communication overhead that is sublinear in the size of the
server’s user database and also has sublinear online runtimes. We optimize
our protocol by introducing database partitioning and efficient scheduling
of user queries. To handle realistic change rates of databases and contact
lists, we propose and evaluate different possibilities for efficient updates.
We implement our protocol on smartphones and measure online runtimes
of less than 2 s to query up to 1 024 contacts from a database with more
than two billion entries. Furthermore, we achieve a reduction in setup
communication up to factor 32× compared to state-of-the-art mobile
private contact discovery protocols.

Keywords: mobile contact discovery · PSI · PIR.

1 Introduction
The number of users of mobile messengers such as WhatsApp, Telegram, and Sig-
nal has been rising for over a decade. In 2020, WhatsApp reached two billion
monthly active users [25]. Messengers connect these users by presenting them a
selection of their existing address book contacts who are registered with the same

2 L. Hetz et al.

service. This convenient feature is called mobile contact discovery and requires
matching users’ contact lists with the service’s database. The address book of
users is also checked regularly to ensure an up-to-date list of possible contacts.

However, a recent survey [33] showed that five out of eleven studied messengers,
including WhatsApp and Telegram, implement contact discovery by obtaining
their users’ contact lists in plaintext. Thus, service providers not only learn about
mutual contacts, but also information of unregistered contacts. Based on this,
the entire social graph of users, possibly containing sensitive information, can be
inferred. Even if a user has never signed up with a messenger or social media
platform, contact discovery services might have already stored their personal data.
Meta, WhatsApp’s and Facebook’s parent company, which acquired WhatsApp
in 2014 for 16 billion USD [58], has acknowledged this with a tool that lets non-
users check, delete, and block their data from several of their services’ contact
discovery databases, however, excluding WhatsApp [29]. It is currently unclear
how these block lists are implemented and which privacy implications they entail.
Due to the availability of information, access to it might be enforced legally (by
governments) or illegally (by hackers).

A naive approach used by some messengers to protect privacy is to apply a
cryptographic hash function before uploading phone numbers. However, due to the
clearly defined structure and low entropy of phone numbers, the reversal of a single
hash is possible in less than 0.1ms on commodity hardware [33]. The privacy-
preserving messenger Signal thus uses hardware enclaves, specifically Intel SGX,
to securely realize mobile contact discovery. However, the security of enclaves is
not trivial as even code without vulnerabilities can be subject to various types of
attacks [72, 21, 64, 9].

The cryptographic approach for mobile private contact discovery is to apply
protocols for unbalanced private set intersection (PSI). In our setting, the server’s
user database DB and the client’s phone contacts X each represent one set (|X| ≪
|DB|) while only the client learns about the mutual elements.

Recent works [15, 28, 57, 65] show promising results for fast and communi-
cation-efficient PSI in different use cases, but are still impractical for mobile
private contact discovery at large scale due to the required online computa-
tion performed by the server. With over two billion WhatsApp users [25], the
unbalanced PSI protocol by Cong et al. [15] requires less than 80MiB of total com-
munication, but more than 35 seconds online time with multi-threading (T=24
threads) to query |X| = 210 client contacts. Hence, the protocol by Kales et
al. [43] based on oblivious pseudorandom functions (OPRFs) is still state of the art
for private contact discovery due to its fast online runtimes (linear in |X| and less
than 3 seconds for |DB| = 228, |X|= 210 [43]) and optimization for mobile devices.
However, this protocol has setup communication and client storage costs linear
in the database size – 8GiB for |DB| = 231 – which also makes it impractical for
large-scale messengers. To make such protocols viable, communication sublinear
in the database size is necessary. The authors of [43, 23] thus recommend using a
protocol for multi-server private information retrieval (PIR) in PSI to achieve
sublinear communication.

Scaling Mobile Private Contact Discovery to Billions of Users 3

Our Contributions. In this work, we make big steps towards truly practical
mobile private contact discovery by reducing the setup communication to be
sublinear in the size of the server’s database. The authors of [23] already achieved
this, however, their protocol requires online computation linear in the database
size. We achieve both, total communication and online computation sublinear in
the database size. For this, we survey the current literature and select the offline-
online PIR (OO-PIR) protocol by Kogan and Corrigan-Gibbs [46] as a building
block for its sublinear complexities. By combining the state-of-the-art protocol
for unbalanced PSI on mobile devices [43] with OO-PIR [46], we obtain an
asymptotically and concretely efficient mobile private contact discovery protocol.

We further extend our protocol to handle large sets, i.e., databases with up
to |DB| = 231 items, to meet the requirements of real-world messengers. To
our knowledge, we are the first to consider a database with more than a billion
records in unbalanced PSI (8× more than related works [45, 23, 66, 43, 70]).
For this setting, we reduce the setup communication by up to factor 32× over
the state-of-the-art protocol of [43]. To prevent the inefficient processing of a
large database as a whole, we let multiple instances of the PIR protocol operate
on smaller database partitions. Queries to these partitions should not reveal to
the server which database partitions are of interest to the client. Therefore, we
schedule these queries based on a balls-to-bin analysis similar to [60, 62, 23]. This
reduces communication by a factor up to 24× compared to the naive approach
of sending the maximum possible number of queries to all partitions to hide the
information which partitions are of interest.

We also study ways to efficiently handle updates to client contact lists and
server databases. For this, we evaluate solutions for dynamic databases proposed
by recent literature [23, 43, 46, 51] and improve on their ideas for our protocol
design. With less than 3MiB/day for processing a realistic number of 221 daily
updates [32, 33], our resulting protocol has the lowest communication cost.

Finally, we implement our protocol on smartphones to demonstrate feasibility
and obtain concrete runtime measurements in realistic WiFi and LTE network
settings. Over WiFi, we achieve an online runtime of less than 2 seconds for |DB| =
231 database records and |X| = 210 phone contacts. Further highlights of our
implementation include containerized builds for improved reproducibility, multi-
threading for additional runtime improvements, and significant optimizations of
the original PIR implementation of [46].

To summarize, our main contributions are as follows:

– New mobile private contact discovery protocol based on unbalanced PSI [43]
and private information retrieval (PIR) [46] with sublinear total communica-
tion and online runtime.

– Reproducible, multi-threading-capable implementation on mobile clients.
– Large-scale evaluation for databases with more than two billion records and

online runtime of less than 2 seconds over WiFi.
– Efficient update strategy with less than 3MiB/day of additional communica-

tion costs.

4 L. Hetz et al.

2 Preliminaries
In this section, we describe the basic concepts used in our work, specifically proto-
cols for oblivious pseudorandom function (OPRF), private set intersection (PSI),
and private information retrieval (PIR). We also explain Cuckoo filters (CFs), a
probabilistic data structure used in our protocol.

Oblivious Pseudorandom Function. An oblivious pseudorandom func-
tion (OPRF) is a secure two-party computation (STPC) protocol where the
computed public function f is a keyed pseudorandom function (PRF). Party P2

inputs key k and P1 inputs a value x for which P1 obtains the PRF output fk(x).
Both parties stay oblivious about the other party’s input and only P1 obtains
the OPRF output. OPRF constructions can be used to realize PSI protocols, as
shown in a variety of works, including [27, 34, 61, 45, 43]. We focus on the Naor-
Reingold PRF (NR-PRF) [56] and PRFs that evaluate block ciphers such as AES
and the STPC-friendly cipher LowMC [1] using Yao’s garbled circuit (GC) [73],
a generic protocol for STPC. These OPRFs offer malicious client security [61, 45]
and their implementations were already optimized for mobile devices [43]. While
recent works [67, 65, 12] improve over our selected OPRFs, we leave their evalua-
tion as future work and focus on reducing the setup communication and client
storage of the state-of-the-art protocol for mobile private contact discovery.

