
LFHE: Fully Homomorphic Encryption with Bootstrapping Key

Size Less than a Megabyte

Andrey Kim1, Yongwoo Lee∗1,2, Maxim Deryabin1, Jieun Eom1, and Rakyong Choi1

1 Samsung Advanced Institute of Technology, Suwon, Republic of Korea
{andrey.kim, max.deriabin, jieun.eom, rakyong.choi}@samsung.com

2 Inha University, Incheon, Republic of Korea
yongwoo@inha.ac.kr

May 26, 2023

Abstract

Fully Homomorphic Encryption (FHE) enables computations to be performed on encrypted
data, so one can outsource computations of confidential information to an untrusted party.
Ironically, FHE requires the client to generate massive evaluation keys and transfer them to the
server side where all computations are supposed to be performed. In this paper, we propose
LFHE, the Light-key FHE variant of the FHEW scheme introduced by Ducas and Micciancio in
Eurocrypt 2015, and its improvement TFHE scheme proposed by Chillotti et al. in Asiacrypt
2016. In the proposed scheme the client generates small packed evaluation keys, which can
be transferred to the server side with much smaller communication overhead compared to the
original non-packed variant. The server employs a key reconstruction technique to obtain the
evaluation keys needed for computations.

This approach allowed us to achieve the FHE scheme with the packed evaluation key trans-
ferring size of less than a Megabyte, which is an order of magnitude improvement compared to
the best-known methods.

Keywords: Bootstrapping, Fully Homomorphic Encryption.

∗A. Kim and Y. Lee contributed equally.

1

Contents

1 Introduction 1
1.1 Contribution . 2

2 Preliminaries 2
2.1 Basic Lattice-based Encryption . 3
2.2 Gadget Decomposition . 3
2.3 Other Operations in LWE and RLWE . 4
2.4 FHEW-like Bootstrapping . 5

3 Light-Key Fully Homomorphic Encryption 7
3.1 Blind Rotation Key Packing and Reconstruction . 8

3.1.1 Key Unrolling Optimization . 10
3.2 Smooth Converting Process . 10

3.2.1 Scheme Steps Modification . 12
3.3 Approximate Gadget Decomposition . 12

4 Analysis & Implementation 15
4.1 Noise Analysis . 15
4.2 Parameter Selection & Implementation Results . 16

5 Conclusion 17

1 Introduction

After over a decade of intensive research on Fully Homomorphic Encryption (FHE), this concept is
gradually becoming more practical. FHE enables privacy-preserving outsourced computations by
allowing data to remain encrypted while being processed by an untrusted party. In this scenario,
a data owner (client) employs encryption to protect its sensitive data before transmitting it to
a computing party (server). The server can then perform computations on the data without
having to decrypt it. FHE originated from various partial homomorphic encryption (HE) schemes
after Craig Gentry’s whitepaper [Gen09] where he introduced bootstrapping operation to enable
arbitrary computations over encrypted data without interactions with a data owner. In recent FHE
research, significant advancements have been made in the development of efficient versions of HE
schemes tailored to various computing scenarios, including computations with binary, integer, and
floating-point numbers. However, real-world systems relying on HE as a key technology for private
computations continue to face a number of practical challenges.

One issue that arises in secure computation is the communication overhead between the client
and server. Homomorphic encryption schemes use lattice-based encryption, which leads to larger
ciphertexts compared to unencrypted messages. To address this issue and reduce the computa-
tional and communication overhead for the client, a transciphering technique has been studied in
several articles [NLV11, CDKS21, CHK+21, LHH+21, CIL21]. Essentially, this technique involves
encrypting the message with a symmetric cipher and then having the server perform homomorphic
decryption on the symmetric ciphertext, where the secret key is given in HE-encrypted form. How-
ever, the issue of communication overhead between the client and server is not limited to sending
encrypted messages. The homomorphic computation also requires the generation of evaluation keys,
which contain encrypted information about the secret key held by the client. The generation and
transmission of evaluation keys can be a resource-intensive process that requires immense commu-
nication and storage capabilities. This issue gives rise to another challenge in that the evaluation
keys include the keys required for the bootstrapping operation, which are commonly referred to as
bootstrapping keys. To overcome this challenge, it is necessary to develop efficient techniques for
generating and transmitting evaluation keys.

RLWE-based FHE schemes roughly can be classified as “word encryption” schemes which in-
clude BGV [BGV14], BFV [BV11], and CKKS [CKKS17], and FHEW-like “bitwise encryption”
schemes such as DM/FHEW [DM15] and CGGI/TFHE [CGGI20]. Bootstrapping for the first type
of scheme is resource-intensive. To keep system performance high the client has to generate several
gigabytes (GB) of bootstrapping keys [BMTH21, BCC+22]. The issue with the size of bootstrap-
ping keys for the CKKS scheme was addressed in [LLKN22], where the transmit key size is reduced
from several dozens to 3.9GB. Despite the fact that RLWE-based schemes such as BGV, BFV,
and CKKS enjoy good amortized performance, the size of the bootstrapping keys still remains a
challenging issue.

On the other hand, FHEW-like schemes enjoy significantly smaller bootstrapping key sizes,
although they can be less efficient at packing. While the original DM/FHEW scheme [DM15],
which relies on the AP bootstrapping procedure [AP14], requires a large number of bootstrap-
ping keys (approximately 800 MB for parameters that ensure 128-bit security [LMK+23]), its more
recent improvement, the CGGI/TFHE scheme [CGGI17, CGGI20] based on the GINX bootstrap-
ping [GINX16], has reduced this requirement, in part due to the limiting the selection of secret
keys. For example, this approach necessitates approximately 20MB and 40MB of bootstrapping
keys when the secret key consists of a vector of binary or ternary values, respectively. Recent

1

studies have demonstrated that efficient bootstrapping can be achieved for arbitrary secret keys
with approximately 12MB of bootstrapping keys [LMK+23].

Despite this recent progress, evaluation keys of size 10MB-40MB still limit potential applications
of FHEW-like schemes. Note that the evaluation keys of such size are required to perform only a
single operation over a small integer or binary value. To extend the scheme for additional operations
or increase the size of values, the evaluation key size should be also increased. At the same time,
some potential applications such as mobile devices, IoT, and blockchain assume that client devices
are very limited in terms of resources [PCFBC19, SK19, GdMRT23, RTD+21]. In such cases, small
communication cost is more important than computations on the server side.

