
Subversion-Resilient Authenticated Encryption
without Random Oracles

Pascal Bemmann1, Sebastian Berndt2, Denis Diemert1, Thomas Eisenbarth2,
Tibor Jager1

1 Bergische Universität Wuppertal, Wuppertal, Germany
{bemmann, diemert, tibor.jager}@uni-wuppertal.de
2 Universität zu Lübeck, Lübeck, Germany {s.berndt,

thomas.eisenbarth}@uni-luebeck.de

Abstract. In 2013, the Snowden revelations have shown subversion of
cryptographic implementations to be a relevant threat. Since then, the
academic community has been pushing the development of models and
constructions to defend against adversaries able to arbitrarily subvert
cryptographic implementations. To capture these strong capabilities of
adversaries, Russell, Tang, Yung, and Zhou (CCS’17) proposed CPA-
secure encryption in a model that utilizes a trusted party called a watch-
dog testing an implementation before use to detect potential subver-
sion. This model was used to construct subversion-resilient implemen-
tations of primitives such as random oracles by Russell, Tang, Yung,
and Zhou (CRYPTO’18) or signature schemes by Chow et al. (PKC’19)
but primitives aiming for a CCA-like security remained elusive in any
watchdog model. In this work, we present the first subversion-resilient
authenticated encryption scheme with associated data (AEAD) with-
out making use of random oracles. At the core of our construction are
subversion-resilient PRFs, which we obtain from weak PRFs in combi-
nation with the classical Naor–Reingold transformation. We revisit clas-
sical constructions based on PRFs to obtain subversion-resilient MACs,
where both tagging and verification are subject to subversion, as well as
subversion-resilient symmetric encryption in the form of stream ciphers.
Finally, we observe that leveraging the classical Encrypt-then-MAC ap-
proach yields subversion-resilient AEAD. Our results are based on the
trusted amalgamation model by Russell, Tang, Yung, and Zhou (ASI-
ACRYPT’16) and the assumption of honest key generation.

Keywords: Subversion · Authenticated Encryption · Symmetric Cryp-
tography

1 Introduction

While many cryptographic primitives nowadays have sound security proofs based
on widely believed complexity-theoretic assumptions implementing these prim-
itives securely is highly non-trivial as many possible attacks are not captured
by the formal security models. For example, a malicious party can intentionally

embed a covert channel into an implementation of a cryptographic application.
This kind of subversion is widely known as kleptography or algorithm substitution
attacks (ASAs) and was first studied by Young and Yung [42].

The most prominent real-world example is the modification of the Dual_EC

pseudorandom number generator [40] by the NSA. This pseudorandom genera-
tor involves two constants P and Q. If these constants are chosen independently,
Dual_EC is secure [16], but the designer of the implementation (or the standard)
can easily construct two dependent constants P and Q allowing them to recon-
struct the state. We refer to the work of Checkoway et al. [19] for a more in-depth
discussion. While the possibility of a backdoor due to [40] has been known since
2007, it was not known whether such backdoors would be used by law enforce-
ment agencies such as the NSA. This changed with the revelation of internal
NSA documents by Edward Snowden in 2013. These documents explicitly talk
about Project Bullrun, where resources are used to “Insert vulnerabilities into
commercial encryption systems, IT systems, networks, and endpoint communi-
cations devices used by targets.” and “Influence policies, standards, and specifi-
cations for commercial public key technologies.” [34]. These revelations reignited
the interest in subversion attacks with the work by Bellare, Paterson, and Rog-
away [10]. In general, the subverter A of a primitive Π has two roles: First, they

provide a subverted implementation denoted by Π̃. Second, they participate in
the usual security experiment and aim to break the security guarantees provided
by the unsubverted implementation of Π.

1.1 Subversion-Resilience Models

While many different subversion attacks were studied in different scenarios, the
universal stateless attack by Bellare, Jaeger, and Kane [7] showed that it is
impossible to prevent subversion attacks against symmetric encryption schemes
without additional assumptions. Later, this impossibility result was extended by
Berndt and Lískiewicz [12] to also hold for all randomized algorithms. To circum-
vent these impossibility results different models were used. Here, we focus on the
most prominent models, which are cryptographic reverse firewalls, self-guarding
schemes, the immunization model, and the watchdog model. We emphasize that
these models seem incomparable as they rely on different assumptions. Each
use case requires a careful investigation of which model reflects the considered
setting best.

Cryptographic reverse firewalls. Mironov and Stephens-Davidowitz [32] in-
troduced cryptographic reverse firewalls. In this model a third party called fire-
wall resides between the communicating parties involved in a cryptographic pro-
tocol. These firewalls “sanitize” the communication between the parties, usually
by rerandomizing the messages sent by the parties. As the firewalls are modeled
as non-subverted algorithms, this prevents leakage of sensitive information by
the subverted implementation. An important feature of these firewalls is the fact
that they do not have access to the secret keys of the parties and do not “provide
security”, i.e., they do not help non-subverted implementations in achieving se-
curity objectives. As described above, the typical approach for reverse firewalls

2

is to rerandomize the communication, see, for example, [4,17,18,20,25,32]. Even
though many cryptographic primitives allow for rerandomization, primitives that
aim for authenticity do not allow this. To still guarantee subversion-resilience in
the firewall model, one needs to revert to strong assumptions. For example,
Mironov and Stephens-Davidowitz [32] either make use of a symmetric bilin-
ear map where the inverse computational Diffie–Hellman assumption, which is
strictly stronger than the computational Diffie–Hellman assumption [32], holds
or need a strongly rerandomizable asymmetric encryption scheme, for which no
candidate is currently known. This allows them to design IND-CCA-secure pro-
tocols. Alternatively, Bossuat et al. [15] equip the reverse firewall with a key
shared with both endpoints it aims to protect, which deviates from the standard
assumptions described above.

Self-guarding schemes. Fischlin and Mazaheri [27] introduced the notion of
self-guarding schemes that split each scheme into an initialization phase and a
computation phase. Here, the initialization phase is supposed to be unsubverted,
and thus outputs produced during that phase can be used to sanitize the output
of the possibly subverted computation phase.

Immunization. Dodis, Ganesh, Golovnev, Juels and Ristenpart [24] formalized
an immunization model for pseudorandom generators, where an immunization
function is applied to the output of the generator. Depending on the knowl-
edge of the subverter about this function, the authors show different approaches
for choose the immunization function in such a way that the output of the sub-
verted pseudorandom generator is indistinguishable from the output of an honest
pseudorandom generator. In both the semi-private and the private model, the
authors were able to construct such functions.

Watchdog model. Bellare, Paterson, and Rogaway [10] introduced a model
in which a trusted monitoring party called watchdog3 tests a primitive for sub-
version. Russell, Tang, Yung, and Zhou [37] introduced a non-black-box-variant
of this model, called the trusted amalgamation model, where the designer of a
primitive is allowed to split the primitive into different components that each
can individually be checked the watchdog. The complete primitive is then amal-
gamated from these components by the trusted (i.e., not subverted) amalgama-
tion function. This amalgamation function should thus be as simple as possible.
For several cryptographic primitives subversion-resilient constructions were pro-
posed, for example, trapdoor one-way permutations [37], pseudorandom genera-
tors [11, 37], symmetric IND-CPA-encryption schemes [38], hash functions [27],
asymmetric IND-CPA-encryption schemes [11, 38], random oracles [5, 23, 39]4,
signature schemes [21,37], and key encapsulation mechanisms [11].

This paper also uses the trusted amalgamation model, so let us take a closer
look at important details of this model. First, the order of the quantification is
important, as discussed by Russell, Tang, Yung, and Zhou [37]. In the following,
fix some primitive Π. One possibility to define that Π is subversion-resilient is

3 They introduced the concept of detecting subversion rather than a “watchdog”.
4 Note that the proof in [39] contained an error that was later fixed in [13].

3

to demand that for each subverter A, there is a watchdog WD such that either
1) the watchdog WD detects the subversion provided by A or 2) the subverted
implementation provided by A does not weaken the security guarantees. While,
at first glance, this model closely resembles the usual cryptographic security
model, the watchdog now needs to depend on the adversary and, to protect
against multiple different adversaries, all corresponding watchdogs need to be
deployed. A much more desirable solution is to use a single universal watchdog
WD such that every subverter A will be detected by this single watchdog. In
our work, we use simple universal watchdogs that only sample uniformly ran-
dom inputs and check the possibly subverted implementation against the honest
specification.

For simplicity, we assume throughout this work that the attacker always
provides stateless implementations. Similarly to the approach by Russell, Tang,
Yung, and Zhou, we can also allow rewindable stateful implementations [37,
Rem. 2.5]. This means that the watchdog is allowed to rewind the state of the
implementation and test it for various inputs starting from the same state. If
these are not rewindable, time bombs as introduced by Fischlin and Mazaheri [27]
are possible, which seem to be unpreventable by an universal offline watchdog.

