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Abstract. Anonymous Credentials are an important tool to protect us-
er’s privacy for proving possession of certain credentials. Although var-
ious efficient constructions have been proposed based on pre-quantum as-
sumptions, there have been limited accomplishments in the post-quantum
and especially practical settings. This research aims to derive new meth-
ods that enhance the current state of the art.

To achieve this, we make the following contributions. By distilling pri-
or design insights, we propose a new primitive to instantiate signature
with protocols, called commit-transferrable signature (CTS). When com-
bined with a multi-theorem straight-line extractable non-interactive zero-
knowledge proof of knowledge (NIZKPoK), CTS gives a modular approach
to construct anonymous credentials. We then show efficient instantia-
tions of CTS and the required NIZKPoK from lattices, which are believed
to be post-quantum hard. Finally, we propose concrete parameters for
the CTS, NIZKPoK, and the overall Anonymous Credentials, based on
Module-SIS and Ring-LWE. This would serve as an important guidance
for future deployment in practice.
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1 Introduction

In an Anonymous Credential system [15,17,40,41], users interact with organi-
zations, obtain digital credentials from them, and prove possession of these cre-
dentials anonymously and unlinkably. Anonymous Credentials are increasingly
important in practice: they have been implemented by industry leaders such as
IBM and Microsoft, have found their way into industrial standards (such as the



TCG standard), and underlined the policies that both the United States gov-
ernment and the EU government have towards balancing privacy and legitimate
identification and authentication needs.

The advent of quantum computing threatens the security of all the prior
anonymous credential constructions whose efficiency was suitable for use in prac-
tice, since all of them require either the RSA or the discrete logarithm assump-
tion to hold (in fact, they need even stronger assumptions). The goal of this
paper is to give more efficient Anonymous Credentials based on standard lattice
assumptions, as they provide a plausible foundation against quantum attacks.
Moreover, we propose a modular approach so that each building block might be
improved individually for future work.

Anonymous Credentials from general-purpose crypto tools. The well-
known approach [16,42] to giving Anonymous Credentials is to provide: (1) a
commitment scheme for committing to @ representing a user’s private input,
e.g., her secret key; (2) a digital signature scheme for signing x (under the
commitment); (3) an efficient and secure two-party protocol between a user
and a signer to prove that the user’s (private) input  is consistent with the
commitment and then the protocol generates a signature of x; and finally (4) a
suite of efficient zero-knowledge proof systems that allow the user to prove (i)
knowledge of the commitment opening and (ii) knowledge of a signature from
the signer on the commitment opening.

Even though each of these general building blocks can be achieved under post-
quantum assumptions, however, realizing them efficiently is still a significant
and on-going research direction. Therefore, it is interesting and important to
determine a new approach for more efficient constructions.

Relevant Research. We notice that the research of Anonymous Credentials
has deep connections with the following two cryptographic objects: (1) Group
Signatures and (2) Blind Signatures. Conceptually for all these objects, there are
three roles — User, CA (certificate authority), Verifier, in the system, yet they post
different privacy requirements. Particularly, Group Signatures requires privacy
for User against Verifier, i.e., Verifier only knows the signature is output by some
one in the group, but does not know the concreted signer. Yet group signature
does not require privacy for User when getting a credential from CA. On the
other hand, Blind Signatures requires privacy for User against the CA, i.e., CA
signs a hidden message as the credential, but the verification step reveals the
message to Verifier. Finally, Anonymous Credentials requires privacy on both
sides — the User’s private input (e.g., her ID or messages) is hidden from both
CA and Verifier.

Our Approach. Our goal is to achieve an efficient lattice-based anonymous
credential, avoiding any heavy cryptographic machinery such as general secure
two-party computation and general zero-knowledge proofs in the above paradig-
m. To achieve this goal, we first distill prior design insights, such as signature
with protocols in [16], from prior work that realized the above general diagram,



and then propose a primitive named as commit-transferable signature (CTS),
with special properties that are friendly for efficient instantiating from lattices.

Briefly, the high level idea of the prior framework of signature with protocols is
the following — for an efficient signature scheme, we would identify a commitment
scheme and an efficient zero-knowledge proof of knowledge system, such that they
can be elegantly combined, yielding a protocol for signing a committed value, and
a zero-knowledge proof of knowledge of the signature. This work takes another
perspective — by blending a signature scheme with a proper commitment scheme
as one object, we are able to see better lattice insights, leading to more efficient
lattice-based instantiation and thus more practical anonymous credentials.

Particularly, CTS encompasses both a non-interactive commitment algorithm
Commit and a signature scheme (KeyGen, Sign, Verify), with the following prop-
erties. Our first key property is that, in a CTS scheme, it is possible to compute a
signature directly on the commitment value comm, where comm + Commit(x).
This way, instead of designing a secure two-party protocol as described in (3)
above, it is sufficient to simply require that the user performs a zero-knowledge
proof of knowledge of the opening of comm. Once the signer verifies this proof,
it can compute the signature o on input comm. Moreover, it is possible to verify
a signature o through inputting the commitment comm rather than the value
x; therefore, to prove possession of a signature on the opening of comm, it is
sufficient to reveal o and prove knowledge of the opening of comm.

Our second key property is to require that, from the signature o of the com-
mitment comm <— Commit(x), the user will be able to compute a new signature
o’ for a new commitment comm’ <— Commit(x). That requires two additional al-
gorithms: Randomize to randomize comm into comm’; and Transfer to transform
the signature o into a new signature ¢’ with respect to the new commitment
comm’. It is important that the resulting pair (comm’,¢’) is unlinkable to the
original pair (comm, ). Thus, in order to prove that the contents of comm’ were
signed, it is sufficient to just reveal o’. More technical details and the formulation
on CTS are deferred to Section 1.3.

From CTS to Anonymous Credentials and More. Using a CTS scheme and
an appropriate (non-interactive) zero-knowledge proof (NIZK), we can construct
Anonymous Credentials and the other related object, namely, Group Signatures
and Blind Signatures. We first elaborate on the case of Anonymous Credentials.

Suppose User whose secret key is « needs to obtain a credential from some
CA. First, it forms a commitment comm < Commit(x) and proves to CA that
he knows the opening to the commitment. Next, CA runs the Sign algorithm
on input comm, obtains the signature o, and returns it to the user. After the
signature is obtained, suppose that the user wants to prove possession of this
credential, he uses the Randomize(-) and Transfer(-) algorithms to obtain a new
commitment comm’ to & and the issuer’s signature ¢’ on comm’. Now, the user
sends the resulting (comm’,o’) to the verifier as a credential. As (comm’,c’)
is unlinkable to the original (comm, o), we achieve the important property of
unlinkability. We can further prove that it is computationally infeasible to forge



a o* with respect to comm* = Commit(z*) that a signature of commitment of
x* has never been issued.

By instantiating a half-fledged CTS (which might allow more efficient instan-
tiations), we can achieve Group Signatures and Blind Signatures. Particularly,
for Group Signatures, User only needs to send « in the clear at the first stage,
i.e., viewing x as the trivial commitment, as the privacy of User is not required in
this phase. After obtaining o, User runs Randomize(-) and Transfer(-) to produce
a hiding comm’ and a corresponding signature ¢’.° On the other hand, for Blind
Signatures, User follows the first half of the Anonymous Credential construction,
yet later modify the randomized algorithm as: comm’ just reveals x. Again this
is not an issue as the privacy of Blind Signatures is not required against Verifier.
In fact, the constructions of [22,23] can be viewed as realizing the half-fledged of
our notion of CTS. Besides, as CTS is essentially a non-interactive version of “sig-
nature with protocols”, this notion may be useful for other privacy-preserving
applications related to “signature with protocols”.

For the NIZK system, the recent work [22] identified a necessary property, i.e.,
the system needs to be multi-theorem straight-line extractable, as otherwise, the
security proof of the whole system (Blind Signatures or Anonymous Credentials)
would incur an exponential loss. It is important to determine efficient multi-
theorem straight-line extractable proof systems from lattices for the particular
commitment relation in the CTS construction.

Focus of This Work. Our main goal is to construct an efficient Anonymous
Credential based on some standard lattice assumptions. As discussed before, this
can be achieved by determining the following questions.

(Main Questions) Can we design an efficient full-fledged CTS from
standard lattice assumptions? Can we construct an efficient straight-line
extractable NIZK for the commitment relation of the CTS?

1.1 Owur Contributions

To address the main questions, we make the following contributions.

— We formalize the notion of CTS and its security requirements. Together

with a straight-line extractable NIZK, CTS gives a simple way to construct
Anonymous Credentials and other useful privacy preserving tools, such as
Group Signatures and Blind Signatures.
Moreover, the CTS-based Anonymous Credentials can be extended to the
attribute-based setting, by further embedding attributes to the committed
message and designing proper NIZK to prove the message relation satisfying
a certain policy.

— We show how to instantiate CTS from some well-studied lattices assumption-
s, 1.e., the module learning with errors (M-LWE) and module short integer
solutions (M-SIS).

5 To be able to open the group signature scheme, we still need to add a verifiable
encryption to the signature.



— We construct an efficient lattice-based straight-line extractable NIZKPoK
for our CTS commitment relation in the classical random oracle model.
To achieve this, we employ the encrypt-and-prove approach similar to the
work [2]. To further enhance the overall efficiency, we have adopted various
optimizations specifically tailored to our setting and parameters.

— We determine parameters for all the required components for evaluating
concrete efficiency. Below we present our concrete parameters and findings.

In the following tables, we show concrete parameters of Anonymous Cre-
dentials of various security levels. Particularly, our simple yet selectively secure
CTS (in Section 4) can derive selectively secure Anonymous Credentials, whose
concrete parameters are presented in Table 1. By scaling up the security param-
eter and applying the complexity leveraging argument, we can derive adaptively
secure Anonymous Credentials with concrete parameters” in Table 2. Alterna-
tively, we also directly construct an adaptively secure CTS as in Section E, im-
plying asymptotically efficient adaptively secure Anonymous Credentials with
concrete parameters in Table 3. For the currently used security levels (say 131
bit-security) however, the scheme via the complexity leveraging (as Table 2) is
much more efficient. We leave it as an interesting open problem to optimize such
directly adaptive CTS and the derived Anonymous Credential.

PP PK SK |Pseudonym|Signature|Credential |Bit-security
Params 1{1.926MB|238.5KB|8KB| 1.659MB |153.88KB|232.53KB 172

Table 1. Our selective Anonymous Credentials from Ring-LWE and Modulus-SIS.
Here, we denote PP as public parameter, PK as public key, SK as secret key. All
values in this table are computed from the example parameters of Params 1 in
the Tables 12 and 13.

PP PK | SK |Pseudonym| Signature |Credential |Bit-security
Params 1{4.09MB|513KB|16KB| 3.53MB [325.249KB|499.15KB 131

Table 2. Our adaptively secure Anonymous Credentials by applying the com-
plexity leveraging argument to the selectively secure scheme. All values in this
table are computed from the example parameters of Params 2 in the Tables 12
and 13.

PP PK SK | Pseudonym |Signature|Credential | Bit-security
Params|91.89MB|40.32MB|64KB|5839.324MB| 2.117MB | 3.003MB 134
Table 3. Our adaptive secure Anonymous Credentials from a direct construction

of adaptively secure CTS. All values in this table are computed from the example
parameters of the Table 15.

1.2 Comparison with Recent Progress

Here we present a comparison between our contributions and relevant recent
works, for a clear identification of our advancements over the state of the art.

" Here we consider 224 bits for the User ID length, and scale up the selectively secure
scheme to roughly 355-bit security. This implies an adaptively secure scheme of 131
bit-security after applying the complexity leveraging argument.



Anonymous Credentials. Several earlier works [18, 28,39, 56] have made at-
tempts to construct lattice-based anonymous credentials, yet their approaches
have various drawbacks and thus unsatisfactory. Particularly, the work [18] only
achieved a weaker notion called anonymous attribute token system, where user
anonymity is protected only against verifiers, but not the CA. The schemes [18,39]
are not concretely efficient, and the schemes [28,56] do not achieve the important
property — unlinkability. Thus, all these approaches are not suitable for scenarios
that require the full-fledged anonymous credentials.

Concurrent Works. Very recently, two independent and concurrent work-
s [12,36] have constructed efficient lattice-based anonymous credentials. Here
we undertake a comparative analysis of the findings, highlighting the unique
merits of our approach despite the existence of these concurrent works.

First, the work [36] instantiates the necessary building blocks following the
approach of “signature with protocols”, and then derives an anonymous cre-
dential system based on the M-LWE and M-SIS assumptions. In efficiency, the
credential size of their protocol is about 639 KB for 128 bit-security. However,
their efficient instantiations operate in an interactive setting, requiring multiple
rounds of interaction between involved parties for all signing and verification pro-
tocols. It is important to note that a direct application of the Fiat-Shamir trans-
form is not sufficient to achieve a non-interactive solution in this specific context.
The reason is that the NIZKPoK (essential for ensuring the commitments’ well-
formness) must be straight-line extractable, as discussed earlier in this section.
Consequently, their non-interactive variant necessitates the re-determination of
concrete parameters with a large overhead expected.

The other work [12] takes a different approach to construct non-interactive
lattice-based solutions in the random oracle model. Their scheme exhibits a high-
ly competitive level of concrete efficiency. E.g., the size of credentials is about
122 - 133 KB for 128 bit-security, or 26 - 29 KB under another new assump-
tion. However, there are two important caveats to consider. First, their efficient
scheme only achieves a very basic anonymous credential system without incor-
porating pseudonyms, which can be desirable for enabling some useful features,
e.g., selective tracking of holders [14,42]. Second, security of all their schemes [12]
depends on some new variations of ideal lattice problems.

Even though these two issues can be handled in theory, it remains chal-
lenging to derive a system with comparable efficiency under their paradigm. In
particular, resolving the first issue would require additional commitments and
proofs on top of their basic schemes, e.g., proving equality between committed
and signed values, yet the concrete blowup needs to be re-evaluated. The second
issue presents a tougher challenge, as adapting their approach to rely on more
well-studied assumptions (e.g., RLWE) appears to necessitate proving knowledge
of pre-images for random oracles. Unfortunately, there is currently no efficient
lattice-based proof technique available to fulfill this need.

Considering the insights gained from the current post-quantum standardiza-
tion process [9,20,47,54], a cautious and conservative approach would always be
necessary and valuable. By building schemes under more well-studied hardness



foundations, we can mitigate the risks associated with unforeseen weaknesses in
the new assumptions, ensuring better confidences in the overall security.

Summary. Our work, along with the two concurrent works, possesses unique mer-
its in different aspects. In summary, both our work and the work [36] achieve
anonymous credential systems with pseudonyms under the more extensively s-
tudied assumptions (i.e., M-SIS and M-LWE). However, our work offers advan-
tages over [36] in terms of smaller credential size and non-interactive protocols.

When comparing our work to [12], we observe that their concrete parameters
are smaller, yet their efficient instantiation is for a basic anonymous creden-
tial system without pseudonyms, and moreover their security relies on new and
less-studied assumptions. Thus, we believe that these two works have incom-
parable advantages and both deserve attentions. Below we present Table 4 for
comparisons between our work and these concurrent works.

PP PK SK |Pseudonym| Signature |Credential|Bit-security| ZK | Assumption
36] — 7.8MB|8.9MB - 273KB 639KB 128 Inter.|M-LWE, M-SIS
12] — — — 1 — 122KB 128 Non. ISISf
urs|4.09MB|513KB| 16KB 3.53MB |325.249KB|499.15KB 131 Non. [M-LWE, M-SIS

Table 4. Comparison of efficiency estimates of Anonymous Credentials Systems be-
tween ours, [36] and [12]. In the column of ZK, we use Inter. and Non. to denote
“interactive” and “non-interactive”, respectively. In [12,36], some of concrete values
are not explicitly listed, so we just use the symbol “-” for these columns. Besides, as
the current construction of [12] does not support pseudonym application immediate-
ly, we just use the symbol L to represent its size. Moreover, here we focus on the
non-interactive version of the underlying assumptions, so we do not list the efficiency
of [12] based on the interactive ISISy assumption.

Straight-line Extractable Lattice-based NIZK. Next we present relevant
works of straight-line extraction for lattice proofs. Generally, there are two main
approaches to achieve this notion for lattice proofs:
1. The technique of extractable linear homomorphic commitments, e.g., [12,22].
2. The instantiation of the well-known encrypt-and-prove paradigm from lat-
tices, e.g., [2,10].

For practical parameters, recent works [2,10] have focused on optimizing proof
sizes in the classical random oracle model (ROM), and currently, the second
approach achieves smaller proof sizes [22].

This work follows the second, i.e., encrypt-and-prove approach, yet makes
notable optimizations in our instantiation, distinguishing it from the state of
the art as presented in [2]. Particularly, we note that the design of [2] is not op-
timized for scenarios involving larger witnesses. Consequently, when integrating
our anonymous credentials, which require languages with larger witnesses com-
pared to the simpler setting of blind signatures, their scheme [2] (as is) would
result in significantly larger proof size, roughly 1512 KB to prove consistency
of one BDLOP commitment for our parameter setting Params 2 in Table 12.3

8 We note that each pseudonym in our design requires several BDLOP commitments
and thus proofs.



To address this challenge, we have introduced different optimizations to further
reduce the proof size to roughly 604 KB, based on which the efficiency of Anony-
mous Credentials system in Table 2 is calculated. More comprehensive details
regarding these optimizations can be found in the technical overview provided
in Section 1.3.

It is worth noting that the first approach has an advantage in terms of extend-
ability of security analysis to the quantum random oracle model (QROM) [22],
though a significant efficiency overhead of add-ons is required under current tech-
niques. An interesting open problem is whether we can enhance the efficiency
and analysis in the QROM settings for either the first or second approach. As
further research is needed to explore potential improvements, we believe that
all of the aforementioned works, including our own contributions, would provide
valuable guidance and serve as stepping stones towards achieving this goal.

1.3 Technical Overview

We present an overview of our techniques of how to efficiently construct the
required CTS and straight-line extractable NIZKPoK from lattices. First we in-
formally describe the notion of CTS and then present our technical insight-
s. Next, we present the intuition of our efficient instantiation of mult-theorem
straight-line extractable NIZKPoK. These two pieces naturally give Anonymous
Credentials as we discussed above.

Commit-transferrable Signatures. Informally, a CTS is a combination of
a re-randomizable commitment and a signature, with the following algorithms
(Commit, Randomize, Sign, Transfer, Verify). Intuitively, a user can send comm
Commit(z) to the signer, who will run the algorithm Sign to produce a signature
o on the commitment comm. Later on, the user can re-randomize the com-
mitment comm’ < Randomize(comm) and then derive a transferred signature
o’ < Transfer(comm,comm’, o) with respect to the randomized commitment
comm’. For security, the CTS requires input privacy, signature unlinkability, and
unforgeability. These properties can be roughly captured by — (1) the signer does
not learn any information of z, (2) one cannot learn information about the orig-
inal commitment-signature pair (comm, o) from the re-randomized-transferred
pair (comm’;¢’), and (3) an adversary cannot forge a valid ¢’ with respect to
comm’ + Commit(z*), if any commitment of z* has not been signed by the
signer. Below we explain how to construct such a primitive from lattices.

Warm Up. To achieve CTS, intuitively, the first step is to obtain a scheme
that allows to sign on commitments, i.e., blending a commitment scheme and
signature scheme in an appropriate way. This can be achieved by using ABB
signature [1] and GSW commitment [35], as observed by the work [22,23]. Briefly,
the ABB scheme has public key of the form (Ag, Bg,u) (i-e., two matrices and
one vector), and the secret key is the trapdoor, i.e., T, of the matrix Ag. The
signature of m is a short vector s, satisfying [A¢|Bg + mG] - s = u, where G
is the gadget matrix of [49]. The GSW commitment uses a public matrix A. To
commit to a message m, it outputs A - R + mG, where R is a short random



matrix. To open, one just reveals the message and randomness. Next, we describe
the idea of [23] to blend these two together.

To sign on commitment C = A - R 4+ mGQG, the signer first generates the
matrix F = [A|Bg + C], and then generates a short vector o := s that satisfies
F-s = wu. This can be achieved by using the trapdoor sampling technique of [49].
Suppose the commitment C does not need to be re-randomized, then the user
can simply generate a transferred signature ¢’ by a ZK proof of knowledge that
she holds a short vector with respect to the lattice AL(F) = {z : F -2z =
u and z is short}. Intuitively, the zero-knowledge property guarantees that one
cannot learn information about the original signature o from the transferred one,
i.e., o’. The unforgeability follows from the SIS using the ABB analysis of [1].

Handle Re-randomized Commitments. The above technique achieves a half
of the goal, which means just transferring the original signature s to one (i.e.,
ZK proof 7) with respect to the same commitment C. To achieve the full-fledge
of our goal, we need to handle how to transfer signatures with respect to a
re-randomized commitment C'.

We observe that GSW commitment can be easily re-randomized, i.e., just
setting C' = C + A - R/ for some short random matrix R’. It is easy to show
that given (C, C’), one cannot determine whether the underlying messages are
related or not. Given this, we define another matrix for verification with respect
to C" as F/ = [Ay|Bo + C’|A]. So now our goal is to generate a short vector s’
such that F/-s’ = u, and then set ¢’ to be a ZK proof of knowing a short vector
in AL (F’). By the security of GSW and ZK proof of knowledge, it is easy to
argue that one cannot learn information about (comm, o) from the (comm’; ¢’).

To achieve this, we first express F/ = [F|0] 4+ [0]A - R/|A] = [A¢|Bo +

S1
C|0] + [0|A - R/|A]. Then through denoting s = {Zj , we observe, F/ - | 5o | =
0

1
S2
zZ3

Z1
[A0|BO+C}[S ]+A~R’~32 = u+A-R’ s, so0 if we can find a short z = [zQ] such

zZ1 S1 zZ1
that F'- | z2 | = —A-R’- sz, then s’ can be simply set to | s2 | + | 22 |, fulfilling
z3 0 z3
0
our goal. By the special structure of F/, we can just set z = 0 . Thus
—R’. 89
s1
the overall s’ = [ S2 . It is not hard to verify all the prior steps, implying
—R/ s

that F' - s’ = u.