1.1 Contribution

In this paper, we concentrate on reducing the size of bootstrapping keys required for FHEW-like
schemes. First, we propose a general notion of compressing bootstrapping keys by the secret key
holder (client) and reconstructing them on the computing party (server) before doing computations.
Figure 1 shows a brief sketch of the proposed method.

In more detail, we focus on the CGGI scheme with a binary secret key. We observe that parts of
bootstrapping keys for the CGGI scheme consist of lots of RLWE encryptions of a single value, while
RLWE ciphertexts are capable to pack a lot of values at the same time. We present an algorithmic
approach that has the client pack these values into a small number of RLWE ciphertexts and
extracts them as separate RLWE ciphertexts on the server side. The other part of bootstrapping
keys can be reconstructed with small additional auxiliary keys. Our approach is developed on
the brief sketch which was initially mentioned in the early preprint [KDE+21]. We specify the
algorithms and parameters and demonstrate their feasibility by an implementation.

As the key reconstruction introduces additional noise, the parameters for our scheme were
properly tuned to handle the noise, which degraded the performance of bootstrapping. To mitigate
this issue we adopt the key unrolling technique introduced in [BMMP18, ZYL+18]. Though, we
observe that ours require up to three times of overhead in bootstrapping time compared to the
best-known results.

The higher parameters for our scheme also increases the size of key switching keys that are also
used in bootstrapping. We propose a smooth converting method to reduce the size of key switching
keys for our scheme, which could be of independent interest to other schemes as well.

We have reached the transmitted key size from the client to the server to be less than a megabyte
(MB), which is more than ×10 improvement compared to the best-known result. We implement
all the proposed methods in the OpenFHE library [Ope22] and provide comparisons of our scheme
with the previous results.

2 Preliminaries

All logarithms are base 2 unless otherwise indicated. For two vectors ~a and ~b, we denote their
inner product by 〈~a,~b〉. For a power of two N we denote the 2N -th cyclotomic ring by RN :=
Z[X]/Φ2N (X) and its quotient ring by RN,Q := RN/QRN , where Φ2N (X) = XN + 1. Ring
elements in RN are indicated in bold, e.g. a = a(X). We denote the L2 and the infinity norm
by ‖·‖2 and ‖·‖∞ for a ring element a ∈ RN and a vector ~a ∈ Zn. The norms of a and ~a are the
norms of its coefficients and its elements, respectively.

2

PackedKeyGen

Packed key Key reconstruction

Bootstrap. key Bootstrapping

Client Server

Precomputation Bootstrapping

Figure 1: Summary of the proposed method

We write the floor, ceiling and round functions as b·c, d·e and b·e, respectively. bxep denotes
the nearest multiple of p to x. For q ∈ Z and q > 1, we identify the ring Zq with [−q/2, q/2) as the
representative interval, and for x ∈ Z we denote the centered remainder of x modulo q by [x]q ∈ Zq.
We extend these notations to elements of RN by applying them coefficient-wise. We use a ← S
to denote uniform sampling from the set S. We denote sampling according to a distribution χ by
a← χ.

2.1 Basic Lattice-based Encryption

We rewrite basic lattice-based encryptions following to [BGV14]. For positive integers q and n,
basic LWE encryption of m ∈ Z under the secret key ~s← χkey is defined as

LWEn,q,~s(m) = (b,~a) = (−〈~a,~s〉+ e+m,~a) ∈ Zn+1
q ,

where ~a ← Znq and error e ← χerr. We will occasionally drop subscripts n, q, and ~s in LWE when
they are clear from the context.

For a positive integer Q and a power of two N , basic RLWE encryption of m ∈ R under the
secret key z ← χkey is defined as

RLWEN,Q,z(m) := (b,a) = (−a · z + e+m,a) ∈ R2
N,Q,

where a ← RN,Q and e ← χerr. As in LWE, we will occasionally drop subscripts N , Q, and z in
RLWE, when they are clear from the context.

2.2 Gadget Decomposition

A gadget toolkit over a modulus Q consists of a fixed gadget vector ~g = (g0, . . . , gd−1) and gadget
decomposition h : RQ → Rd, where 〈h(t), ~g〉 = t and h(t) is a small vector. In other words,
‖ti‖∞ ≤ B is satisfied for a boundary B, where h(t) = (t0, t1, . . . , td−1). In FHEW [DM15, MP21]
the digit decomposition by factor B/2, such that ~g = (1, B, . . . , Bd−1) for Q ≤ Bd is used, and
h(t) = (t0, t1, . . . , td−1) is defined as the unique digit decomposition satisfying t =

∑d−1
i=0 tiB

i

so that ‖ti‖∞ ≤ B/2. We abuse the notation h for gadget decomposition of an integer value as
h : Zq → Zd, where 〈h(t), ~g〉 = t and h(t) is a small vector.

3

We adapt the definitions of RLWE′ and RGSW from [MP21]. For a gadget vector ~g, we define
RLWE′z(m) and RGSWz(m) as follows

RLWE′z(m) := (RLWEz(g0 ·m),RLWEz(g1 ·m), · · · ,RLWEz(gd−1 ·m)) ∈ R2×d
Q

RGSWz(m) :=
(
RLWE′z(m),RLWE′z(z ·m)

)
∈ R2×2d

Q .

The scalar multiplication between an element t ∈ RQ and RLWE′(m) ciphertext

� : RQ × RLWE′ → RLWE

is defined as

t� RLWE′(m) = 〈h(t) = (t0, · · · , td−1), (RLWE(g0 ·m), · · · ,RLWE(gd−1 ·m))〉

=
d−1∑
i=0

ti · RLWE(gi ·m) = RLWE

(
d−1∑
i=0

gi · ti ·m

)
= RLWE(t ·m) ∈ R2

Q,

For each error ei in RLWE(gi ·m), the error after multiplication is equal to
∑d−1

i=0 ti · ei which is
small if ti and ei are small.

The multiplication between RLWE(m) = (b,a) and RGSW(m′) ciphertexts

~ : RLWE× RGSW→ RLWE

is defined as

(b,a) ~ RGSW(m′) = b� RLWE′(m′) + a� RLWE′(z ·m′) = RLWE(m ·m′ + e ·m′) ∈ R2
Q.