Cuckoo Filter. A Cuckoo filter (CF) is a probabilistic data structure for
fast membership testing. A CF stores tags (i.e., short representations of items),
where each tag is located in one of h possible buckets and each bucket contains
up to b tags. The tag of x with length v is computed using hash function Ht: tx =
Ht(x) ∈ {0, 1}v and its possible positions are determined by h hash functions [26].
CFs are similar to Bloom filters (BFs) [7], but have better performance, reduced
storage, and allow item deletion. Hash collisions for tags can result in false
positives. We follow the parameter recommendations in [43] with bucket size b = 3
and tag size v = 32 for a false positive probability (FPP) of ϵ ≤ 2b/2v ≈ 2−29.

Private Set Intersection. In protocols for private set intersection (PSI),
two parties P1 and P2 hold sets X1 and X2, respectively. They want to know
their mutual items (i.e., X1 ∩X2) without revealing anything else about their
sets. State-of-the-art PSI protocols for large sets build on the oblivious key-value
store (OKVS) data structure [28, 57, 65]. However, they require online communi-
cation linear in the size of the larger set. Another line of work on unbalanced PSI
based on fully homomorphic encryption (FHE) [14, 13, 15] has a small communi-
cation footprint, but is not well suited for large-scale contact discovery as the
server online computation is linear in the database size for each client.

In this work, we thus focus on unbalanced OPRF-based PSI protocols [34,
61, 20, 45, 43] for mobile private contact discovery. The high-level idea requires
server S, holding the larger set DB, to sample a secret key k and to encrypt
its input using a PRF and k to obtain PRFk(DB[i]) for i ∈ {1, . . . , |DB|}. This
encrypted set is sent to the client C who stores it. Both parties then run the
corresponding OPRF protocol on C’s input X[i] for i ∈ {1, . . . , |X|} and S’s
key k such that C obtains the encrypted values PRFk(X[i]) and locally checks
which of them are contained in the server’s encrypted set. The performance of

Scaling Mobile Private Contact Discovery to Billions of Users 5

such PSI protocols is great in the online phase (independent of |DB|), but suffers
from high setup communication and client storage requirements (linear in |DB|),
which prohibits applicability for mobile private contact discovery at large scale.
In this work, we make significant steps towards practicality by replacing the
download in the setup phase with a protocol for PIR for reduced communication
and storage requirements.

Private Information Retrieval. Protocols for PIR enable a client C to
privately obtain a record from a public database with NPIR records while the
server stays oblivious about the requested item. The server’s computational cost
must be inherently linear in the database size, as the server would otherwise
learn which elements the client is not interested in [6]. PIR with preprocessing is
thus critical to achieve online complexities sublinear in the database size NPIR by
shifting the linear costs to an offline phase. We comprehensively surveyed single-
and multi-server PIR protocols with preprocessing for our use case (cf. § A). The
state-of-the-art single-server PIR protocols [53, 55, 37, 22] are based on FHE: The
client uses FHE to hide their query from the server while also enabling the server
to answer their query under encryption. In a large-scale deployment scenario,
the client-independent preprocessing in [22, 37] offers a significant advantage
as server costs otherwise depend on the high number of clients. While these
protocols are most promising in the single-server setting, the parties still perform
online computation linear in NPIR. Also, online communication costs with query
batching are impractically high at large scale. Moreover, FHE-based protocols
have yet to be implemented and evaluated for this use case on mobile devices.

In the setting with multiple non-colluding servers (see § 4.2 for a detailed
discussion), different strategies have been proposed [10, 18, 46, 68, 51, 31]. We
select the two-server OO-PIR protocol in [46] for its sublinear online complexi-
ties (communication in O(logNPIR) and computation in O(

√
NPIR)), existing

mobile implementation, and database update strategies [46, 51]. We refer to
the required servers as offline server Soff and online server Son, and give an
informal protocol description of the protocol in [46]: In the offline phase, Soff
randomly samples NSets sets, each containing

√
NPIR database indices, calculates

the parity of each set, and sends sets and parities as hints to client C. The
parameter NSets = λ

√
NPIR log 2 is chosen to ensure that any database index

appears in at least one set with overwhelming probability [46] based on the
statistical security parameter λ. In the online phase, the client finds a set that
contains the index idx they want to query, and they remove it from the set in a
process called puncturing, i.e., Set′i = Seti \ {idx}. The client sends the punctured
set Set′i to the online server Son, which returns the parity of the received set.
The requested database record DB [idx] is reconstructed from the punctured and
the unpunctured sets’ parities, i.e., yidx = pSeti ⊕ pSet′i . Reusing the set Seti leaks
information about the queries to the server. Thus, the client generates a new
set containing the requested index to ensure that the set remains random while
at least one set still contains index idx. The client obtains the parity for the
new set by puncturing it, requesting the punctured set’s parity from the offline
server, and adding the database record they just retrieved for idx to the parity.

6 L. Hetz et al.

The sublinear communication cost of [46] is achieved by transmitting the sets in
compressed form as set keys, which are puncturable PRF keys.

3 Related Work
We focus our discussion of related works on unbalanced PSI for mobile private
contact discovery. Nevertheless, we acknowledge the existence of further un-
balanced PSI protocols based on FHE [14, 13, 15], which are not suitable for
large-scale contact discovery because the server performs computation linear in
the large database for each client in the online phase (cf. § 2).

Our protocol is based on the mobile private contact discovery protocols
in [45, 23, 43]. In [45], the authors improve PSI for the unbalanced setting and
mobile clients by shifting the required setup computation and communication costs
that depend linearly on the database size |DB| to a novel precomputation phase.
They further reduce the communication and storage costs by storing the larger
set in a Bloom filter, a probabilistic data structure similar to Cuckoo filters (CFs).
The authors of the state-of-the-art unbalanced PSI protocol for mobile private
contact discovery [43] build on the promising results of [45] and optimize the
performance as well as communication cost of two OPRF-based PSI protocols
with malicious client security. By integrating and optimizing a two-server PIR
protocol [46] in the protocol design of [43], we achieve a reduction in setup
communication by 32× at only marginally higher online costs (cf. § 5).

A combination of two-server PIR and PSI for private contact discovery was first
proposed in [23] with PIR-PSI. Their protocol also achieves sublinear communica-
tion complexity in the database size. However, due to a lack of PIR-preprocessing,
the servers in PIR-PSI perform online computation linear in the database size
for each query, which prohibits large-scale deployments. Furthermore, the con-
structions and base protocols differ: The authors of [23] improve the performance
of the balanced PSI protocol of [47] by running PIR based on distributed point
functions (DPFs) [10, 11] to reduce the input set sizes. Instead, we use OO-PIR
by [46] to reduce the communication of unbalanced OPRF-based PSI [43] for
mobile devices. PIR-PSI, similar to our work, models query scheduling as a
ball-to-bins problem (cf. § 4.3). In contrast to our protocol, PIR-PSI requires
inter-server online communication (32 kiB for |X|= 210 for each client), which
incurs 8× higher financial costs compared to computation [41].

In addition to mobile contact discovery, contact tracing and compromised
credential checking (C3) are two other use cases for our protocol. Epione [70]
combines public key (PK)-based PSI with keyword-PIR for efficient privacy-
preserving contact tracing. Epione also achieves sublinear online communication
but requires online computation linear in |DB| and has a high online inter-server
communication cost. Protocols for C3 are deployed in web browsers to check
if one credential is in a database of leaked credentials (|DB| ≈ 12.5 billion [46, 31,
71]). For this, PK-based PSI protocols are used in practice; however, to reduce
communication overhead, a hash prefix is leaked to the server to indicate which
partition of the encrypted database must be downloaded [49, 69]. PIR protocols
such as [46, 31], as well as our work, could be used to mitigate attacks that
leverage this leakage.