Conceptually, the user can massage the randomness R’ (for the re-randomiza-
tion of the commitment) and the signature s obtained from the signer, to derive
a related witness, i.e., s’ for the related lattice A} (F’). Thus, a ZK proof of
knowledge can serve as the transferred signature ¢’ for the re-randomized C’.
We notice that lattice-based ZK proofs for general NP languages exist in the



standard model [51] albeit poor efficiency. On the other hand, the particular
proof system we need can be instantiated efficiently in the random oracle mod-
el [31]. The whole approach can be further optimized by using ideal lattices, i.e.,
Ring-SIS/LWE, as identified by the work [5,23,46].

We notice that we can further improve efficiency of the construction idea
above by using multiple BDLOP commitments on related messages [6], similar
to the work [22,23]. Thus in our main construction, we will present in the BDLOP
form, and our parameters are set with respect to this more efficient version.

Straight-line Extractable Proofs. The next important piece is to construct
an efficient multi-theorem straight-line extractable NIZKPoK, proving the well-
formness of the commitment in CTS. Informally, for a multi-theorem straight-line
extractable proof, there exists an extractor who can extract multiple witnesses
from an adversary who generates multiple valid proofs, and moreover the extrac-
tion does not need rewinding. As pointed out by [2,10,22], this is an important
feature for non-interactive blind signatures and anonymous credentials. For our
CTS, specifically we need to prove knowledge of BDLOP commitments, which
we recall below. A BDLOP commitment of message m has the structure:

Commit(m;r) = [Aj ST+ [m} Egd Z; = {tj ’

where r is the randomness (ring elements with small coefficients) and m is the
message. There are two different moduli with some flexibility in the design.
For efficiency optimizations, we can set g1 < g2, and in our application, we
additionally require g3 to be a large prime of a special form, e.g., congruent to
3 or 5 modulo 8.

There are various efficient lattice proofs of knowledge about m, r in the liter-
ature [5,6,13,23,27] in the random oracle model. However, the knowledge extrac-
tion of these constructions requires to rewind the random oracle, and as pointed
out by [22,37], this would incur an exponential security loss in the application
of blind signatures and anonymous credentials. To achieve efficient straight-line
extractable proof, as we discussed in the prior section, we take the approach of
encrypt-and-prove, which is currently better optimized than the other one using
extractable linear homomorphic commitments.

The general paradigm is to encrypt the witness and then prove well-formness
o the encryption and consistency of the encrypted witness (with the BDLOP
commitment). In our specific case, we can just encrypt the randomness r of
the above BDLOP commitment, i.e., Enc(r) and then prove well-formness of the
encryption, upper bound of ¢5 norm for r, and A;-r = t;. The r can be extracted
easily in a straight-line manner, by decrypting the ciphertext given the secret
key of Enc. Then one can derive m := to — Agr, which would be consistent with
what was originally committed to by the binding property of the commitment.

To instantiate this idea, one could consider the currently most optimized lat-
tice proof (in the classical random oracle model) [2], which takes the following
high-level step. First they instantiate a RLWE-type encryption scheme Enc(-) and
then use the ABDLOP commitment to commit to  and the randomness to gen-

10



erate the encryption Enc(r), say p. Then they use the LNP proof technique [44]
to prove (1) the randomness p and r are small; (2) p and r satisfy the linear
equation as in this particular encryption algorithm, implying that the ciphertext
is well-formed; and (3) A -r =1t; (mod ¢1).

In our specific setting, the lengths of r and p are larger due to the CTS
design and analysis. As a consequence, the LNP proof especially for (2) (the
exact relation of the encryption) would be particularly large, resulting in the
proof size roughly 1512 KB under a conservative estimation. To further improve
efficiency, we observe that we can make BDLOP commitment decryptable by
adding a trapdoor of [49] to the public matrices. This variant of BDLOP can serve
as our Enc(+), which enjoys the rather efficient relazed proof for the relations (1)
and (2) in the above. Finally, we use LNP proof [44] just for the last part (3).
Even though the relations for (1) and (2) are in the relaxed form, we can still
show consistency between the extracted witness and what was really encrypted
under the hardness of M-SIS. Combining these ideas, we can reduce the proof
size to roughly 604 KB. We present the details in Section 5.

One More Subtlety. We identify a technical subtlety — for our anonymous
construction, there still remains a gap towards the full overall security, even if one
proves well-formness of BDLOP commitments using a straight-line extractable
proof, due to a possible mix-and-match attack. To tackle this, we identify a
stronger form of well-formness, where it is computationally infeasible to generate
tuples (t1,t],t2) such that both (¢1,t2) and (¢},t2) can be proved well-formed.
This stronger property suffices for deriving secure anonymous credentials and can
be realized in a simple and efficient way. We present more details in Section 2.3.

2 Preliminaries

Notations. Z and R denote the sets of integers and real numbers. Throughout
this paper, we use A to denote the security parameter, which is the implicit input
for all algorithms. A function f(A) > 0 is negligible and denoted by negl(\) if
for any ¢ > 0 and sufficiently large A\, f(\) < 1/A°. A probability is called to be
overwhelming if it is 1 — negl(\). A column vector is denoted by a bold lower
case letter (e.g., ). A matrix is denoted by a bold upper case letter (e.g., A).
For a vector «, its Euclidean norm (also known as the ¢3 norm) is defined to be
||| = (3, #2)'/2, and its infinity norm is defined to be |||, = max; |z;|. For a
matrix A, its ¢th column vector is denoted by a; and its transposition is denoted
by AT. The Euclidean norm of a matrix is the f5 norm of its longest column:
|A|| = max; ||a;||. For any matrix B = (by,...,by,), we use B = (by,...,by,) to
denote the Gram-Schmidt orthogonalization of B. Besides, we refer to ||B| as
the Gram-Schmidt norm of B. Let R = Z[x]/(z% + 1) be a cyclotomic ring, with
d be a power of 2. And the norm of an element in R, will be the norm of its
unique representative with coefficients in [—(¢—1)/2, (¢ —1)/2]. For matrix A in

R, we use 51(A) = max|q (HﬁTgﬁ”) to denote its operator norm. For positive

B € R, we use Sg to denote the set of all polynomials of infinity norm less than
B,ie., Sg={aeR| |a|le < B}
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For positive integers n, ¢, let [n] denote the set {1,...,n} and Z, denote the

ring of integers modulo ¢. For a distribution or a set X, we write z & X to
denote the operation of sampling an uniformly random x according to X. For
two distributions X,), we let SD(X,)) denote their statistical distance. We
write X ~ ) to mean that they are statistically close, and X ~ Y to say that
they are computationally indistinguishable.

Due to the space limit, we defer the detailed background notations, defi-
nitions, and lemmas on lattices, rejection sampling, and algebraic structure of
cyclotomic rings to Appendices A.1, A.2, and A.4, respectively.

2.1 M-LWE and M-SIS

Now we introduce the hard problems on which our schemes rely, which are
denoted as M-LWE and M-SIS.

Definition 2.1 (M-SIS [38]) The M-SIS, ¢, g problem (over an implicit ring
R) is defined as follows. Given an uniformly random matriz A € Rf;xm, output
vector z € R™ such that Az =0 and 0 < ||z|| < 3.

Definition 2.2 (M-LWE [38]) The decision M-LWE, ¢ ., problem (over an im-
plicit ring R) is defined as follows. For s & S, use Ag.s to denote the distri-

bution of (a,(a,s) +e) € Rl x Ry, where a & R! and e & 8y, The goal is to
distinguish m samples from either Aq s or L{(Rf;, R,).

Notice that for M-LWE, ¢ ., if £ = 1, it can also be called as RLWE 1 1.

2.2 Syntax of Commitment

We give a formal definition of commitment schemes, following the presentation of
[6,23]. A commitment scheme consists three algorithms (CKeyGen, Commit, Open),
with the security parameter 1* as implicit input:

CKeyGen is a PPT algorithm that outputs the public parameters params con-
taining the descriptions of the message space M and randomness space R.

Commit is a PPT algorithm that, on input the public parameters params and a
message © € M, outputs the commitment ¢ and its related randomness r € R.
Open is a deterministic poly-time algorithm that, on input the public parame-
ters params, a message © € M and values ¢ and r € R, outputs a bit b € {0,1}.

A secure commitment scheme requires the two properties: hiding and binding.
We defer the presentation to Appendix A.3.

2.3 BDLOP Commitment Scheme

We use as a building block the efficient lattice-based commitment scheme in
[6, 23], implicitly denoted as BDLOP Commitment. Particularly, BDLOP Com-
mitment consists of three algorithms (CKeyGen,Commit,Open) as follows.

12



— CKeyGen (1*): Given the security parameter A as input, the algorithm first sets
the parameters n, k, ¢, q1, q2, and ring R = Z[z] /(" 4+ 1) where N is a power
of 2, or other cyclotomic rings as Table 5, and then chooses random matrices

A & Ri;f(k*") and Al & Ri;(kfnfe). Finally, the algorithm outputs the
public paramters params := Ay = [Al] with Ay := [I,, Af] € RIX%, Ay =

A,
[0°%™ 1y, Aj] € REXF.

— Commit(params, m;r): In order to commit to a message m € Rgg, the al-

gorithm first samples a random short vector r & S’g, and then outputs

comm = 11 = [ 2]+ [ :

— Open(params,comm): For comm := (¢ ,t;)" € Ry x R,,, there are two
types of openings for slightly different commitment relations in the literature:
relaxed one and exact one. Here we just focus on the latter one.
Particularly, The valid opening is with respect to the following exact relation

L ::{comm : 3(m, ) such that comm = Commit(params, m, 'r)}

T

A valid opening of comm := (t{,t,)7T € Rl x Rl consists of a message

m € R¢

t
5> and a short vector r = (r1,...,m%)" € RF, such that [ 1] =

ta

A, 0 .
; < .
[AJ r+ {m} , where for all 4, ||ri]|c < 5
Besides, there are two additional algorithms for the randomness vector in the
valid commitment.

— Combine(r,'): Given two vectors r € S’g and ' € S’g, output # =r + 7’ €
Sty
— Randomize(params, comm, r’): Taking as input params, 7' € S% and a com-

mitment comm, output comm’ = comm + Ag - r’.°

According to [6,23], we know that BDLOP Commitment satisfies binding and
hiding properties, following from M_Slsql,n,kﬁ\/in%-ﬁ-k-N and M-LWE, 1 —n—¢.n+e,
respectively. Here, n is the parameter for rejection sampling as in Lemma A.9,
k is the parameter for the challenge set of NIZKPoK system as in Table 5.

Well-formness. For our application, we need to prove the well-formness of
BDLOP commitments along with the commitment generation. This task has
been studied in the original BDLOP scheme and several follow up works, e.g.,
[6,23]. Particularly, given the public matrices A1, As and commitment comm :=
(t{ ,t5)7, the relation can be described as: there exists vector r, m such that

A1 0 r _ t1
A.2 I m - to ?
9 Notice that, if comm is a valid commitment of m with randomness r, then comm’ is

still a valid commitment of m, but with randomness # = Combine(r, 7’).
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where 0 € Rglxe and I € Ré;e denote the zero and identity matrices.

74
q2’

be any element in R’ ,» well-formness can be proved by showing that there exists
a r such that A, -r = f -1, i.e., with respect to the relaxed relation

For the original BDLOP scheme where the message space is R._, i.e., ™ can

L Gi= {(Al,Az,tl,tg) :3 (r,m) and f € C such that 0 < ||r|| < 1, and

A, 0 t1
MESREHE
In fact, this is what the “proof of opening” does in several prior work [6,23].

However, our application requires a stronger form of well-formness, which is
not implied by what we just described above. Particularly, our application needs
a stronger commitment-proof binding property that for any (¢, ¢2) that can be
proved to be well-formed, it is computationally infeasible to find another ¢} such
that one can prove well-formness for (#],%2). This is an important requirement
that prevents the mix-and-match attacks for our anonymous credential systems.
We formalize this in Appendix A.5.

Next we argue that the original BDLOP does not satisfy this property by
the following example. One first generates Commit(m) = (¢1, t2) honestly for an
arbitrary m, and then computes |} = Ay 7', with 7 # r’. Then we can interpret
(t},12) as Commit(m’ = ta — Ay -7'). As the message space is the full ring vector
Rgz, this interpretation is valid, and thus (t},%2) can still be considered to be
well-formed. Thus, it is easy to generate two proofs for these two commitments,
breaking the commitment-proof binding property.

To tackle this, we identify a simple property — as long as the BDLOP message
space is “short”, i.e., ||m|ls < S for some parameter 3, then the stronger form
of well-formness is implied naturally! Intuitively, if the adversary can come up
with such a tuple (£1,%2,t]), then there is a reduction that breaks the M-SIS

problem (with proper parameters). In Appendix A.5, we present more details.
Now, we consider the following language for the relaxed relation of BDLOP:

V1,91,92,

= {(Al,AQ,tl,tz) :3 (r,m) and f € C such that 0 < ||7|| < ~1,
’ A1 0 r o t1
0<mll <5 and |31 7] 7 | =0 |8 )

By using the technique of [6,23], we can construct a NIZKPoK (with rewinding-
type extractions) as following. For the BDLOP scheme with this type of message
space, the stronger well-formness can be achieved.

L'yi vh1q1,92,C

Theorem 2.3 In the random oracle model, for a secure BDLOP commitment
scheme, there exists a NIZKPoK system II for the relaxed language Loyt ara200

with v} = 2v/2n-\/k-B-kN and v, = 2v/2n-/r- -LN, where 1 is the parameter
for rejection sampling as in Lemma A.9.

For completeness, we present the proof and concrete protocol in Appendix A.5.
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2.4 Non-interactive Zero-knowledge Proof

Let’s recall the notion of non-interactive zero-knowledge (NIZK) proof system.

Definition 2.4 ( [24]) Let R be a relation. A non-interactive proof system for
R is a tuple of PPT algorithms (Setup, Prove, Verify, SimSetup) having the fol-
lowing interfaces (where 1 are implicit inputs to Prove, Verify, SimSetup ):

- Setup(lA) 1 given a security parameter \, outputs a string crs.

— Prove(crs, x,w): given a string crs and a statement-witness pair (x,w) € R,
outputs a proof m.

— Verify(crs, z, 7): given a string crs, a statement z, and a proof 7, either accepts
or rejects.

— SimSetup(1*): given a security parameter \, outputs a simulated string crs and
a trapdoor tk.

A secure NIZK should have three properties: Completeness, Soundness, and
Zero-knowledge. Due to space limitation, we defer the definitions in Appendix A.6.
As argued by [5,22,27,30], Fiat-Shamir based proof systems in the random o-
racle model satisfy these properties. Many recent lattice-based efficient NIZKs
are Fiat-Shamir based, so they also enjoy this property. Notice that, even crs is
explicitly outputted by the algorithm Setup, the above definition still cover the
case of Random Oracle based NIZK, just as used in [2,12,22, 36]

2.5 Algebraic Structure of Cyclotomic Rings

In this paper, we need to prove that the elements in the message space M of
CTS are invertible, i.e., M is a subfield. In this section, we just present the core
corollary for our constructions, based on the assumption that the readers are
familiar to necessary algebraic background, which are deferred to Section A.4,
due to space limit.

Particularly, for power-of-two cyclotomic rings, we have the following.

Corollary 1 ( [23]). Let d > 1 be powers of 2, q be a prime that is congruent to
3 or 5 modulo 8. Let K denote the power-of-two cyclotomic field Q[X]/(X? +1)
with the ring of integers R = Z[X]/(X¢ + 1). For any integer k satisfying k|d,
there exists a subring S of R, such that Sy is a subfield of K consisting of q~
elements.

Particularly, let 0_1,05 are automorphisms of K, which map any X € K to
X1 and X3, respectively. Let G = Gal(K/Q) denote the Galois group of K,
which consists of all automorphisms of K. Let H = (o_1,0%) be a subgroup of G
with index k. And let L denote the fixed field of H, where its ring of integers is
denoted as S. Then, S, is a subfield of K consisting of ¢* elements. Moreover,
for any p in Ry, p € S, iff p is fived by o_1 and of.
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3 Commit-Transferable Signatures

Following prior work [7], our goal is to obtain a signature scheme that can be
combined with an appropriate commitment scheme and zero-knowledge proof-
of-knowledge protocols to obtain an Anonymous Credential scheme.

We will first describe the key nowvel building block we need: a signature
scheme whose message space consists of commitments. Our starting point is a
non-interactive commitment algorithm Commit parameterized by params chosen
according to the Setup algorithm, i.e., params < Setup(1?). The commitment
scheme should admit additional algorithms that allow for randomizing com-
mitments. Particularly, given a commitment comm = Commit(params, m; Rand)
and randomness Rand’, there is an algorithm Randomize that outputs another
commitment comm’ = Commit(params, m; Rand”) to the same message m. An
additional Combine operation is for combining Rand’ with the randomness Rand
of the commitment comm, i.e., Rand” = Combine(Rand, Rand’).

The novel property of a commit-transferable signature is that, given a sig-
nature o on a commitment comm = Commit(params, m; Rand), it is possible to
obtain a signature ¢’ on a different commitment to the same message, comm’ =
Commit(params, m; Combine(Rand, Rand’)). The unforgeability property is de-
fined that an adversary querying for signatures on commitments whose openings
are known my, ..., m, will not be able to produce a signature on a commitment
that opens to a new message m’ # m;, for V i € [n]. We notice that the require-
ment of commitments whose openings are known can be achieved by requiring
the adversary to provide an additional (non-interactive) zero-knowledge proof of
knowledge in the applications, and thus our simpler form of unforgeability for
CTS suffices. As discussed in the introduction, our applications need an addi-
tional property called straight-line extraction for the NIZKPoK. We discuss more
details in Remark 3.5 and Section 5.

More formally: let (Setup, Commit) be a non-interactive randomizable com-
mitment scheme that admits (Randomize, Combine) for randomizing commit-
ments; let (KeyGen, Sign, Verify) be a signature scheme, and let Transfer be an
additional algorithm with the following input-output behavior:

Setup Let A be the security parameter. Setup(1*) outputs params, the parame-
ters for the commitment scheme and the signature scheme; these parameters
also define the message space M, randomness space R for the commitmen-
t scheme, the randomness space R’ for the Randomize algorithm, and the
output space R” of the Combine algorithm.

Commit Let m € M, Rand € R. Commit(params, m;Rand) outputs comm, a
commitment to m using randomness Rand. There is no separate opening
algorithm: opening can be achieved by revealing m and Rand.

Randomize and Combine Let comm = Commit(params, m; Rand), with Rand €
R. Randomize(params, comm, Rand, Rand’) returns the commitment comm’ =
Commit(params, m; Combine(Rand, Rand’)), where Combine : R x R’ + R is
an efficiently computable operation on elements of R and R'.

KeyGen Given params, KeyGen(params) outputs a secret key sk and the corre-
sponding public key pk for commit-transferrable signature system.
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Sign Let comm = Commit(params, m; Rand). Sign(params, pk, sk, comm) outputs
a signature o with respect to comm.

Transfer Let comm = Commit(params, m; Rand), comm’ = Randomize(params,
comm, Rand’), o = Sign(params, pk, sk, comm). On input (params, pk, o, m,
(Rand, Rand’)), the algorithm Transfer outputs a signature o’ with respect to
the randomized commitment comm’.

Verify On input (params, pk,comm, o), the algorithm Verify either accepts or
rejects. For simplicity, our syntax does not distinguish whether the signature
o is an original or a transferred one. In the construction, we need to specify
two different procedures when verifying different types of the signatures.

Definition 3.1 (Correctness) Let Setup, Commit, Randomize, Combine, KeyGen,
Sign, Verify and Transfer be efficient algorithms with input-output behavior as
above. They define a correct randomizable commitment scheme if for all params
that are output by Setup, for all m € M, Rand € R, Rand’ € R/, Randomize(
Commit(params, m; Rand), Rand’) = Commit(params, m; Combine(Rand, Rand’)).

Moreover, they define a correct commit-transferable signature scheme if for
all params that are output by Setup, for allm € M, Rand € R, Rand’ € R/, 0 +
Sign(params, pk, sk, Commit(params, m, Rand)), (sk, pk) < KeyGen(params), ¢’ +
Transfer(params, pk, o, m, (Rand, Rand’)), both Verify(params, pk, Commit(params,
m, Rand), o) and Verify(params, pk, Commit(params, m, Combine(Rand, Rand")), o)
accept.

Additionally, we require that commit-transferrable signature schemes satis-
fy several properties: unlinkablity /simulatability and unforgeability. Intuitively,
unlinkablity means that for any two messages mg, m1, it is infeasible to distin-
guish their honest transferred signatures o, and of (output by the algorithm
Transfer). Simulatability means that the transferred signature ¢’ itself does not
leak information about the input 2 (and also the randomness). Clearly, simulata-
bility is much stronger property, and implies unlinkability. Thus, it is sufficient
for us to just focus on simulatability.

Below we formulate the property of simulatability by the zero-knowledge
paradigm, requiring that a simulator without knowing the input x and random-
ness can generate an indistinguishable ¢’ for an arbitrary number of queries.

Definition 3.2 (Simulatability) We say that the Transfer algorithm can be
simulatable if there exists a two-stage probabilistic polynomial time simulator S
which can simulate the transfer algorithm in an indistinguishable way, without
knowing the input x and randomness to the commitment comm. More formally,
we define the syntax of the two-stage simulation process as follow.

— First, S generates params, together with some trapdoor information Trap.
— Second, S is given input params with the trapdoor Trap, and any arbitrary pk,
comm. Then S can generate a simulated transferred signature o' .

Then the simulatability requires that for t = poly(\), any {m;}icpy € M, ran-
domness {Randi7Rand§}ie[t], no probabilistic polynomial time distinguisher D
can distinguish (params, pk, {comm;}ici, {0 }icy)) from (params, pk, {comm}},cpy,
{Fi}iew) with better than a negligible advantage, where
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— in the former, the params and pk are sampled honestly, each comm; = Commit
(params, m;; Rand;), o; < Sign(params, pk, sk,comm;), comm/ = Randomize
(params, comm;, Rand;), and o! < Transfer(params, pk, o;, m;, (Rand;, Rand}));

— n the latter, params s generated by the simulator, pk is sampled honestly,
comm} is generated as above, and 7. is generated by the simulator.

Definition 3.3 (Unforgeability for Commitment Relation) We say that
the algorithms as above define an unforgeable commit-transferable signature if
for all probabilistic polynomial-time adversaries A, the probability that A wins
the following game is negligible:

Input generation phase: On input 1%, the challenger generates params <
Setup(1%), (sk, pk) + KeyGen(params).