This result represents an RLWE encryption of the product m ·m′ with an additional error term
e ·m′. In order to have RLWE(m)~RGSW(m′) ≈ RLWE(m ·m′), it is necessary to make the error
term e ·m′ small. This can be achieved by using small m′, e.g., monomial m′ = ±Xυ as messages.
The multiplication between RLWE ~ RGSW is naturally extended to RLWE′(m) ~ RGSW(m′) ≈
RLWE′(m ·m′) and RGSW(m) ~ RGSW(m′) ≈ RGSW(m ·m′), by performing the RLWE~ RGSW
multiplication for each RLWE component of left RLWE′ or RGSW.

2.3 Other Operations in LWE and RLWE

Modulus Switching

The modulus switching operation converts LWEQ(m) or RLWEQ(m) in modulus Q to LWEQ′(
Q′

Qm)

or RLWEQ′(
Q′

Qm) in modulus Q′.

• For an input ciphertext LWEQ,~z(m) = (b, a1, . . . , an) ∈ Zn+1
Q , modulus switching to Q′ outputs

LWEQ′,~z

(⌊
Q′

Q
m

⌉)
=

(⌊
Q′

Q
b

⌉
,

⌊
Q′

Q
a1

⌉
, . . . ,

⌊
Q′

Q
an

⌉)
∈ Zn+1

Q′ .

• For an input ciphertext RLWEQ,z(m) = (b,a) ∈ R2
Q, modulus switching to Q′ outputs

RLWEQ′,z

(⌊
Q′

Q
m

⌉)
=

(⌊
Q′

Q
b

⌉
,

⌊
Q′

Q
a

⌉)
∈ R2

Q′ .

4

Key Switching

The key switching operation converts LWE~s(m) or RLWEs(m) encrypted by a secret key ~s or s
to LWE~z(m) or RLWEz(m) encrypted by a new secret key ~z or z respectively. There are different
variants of the key switching techniques and readers can refer to literature such as [KPZ21] for
more details. We consider BV key switching type [BV11] as the most suitable for our purposes.

• For LWE the key switching generation and key switching are done as follows:

• KeySwitchGen(~s, ~z): Outputs ksk =
{
LWE~z(kB

isj)
}
i∈[0,d−1],j∈[0,n−1],k∈(−B/2,B/2]

• KeySwitch~s→~z(ksk, LWE~s(m)): Given LWE~s(m) = (b,~a), it evaluates

LWE~z(m) = (b, 0, . . . , 0) +
∑

LWE(h(aj)i ·B
isj) (mod Q)

where h(aj)i is the i-th element of h(aj). The key switching error is equal to the sum of
dn of LWE errors.

• For RLWE the key switching generation and key switching are done as follows:

• KeySwitchGen(s, z) for RLWE: Outputs ksk = RLWE′z(s).

• KeySwitchs→z(ksk,RLWEs(m)): Given RLWEs(m) = (b,a), it evaluates

RLWEz(m) = (b, 0) + a� RLWE′z(s) (mod Q).

The key switching error is equal to the error of a R� RLWE′ multiplication.

Remark 1. Note that whereas the error is smaller for LWE key switching, compared to RLWE key
switching with similar parameters, the key size is much bigger. This trade-off will be useful in our
scheme design.

Automorphisms of RLWE

There are N automorphisms of R, namely ψt : R → R given by a(X) 7→ a(Xt) for t ∈ Z∗2N .
Automorphism over RLWE instances can be defined as follows.

• EvalAuto(RLWEz(m), akt): Given RLWEz(m(X)) = (b(X),a(X)), it applies ψt to both
b(X) and a(X) and obtains (b(Xt),a(Xt)) which is an RLWE encryption of m(Xt) under
the secret key z(Xt). Then it performs key switching from z(Xt) to z using the automorphism
key akt = RLWE′z(z(Xt)) and outputs RLWEz(m(Xt)) = RLWEz(ψt(m)).

The additional error after applying an automorphism is equal to the key switching error as an
automorphism ψt is a norm-preserving map.

2.4 FHEW-like Bootstrapping

FHEW-like bootstrapping can be deployed for any other binary operation [DM15, CGGI20] and
we focus on NAND operation for simplicity in this paper. We refer readers to [CGGI20] for torus
arithmetics and to [BIP+22] for schemes that rely on the NTRU problem.

5

Blind rotation

At a high level, the bootstrapping consists of blind rotation and key & modulus switching. Given
an LWE ciphertext (b,~a) encrypted under the secret key ~s, the goal of blind rotation is to find

RLWE(f ·Xb+~a·~s),

where the LWE ciphertext modulus q = 2N and f is a look-up table polynomial corresponding to the
operation [DM15, CGGI20]1. The basic building block of blind rotation is accumulation. Several
techniques have been presented for accumulation that supports different secret key distributions
with different performance and key size tradeoffs [DM15, CGGI20, BMMP18, ZYL+18, KDE+21,
BIP+22, LMK+23]. In this paper, we mostly focus on CGGI [CGGI20] technique and its variants
BMMP [BMMP18] and ZYLZD [ZYL+18], which are all efficient for the case of binary secret key
distribution ~s.

• CGGI Variant: Let g be a polynomial and RGSW(s) be the blind rotation key. The blind
rotation of the CGGI variant is based on the following accumulation:

RLWE(g) ~ (1 + (Xa − 1) · RGSW(s)) = RLWE(g ·Xas).

which is sequentially applied n times to RLWE(f).

A key unrolling technique is proposed to improve the performance of blind rotation by reduc-
ing the number of ~ operations which is the most costly operation in accumulation [ZYL+18,
BMMP18]. The technique of the BMMP variant is slightly better in terms of key size and slightly
worse in terms of error growth than that of the ZYLZD variant. The basic idea is to group elements
of the secret key ~s and ~a of the LWE ciphertext and accumulate them together.

• BMMP Variant: Let u be an unrolling factor and ~v ∈ V = {0, 1}u \ ~0. Let ~s` =
(s`, s`+1, . . . , s`+u−1) denote the group of ~s. For ` = 0, 1, . . . , n/u − 1, the key values are
defined as δ~v,` = 1 if ~v = ~s`, and 0 otherwise. The blind rotation keys are generated by
encrypting δ~v,` i.e. RGSW(δ~v,`).