1.2 Towards Subversion-Resilient Authenticated Encryption

There has been huge progress over the last years and for many cryptographic
primitives it was shown how to construct them in a subversion-resilient manner.
However, authenticated encryption (AE in the following) where both encryption
and decryption are subject to subversion has not been achieved in an offline
watchdog model. The main challenge in constructing subversion-resilient AE is
protecting the decryption algorithm. This is due to input-trigger attacks, which
cannot be avoided without additional assumptions (such as trusted operations
or the trusted amalgamation model) or using heavy machinery such as random
oracles in a model where the decryption algorithm is modeled as a black box
algorithm.

Russell, Tang, Yung, and Zhou [39] showed how to make random oracles
subversion-resilient. This then leads to subversion-resilient signatures by Chow et
al. [21], where both the signing and verification algorithm can be subverted
while heavily relying on the subversion-resilient random oracle. The authors also
showed how to construct subversion-resilient signatures in the standard model,
where key generation and signing are subverted. While making use of random
oracles may also directly lead to subversion-resilient AE, this work explores the
possibility of achieving this notion without resorting to random oracles.

Another approach to fix subversion without random oracles was proposed by
Ateniese, Francati, Magri, and Venturi [3]. Here, the authors show how to san-
itize deterministic algorithms where all algorithms can be subverted, including
the sanitizer. They present a transformation from an arbitrary algorithm to a
subversion-resilient one. Their approach uses a secret (but tamperable) random
source to generate the keys and the public parameters. However, the results in
[3] only apply to deterministic primitives, for which it is well-known that they do

4

not achieve CPA security. In a setting where the adversary is allowed to freely
choose inputs to its oracles, referred to as unconstrained games in [3], subversion-
resilience is achieved by using an online watchdog, i.e., a watchdog which has
access to transcripts of the considered security experiment. We, on the other
hand, focus on offline watchdogs, which only get oracle access to the subverted
algorithms before the security experiment is executed. As the construction of a
subversion-resilient MAC where both the tagging and the verification algorithms
may be subverted and the adversary chooses the input to its oracle is a crucial
building block in our work, the results of [3] cannot be applied.

Finally, Armour and Poettering showed in a series of works [1, 2] several
attacks on decryption of AEAD and verification of message authentication. Sim-
ilar approaches are used by Russell, Tang, Yung, and Zhou [38] who effectively
rerandomize the inputs to subverted algorithms. Unfortunately, this cannot be
directly applied to decryption/verification, as input trigger attacks cannot be
avoided without assuming that rerandomization is done as a trusted operation.

Hence, we deduced the following main research question of this work:

Is it possible to construct subversion-resilient authenticated encryption without
random oracles in an offline watchdog model while only assuming

non-cryptographic building blocks to be trusted?

In this paper, we answer this question affirmatively.

On the difficulties of constructing subversion-resilient AE. Before we de-
scribe our solution, it is instructive to understand and recognize the difficulties in
constructing subversion-resilient authenticated encryption. The first major ob-
stacle lies in the existence of input trigger attacks, first formalized by Degabriele,
Farshim, and Poettering [22]: Such an attack modifies the underlying algorithm
only on a single, arbitrary input x? called the trigger. Whenever the algorithm is
given x? as input, it deviates from the specification by, e.g., outputting the secret
key. As these triggers are chosen randomly by the attacker, no offline watchdog
can detect the presence of these triggers. Thus, Degabriele, Farshim, and Poet-
tering proposed a solution using an online watchdog. Now, these triggers are nat-
urally connected to security experiments that model a search problem. Namely, in
the final communication step of these experiments, the adversary usually sends
some input which is directly evaluated by the underlying primitive. This direct
transfer of information from the attacker to the primitive leads to trigger at-
tacks, as the attacker can simply choose to submit such a trigger that solves the
search problem. Now, security experiments that aim to secure the authenticity
of information are typically modeled as search problems, where the task of the
attacker is to produce some kind of forgery. Hence, such primitives are quite
vulnerable to trigger attacks. Furthermore, even if one only considers decision
problems, a direct transfer of information from the attacker to the primitive still
allows for the use of input triggers.

5

1.3 Our Contribution

In this work, we show that subversion-resilient AE can be achieved without
the use of random oracles. We use the trusted amalgamation model proposed
by Russell, Tang, Yung, and Zhou [37, 38], which also inspired our work. To
overcome input triggers, we need to avoid search problems and primitives that
take direct input from the adversary. At the core of our construction are weak
PRFs, i.e., PRFs that are only indistinguishable from random only if evaluated
on random inputs. Our main contributions can be summarized as follows.

Weak PRFs are subversion-resilient. We first observe that these weak PRFs
are naturally subversion-resilient, i.e., any implementation is indistinguishable
from random given it passes the watchdog’s check.

Subversion-resisilient PRFs from weak PRFs. As a next step, we use
the classical Naor–Reingold transformation [33] that transforms a weak PRF
into a PRF that can be queried arbitrarily. We prove that the Naor–Reingold
construction also transforms a subversion-resilient weak PRF into a subversion-
resilient PRF. In the context of subversion and the trusted amalgamation model,
the trusted amalgamation applying the Naor–Reingold transformation can thus
be seen as a trusted data structure, as the adversarially chosen inputs are only
used to choose random keys in a trusted manner.

Subversion-resilient AE from PRFs. Given subversion-resilient PRFs, the
classical “PRF-as-MAC” approach also guarantees subversion-resilience by as-
suming canonical verification and a trusted comparison operation. Making use of
subversion-resilient PRFs again, we show that the classical randomized counter
mode is also subversion-resilient assuming a trusted ⊕ operation, which can
even be generalized to stream ciphers. From both a subversion-resilient MAC
and encryption scheme, we then prove that subversion-resilient authenticated
encryption can be achieved via the classical “Encrypt-then-MAC” approach.

1.4 Discussion

Finally, we discuss our contribution and the assumptions we make in this work.

Subversion-resilient AEAD from ROs. Note that given a subversion-resilient
RO, as proposed in [39], one could replace the subversion-resilient PRF in our
work by the RO and would obtain the similar results. However, argueably a
subversion-resilient RO is a much stronger assumption than the existence of a
weak PRF (in the standard model) that we base our results on in this work. To
obtain a subversion-resilient RO, Russell et al. also make use of a trusted XOR
operation and thus also need the same trust-assumptions as we do in our work.

Previous work on subversion-resilient MACs. In previous work, Fischlin,
Janson, and Mazaheri [26] also observed that weak PRFs are a helpful tool to de-
fend against backdoors. They show that a backdoored weak PRF implies a public
key encryption scheme, arguing that the difference in performance can be easily
detected. Further, they show that applying the randomized cascade (RC) con-
struction by Maurer and Tessaro[31] to a weak PRF immunizes HMAC against

6

backdoors. As discussed later, using the RC construction also works for our
construction, but requires to model the used prefix-free encoding as a trusted
building block. Also, while Fischlin, Janson and Mazaheri focus on the prop-
erties of HMAC as a PRF, we focus on the subversion-resilience property of a
MAC and its role in the Encrypt-then-MAC approach. As our model does not
include detection based on the performance time of the subverted algorithm, we
base the security of our construction on the subversion-resilience of weak PRFs.

Honest key generation. Contrary to previous works [21,38] we dismiss model-
ing subversion of key generation as this is typically only an abstraction for some
means to derive a secure key. Even if one can construct key generation that could
be executed by a single party, it is not clear how both parties would end up with
the same key, potentially requiring a secure channel for key transportation. But
to do this, both parties need to participate in a key-exchange protocol, which
usually allows for a wide range of possible subversions (see, e.g., [25,32]). Hence,
our work can be extended by some approach to derive uniform keys.

Weak PRFs. One may think that using weak PRFs instead of “standard”
PRFs may be sufficient. However, it is not clear how to obtain MACs from
(subversion-resilient) weak PRFs, as the security of MACs against forgery at-
tacks are modeled as a search problem. While we would be able to answer all
tagging queries via random queries to the PRF (e.g., via a Carter-Wegman-
style [41] construction), handling the final forgery query is a challenge, as this
query is directly made on the verification algorithm.

Trusted operations. We make use of several trusted operations, as it is not
hard to see that some sort of trusted operations are needed to avoid trig-
ger attacks proposed in previous works [1, 2, 22]. While being necessary, we
aimed to minimize the number of trusted operations. Our approach only uses
a trusted comparison and a trusted XOR. We believe that both of these (non-
cryptographic operations) are simple enough to be either regarded as trusted or
realized in hardware in a trusted manner. Not using a trusted XOR operation
would most likely imply the need for some sort of rerandomization of cipher-
texts before decrypting to remove biases. To the best of our knowledge, there
is no AE scheme fulfilling such a property. Further, a trusted comparison seems
unavoidable as otherwise a verification or decryption algorithm could reject or
accept chosen inputs (since an adversarially chosen input is fed into a subverted
component), as input triggers are again possible.