Query phase: Given (params, pk) as input, the adversary A can access to the
following oracle: A makes queries with the form of (comm;, m;, Rand;), and gets
as responses o; = Sign(params, sk, comm;) if comm; = Commit(params, m;; Rand,),
or L else.

Challenge phase: Finally, the adversary A outputs (m*, Rand, o). Let comm* =
Commit(params, m*; Rand), and A wins the game if Verify(params, pk, comm*, o)
accepts, and m* has never been queried in the query phase.

The scheme is selectively secure if the adversary needs to commit to the challenge
message m* before the input generation phase, and is adaptively secure if this
condition is not required.

Remark 3.4 Our notion of unforgeability requires the adversary to make queries
of the form (comm,m,Rand) such that comm = Commit(params, m,Rand). In
practical applications such as anonymous credentials and blind signature, this
form can be enforced by requiring the adversary to provide a zero-knowledge
proof of knowledge 7, i.e., knowing a witness (m,Rand) such that comm =
Commit(params, m, Rand). In this way, an adversary who makes queries of (comm, )
can be made equivalent to an adversary who makes queries of (comm,m, Rand).

Remark 3.5 As pointed out by [22], there is a subtlety about proving knowl-
edge of the commitment in the applications to anonymous credentials and blind
signatures — the knowledge extraction needs to be straight-line, as the rewinding
extraction would incur an exponential security loss (in the number of queries).
In Section 5, we show how to instantiate a competitively efficient straight-line
extractable NIZKPoK required by our anonymous credential construction.

Remark 3.6 A weaker notion of selective security can be considered where in
the above unforgeability game, the adversary needs to commit to both (m™*, Rand)
before the input generation phase. However, this weaker notion suffers from a
drawback — the upgrade to the adaptive security via the complexity leveraging
would incur |m*|+|Rand| bits of security loss, whereas the above stronger selective
notion only incurs |m*| bits security loss. As our construction (in Section 4) can
directly achieve the stronger notion as Definition 3.3, we do not consider this
weaker variant in this work.
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Finally the overall security of the CTS can be defined as follow.

Definition 3.7 (Secure commit-transferable signature) The algorithms
Setup, Commit, KeyGen, Sign, Verify and Transfer constitute a secure commit-
transferable signature scheme if they constitute correct, simulatable and unforge-
able (for exact commitment relation) commit-secure signature scheme, i.e. satisfy
Definitions 3.1, 3.2, 3.3; and the commitment scheme (Setup, Commit) is hiding
and binding, satisfying Definitions A.10, A.11.

4 Efficient Construction for CTS

In this section, we first present a lattice-based commit-transferrable signature
scheme, and then show that it satisfies the properties of correctness, simulatabili-
ty, and unforgeability as defined in Section 3. Our construction uses the following
building blocks: (1) the BDLOP commitment scheme I' = I.{ CKeyGen, Commit,
Open, Combine, Randomize}, and (2) a NIZKPoK system IT = I1.{Setup, Prove,

VerifyProve, SimSetup} for the following language (parameterized by 7/, ¢ € N)10

L,g,c= {(B,u) € R X Ry:3x€R,? and

feésuchthat0<||:B||§'y'andB-:c:f-u}.

4.1 Construction

We first describe the required parameters in Table 5. Notice that in this work,
we consider the cyclotomic ring R = Z[X]/(X" + 1) with N a power of 2. This
type of ring is commonly used in many constructions, as it is easy to analyze
to the norm bounds under ring operations, convenient to implement, and has
efficient zero-knowledge proof system.

In our Construction 4.1, we directly set n = 1,¢/ = 1,k = 3 as the row and
column parameters of the underlying BDLOP commitment.

Construction 4.1 (Commit-Transferrable Signature) Our CTS is construct-
ed as follow.

— Setup(1*): On input the security parameter 1, the algorithm does:
T
1. Run I.CKeyGen to get A := {(1)72#] — I'CKeyGen(1*), where [1,a]] €
s (02
Ri*® and [0,ay] € RLX3, with ay € R2 and a; = (1,a5)" € RZ.
Note that the commitment scheme sets message space M C R, with
randomness space R = S5, where M is a subset of a subfield of the ring
Ry, consisting of g3 elements. And the {s norm of all elements in M is
set be at most 1. ;
2. Sample a random vector d + Rzz.

10 Under current state of art, such a system IT can be efficiently instantiated from
lattice-based assumptions, just as stated in Section 4.2.
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Param. Description
A The security parameter
R, N Cyclotomic Ring for CTS and its dimension
Q,q2 Moduli used for BDLOP commitment scheme
M, T Message space, which is a subset of a subfield of Ry, of order g3
Ss Set of all elements in R with o, norm at most 8
« Parameter used in SamplePre
n, M Parameters for rejection sampling algorithm
ol {5 norm parameter used in Verify algorithm for original signature
C,k |Challenge set of the NIZKPoK system IT C = {c € R: ||c|]1 = &, ||c|lec = 1}
C The set of differences C — C except 0
~ {5 norm parameter for “short” vectors in the language of IT
o Root-Hermite Factor
Bit-sec Bit-security in time for our construction

Table 5. Parameters of Commit-Transferrable Signature Scheme

3. Set parameters k,v,7', and a gaussian parameter o;
4. Run H.Setup(l)‘) to get a common reference string crs;
5. Output params := (A, d,q1,q2, N, k,7v,7,, M, R, crs).
— Commit(params, m; Rand): On input params, message m € M, and random-
ness Rand € R4, the algorithm does the following.
1. Parse Rand as vectors (rq1,72,73,74), where r; € R = S5 for i € [4].
2. Run comm; = I.Commit(A,m;ry), commy = [.Commit(A,md;ry), commz =
1
I.Commit(A, md?;r3), and commy = I.Commit(A, md>;ry), with § = g5 .
3. Output comm = (commj,commsy,comms,commy) as the commitment of
m.

— Randomize(params, comm, Rand’): On input params, Rand’ € R*, and comm =
(commy, commy, comms, commy), the algorithm does the following.

1. Parse Rand’ as vectors (71, a2, 73,74), where 7; € R = S fori € [4].
2. Run comm) = I"Randomize(A, comm;,7;) fori € [4].
3. Output comm’ = (comm/, comm,, comm}, comm).!!

— Combine(Rand, Rand"): Taking as input two randomness Rand = (r1, 73, 73,74) €
5§34 and Rand’ = (71,79, 73,74) € S2**, the algorithm computes and out-
puts (1,79, 73,74) € S3**, where #; = 7 + 7; fori € [4].

— KeyGen(params): On input params, the algorithm does:

1. Sample T & S24 and set a7 = d' - T+ G € RLX*, where G =
12 3
(1,9, 52,53) =(1,49,95,95) € R;;Zl
2. Sample b & RgQ and a non-zero u < Ry,.
3. Output pk := (a,b,u), and sk:=T.

— Sign(params, pk, sk,comm, 71): On input params, pk, sk, and comm, the algo-
rithm does the following:

' Notice that, if comm is a valid commitment of m with randomness (74)icla)s

then comm’ is still a valid commitment of m, but with randomness (7#)ic4) =
(C.Combine(ri, #:))ic(a)-
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p— — t171 p—
1. Parse comm = (commy, commsy, cCOmms, COMmMy) as comm; = 2 | comma =
2,1
t1,2 _ | ti3 _ | tial,
, comms = and commy = ;
ta2 t2,3 t2,4
2. Sethomm = {[dT‘aTHb;mm’a;—} = [[dTlaT]‘[bT+(t2,17t2,2>t2,37t2,4)”a;—]7
S1
and sample Sig.ny == | 82 | < SamplePre([[d"|a"]|bomm|as |, T, u, a),'?
83

and output Sig.omm S the signature of comm, where s; = [21’1] , and
1,2

811 € RQ, S12 € R4, Sy € R4, 83 € R2.

— Transfer(params, pk, Sig.omm> ™M, (Rand, Rand’)): On input params, pk, a signa-
ture Sigeomms message m, randomness Rand for generating the commitment
comm for m, the additional randomness Rand’ for the rerandomization of
comm, the algorithm does the followings:

81
1. Parse Sig.omm as vector | sz |, where s1 € R®, so € R, s3 € R%.
83
2. Parse Rand as vectors (r1,72,73,74), where r; € R = S5.
Parse Rand’ as vectors (71,79, 73,74), where 7; € R = S}.
4. Run Commit(params, m; (71,72, 73,74)) and obtain: comm = (comm;);c(4],

co

t .
where comm; = | .
toi

5. Run Randomize (params,comm, (1, %2, 73,74)) and obtain comm’ =

7?171‘
to;
6. Compute a (temporary) signature Sig.omm: 65

(comm});c(4), where comm; =

r 81,1
S1 s
. 1,2 12
Sigcomm’ = 82 = o cR”",
2

83—R2-82 ~
L s3 —Ra - s2

where we denote R = gl = [i’l,f*g,fg,h] € R34 with Ry € RY*4
| Ra

and Ry € R2X4,
7. C’ompute Feomm' = [[dT|aTHb;mm,’a;] = [[dT|CLT]|b—r 4 (1?271,tA272,tA2’3,tA2’4)‘a;—}.
8. Run the prove algorithm and output Sigrymm = T2 < II2.Prove(crss,
(Feomm’s &)y Sigeomm ); Proving that Sig.omm: 1S a short €y norm vector and
satisfies Feomm’ - Si€comm’ = U, through using the NIZKPoK system II with
the relazed language L., ,, ¢
— Verify(params, pk, comm, Sig): On input params, pk,comm, Sig, the algorithm
does the following.

12 Here, we implicitly use T as the G-trapdoor of the matrix [d"|a '], which can be

easily extended to get the corresponding G-trapdoor for [[dT|aT] ]bcTomm }a;].
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t1,1
ta,1

s

1. Parse comm = (commy, commsy, comms, COmmy) as comm; = {

= b , commg = b , and commy = b ;
t272 t273 t2,4

2. Based on the type of Sig, the verification works as follow.
e If Sig is a mon-zero short vector within £2 norm -y, then the algorithm

},commg

does

(a) Set matriz Feomm := [[dT\aT]HbT + (t2,1,t2,2,t2.3, t274)]’a;—].
S1

(b) Check whether Sig satisfies Feomm - | S2 | = u € Ry,.
83

o [fSig is a proof of the NIZKPoK system I,
(a) Set matric Fcomm := [[dT\aT]HbT + (t211,t272,t2’3,t274)]|a;—],
(b) Run the verify algorithm (with respect to language L., ,, ¢)
IT5.VerifyProve(crs, (Feomm, u), Sig) and output its result.

Lemma 4.2 (Correctness) For parameters N, gz, 0,y = av2-12- N, the NIZKPoK
system II for the relaxed language L., ,, ¢ with~y' > (3.5aN-2v/24+av2-12- N),
Construction 4.1 satisfies the correctness property as defined in Definition 3.1.

The correctness directly follows the correctness of BDLOP commitment, the
completeness of the NIZKPoK system II and our parameter settings. Due to
space limitation, we defer the proof in Appendix B.1.

4.2 Instantiation of NIZKPoK system IT in CTS

Before presenting the NIZKPoK system I7, we first specify the concrete language

L, ¢ in the algorithms Transfer and Verify,

Lyg,c= {(Fcomm/,u) ERP X Ryy:Jxzc R and fel
such that 0 < HJ:H S 'Y, and Fcomm’ L= f . u}

Then, according to [6,23], there exists such an efficient /T for L., ., =. The
formal theorem is presented as follows.

Theorem 4.3 ( [6,23]) In the random oracle model, there exists a NIZKPoK
system I for the relaved language L., ., ¢, withy" = 2v2- 12N -n-\/k-(3.5aN -
2v/2 4+ av/2-12N).

Moreover, assuming a t-time adversary A forging a proof with probability €,
there exists a O(t/e)-time extractor, who can successfully extract the witness x
and ¢ € C with probability %

Remark 4.4 Notice that the concrete instantiation of NIZKPoK system II in
Theorem 4.3 is essentially a Fiat-Shamir signature, which is quite practical.
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4.3 Security of CTS

In this section, we establish the simulatability and unforgeability of the above
Construction 4.1.

Lemma 4.5 (Simulatability) The algorithm Transfer in Construction 4.1 is
simulatable.

Proof. (Sketch) We show the simulatability of our construction by first con-
structing a two-stage PPT simulator S, and then proving that after running any
polynomial ¢ = poly(A) times, the distribution of {gviglomm(i}ie[t] output by S
are statistically close to that of {Sigéomm;}ie[t] output by Transfer. Due to space
limitation, we defer the full proof in Appendix B.2. O

Below, we analyse the unforgeability of Construction 4.1. Before this, we first
specify the corresponding commitment relation L, 4, as follows.
ﬁqlm = {comm = (comm;);cq) : (M, q1, g2, 71, 72, 73, 74) such that ||mle < 1,

i—1
3 .
r; € S7 and comm; = Commit(params,m - g5 *

;r;) for i € [4]}

Lemma 4.6 (Unforgeability) Assume that M-SIS,, 1,9, problem and M-SISy, 1 9.,/
227"V N
V212
commitment-transferrable signature scheme is partially selectively unforgeable
for the commitment relation Ly, 4,, i.€., the advantage of any PPT adversary A

against the partially selective unforgeability game of CTS is at most

problem are hard with v = 22a-N and v' = then our above lattice-based

AdvHom9¢(\) < 2AdVRIWE - AdvinFore ()

Due to space limitation, we defer the detailed proof in Appendix B.3.

5 Efficient Straight-Line Extractable NIZKPoK System

In this section, we present a multi-theorem straight-line extractable NIZKPoK
system I1 to prove the well-formness of commitment comm output by CTS.Commit.

For clarity of presentation, we describe in a modular way: (i) first we present
the generic construction of the encrypt-and-proof paradigm, and then (ii) our
concrete instantiation. Particularly, for part (i), we first introduce three building
blocks in Section 5.1, and then formally present the generic construction in
Section 5.2. For part (ii), we describe the instantiations of three building blocks
in Section C and the concrete parameters in Section D.
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5.1 Building Blocks of the Encrypt-and-prove Generic Paradigm

We present the generic construction, proving the exact commitment relation
Lg, .4, (implicitly including the commitment public parameter in the crs):
Lqy gy == {comm = (commy);cpq) : (M, q1, G2, 71, 72, 73, 74) such that ||m|je <1,
i—1

r; € S} and comm; = Commit(params,m - g, % ;r;) for i € [4]}

Following the ideas of [2,24], this can be achieved by encrypting the witness
and proving that the message under the ciphertext satisfies the relation. For our
specific setting, we need these three building blocks:

(i) a NIZK system IV for the relaxed commitment relation, i.e., the language

Lpa = {comm = (comm;)cpa : Im, q1, g2, {ri}icpa), f € C, such that 0 < |7 <1,

i—1
0 < ||m|| < 3, and comm; = Commit(params,m - g, *

,7;/f) for i € [4]},

together with the fact that the committed message m is included in the
message space, a particular subfield of R,,. Besides, we use the particular
algebraic structure of this subfield to ensure |m|/» < 1.

(ii) a CPA-secure encryption scheme E with pseudorandom public-keys, together
with the NIZK system I7(® for its validness, i.e., the relaxed language
ﬁn(z) = {ct = (cts)iep4) : 3(ri, Rand;) and f € C, such that r; € s2,
0 < ||Rand;|| < 73, and ct; = E.Enc(pk, ri; Rand;/f), for i € [4]},

where pk is the public-key of E;
(iii) a NIZK proof system IT®) for the consistency of the witness in Hl(l) and the
encrypted message of Enc, i.e., for the relation

L :{(comm = (comm;)iep), ct = (cti)iepqy) : 3(m, 74, Rand;) and f € C, such

i—1
that r; € 53,0 < |[Rand;|| < ~4, comm; = Commit(params,m - q,* ;7;)

and ct; = E.Enc(pk, r; Rand; /f) for i € [4]}.

Using these building blocks, we can derive a multiple-theorem straight-line ex-
tractable NIZKPoK in a generic way as in Section 5.2. In Section C, we present
how to efficiently instantiate all the components. We notice that the idea of the
generic construction has appeared in the literature e.g., [2,24], and thus not
surprising. Our merit is to efficiently instantiate a lattice proof for our need.

5.2 General Construction of Straight-line Extractable NIZKPoK

Construction 5.1 (Straight-line extractable NIZKPoK IT) Given building
blocks IT™M) = ITM {Setup, Prove, Verify, SimSetup}, E = E.{KeyGen, Enc, Dec},
II? = [1(® {Setup, Prove, Verify, SimSetup}, and IT®) = IT(3) {Setup, Prove, Verify,
SimSetup}, where the message space of E and the randomness space of IT'V) are
compatible, then a straight-line extractable NIZKPoK system IT can be builded as
follows.
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— Setup(1?*) : given a security parameter A, the algorithm does:

1. Run IV Setup, IT® Setup, and II® Setup to generate crsy, crsy, and
crss, respectively;

2. Choose a random public key pk, which is computational indistinguishable
from a real public key output by E.KeyGen;

3. Output crs = (crsy, crsa, crss, pk).

— Prove(crs, z,w): given crs, x := comm, and w := (m,Rand), the algorithm
conducts the following steps:

1. Parse crs as (crsy, crsg, crss, pk);

2. Run H(l).Prove(crsl7 comm, m, Rand) to get w1, which proves the validness
of comm and m;

3. Run E.Enc(pk,Rand) to get ct, which encrypts the randomness Rand in
comm under the random public key pk;

4. Run IT® Prove(crsy, ct, Rand) to get my, which proves that the validness
of the ciphertext ct;

5. Run H(3).Prove(cr53,ct7comm, Rand) to get w3, which proves the consis-
tency of the encrypted message in ct and the used randomness in the
commitment comm.

6. Output 7 := (my,ct, w2, T3).

— Verify(crs, x,m): given a string crs, a statement x := comm, and a proof T,
either accepts or rejects.

Parse crs as (crsy, crsa, crsg, pk);

Parse 7 as (m,ct, w2, 73);

Run IT™ Verify(crs;, comm, 711) to verify the validness of comm and m;

Run IT® Verify(crsy, ct, mo) to verify the validness of ct;

Run IT®) Verify(crsy, ct, comm, 73) to verify the consistency of ct and comm;

Accept 7, if all the above three proof are verified successfully; Otherwise,

reject .

— SimSetup(1*2): given a security parameter Ay, the algorithm conducts the fol-
lowing steps:

1. Run IT™ SimSetup, I1?).SimSetup, and IT®) .SimSetup to generate (crs,,
tAkl), (Er\SQ,tAkg), and (Er\s;),,tAkg), respectively;

2. Run E.KeyGen(1*) to generate a pair of (pk,sAk);

3. Output crs = (6%1, Crsy, Crsz, pk),tk = (tAk1,tAk2,tAkg,sAk).

— Ext(crs, tk,z, m): given a string crs, a related trapdoor tk, a statement x, and

a proof w, the algorithm conducts the following steps:

1. Parse tk as (tky,tka, tks,sk);

2. Run Verify(crs, x, ) to verify the valid of 7. If the verification is accepted,
then abort. Otherwise, continue the following steps.

3. Run E.Dec(sk,ct) to get Rand.

S v Lo o =

Then, we have the following theorem.

Theorem 5.2 ( [6,23,55]) The II is a multi-theorem straight-line extractable
NIZKPoK system for IA/%QQ, if the underlying commitment comm is binding and
hiding, the encryption scheme E is CPA-secure and its public-key is indistin-
guishable from uniform, and IV for ﬁH<1>, 7 for [A/H(z), and I for f/H<3)
are three multi-theorem NIZKs.
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Proof (Sketch). According to the definition of the multi-theorem straight-line
extractable NIZKPoK, we need to prove three properties: completeness, zero-
knowledge, and multi-theorem extractability. Generally, the proofs of these prop-
erties follow from the related properties of IT, 1T [1®) and E, which has
been similarly described in lecture note of Dodis in [24] and Agrawal et al. [2].
Here, we omit the details of them for clarity.

Besides, one interesting point in our construction is that, even the used NIZKs
M and IT® are just with respect to the relaxed (commitment/encryption)
relation, the resulting NIZKPoK IT is with respect to the exact relation, i.e., the
extracted output of IT.Ext are the exact randomness of comm. This is due to the
soundness of IT(® the binding of comm, and the correctness of E.

Particularly, suppose there is an adversary A outputting a valid pair (z,7)
(i.e., Verify(crs, z,7) = 1), such that the extracted randomness Rand’ = IT.Ext(crs,
tk, 2, 7) is different from the original Rand in comm. Then we can induce the con-
tradiction as follows. According to the correctness of E, the encrypted message
in ct should be Rand’. Then, if A can not break the soundness of I7(3), then
the randomness in comm should be equivalent to Rand’. Furthermore, according
to the binding property of comm, it should hold Rand = Rand’. However, this
is contradict to the assumption that Rand and Rand’ are different. This means
there is no such an adversary A. a

5.3 Efficient Instantiations

In this section, we present the high level ideas for how to instantiate the building
blocks efficiently. More details and concrete parameters are described in Section-
s C and D.

As we discussed in the introduction, the encryption scheme E we use is a
trapdoor-version of the BDLOP, whose relaxed proof of well-formness is rather
efficient. The detailed scheme is presented in Construction C.2 and the relaxed
proof of well-formness is described in Theorem C.3. Then we use the LNP proof
for the linear relation, i.e., Ay - r = t; as summarized in Theorem C.4. The
overall proof size (for one BDLOP commitment) is roughly 604 KB. More details
about the concrete numbers can be found in Section D.

6 Application to Anonymous Credentials

In this section, we present how to construct Anonymous Credentials from CTS
and NIZKPoK. Particularly, we first recall the definition and security requirement
of the basic Anonymous Credentials in [40], and then describe the construction.
Then we describe how to extend the basic scheme into one that supports some
attribute settings.

6.1 Definition and Security of Anonymous Credentials

We use the formulation of Anonymous Credentials by Lysyanskaya [40]. A basic
credential system has wusers, organizations, and wverifiers as types of players.
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Users are entities that receive credentials. Organizations are entities that issue
the credentials of the users. Finally, verifiers are entities that verify credentials
of the users. Specifically, the system is defined as follows:

AC.Setup: System parameters params are generated, users generates his secret
key usk, and organizations generate their public and secret keys (pkg,sko);

AC.Registration: A user generates a pseudonym nym, and sends it to an orga-
nization. The user’s private input is usk. the organization does not have any
private input.