Let g be a polynomial and δ~v,` and ~v denote the key values defined above. The blind rotation
of the BMMP variant with key unrolling is based on the following accumulation:

RLWE(g) ~

(
1 +

∑
~v∈V

(
(X

∑u−1
j=0 vjaj − 1) · RGSW(δ~v,`)

))
= RLWE(g ·X

∑u−1
j=0 ajsj)

which sequentially applied n/u times to RLWE(f).

• ZYLZD Variant: The difference between the ZYLZD variant from the BMMP variant is that
here we assume ~v ∈ V = {0, 1}u. The blind rotation keys are generated as RGSW(δ~v,`). The
blind rotation of the ZYLZD variant with key unrolling is based on the following accumulation:

RLWE(g) ~

(∑
~v∈V

(
X

∑u−1
j=0 vjaj · RGSW(δ~v,`)

))
= RLWE(g ·X

∑u−1
j=0 ajsj)

which sequentially applied n/u times to RLWE(f).
1The ciphertext modulus can be any other q that divides 2N , but for brevity we only consider q = 2N in this paper.
We refer the readers to [LMK+23] for a generalized definition of blind rotation.

6

LWEn,q,~s

(
m1 ·

q

8

)
LWEn,q,~s

(
m2 ·

q

8

)

LWEn,q,~s

(
m+ ·

q

8

)

RLWEN,Q,z

(
f(m+) · Q

8

)

LWEN,Q,~z

(
m? ·

Q

8

)

LWEn,q,~s

(
m? ·

q

8

)

m+=m1+m2

BlindRotate

Extract

Key & Mod Switch

LWEN,Q,~z

(
m? ·

Q

8

)

LWEN,Qks,~z

(
m? ·

Qks

8

)

LWEn,Qks,~s

(
m? ·

Qks

8

)

LWEn,q,~s

(
m? ·

q

8

)

Mod Switch Q→Qks

Key Switch ~z→~s

Mod Switch Qks→q

Figure 2: FHEW-like bootstrapping for NAND gate [MP21]

Remark 2. By increasing u the number of addition between RGSW ciphertexts increases by a factor
of 2u, so increasing u does not always improve performance. Also, errors are accumulated during
addition which could increase the parameters to maintain the security level and FHEW-like schemes
are very sensitive to the size of the parameters.

The full bootstrapping procedure for FHEW-like schemes for ring arithmetics is described in
Figure 2.

3 Light-Key Fully Homomorphic Encryption

There are two types of keys involved in FHEW-like bootstrapping: key-switching keys and blind
rotation keys. As we mentioned above, the size of blind rotation keys is quite huge and it causes
higher communication costs. In this section, we present a method for packing the keys into a small
amount of RLWE ciphertexts on the client side and reconstructing them to blind rotation keys on
the server side. This approach reduces the size of blind rotation keys the client sends, however,
the key reconstruction introduced additional noise so that the parameters should be higher, which
causes increasing bootstrapping runtime. To deal with such a problem, we adopt key unrolling
methods and an approximate gadget decomposition method. Besides, since the higher parameters
increase the size of key switching keys, we propose a smooth converting process to reduce the total
size of key switching keys. Our approach offers trade-offs between communication costs depending
on the size of keys to be transferred and computational costs performed on the server side.

7

3.1 Blind Rotation Key Packing and Reconstruction

Recall that blind rotation keys
{
RGSWz(si) = (RLWE′z(si)),RLWE′z(si · z)

}
are RGSW encryptions

of si ∈ {0, 1} which are corresponding to elements of the binary LWE secret key ~s. We observe the
first parts of RGSWz(si) consisting of a lot of RLWE encryptions for each si i.e. RLWE(Bjsi) where
(1, B,B2, . . . , Bdg−1) is a gadget vector, which causes the huge size of keys. So instead of generating
a separate RLWE encryption for each Bjsi, we pack them into coefficients of a small number of
polynomials αk(X) and generate RLWE(αk(X)). For example, the first packed polynomial can be
a form of

α0(X) = s0 +Bs0X +B2s0X
2 + · · ·+Bdg−1s0X

dg−1 + s1X
dg + · · ·+BjsiX

N−1

where i = N/dg and j ≡ N (mod dg). With this order, the values Bjsi for any integer i ∈
[0, . . . , n − 1] and j ∈ [0, . . . , dg − 1] are placed into t-th coefficient in αk(X) polynomial where

k =
⌊
i·dg+j
N

⌋
and t = i · dg + j (mod N). After that all αk(X) polynomials are encrypted under

the secret key z and the second parts of RGSWz(si) will be reconstructed from the first parts so

that the number of RLWE ciphertexts to be transferred will be reduced from 2dgn to
⌈
dgn
N

⌉
. Note

that the order of coefficients to pack is not constrained.
To extract RLWE(Bjsi) from the packed ciphertext RLWE(αk(X)) during unpacking, we use

the following property of the RLWE automorphism operation. Simply, given a polynomial m =
m0 +m1X+m2X

2 + · · ·+mN−1X
N−1, we have ψN+1(m) = m0−m1X+m2X

2−· · ·−mN−1X
N−1,

which means this operation inverses the sign of each odd coefficient and the odd or even coefficients
of the polynomial m ± ψN+1(m) will be zero. With logN automorphisms by N/2 + 1, N/4 +
1, . . . , 2, we can take a single non-zero coefficient from the polynomial m. This property is used
in Algorithm 3 which demonstrates how to homomorphically extract each coefficient of αk(X) and
obtain N ciphertexts with only one non-zero coefficient, which are encryptions of Bjsi. Note that
this algorithm returns encryptions of NBjsi, so the coefficients of αk(X) should be multiplied by
N−1 (mod Q) before encryption to cancel out N during the extraction. The corresponding key
packing algorithm is described in Algorithm 1. Meanwhile, Algorithm 3 requires automorphism
keys ak2w+1 for w = 1, . . . , logN , so they also have to be generated on the client side as a part of
packed blind rotation keys.