Relation to immunized PRGs. As described above, Dodis et al. [24] con-
structed subversion-resilient pseudorandom generators in both the semi-private
and the private immunization model. We believe that classical constructions of
PRFs from PRGs such as the one due to Goldreich, Goldwasser, and Micali [28]
can be used to also obtain PRFs in the immunization model. But, while our
constructions rely on an offline watchdog and the amalgamation assumption,
the constructions in the immunization model rely on the fact that parts of the
implementation (i.e., the immunization function) is hidden from the subverter.
These assumptions are orthogonal to each other.

7

2 Subversion-resilience

In this section, we define the notion of subversion-resilience and loosely follow
the approach by Russell, Tang, Yung, and Zhou [37]. Before we define the actual
notions, we first describe our general notation and the overall setting.

2.1 Notation and Model

Notation. Recall that we need to distinguish between the specification of a
primitive Π and the implementation of Π provided by the adversary. To make
the distinction between an honest specification of a primitive Π and a (possibly)
subverted implementation more explicit, we use the following notation through-
out this paper. We denote by Π̂ the specification of the primitive and by Π̃ the
implementation of that primitive provided by the adversary.

A security experiment Exp for a cryptographic primitive Π with security ob-
jective GOAL involves one party, namely the adversary A trying to break the
security objective against Π̂. In contrast, subversion experiment ExpSR is exe-
cuted with an implementation of the considered primitive by the adversary and
consists of three phases involving two parties: In the first phase, the adversary A
provides provides a subverted implementation Π̃. This implementation is then
examined by a watchdog WD that tries to detect the subversion in the second
phase. Finally, in the third phase, the adversary A takes part in the security
experiment, where the subverted implementation is used. In the following, we
always treat A as pair (A0,A1), where A0 provides the subverted implementa-

tion Π̃ and A1 takes part in the security experiment. As usual, we denote the
security parameter by λ.

Amalgamation. As discussed earlier, preventing subversion attack in a purely
black-box way is not possible, as universal undetectable attacks are known,
e.g., by Berndt and Lískiewicz [12]. Russell, Tang, Yung, and Zhou [37] thus in-
troduced a non-black-box model called the trusted amalgamation model. While
a primitive Π = (Π1, . . . ,Πr) usually consists of a few different algorithms,
the trusted amalgamation model splits all of these components into subrou-
tines. For example, an encryption scheme usually consists of r = 3 algorithms
(KGen,Enc,Dec), but these might be composed of several subroutines used in
different places. The trusted amalgamation model makes the use of these sub-
routines more explicit by representing a primitive as the list of subroutines
π = (π1, . . . , πn) and a trusted amalgamation function Am that takes this list and
produces the algorithms corresponding to the primitive. Let us get back to the
example given above, Am(π) = (KGen,Enc,Dec) that consists of subroutines πi.
We will allow the subverter to individually subvert the subroutines πi arbitrarily
by providing implementations π̃i, but assume that the amalgamation function is
not subject to subversion. The security experiment is then played on Π̃ = Am(π̃).
This assumption is usually justified by making this amalgamation function as
simple as possible such that it can be checked automatically. For example, the
amalgamation in the construction of Bemmann, Chen, and Jager [11] and in the

8

constructions of Russell, Tang, Yung, and Zhou [38] only handles inputs and
outputs of different subroutines and makes use of a few XOR operations. In the
following, we thus represent the specification Π̂ of a primitive as Π̂ = (Am, π),
where π = (π1, . . . , πn) is the list of subroutines. We also need to consider the
amalgamation function for a single algorithm Πi of a primitive, which we de-
note by Ami. That is, the amalgamation Am(π) = (Am1(π), . . . ,Amr(π)) actu-
ally consists of a vector of amalgamation functions such that there is a function
for each algorithm of the primitive. As a shortcut, we simply write (Am, Ψ̂) if a

construction uses a subversion-resilient Ψ̂ = (AmΨ , ψ) as a building block.

Split-program model. In addition to trusted amalgamation, Russell, Tang,
Yung, and Zhou [37] also used the split-program methodology. Similar to mod-
ern programming techniques, it is assumed that randomness generation is split
from a randomized algorithm. The randomness generator and the deterministic
algorithm can then be tested individually by the watchdog. We also use this
methodology in our work.

Randomness generation. The constructions in this paper rely on “good” (i.e.,
in particular trusted) randomness being available. For this, either one of the con-
structions proposed by Russell, Tang, Yung, and Zhou [38] or Bemmann, Chen,
and Jager [11] can be used. Both works contain constructions generating ran-
domness that is indistinguishable from random for the adversary providing the
implementation without using random oracles. For this paper, we can use both
constructions. Hence, for simplicity, we abstract away the randomness generation
and assume that our constructions generate uniformly random bits, while being
able to test randomized algorithm on selected random coins. This assumption
allows us to simplify notation and focus on our contributions to enable authen-
tication in the presence of subversion.

2.2 Subversion-Resilience

Next, we define the notion of subversion-resilience. Intuitively, we extend a “con-
ventional” security experiment Exp by a preceding check for subversion of the
primitive. Afterwards, the security experiment is executed. This is illustrated
in Fig. 1. As we study both decision (i.e. indistinguishability) and search (i.e.
unpredictability) problems in this paper, we associate with experiment Exp a
“baseline win probability” denoted by δ that gives the winning probability of a
naive attacker, i.e., δ = 0 for search problems and δ = 1/2 for decision problems.
To extend Exp, we first run A0 to obtain a subverted implementation π̃ (Fig. 1,
l. 1). The watchdog WD then tests the implementation before we run the security

experiment Exp with adversary A1 on the subverted implementation Π̃ = Am(π̃)
as usual (Fig. 1, l. 3). The variable state is only used to synchronize A0 and A1.
Throughout this work we use the convention that the watchdog outputs “true” in
the case that subversion is detected. To formalize subversion-resilience, consider
the next definition and the corresponding security experiment shown in Fig. 1.

Definition 1. A specification of a primitive Π̂ = (Am, π) is GOAL-secure un-
der subversion in the offline watchdog model with trusted amalgamation if one

9

ExpSRGOAL,Π̂
WD,A (1λ)

1 : (π̃, state)
$← A0(1λ)

2 : bWD ←WDπ̃(1λ)

3 : return Exp
GOAL,Am(π̃)

A1(state)
(1λ)

Fig. 1: The security experiment for GOAL-security under subversion.

can efficiently construct a ppt watchdog algorithm WD such that for any ppt
adversary A = (A0,A1) it holds

AdvSRGOAL,Π̂
A (1λ, δ) is negligible or DetWD,A(1λ) is non-negligible

where AdvSRGOAL,Π̂
A (1λ, δ) = |Pr[ExpSRGOAL,Π̂

WD,A (1λ) = 1]−δ| and DetWD,A(1λ) =

|Pr[WDπ̃(1λ) = 1] − Pr[WDπ(1λ) = 1]| using the experiment shown in Fig. 1,
with δ ∈ {0, 12} indicating whether a search or a decision problem is considered.

Note that AdvSRGOAL,Π̂
A (1λ, δ) is not parameterized by the watchdog WD. We

chose this approach to simplify notation, as the testing of the watchdog does
not influence the advantage of the adversary directly. For public key encryption,
this model is not equivalent to the model proposed by Russell, Tang, Yung,
and Zhou [38], where the adversary has access to a subverted encryption oracle.
For symmetric encryption, our more general definition captures theirs with some
differences in syntax.

As mentioned earlier, we assume stateless subversion and that key and ran-
domness generation are trusted. In order to shorten notation, we call primitives
just GOAL-secure under subversion.

2.3 Achieving Subversion-resilience

To prove our upcoming PRF construction subversion-resilient, we use an obser-
vation made by Russell, Tang, Yung, and Zhou [37]. If a deterministic primitive
is only given inputs according to a public distribution and the implementation
deviates from the specification with some probability δ (with inputs chosen ac-
cording to this public input distribution), then a ppt watchdog can detect this
with probability at least δ. Hence, in order to stay undetected, the number of
inputs the implementation deviates from the specification needs to be negligible.

Lemma 1. Consider an implementation Π̃ := (π̃1, . . . , π̃k) of a specification

Π̂ = (π̂1, . . . , π̂k), where π1, . . . , πk are deterministic algorithms. Additionally,
for each security parameter λ, public input distributions X1

λ, . . . , X
k
λ are defined

respectively. If there exists a j ∈ [k] such that Pr[π̃j(x) 6= π̂j(x) : x
$← Xj

λ] = δ,
this can be detected by a ppt offline watchdog with probability at least δ.