Scaling Mobile Private Contact Discovery to Billions of Users 7

4 Our Protocol
Our protocol provides computational security and assumes a semi-honest setting
with two non-colluding servers, Soff and Son (we discuss malicious client security
in § 4.2). Client C inputs their set of phone contacts X of size |X|, and the
messaging service inputs their user database DB of size |DB|, which is encrypted
and encoded in a Cuckoo filter CF. We divide the database of the PIR proto-
col into NPart partitions, where CFp ∈ {CF1, . . . ,CFNPart

}, to allow for large
databases. This requires a scheduling of queries to reduce communication while
preventing leakage (cf. § 4.1).

Our protocol is divided into base, setup, and online phase, as introduced
by [45]. The client-input-independent parts of the protocol, i.e., base and setup
phase, are considered to be offline. The base phase of our protocol is input-
independent and contains the OPRF precomputation between C and Soff as
well as the server’s generation of the secret key k. This phase is identical to
the base phase in [43]; it has a communication complexity of O(|X|pre) and
allows the client to check up to |X|pre contacts in the online phase. We split the
server-input-dependent setup phase into client-independent setup and per-client
setup. The server setup is run only once and includes the encoding of the database
and CF creation by Soff. Son receives no cleartext data, only the CF containing
the encrypted and hashed values. The per-client setup has to be executed once
for each client and consists of the offline phase of our extended PIR protocol [46].

Our protocol’s online phase combines those of [43] and [46]. C and Soff run
the OPRF protocol on their respective inputs xi ∈ X and k, and C obliviously
obtains ei = PRFk(xi) for i ∈ {1, . . . , |X|}. C simulates the offline server’s data
placement in the CF for their encrypted inputs to learn which CF buckets to
retrieve via PIR. The encrypted value ei is in one of two possible CF buckets
if xi ∈ DB, and C retrieves both to locally check if ei ∈ CF, i.e., xi ∈ DB.
PIR queries to Soff and Son are generated for each index based on the stored
hints for CFPart. Sending only those actual queries reveals to the server which
partitions interest the client. We show in § 4.1 how to avoid this by sending
dummy queries in a communication-efficient manner.

4.1 Database Partitioning and Querying

We assume messenger services with up to |DB| = 231 users and CFs with up
to NCF = 2⌈log2(|DB|/b)⌉ = 230 buckets. To our knowledge, this work is the first to
consider a database of this size in the context of mobile private contact discovery.
Our selected PIR protocol [46] requires offline computational cost linear in the
database size and parties have to process sets with

√
NPIR items. Using the CF

as PIR database (i.e., NPIR = NCF) thus leads to poor performance and high
memory requirements. Additionally, sets of this size are not supported by the
existing OO-PIR implementation [46].

We avert these limitations by partitioning the database and running the
protocol on smaller database partitions at a time. The PIR database size now
depends on the number of partitions NPart where NPIR = NCF/NPart. A smaller
number of partitions generally requires less communication since less PIR execu-

8 L. Hetz et al.

Client (contacts xi∈{1,...,|X|}) Servers Soff
†, Son

⋆

1. Base Phase†

Generate secret key k†

OPRF Precomputation† OPRF Precomputation†

2.1 Server Setup Phase†⋆

Encrypt all database records with key k
and insert them into Cuckoo filter CF†

Partition CF and send it to Son
†⋆

2.2 Per-Client Setup Phase†

Hint Request† Generate PIR hints hp

for each partition CFp
†

h← {h1, . . . , hNPart}
†

Store hints
3. Online Phase†⋆

Run OPRF for all xi

OPRF k†
xi

eiCompute CF positions
idxi,j for all ei, j ∈ {0, 1}
Schedule PIR queries for all positions
to all partitions CFp using h

k queries for CFp
†⋆

k answers for CFp
†⋆ Answer queries†⋆

Reconstruct PIR answers to
obtain CF[idxi,j] and check if
CF tag for ei is included

Fig. 1: Protocol phases for communication-efficient OPRF-based unbalanced PSI
with two-server PIR. Offline server Soff marked with †, online server Son with ⋆.

tions are needed, but higher computational cost due to the increased database
size NPIR. We consider this trade-off in the parameter selection for our partition-
ing. Database partitioning further allows us to distribute the workload between
multiple servers to improve the performance and scalability of our protocol.

With database partitioning, if the client would only query the desired indices,
the server would learn which partitions are of interest to the client. This leakage
could easily be prevented with dummy queries to all other partitions to conceal the
actual queries. However, this naive approach requires in the worst case 2|X|NPart
queries – more than 73MiB of online communication for |DB| = 231, |X| = 210.

The literature presents various approaches for scheduling queries [42, 36, 3],
also called batching, to reduce communication or computational cost. In [74],
the feasibility of using batching techniques in OO-PIR protocols is studied,
and a lower bound for communication and time in the preprocessing phase
of t · r = Ω(NPIRk) is proven for batch size k, hint size r, and online time t.
The authors show that server performance improves at the cost of higher client
runtime, and communication. They conclude that the benefits of PIR protocols
in the offline-online model and batching are not compatible. Probabilistic batch
codes [3] in OO-PIR achieve this lower bound, but due to the high storage
requirements and client costs of this technique, we conclude that (probabilistic)
batch codes are not practical for our use case.

Scaling Mobile Private Contact Discovery to Billions of Users 9

Instead of optimizing the query scheduling with batch codes, we focus on
leveraging our protocol’s underlying data structure: Cuckoo filters. Items in
a CF are distributed uniformly under the assumption of uniformly random hash
functions, and that the items are chosen independently from the hash functions
and from each other (note that our items are encrypted set elements) [24]. This
allows us to represent the query scheduling as a balls-to-bin problem, where we ask
for the maximum number of balls in any bin when placing n balls independently
into β bins chosen uniformly at random. We assume β = NPart bins (i.e., DB
partitions) and n = 2|X| balls (i.e., queries), and use Eq. (1) based on [63, 62]
to calculate the probability p of any bin containing more than k balls after
inserting n balls into β bins.

p = 1−
(∑k−1

i=0

(
n
i

)
·
(

1
β

)i

·
(
1− 1

β

)n−i
)β

. (1)

We require this probability to be negligible, i.e., p < 2−40. Based on this
formula, we determine k via a Mathematica script as the maximum number of
queries made to each of NPart partitions for 2|X| actual queries, and achieve
a reduction in communication in the worst case by up to factor 24×, and
only require 3MiB instead of 73MiB for |DB| = 231, |X| = 210. We note
that [63] provide a closed-form solution for the balls-to-bin problem (but with an
unspecified constant γ), which we leverage for our asymptotic analysis in § 4.2.

4.2 Complexity & Security Analysis

We now discuss our protocol’s communication complexity and analyze its security.
Complexity. Our protocol consists of OPRF and PIR invocations. The

considered parameters are the client contact list with size |X| and at most |X|pre
precomputed entries; the server database has |DB| entries, which are processed in
our protocol in NPart database partitions of size NPIR. The asymptotic communi-
cation complexity for OPRF is the same as in [43], namely O(|X|pre) in the base
and O(|X|) in the online phase. In our PIR protocol, each CF bucket with b = 3
tags of size v = 32bit is one record of length ℓ = v·b = 96bit. The concrete commu-
nication cost for running PIR on NPart partitions of size NPIR = |DB|/NPart, |X|
client inputs, record length ℓ, and a constant factor γ is as follows:

– offline communication: NPart · λ(ℓ
√
NPIR + 1) bits.

– online communication:

NPart ·

 2|X|
NPart

+ γ

√
2|X|
NPart

· log2 NPart


︸ ︷︷ ︸
num. queries to each partition [63, 60, 62]

· (2(λ+ 1) log2 NPIR + 4ℓ)︸ ︷︷ ︸
bits per PIR query [46]

bits.