AC.Issue: As a result of this protocol, a user obtains a credential from an organi-
zation without revealing his private input, just based on his pseudonym nym.
The user’s private input to the protocol is his usk. The organization’s private
input is its secret key skp. And the user’s private output is the credential
Cred;

AC.Prove: The user who is known to one organization O; under nym;, and to
a verifier under nym,, and a credential Cred from O;, proves to the verifier
that he has a credential from O;. The user’s private input to this protocol
consists of (usk,nym;, Cred), while the values nym, and pkg, are public;

AC.Verify: The verifier verifies if the user possesses a credential from O; or not.

We follow the security formulation of [7] — an anonymous credential should
satisfy unforgeability, anonymity, and unlikability. Intuitively, unforgeability re-
quires that an adversary cannot provide a valid proof of credential Cred™ with
respect to a pseudonym nym* of some usk™ that he has never received a credential
from an organization.

Anonymity, informally, requires two different privacy properties: (1) privacy
against an organization: the organization cannot distinguish any two different
users with two different private inputs in the registration process, and (2) privacy
against a verifier: the proof of credential leaks no information other than the
validity of owning a credential with respect to the pseudonym.

Unlinkability requires that the adversary cannot distinguish whether (nym,,
m1) and (nym,, mo) are from the same user or not, where my, 7y are two proofs
of credentials with respect to nym; and nym,, respectively.

6.2 Anonymous Credentials from CTS

Now we show how to construct an anonymous credential system from a secure
CTS and a zero-knowledge proof of knowledge of commitment opening.

Building blocks. Suppose we are given a secure commit-transferable signature
scheme (CTS.Setup, CTS.Commit, CTS.Randomize, CTS.KeyGen, CTS.Sign,
CTS.Transfer, CTS.Verify) as in Construction 4.1, and an efficient multi-theorem
straight-line extractable NIZKPoK IT = (NIZKSetup(params), NIZKProve,

NIZKVerify, SimSetup) for the following commitment relation L as Definition 3.3.

L= {comm : 3(m, Rand) such that comm = Commit(params, z, Rand)}.
Then we can construct an anonymous credential system as follows:
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Construction 6.1 (Anonymous Credential) The anonymous credential
scheme can be constructed in the following way.

— AC.Setup: System runs CTS.Setup to obtain CTS.params, and runs
NIZKSetup(params) to obtain NIZKpara. An honest user U generates her se-
cret key usk by sampling Mparams. An honest organization O generates its
keys as follows: (sko, pkp) < CTS.KeyGen(params);

— AC.Registration: The user U first samples Rand <= Rparams and generates a
commitment comm = CTS.Commit(params, usk, Rand). Then U generates an
NIZK proof m by running NIZKProve(params, comm, usk, Rand). Furthermore,
U sends nym = (comm, 7) as the pseudonym to the organization O. Finally,
O would run NIZKVerify to check whether the pseudonym (commitment) is
properly formed;

— AC.lIssue: Suppose that a user U is known to organization O under pseudonym
nym = (comm, 7). O computes o < CTS.Sign(params, sko,comm) and gives
Cred : =0 to U;

— AC.Prove: User U samples Rand’, and runs comm’ <~ CTS.Randomize(comm,
Rand, Rand’). Then she computes o' = Transfer(params, pk,, , usk, Rand, Rand’, o),
which (by correctness of the CTS) is a signature under pkg, on the commit-
ment comm’. Next, she gives the verifier the values ¢’ and nym’ = (comm’, 7’),
where ' is an NIZK proof that comm’ is properly formed as well;

— AC.Verify: The wverifier runs Verify(params, pky ,comm’,o’) and the NIZK
verifier of @ on input (o',nym’ = (comm’, 7)) to verify U’s credential on
the new pseudonym nym’.

Security of the anonymous credential system follows from the security of CTS
and IT and NIZKPoK.

Theorem 6.2 Assuming that CTS s secure for the exact commit relation, and
II is a secure multi-theorem straight-line extractable NIZKPoK system for L,
Construction 4.1 is a secure anonymous credential system.

Proof. (Sktech) Intuitively, the anonymity against the organization follows from
the security of NIZKPoK and hiding of the commitment scheme, and that against
the verifier follows from the simulatability of the CTS, as the transferred signa-
ture does not leak information beyond the validity. The unlinkability follows by
the hiding property of the re-randomized commitments and the simulatability
of the CTS, so that any user cannot relate two pairs of pseudonym-proofs.

To prove unforgeability, we rely on the NIZKPoK extractor (of the commit-
ment relation) and the unforgeability of CTS. Assuming that there exists an
adversary A that forges a valid proof of the anonymous credential, then we can
construct a reduction B that breaks CTS unforgeability in the following way.
B first simulates the NIZKPoK and extracts A’s (m, Rand) in the commitment
of the registration queries, from the ZKPoK proof he provides. Then when A
makes an issue query, B makes a signing query to the CTS challenger. As B has
extracted the witness from the commitment, B can make a valid CTS signing
query. It is easy to verify that as long as A can forge a valid proof, B can break
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the CTS unforgeability. We note that if the NIZKPoK is with respect to the ex-
act commitment relation, then B breaks CTS unforgeability with respect to the
exact relation. If the proof system is with respect to the relaxed commitment
relation, then B breaks CTS unforgeability with respect to the relaxed relation.
O

6.3 Extension to Attribute-based Settings

In the above basic anonymous credential system, the user’s secret value usk
is her id or some secret key. In a more general setting of attribute-based cre-
dentials, the user’s secret value can include additional attributes, denoted as
att = (atty, ..., atty) where each att; is some small integer (or a short bit string).
The user might wish to reveal some subset of the attributes to any party, e.g., an
organization or a verifier, while keep the other attributes and the secret key/id
private. This property of chosen disclosure of attributes has been identified use-
ful in the literature [12,18,32,36]. We observe that our system can easily be
extended to support such an extension. Below we elaborate.

In the basic scheme, the user sets the message as the secret value, i.e., m =
usk, and generates a BDLOP commitment comm = Commit(m) for the CTS as
a pseudonym. Then the user proves well-formness of the commitment and then
the organizations would sign on the commitment. To generalize to the attribute
setting, we can use m to encode usk and the attributes att, simultaneously. For
example, for m = Zi]\:ol m; X* € Zg, [ X]/{XN +1), we can use the coefficients to
encode (usk||att) (for simplicity we assume N to be the bit-length of (usk||att),
i.e., N = |usk| + |att|). Then the user generates comm = Commit(m) as before,
yet with m under such an encoding.

To disclose some subset of attribute, say atty = {att;};ez for Z C [N],
the user can prove well-formness of the commitment and additionally that the
coefficients of m corresponding to these attributes are consistent with attz. To
achieve this, we observe that it suffices to use the following protocol Ipisciosure
in Table 6, which proves well-formness of a BDLOP commitment Commit(m)
and as well consistency that a certain subset of coefficients in m are the same
as those were disclosed. To achieve this, we present the following interactive
protocol adapted from the ENS and LNP proof [27,44], which can be made non-
interactive easily using the Fiat-Shamir Transform.

We notice that the above approach supports the case when we can embed
the usk and the attribute into one single ring element. A noticeable advantage
is that the proof size is essentially independent of the cardinality of Z, i.e., the
number of disclosed attributes. In our particular parameter selection, the ring
dimension is 4096/8192, which can be already sufficient for many applications.
The whole approach can handle even longer attributes by extending the current
CTS instantiation to handle more commitments, e.g., using more matrices in the
Fcomm of Construction 4.1. The concrete efficiency of the extension needs to be
further determined, and we leave it as an interesting future work.
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Interactive proof system ITpisciosure
Public Parameter for Commitment Scheme:

T 1 T R
A= {“#] = {1’ @ } as in Construction 4.1, B = ¢ - V6N, BT = (b;) € Ri)*

/
as 07 1,(12

t2,1 Qas
Let Z C [N] denote the subset of indices where the prover wants to disclose
mz = {m;}iez. Set may = Ziel] m: X7 m/ = Zie[N]\I mi—1 X", where any co-
efficient of m’ with respect to X* is 0 for i € Z. The prover discloses mau publicly.

-
Commitment: comm; = {tl’l} = [alT] -ry + [?n}’ with m = ZiE[N] mi_1 X1,

Prover Verifier
$ . k
g = (gly,,,hgfc)—r(—{fequf():"‘:fL’Z\fl:O}ka
ty=(tg;)=B-r1+g
tg
<’Y7>7 [&] $ i
A = (v) & Z4,
Vi€ [k, hi =gi +vi-m
y«Diw=a y
Vi€ [k], wi=(vi-a3 +b)-y
w,h;wg
ddc
d
z=y+d-rs
Rej(Zi,l, d- T, 5)
Check:

? ”
1.z <B,al z=w+d-ti
2. Vi € [k], whether the coefficients with respect to Z in h;
are zero, and
(vi-as +b])-z Lwtd- (i - (2,1 — Maw) + g0 — hi)
Accept if all the above conditions is sufficient.
Table 6. The interactive version of IIpisciosure: Disclosure of certain coefficients in the
committed message m.
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Roadmap of the Appendix

Here we present a roadmap so that the readers can find relevant texts more easily.
In Section A, we present additional preliminaries. In Section B, we present the
security analysis of our selectively secure CTS. In Section C, we show the efficient
instantiations of the three building blocks in Section 5 from lattices. Going a
step further, Section D provides parameter setting details for CTS construction
in Section 4.1 and NIZKPoK system in Section 5.

Notice that the CTS in Section 4 is just proven to be selectively secure. This
means we need to use the approach of complexity leverage to achieve adaptive
security, which will induce security loss related to the size of message space. As
a technical supplement, in Section E, we present how to construct an adaptively
secure CTS without the complexity leveraging argument, and determine concrete
parameters.

A  Supplementary Material for Section 2

A.1 Lattices with Algebra Structure

Below, we use R to denote a polynomial ring of the form Z[X]/(®, (X)), where
&,,(X) is the m*" cyclotomic polynomial, and denote N = ¢(m). For an integer
q € Z, we also consider the quotient ring R, = R/qR. Any element in R can be
considered as a vector of its coeflicients. Namely, an element a = Eie[ N a;xt € R
can be seen as the vector @ = (ag,...,any—1). We call this map as coefficient
embedding (denoted as Coeffs(-)). Furthermore, we can also represent a ring
element a € R as a matrix in ZV¥*¥ by the following map Rot : R — ZN*N:

Coeffs(a)

Coeffs(za mod &(z)) "
Rot(a) := :

Coeffs(z™ ~'a mod &(z) )"

Furthermore, we extend this map to ring vectors and matrices by applying it
entry-wise, i.e., for a vector @' = (ay,...,a;) € R’, we define Rot(a’) =
[Rot(ay)|...|Rot(as)] € Z™*"¢ and the map for matrices can be defined sim-
ilarly. In the case of power of 2 cyclotomic rings, i.e., ®(z) = 2™ + 1 for n being
some power of 2, the above rotation matrix Rot(a) is the anti-cyclic matrix.

If 7 is an ideal in the polynomial ring R, then it is also an additive sub-
group of Z~, and therefore a N-dimensional lattice. Such lattices are there-
fore sometimes referred to as ideal lattices. Similarly, we can also define the
module lattices M C (Q[X]/(®m(X)))* as a ¢N-dimensional lattice. We simply
denote ideal lattices or module lattices as A.

Discrete Gaussian distribution. We now define the Gaussian distribution
used in our schemes.
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Definition A.1 The discrete Gaussian distribution on A C R* centeredzargund
o—llz—v]2/2s

Socne IzvlZ/2:Z

v € R with standard deviation s > 0 is given by Da.s(x) =

When it is centered around 0, we denote D, s for short.

Specifically, for ring vector @, we write @ < D, ¢ to mean that £ € A C R’
and every coefficient of each component z; € R is distributed according to Dy ;.
Then, we have the following properties.

Lemma A.2 ( [43]) Let Dy is a discrete Gaussian distribution over the ring

2\ N
R. Then for x < D!, it holds Pr [||a:|| >t- sx/fN} < (t61_2 2)

For positive integers d and k = [logs(q)], let g = [1]6]62]...]0*71] € R* be
the gadget matrix. Then we have the following lemmas.

Lemma A.3 ( [49]) There exists an efficient algorithm that on input ring vec-
tor a € Rf such that Rot(a') € ZNV*N is full-rank, elements x € R},u € Ry and
matriz R € Rng, outputs a random sample r € R“F from a distribution that

is statistically close to DAg[ar‘arRJrz_g;r]’g(:c), where o > 2v/62 + 1(s1(R) + 1).

Lemma A.4 ( [49]) For g = [1]6]62|...|0*] € R*, there exists a determin-
istic polynomial time algorithm G~ which takes input u € R’q“, and outputs
R <+ G Y(u") such that gs- R =u', such that s;(R) < kN§.

‘We here recall the definition of smoothing parameter of a lattice and its upper
bound as follow.

Definition A.5 ( [50]) For any n-dimensional lattice A and positive real €5 >
0, the smoothing parameter 0., (A) is the smallest real s > 0 such that py ;(A*\{0})
< es, where A* is the dual lattice of A.

Lemma A.6 (Generalization of Lemma 2.6 in [48] to ring setting) For
any primitive matric P € RYF, positive reals o,0 > 0, and negligible ¢, if

P-PT =021 and n.(ker(P)) < o, then P - DN & DN
From Lemmas A.3 and A.6, we have the following lemma.

Lemma A.7 There exists an efficient algorithm that on input ring vectors a; €
R, ay € R such that Rot([a] |aj]) € ZN*NOALE) s full-rank, elements x,c €
Ry u € Ry with |[c|l2 < 7 and matrices Ry € Réle,Rg € RgQXk, outputs a
random sample r € ROTEYE from a distribution that is statistically close to
D,(Aylal |a] Ry + alRo + - gf af]), where o > 2V57 + (s ([ ]) + 1).
2

Proof. Given the vector [af |[a] R1 + aj Ry + 2 - g4 |ag] € RyT21F consider
matrix

I, 0 0
P=10 01, c RUi+latk)x (L1+L2+k)
q )

01,0
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we have [a] |ag |a{ R1 + a3 Re+2-g)] =a]|a{Ri +a;Ra+2-g] las]-P.

Let £ =01 + 4y, a” =[af|aj] € RY, and R = i . Clearly, we have

R,
[@"la]Ri +a; R +7-9g]]- [?} =x-gJ, where z and 1 are invertible ring

elements. Hence, we can view this matrix R as the G-trapdoor.

Therefore, by Lemma A.3, we can sample vector r € R** such that [a"|a ™ R+
z-gg |7 = u (mod ¢), and the distribution of 7 is statistically close to Dy (A%[a " |
a'R+z-g]]), where o > 2v/62 + 1(s1(R)+1). As aresult, [a] |a] R1 +a] Rao+
z-g4laj]-P-r=u (modg). Furthermore, by Lemma A.6, the distribution of
P -7 is statistically close to Dy(A%[a] |a] R1 +ag Ry +z- g4 |ag]) (it's easy to
see P-PT =T and 7. < o). This completes the proof. a

In this paper, we use the following sampling algorithm. The following lemma
have been established in a sequence of works.

Lemma A.8 ( [1,34]) Given integers n > 1,q > 2 there exists some m =
m(n,q) = O(nlogq), there exists a sampling algorithm SamplePre(A, Ta,u, s),
that takes as input: (1) a rank-n matriz A € Zy*™, (2) a “short” basis Ta for

lattice Ay (A), a vectorw € Z7, (8) a Gaussian parameter s > ||'i‘;:H ‘w(v/logm);
then outputs a vector r € Z™ distributed statistically close to DAZI"(A),S'

We note that when A € Rng is a ring matrix, and T4 is the trapdoor for A,
the SamplePre algorithm also works by taking A as a matrix in ZSNX’“N, which
is the coefficient embedding of A.

A.2 Rejection Sampling

Lemma A.9 (Rejection Sampling) Let V be a subset of R™ in which all
elements have norms less than T, and h : V' — [0, 1] be a probability distribution.
Let o =T forn = O(V/\) and

2oA+1) 1 1
= — -+ — | =0(1).
M eXp( oge 1 + 2772) o(1)

Now, sample v E b oand Y E pmoset = y + v, and run b < Rej(z,v,0)

o

in Table 7. Then, the probability that b = 0 is at least 1_]\24”. And conditioned

on b = 0, the distribution of (v, z) is within statistical distance of % of the
product distribution h x DJ'.

A.3 Security of Commitment

A secure commitment scheme requires the two properties: hiding and binding.

37



01w [0,1)

—2z.v v 2
02 If u > ﬁ .exp(W)
03 return 0 (i.e. abort)
04 Else

05 return 1 (i.e. non-abort)
Table 7. Rejection Sampling.

Definition A.10 (Hiding, [6]) We say that a commitment scheme (CKeyGen,
Commit, Open) with message space M and randomness space R is hiding, if for
all adversaries A, the probability (over the randomness of CKeyGen,Commit, and
A) that b’ = b in the following experiment is negligible:

Parameter setup The challenger sets up params < CKeyGen(1%), and send
params to A.

Message selection A(params) selects two messages mg,m1 € M, and then
sends them to C.

Commitments The challenger computes commy, = Commit(params, my; ), where

p & {0,1}, r & R, and sends comm; to A.
Output A outputs a bit b'.

If A are restricted to polynomial-time algorithms, then the scheme is called
computationally hiding. If there is no restriction on the running time of such
algorithms, then the scheme is statistically hiding.

Definition A.11 (Binding, [6]) We say that a commitment scheme (CKeyGen,
Commit, Open) with message space M and randomness space R is binding, if for
all adversaries A, the probability

params + CKeyGen(1%),

(m,m’,r, 7', comm) < A(params)

Pr < negl(A),

s.t. m # m’ A Open(params, m, comm, ) =
Open(params, m’,comm,r’) = 1
where the probability is taken over the randomness of CKeyGen and A.
Similarly, if A are restricted to polynomial-time algorithms, then the scheme

1s called computationally binding. If there is no restriction on the running time
of such algorithms, then the scheme is statistically binding.

A.4 Algebraic Structure of Cyclotomic Rings

In this section, we first recall some necessary algebraic background, and then
introduce the related and necessary lemmas for our constructions.

We focus mainly on the algebraic structure of m-th cyclotimic filed K =
Q[X]/(Pm (X)) of degree d = ¢(m) with the ring of integers R = Z[X] /(P (X)).
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Here, K is a d-degree Galois extension of Q. Then, we use G = Gal(K/Q) to
denote the Galois group of K, which consists of all automorphisms of K and is
computed under composition. Clearly, all these automorphisms fix the rational
numbers Q, i.e., for any ¢ € G and any = € Q, it holds o(z) = z. Conversely,
cyclotomic field are Galois over Q meaning that only the elements of Q are fixed
by all automorphisms in G.

Moreover, the Galois group G of K is isomorphic to Z),, where the isomor-
phism j — o : Z) — Gal(K/Q) is defined by 0;(X) = X7. In general, the
degree of a Galois extension of a field is always equal to the order of its Galois
group. The main theorem of Galois theory says that there is one-by-one corre-
spondence between the subgroups of G and the subfields of K. For example, let
H to be a subgroup of G, i.e., H < GG. Then H is corresponded to a subfield L
of K,ie., L < K. And H is the Galois group of K over L, i.e., H = Gal(K/L)
consists of the automorphisms of K that fix the elements in L. Conversely, as
the subfield of K, L consists precisely of all the elements that are fixed by all
automorphisms in H, and thus L is called as the fixed field of H. This implies
that the extension K /L is again Galois.

Furthermore, by restricting the automorphisms of K to the cyclotomic ring
R C K, we get ring automorphisms of R. And the property that certain subset
S C R is fixed under automorphisms is still set up. More formally, we have the
following lemma from [23].

Lemma A.12 (Theorem 3.1 in [23]) Let K be a cyclotomic number field with
the ring of integers R, and let L be a subfield of K with the ring of integers S.
Let G denote the Galois group of K, and H denote a subgroup that consists of
all these automorphisms fizing L. Let q is a prime number that is inert in the
subfield L, i € Ry be an element that is fized modulo q by all Galois automor-
phisms o € H; that is, o(p) = p(modgR) for all o € H. Then, p is contained
in the subfield S, of Ry.

Moreover, for the special case of power-of-two cyclotomic rings, given a power
of 2 integer n, we denote R = Z[X]/(X%+1) as the related cyclotomic ring, since
X441 is the 2d-th cyclotomic polynomial. Similarly, we denote K = Q[X]/(X %+
1) as the related cyclotomic field, which is a d-degree Galois extension of Q.
Here, the Galois group G of K is isomorphic to Z,;, which has the structure
Lo x Zgqyo- Notice that the cyclic subgroup Zg and Zg/o are generated by o1
and o5, respectively.

Given a prime ¢ and the integer ring R = Z[X]/(X? + 1), we need to ensure
the message space M C R, is a subfield of K = Q[X]/(X? + 1). According
to the above mentioned Galois group structure of general cyclotomic rings, the
necessary and sufficient conditions for M to be a subfield is:

1. Its elements are fixed by a subgroup of G. This means that the message is
contained in §; = §/¢S where S C R is the ring of integers of a subfield of
K.

2. Prime number g stay inert in S such that S is a field.
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With respect to the above two conditions, we have the following two formal
lemmas from [23].

Lemma A.13 (Theorem 3.2 in [23]) Let d > k > 1 be powers of 2. The
subgroup H = (o_1,0F) of the Galois group G = Gal(K/Q) has index k. Its
fized field L is generated by o = X94=3r — X 3% over Q inside K, L = Qo] C K.

Lemma A.14 (Theorem 3.3 in [23]) The prime numbers that are inert in
the fized field L of (oc_1,0F) with 1 < k < d be power of two, are precisely the
primes that are congruent to 3 or 5 modulo 8. They split into two prime ideals
mn K.

A.5 Proof of Theorem 2.3

In this section, we first present the concrete protocol for the well-formness of
BDLOP commitment, and then prove Theorem 2.3. Finally, we analyze the effi-
ciency of this concrete protocol, and compare it with that of the previous opening
proof in [6,23].

Interactive Proof Protocol

Here, we first present the interactive version in Table 8.

Proof of Theorem 2.3

Theorem A.15 (Restatement of Theorem 2.3) In the random oracle mod-
el, for a secure BDLOP commitment, there exists a NIZKPoK system II for the
relazed language Ls .1 o\ 4, ¢, with v, = 2v2n-k-B-kN and vh = 2v/2n-r-3-LN,
where n is the parameter for rejection sampling as in Lemma A.9.