10

ExpPRA,F (1λ)

1 : b
$← {0, 1}; K $← Kλ

2 : if b = 1 then b′
$← AF (K,·)(1λ)

3 : else g
$← Func(Dλ,Rλ); b′

$← Ag(·)(1λ)

4 : return b′ == b

ExpwPRA,F (1λ)

1 : b
$← {0, 1}; K $← Kλ

2 : if b = 1 then b′
$← A($,F (K,$))(1λ)

3 : else g
$← Func(Dλ,Rλ); b′

$← A($,g($))(1λ)

4 : return b′ == b

Fig. 2: The security experiment for (weak) PRFs. Here, $ denotes an input ar-
gument chosen uniformly at random from Dλ upon any query issued by the
adversary. Further, if K ∈ Kλ, the oracle F (K, ·) can only be queried on ele-
ments of Dλ.

An instructive example to understand the usefulness of this lemma is the
following. Suppose that we are given a single function f and a probability dis-
tribution X on the domain of f . In an experiment, the adversary can now issue

a query, where x
$← X is drawn and the pairs (x, f(x)) is given to the adversary.

The goal of the adversary is to obtain a sample (x?, f̃(x?)), where x? ∈ X∗ for

some subset X? ⊆ Supp(X) such that f̃(x?) 6= f̂(x?) where Supp(X) is the sub-
set of values the variable X can take. Clearly, if the adversary can only perform
a bounded number of samples, the density of X? wrt. X cannot be arbitrarily
small. But, as the distribution X is publicly known, a watchdog can also sample
according to X and check the implementation f̃ against the specification f̂ on
these samples. Then, it is not hard to see that the adversary wins if the watchdog
distinguishes the implementation from the specification.

3 Pseudorandom Functions

Intuitively, a PRF is a keyed function F : K × D → R associated with a key
space K, that is indistinguishable from a function sampled uniformly at ran-
dom from the set of all functions D → R. More formally, K =

⋃
λ∈NKλ,

D =
⋃
λ∈NDλ, and R =

⋃
λ∈NRλ. Additionally, we use Func(D,R) to denote

the set of all functions mapping elements from D to R. In this paper, we only
consider spaces that are subsets of {0, 1}∗.5 Let us recall the standard definition
of (weak) PRFs.

Definition 2. Let T ∈ {wPR,PR} and let ExpTA,F be defined as shown in Fig. 2.

We define AdvTA,F (1λ) := |Pr[ExpTA,F (1λ) = 1]− 1/2|. We say that F is pseudo-

random if AdvPRA,F (1λ) is negligible for all ppt adversaries A. Further, we say that

F is weakly pseudorandom if AdvwPRA,F (1λ) is negligible for all ppt adversaries A.

Weak PRFs are subversion-resilient. The first observation is that since all
inputs given to the PRF are distributed uniformly at random, they follow a

5 We actually only require that we can sample uniform elements of D and K efficiently
and that D is a quasi group with operation ⊕.

11

distribution that is publicly known. This allows us to apply Lemma 1. For an
implementation F̃ of a specification F̂ of a weak PRF, let Neqλ ⊆ Kλ × Dλ be

the set of inputs, where F̃ deviates from the specification, i.e., Neqλ = {(K,x) ∈
Kλ × Dλ | F̃ (K,x) 6= F̂ (K,x)}. Now, consider the proportional amount p of

Neqλ, i.e., p = |Neqλ|
|Kλ×Dλ| . As the input distribution of the weak PRF experiment

is public, Lemma 1 now directly implies the existence of a ppt watchdog with
detection probability p (simply testing F̃ on uniformly random inputs). Hence,
for an adversary to succeed in the subversion-experiment, p must be negligible.
But, as all inputs to the weak PRF are drawn randomly, the probability that an
adversary making q queries will ever encounter an input to the weak PRF that
belongs to Neqλ is bounded by q · p and is thus negligible for ppt adversarys, as
q is bounded by a polynomial in λ, yielding the following theorem.

Theorem 1. If F is weakly pseudorandom, then the trivial specification F̂ = F
is weakly pseudorandom under subversion.

3.1 Constructing Subversion-Resilient PRFs

In the following, we use the classical Naor–Reingold construction [33] to con-
struct a (standard) PRF from a weak PRF that is subversion-resilient.

The Naor–Reingold construction. Let Fw : K×D → R be a weak PRF. For
the sake of simplicity, we only focus on the case that elements of K, D, and R are
of equal length and refer the reader to the survey by Bogdanov and Rosen [14]
for generalizations. We now construct a (standard) PRF F (`) : K2·` × {0, 1}` →
R that is parameterized by some integer ` of the form ` = 2r describing the
message length. It is easiest to construct F (`) inductively. In the simplest case
of ` = 1, the key of F (`) consists of two randomly sampled keys of F (i.e.,
two random bit strings K0,K1 ∈ K). On input x ∈ {0, 1}, it returns Kx, i.e.,
F (1)((K0,K1), x) = Kx. Given F (`), we construct F (2`) inductively as follows.

A key of F (2`) consists of two keys K
(`)
0 and K

(`)
1 of F (`) (which in turn consists

each of 2` keys of Fw). On input x = (x1, x2, . . . , x2`), the function F (2`) applies

F (`) with the first key K
(`)
0 to the first half of x to obtain a key for Fw and then

computes F (`) with the second key on the second half of x to obtain a value.
More formally,

F (2`)((K
(`)
0 ,K

(`)
1), (x1, . . . , x2`)) =

Fw(F (`)(K
(`)
0 , (x1, . . . , x`)), F

(`)(K
(`)
1 , (x`+1, . . . , x2`))).

An useful alternate interpretation is the following (shown in Fig. 3). The key of
F (2`) consists of 2` key pairs (Ki,0,Ki,1) for i = 1, . . . , 2`. On input (x1, . . . , x2`),
we construct a complete binary tree of height r, where r = log(2`). The final level
of this binary tree contains the 2` leaves. To produce the output of F (2`), we now
construct a labeling of the vertices. We first label the i-th leave of the tree with
Ki,xi , i.e., the message bit xi determines whether we take Ki,0 or Ki,1. To obtain
the label of an inner node v of the tree, we compute Fw(left(v), right(v)), where

12

(K1,0 ,K1,1) (K2,0, K2,1) (K3,0, K3,1) (K4,0 ,K4,1)

Fw(K1,0,K2,1) Fw(K3,1,K4,0)

Fw(Fw(K1,0,K2,1), Fw(K3,1,K4,0))

F (1)

F (2)

F (4)

Fig. 3: The alternate interpretation of the Naor-Reingold construction as labeling
of a complete binary tree for the value x = (0, 1, 1, 0). The corresponding leaf
values are marked in blue.

left(v) (resp. right(v)) is the label of the left (resp. right) child of v. Finally, the
output of F (2`) is the label of the root of the tree. It is well-known that this
construction gives a PRF F (`) if Fw is weakly pseudorandom.

Theorem 2 ([33, Thm. 5.1]6). Let ` ∈ N with ` = 2r. If Fw is weakly
pseudorandom, then F (`) is pseudorandom.

Now, observe that a non-subverted, honest call-structure to the underlying
function Fw (which is trivially true due to our amalgamation assumption) di-
rectly implies the subversion-resilience of F (`). On the lowest level, F (1) will
only return completely random values, which is clearly subversion-resilient. The
inputs to F (2) are thus completely random values which follow a public input
distribution and Lemma 1 directly implies subversion-resilience.

Theorem 3. If F̂ is pseudorandom under subversion, then for each ` with ` =

2r, F̂ (`) is pseudorandom under subversion.

Proof. Our watchdog simply samples random keys and random inputs for the
weak PRF Fw and checks for deviations from the specification. As for the
subversion-resilience of Fw discussed above, let Neqλ be the set of inputs for

which F̃w deviates from its specification. As shown before, by applying a watch-
dog that simply tests a sufficient number of random inputs to Fw, we know that

the probability p = |Neqλ|
|Kλ×Dλ| is negligible. On the lowest level, corresponding to

F (1), we only choose one of two random values. Hence, the watchdog can easily
verify the correctness of F (1) as there are only constantly many different inputs.
In the next level, corresponding to F (2), the function Fw is only applied to these
completely random inputs. If an adversary makes q ∈ poly(λ) many queries, the
probability that one of the calls to Fw on this level deviates from the specifica-
tion is at most q · (`/2) · p, which is negligible. Conditioned on the event that
all calls to Fw on the level corresponding to F (2) follow the specification, the
inputs to the q · (`/4) calls to Fw on the level corresponding to F (4) are indis-
tinguishable from random (due to the security of the specification of the weak
PRF). Hence, with probability q · (`/4) · p, these inputs also do not belong to

6 Naor and Reingold use the notion of a synthesizer, which are in our context equivalent
to weakly PRFS [14].

13

Neqλ, if the inputs on the level corresponding to F (2) do not belong to Neq.
Let E`′ be the event that all inputs on the level corresponding to F (`′) do not
belong to Neqλ. By iterating the above argumentation, it is not hard to see that
Pr[E`′ | E`′/2] ≥ 1 − q · (`/`′) · p holds. From Pr[E2] ≥ 1 − q · (`/2) · p, we can
conclude via a simple induction that

Pr[E`′] = Pr[E`′ | E`′/2] · Pr[E`′/2] + Pr[E`′ | ¬E`′/2] · Pr[¬E`′/2]

≥
∏r′

i=1
(1− q · (`/2i) · p)

for `′ = 2r
′
. Hence, all probabilities Pr[E`′] are of the form 1 − negl(λ) for a

negligible function negl. We can thus conclude that the probability that any
input to Fw belongs to Neqλ is negligible. The original security guarantee due
to Theorem 2 then directly implies the subversion-resilience of F (`). ut

Alternative constructions. In principle any transformation from weak to
standard PRFs can be used in our construction. We chose the Naor-Reingold
construction, due to its simplicity and as it only requires the amalgamation func-
tion to act as a trusted data structure and no trusted operations. Alternatively,
the randomized cascade construction by Maurer and Tessaro [31] can be used.
There adversarially chosen messages are directly fed into a prefix-free encoding,
which then needs to be modeled as a trusted operation in order to prevent input
triggers. Another alternative is the IC construction by Maurer and Sjödin [30],
where the input provided by the adversary is processed bitwise and either a weak
PRF is executed or a previously computed value is used in an iterative process.