Based on this, we can compare the asymptotic communication complexities of
our full protocol with the state-of-the-art protocol in [43] in Tab. 1. Our protocol
achieves sublinear communication cost in the setup phase, improving significantly
over the linear costs in [43]. The online phase of our protocol includes the
communication cost of [43] in addition to the PIR protocol being executed for |X|

10 L. Hetz et al.

Table 1: Comparison of asymptotic communication complexities considering
database size |DB|, client set size |X| with at most |X|pre elements, and the
number of database partitions NPart = NCF/NPIR for partition size NPIR.

Phase [43] Ours
Base O(|X|pre) O(|X|pre)
Setup O(|DB|) O(NPart

√
NPIR)

Online O(|X|) O((|X|+
√
|X|NPart logNPart) logNPIR)

client items on NPart partitions. The amortized total communication cost per
client item is still significantly smaller in our protocol compared to [43] (cf. § 5.3).

Security. We now discuss the security of our protocol provided by the
underlying OPRF and PIR building blocks. We first discuss malicious client
behavior and then assumptions required for the server side.

The OPRF protocols used in this work, NR-ECC-OPRF [56, 27, 34, 43]
and GC-LowMC-OPRF [61, 20, 1, 43], guarantee malicious client security when
using maliciously secure oblivious transfer (OT) [59] and OT extension [5, 44]
protocols. PIR protocols generally assume a public database with possible leakage
to the client, hence there are no concerns regarding privacy leakage caused by
malicious behavior of clients. Furthermore, our protocol’s underlying structure
prevents clients (and additional servers) from obtaining cleartext database records
as they only ever receive encrypted and hashed values as part of the CF. However,
in [51], the authors describe an attack on updated databases that enables a
malicious client to obtain deleted database records. Therefore, no formal malicious
client security is possible for our protocol with updates via in-place edits (cf. § 4.3).
We note that clients can generally monitor the database to learn about added
and deleted items, so we consider the attack by [51] as irrelevant in our setting
and leave the task of formally establishing malicious client security for OO-PIR
without updates as future work. Malicious clients can also easily test if the
database includes a certain number by running the PSI protocol. Due to the
limited entropy of phone numbers, rate limiting of client queries is recommended
to restrict the possibility of misuse via large-scale crawling attacks [43, 32, 33].

A malicious server could sabotage the OPRF and PIR sub-protocols by send-
ing incorrect information or by using another input set. As only the client obtains
the intersection, this only affects correctness. However, the authors of [43] observe
that messengers will afterwards most likely receive the outcome of the intersection
and could thus learn about non-registered users in the client’s contact list in case
they include additional entries in their database. Therefore, service providers
must be semi-honest, which is reasonable to assume as they are bound by legal
requirements and would face significant financial and reputational risk when
detected cheating. As we operate in a multi-server PIR setting, we furthermore
have to assume two non-colluding servers. This is a prominent assumption in
multi-server protocols for reducing computation and communication costs. We see
several successful real-world deployments of protocols utilizing this assumption,
e.g., the Internet Security Research Group (ISRG) is providing a non-colluding
server for data aggregation and analysis with their “Divvi Up” system [40] based

Scaling Mobile Private Contact Discovery to Billions of Users 11

on “Prio” [16] and “Poplar” [8]. The ISRG further runs non-colluding servers
for privacy-preserving COVID-19 analysis in North America [4, 39]. The use
of financial incentives [30] and the execution of secure cryptographic protocols
inside of trusted execution environments (TEEs) that provide remote attesta-
tion (e.g., Intel SGX) could further strengthen the non-collusion assumption
between servers.

4.3 Updates

To design our protocol for real-world messaging applications, considering the ever-
changing user base and client contacts is essential. The authors of [32, 33] based on
publicly available data assume daily change rates of CR ≈ 0.1% for Signal, 0.5%
for Telegram, and only 0.05% for WhatsApp. We therefore assume a slowly
growing messenger user base with daily updates of at most 1%, which is already
very high given the real-world data of messengers [32, 33].

Updates to the client’s phone contacts can include adding or deleting a phone
number, and updating a contact’s details. Since the client’s input is only relevant
in the online phase, the handling of updates is trivial: The client can simply run
the online phase of the contact discovery protocol for newly added or updated
phone numbers to obtain the information if these numbers are registered with a
service. Deleted phone numbers are no longer included in the client’s set.

Database updates in our protocol could be handled by rerunning the PIR
setup and online phase. While this strategy would be simple, the costs would
significantly increase with realistic database growth rates, thus making this ap-
proach impractical. We therefore propose and evaluate different update strategies
for offline-online PIR [46, 51] and PSI for mobile contact discovery [23, 32].

Waterfall Updates. The authors of our selected PIR protocol [46] propose
waterfall updates, an update strategy with tiered sub-databases (called buckets)
of increasing size. The database is initially stored in one bucket for which the
client obtains hints. Updates are inserted into the smallest bucket until this bucket
reaches its maximum capacity and overflows into the next larger bucket. The client
obtains new hints for all buckets that changed. With this strategy, hints for smaller
buckets must be computed and communicated frequently, while larger buckets
change less often. With frequent updates, the performance decreases and the
client-dependent computational and communication costs increase significantly,
which makes this strategy impractical for large-scale messengers and is thus
excluded from further evaluations.

Updates via In-place Edits. The authors of [51] propose a different update
strategy for OO-PIR [46, 68] that avoids additional databases by updating the
client hints to include the updated records. Within our protocol, PIR takes
the static-sized CF as a database such that each bucket is a database record
in PIR. Updates to the CF do not increase the number of buckets NCF, only their
contents and the CF’s load factor, which indicates the occupancy level of the
filter. Thanks to our protocol’s underlying data structure, CFs, we can simplify
the approach in [51] by only considering bucket changes, i.e., in-place edits. With
this strategy, the server applies updates to the CF and sends the corresponding
bucket index idx and content change ∆ to the client. The client updates all set

12 L. Hetz et al.

(a) Daily percentage of CF insertions that
caused reinsertions displayed in blue.

(b) Daily number of CF reinsertions for
the given updates.

Fig. 2: Simulation of updates to a CF for database size |DB| = 231, NCF = 230 CF
buckets, and a change rate of CR = 0.1%/day.

parities that contain idx by adding the received change, i.e., p← p⊕∆. While
this approach seems straightforward, there is one caveat with the use of CFs:
an insertion to the CF can cause a chain of reinsertions where every affected
bucket changes and is thus another in-place edit, which potentially increases this
strategy’s communication cost a lot.

To better understand the impact of reinsertions to the CF, we simulate the
growing user base of messengers by inserting a certain percentage CR of the
initial database size |DB| to the CF over multiple days. Our simulation shows
that more than 80% of CF insertions are immediately successful during the first
days. This number decreases with an increasing load factor α, and at α ≈ 0.92
insertions start to fail – independent of the change rate CR. Thus, in the following,
we focus on the finer-grained change rate of 0.1% for a detailed analysis of how
many positions in the CF must be changed over time.

In Fig. 2a, we give the daily percentage of insertions that initially failed and
thus caused reinsertions. We see polynomial growth in the number of reinsertions
with increasing load factor in Fig. 2b. With a decreasing number of empty slots,
more reinsertions are necessary to insert an item, decreasing the filter’s perfor-
mance. Our simulation shows that most insertions require only few reinsertions
to be successful, even when the CF is almost full, however, the number of long
reinsertion chains is significantly increasing. We calculate the communication cost
of updates based on our simulation (cf. Tab. 2). Transmitting the in-place edits
of a single bucket requires bucket size + index length bit, here 128bit, with an
average of 13.52MiB/day for |DB| = 231, CR = 0.1, and 30 days.

Updates via in-place edits allow the client to update their already stored hints
and to run the PIR protocol on the original CF. The daily download cost of CF
updates is thus the only additional cost to our PSI protocol. The server-side com-
putation of CF updates is client-independent and requires only XOR operations.
In comparison, the client-side hint updates require higher computational costs
as all set keys must be evaluated to identify sets with updated indices. Thus,

Scaling Mobile Private Contact Discovery to Billions of Users 13

Table 2: Comparison of average update communication costs per day consider-
ing |DB| = 231, |X| = 210. Best results marked in bold.