Proof. Essentially, this proof consists of two steps: the first is that of proving
the protocol in Table 8 is complete, statistical honest verifier zero-knowledge and
computational sound under the M-SIS assumption; the second is that of making
it non-interactive with the help of the standard Fiat-Shamir technique. As the
second one is natural, it suffices for us to just focus on the first one. Details are
given as follows.

Completeness. The vectors z1, z5 sent by P are independent and their distri-
butions have statistical distance at most 27 from D7 and DY, respectively, by
Lemma A.9 on rejection sampling. Furthermore, Lemma A.2 implies that the
bounds ||z;]|]2 < B; holds with overwhelming probability. Besides, it is easy to
verify that all of the other verification equations are always true for the messages
sent by P.
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Prover P Verifier V

Inputs:
Ay € RIXF Ay € REXF A, A,
A= {22 ﬂ Aty ts
t1 € R}tz € RE, By >o1-V2N -k
r €S, meSh By > 05 V2N -4
Y, <*,Dzlj1
Yo <—'D£2
w1 =A; -y,
w2 = Az -y, + Y,
w1, ws
—
c ci C
(—

z1=y,tc T
Z2 =Y, +tCc-m
If Rej(z1,c-r,01) =1
or Rej(zz2,c-m,o2) =1,
abort

zZ1,2Z2

Check:
lz1]l < By, [|z2]| < B2
A1 cZ1 :w1+c't1
Ay -zi+zo=wa+c -t
Table 8. Well-formness proof of BDLOP commitment.

Statistical honest verifier zero-knowledge. Here, we just need to prove that
the protocol is zero-knowledge when P does not abort prior to sending z;. This is
because after converting into non-interactive proofs via Fiat-Shamir transform, V
never sees the aborting transcripts. We can prove this zero-knowledge properties
by designing a PPT simulator & whose outputs are statistically close to the
transcript of real protocol. Particularly, given matrices A1 € Rp**, A, € REXF,
and commitment vectors t; € R , to € R’ , S conducts the followings

q1° q2’
$
— Sample ¢ « C;
— Sample z; < Df;l, and zo Dﬁ2;
—Setwy =A1-z1—c-t1,wy=Ag- 21+ 25—ty
— Output (wq,ws,c, 21, 22).

Clearly, the vectors zi,zs output by & will be accepted with overwhelming
probability. Besides, the distribution of z; output in the real protocol is with-
in a negligible statistical distance of DX , or DﬁQ. Since w;,w, are completely
determined by Aj, Ag, t1,ts, ¢, 21, 22, the output distribution of S is within a
negligible statistical distance of these random variables in the actual protocol.

Special soundness. Suppose there exists an adversary A who can produce a
valid proof 7 := (w1, ws, ¢, 21, 22) for two vectors (t1,t2) ¢ Lyt vt q1,q0,c- Then,
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we can rewind A to obtain another adversary 7 := (w1, w2, ¢, 2}, 25) with ¢ # ¢
and ¢ = ¢ — ¢ € C is invertible. Then, we can compute f = (¢ —¢’) € C, and set
F=2z —2),m=2y— 2, suchthat Ay -7 =f-t;,and Ay -7+ m = f-t,.
Below, we compute the fo-norm of the extracted vectors 7,m. According
to the rejection sampling in Lemma A.9 and ||7]|e < 8, M|l < B/, we need

toset o = n-k-B-VEN and 0y = 1- /K- - VEN. And thus, we get
7]l < 2v2-01-VEN =220 \/k-B-kN =~} and ||m]j2 < 2v2- 02 - VIN =
2v/2n - \/k - B' - {N = 7}, where 1) is the parameter for rejection sampling as
in Lemma A.9. This implies we can view (#,m) as a witness for (t1,t2) €
Lv{,'y;,ql, 2,¢- However, this is clearly contradictive with the previous assumption
that (¢1,%2) is not in the language Lv{,7§,q17Q2,5’ which implies the protocol is
computationally special soundness. Notice that this special soundness implicitly
implies the properties of computational soundness. a

Proof Size of Non-Interactive Protocol

In this section, we analyze the efficiency of the non-interactive protocol of Table
8. This means that the challenge ¢ € C is computed by P via hashing all previous
messages and public information. And the hash function is modeled as a random
oracle. In order to shorten the length of the proof, we can adopt a standard
technique that is not to directly send the input to the hash function, but rather
send its output (i.e. the challenge). In this case, given the transmitted vector z;,
the verifier can recompute the input, through using the verification equation, and
then check that the hash of these computed input terms is indeed the transmitted
challenge c. As a result, the proof size of the non-interactive protocol consists of
that of vectors z; and the challenge c, i.e.,

k- N -[log(1201)] 4+ ¢- N - [log(1203)] + 256,

where the output size of random oracle is supposed to be 256 bits.

Notice that for our parameter setting on Construction 4.1 (ie., n = ¢ =
1,k = 3), if we choose message polynomial m with coefficients in {—1,0, 1}, this
proof of well-formness is just larger than the previous opening proof in [6,23] by
one third times. Clearly, this overhead is mild.

Additional Properties of the Protocol in Table 8

In this section, we first present a proof of knowledge on linear relationship as
ti1
t;o
openings m; satisfying > B;m; = 0 for any fixed B;. The detailed protocol is
presented in Table 9. Here, due to the similarity with [23], we omit the detailed
proof of completeness, honest-verifier zero-knowledge, and special soundness for
simplity.

Moreover, just as mentioned in Section 2.3, our new well-formeness proof in
Table 8 can prevent the mix-and-match attacks for our anonymous credential
systems. In order to specify this more clearly, below we first introduce what the
mix-and-match attack is, and then argue this will induce a solution for M-SIS
problem.

in [23]. Particularly, given a set of commitments t; = { } , we prove that their
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Prover P Verifier V

Inputs:
For i € [7]:
Ay € Rk A1, A
Agﬂi S R§L2XkL B;
XL
B; ¢ RZZ
A1 0
A; = [AZ; Il} Aitia,tio
i, i
with zero matrix:
0; € R™i*4
identity matrix:
I, € RY*4
ti1 € Ry tio € RE Bix > 0i1- VN -k
r; € Sgi7m¢ S Sé‘; Bio > 02 VN ¥
s.t.
ti1 Ti,1
’ — A 3
{tm] ! |:mi,2

ZBimi =0€ Rgz

For Vi € [7]

Yi1 < Dﬁil

Yio < Dﬁi,a
Wwi;,1 = Ai,l . yi’1
w2 = A2 "Y1t Yo
w2 = Zz BiAi,Zyi,l

w2
Wi, 1
wi;,2
c c ﬁ C
(_
Zi1 =Y; 1 +C Ty
Zi2 =Y; o tC-my
~ ForVie [7], if 21, 2o
ReJ(Zi’l,C"I'i,O'iﬁl) = —
or
Rej(zi,g, Cc-my, O'/L"Q) = 1,
abort
Check: for Vi € [7]
|zs,1]| < Bin
Hzi,ZH < Bi,2
Air-zin

=w;1+c- -t
Aio-zi1+2zip2
=w;2+c-t;2
> BiAi2zi
=c¢> Bitis + w2
Table 9. Linear-relationship Proof of BDLOP commitment.
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Definition A.16 (Mix-and-Match attack) Given a pair of BDLOP public
matrices Ay, Ay and two vectors i 1,t1 2, together with an opening NIZKPoK

ti1
ti2
adversary can find out a new vector ta 1 together with a new opening NIZKPoK

proof m showing that [ is a valid commitment with respect to Ay, As, if the

t . . . .
2’1] s a valid commitment with respect to A1, As.

proof @' showing that {
tio

Definition A.17 (Commitment-Proof Binding Property) We say the BDLOP
commitment scheme and its NIZKPoK proof system II satisfy the commitment-
proof binding property, if they can resist miz-and-match attacks, i.e., it is neg-
ligible for any PPT adversary to find a vector ta1 and a proof @' to conduct a
successful miz-and-match attack.

It is easy to verify that for BDLOP commitment scheme, the previous opening
proof systems as in [6,23] can not satisfy the commitment-proof binding property.
Particularly, suppose t; is a valid commitment of m, with respect to the public
matrices A1, As. This means t; = {tl’l} = {Al] ry+ [O ] According to the

t172 Ag m
opening proof for BDLOP commitment in [6,23], given their opening proofs 7y,
the corresponding extracted openings are (m, 71, f1) such that Ay -71 = f1-¢11
and m = t12 — fl_l . OY

In this case, through computing ¢ 1 = A;7ra, the adversary can obtain a
ta1
ti2
72 to generate opening proof 7’ for ¢}, and the corresponding extracted openings
are (m’, 77'2, fz), such that Al ‘Po = f2 . t271 and m' = t172 - f2_1 . AQ’FQ. Clearly,
this is a successful mix-and-match attack.

Fortunately, for our new proof in Table 8, this attack can be prevented.

modified commitment t; = [ . Furthermore, the adversary can directly use

Claim A.18 When using the protocol in Table 8 as the opening proof, the
BDLOP commitment satisfies the commitment-proof binding property.

Proof. Generally, we give a reduction that if the adversary can conduct the mix-
and-match attacks successfully, then we can construct a new algorithm to solve
the M-SIS problem.

ti1

. is a valid commitment of m, with respect
1,2

Particularly, suppose t; = [

. . . A1 0 T o tl,l
to the public matrices Ay, As. This means [A2 I] . {m} = |:t1 2]. Through

using the new proof in Table 8, one can extract witness (7, m, f) such that
A -r=f-t;;and Ay -7+ m = f -t 2, which implies

T

(A2, 1] [m} =f tie. 1)
Here, assume the adversary can compute a vector ta 1 # t1,; such that the

. . |t . . . A0 ) r’ | tan
modified commitment t] = |:t1,2:| is valid. This means [AQ I m'| T |t
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for certain vectors ', m/. Furthermore, through using the new proof in Table 8,
the extracted witness is (7, 7/, f') such that A, -7 = f'-t5; and Ay-7# +m/ =
f' - t1,2, which implies

[Az, 1] [;—;/} =f -t (2)
Through multiplying f” and f into Equations (1) and (2), we can get
[Ag, 1] [;’:n} =f-ftio (3)
and o
[Ao, 1] ;;/} =f-ftio. (4)

And through subtracting (4) from (3), we can get

aen |4 ] = o)

for—for
fom—f-m
vector. First, as both f, f/ are small, and the /5 norms of all vectors 7, 7, m, m/’

Iop— f- 7
P fem should be bounded by a small value
too.

Second, from Ay -7 = f-t17 and Ay -7 = f -ty 1, we know that
Ay -(ff-r—f-7)=ff-tii—[f-f -t

Then, by the assumption that t3; # t;,;1, we know the above equation is
non-zero, which implies (f' - # — f - #') # 0. Finally, this implies the vector
f/ . 7*1 _ f . 77,/
f/ m—f- m'

Overall, this implies if there exists the adversary successfully conducting mix-
and-match attacks, then we can construct another reduction algorithm to solve
M-SIS problem with respect to [Ag,T]. ad

Below, we just need to prove that } is a non-zero short

are small, the ¢ norm of {

is non-zero.

A.6 Security for NIZK
Let’s recall the notion of non-interactive zero-knowledge (NIZK) proof system.

Definition A.19 ( [24]) Let R be a relation. A non-interactive proof system
IT for R is a tuple of PPT algorithms (Setup, Prove, Verify, SimSetup) having the
following interfaces (where 1% are implicit inputs to Prove, Verify, SimSetup ):

- Setup(1>‘) : given a security parameter \, outputs a string crs.
— Prove(crs, z,w): given a string crs and o statement-witness pair (x,w) € R,
outputs a proof m.
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— Verify(crs, x, ) given a string crs, a statement x, and a proof 7, either accepts
or rejects.

— SimSetup(1*): given a security parameter \, outputs a simulated string crs and
a trapdoor tk.

A secure NIZK system IT should have three properties: Completeness, Sound-
ness, and Zero-knowledge. As argued by [5,22,27,30], Fiat-Shamir based proof
systems in the random oracle model satisfy these properties. Many recent lattice-
based efficient NIZKs are Fiat-Shamir based, so they also enjoy this property.
We require that the following three properties hold:

— Completeness: for every (x,w) € R and every A, Verify(crs, z, ) accepts with
probability 1, over the choice of crs + Setup(1*) and 7 < Prove(crs, z, w).

— Soundness : let Lgy be the language defined by relation R. For any pPT
adversary A,

Prerscsetup(1*) [Eac s.t.™ « A(crs, x) : Verify(crs, x, m") accepts A x ¢ Lgﬂ < negl(A).

— Zero-Knowledge : There exists one PPT algorithm SimProve, such that, for
any PPT adversary A we have |Pr[A wins] — 1| < negl(A) in the following
game:

1. The challenger samples (crs, tk) <— SimSetup(1*) such that crs is indistin-
guishable from crs output by Setup, and gives the simulated crs to A.

2. The adversary A chooses (z,w) € R and gives these to the challenger.

3. The challenger samples mg < Prove(crs, z, w), w1 < SimProve(crs, z, tk), b <+
{0,1} and gives m, to A.

4. The adversary A outputs a bit ¥’ and wins if &’ = b.

Notice that in the above zero-knowledge game, if we allow the adversary A to
choose any polynomial numbers of (x;, w;), and all the resulting {m; ¢} and {m; 1}
are still indistinguishable, we say that IT is a multi-theorem NIZK system.

We define proof of knowledge which is a stronger property than soundness.
Generally, a NIZK system is called NIZKPoK if we can efficiently recover the
witness w from the valid proof output by the adversary. More formally, we say
a non-interactive system is a proof of knowledge, if there exists a pair of PPT
algorithms (SimSetup, Ext), such that SimSetup outputs a correctly generated crs
together with an extraction key tk, and Ext can use tk to extract a valid witness
from a proof.

Moreover, we consider two flavors for proof of knowledge: single-proof ex-
tractability and multi-theorem straight-line extractability.

Definition A.20 (Single-Theorem Extractability in [22]) An NIZK proof
system is single-proof extractable if there exists a PPT extractor Ext, constant cq,
ca, € and a non-negligible polynomial p(\) such that for any crs, any x € Ly,
any @ = poly()\), and PPT adversary A that makes at most Q random oracle
queries with

Pr |:7T & Alcrs, x) : Verify(crs, z, ) = 1} > u(N),
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then we have,

1

3 c1
Pr [w & Ext?(ers, @) ¢ (z,w) € 9{] > D] (A — negl(N),

where the runtime of Ext is upper bounded by cs - Time(A) and we assume one
oracle access to A takes Time(A).

Particularly, if we compile a sigma protocol with the Fiat-Shamir transform,
then we have (¢1,c¢2,¢) = (2,2,1) and p(\) = 1 via rewinding the prover and
the forking lemma [8,53]. Additionally, we need to use a stronger extractabili-
ty, i.e., multi-theorem straight-line extractability, where we can directly extract
witnesses from multiple pairs of statement and proof output by the adversary.
Moreover, for such multiple-theorem extractability, we allow the adversary to
choose the queried statements adaptively.

Definition A.21 (Multi-Theorem Extractability in [22]) An NIZK system
is multi-theorem straight-line extractable, if there exists a PPT oracle simulator
SimSetup and a PPT extractor Ext with the following properties:

CRS indistinguishability. For any PPT adversary A, we have

Adv(A) : = | Pr[crs < Setup(1*) : A(crs) = 1]

— Pr[(rs, tk) < SimSetup(1*) : A(crs) = 1]| < negl(\).

Straight-Line Extractability. There exists constants c, e, es and polynomial
p(A) such that for any @Q = poly(A) and PPT adversary A that makes at most Q
random oracle queries with

Pr [(E\rs, tk) + SimSetup(1*), {(z:, ™) }icja.) — A(GH) :

Vi € [Qu], Verify (€5, i, mi) = 1] > u(N),
we have

Pr [(c?s, tk) + SimSetup(1*), {(z:, ™) }iejg.) — A(ER),

{wi <~ EXt(l)\7 QH7 QS7 1/1“‘5 tk7 Zi, Wi)}iG[Qs] :
Vi € [Qu], (zi,75) € R A Verify (&8, zi, m) = 1]

> 2 u(A) — negl().

Moreover, the running time of Ext is upper bounded by Q% - Q%> - % -p(A).
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B Supplementary Material for Section 4

B.1 Correctness Proof for Construction 4.1

Lemma B.1 (Restatement of Lemma 4.2) For parameters N, qa, o,y =
av2-12- N, the NIZKPoK system II for the relazed language L., ,, ¢ with ~ >

(3.5aN - 22 +av2-12- N), Construction 4.1 satisfies the correctness property
as defined in Definition 3.1.

Proof. The correctness according to Definition 3.1 requires to prove the following
three statements: (1) four algorithms (Setup,Commit,Randomize, Combine) define
a correct randomizable commitment scheme; (2) the signature by algorithm Sign
passes the verification algorithm, i.e., Verify; and (3) the transferred signature
(with respect to the randomized commitment) from Transfer also passes Verify.
Notice that, statement (1) follows naturally from the used BDLOP commit-
ment scheme I'. And statement (2) simply follows from the fact that SamplePre
outputs a short vector of lattice A:(Feomm) With an overwhelming probability,
and thus the verification would pass. To show statement (3), it suffices to show
that Feomm’ - Sigeomm: = © (as defined in the algorithm Transfer) Sig o mm 18 within
{3 norm (3.5aN -2v/2+av/2 - 12N), as the rest of the proof simply follows from
the completeness of the NIZKPoK systems IT.
Particularly, for all m € M C R,,, (sk, pk) output by KeyGen, and signature
Sigeomm = (81,53 ,83) = ((s11,8]2),s3,s5) output by Sign, it holds
S1
Foorm - |82 | =u € RQ27
S3

where Fcomm = [[dT|aT] | [bT + (tQ,l, t2727 t273, t274)] |a§] . And the 62 norm of the
vector (s 1,87 ,,83,83) is less than av/2 - 12N. This implies

(d,s11) + (@, s12) + (b+ (2,1, t22, t2,3,12.4)", $2)+(az, $3) =u € Ry,.
We notice that the above equation is equivalent to

u=(d,s11) + (a,s12) + (b+ (t21,ta2,t23,ta4)", 82)
+ (as, R, 82) — (az, R, - S2) + (a2, s3)
=(d,s11) + (@, 812) + (b+ (ta,1,t22,t23,t24)" + R - az, 82)
+ {aq, -R, - S2) + (a9, s3),
which can be rewritten as

81,1
81,2
S2

83 — Rz © 82

I
S

[[dT la']|[b" +(t2.1,t22,t23, t24)+as - Ra \a;] :
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R,

Here we denote R = [
2

1 = [;‘11,;‘/2,77‘37?'4} S R3X4, with ﬁl € RM™ and

ﬁg € R2*x4,
Then we observe that

Feomm: : = [[dT|aTH‘5T + (fz,hfz,z,f2,37752,4)|a;—]

= {[d—rm—r”b—r + (t21,t2,2,t23,t2.4) + ag - 1‘:{2|CL2T} )

S1,1
51,2

s . Now, it is easy to verify that the /5 norm of
2

and Sig.omm =

83 — RQ - So
Sigcomm 15 Within (3.5aN -2v/2+av/2 - 12N) and Feomm’ - Sigeomm’ = 0, since for
such a matrix Rg € Sf“, its singular value s1(R2) is bounded by 3.5v/N. This
completes the proof. a

B.2 Simulatability Proof for Construction 4.1

Lemma B.2 (Restatement of Lemma 4.5) The algorithm Transfer in Con-
struction 4.1 is simulatable.

Proof. According to Definition 3.2, we need to first construct a two-stage PPT
simulator S, and then prove that after running any polynomial ¢ = poly(X) times,
—~

the distribution of {Sig.omm’ }icly) Output by S are statistically close to that of
{Sigeomm: tic[y output by Transfer.

Particularly, the two-stage PPT simulator S can be constructed in the follow-
ing way:
— First Stage: S conducts the following steps:

1. Generate and output params := (A, d, M, R, crs).
— Second Stage: given params, and valid pk, comm’, S conducts the following
steps:
1. Recognize pk as (a, b, u).
t1,

2. Parse comm’ = (comm});c[q) with comm} = [t }

2,
3. Set matrix Fé:omm’ = [[dT|aT] ’ [bT + (1?2)1, tA272, 1?2)3, tA2’4>] ’aﬂ .

4. With respect to the NIZKPoK system II for the relaxed language L%q%@,
Lﬂ/’,qz,(f = {(F::ommHu) S Réle X Rq cJdx € R;Q and
f € é such that HwH S 7/ and Fc,omm’ L= f ’ U}7

we can run the corresponding simulation algorithm to generate a simulated
proof 7/, whose distribution is statistically indistinguishable from that of
the real proof .
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—~/
5. Output Sigeomm: = 7'
According to the zero knowledge property of the used NIZKPoK system IT,
it is clear that after running any polynomial ¢ = poly()) times, the distribution

—~/
of {Sigcomm: }ict) Output by S are statistically close to that of {Siggemm: Fielt]
output by Transfer. O

B.3 Unforgeability Proof for Construction 4.1

Lemma B.3 (Restatement of Lemma 4.6) Assume that M-SISy, 1,9, prob-

lem and M-SISg, 1,9, problem are hard with v = 22a- N and V' = 2%?, then

our above lattice-based commitment-transferrable signature scheme is partially
selectively unforgeable for the exact commitment relation L, 4, 5, i.c., the ad-
vantage of any PPT adversary A against the partially selective unforgeability
game of CTS is at most

Adv9e(\) < 2AdVRWVE 4 Adv'5YO9¢ ()
Proof. We argue the unforgeability using the series of hybrids.

Ho: The challenger B runs the CTS honestly. He gives to the adversary A the
public key pk and signatures with respect to the queried commitments comm;.
In this hybrid, we say A has advantage ¢ = Adv;nforge()\) in the unforgeability
game. Then, it holds

Adv(N) = Adv'y = (V).

H:: The challenger B runs the identical procedures as Hg, except that he samples
Ry & §24 and set b’ =d' - Ro — (m*,m*§, m*62, m*6%) € RLX*. Here, we
use m* to denote the committed message in the challenge commitment comm™.
According to the RLWE assumption, we know that Hy and H; are computational
indistinguishability. Then, it holds

AV (V) — AdvE (V)] < AdVREVE(N).