4 MAC

We now show how to construct subversion-resilient MACs using any subversion-
resilient PRFs, e.g., the one from the previous section. Let us first recall the
standard definition of MACs. A MAC works on a keyspace K, message spaceM,
and tag space T . Also, we have K =

⋃
λ∈NKλ, M =Mλ∈N, and T =

⋃
λ∈N Tλ.

Definition 3. We call a triple MAC = (KGen,Tag,Vf) a message authentica-
tion code (MAC) for key space K, message space M, and tag space T . The
randomized key generation algorithm KGen produces upon the security parame-

ter 1λ as input a key K
$← Kλ. The randomized tagging algorithm Tag is given

a key K ∈ Kλ and a message M ∈ Mλ and returns a tag T ∈ Tλ. The deter-
ministic verification algorithm Vf is given a key K, a message M , and a tag T
and returns a bit b.

For correctness, we require that for all K ∈ Kλ, for all M ∈ Mλ, and all
T ∈ Supp(Tag(K,M)), it holds Vf(K,T) = 1. Next, we recall the standard
security notion of (strong) unforgeability of MACs.

Definition 4. Let MAC be a MAC and let ExpSUF-CMA
A,MAC (1λ) be defined as shown

in Fig. 4. We define AdvSUF-CMA
A,MAC (1λ) := Pr[ExpSUF-CMA

A,MAC (1λ) = 1] and say that
MAC is strongly unforgeable under a chosen message attack, or SUF-CMA-
secure, if AdvSUF-CMA

A,MAC (1λ) is negligible for all ppt adversaries A.

14

ExpSUF-CMA
A,MAC (1λ)

1 : K
$← KGen(1λ); Query← ∅

2 : (M,T)
$← ATag(K,·)(1λ)

3 : return (M,T) 6∈ Query ∧ Vf(K,M, T) = 1

Fig. 4: The forgery experiment for MACs. On input M ∈ Mλ the oracle

Tag(K, ·) computes T
$← Tag(K,M), stores (M,T) in Query and returns T .

4.1 MAC from PRFs

Consider the following generic construction of a (fixed-length) deterministic
MAC based on a PRF. Let F be a keyed function F : K × D → R. We de-
fine MACF = (KGenF ,TagF ,VfF) with key space K, message space M, and tag

space T such that KGenF on input 1λ outputs a uniform key K
$← Kλ, TagF

on input key K ∈ Kλ and message M ∈ Dλ, returns T = F (K,M), and VfF
on input a key K ∈ Kλ, message M ∈ Dλ, and a tag T ∈ Rλ, outputs 1 if and
only if T = TagF (K,M). It is a well-known result by Goldreich, Goldwasser and
Micali that a PRF can directly be used to construct a MAC which we recall.

Theorem 4 ([29]). If F is pseudorandom, then MACF is SUF-CMA-secure.

Theorem 4 guarantees that the subversion-resilience of the underlying func-
tion F directly transfers to MACF , if the = operation during the verification

is part of the trusted amalgamation. Thus, M̂ACF = (Am, F̂), where F̂ is a
subversion-resilient PRF, and Am calls the PRF for tagging and for verification
it recomputes the MAC using the implementation of the PRF and compares the
result with its input. Thus, the watchdog runs the watchdog of the subversion-
resilient PRF. Finally, we can conclude that the PRF presented in Section 3.1
(built from a weak PRF) is a subversion-resilient deterministic MAC as well.

Theorem 5. If F̂ is pseudorandom under subversion, then M̂ACF = (Am, F̂)
is SUF-CMA-secure under subversion assuming a trusted = operation.

Corollary 1. The specification M̂ACF (`) = (Am, F̂ (`)) is SUF-CMA-secure un-
der subversion assuming a trusted = operation.

5 Symmetric Encryption

In this section, we construct subversion-resilient symmetric encryption using
a classical construction based on PRFs that has indistinguishable encryptions
under a chosen-message attack. A symmetric encryption scheme works on a
keyspace K, message space M, and ciphertext space C. As usual, we have K =⋃
λ∈NKλ, M =Mλ∈N, and C =

⋃
λ∈N Cλ.

15

ExpIND$-CPA
A,SE (1λ)

1 : K
$← KGen(1λ); b

$← {0, 1}

2 : b′
$← ARoRb(·)(1λ)

3 : return (b = b′)

Fig. 5: Security experiment for IND$-CPA-security, where RoR0(M) = $K(M)

and RoR1(M) = Enc(K,M) such that $K(M) computes C
$← Enc(K,M) and if

C = ⊥, outputs ⊥, and otherwise, outputs a random string of length |C|.

Definition 5. We call a triple SE = (KGen,Enc,Dec) a symmetric encryption
scheme SE with key space K, message spaceM, and ciphertext space C. The ran-
domized key generation algorithm KGen outputs upon the security parameter 1λ

as input a key K
$← Kλ. The randomized encryption algorithm Enc is given a

key K ∈ Kλ and a message M ∈Mλ and returns either a ciphertext C ∈ Cλ or
a symbol ⊥. The deterministic decryption algorithm Dec is given a key K and
a ciphertext C, and returns either a message M ∈Mλ or the symbol ⊥.

We say that Π has perfect correctness, i e., for all K ∈ Kλ, all M ∈ Mλ and
all C ∈ Supp(Enc(K,M)), we have Dec(K,C) = M if C 6= ⊥. For security, we
consider IND$-CPA-security (i.e., indistinguishability from random bits) [35,36],
which can be shown to imply IND-CPA-security in the left-or-right sense (see,
e.g., [6]) by a straightforward reduction.

Definition 6. Let SE be a symmetric encryption scheme and let ExpIND$-CPA
A,SE (1λ)

be defined as shown in Fig. 5. We define AdvIND$-CPA
A,SE (1λ) := |Pr[ExpIND$-CPA

A,SE (1λ)

= 1]− 1/2| and say that SE is IND$-CPA-secure if AdvIND$-CPA
SE (A) is negligible

for all ppt adversaries A.

Symmetric encryption from PRFs. In Section 3, we construct subversion-
resilient PRFs. A classical use case of PRFs is the construction of symmet-
ric encryption. Recall the following construction of a stream cipher SEKS =
(KGenKS,EncKS,DecKS) based on a PRF KS: K × D → R. KGen on input 1λ

outputs a uniform key K
$← Kλ, EncKS on input a key K ∈ Kλ and a message

M ∈ Rλ, outputs a ciphertext (IV, C), where IV
$← D and C := KS(K, IV)⊕M ,

and DecKS on input a key K ∈ Kλ and a ciphertext (IV, C) ∈ Dλ×Rλ, outputs
M := KS(K, IV)⊕ C.

Subversion-resilience of stream ciphers. Next, we show that the above
construction is subversion-resilient if the underlying function KS is a subversion-

resilient weak PRF. Thus, we consider ŜEKS = (Am, K̂S) where K̂S is the spec-
ification of a subversion-resilient weak PRF and AM randomly chooses IVs and
then calls the underlying PRF and applies the trusted ⊕ operation.

16

Theorem 6. If K̂S is weakly pseudorandom under subversion, then ŜEKS is
IND$-CPA-secure under subversion given that the randomness generation and
⊕ operation are trusted.

Proof (Sketch). The watchdog runs the watchdog for K̂S. The main idea of the
proof is that the output of KS is indistinguishable from uniformly random bits
for uniformly random IVs and any adversary, even under subversion. Thus for
any message M , the output of Enc is indistinguishable from uniformly random

bits under subversion for any adversary as well. Hence, ŜEKS is IND$-CPA-secure
under subversion.