Update Strategies ∅ Comm. / day [MiB]

0.1%/day 0.5%/day 1.0%/day
1 day 30 days 1 day 30 days 1 day 30 days

In-place edits (Ours, § 4.3) [51] 12.24 13.52 62.05 107.77 126.23 486.37
Additional database (Ours, § 4.3) [23, 32] 2.90 2.90 5.63 5.63 7.65 7.65
Additional database (PK-based PSI) [52, 19] 65.60 65.54 327.74 327.68 655.42 655.36

the update procedure can either be applied at once or during the regular online
phase (which requires more client storage).

Additional Update Database. Next to updates to the PIR database, we
evaluate the strategy of incremental contact discovery [23, 32], where updates
are stored in an additional smaller database on which another PSI instance is
run. The client then has to query each of their contacts on the original and the
update database. With our PSI protocol, communication and client storage of
updates require less than 3MiB per day for |X| = 210 contacts with a change
rate of CR = 0.1%/day for |DB| = 231.

We also evaluate the cost of running a simple public key (PK)-based PSI pro-
tocol [52, 19] due to its trivial implementation and reasonable communication cost
as well as computational efficiency for smaller set sizes [35]. However, this turns
out to be significantly less efficient for the considered growth rates (cf. Tab. 2).
With less updates and smaller set sizes, PK-based PSI and the state-of-the-art
balanced PSI protocols could be more efficient though.

Comparison & Privacy Considerations. We compare the proposed update
methods in Tab. 2. Clearly, combining our PIR-based PSI protocol with the
incremental contact discovery strategy of [23, 32] is the most efficient solution.
We note that updates via in-place edits leak some information to the client
about the server’s change rate. Likewise, the size of additional update databases
clearly indicates this value. Also, when the client repeats the online phase of the
protocol for new contacts, this leaks information to the server about the number
of changes experienced by the client. Such information leakage can be prevented
using dummy insertions and dummy queries.

5 Evaluation
We implemented our protocol in C++ and Go (based on the implementations
of [43] and [46]) and describe our evaluation for large-scale set parameters
next. Our implementation supports multi-threading on partition level for clients
and servers, and introduces optimizations that reduce the client setup time by
factor 2.8× over [46] (cf. § 5.2). As described in § 4.1, database partitioning
is implemented to circumvent hardware and computational limitations of the
underlying PIR protocol for large database sizes. For enhanced reproducability,
the server-side implementation is containerized.

14 L. Hetz et al.

5.1 Experimental Setup

To meet the requirements of large-scale messengers, we evaluate server database
sizes |DB| ∈ {228, 231} and client contact list sizes |X| ∈ {1, 210}. The client is
a OnePlus 8T smartphone with Snapdragon 865 octa-core CPU (1x2.84GHz
Cortex-A77, 3x2.42GHz Cortex-A77, 4x1.80GHz Cortex-A55) and 12GiB RAM.
Our protocol requires two servers that we set up as Linux VMs on a KVM
host with two Intel Xeon Gold 6144 CPUs @ 3.50GHz. Each VM has 8 logical
cores (mapped to 4 physical ones) and 128GiB RAM. In the multi-threaded
benchmarks, denoted with T=4/8, the server uses 4 and the mobile client 8
threads. The number of threads is based on the number of available physical
cores as we did not see sufficient performance increase on the server side when
putting all logical cores under maximum load.

We consider two network settings: WiFi with 566MBit/s down-/upload speed
and 12.4ms RTT, and LTE with 30MBit/s down-/upload speed and 49.3ms RTT.
The settings are simulated in a real WiFi network by limiting bandwidth and
introducing delay using tcconfig [38]. We evaluate the performance of our PSI
protocol for the NR-ECC - and GC-LowMC -OPRF. The OPRF performance was
measured on a single thread, the PIR costs on a single and multiple threads.

We benchmarked the impact of different partition sizes and select the best-
performing size for each database size considering the trade-off between offline
communication and online time.

5.2 Profiling and Optimizations

Via profiling we observed that a bottleneck in the online phase is the client’s
search for a hint/set that contains the desired index, which requires them to
expand each set key until the index is found. The implementation of [46] therefore
adds a precomputation step that accelerates this search significantly by generating
a mapping between database indices and sets. We optimize the runtime of this
client setup by covering not all but only a certain percentage of indices. This
significantly reduces offline costs while the online computational costs increase
only marginally in the rare case that an index is not found in the mapping table.
Considering this trade-off and the requirement of a fast online phase, we use a
threshold of 99.99% for the client preprocessing, reducing the one-time client
setup time by 2.8× compared to [46] (286.78 s for |DB| = 231).

Another bottleneck in the protocol is the required one-time computation
in the setup phase, including the server’s CF creation and client-dependent
preprocessing. With parallelization, we reduce the client-dependent setup costs
significantly by up to 3.8× with T=4/8 over our protocol’s single-threaded setting.

Overall, we achieve a PIR online runtime of less than 1 s for |X| ≤ 210 client
contacts in the WiFi setting and an improvement of up to factor 8.3× with
multiple threads compared to the original single-threaded implementation.

5.3 Comparison to Related Work

We compare our protocol with the state-of-the-art mobile private contact discovery
protocol in [43] and PIR-PSI [23] (cf. § 3).

Scaling Mobile Private Contact Discovery to Billions of Users 15

Table 3: Comparison of runtime and communication costs. Runtimes for [43]
based on our Go implementation’s setup and OPRF results. We set |X|pre = |X|.
Best results marked in bold.
Parameters Base Setup Online

Protocols Time [s] Comm. Time Comm. Time [s] Comm.
[MiB] Server Server [s] Client [s] [MiB] [kiB]|DB| |X| PRF PSI Parameters WiFi LTE [min] (Per-Client) WiFi LTE WiFi LTE

[43] T = 1 0.07 0.29 0.04 590.46 - 3.53 35.79 1 072.14 0.06 0.12 4.05
Ours NPart = 32, T = 1 0.07 0.29 0.04 590.46 216.47 109.63 129.57 66.00 0.83 5.23 38.79NR-ECC
Ours NPart = 32, T=4/8 0.07 0.29 0.04 590.46 63.71 35.26 57.76 66.00 0.39 0.76 38.79

[43] T = 1 0.09 0.36 0.06 33.26 - 3.53 35.79 1 072.14 0.04 0.07 2.02
Ours NPart = 32, T = 1 0.09 0.36 0.06 33.26 216.47 109.63 129.57 66.00 0.81 5.18 36.76

1

GC-LowMC
Ours NPart = 32, T=4/8 0.09 0.36 0.06 33.26 63.71 35.26 57.76 66.00 0.37 0.71 36.76

[43] T = 1 0.15 0.52 2.04 590.46 - 3.53 35.79 1 072.14 2.20 2.29 4 145.00
Ours NPart = 32, T = 1 0.15 0.52 2.04 590.46 216.47 109.63 129.57 66.00 5.59 12.17 6 097.25NR-ECC
Ours NPart = 32, T=4/8 0.15 0.52 2.04 590.46 63.71 35.26 57.76 66.00 2.65 3.47 6 097.25

[43] T = 1 1.26 5.39 21.56 33.26 - 3.53 35.79 1 072.14 0.63 1.22 2 064.00
Ours NPart = 32, T = 1 1.26 5.39 21.56 33.26 216.47 109.63 129.57 66.00 4.02 11.10 4 016.25

228

210

GC-LowMC
Ours NPart = 32, T=4/8 1.26 5.39 21.56 33.26 63.71 35.26 57.76 66.00 1.08 2.40 4 016.25