Algorithm 1 Blind Rotation Key Packing

1: procedure PackBRKey(~s, z)
2: for (i = 0; i < n; i = i+ 1) do
3: for (j = 0; j < d; j = j + 1) do
4: Put [N−1]Q ·Bjsi into the coefficient of a polynomial αk(X)
5: if (αk(X) is fully packed) then
6: Move to the next polynomial αk+1(X)

7: for (k = 0; k <
⌈
nd
N

⌉
; k = k + 1) do

8: pbkk ← RLWEz(αk(X))

9: return {pbkk}

After obtaining RLWE(Bjsi), the second parts of the blind rotation keys RLWE(Bjsi · z) can
be recontructed from RLWE(Bjsi) = (bi,j ,ai,j) through the following equation which we call
EvalSquareMult with an additional square key sqk = RLWE′z(z2):

8

bi,j · (0, 1) + ai,j � sqk = RLWE(bi,j · z + ai,j · z2) = RLWE(Bjsi · z). (1)

The square key sqk should also be generated on the client side as a part of packed blind rotation
keys. The full key packing algorithm performed on the client side is given in Algorithm 2 and the
number of keys becomes asymptotically O(logN + n/N) = O(logN) as n/N < 1.

Algorithm 2 Packed Key Generation

1: procedure PackedKeyGen(~s, z)

2: {pbkk} ← PackBRKey(~s, z), for k ∈
{

0, 1, 2, . . . ,
⌈
dgn
N

⌉
− 1
}

3: for (t = 2; t ≤ N ; t = 2 · t) do
4: akt ← KeySwitchGen(z(Xt+1), z)

5: sqk← RLWE′z(z2)

6: return {{pbkk} , {akt} , sqk}

Given a pack of keys for blind rotation, the original blind rotation keys RGSWz(si) should be re-
constructed on the server side. First, it applies Algorithm 3 to pbkk and obtains RLWEz(Bjsi) which
are the first parts of RGSWz(si). To reconstruct the second parts RLWEz(Bjsi ·z) of RGSWz(si), it
performs EvalSquareMult to RLWE′z(Bjsi) with sqk. Finally, it rearranges RLWE′z(Bjsi) and
RLWE′z(Bjsi ·z) to return RGSWz(si). The full reconstruction algorithm on the server side is given
in Algorithm 4.

Algorithm 3 Coefficients Extraction

1: procedure ExtractCoeffs(RLWEz(α(X)), {ak2w+1})
2: α(X) = α0 + α1X + α2X

2 + · · ·+ αN−1X
N−1

3: res0 ← RLWEz(α(X))
4: for (` = N ; ` > 1; ` = `/2) do
5: for (j = 0; j < N/`; j = j + 1) do
6: old← resj
7: tmp← EvalAuto(old, ak`+1)
8: resj = old + tmp

9: resj+N/` = X−N/` · (old− tmp)

10: return {resi} = {RLWEz(Nαi)} for i ∈ {0, 1, . . . , N − 1}

Algorithm 4 Key Reconstruction

1: procedure KeyReconstruct({{pbkk} , {akt} , sqk})
2: for (k = 0; k <

⌈
dgn
N

⌉
; k = k + 1) do

3: Find RLWEz(Bjsi) using ExtractCoeffs(pbkk, {akt})
4: RLWEz(Bjsiz)← EvalSquareMult(RLWE(Bjsi), sqk)
5: Rearrange them into RGSWz(si)

6: return {RGSWz(si)}

9

Table 1: Trade-offs by the unrolling factor u.
Scheme Key size (# of RGSW) # of NTTs

CGGI/BMMP/ZYLZD O(n · 2u) O(1/u)
Proposed O(logN + 2u) O(1/u)

Remark 3. For ternary secret keys, the blind rotation keys are
{
RGSWz(s+

i),RGSWz(s−i)
}

, where
s+
i , s

−
i ∈ {0, 1} are corresponding to whether the elements of the LWE secret key ~s are 1 or −1,

respectively [KDE+21, BIP+22]. In this case, we need to pack all those values Bjs+
i and Bjs−i into

coefficients of polynomials αk(X) and extract them properly.

3.1.1 Key Unrolling Optimization

The proposed key packing method is described based on the blind rotation key structure of the
CGGI scheme. We can also apply this method to other schemes. As described in 2.4, key unrolling
techniques are introduced to improve the performance of blind rotation in [BMMP18, ZYL+18].
However, they increase the size of blind rotation keys and our key packing method would be helpful
to reduce the size of keys generated on the client side. More precisely, in comparison with CGGI,
the key size is increased by 2u/u times and the number of NTT is decreased by 1/u where u is the
unrolling factor. That is, we need O(n) RGSW keys for blind rotation in [CGGI20], and the number
of keys becomes asymptotically O(n · 2u/u) = O(n · 2u) with key unrolling. Such increased key size
can be reduced to O(logN+n/N ·2u/u) = O(logN+2u) by applying our key packing method. The
trade-offs between the key size and the number of NTT are represented in Table 1. It is noted that
Table 1 is not a fair comparison of [CGGI20] and the proposed method, as parameters of FHEW-
like schemes are quite an error sensitive and higher parameters are required for key reconstruction.
The table just indicates that key unrolling is better suited for the proposed key packing scenario
because it mitigates the disadvantages of large key sizes.

3.2 Smooth Converting Process

The proposed key packing method requires higher parameters due to the additional noise introduced
during key reconstruction and it increases the size of key switching keys. To deal with this problem,
we modify the bootstrapping procedure.

In the original FHEW bootstrapping, all steps following blind rotation can be considered as
substeps of converting an RLWEN,Q,z(m · Q8) ciphertext into an LWEn,q,~s(m · q8) ciphertext, where
n < N and q < Q. For example, in [MP21] the converting process consists of extracting N LWE
ciphertexts from the RLWE ciphertext, followed by modulus switching from Q to the intermediate
modulus Qks and key switching from ~z to ~s, and finally modulus switching from Qks to q, where
q < Qks < Q. Modulus switching to the intermediate modulus Qks is introduced to ensure that
key switching keys satisfy the required security level. The full flow is given in Equation 2.