Key stream derivation of CTR. It remains to demonstrate that this construc-
tion can actually be instantiated. A popular instantiation of the above construc-
tion is the (randomized) counter mode (CTR$). The above construction in com-
bination with KSCTR defined next yields CTR$. Given a PRF F : K ×D → R,
we define the function KSCTR : K ×D → R` as

(K, IV) 7→
(
F (K, IV), F (K, IV ⊕ 〈1〉n), . . . , F (K, IV ⊕ 〈`− 1〉n)

)
,

where ` ∈ poly(λ) and 〈i〉n denotes the n-bit binary representation of i ∈ N.
Next, we show that KSCTR is a subversion-resilient weak PRF assuming that
handling the state (i.e. the counter) is modeled as part of the amalgamation.

Theorem 7. If F̂ is pseudorandom under subversion, then K̂SCTR is a sub-
version-resilient weak PRF under the assumption that randomness generation
and the ⊕ operation are trusted.

Proof (Sketch). The watchdog for K̂SCTR runs the watchdog for F̂ as a subrou-
tine. To prove that the KSCTR is secure even if the building block F is subverted,
the main idea is as follows: If F is indistinguishable from random (even under
subversion), then KSCTR is indistinguishable from random for uniformly ran-
dom inputs as long as the sequence (IV, . . . , IV ⊕ 〈` − 1〉n) does not overlap for
two PRF queries. This is because an adversary directly could observe the struc-
ture and distinguish the function from random. By a simple argument, one can

bound this probability by q2`
|D| , which is negligible for polynomial block length `,

polynomial IV length log(|D|), and a polynomial number of PRF queries q.

Note that KSCTR is not a PRF as the adversary can simply choose the IVs
such that they overlap which enables the adversary to distinguish KSCTR from a
truly random function with overwhelming probability. Finally, Theorem 6 and 7
imply that the randomized counter mode CTR$ is subversion-resilient.

Corollary 2. Let CTR$ be the stream cipher construction above instantiated

with KSCTR. Then, ĈTR$ is IND$-CPA-secure under subversion given that the
randomness generation and the ⊕ operation are trusted.

17

Thus, IND$-CPA security directly follows from the security of the underlying
PRF. While security is preserved, this does not automatically mean that correct-
ness is preserved also: the decryption algorithm is not executed in the IND$-CPA
security experiment, but is fundamental for correctness. As discussed by Russell,
Tang, Yung, and Zhou [38] this would allow for censorship of chosen messages.
If we would consider a black box decryption algorithm, perfect correctness is
impossible to achieve, as a single input trigger (for example for C? the decryp-
tion always output a constant value) violates the perfect correctness requirement
while highly unlikely to being detected by a watchdog. Nevertheless, as in our
construction the adversary only provides an implementation of the underlying
PRF, we see that our construction automatically satisfies perfect correctness.

Theorem 8. The specification ŜEKS is perfectly correct.

Proof. Correctness follow from the “canonical decryption”7 of the stream cipher
as the same value as during the encryption procedure are computed. Thus, even
if KS(K, IV) deviates from the specification, the subverted output cancels out

by the ⊕ operation: D̃ec(K, Ẽnc(K,M)) = K̃S(K, IV)⊕ K̃S(K, IV)⊕M = M .

Note that previous works [38] also achieved correctness, but tolerated a negligible
decryption error. This is because the authors viewed the decryption algorithm
as an algorithm with a public input distribution and can check consistency with
the specification up to a negligible failure probability. Due to more fine grained
access to the decryption procedure, we can guarantee perfect correctness.

6 Authenticated Encryption

We now see that the classical Encrypt-then-MAC approach grants us subversion-
resilient authenticated encryption, given subversion-resilient building blocks. An
authenticated encryption scheme works on a keyspace K, message spaceM, data
space D, and ciphertext space C. As usual, we have K =

⋃
λ∈NKλ,M =Mλ∈N,

D =
⋃
λ∈NDλ, and C =

⋃
λ∈N Cλ. In the following, we assume that the message

space Mλ and the ciphertext space Cλ contain a special symbol ⊥.

Definition 7. We call a triple AD = (KGen,Enc,Dec) a symmetric encryption
scheme with associated data for key space K, message space M, data space D,
and ciphertext space C. The randomized key generation algorithm KGen outputs

a key K
$← Kλ upon input the security parameter 1λ. The randomized encryption

algorithm Enc is given a key K ∈ Kλ, a message M ∈Mλ, associated data D ∈
Dλ and returns a ciphertext C ∈ Cλ. The deterministic decryption algorithm Dec
is given a key K ∈ Kλ, a ciphertext C ∈ Cλ, associated data D ∈ Dλ and returns
a message M ∈Mλ.

7 By this we mean recomputing a value and applying it via ⊕ to the ciphertext in
order to decrypt.

18

ExpAE
A,AD(1λ)

1 : Q ← ∅; b $← {0, 1}; K $← KGen(1λ)

2 : if b == 1 then

3 : b′
$← AEnc(K,·,·),Dec(K,·,·)(1λ)

4 : else

5 : b′
$← A$K(·,·),⊥(·,·)(1λ)

6 : return b′ == b

Oracle $K(M,D)

1 : C
$← {0, 1}|C|

2 : Q = Q∪ {((M,D), C)}
3 : return C

Oracle ⊥(C)

1 : if ((M,D), C) ∈ Q then

2 : return (M,D)

3 : else return ⊥

Fig. 6: The security experiment for AEAD. The oracle Enc(K, ·, ·) expects for
K ∈ Kλ a message M ∈ Mλ and data D ∈ Dλ, while Dec(K, ·, ·) expects a
ciphertext C ∈ Cλ and data D ∈ Dλ.

A symmetric encryption scheme with associated data AD = (KGen,Enc,Dec)
is said to be perfectly correct if for all K ∈ Kλ, M ∈ Mλ, and D ∈ Dλ it holds
Dec(K,Enc(K, (M,D)), D) = (M,D).

Definition 8. Let AD be a symmetric encryption scheme with associated data
and let ExpAE

A,AD(1λ) = 1 be defined as shown in Fig. 6. We define AdvAE
A,AD(1λ) :=

Pr[ExpAE
A,AD(1λ) = 1] and say that AD is AE-secure if AdvAE

A,AD(1λ) is negligible
for all ppt adversaries A.

Usually, the experiment requires that the adversary does not ask for decryp-
tion of outputs of the encryption oracle. For b = 0 the experiment cannot output
a message, since it is just given a random string. As this would trivially break
security (and the adversary already knows the answer to the query), this case is
excluded in most works. Hence, there is no need to manage the set Q explicitly.
In the context of subversion this approach unfortunately also rules out a natu-
ral, challenging attack. An adversary could provide an implementation for the
decryption algorithm, which instead of a certain message M? simply outputs
the secret key, allowing the adversary to trivially break security. If the decryp-
tion algorithm is modeled as a black box, this attack seems unavoidable since
a watchdog cannot efficiently detect the trigger message M?. Even amalgama-
tion of several subverted components cannot prevent this attack if no trusted
component is ever used, as an input trigger for the “first” component can again
directly lead to input trigger of the next subverted component and so on. Thus,
some sort of trusted operation is necessary in order to defend against these kind
of attacks. As seen by our construction of stream ciphers with “canonical de-
cryption” in combination with a trusted XOR operation, perfect correctness is
guaranteed. In order to include this attack in our model, we change the behavior
of the oracles in the experiment for b = 0 by introducing book keeping of the
queries. This allows the adversary to ask for decryptions of encryption queries
without trivially breaking security. An interesting side effect of this definition is

19

that every scheme satisfying this security notion also needs to satisfy correctness
(although only up to negligible failure probability), as the adversary would be
able to distinguish the two worlds of the experiment otherwise.

6.1 Achieving Subversion-resilience via Encrypt-then-MAC

The classical way to construct authenticated encryption relies on the use of a
MAC that is applied after encryption. Decryption then first verifies the MAC
and afterwards performs the underlying decryption algorithm. Due to the strong
unforgeability of the MAC, an adversary cannot make use of decryption and the
security experiment reduces to IND$-CPA-security. This is useful for achiev-
ing subversion-resilience, as a symmetric encryption which is IND$-CPA secure
under subversion does not give any security guarantees for the decryption algo-
rithm and avoids input trigger attacks. While our construction of stream ciphers
guarantees correctness under random inputs, this cannot be guaranteed if the
adversary can freely choose the inputs for the decryption algorithm. The reason
for this again are input trigger attacks, since no watchdog knows the distribution
of the queries made by the adversary. The Encrypt-then-MAC approach with
subversion-resilient MAC ensures that input trigger attacks are ruled out even
if the verify algorithm is subverted. In combination with a subversion-resilient
encryption scheme the adversary needs forge a MAC to obtain a decryption of
a ciphertext that it did not obtain as an output of the encrypt oracle.