[43] T = 1 0.07 0.29 0.04 4 752.34 - 28.13 285.92 8 576.00 0.06 0.12 4.05
Ours NPart = 64, T = 1 0.07 0.29 0.04 4 752.34 1 988.81 961.48 1 035.53 264.00 1.93 10.78 77.54NR-ECC
Ours NPart = 64, T=4/8 0.07 0.29 0.04 4 752.34 525.09 286.78 392.35 264.00 0.49 1.43 77.54

[43] T = 1 0.09 0.36 0.06 269.82 - 28.13 285.92 8 576.00 0.04 0.07 2.02
Ours NPart = 64, T = 1 0.09 0.36 0.06 269.82 1 988.81 961.48 1 035.53 264.00 1.91 10.73 75.51

1

GC-LowMC
Ours NPart = 64, T=4/8 0.09 0.36 0.06 269.82 525.09 286.78 392.35 264.00 0.47 1.38 75.51

[43] T = 1 0.15 0.52 2.04 4 752.34 - 28.13 285.92 8 576.00 2.20 2.29 4 145.00
Ours NPart = 64, T = 1 0.15 0.52 2.04 4 752.34 1 988.81 961.48 1 035.53 264.00 8.31 21.50 6 801.49NR-ECC
Ours NPart = 64, T=4/8 0.15 0.52 2.04 4 752.34 525.09 286.78 392.35 264.00 2.94 4.68 6 801.49

[43] T = 1 1.26 5.39 21.56 269.82 - 28.13 285.92 8 576.00 0.63 1.22 2 064.00
Ours NPart = 64, T = 1 1.26 5.39 21.56 269.82 1 988.81 961.48 1 035.53 264.00 6.75 20.43 4 720.49

231

210

GC-LowMC
Ours NPart = 64, T=4/8 1.26 5.39 21.56 269.82 525.09 286.78 392.35 264.00 1.37 3.61 4 720.49

Mobile Private Contact Discovery [43] (Tab. 3). Our protocol replaces
the costly CF download in [43] – including its communication cost linear in
the database size – with a more communication-efficient PIR protocol. We give
the benchmark results of these protocols for NR-ECC-OPRF and GC-LowMC-
OPRF in Tab. 3. Since both protocols have the same OPRF and CF setup
costs, we report these based on our Go implementation and calculate the CF
transmission time in the setup phase of [43] based on our connection speeds. With
our PIR-based protocol, we achieve total communication costs of 272.68MiB
for |DB| = 231, NPart = 64, and |X| = 210 (cf. Tab. 3). This is an improvement
by factor 32× compared to ≈8GiB in [43] at only marginally higher runtimes.

PIR-PSI [23] (Tab. 4). We further compare our protocol implementation
with PIR-PSI based on the results in [23, Tab. 2]. The authors of [23] evaluate
their performance on a single server with two 18-core Intel Xeon E5-2699 CPUs
at 2.30GHz, 156GiB RAM, and simulated LAN setting with 10GB/s bandwidth
and 0.02ms RTT. In comparison, our results are obtained in our WiFi setting
using a mobile client and two virtual servers with fewer cores, i.e., 8 vs 18 per
machine, and less RAM. Our comparison in Tab. 4 excludes the OPRF costs
of our protocol as these would also have to be applied to [23] to strengthen
their protocol’s non-collusion assumption. As server setup costs are not reported
in [23], we exclude them from this comparison.

We compare the runtimes for both protocols using a single (T=1) and multiple
threads (T=4/8) in Tab. 4. While PIR-PSI does not require an offline phase,

16 L. Hetz et al.

Table 4: Comparison to PIR-PSI [23]. Results for PIR-PSI are from [23, Tab.
2] with parameters block size b and β = c · |DB|/ log2(|DB|) bins, where c is
a scaling factor. The protocols are compared in a single- (T=1) and multi-
threading (T=4/8) setting. Best results in the online phase are marked in bold.

Parameters Offline Online

|DB| |X| Protocols Time [s] Comm. Time [s] Comm.
PSI Param. T=1 T=4/8 [MiB] T=1 T=4/8 [kiB]

[23] c = 1, b = 32 - - - 1.21 - 30.721 Ours NPart = 32 326.10 98.97 66.00 0.77 0.33 34.74

[23] c = 0.25, b = 1 - - - 33.02 13.22 5 048.32
[23] c = 4, b = 16 - - - 4.07 1.60 28 979.20

228

210

Ours NPart = 32 326.10 98.97 66.00 3.39 0.45 1 952.25

marked with “–”, our protocol has client-dependent one-time costs, which can be
amortized over all online queries. The DPF-PIR protocol [10, 11] used in PIR-PSI
requires online computation linear in the database size, whereas OO-PIR [46]
in our protocol has sublinear complexity. For |DB| = 228, our implementation’s
online runtime is significantly faster for single- and multi-threading, especially
considering the hardware and network limitations in our setting. We expect the
benefit of our protocol’s low online costs to become even more visible for larger
database sizes (|DB |= 231), for which PIR-PSI does not report results.

FHE-based PSI [15]. The authors of [15] consider their protocol for the use
case of mobile private contact discovery and acknowledge increasing hardware
requirements for large-scale database sizes. Based on their recommendation to
partition the database, as done in our work, their protocol has 76.2MiB online
communication for |DB| = 231, |X| = 210. Our protocol requires 16.5× less
online communication – only 4.61MiB per online phase – but has additional
one-time offline costs, which amortize over many queries. Based on [15, Tab. 2],
the runtimes for a single partition of size 228 with T=24 threads are 2 487 s offline
and 4.54 s online, which is significantly higher than those of our work. These
additional costs, and the lack of a mobile implementation, currently hinder the
use of FHE-based protocols for mobile private contact discovery.

6 Conclusion

In this work, we proposed a new communication-efficient unbalanced PSI pro-
tocol by combining and further optimizing OPRF-based unbalanced PSI [43]
with two-server PIR [46]. With this, we take big steps towards practicality of large-
scale mobile private contact discovery. While our protocol achieves a significant
reduction in communication and thus outperforms the state-of-the-art proto-
col mobile private contact discovery [43] in this regard, the client-dependent setup
and update costs are still limiting factors for real-world practicality with large-
scale messengers. Continuing research on PIR protocols with client-independent
preprocessing is thus a crucial area of future work.

Scaling Mobile Private Contact Discovery to Billions of Users 17

Acknowledgements
This project received funding from the European Research Council (ERC) under
the European Union’s Horizon 2020 research and innovation program (grant
agreement No. 850990 PSOTI). It was co-funded by the Deutsche Forschungs-
gemeinschaft (DFG) within SFB 1119 CROSSING/236615297 and GRK 2050
Privacy & Trust/251805230.

References
1. Albrecht, M.R., Rechberger, C., Schneider, T., Tiessen, T., Zohner, M.: Ciphers for

MPC and FHE. In: EUROCRYPT (2015)
2. Ali, A., Lepoint, T., Patel, S., Raykova, M., Schoppmann, P., Seth, K., Yeo, K.:

Communication-computation trade-offs in PIR. In: USENIX Security (2021)
3. Angel, S., Chen, H., Laine, K., Setty, S.T.V.: PIR with compressed queries and

amortized query processing. In: S&P (2018)
4. Apple, Google: Exposure Notification Privacy-preserving Analytics (ENPA) White

Paper. https://covid19-static.cdn-apple.com/applications/covid19/current/static/
contact-tracing/pdf/ENPA_White_Paper.pdf (2021)

5. Asharov, G., Lindell, Y., Schneider, T., Zohner, M.: More efficient oblivious transfer
extensions with security for malicious adversaries. In: EUROCRYPT (2015)

6. Beimel, A., Ishai, Y., Malkin, T.: Reducing the servers computation in private
information retrieval: PIR with preprocessing. In: CRYPTO (2000)

7. Bloom, B.H.: Space/Time trade-offs in hash coding with allowable errors. Commun.
ACM 13(7) (1970)

8. Boneh, D., Boyle, E., Corrigan-Gibbs, H., Gilboa, N., Ishai, Y.: Lightweight tech-
niques for private heavy hitters. In: S&P (2021)

9. Borrello, P., Kogler, A., Schwarzl, M., Lipp, M., Gruss, D., Schwarz, M.: ÆPIC leak:
Architecturally leaking uninitialized data from the microarchitecture. In: USENIX
Security (2022)

10. Boyle, E., Gilboa, N., Ishai, Y.: Function secret sharing. In: EUROCRYPT (2015)
11. Boyle, E., Gilboa, N., Ishai, Y.: Function secret sharing: Improvements and exten-

sions. In: CCS (2016)
12. Bui, D., Couteau, G.: Improved private set intersection for sets with small entries.