Ho: The challenger B runs the identical procedures as Hq, except that he samples

ad R*, and B answers the signature queries through using Lemma A.7, rather
than Lemma A.8. According to the RLWE assumption, we know that H; and Ho
are computational indistinguishability. Then, it holds

|AdVTE (V) — AdVi2 (V)] < AdVEYE(N).
Besides, we denote the challenger in Hs as B*. Thus, we have

AdvHz () = Advirorse” (),
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Lemma B.4 Let A be a PPT adversary with advantage € in the selective un-
forgeability game with respect to B* for the evact commitment relation L, 4.8,

i.e., Advzf{lforge* (X) = €. Let h be a bound on the number of random oracle queries
made by A. Let v = 22a - N and V' = 2%?. Then there exists a reduction
algorithm R for M-SISy, 1.9, or M-SISy, 1.9,/ such that

ANSIS () > £(S

o—A
F-2).

Proof. According to our construction, the verifier need to consider two cases:
original signature and transferred signature. Thus, we need to prove the un-
forgeability for both cases. Overall, both of them have the similar proof process,
and are based on the hardness of M-SIS,, 1 9, and M-SIS,, 19,/ problems, re-
spectively. Below, we present the details for both cases in an unified form, and
just separate in their different points.

Particularly, we prove that if the adversary A can forge a valid original /trans-
ferred signature in the selective way, then we can construct an efficient reduction
algorithm B to solve the M-SISy, 19,,/M-SISy, 1,9,,» problem. In particular, B is
given an uniformly random matrix ' = [x1, 22, 3, T4, T5, Tg, T7, Ty, Tg] € Rgz,
and need to output a vector y such that (x,y) = 0 mod ¢z and ||y|| < v = 22a-N

229'VN .- . Lo
or |ly|| < v = ﬁ Similar to the consideration in [23], we choose to use

x = [z1, 29, T3, T4, X5, Tg, L7, 1, 28], since one of z; will have an inverse with high
probability.
In this case, B conducts the following steps:

1. Choose x} & RZ and set af = (L)) e R3.
2. Set ay = (1,25) € R2,.
aT

3. Set A = [ ! —r} and send it to A.
0,a,
Clearly, A is a valid public parameter output by I.CKeyGen.

Next, we need to argue that B can simulate the environment of A successfully
for the exact commitment relation Ly, 4,. In particular, we use the following

Claim B.5 to specify the case.

Claim B.5 B can simulate the environment of A successfully in the unforge-
ability game with respect to the exact commitment relation Ly, q,.

Proof. With this A, according to Remark 3.6 of Definition 3.3, A can commit
to the challenge message m* at the beginning of unforgeability game.
Then B can set the public parameters in the following way:
1. Set d' = (x1,29) € R327 a' = (v3,74,25,76) € Réz,
2. Sample Rg & 52%4 and set

u=2x7 € Ry,.

b' =d" -Ry— (m*,m*6,m*6%,m*6%) e Ré;‘l;
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3. Send pk := (a, b, u) to A.

According to the uniformity of z3, x4, x5, ¢ and the distribution of Rg, pk is a
valid public key of our commit-transferrable signature, which follows from the
Ring-LWE assumption.

Then, the A can conduct signature queries and get responds from B. In
particular, after receiving the signature query (comm,m, (r1,7r2,73,74)) from
A, where comm = (commy, comms, commg, commy) and

commy (= {:1’1] =A-r + [nﬂ ,
2,1

commy = {?2] =A-ry+ [725} )
2,2

commg := [il’g} =A -r3;+ [m%2] ,
2,3

B can compute

Feomm = [[dT|aTHb + (t2,17t2,27752,37152,4)‘112]
= [[dT\aT} ‘dT . R() — (m*, m*5, m*62, m*53) + (t271, t2’2, t273, t2,4)|a2]

_ [[dT\aTHdT ‘Ro+aj -Ro+ (m—m")(1,6, 52,53))a2] ,

where we denote R = [31} = [1"1,1‘2,7‘371"4} € R34 with Ry € R?*4,
2

For any m # m*, we know that m — m* is invertible over the subfield S,
of ring R,,. According to the algorithm in Lemma A.7, the challenger can get a
short vector z € R'2? such that Feomm - 2 = u. Notice that for R € Sf“, it holds
s1(R) < 3.8V/N, except with at most a negligible probability. O

From above Claim B.5, we know that B can simulate the environment of A
successfully.

Next, for the challenge query, the adversary sends randomness (v}, 75, 75, r})
to the challenger, such that the final challenge query is of the form (comm™*, m*,
(ri,7r3,75,75)), where comm* = (commj, comm3, commj, comm}) and

commj = [ti’l} =A-rj+ [72*} ,
2,1

Comm; = |:t}‘72:| :AT; + |:m(16:| .
2,2

= [12] =2 15+ 2]
2,3
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commj := ﬁi‘l] =A-r;+ {mq&g] .
2,4

In this case, we have
Feomm* = [[dTlaTHdT -Ro + a;l' . R;|CL;—:| .

Below, according to the fact that the adversary’s forgery is for original signa-
ture or transferred one, we need to separate the following proof into two cases.

For the case of original one. If the adversary can forge a valid signature
511
. s] .
Sigeomm= ‘= 31’2 with s3 = (s5,,s5,)" € R?, such that
2
83

Feomm+ - Sigcomm* = [[dTla’THdT -Ro + a; : R;|012:| ' ii,?

= <d7 SI,1> + <a’ SI,Q) + <dT : RO + G‘ZT : R;NS;) + <0,2,S§>

= u,

sty +Ro-s3
512
-1
R -s5 + 53
lem defined by [z1, 22, 3, T4, T5, ¢, T7, 1, 25]. And the £5 norm of this solution is
less than ||ly|| < av/2-8N +14v2a-N+1 < a- (4N +14v2N) +1 < 22a- N.

then B can compute y = as a solution to the M-SIS,, 1 ¢, prob-

For the case of transferred one. If the adversary can forge a valid proof for
the language L then the reduction algorithm B can run the extractor of

¥,q2,C>
ST,l
. 87
the NIZKPoK system Ty, and get a £, norm short vector Sigl,,m« := 31,2
2
83

with s5 = (s3,,552)" € R?, such that
Fcomm* ' Sigcomm* = [[dT‘a’T} |d—r : RO + a; ! R;|a2:| . i’2

= <d, ST,1> + <a7'541<,2> + <dT ‘Ro+ a;— : ;, S;>
+ a’278§>

=c-u,
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sty +Ro- s}
512
—C
R385 + s3
problem defined by [z1, ©2, 3, 24, X5, Tg, T7, 1, 25]. And the 2 norm of this solu-
tion is less than ||ly|| < o/v2- 8N +14v/20a/ - N +2v/k < o/ - (4V/N + 14V/2N) +
2\/k <220’ - N, with o/ =+'/v/2-12N.
Furthermore, according to the forking lemma of [8,53], R can complete the
above reduction with probability at least e(£ — 27%).
Summing up all above arguments, we conclude that our commit transferrable
signature satisfies unforgeable in the selective way. a

then B can compute y = as a solution to the M-SISy, 1.9,/

C Supplementary Materials for Section 5 0

In this section, we present how to instantiate the three building blocks in Sec-
tion 5 efficiently from lattices. Before this, we need to introduce the additional
parameters for the straight-line extractable NIZKPoK in Table 10, as other com-
mon parameters also used for CTS have been introduced in Table 5.

Param. Description
qzk Moduli used for BDLOP commitment scheme in 1)
T Parameters to describe the committed value space in IT M
n,k, A Parameters for the encryption scheme E
k Parameter for the repetition times in Ilpisciosure
n, M Parameters for rejection sampling algorithm
1,72 |¢2 norm parameters for “short” vectors in the language of L)
74 |¢2 norm parameters for “short” vectors in the language of L o)

Table 10. Additional Parameters of Multi-theorem Straight-line extractable NIZKPoK

Concrete Construction of NIZK IT(1)

According to the BDLOP commitment scheme and our definition experiment of
unforgeability for CTS, the relaxed language L) can be concretely written

through using L’yi,vé,ql,qz,c_ and L’yi,quqzé in the following way:

inu) L= {comm = (comm;);ca) : IM, q1, g2, {Ti}ica), f € C, such that 0 < ||| < s
i—1
0 < ||m|| < ~3, and comm; = Commit(params,m - q,* ,7;/f) for i € [4]}
= {(Al,Ag,commi = (ti,1,ti2)) : 3 (rs,m) and f € C such that 0 < ||r;]| < 1,
A0 1 ti1
< AL . — f. )
0 < |m| <2, {A2 I] [m] f [tl,J and
Ay 0 o ti1 )
[AJ Pt f- 111:| =f- {tm forz€{2,3,4}},

gy
where A; = (1,a{) and Ay = (0,a4 ).
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Interactive proof system [T M
Public Parameter for Commitment Scheme:

T ;T 1
A= alT - L @11 as in Construction 4.1, § = lg51,0-1,05, T|N,
as 0717a2

By =¢-V6N, By =¢ - V2N.

Prover’s Witness: 71,72, 73,74 € S5, m = Zie[N] mi—1 X! is in a subfield of Ry,

-
Commitment: comm = (comm;);c[4), COMM; 1= [21} = [Zi} S+ [m ~06i*1]
Prover Verifier
Vi € [4]7y7, <« Dga Y1,2 < D£’7 Y_1,Ys & D?
Vi € [4]7101',1 = af ‘Y, W12 = alT “Y; Y12
Vie[Blwia=05"as -y, —as ‘Y,
w1 =o0-1(al)-y_,, wis =05(ai)- y;
wz,—1 = a; Y — 0—1(‘1;) Y
wa,5 = a; “Yq *Ug(a;)‘ys

wi,law1,2vw§,2!wl,71!w1,57w2,717w2,5

adc

Vi e [4],2:1‘71 =Y, +d-r;
zZi2=Y;,+d-m
zaa=y_;+d-o1(r1)
z5 =y; +d-o5(r1)
Rej(zl-,l,dmi,ﬁ)
Rej(z1,2,d-m,¢")
Rej(zfl,d-afl(rl),f)
Rej(zs,d - a5 (r1),€)

Zi,1,21,2,2 1,25

Check:
? ?
1. for i € [4], |zial| < Bu, ||z1,2]| < Ba,
? ?

lz-1ll < Bi, ll2s]l < B
fori € [4],af - zia < wi1 +d-tiy
?
caf czii4+zio=wio+d ta:
?
. a_l(alT) czoi=wi,—1+d-o-1(t1,1)
T T ? T
.o5(ar)-zs =wis+d-o5(ti,1)
. for ¢ € [3]:
as - (0-zi1— zit11)
?
=wio+d-(6-t2; —t2,i41)
7.a3 zi1—0_1(a3) -z,
?
=wg,—1+d- (t2,1 — o-1(t2))
8.aj -z11—05(as)-zs

< was +d - (t2,1 — 05 (t2))
Accept if all the above conditions hold.

DU s W N

Table 11. The interactive version of IT(?.
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For L 7 and the requirement that the committed message m is included in a
subfield of R,, consisting of ¢J elements with 7|V, the interactive zero knowledge
proof system is presented in Table 11. Based on this, the corresponding non-
interactive one can be obtained through standard Fiat-Shamir transformation
in the random oracle model.

More formally, we have the following Theorem C.1.

Theorem C.1 In the random oracle model, let N to be a power of 2, prime
qu = 5mod 38, prime qgo = 3 or 5mod 8, there exists a multi-theorem NIZK
system IV for Ly (ie., (1) commy are valid in the relation Lot vt .g1.02.C
qr.ge.Co (8) all comm;
satisfy the corresponding linear relationship), and (4) the committed message
m in comm is included in a subfield of Ry,, where v; = 6v2n - k- N and
v, = 2v/2n - \/k - N, where 1 is the parameter for rejection sampling as in
Lemma A.9.

(2) commy,comms, commy are valid in the relation L.,

The proof of Theorem C.1 is similar to that of [6,23], and thus we omit it for
simplicity.

Concrete Construction of E and NIZK IT(?) for Ciphertext Validity

Second, for the encryption scheme, we choose to use the following variant of
BDLOP commitment scheme.

Construction C.2 (Encryption Scheme E) The scheme is as follows.

— KeyGen(\): Given a security parameter X, the algorithm conducts the follow-
g steps:

1. Choose two integers N, q1, where N is a power of 2, and q1 is a prime
with g1 =5 mod 8; R

2. Set n,k, X be integers satisfying k =n 4+ 6 + \.

3. For the ring R = Z|X] /(XY + 1), and let Ry, = Zq,[X]/(XN +1), x be
an error distribution over R.

4. Sample A & RZIX’“, s; « S7.e; < SF for i € [6], where s;,e; are
vectors over Ry, .

5. Compute b; = AT - 5; + e;(modq).

6. Output pk := (A, b1,...,bs), sk := {s;}ic[e-

— Enc(pk,7): Given public key pk and the message vector 1 = (ry,r9,73)" €
Rgl, where each coefficient of r; is from {—1,0,1}, the algorithm conducts
the following steps:

1. Sample v & Sk,

2. Compute to = A -7 € Rgl, t; = <b1,’lA"> +r; € qu, t34; = <b3+i,’lA"> + 7
l\/a1] € Ry, fori € [3].

3. Output ct = (to,t1,...,1¢).

— Dec(pk, sk, ct): Given public key pk, secret key sk and the ciphertext ct =
(to,t1,-.-,l), wherety € Ry , t; € Ry, , the algorithm conducts the following
steps:
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1. Compute U; = ti — <t()7 Si> and Ui+3 = ti+3 — <t0, Si+3>, forz' S [3]
2. Ag i =uiy3 —ui- [/qr](mod|\/q1]), fori € [3].
Uip3—A2 4 .
3. = %, fori € [3].
4. Compute T = (r1]|---|rs € R3)T.

For simplicity of presentation, we defer the correctness and security proof to
Section C.1. Below, we just focus on the validness of the ciphertext in Construc-
tion C.2, which is necessary for the general framework in Section 5.2.

Validity of the Ciphertext of Construction C.2. Viewing Construction
C.2 as a general BDLOP commitment in R,,, the validity of ciphertext can

be proven via the opening proof of BDLOP commitments for Ly gq,c asin

[6,23],'2 together with linear relations among them, and the f3-norm of the
committed polynomial is bounded by v3N. Thus, the relaxed language L2

can be concretely written through using Ly g qcin the following way:

Lye = {ct = (cti)iefq : 3(ri,Rand;) and f € C, such that r; € S3,
0 < ||Rand;|| < ~4, and ct; = E.Enc(pk, r;; Rand;/ f), for i € [4]}
= {(A7BT,m = (€omms)ieqy) : 3 (r4,7) and f € C’ such that

0< ||’f.|| < ’Yi”nO < ||’I"7,|| < v 3N7T; = L\/ qi| - Ti7mi = (il,iyiQ,i)v

e [y [ e

where B = [by, ..., bg].

For the tight upper bound on fy-norm of r;, we further view the above
encryption scheme as the BDLOP part of an ABDLOP commitment, and directly
use the related techniques and protocol in [2,44]. Here, we omit the detailed
protocol for simplicity. More formally, we have the following Theorem C.3.

Theorem C.3 In the random oracle model, let N to a power of 2 and q be
prime with ¢ = 5 mod 8, there exists a multi-theorem NIZK system IT? for
Ly, ie., (1) ct are valid ciphertexts; (2) the €y norm of the encrypted polyno-
mial r; is bounded by /3N, with Vs = 2v/2n-\/k-k-N, where n is the parameter
for rejection sampling as in Lemma A.9.

Concrete construction of NIZK system I7()

Third, in order to prove the consistency of the witness of r = (rq, ro, T3)T € Sf’

bl A ps 0 With A = L and the encryption of
to - m T 07a2T ) Yp

in comm := {
13 Here, this general BDLOP commitment scheme just use one modulus g1, rather than
two different moduli. So we use L,Y{’ql,quc’ to represent its relaxed opening relation.
Below, we will use comm to denote its concrete commitment value, in order to

distinguish it from that of the prior commitment in CTS.
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A 0
b, 1
bo T2
rinct:= |[b3| -7+ r3 , we just need to prove the committed value
b4 L\/§-| 71
b5 \_\/a] T2
b6 LLval - rs

r = (ry,re, 1"3)T € R,, in ct satisfies the exact linear relationship [1, a1 ]-7 = t;.
Thus the language L) can be concretely written through using L) in
the following way:

Lye = {(comm = (comm;);ejq), ct = (cti)icpa)) : 3(m, 73, Rand;) and f € C’, such

1
iTi)

i

that 7; € S5,0 < |[Rand;|| < ~4, comm; = Commit(params,m - g,

I
and ct; = E.Enc(pk, r; Rand; /f) for i € [4]}

= {((17¢11T), (t1,i)ic(a), COMmM = (Comm;);c(q) : (s, #;) and f € C, such that
0 < [[#4]] < 3,0 < ||ril| < VBN, comm; = Commit(ri||[v/a1] - 7s; [~ - #4),
and ((1,a{ ), 7:) = t1, forie [4]}

In fact, this can be easily proven through using the existing techniques for
ABDLOP proving the linear relations of the committed message in [44]. Thus,
we omit the detailed protocol for simplicity.

More formally, we have the following theorem.

Theorem C.4 ( [2,44]) In the random oracle model, let N to be power of 2,
prime ¢ with ¢, =5 mod 8, there exists a multi-theorem NIZK system IT) for
I:Hm with v4 = 2v2n-\/k-k- N, where n is the parameter for rejection sampling
as in Lemma A.9.

Summing up the above analysis, for NIZKPoK system II for thqw we just
need to prove the validity of ABDLOP commitments, the upper ¢5 bound of
the committed values and several different linear relationships for them. More
formally, we have the following corollary.

Corollary 2 ( [2,44]). In the random oracle model, let N to be powers of 2,
prime q1 be prime such that ¢ = 5 mod 8, prime g2 = 3 or 5 mod 8, there
exists a multi-theorem straight-line extractable NIZKPoK system II for the exact
relationship Lq, g, -

Just as mentioned above, the II® and II®® should be put together and
instantiated through using ABDLOP commitment and the related Figure 10 in
[44]. Here, we omit the detailed steps of the zero-knowledge proof from [44], but
instead state how to choose the parameters to match our parameter settings.
With this, we can easily compute the concrete efficiency values, which is deferred
to Section D.
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C.1 Security and Correctness of Construction C.2

Below, we present the security and correctness of Construction C.2.

Correctness. Suppose ct = (tg,t1,...,t) is a valid ciphertext, then for the
valid public key and secret key pk := (A, by, ..., bs), sk := {s;}ice], and i € [3],
it holds
U; = t;— <t0,3i> = <€i,’f‘> +m,; (modql)
Uit3 = tits — (to, Sit3) (6)
= (eit3,7) +m; - [/q1| (modqy)

In this case, we denote (e;, 7) and (e;y3,7) as Ay ; and Ag ;, respectively. Thus,
we have

u; = Ay ; +m; (modqy)

{ (7)

Uitz = Ag i +m; - [ /q1| (modqr)

Then after multiplying |,/q] into both sides of the first equation, we can get

U - L\/qj] =Aq;- L\/(Tﬂ +m; - L\/‘Tl] (modqy) (8)
Uiz = Ao +my - L\/(Tl] (modgqy)

Furthermore, we can get

ki =uiyz —ui- [Vai] = Az — A1+ [Vq1 ] (modgy). 9)

Notice that each coefficient of (e;,7) = >, (€i; - 7;) is upper bounded by
k- N. Notice that if Ay ;, As; are small enough such that ||4; ;]| < [/q11/4,
then no reduction modulo ¢; takes place in the Equation (9).

In this case, Az ; can be easily recovered by further modulo |,/q1] for Equa-
tion (9), i.e., Ay ; = k;(mod|,/qr]). Finally, we can obtain that

U3 — Aa

i mod q;.
/i) o

Security of Construction C.2. Notice that according to the M-LWE,, ,
assumption, b; is computational indistinguishability from uniform. Conditioned
on this case, the above encryption scheme can be viewed as a BDLOP commit-
ment scheme with parameter n,k, ¢ = 6, Ry, = Zg4[X]/(XY + 1), and thus
the ciphertext of (r1,r2,73) € Rg’l can be viewed as BDLOP commitments. And
the security of the encryption follows naturally from the hiding property of the
BDLOP commitment. More formally, we have the following theorem.

m; =

Theorem C.5 (Security Proof of Construction C.2) Assuming the hard-
ness of M-LWE_ . 5, over R = Z[X)/(XN + 1), Construction C.2 is CPA-

secure, with the message space to be R?I.

Proof. This theorem can be proven by the following hybrid argument.
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Hp: In this hybrid, the adversary conducts the standard CPA-security exper-
iment with the challenger, who runs steps according to the real encryption
scheme.

Notice that in Hyp, the vectors b; in the public key are essential the standard
M-LWE,, ,, . instances over R = Z[X]/(XN +1).

Hy: This hybrid is identical to Hg, except that b; in the public key is replaced
with really uniform ones.

Clearly, Hy and H; are computational indistinguishability, following from the
M-LWE,, i assumption.

Moreover, with really uniform vector b;, the modified encryption scheme
in H; can be viewed as a general BDLOP commitment scheme with parame-
ter m, k,£ = 6. And thus, H; can be viewed as the hiding experiment for the
BDLOP commitment scheme, as defined in Definition A.10. And it is clear that
this hiding property also holds according to the M-LWE,, 1., —¢ 1 assumption,
according to [5,29,45].

As a result, the CPA-security of Construction C.2 holds according to the
M—LWth:H_;\,k assumption. a

D Parameter Settings of Construction 4.1 and NIZKPoK
system in Section 5

In this section, we set the concrete parameters for Construction 4.1 and the
straight-line extractable NIZKPoK system, according to the related requirements
in correctness and security. For clarity, we denote the straight-line extractable
NIZKPoK system for iql,qQ in Section 5 as II;, and denote the NIZKPoK system
for L., ,, ¢ in Section 4.2 as I15.

Requirements for Correctness. We require the following:

— The SamplePre in the Sign step needs to work properly. According to Lemma

A.3, we need to set a > 2\/q2% +1-(3.5V/N +1).

— The valid original signature Sig_,,m can be verified successfully. According to
Lemma A.2; we need to set v = av2-12- N.