RLWEN,Q
Ext−−→ LWEN,Q

MS−−→ LWEN,Qks
KS−−→ LWEn,Qks

MS−−→ LWEn,q (2)

Now we propose the improved process for FHEW bootstrapping that we call a smooth converting
process. First, if key switching is performed in RLWE form in Equation 2, when n is a power of two
as discussed in [DM15], it will decrease the size of key switching keys that are transmitted as the
size of LWE key switching keys is bigger than that of RLWE key switching keys. To do that, the

10

converting steps should be modified such that modulus switching and key switching for an RLWE
ciphertext followed by extraction of LWE ciphertexts (see Equation 3).

RLWEN,Q
MS−−→ RLWEN,Qks

KS−−→ RLWEn,Qks
Ext−−→ LWEn,Qks

MS−−→ LWEn,q (3)

However, RLWE key switching produces more noise than LWE key switching and RLWE key switching
in small parameters is very sensitive to noise. So for our solution, we get the best results from both
RLWE and LWE key switchings by splitting the procedures into two steps with an extra parameter
Qsm as follows:

RLWEN,Q
MS−−→ RLWEN,Qsm

KS−−→ RLWENsm,Qsm
Ext−−→ LWENsm,Qsm

MS−−→ LWENsm,Qks

KS−−→ LWEn,Qks
MS−−→ LWEn,q (4)

where q < Qks < Qsm < Q. The additional noise from key switching is accumulated in the LSB of
the ciphertext. The first key switching is less sensitive to noise due to the higher modulus Qsm, so
it can be done in RLWE form with the small size of keys. The latter key switching is performed in
LWE form with the smaller modulus Qks.

Key size and noise growth with smooth converting We compare the key size and noise
growth of previous converting (Equation (2)) and the smooth converting (Equation (4)). The
LWE key switching key can be greatly reduced by using smooth converting, and show that smooth
converting provides less key size and noise growth compared to the previous one. In (2), we only
need LWE key switching key{

LWEQks,~z(kB
isj)
}
i∈[0,d−1],j∈[0,n−1],k∈(−B/2,B/2]

.

We normally use small dks to minimize the noise growth as the LWE key switching error takes a
significant portion of the bootstrapping error. Hence, the key size is

dksQ
1/dks
ks N(n+ 1) logQks.

In (4), we need need additional RLWE′ keys for the first key switching

RLWE′Nsm,Qsm,zsm (z0) , . . . ,RLWE′Nsm,Qsm,zsm

(
z N

Nsm
−1

)
,

where

zj =

Nsm−1∑
i=0

z N
Nsm
·i+j ·X

i ∈ Z[X]/〈XNsm + 1〉.

For example, when Nsm = N/2, z0 and z1 are the polynomials of degree Nsm− 1 with the even and
odd coefficients of z, respectively. The size of these RLWE′ keys are N/Nsm · 2dsmNsm logQsm. We

also need LWE key switching key for the second key switching, whose key size is dksQ
1/dks
ks Nsm(n+

1) logQks. Thus, the total key size is given as

2dsmN logQsm + dksQ
1/dks
ks Nsm(n+ 1) logQks.

As dsm is small, we can see that the LWE key switching key size dominates. With smooth converting,
the key size is reduced by almost a factor N/Nsm, compare to not smooth variant.

11

The noise variance of ciphertext right after the LWE key switching with (2) is

2Nσ2
err,

while the noise variance after the LWE key switching with (4) is

Q2
ks

Q2
sm

(
dsmN

Q
2/dsm
sm

12
σ2
err

)
+ 2Nsmσ

2
err.

The noise from LWE key switching again dominates, given that Qks � Qsm. With smooth convert-
ing, the noise variance is reduced by almost a factor N/Nsm, compare to not smooth variant.

The technique of smooth converting is not exclusive to the proposed scheme and can be effec-
tively utilized in various homomorphic encryption approaches, including FHEW-like schemes and
scheme switching. By reducing the key size and noise growth, this technique offers independent
interest as it directly impacts the performance of blind rotation in FHEW-like schemes, where noise
growth is directly proportional to the parameter size.

3.2.1 Scheme Steps Modification

In the original FHEW bootstrapping, input and output ciphertexts are in the smallest parameters
LWEn,q. While keeping the ciphertexts in the small parameters could be beneficial for transmission,
this method is not efficient in terms of error growth. In [CGGI20, LMK+23], a modified scheme
was proposed, where the input and output ciphertexts are in higher parameters LWEN,Q, and
converting from LWEN,Q to LWEn,q is processed right before the blind rotation step (see Figure 3).
This modification decreases the total error and thus helps to use smaller parameters for the same
failure probability threshold.

We can also apply a similar modification that has input and output ciphertexts to be in the
higher parameters LWENsm,Qsm . The converting steps are then split into two parts. First, after
performing an operation to input ciphertexts in LWENsm,Qsm we convert it into LWEn,q, and after
the blind rotation step we convert it from RLWEN,Q to LWENsm,Qsm with the smooth converting
process. The full procedure is shown in Figure 4.

3.3 Approximate Gadget Decomposition

An approximate gadget decomposition was first proposed in [CGGI20] to define TGSW, which is
the GSW construction over the real torus, and its external product with TLWE. Its simple variant
working on the integer was introduced in [LMK+23] to reduce the key size and runtime for the
external product between RLWE and RGSW. In their construction, the keys are considered as fresh
RGSW ciphertexts which have small errors, thus |e|< B, and the first part of the decomposed value
(which will be multiplied by 1 in a gadget vector) can be ignored while performing the external
product. However, the reconstructed RGSW key in our technique has a much larger error than a
fresh ciphertext and the error can be greater than B. Thus, extending the gadget decomposition
in [LMK+23] is not suitable for our construction. Instead, we need to redefine an approximate
gadget decomposition on the integer to be similar to the definition in [CGGI20].