In: PKC (2023)
13. Chen, H., Huang, Z., Laine, K., Rindal, P.: Labeled PSI from fully homomorphic

encryption with malicious security. In: CCS (2018)
14. Chen, H., Laine, K., Rindal, P.: Fast private set intersection from homomorphic

encryption. In: CCS (2017)
15. Cong, K., Moreno, R.C., da Gama, M.B., Dai, W., Iliashenko, I., Laine, K., Rosen-

berg, M.: Labeled PSI from homomorphic encryption with reduced computation
and communication. In: CCS (2021)

16. Corrigan-Gibbs, H., Boneh, D.: Prio: Private, robust, and scalable computation of
aggregate statistics. In: NSDI (2017)

17. Corrigan-Gibbs, H., Henzinger, A., Kogan, D.: Single-server private information
retrieval with sublinear amortized time. In: EUROCRYPT (2022)

18. Corrigan-Gibbs, H., Kogan, D.: Private information retrieval with sublinear online
time. In: EUROCRYPT (2020)

19. Cristofaro, E.D., Gasti, P., Tsudik, G.: Fast and private computation of cardinality
of set intersection and union. In: CANS (2012)

20. Cristofaro, E.D., Tsudik, G.: Practical private set intersection protocols with linear
complexity. In: FC (2010)

https://covid19-static.cdn-apple.com/applications/covid19/current/static/contact-tracing/pdf/ENPA_White_Paper.pdf
https://covid19-static.cdn-apple.com/applications/covid19/current/static/contact-tracing/pdf/ENPA_White_Paper.pdf

18 L. Hetz et al.

21. Cui, J., Yu, J.Z., Shinde, S., Saxena, P., Cai, Z.: SmashEx: Smashing SGX enclaves
using exceptions. In: CCS (2021)

22. Davidson, A., Pestana, G., Celi, S.: FrodoPIR: Simple, scalable, single-server private
information retrieval. PETS (2023)

23. Demmler, D., Rindal, P., Rosulek, M., Trieu, N.: PIR-PSI: Scaling private contact
discovery. PETS (2018)

24. Eppstein, D.: Cuckoo filter: Simplification and analysis. In: SWAT (2016)
25. Facebook, Inc. (FB): First Quarter 2020 Results Conference Call.

https://s21.q4cdn.com/399680738/files/doc_financials/2020/q1/Q1’
20-FB-Earnings-Call-Transcript.pdf (2020)

26. Fan, B., Andersen, D.G., Kaminsky, M., Mitzenmacher, M.: Cuckoo filter: Practically
better than bloom. In: CoNEXT (2014)

27. Freedman, M.J., Ishai, Y., Pinkas, B., Reingold, O.: Keyword search and oblivious
pseudorandom functions. In: TCC (2005)

28. Garimella, G., Pinkas, B., Rosulek, M., Trieu, N., Yanai, A.: Oblivious key-value
stores and amplification for private set intersection. In: CRYPTO (2021)

29. Ghosh, S.: Facebook probably has your phone number, even if you never shared
it. Now it has a secret tool to let you delete it. https://www.businessinsider.com/
facebook-has-hidden-tool-to-delete-your-phone-number-email-2022-10 (2022)

30. Gong, T., Henry, R., Psomas, A., Kate, A.: More is merrier in collusion mitigation.
CoRR arXiv:2305.08846 (2022)

31. Günther, D., Heymann, M., Pinkas, B., Schneider, T.: GPU-accelerated PIR with
client-independent preprocessing for large-scale applications. In: USENIX Security
(2022)

32. Hagen, C., Weinert, C., Sendner, C., Dmitrienko, A., Schneider, T.: All the numbers
are US: Large-scale abuse of contact discovery in mobile messengers. In: NDSS
(2021)

33. Hagen, C., Weinert, C., Sendner, C., Dmitrienko, A., Schneider, T.: Contact dis-
covery in mobile messengers: Low-cost attacks, quantitative analyses, and efficient
mitigations. TOPS (2023)

34. Hazay, C., Lindell, Y.: Efficient protocols for set intersection and pattern matching
with security against malicious and covert adversaries. Journal of Cryptology (2010)

35. Heinrich, A., Hollick, M., Schneider, T., Stute, M., Weinert, C.: PrivateDrop:
Practical privacy-preserving authentication for Apple AirDrop. In: USENIX Security
(2021)

36. Henry, R.: Polynomial batch codes for efficient IT-PIR. PETS (2016)
37. Henzinger, A., Hong, M.M., Corrigan-Gibbs, H., Meiklejohn, S., Vaikuntanathan,

V.: One server for the price of two: Simple and fast single-server private information
retrieval. In: USENIX Security (2023)

38. Hombashi, T.: Tcconfig. https://github.com/thombashi/tcconfig (2022)
39. Internet Security Research Group: ISRG Prio Services for Preserving Privacy in

COVID-19 EN Apps. https://divviup.org/blog/prio-services-for-covid-en/ (2021)
40. Internet Security Research Group: Divvi Up. https://divviup.org/ (2023)
41. Ion, M., Kreuter, B., Nergiz, A.E., Patel, S., Saxena, S., Seth, K., Raykova, M.,

Shanahan, D., Yung, M.: On deploying secure computing: Private intersection-sum-
with-cardinality. In: EuroS&P (2020)

42. Ishai, Y., Kushilevitz, E., Ostrovsky, R., Sahai, A.: Batch codes and their applica-
tions. In: STOC (2004)

43. Kales, D., Rechberger, C., Schneider, T., Senker, M., Weinert, C.: Mobile private
contact discovery at scale. In: USENIX Security (2019)

https://s21.q4cdn.com/399680738/files/doc_financials/2020/q1/Q1'20-FB-Earnings-Call-Transcript.pdf
https://s21.q4cdn.com/399680738/files/doc_financials/2020/q1/Q1'20-FB-Earnings-Call-Transcript.pdf
https://www.businessinsider.com/facebook-has-hidden-tool-to-delete-your-phone-number-email-2022-10
https://www.businessinsider.com/facebook-has-hidden-tool-to-delete-your-phone-number-email-2022-10
https://github.com/thombashi/tcconfig
https://divviup.org/blog/prio-services-for-covid-en/
https://divviup.org/

Scaling Mobile Private Contact Discovery to Billions of Users 19

44. Keller, M., Orsini, E., Scholl, P.: Actively secure OT extension with optimal overhead.
In: CRYPTO (2015)

45. Kiss, Á., Liu, J., Schneider, T., Asokan, N., Pinkas, B.: Private set intersection for
unequal set sizes with mobile applications. PETS (2017)

46. Kogan, D., Corrigan-Gibbs, H.: Private blocklist lookups with checklist. In: USENIX
Security (2021)

47. Kolesnikov, V., Kumaresan, R., Rosulek, M., Trieu, N.: Efficient batched oblivious
PRF with applications to private set intersection. In: CCS (2016)

48. Lazzaretti, A., Papamanthou, C.: Single server PIR with sublinear amortized time
and polylogarithmic bandwidth. ePrint 2022/081 (2022)