— The valid transferred signature Sig.,,+ can be verified successfully. According
to Lemma 4.2 and the relaxed language in Theorem 4.3, we need to set v/ =
2V2 12N -5 - /i - (3.5aN - 2v/2 + a/2 - 12N).

— Ciphertexts of Construction C.2 can be decrypted correctly. According to the
corresponding analysis, we need set k- N < [\/q1]/4, with k =n +6 + A

Requirements for Security. We require the following:
— The ring R is cyclotomic, i.e., R = Z[X]/(®,,(X)), where &,,(X) is the m‘"

cyclotomic polynomial, and denote N = ¢(m). Here, we consider the cyclo-
tomic polynomials @,,(X) = X~ + 1 with N to be a power of 2.
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— For the fixed security parameter A\, we require that the output distribution of
—x
the rejection sampling algorithm is within statistical distance of 27 of the

related product distribution, according to Lemma A.9. Thus, we need to set

7 satisfying M = exp 2(12‘;1) . % + # =0(1).1

— There exists a multi-theorem straight-line extractable NIZKPoK system I7; for
the commitment relation IA/quqQ. Hence, according to Theorem 5.2 and Corol-
lary 2, in order to make the languages L ) and L 72 are hard, the following
problems

1. With respect to L) M-SISg, 1,3, (for Ly o1 4,.6)s M-SISy, 1,4.4; 45 (for
Lot vt .g1.q0,0) Over R = Z[X]/(XN 4+ 1), with v}, = 6v/2-n-+y/k- N, and
vy =2v2-1n-+y/k-N, N to be a power of 2, prime gz = 3 or 5 mod 8,
2. With respect to Lpe: M-SISy, nky; OVer R = ZIX])/(XN + 1), with
v =2v2n-/rk-k-N, N to be power of 2, prime ¢; = 5 mod 8,
need to be hard.®
— There exists a NIZKPoK system [T for the language L., ,, ¢, according to
Theorem 4.3. Thus, in order to make this language is hard, the problem
M-SISg, 1,12,y needs to be hard.
— The constructed CTS satisfies unforgeability in Definition 3.3. Particularly,
o For Definition 3.3 with respect to the exact commitment relation Ikqum, ac-
cording to Lemma 4.6, and Claim B.5, we need to set M-SIS, 1 9., problem

and M-SIS,, 19,/ being hard with v = 22«.- N and v/ = 2%?.

— The underlying BDLOP satisfies hiding and binding. Hence, according to Sec-
tion 2.3, we need to set M-LWE,, 1,1 and M-SIS_ , 55, 5., .. being hard.

— The commitment scheme underlying Construction C.2 satisfies hiding and
binding. Hence, we need to set M_Slsql,n,k,Sﬁ-n-n-k<N7 M—LWth;’k over R =
Z[X]/{XN +1) to be hard, according to Section C.1.

— The successful simulation of the adversary in Claim B.5. Here, according to

1
the Lemma A.7, we need to set o > 21/¢3 +1-(3.8- VN +1).

Concrete Parameter instantiations. From the above analysis, according to
unforgeability for exact commitment relation ﬁqth, we give the specific parame-
ter setting as in Table 12. Moreover, we use LNP techniques, i.e., Figure 10 in [44],
to instantiate I1(?) and IT®). Thus, we set the concrete related parameters as in
Table 13, and denote the related proof size as size yp in the final computation
on the pseudonym size of our Anonymous Credentials system. Notice that for
the instantiation of LNP, we follow almost the same parameter notations as [44],
which should be helpful for the readers to understand.

With respect to Table 13, we also need to conduct the following explanations,

1 When we set M = exp(1), it holds % 27

5 Notice that as the language i}H(3> just describe the linear relation among the wit-
nesses of ﬁn(l) and fJH(2>, the hardness of i’n(3> implicitly follows from that of iml)
and ﬁn(z) .
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1. One main difference of our instantiation of LNP from that of [2] is that [2]
puts the committed value in the Ajtai part of the ABDLOP commitment,
but we put in the BDLOP part. Besides, we just need to prove the upper

bound on #s-norm for one vector.
2. For the challenge set in the protocol, we directly use C = {c¢ € R : ||c|1

K, |lc]loo = 1}, rather than the setting according to Lemma 2.15 in [44]. This
is because our ring dimension is large enough to provide enough soundness

error.
Params 1 | Params 2

N 4096 8192
@ ~ o5t ~ 956
. 55252 ~ 95036
A 172 355
M 5 6
n 9.6544 12.421
K 17 35
T 4 4
k 8 8
k 4 4
A 1 1
p 522062 52352
~ 529854 53T8T
o 550988 55453
b 5201 5222
P 518815 5207
] 52181 5237
do |1.00281661| 1.00151149

Bit-sec 189.8 432.16

Table 12. Concrete Settings for
the Parameters and the Related
Security in the case of unforge-
ability with exact relation.

Params 1 | Params 2

A 172 355
N 4096 8192
Tor o5 ~ 936

I 5 35T
Y1 14.13 12.421
P 15 15
Ve 5 5

K 1 1

¥ 4 4

n V17 V35
v* 1 1

D 19 20

n 1 1
ma 1 1
ma 8 8

V4 6 6

e 530 532
Ve 1 1
o 128 181
51 3166 6650.44
59 1119.54 2271.77
s(°) | 11748.84 | 16615.37

sizeLNp 290.587KB 603.655KB

Table 13. Concrete Settings of
the used LNP parameters.

Below, we roughly explain about the calculations of these two tables.

— According to the used rejection sampling algorithms in Lemma A.9, we need

to set the parameter n to satisfy the M = exp (\/ 252‘;1) . %

fixed M and A.
— Given the concrete value of N, we need to fix k such that the size of the

challenge sets are larger than 2%, i.e., (g) x 26 > 2N,
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— According to the used NIZKPoK system I7; in Theorem 5.2 and Corollary 2,
we need to set N to be power of 2, prime ¢ = 5 mod 8, prime g2 = 3 or
5mod 8, 7] = 6v2n -k N, 74 =2v2n-\/k-N, and 74 = 2v2n-\/k- k- N.

— According to the used NIZKPoK system Il in Theorem 4.3, we need to set
v =2v2-12N -5 - /K- (3.5aN - 2¢/2 + av/2 - 12N), such that the assump-
tion M-SISg, 1,124 is hard, and a NIZKPoK system II, exists for the relaxed
language L./ ,, c-

— Given N, g9, k, we can calculate the values of a,v,+ (all these parameters
need to be used in the description of our CTS in Construction 4.1), according
to the above parameter analysis for correctness and security.

— We can further compute the values of v,/ (all these parameters need to be
used to ensure the security proof of our CTS in Construction 4.1), as the
requirement of security proof.

— In order to obtain much better tradeoff between efficiency and security, we
first choose modulus g2 such that both the hiding (based on M-LWE,, 1.1)
and the unforgeability (based on M-SIS,, 1 12,/) properties have the sufficient
security level.

— Then, we set n, A, k, and ¢y, such that the additional underlying assumptions
for for NIZKPoK II; also have sufficient hardness.

During the above calculation process, we use the Root-Hermite Factor g
to estimate bit-hardness of the underlying assumptions, i.e., M-SIS and M-LWE,
according to the best known attacks, and dg can be determined given N, q1, ¢o, c.
Generally, we can use the work [3,4,33] to estimate §y and its corresponding
hardness of the assumptions.

Our reduction from each building block is essentially tight (by calling the ad-
versary a constant number of times), so the attained security of our construction
is essentially the same as that of the underlying M-LWE and M-SIS problems.

Size Computation. Based on the above parameters on CTS and multi-theorem
straight-line extractable NIZKPoK listed in Table 12 and 13, the size of public
parameter of CTS is about

2-Nlloggi] +3-N[logga]| + loga +log N + log g1 + log g2 + log(k) bits,

the additional size of public parameter of multiple-theorem straight-line ex-
tractable NIZKPoK is about

nkN[log(q1)] + (6 +4) - k- N - [log(q1)] + 3 - kN[log g2 ]

+ logn + log k + log(\) + log(k) + log(x) bits.

Thus, the total size of public parameter is about

2 Nflogq1] + 3 - Nfloggz] + nkNTlog(q)] + (6 +4) - k- N - [log(q1)]
+3-kN[loggs] +log(a- N -qi-q2-n-k-A-k- k- k) bits.
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Besides, the sizes of public key and secret key of CTS or the final Anonymous
Credentials are about

9. N[logg] bits and 8 - N[log 3] bits,

respectively. Furthermore, the size of signature is about

12 - N -log(12a) bits.

Moreover, the pseudonym consists of two parts: commitments and the re-
lated multi-theorem straight-line extractable NIZKPoK system. And the size of
commitment is about

4-N[logqi| +4- N[logga] bits,
the size of proof is about

6-3N -log(12n - V3kN) + N -log(12n - VEN) 4 2kN[log go] + A + klog s
+4- sizeLNp bits.

Thus, the total size of pseudonym is about

4-NTlogq1] +4- N[logga] bits + 6 - 3N -log(12n - V3xN) + N -log(12n - V&N)
+2kN [logqa] + A + l%log g2 + 4 - size_np bits.

Finally, the credential size is about

12+ N -log(12nv/k - ) bits.

E Adaptively Secure CTS

In this section, we present an adaptively secure CTS scheme. Our construction
follows the partitioning approach as [1], and results some additional reduction
loss compared with the selective construction in section 4. We first introduce
the additional preliminaries for this adaptive construction, and then present the
construction, and show the correctness and security of the scheme. Finally, we
provide some parameter settings for concrete instantiations.

E.1 Pairwise Independent Hash Function

We give a lemma which shows that pairwise independent hash function fam-
ily which is denoted as H has the isolation property as long as a conditional
probability defined as below approximates 1 = |Q].

Lemma E.1 Let Q C M, A, B be integers such that B < A, |Q| < dB for some
0 €(0,1), and let H : M — Y be an pairwise independent hash function family
which has the following properties:

64



—Vae M, Prycu[H(a) = 0] = 1/4;
—Va#be M, Priy|H(a)=0/H(b) = 0] < 1/B.

Then for any element a ¢ Q, we have

PI’HE'H[H(G,) = 0/\H(a’) 7& O,Va’ S Q] S <1A46, ;) .
An Explicit Almost Pairwise Independent Hash Construction. Let g €
N be a prime, N,¢ € N, R, = Z,[X]/{z" + 1), S, C R, be a subfield of R,
with order ¢”. We define the hash function family H : (S,)¢ — S, as follows:
VH € H, H is indexed by (a,hy,..hy) € (S)FL, Vo = (21,...,20) € (S,)5,
H(x) = a+ (x,h) € S;. We have the following lemma.

Lemma E.2 ( [1]) The function family H defined above is an pairwise inde-
pendent hash function. Moreover, we have

— VH <+ H and ¥z € (S,)*, Pr[H(z) =0] = 1/q".
— VH <« H andVx £y € (S,)°, PriH(y) = 0|H(z) =0] < 1/q".

E.2 Adaptively Secure Construction

Our construction uses the following building blocks: (1) the BDLOP commitment
scheme I" = I'.{CKeyGen, Commit, Open,

Combine, Randomize}, and (2) a single-theorem rewinding extractable NIZKPoK
system IT = IT.{Setup, Prove, VerifyProve, SimProve} for the following language
(parameterized by 7/, q € N)

L,,c= {(B,u) 1= R;X(2k+4> xRy:3xe€ R((]2k+4) and

f € C such that ||z|2 < ~ and B-x = f-u},

Similar to the presentation of Construction 4.1 in Section 4.1, we first describe
the required parameters in Table 14. Notice that for the adaptive security, we
need to set the message space M as the concatenation of several independent
and identical spaces M; for i € [{], i.e., M = (My,..., My). Moreover, M,
should satisfy two requirements: (1) M; is a subset of a subfield of R,; (2) the
/5 norm of all elements in M; should be upper bounded by B.

Particularly, all parameters are in the following table.

Construction E.3 (Commit-Transferrable Signature) Our adaptive CTS
18 constructed as follow.

— Setup(1*, ¢, B): On input the security parameter 1%, the algorithm does the
following.

1. Run I'CKeyGen to get A := {

1 T
17 a;

0,1, ab
RLX3 and [0,1,a5] € RLX3, with a} € R2, ay = (1,ay) € R2,. Note that
the commitment scheme sets message space M C (Ry,,)" with randomness
space (R)* = (S$)*, where M = (M)*, and M is a set with B bounded
ly norm and included in a subfield Sq, of Ry,.

] « I'.CKeyGen(1%), where [1,a’1T] €
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2. Sample d & R2;

q2’
3. Run H.Setup(l)‘) to get common references string crs;
4. Output params := (A, d, M, R,crs).
— Commit(params, m;Rand): On input params, message m € M, and random-
ness Rand € R*¢, the algorithm does the following.

1. Parse Rand as £ vectors {(ri1,7i2, " ,Tik)}icjg, where ri; € R = S3
foriell],j € [k].
2. Parsem as (ma,--- ,my). Fori € [{], runcomm; 1 = I.Commit(A,m;;r;1),

comm; 2 = I.Commit(A, m;d;7;2),
- comm; . = ICommit(A, m;0%;r; ).
3. Output comm = {(comm; 1, comm;a,--- ,comm;x)}icg as the commit-
ment of m.
— Randomize(params, comm, m, Rand, Rand’): On input params, Rand,Rand’ €
R¥, and comm = {(comm; 1,comm; o, ,
comm; i) biepg, the algorithm does the following.

! 7 7 - 5 — g3
1. Parse Rand’ as £ vectors {(7;,1,7i2, -+ ,Tik)}ice), where ¥ ; € R = 5§
foriell],j € [kl
2. For i € [{], run comm}, = I'Randomize(A,comm;,7;1), comm;, =
I"Randomize(A, comm; 2, 7;2),- -+ ,comm; , = I"Randomize(A, comm; j, 7; ).
Set comm’ = {(comm] {,
li /
comm; o, - ,commi’k)}iem.

3. Output comm’ as the rerandomized commitment of m.

— Combine(Rand, Rand'): Taking as input two randomness Rand = {(r; 1,72, - ,
Ti,k)}ie[[] S S?XM, and Rand’ = {(77'1'71,77'1"2,~ - a?i,k)}ie[é] S S?Xke, the algo-
rithm computes and outputs {(751,%2, -+ ,Tik) bie[g € Sg’xu, where 7 ; =
rij+Tig fori€[(],j € [k].

— KeyGen(params): On input params, the algorithm does:

1. Sample T & Ska, and set a’ =d' - T —|—g(—5r € Réjk, where g(;'— =
(1,8,62%,--- 0" e Ré;k.

2. Sample (bo, by, -+ ,by) <& REHD.
3. Output pk := (a, bo, {bi}icg), and sk :=T.

— Sign(params, pk, sk, comm): On input params, pk, sk and comm, the algorithm
does the following:

1. Fori € [{], parse comm; = (comm; 1,comm; o, COMM; 3,COMM; 4) aS comm; 1 =

4(0) 4@ £0)
| commig = | B Jcommg = | G|
21 t22 bo)
T T
2. Set Feomm = [[d |aTHbcomm’aﬂ =

[[dT|aTH[bO + e ((téf)l,tgf)% . ,tgf)k) . G—l(bi))Ha;] , and sample

81
Sigomm = [sz + SamplePre([[d" |a"]|bomm|as |, T,0,a), and output Sigeomm

83

S1,1

as the signature of comm, where s; = o
1,2

Rk,Sg S Rk, 83 € R2.

}, and 81,1 € RQ,SLQ S
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— Transfer(params, pk, Sig.,mm, ™M, (Rand, Rand’)): On input params, pk, a signa-
ture Sig.omms Message m, randomness Rand for generating the commitment
comm for m, the additional randomness Rand’ for the rerandomization of
comm, the algorithm does the followings:

1.

o

s1
Parse Sigeomm as vector | sz |, where sy € R*2 sy € RF, 53 € R2.
83
Parse Rand as £ vectors {(7i1,7i2, "+ ,Tik)}iel, where r;j € R = S3.
Parse Rand’ as ¢ vectors {(¥; 1,72, " ,Ti ), where 7; ; € R = S}.
For i € [{], run Commit(params, m;; (71,752, -+ ,Tix)) and obtain:
(2)
t
comm; = (comm; 1, comm; 2, - -+ ,comm; ), where comm;; = L%;)l}commi,g =
2,1
[ () (%)
t t
e comm; y = %Zf .
| 2,2 3%
For i € [{], run Randomize (params,comm;, (#;1, 72, ,
7)) and obtain comm} = (commj ;,comm; ,,--- ,comm; , ), where comm; ; =
i) %
) / — 2 e
§(0) |7 COMMig =1 46) |77
12,1 2,2
£
/A 1,k
Comml’k = tA(z)
2,k
Compute a (temporary) signature Sigeomm: @S
_ . -
Sig(:omm’ ‘= S~2 1
S3 — Zie[f] <Ri72G_ (bz)) - 8o
- . :
81,2
_ : 2k+4
- S92 ER )
83 = 2icly (Rwal(bi)) $ 82
- R, L ~ ) -
where we denote R; = [ ~ ”1} = [m’l’m’z, e ,Ti,k} € R¥>k with R;: €
0,2
RY™k and Ri,g € R2xk,
T T
Compute Feomm 1= {[d 1a™]|beomm aﬂ =

(@7 [aT][1bo + i (@1, 8h. 80 - G2 ®)]]ag |

Run the prove algorithm, output Sig., . := 7 < II.Prove(crs, (Fcomm,0),
Sigcomm’); Proving that Sig.omm: i @ short o norm vector and satisfies
Feoomm' - Sig€comm: = 0, through using the NIZKPoK system II with the

relazed language L., ., .

— Verify(params, pk, comm, Sig): On input params, pk,comm, Sig, the algorithm
does the following.
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( )
1. Parse comm = {(comm; 1, comm;a,---,cOMM; 4)}ic[g @S COMM; 1 = [ @ ]

(z) o)
comm; o = t( ) S ,commg g = %f

2. Based on the type of Sig, the veriﬁcatzon works as follow.
e [If Sig is a short vector within fo norm -y, then the algorithm does
(a) Set matrix

i€[€]

Feomm := [dTa oty ( (5 5%, 1)) - G_l(bi))]|a21 :

(b) Check whether Sig satisfies

S1
Fomm:- |82 =0¢€ Rq2.
83

e [fSig is a proof of the NIZKPOK system 11,
(a) Set matrix

Feomm = |[d"[a"]|[bo + Y (50,65, 53) - G (80)) ]az

i€ [€]

(b) Run the verify algorithm (with respect to language Ly gc)
IT VerifyProve(crs, (Fcomm, 0), Sig), and output its result.

Lemma E.4 (Correctness) For parameters N,qa, a,y = ar/(2k +4) - N, the
NIZKPoK system II for the relaxed language L., ,, ¢ with~' > (v/2k+k)klaN?6+

ar/(2k + 4)N, Construction E.3 satisfies the correctness property as defined in
Definition 3.1.

Proof. The correctness according to Definition 3.1 requires to prove the following
three statements: (1) four algorithms (Setup,Commit,Randomize, Combine) define
a correct randomizable commitment scheme; (2) the signature by algorithm Sign
passes the verification algorithm, i.e., Verify; and (3) the transferred signature
(with respect to the randomized commitment) from Transfer also passes Verify.

The correctness of statement (1) and statement (2) are easy to verify. We just
sketch the correctness of statement (3). Similar to the analysis of Lemma 4.2, it
it suffices to show that Feomm’ *Sigcomm’ = 0 (as defined in the algorithm Transfer)
Sigeomm is Within fo norm (V2k + k)klaN?6 + ay/(2k + 4)N

Particularly, for all m € M = (M)* C (R,,)", i, 7, € S3,i € [0],5 € [k],
(sk, pk) output by KeyGen, and signature Sig.omm = (1,537,553 ) = ((s11, 57 ),
sT', sT') output by Sign, it holds

Feomm - | 82| =u € nga



where

Foomm = |[d"[a”]|[bo + Y (50,65, 15)) - G™'(by) )]|aF
i€[4]

And the ¢ norm of the vector (s{ |,s7 5,53 ,s%) is less than a\/(2k + 4)N. This
implies

<d,31’1> (a 812 bo—l—Z(tl ’tl . "?téigc)'G_l(bi)),
i€[]

S2) + (az, 83)=u € Ry,.

We notice that the above equation is equivalent to

=(d,s1,1) + (@, s1,2) + (bo + Z tSL) -G7(by),
i€[{]
GQ;ZRZ 2G a27ZRl 2G >
i€[f] €[]
+ (ay, s3)
=(d,s1.1) + (bo+ Y (#5570, 157) - GTL(by)+
1€[¢]

ag - > RiaG7l(b:),s2) + (@, 81.2) + (az,

- Z Ri2G7!(b;) - s2) + (a2, s3),

i€[f]
which can be rewritten as

[d" la"]|bo + > (#5655, 159) - G~ 1 (bi)+

i€lt]
81,1
Z Rl Neht |a2 ]- Sslj = u.
=0 83— D, RiaG (by) - 52

N R L ~ o~
Here we denote R; = l~l’1] = [ri,l,rm, e ,ri7k] € R3*F_ with Ri; € R1*k
0,2

and ]?N{Lg € R2xk,
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Then we observe that

T, . T 2(3) (e (3 — T
Feomm = |[d"|a"][bo + > (57, &%, ,55) - G (b)]az
i€[£]
:[[dT|aT]]b0 + S0, 850 - G (b))
1€[4]
+ay - Zﬁi,szl(bi)\a;}
i€[£]
S1,1
81,2

and Sig.omm’ = . Now, it is easy to verify that

e
83 = Diel) Ri2G7}(bi) - 2
the £ norm of Sig ymms 1 and Sigeomp 2 are within (V2k+k)klaN26+a/(2k + 4)N
and Feomm’ - Sigeomm: = 0, since for such matrices ﬁ@g € Sf Xk, its singular value
sl(ﬁi,g) is bounded by (v2 + vk)V/N, and the singular value of G~1(b;) is
bounded by kN§ by Lemma A.4. This completes the proof. O

E.3 Security Proof

In this section, we show the simulatability and unforgeability of the above Con-
struction E.3.

Lemma E.5 (Simulatability) The algorithm Transfer in Construction E.3 is
stmulatable.