We introduce an approximation factor δ such that Bdδ < Q. The approximate gadget vector is
given as ~gδ = (δ,Bδ, . . . , Bd−1δ), and the approximate decomposition of a ∈ RQ is to find ai that

12

LWEN,Q,~z

(
m1 ·

Q

8

)
LWEN,Q,~z

(
m2 ·

Q

8

)

LWEN,Q,~z

(
m+ ·

Q

8

)

LWEn,q,~s

(
m+ ·

q

8

)

RLWEN,Q,z

(
f(m+) · Q

8

)

LWEN,Q,~z

(
m? ·

Q

8

)

m+=m1+m2

Key & Mod Switch

BlindRotate

Extract

LWEN,Q,~z

(
m+ ·

Q

8

)

LWEN,Qks,~z

(
m+ ·

Qks

8

)

LWEn,Qks,~s

(
m+ ·

Qks

8

)

LWEn,q,~s

(
m+ ·

q

8

)

Mod Switch Q→Qks

Key Switch ~z→~s

Mod Switch Qks→q

Figure 3: Steps modification bootstrapping for NAND gate [CGGI20, LMK+23]

minimizes decomposition error
∥∥∥a−∑d−1

j=0 ai · δBj
∥∥∥
∞

, where ‖ai‖∞ ≤ B/2. Also, RLWE′(m) ∈

R2×d
Q is defined as follows

RLWE′(m) =
(
RLWE(δ ·m),RLWE(Bδ ·m), . . . ,RLWE(Bd−1δ ·m)

)
.

The external product a� RLWE′(m) is defined as

〈(a0,a1, . . . ,ad−1),
(
RLWE(δ ·m),RLWE(Bδ ·m), . . . ,RLWE(Bd−1δ ·m)

)
〉

=
d−1∑
j=0

RLWE(aj ·Bjδ ·m) ≈ RLWE(a ·m).

Following to [CGGI20], we use the notation Err (c) and Var (Err (c)) which denote the error of
c and the variance of Err (c), respectively.

Proposition 1. Let σ2
err be the error variance of RLWE′(m). Under the constraint Bdδ > Q, the

following inequality is satisfied.

Var
(
Err
(
a� RLWE′(m)

))
≤ d ·N ·B2/12 · σ2

err + ‖m‖22 · δ
2/12.

Proof. Let ~a be the decomposition of a. Then a� RLWE′(m) is equal to

a� RLWE′(m) = a� (RLWE′(0) +m · ~gδ)
= 〈~a,RLWE′(0)〉+m · 〈~a, ~gδ〉

13

LWENsm,Qsm,~zsm

(
m1 ·

Qsm

8

)
LWENsm,Qsm,~zsm

(
m2 ·

Qsm

8

)

LWENsm,Qsm,~zsm

(
m+ ·

Qsm

8

)

LWEn,q,~s

(
m+ ·

q

8

)

RLWEN,Q,z

(
f(m+) · Q

8

)

RLWENsm,Qsm,zsm

(
f(m+) · Qsm

8

)

LWENsm,Qsm,~zsm

(
m? ·

Qsm

8

)

m+=m1+m2

LWE Key & Mod Switch

BlindRotate

RLWE Key & Mod Switch

Extract

LWENsm,Qsm,~zsm

(
m+ ·

Qsm

8

)

LWENsm,Qks,~zsm

(
m+ ·

Qks

8

)

LWEn,Qks,~s

(
m+ ·

Qks

8

)

LWEn,q,~s

(
m+ ·

q

8

)

RLWEN,Q,z

(
f(m+) · Q

8

)

RLWEN,Qsm,z

(
f(m+) · Qsm

8

)

RLWENsm,Qsm,zsm

(
f(m+) · Qsm

8

)

Mod Switch Qsm→Qks

Key Switch ~zsm→~s

Mod Switch Qks→q

Mod Switch Q→Qsm

Key Switch z→zsm

Figure 4: Our variant of bootstrapping for NAND gate

14

Here, 〈~a, ~gδ〉 = a + ε where ‖ε‖∞ = ‖a− 〈~a, ~gδ〉‖∞ ≤ δ/2. Note that a, which is part of RLWE
ciphertext, is mostly generated as a uniformly random value, and thus a − 〈~a, ~gδ〉 introduces an
error with variance δ2/12. Then we have

Var
(
Err
(
a� RLWE′(m)

))
≤ Var

(
~a · Err

(
RLWE′(m)

))
+ Var (m · ε)

≤ d ·N ·B2/12 · σ2
err + ‖m‖22 · δ

2/12.

‖m‖22 depends on the message of RLWE′ ciphertext so that we can estimate in advance. In blind
rotation, we use RLWE′(Xaisi), and ‖Xaisi‖22 = 1. In key switching, m = s2 is a small key for a

binary secret key s and thus
∥∥s2
∥∥2

2
≤ N2/4.

We can also do the similar to LWE key switching, which has less error and larger key size
compared to RLWE key switching. The LWE key switching keys contains dBn of LWE ciphertexts,{
LWE~z(kB

isj)
}
i∈[0,d−1],j∈[0,n−1],k∈(−B/2,B/2]

. Proposition 2 is shows the error growth of LWE key

switching with approximate gadget decomposition.

Proposition 2. Let σ2
err be the error variance of each LWE(kBimj). Under the constraint Bdδ >

Q, the following inequality is satisfied.

Var

Err

∑
i,j

LWE(h(aj)i ·B
imj)

 ≤ d ·N · σ2
err + ‖~m‖22 · δ

2/12,

where h(aj)i is the i-th element of h(aj).

4 Analysis & Implementation

4.1 Noise Analysis

We follow [CGGI17, MP21, LMK+23] to analyze the total maximum relative variance σ̄total. The

failure probability can be calculated as 1− erf
(

1
8
√

2σ̄total

)
.

The parameters dbr, dsm, dsk, dak, dsqk are corresponting to the number of digits used for blind
rotation keys brk, RLWE key switching keys, LWE key switching keys, automorphisms keys ak,
and square key sqk respectively. The parameters δbr, δsm, δsk, δak, δsqk are corresponding to the
approximate gadget decompositions for the keys. For unrolling techniques we used [BMMP18]
and [ZYL+18] methods. The [ZYL+18] method has a larger key size and slightly smaller failure
probability compare to [BMMP18] for the same unrolling factor u.