49. Li, L., Pal, B., Ali, J., Sullivan, N., Chatterjee, R., Ristenpart, T.: Protocols for
checking compromised credentials. In: SIGSAC (2019)

50. Liu, J., Li, J., Wu, D., Ren, K.: PIRANA: Faster multi-query PIR via constant-
weight codes. ePrint 2022/1401 (2022)

51. Ma, Y., Zhong, K., Rabin, T., Angel, S.: Incremental Offline/Online PIR. In:
USENIX Security (2022)

52. Meadows, C.A.: A more efficient cryptographic matchmaking protocol for use in
the absence of a continuously available third party. In: S&P (1986)

53. Menon, S.J., Wu, D.J.: SPIRAL: Fast, high-rate single-server PIR via FHE compo-
sition. In: S&P (2022)

54. Mughees, M.H., Chen, H., Ren, L.: OnionPIR: Response efficient single-server PIR.
In: CCS (2021)

55. Mughees, M.H., Ren, L.: Vectorized batch private information retrieval. S&P (2023)
56. Naor, M., Reingold, O.: Number-theoretic constructions of efficient pseudo-random

functions. Journal of ACM 51(2) (2004)
57. Nevo, O., Trieu, N., Yanai, A.: Simple, fast malicious multiparty private set inter-

section. In: CCS (2021)
58. Olson, P.: Facebook Closes $19 Billion WhatsApp Deal. https://www.forbes.com/

sites/parmyolson/2014/10/06/facebook-closes-19-billion-whatsapp-deal/ (2014)
59. Peikert, C., Vaikuntanathan, V., Waters, B.: A framework for efficient and compos-

able oblivious transfer. In: CRYPTO (2008)
60. Pinkas, B., Schneider, T., Segev, G., Zohner, M.: Phasing: Private set intersection

using permutation-based hashing. In: USENIX Security (2015)
61. Pinkas, B., Schneider, T., Smart, N.P., Williams, S.C.: Secure two-party computation

is practical. In: AC (2009)
62. Pinkas, B., Schneider, T., Zohner, M.: Scalable private set intersection based on

OT extension. TOPS (2018)
63. Raab, M., Steger, A.: "Balls into Bins" - A simple and tight analysis. In: RANDOM

(1998)
64. Ragab, H., Milburn, A., Razavi, K., Bos, H., Giuffrida, C.: CrossTalk: Speculative

data leaks across cores are real. In: S&P (2021)
65. Raghuraman, S., Rindal, P.: Blazing fast PSI from improved OKVS and subfield

VOLE. In: CCS (2022)
66. Resende, A.C.D., Aranha, D.F.: Faster unbalanced private set intersection. In: FC

(2018)
67. Rindal, P., Schoppmann, P.: VOLE-PSI: Fast OPRF and circuit-PSI from vector-

OLE. In: EUROCRYPT (2021)
68. Shi, E., Aqeel, W., Chandrasekaran, B., Maggs, B.M.: Puncturable pseudorandom

sets and private information retrieval with near-optimal online bandwidth and time.
In: CRYPTO (2021)

https://www.forbes.com/sites/parmyolson/2014/10/06/facebook-closes-19-billion-whatsapp-deal/
https://www.forbes.com/sites/parmyolson/2014/10/06/facebook-closes-19-billion-whatsapp-deal/

20 L. Hetz et al.

69. Thomas, K., Pullman, J., Yeo, K., Raghunathan, A., Kelley, P.G., Invernizzi, L.,
Benko, B., Pietraszek, T., Patel, S., Boneh, D., Bursztein, E.: Protecting accounts
from credential stuffing with password breach alerting. In: USENIX Security (2019)

70. Trieu, N., Shehata, K., Saxena, P., Shokri, R., Song, D.: Epione: Lightweight contact
tracing with strong privacy. IEEE Data Eng. Bull. 43(2) (2020)

71. Troy Hunt: Have I Been Pwned: Check if your email has been compromised in a
data breach. https://haveibeenpwned.com/ (2023)

72. van Schaik, S., Minkin, M., Kwong, A., Genkin, D., Yarom, Y.: CacheOut: Leaking
data on intel CPUs via cache evictions. In: S&P (2021)

73. Yao, A.C.C.: How to generate and exchange secrets (extended abstract). In: FOCS
(1986)

74. Yeo, K.: Lower bounds for (batch) PIR with private preprocessing. In: EUROCRYPT
(2023)

75. Zhou, M., Lin, W.K., Tselekounis, Y., Shi, E.: Optimal single-server private infor-
mation retrieval. In: EUROCRYPT (2023)

https://haveibeenpwned.com/

Scaling Mobile Private Contact Discovery to Billions of Users 21

Appendix
A PIR Survey

In Tab. 5, we summarize our survey of recent PIR protocols for their use in OPRF-
based PSI based on which we selected the OO-PIR by Kogan and Corrigan-
Gibbs [46].

Table 5: Surveyed PIR protocols for OPRF-based PSI. Complexities are simplified.
We distinguish between client C’s and server(s) S’s computational costs where
possible. Table entries are left empty when complexities are not clear from the
original paper or related work.

Offline Online

Comp. Comm. Comp. Comm.

n Protocol

A
ss

um
pt

io
n

P
re

pr
oc

es
si

ng

U
pd

at
ab

lit
y

B
at

ch
in

g
Im

pl
em

en
ta

ti
on

C S C S

SealPIR [3] RLWE ✓ ✗ ✓ ✓ - N - N dN1/d

MulPIR [2] RLWE ✓ ✗ ✓ ✓ - N - dN1/d

[55] RLWE ✓‡ ✗ ✓ ✓ - N - B/pN
2/d
B BN

1/d
B /p

Spiral (family) [53] RLWE ✓ ✗ ✓ ✓ - N logN
PIRANA [50] RLWE ✓ ✗ ✓ ✓ - N N/M N/M N/M

[18] LWE ✓† ✗ ✗ ✗
√
N N

√
N

√
N

√
N

OnionPIR [54] RLWE ✓† ✗ ✓ ✓ N N N N N

[48] LWE ✓† ✗ ✗ ✗ N N N
√
N

√
N

√
N

[75] LWE ✓† ✗ ✓ ✗ N
√
N

√
N

√
N 1

[17] RLWE ✓† ✗ ✓ ✗ N N N N N N

SimplePIR [37] LWE ✓†‡ ✓ ✓ ✓ N/M N
√
N N

√
N

DoublePIR [37] LWE ✓†‡ ✓ ✓ ✓ N d2l
√
N

1

FrodoPIR [22] LWE ✓†‡ ✓ ✓ ✓ N N 1 N 1 N

DPF-PIR [10] OWF ✗ - ✓ ✓ - - - logN N n logN

CIP-PIR [31] OWF ✓‡ ✓‡ ✓ ✓ - N -
√

N/n N/n n
√

N/n

[18] OWF ✓† ✗ ✗ ✗
√
N N

√
N

√
N

√
N n logN

[46] OWF ✓† ✓¶ ✓ ✓⋆
√
N N

√
N

√
N

√
N n logN

[68] LWE ✓† ✗ ✓ ✗
√
N N

√
N

√
N

√
N n logN

iCK [51] OWF ✓† ✓∥ ✓ ✓
√
N N

√
N

√
N

√
N n

√
N

2+

iSACM [51] LWE ✓† ✓∥ ✓ ✓
√
N N

√
N

√
N

√
N n

√
N

Database size N , number of servers n, plaintext size p, lattice dimension dl, database
hypercube dimension d, encryption parameter M , number of buckets B and bucket
size NB , † Stateful / offline-online, ‡ client-independent, ¶ waterfall updates, ∥

in-place edits, ⋆ includes mobile implementation.

	Scaling Mobile Private Contact Discovery to Billions of Users0.5em