Proof. Similar to the proof of Lemma 4.5, we first construct a two-stage PPT
simulator S, and then prove that after running any polynomial ¢ = poly())

—~
times, the distribution of {Sigcomm’.}ie[t] output by S are statistically close to
that of {Sigiemm: ficy output by Transfer.

The two-stage PPT simulator S can be constructed in the following way:

— First Stage: S conducts the following steps:
1. Generate and output params := (A, d, M, R, crs).
— Second Stage: given params, and valid pk, comm’, S conducts the following
steps:
1. Recognize pk as (a, bo, {b; }ic[g, u).

7(#)
t
2. Parse comm’ = ({comm} ;,commy ,,--- ,comm} , };c(q)) as comm; 3 = f%{)l]’
2,1
£ hO)
comm; o = | (7|, commp = | G |
2% 2k
3. Set matrix
fome = | 4@ ][bo + D (L8, 850) - G (i) ag

i€ [(]
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4. With respect to the NIZKPoK system II for the relaxed language L. ,, ¢,

LW’vQZ»é = {(Féomm/yu) S R;X(2k+4) X Rq Iz c R§k+4 and
f € C such that ||z|l» <+ and Flymw -z = f - u},

we can run the corresponding simulation algorithm to generate a simulated
proof 7/, whose distribution is statistically indistinguishable from that of
the real EEc;of .

5. Output Sigeomm: == 7'

According to the zero knowledge property of the used NIZKPoK system [T,
it is clear that after running any polynomial ¢ = poly()) times, the distribution

—~
of {Sigcomm’ }icy) output by S are statistically close to that of {Sigiomm: biejs]
output by Transfer. ad

Below, we analyse the unforgeability of Construction E.3. Before this, we first
specify the exact commitment relation Ly, and Ly ,, ¢ Intuitively, the relation

L, states the validity of the commitments similar to the basic construction. For
the second relation, our motivation is to prove that every message m; is with
small /5 norm (or bounded norm), which can be realized by proving an exact

/ . /
7’1‘,.1} = téz)l for [21} with bounded ¢ norm, where

i i

relation that [ag ,1] - [

ri, € S? contains the bottom two lines of randomness 7; ;. For simplicity, a

proof for the relaxed relation IA/%D)C* is sufficient. Concretely, the two relations
are as follow:

Ly = {comm = {comm; ; }icie,jer) - I((Mi)icte, g2, {745 Yietg,jera))

such that r; ; € S with ||r; j||ec <1 and comm; ;
i—1
= Commit(params, m; - g, * ,7; ;) for i € [{],j € [4]}

and

¥,q2,C *
{ ([a;r, 1 e Rgz,{t;} IS qu}ie[e]) :3{r € ST x M, f; € Clicy

such that [|r]|2 <4 and [a; 1-r=fi tg)1

Lemma E.6 (Unforgeability) Assume that M-SIS,, 1,5, problem and M-SISy, 15,
problem are hard with

’ .
v = 2k(Na/B? + 1k2N252 and v/ = Er~ 2Nﬁ:%2k2N362 , then our above lattice-

based commitment-transferrable signature scheme is adaptively unforgeable for
the evact commitment relation Ly, and Ly ., ¢, where ¥ = 24/(2k +4)N - 11k -

(V2N + B2), and ' = 2/(2k + 4)N - 11k (V2k + k)klaN?5 +a+/(2k + 4)N).

Proof. We argue the unforgeability using the series of hybrids.
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Ho: The challenger B runs the CTS honestly. He gives to the adversary A the
public key pk and signatures with respect to the queried commitments comm,;.
In this hybrid, we say A has advantage ¢ = Adv;nforge()\) in the unforgeability
game. Then, it holds

Adv(A) = Adv'y O (N).

H1: The challenger B runs the identical procedures as Hg, except that he sam-
ples Rg & S%Xk and {R}icq & Ska, and set bl-T = dT-Ri—i—hi-gg— € R;ZX’“ for
i €{0,1,...,¢}, where h; is included in a subfield S, of R,, of order g2. Accord-
ing to the Ring-LWE assumption, we know that Hy and H; are computational
indistinguishability. Then, it holds

AV (\) — AdviE ()] < £ AV EVE(L).

Ho: The challenger B runs the identical procedures as Hp, except that except
that we add an abort event that is independent of the adversary’s view. Specifi-
cally, in the final challenge phase, the adversary outputs (m*, Rand*, c*) as the
forgery. B does the abort check: hg + (m;, h) # 0 mod g2 R and hg + (m;, h) =
0 mod ¢oR, where h = (hq, -+ ,hs) € 852. If the condition does not hold, B
aborts the game.

The only difference between H; and Hs is the abort event. We argue that the
adversary still has non-negligible advantage in Hy even though the abort event
happens.

Lemma E.7 Let I be a Q1 + 1 tuple (m*,mq,...,mg,) denoted the challenge
message m* along with the queried message’s, and e(I) define the probability
that an abort does not happen in hybrid H;. Assuming (I) € [€min,Emaz], then
we have

1
AdV-l:l2 (}\) Z Emin ° Ath‘A1 ()\) — §(€ma$ — 5min)'

Hj3: The challenger B runs the identical procedures as Hs, except that he samples

ad RF, and B answers the signature queries through using Lemma A.7, rather
than Lemma A.8. According to the Ring-LWE assumption, we know that Hy and
Hs are computational indistinguishability. Then, it holds

IAdVHE(A) — Adviz (V)| < AdviERYE (L),
Besides, we denote the challenger in Hy as B*. Thus, we have

AdvHia(0) = Advirerse” ().

Lemma E.8 Let A be a PPT adversary with advantage € in the adaptive un-
forgeability game with respect to B* for the exact commitment relation Ly, and

relation L i.e., /-\dvjjl"forge* (A) = . Let Q2 be a bound on the number

’Y-,qzyci’
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of random oracle queries made by A. Let v = 2k(Nav/ B? + k2N262 and v/ =

'\/2NB2+2k2N352 . . .
kty QN\ZC%% N0%  Then there exists a reduction algorithm R for M-SISy, 1 k14,

or M-SISy, 1 k44, such that

AdVISS(A) > e( = — 27,

Q2
Proof. According to our construction, the verifier need to consider two cases:
original signature and transferred signature. Thus, we need to prove the un-
forgeability for both cases. Overall, both of them have the similar proof process,
and are based on the hardness of M-SIS,, 1 44, and M-SIS,, 1 j44,,/ problems,
respectively. Below, we present the details for both cases in an unified form, and
just separate in their different points.

Particularly, we prove that if the adversary A can forge a valid original /trans-
ferred signature in the selective way, then we can construct an efficient reduction
algorithm B to solve the
M-SISy, 1,k+4,0/M-SISy, 1 k4, problem. In particular, B is given an uniformly
random matrix x! = [x1, 22, -, Tkya] € R§j47 and need to output a vector

y such that (z,y) = 0 mod ¢2 and ||y|| < v = 2k¢NavB? + k2N?62 or |ly|| <

’\/W .. . . .
"= kb QN\Z%% NZO% Similar to the consideration in [23], we choose to use

x = [r1,%2,%3,  * ,Tkt2, 1, Ty3], since one of x; will have an inverse with high
probability.
In this case, B conducts the following steps:

14

1. Choose !, <& R2 and set a] = (1,2, ") € RS
2. Set G,QT = (1 xk+3) S R(212
T

3. Set A = {0 T

} and send it to A.

Clearly, A is a valid public parameter output by I.CKeyGen.

Next, we need to argue that B can simulate the environment of A successfully
for the exact commitment relation I:q%g. In particular, we use the following
Claim B.5 to specify the case.

Claim E.9 B can simulate the environment of A successfully in the unforgeabil-

ity game with respect to the exact commitment relation qu and relation LAY 0.C

Proof. B can set the public parameters in the following way:

1. Set d' = (z1,22) € Rgz, = (x3,T4,  + ,Toyk) € R’;Z.

2. For i € [¢], sample R; & Ska, and Set bT =d" -R;+h;- (1,8,---,6 1Y e
R}IZX’“, where h; € S,,. Sample Ry + Ssz, and set bJ =d" Ry +ho-
(155a' o ’5k71) € R;;kv

3. Send pk := (@, by, {b; }ic[q) to A.
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According to the uniformity of 3, x4, , 224, and the distribution of Ry, pk
is a valid public key of our commit-transferrable signature, which follows from
the Ring-lWE assumption.

Then, the A can conduct signature queries and get responds from B. In
particular, after receiving the signature query (comm,m, {r;;}ic(q jer)) from

A, where comm = {(comm; 1,comm; 3, ---,comm; ;) };cjq and

40

comm; 1 1= %1)1 =A-r;1+ [ :|7
t2’1 i
(1)
t

comm; o = [ %1)21 =A 7o+ [ 0 5} ,
t2’2 i

Gy 0
comm; i = Nl =A-rip+ R
k ( L Tik |:mi6k 1:|

B can compute

Feomm = [{dTaTHbO ED N (CXN ORISR e (B) |az]

€[]

= [[dT|aT]|dT ‘Ro+ho-G

+ Z ((a; ‘Riz+miG) -G '(d" - Ri+ hiG)) |a2}

€[]

= [[dTlaT]IdT ‘Ro+ho- G+ (agT ‘Riz -G '(d" Ry
1€ [£]

+hiG) + d"- miRi2 + mihiG) ‘62:|

= {[dTIaT]IazT > (Riz- G AT R+ 1iG)) +
i€ [£]

+d"- (Ro + Z mszz) + (ho 4+ (m, h)) - G|a2:| ’

i€[f]

R = [ri1,ri2, ,Tik] € R¥* with R; » € R¥*F,
7’)

For any ho + (m,h) # 0 mod g2 R, we know that ho + (m, h) is invertible
over the subfield S, of ring R,,. According to the algorithm in Lemma A.7, the
challenger can get a short vector z € R'2 such that Feomm - 2 = 0. O

where we denote R; = [Ri’l }
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From above Claim B.5, we know that B can simulate the environment of A
successfully.

Next, for the challenge query of the form (comm*,m*, {r }icig je(r)), we
have

Feomm: = {[dﬂaﬁlal Y (RiGTHA R+ 1iG))
i€ [£]

+d' - (Ro+ Y m:R:,2)|a2T] :
i€[£]

Below, according to the fact that the adversary’s forgery is for original signature
or transferred one, we need to separate the following proof into two cases.

For the case of original one. If the adversary can forge a valid signature
ST,1
. s .
Sigcomms = 3172 with s5 = (s3,,552)" € R?, such that

2
83

Feomm* - Sigcomm* =

Sf,l
(d@'la'ljas - Y Ri2G 7 (p)+d -Raz| - |7
= Sg

:<da ST,1> + <a7 ST,2> + <a; : Z R;QGil(p) + dT . R*a S§>
i€[£]

+ (a2, s3)
—o0,

where p = d" R, + hiG,R* = Ry + Ziem m;R;,, then B can compute
s’{’l +R*-s5
y= 879 as a solution to the M-SIS, 1 44, problem
85+ i Ri2G 7' (p) - 3
defined by [z, 22,23, ,
Zg+2, 1, Try3]. And the ¢ norm of this solution is less than ||y|| < a+/(k+4)N+
(k+V2k)Nay/(¢B + 1)2 + k2N20252 < 2k¢Nav/ B2 + k2N252.

For the case of transferred one. If the adversary can forge a valid proof for
the language L then the reduction algorithm B can run the extractor of

v',q2,C
511
the NIZKPoK system IIy, and get a £, norm short vector Sigl, .- := ;{2
2
83
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with s§ = (s3,,55,)" € R?, such that

Fcomm* : Slgcomm*

ST,l
= |[d"|a"] Jay - ZR p)+d' - R*|as | - S};Z
iclt] :
S3
=(d,s] )+ (a,s],) (aj - Z R}, p)+d' -R*, )
i€[f]
+ (a2, s3)
si;+R" -85
then B can compute y = s] 2 as a solution to the
>ici Ri2G™ '(p) - 83 + 83
M-SIS,, 1,k+4,» problem defined by [x1,29,23, -, Zkt2, 1, Zr43]. And the ly

norm of this solution is less than ||y|| < o/y/(k +4)N + (k +v2k)No/ -
V(B +1)2 + k2N262 < 2k(No'\/B% + k2N252, with o/ = +//\/(2k +4)N.
Furthermore, according to the forking lemma of [8,53], R can complete the
above reduction with probability at least e(5; — 272).
Summing up all above arguments, we conclude that our commit transferrable
signature satisfies unforgeable in the adaptive way. ad

Completing the Proof. Recall that |@1] is the upper bound of the number of
the adversary’s signing queries, and ¢; is the advantage of the adversary in Hj.
By Lemma E.1 and E.2, we can know that

Pr [H(m*) =0\ H(my) #0\... N\ Himg,) # o]

1 1
€ (7—(1 - C2771)7 T) .
42 42 92

Thus, we know that for any (Q; + 1)-tuple I denoting a challenge m* along with

signing queries, we have (1) € (q%(l — %)7 q%) Then by setting [emin, Emaz] =
2 2 2

%( — Q—}), %} in Lemma E.7, we have
q3 43 qdy
1 Q1 Q1
Adviz(\) > —(1 — Z1)ey — )
A

1 Q1 Q1 H
Adviz(\) > — (1 — Zl)ey — SAdv (A
A= gty 2q;—4q2 W



In summary, we have that
Adv(N) < AdviE(A) + £ AdvEYE (Y
< 0 AVEPEVE () | ggmadu i ()
< (L +4g3) - AdviEE(N) + 4gT AdVE (V)

ing- T - 1
< (€ +4q3) - AdVEPERVE (L) 4 4q] \/(Advf,'\g S50 + 27)Q27

which completes the proof. a

E.4 Instantiation of NIZKPoK for Construction E.3

In this part, we instantiate the NIZKPoK involved in Construction E.3. There
are three relations needed to prove:

(1)
Lyrae = {(FC"'“'“"O) € R;X(%M) xRq:3Jxe R((]2k+4) and
f € C such that ||z|]2 <" and Feomm' - T = 0},
2)
Lo, = {C°mm = {commi; fiepe) jela) : 3((Mi)icis a2, {riitiers) jeia)

such that r; ; € S} with ||7;;]le < 1 and
izt
comm; ; = Commit(params, m; - g5 * ,7; ;) fori € [{],j € [4]},

(3)
Lsg e ={ (103,1) € R, {5 € Ra}icn) : 3 {r € 87 x M, fi € Chiciq
such that ||r||2 <4 and [aj ,1] -7 = fi t(21)1 :

The first relation can be proved by the same NIZKPoK system IT; as Theo-
rem 4.3. For the second relation, we can apply the multi-theorem straight-line
extractable NIZKPoK system I1, for £ times to prove it. The third relation can be
proved similar to the first relation except that we need run a similar NIZK system
II5 as Theorem 4.3 for £ times, with the slightly different parameters. Particu-
larly,

Theorem E.10 ( [6,23,26]) In the random oracle model, assuming the hard-
ness of M-SISy, 1 2x+4,y, there exists a NIZKPoK system II for the relaxed lan-
guage Ly . ¢, withy' = 2y/(2k + 4)N -nr- (V2k+k)klaN?5+ar/(2k + 4)N).
Moreover, assuming a t-time adversary A forging a proof with probability €,
there exists a O(t/e)-time extractor, who can successfully extract the witness x
and c € C with probability %
Theorem E.11 ( [6,23,26]) In the random oracle model, assuming the hard-
ness of M-SISy, 1,34, there exists a NIZK system I3 for the relazed language

Ly ¢ with 5 = 21/(2k + 4)N - nr - (V2N + B?).
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E.5 Parameter Settings of Construction E.3

In this part, we set the concrete parameters for Construction E.3 and the
straight-line extractable NIZKPoK system, according to the related requirements
in correctness and security. For clarity, we denote the straight-line extractable
NIZKPoK system for ﬁq2 in Section 5 as I1;, denote the NIZKPoK system for
L, ¢ in Section 4.2 as I3, and denote the NIZKPoK system for IA/;Y?%C* as IIs.
Requirements for Correctness. We require the following:

— The SamplePre in the Sign step needs to work properly. according to Lemma
A.3, we need to set a > 2v/62 +1- ((vVk +V2)VN +1).

— The valid original signature Sig ,,m can be verified successfully. According to
Lemma A.2, we need to set v = a/(2k +4) - N.

— The valid transferred signature Sig_ .+ can be verified successfully. According
to Lemma E.4 and the relaxed language in Theorem 4.3, we need to set 7/ =
21/(2k + 4)N - i - (V2k + k)klaN?5 + ay/(2k + 4)N).

— Ciphertexts of Construction C.2 can be decrypted correctly. According to the
corresponding analysis, we need set N|N, &’N < lVarl/4.

Requirements for Security. We require the following:

— The ring R is cyclotomic, i.e., R = Z[X]/(®m (X)), where &,,(X) is the m'"
cyclotomic polynomial, and denote N = p(m). Here, we consider the cyclo-
tomic polynomials @,,(X) = X~ + 1 with N to be a power of 2.

— There exists an exact NIZKPoK system II; for the commitment relation ﬁqz.
Hence, according to Theorem 5.2 and Corollary 2, the problems

1. M—Slsq171,37n1, M—LWEq%l,l and M—Slsq1,173)5,6.,€2.3.1\7 over R = Z[X]/<XN—|—
1), with n; = 66 - - N, N to be a power of 2, prime ¢; such that =¥ 4 1
is fully-splitting, prime g2 = 3 or 5 mod 8, )

2. M-SISy, pkimyy M-LWE, 5 and M-SIS, oo o over R = Z[X] /(XN 4

1), with 9y =242 - &k - N, N to be power of 2, prime ¢; such that X~ +1
to be fully-splitting,
need to be hard.
— There exists an NIZKPoK system Il for the language L., ,, . According to
Theorem 4.3, the problem M-SIS,, 1 2544, needs to be hard.
— There exists an NIZKPoK system II3 for the language L5 ,, ¢. According to
Theorem 4.3, the problem M-SIS,, ; 3 5 needs to be hard.
— The constructed CTS satisfies unforgeability in Definition 3.3. Particularly,
e For Definition 3.3 with respect to the exact commitment relation lALqQ,C*,
according to Lemma E.8, and Claim E.9, we need to set M-SISy, 1 k44,
problem and M-SIS,, 1 k4, being hard with v = 2k¢Nav/ B? 4+ k2N?262

and 1/ — ké~'/2N B242k2N3452

— The underlying BD\I{ICOTF% satisfies hiding and binding. Hence, according to Sec-
tion 2.3, we need to set M-LWE,, 1 1 and M-SIS,, ; 5 gs.2.3.; being hard.

— The successful simulation of the adversary in Claim E.9. Here, according to the
Lemma A.7, we need to set o > 2v/02 + 1-(Vk+v2)-VN(UB+EIN5+1)+1).
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More specifically, we have the concreted parameter setting in the following
Table 15.
Below, we roughly explain about the calculations of the above table.

— According to the used NIZKPoK system I1; in Theorem 5.2 and Corollary 2,
we need to set 11 =66 - K- N, e =242 - k- N, N to be power of 2, prime ¢;
such that X~ 4 1 to be fully-splitting, prime g2 = 3 or 5 mod 8.

— According to the used NIZKPoK system I75 in Theorem E.10, we need to set
v =2y/@2k+4)N - 11k - (V2k + k)klaN?5 + ay/(2k + 4)N), such that the
assumption M-SIS, 1 ok+4 - is hard, and a NIZKPoK system II, exists for the
relaxed language L., ,, c.

— Given the concrete value of N, we need to fix x such that the size of the

challenge set is larger than 226, i.e., ,iv x 2/ > 2256,

— Given N, g9, k, we can calculate the values of a,v,7 (all these parameters
need to be used in the description of our CTS in Construction E.3), according
to the above parameter analysis for correctness and security.

— As a reasonable setting, we assume the upper bound of the number of queries
that the adversary can make to be 264,

— We can further compute the values of v,1/ (all these parameters need to be
used to ensure the security proof of our CTS in Construction E.3), as the
requirement of security proof.

— In order to obtain much better tradeoff between efficiency and security, we
first choose modulus g2 such that both the hiding (based on M-LWE,, ;1 1) and
the unforgeability (based on M-SISg, 1 x44,,7) properties have the sufficient
security level.

— Then, we set n, N , A, and ¢1, such that the additional underlying assumptions
for for NIZKPoK II; also have sufficient hardness.

During the above calculation process, we use the Root-Hermite Factor g
to estimate bit-hardness of the underlying assumptions, i.e., M-SIS and M-LWE,
according to the best known attacks, and dg can be determined given N, g1, g2, o
Generally, we can use the work [3,4,33] to estimate Jdp and its corresponding
hardness of the assumptions.

Our reduction from each building block is essentially tight (by calling the ad-
versary a constant number of times), so the attained security of our construction
is essentially the same as that of the underlying M-LWE/M-SIS problem.
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Parameters Description
Ring dimension
Ring dimension for the straight-line
extractable NIZKPoK
Cyclotomic Ring used in this work
Moduli used for
BDLOP commitment scheme
Message space of the commitment, which
consists of ¢ subspace M. And M
is contained in a subset of the subfield
of Rg,, according to Corollary 1
45 norm of elements in M are bounded by B
the basis and dimension of the gadget vector g
ie, g’ =(1,6,...,6" 1)
the numbers of rows and columns of matrix
for the straight-line extractable NIZKPoK
The dimension of secret key of M-LWE
in the straight-line extractable NIZKPoK
Set of all elements in R
with o norm at most 3
Parameter used in SamplePre

m3lmolw ~T sy ==

>

Un
@

R

{2 norm parameter used in Verify
algorithm for original signature
Challenge set of the NIZKPoK system I
C={ceR:icl = # llclloo = 1}
The set of differences C — C except 0
f2 norm parameter for “short”
vectors in the language of IT

Q| Q) =2

2

. {2 norm parameter for “short” vectors in
K the valid commitment relation, (i.e., Ls ., ¢)
do Root-Hermite Factor

Bit-sec Bit-security in time

Table 14. Parameters of Adaptive Commit-Transferrable Signature Scheme
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Params Example

N 515

N oIt

@ ~ 910

% om0

T 1

1 140

k 140

B 516

Q2 264

Y4 16

n 2

A 4

K 89

p 540528

~ 552103

K 22

o 5110-443

3 536.49%

do 1.001142
Bit-sec of underlying assumptions 616.996
Bit-sec of concrete construction 134

Table 15. Concrete Settings for the Parameters and the
Related Security in the case of unforgeability with exact

relation.
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