Encrypt-then-MAC. Let MAC = (Gen,Tag,Vf) be a MAC and SE$ = (KGen$,
Enc$, Dec$) be a symmetric encryption scheme. Then, the symmetric encryption
scheme with associated data AD = ADSE$,MAC = (KGenAD, EncAD, DecAD) is
defined as follows: The key generation algorithm KGenAD(1λ) first obtains a

key KMAC
$← KGenMAC(1λ), another key K$

$← KGen$(1λ) and outputs K =
(KMAC,K$). The encryption algorithm EncAD(K = (KMAC,K$),M,D) first calls

the underlying encryption algorithm Enc$ to compute a ciphertext C$
$← Enc$(K$,

M), then produces a tag T
$← Tag(KMAC, C$ || D), and outputs C = (C$, T).

The decryption algorithm DecAD(K = (KMAC,K$), C = (C$, T), D) first verifies

the MAC of C by computing b
$← Vf(KMAC, C$ || D,T). If b = 0 (i e. the veri-

fication failed), it returns ⊥. Else, it computes M
$← Dec$(K$, C$) and returns

M . The straightforward reduction to the security of MAC and SE$ can be used
to obtain the following well-known theorem.

Theorem 9 ([9]). If MAC is SUF-CMA-secure and SE$ is IND$-CPA-secure,
then AD is AE-secure.

Correctness of SE is directly inherited by AD as the MAC does not change
the correctness of the underlying encryption scheme.

Theorem 10. If ŜE$ is perfectly correct, then ÂD is perfectly correct.

We prove that the Encrypt-then-MAC approach is indeed sound if both the
encryption scheme as well as the MAC are subversion-resilient, following the
proof idea of Bellare and Namprempre [8, 9].

20

Theorem 11. If ŜE is IND$-CPA-secure under subversion, M̂AC is SUF-CMA-

secure under subversion and ŜE is correct, then ÂD is AE-secure under subver-
sion and correct.

Proof (Sketch). The watchdog for ÂD runs the watchdog for ŜE and M̂AC. Note
that there is no need for testing the components in combination, as both allow
arbitrary input distributions while being subverted and are executed indepen-
dently. Assuming that the watchdog does not detect subversion, we can follow
the proof of Bellare and Namprempre [8,9] for the Encrypt-then-MAC approach.
The main difference is to base the security on the subversion-resilience of the
building blocks rather then the “classical” security properties. However, these
only differ by the preceded check by the watchdog and that usage of the im-
plementation instead of the specifications. Thus, in the same way IND$-CPA
security in the classical setting does grant any security guarantees for the de-
cryption algorithm, we also do not need to immunize the subverted decryption
algorithm. First, we replace the decryption algorithm for b = 1 with an oracle
that always answers with the ⊥ symbol, except if the input was obtained by
querying the encrypt oracle. If the output of the encrypt oracle was handed to
the decryption oracle, the adversary always obtains correct answer, either by
the correctness of the encryption scheme for b = 1 or due to the book keeping
if b = 0. Now assume C was not obtained via the encrypt oracle. In case C is
malformed and the decryption oracle returns a ⊥ symbol, the adversary cannot
distinguish this from an oracle which always returns the ⊥ symbol. The last
case that remains is that C is a valid ciphertext and such that the encrypted
message (M,D) was not issued to the encryption oracle. This case is again not
possible, since any adversary reaching this case would have successfully forged

a tag for (M,D), thus breaking subversion resilience of M̂AC. Therefore we can
“disable” the decryption oracle. Then however, we can base security entirely on

the subversion-resilience of ŜE, as the adversary can only make effective use of
the encrypt oracle. We replace the encrypt oracle with an oracle returning ran-
dom bits. This change is again indistinguishable by the subversion-resilience of

ŜE. We changed all oracles so that for both choices of b the adversary is given
access to the same oracles, thus being unable to win the experiment apart from
guessing the bit b.

Acknowledgements Supported by the European Research Council (ERC) un-
der the European Union’s Horizon 2020 research and innovation programme,
grant agreement 802823.

References

1. Armour, M., Poettering, B.: Substitution attacks against message au-
thentication. IACR Trans. Symm. Cryptol. 2019(3), 152–168 (2019).
https://doi.org/10.13154/tosc.v2019.i3.152-168

21

2. Armour, M., Poettering, B.: Subverting decryption in AEAD. In: Albrecht, M.
(ed.) 17th IMA International Conference on Cryptography and Coding. LNCS, vol.
11929, pp. 22–41. Springer, Heidelberg (Dec 2019). https://doi.org/10.1007/978-
3-030-35199-1 2

3. Ateniese, G., Francati, D., Magri, B., Venturi, D.: Public immunization against
complete subversion without random oracles. In: Deng, R.H., Gauthier-Umaña, V.,
Ochoa, M., Yung, M. (eds.) ACNS 19. LNCS, vol. 11464, pp. 465–485. Springer,
Heidelberg (Jun 2019). https://doi.org/10.1007/978-3-030-21568-2 23

4. Ateniese, G., Magri, B., Venturi, D.: Subversion-resilient signature schemes. In:
Ray, I., Li, N., Kruegel, C. (eds.) ACM CCS 2015. pp. 364–375. ACM Press (Oct
2015). https://doi.org/10.1145/2810103.2813635

5. Bauer, B., Farshim, P., Mazaheri, S.: Combiners for backdoored random oracles.
In: Shacham, H., Boldyreva, A. (eds.) CRYPTO 2018, Part II. LNCS, vol. 10992,
pp. 272–302. Springer, Heidelberg (Aug 2018). https://doi.org/10.1007/978-3-319-
96881-0 10

6. Bellare, M., Desai, A., Jokipii, E., Rogaway, P.: A concrete security treatment of
symmetric encryption. In: 38th FOCS. pp. 394–403. IEEE Computer Society Press
(Oct 1997). https://doi.org/10.1109/SFCS.1997.646128

7. Bellare, M., Jaeger, J., Kane, D.: Mass-surveillance without the state:
Strongly undetectable algorithm-substitution attacks. In: Ray, I., Li, N.,
Kruegel, C. (eds.) ACM CCS 2015. pp. 1431–1440. ACM Press (Oct 2015).
https://doi.org/10.1145/2810103.2813681

8. Bellare, M., Namprempre, C.: Authenticated encryption: Relations among notions
and analysis of the generic composition paradigm. In: Okamoto, T. (ed.) ASI-
ACRYPT 2000. LNCS, vol. 1976, pp. 531–545. Springer, Heidelberg (Dec 2000).
https://doi.org/10.1007/3-540-44448-3 41

9. Bellare, M., Namprempre, C.: Authenticated encryption: Relations among notions
and analysis of the generic composition paradigm. Journal of Cryptology 21(4),
469–491 (Oct 2008). https://doi.org/10.1007/s00145-008-9026-x

10. Bellare, M., Paterson, K.G., Rogaway, P.: Security of symmetric encryption
against mass surveillance. In: Garay, J.A., Gennaro, R. (eds.) CRYPTO 2014,
Part I. LNCS, vol. 8616, pp. 1–19. Springer, Heidelberg (Aug 2014).
https://doi.org/10.1007/978-3-662-44371-2 1

11. Bemmann, P., Chen, R., Jager, T.: Subversion-resilient public key encryption with
practical watchdogs. In: Garay, J. (ed.) PKC 2021, Part I. LNCS, vol. 12710,
pp. 627–658. Springer, Heidelberg (May 2021). https://doi.org/10.1007/978-3-030-
75245-3 23

12. Berndt, S., Liskiewicz, M.: Algorithm substitution attacks from a stegano-
graphic perspective. In: Thuraisingham, B.M., Evans, D., Malkin, T., Xu,
D. (eds.) ACM CCS 2017. pp. 1649–1660. ACM Press (Oct / Nov 2017).
https://doi.org/10.1145/3133956.3133981

13. Bhattacharyya, R., Nandi, M., Raychaudhuri, A.: Crooked indifferentiability of
enveloped XOR revisited. In: INDOCRYPT. Lecture Notes in Computer Science,
vol. 13143, pp. 73–92. Springer (2021)

14. Bogdanov, A., Rosen, A.: Pseudorandom functions: Three decades later. In: Tu-
torials on the Foundations of Cryptography, pp. 79–158. Springer International
Publishing (2017)

15. Bossuat, A., Bultel, X., Fouque, P.A., Onete, C., van der Merwe, T.: Designing
reverse firewalls for the real world. In: Chen, L., Li, N., Liang, K., Schneider, S.A.
(eds.) ESORICS 2020, Part I. LNCS, vol. 12308, pp. 193–213. Springer, Heidelberg
(Sep 2020). https://doi.org/10.1007/978-3-030-58951-6 10

22

16. Brown, D.R.L., Gjøsteen, K.: A security analysis of the NIST SP
800–90 elliptic curve random number generator. In: Menezes, A. (ed.)
CRYPTO 2007. LNCS, vol. 4622, pp. 466–481. Springer, Heidelberg (Aug 2007).
https://doi.org/10.1007/978-3-540-74143-5 26

17. Chakraborty, S., Dziembowski, S., Nielsen, J.B.: Reverse firewalls for ac-
tively secure MPCs. In: Micciancio, D., Ristenpart, T. (eds.) CRYPTO 2020,
Part II. LNCS, vol. 12171, pp. 732–762. Springer, Heidelberg (Aug 2020).
https://doi.org/10.1007/978-3-030-56880-1 26

18. Chakraborty, S., Magri, B., Nielsen, J.B., Venturi, D.: Universally composable
subversion-resilient cryptography. In: Dunkelman, O., Dziembowski, S. (eds.) EU-
ROCRYPT 2022, Part I. LNCS, vol. 13275, pp. 272–302. Springer, Heidelberg
(May / Jun 2022). https://doi.org/10.1007/978-3-031-06944-4 10

19. Checkoway, S., Maskiewicz, J., Garman, C., Fried, J., Cohney, S., Green, M.,
Heninger, N., Weinmann, R.P., Rescorla, E., Shacham, H.: A systematic analy-
sis of the juniper dual EC incident. In: Weippl, E.R., Katzenbeisser, S., Kruegel,
C., Myers, A.C., Halevi, S. (eds.) ACM CCS 2016. pp. 468–479. ACM Press (Oct
2016). https://doi.org/10.1145/2976749.2978395

20. Chen, R., Mu, Y., Yang, G., Susilo, W., Guo, F., Zhang, M.: Cryptographic reverse
firewall via malleable smooth projective hash functions. In: Cheon, J.H., Takagi,
T. (eds.) ASIACRYPT 2016, Part I. LNCS, vol. 10031, pp. 844–876. Springer,
Heidelberg (Dec 2016). https://doi.org/10.1007/978-3-662-53887-6 31

21. Chow, S.S.M., Russell, A., Tang, Q., Yung, M., Zhao, Y., Zhou, H.S.: Let a non-
barking watchdog bite: Cliptographic signatures with an offline watchdog. In: Lin,
D., Sako, K. (eds.) PKC 2019, Part I. LNCS, vol. 11442, pp. 221–251. Springer,
Heidelberg (Apr 2019). https://doi.org/10.1007/978-3-030-17253-4 8

22. Degabriele, J.P., Farshim, P., Poettering, B.: A more cautious approach to secu-
rity against mass surveillance. In: Leander, G. (ed.) FSE 2015. LNCS, vol. 9054,
pp. 579–598. Springer, Heidelberg (Mar 2015). https://doi.org/10.1007/978-3-662-
48116-5 28

23. Dodis, Y., Farshim, P., Mazaheri, S., Tessaro, S.: Towards defeating backdoored
random oracles: Indifferentiability with bounded adaptivity. In: Pass, R., Pietrzak,
K. (eds.) TCC 2020, Part III. LNCS, vol. 12552, pp. 241–273. Springer, Heidelberg
(Nov 2020). https://doi.org/10.1007/978-3-030-64381-2 9

24. Dodis, Y., Ganesh, C., Golovnev, A., Juels, A., Ristenpart, T.: A formal treatment
of backdoored pseudorandom generators. In: Oswald, E., Fischlin, M. (eds.) EU-
ROCRYPT 2015, Part I. LNCS, vol. 9056, pp. 101–126. Springer, Heidelberg (Apr
2015). https://doi.org/10.1007/978-3-662-46800-5 5

25. Dodis, Y., Mironov, I., Stephens-Davidowitz, N.: Message transmission with reverse
firewalls—secure communication on corrupted machines. In: Robshaw, M., Katz, J.
(eds.) CRYPTO 2016, Part I. LNCS, vol. 9814, pp. 341–372. Springer, Heidelberg
(Aug 2016). https://doi.org/10.1007/978-3-662-53018-4 13

26. Fischlin, M., Janson, C., Mazaheri, S.: Backdoored hash functions: Immunizing
HMAC and HKDF. In: Chong, S., Delaune, S. (eds.) CSF 2018 Computer Secu-
rity Foundations Symposium. pp. 105–118. IEEE Computer Society Press (2018).
https://doi.org/10.1109/CSF.2018.00015

27. Fischlin, M., Mazaheri, S.: Self-guarding cryptographic protocols against algorithm
substitution attacks. In: Chong, S., Delaune, S. (eds.) CSF 2018 Computer Secu-
rity Foundations Symposium. pp. 76–90. IEEE Computer Society Press (2018).
https://doi.org/10.1109/CSF.2018.00013

23

28. Goldreich, O., Goldwasser, S., Micali, S.: How to construct random functions (ex-
tended abstract). In: 25th FOCS. pp. 464–479. IEEE Computer Society Press (Oct
1984). https://doi.org/10.1109/SFCS.1984.715949

29. Goldreich, O., Goldwasser, S., Micali, S.: On the cryptographic applications of ran-
dom functions. In: Blakley, G.R., Chaum, D. (eds.) CRYPTO’84. LNCS, vol. 196,
pp. 276–288. Springer, Heidelberg (Aug 1984)

30. Maurer, U.M., Sjödin, J.: A fast and key-efficient reduction of chosen-ciphertext to
known-plaintext security. In: Naor, M. (ed.) EUROCRYPT 2007. LNCS, vol. 4515,
pp. 498–516. Springer, Heidelberg (May 2007). https://doi.org/10.1007/978-3-540-
72540-4 29

31. Maurer, U.M., Tessaro, S.: Basing PRFs on constant-query weak PRFs: Minimiz-
ing assumptions for efficient symmetric cryptography. In: Pieprzyk, J. (ed.) ASI-
ACRYPT 2008. LNCS, vol. 5350, pp. 161–178. Springer, Heidelberg (Dec 2008).
https://doi.org/10.1007/978-3-540-89255-7 11

32. Mironov, I., Stephens-Davidowitz, N.: Cryptographic reverse firewalls. In: Oswald,
E., Fischlin, M. (eds.) EUROCRYPT 2015, Part II. LNCS, vol. 9057, pp. 657–686.
Springer, Heidelberg (Apr 2015). https://doi.org/10.1007/978-3-662-46803-6 22

33. Naor, M., Reingold, O.: Synthesizers and their application to the parallel construc-
tion of pseudo-random functions. J. Comput. Syst. Sci. 58(2), 336–375 (1999)

34. Perlroth, N., Larson, J., Shane, S.: Secret documents reveal nsa campaign against
encryption (2013), https://archive.nytimes.com/www.nytimes.com/interact
ive/2013/09/05/us/documents-reveal-nsa-campaign-against-encryption.ht

ml

35. Rogaway, P.: Authenticated-encryption with associated-data. In: Atluri,
V. (ed.) ACM CCS 2002. pp. 98–107. ACM Press (Nov 2002).
https://doi.org/10.1145/586110.586125

36. Rogaway, P., Bellare, M., Black, J., Krovetz, T.: OCB: A block-cipher mode
of operation for efficient authenticated encryption. In: Reiter, M.K., Sama-
rati, P. (eds.) ACM CCS 2001. pp. 196–205. ACM Press (Nov 2001).
https://doi.org/10.1145/501983.502011

37. Russell, A., Tang, Q., Yung, M., Zhou, H.S.: Cliptography: Clipping the power
of kleptographic attacks. In: Cheon, J.H., Takagi, T. (eds.) ASIACRYPT 2016,
Part II. LNCS, vol. 10032, pp. 34–64. Springer, Heidelberg (Dec 2016).
https://doi.org/10.1007/978-3-662-53890-6 2

38. Russell, A., Tang, Q., Yung, M., Zhou, H.S.: Generic semantic security against
a kleptographic adversary. In: Thuraisingham, B.M., Evans, D., Malkin, T.,
Xu, D. (eds.) ACM CCS 2017. pp. 907–922. ACM Press (Oct / Nov 2017).
https://doi.org/10.1145/3133956.3133993

39. Russell, A., Tang, Q., Yung, M., Zhou, H.S.: Correcting subverted random oracles.
In: Shacham, H., Boldyreva, A. (eds.) CRYPTO 2018, Part II. LNCS, vol. 10992,
pp. 241–271. Springer, Heidelberg (Aug 2018). https://doi.org/10.1007/978-3-319-
96881-0 9

40. Shumow, D., Ferguson, N.: On the possibility of a back door in the nist sp800-90
dual ec prng (2007), http://rump2007.cr.yp.to/15-shumow.pdf, cRYPTO 2007
Rump Session

41. Wegman, M.N., Carter, L.: New hash functions and their use in authentication
and set equality. Journal of Computer and System Sciences 22(3), 265–279 (1981).
https://doi.org/10.1016/0022-0000(81)90033-7, https://doi.org/10.1016/0022
-0000(81)90033-7

24

42. Young, A., Yung, M.: The dark side of “black-box” cryptography, or: Should we
trust capstone? In: Koblitz, N. (ed.) CRYPTO’96. LNCS, vol. 1109, pp. 89–103.
Springer, Heidelberg (Aug 1996). https://doi.org/10.1007/3-540-68697-5 8

25