The rescaling variances σ2
rs,x and σ2

rs,~y depends on the distribution of the underlying secret key
x and ~y respectively. For our analysis, we use the following estimates:

• σ2
rs,x =

‖x‖22+1
12 and σ2

rs,~y =
‖~y‖22+1

12 - rescaling error for both binary and ternary x and ~y

The key is recovered using Algorithm 3. Let v` be the error variance of each ciphertext resi in
line 4, Algorithm 3. Assuming the error in each coefficient is independent, we have v` ≤ 2 ·v2`+σ

2
aut

from lines 6 – 9, as the error in some coefficient is canceled out. Solving the recurrence relation,

we have σ̃2 = v1 ≤ Nσ2 + (N − 1)σ2
aut ≤ Nσ2

aut, where σ2
aut = daut

B2
aut
12 Nσ2 +

δ2aut
12 · ‖z‖

2
2 is

variance of introduced by automorphism. Then, we find RLWE′(si · z) using EvalSquareMult

15

(Equation (1)) to recover RGSW(si) =
{
RLWE′(si),RLWE′(si · z)

}
. Error variance of RLWE′(si · z)

is σ̂2 = σ̃2 · ‖z‖22 + dsq
B2
sq

12 σ
2 +

δ2sq
12 ·

∥∥z2
∥∥2

2
.

The error variance for our variant of packing can be estimated as:

• σ̃2 ≤ N
(
daut

B2
aut
12 Nσ2 +

δ2aut
12 · ‖z‖

2
2

)
- for variance of RLWE′(si)

• σ̂2 = σ̃2 · ‖z‖22 + dsq
B2
sq

12 σ
2 +

δ2sq
12 ·

∥∥z2
∥∥2

2
- for variance of RLWE′(si · z)

• σ2
br =



2n ·
(

2dbr
B2
br

12
N(σ̃2 + σ̂2) +

δ2
br

12
· (‖z‖22 + 1)

)
- for CGGI variant blind rotation

2n · (2u − 1)

u
·
(

2dbr
B2
br

12
N(σ̃2 + σ̂2) +

δ2
br

12
· (‖z‖22 + 1)

)
- for BMMP variant blind rotation

n · 2u

u
·
(

2dbr
B2
br

12
N(σ̃2 + σ̂2) +

δ2
br

12
· (‖z‖22 + 1)

)
- for ZYLZD variant blind rotation

• σ2
ks1

= dsm
B2
sm

12 Nσ
2 + δ2sm

12 · ‖z‖
2
2 - for key switching from z to zsm

• σ2
ks2

= dks
B2
ks

12 Nsmσ
2 +

δ2ks
12 · ‖~zsm‖

2
2 - for key switching from ~zsm to ~s.

The total estimate of the relative variance is:

σ̄2
total =

1

Q2
2σ2

br +
1

Q2
sm

(2σ2
rs,z + 2σ2

ks1
) +

1

Q2
ks

(σ2
rs,~zsm + σ2

ks2
) +

1

q2
σ2
rs,~s

4.2 Parameter Selection & Implementation Results

All the parameter sets for Table 2 were chosen to be at least 128 bits of security and failure
probability less than 2−32. The parameters 128 bCGGI, 128 tCGGI and 128 gLMKCDEY are cor-
responding to the binrary CGGI, ternary CGGI and gaussian LMKCDEY schemes considered
in [LMK+23] as state of the art schemes. For our paramter sets 128 bCGGI Our, 128 bBMMP u2 Our,
128 bZYLZD u2 Our we used CGGI, BMMP and ZYLZD schemes with binary secrets respectively.

In order to provide a fair comparison we have implemented all algorithms using the OpenFHE
library (v.1.1.0). The evaluation environment is Intel(R) Xeon(R) Gold 6240 CPU @ 2.60GHz, run-
ning Ubuntu 20.04.3 LTS. We compiled with clang 10 and the following CMake flags: WITH OPENMP=OFF,
WITH NATIVEOPT=ON, -DNATIVE SIZE=64. We also provide implementation results, compiled with
-DNATIVE SIZE=32 instead of -DNATIVE SIZE=64 as was proposed in [MP21, LMK+23] for effi-
ciency.

Remark 4. We did not consider Torus variants for comparison in order to keep the same environ-
ment. For the same reasons we have not considered NTRU variants, but it is of great interest to
adapt our techniques to NTRU and Torus variants of bootstrapping, find suitable parameters, and
do full a comparison.

Both the original and our variant utilize a common reference string model (CRS) to generate
the a and ~a components of each transferred RLWE and LWE ciphertext. This enables us to transmit
only the b and ~b components to the server. Upon receiving the b and ~b components, the server

16

Params logQ logQsm logQks log q N Nsm n dbr dsm dks dak dsqk u Security

128 tGINX[LMK+23] 26 - 14 11 210 - 531 4 - 2 - - - 2−128.5

128 bGINX[LMK+23] 25 - 14 11 210 - 571 4 - 2 - - - 2−128.1

STD128 gLMKCDEY [LMK+23] 28 - 14 11 210 - 458 3 - 2 - - - 2−128.2

128 bCGGI Our 54 27 14 11 211 210 571 3 2 3 5 2 - 2−128.1

128 bBMMP u2 Our 54 27 14 11 211 210 571 3 2 3 5 2 2 2−128.1

128 bZYLZD u2 Our 54 27 14 11 211 210 571 3 2 3 5 2 2 2−128.1

Table 2: Parameter sets used in the implementation.

Parameters Key Generation Transfer Reconstruct Bootstrapping Bootstrapping Failure
set time, ms key size time, ms key size time, ms probability

128 tCGGI [LMK+23] 6087 (5423) 28.83 Mb - 233 Mb 123 (79) 2−35.79

128 bCGGI [LMK+23] 5598 (5932) 16.48 Mb - 250 Mb 108 (74) 2−37.26

STD128 gLMKCDEY [LMK+23] 4435 (4314) 9.01 Mb - 218 Mb 99 (70) 2−43.51

128 bCGGI Our 873 881 Kb 815 175 Mb 202 2−44.88

128 bBMMP u2 Our 875 894 Kb 1689 220 Mb 147 2−35.71

128 bZYLZD u2 Our 877 894 Kb 1790 265 Mb 169 2−44.88

Table 3: Implementation results. Values in brackets correspond to the -DNATIVE_SIZE=32 compi-
lation setting

reconstructs the a and ~a components for each ciphertext using the same CRS. We also do not take
into account the server time to reconstruct the CRS parts.

We successfully achieved a significant reduction in the size of transferred keys, reducing it to
less than a Megabyte. While our implementation results show that the bootstrapping time has
increased by approximately ×2 compared to the original method, it is important to note that this
increase is primarily attributed to the use of the -DNATIVE_SIZE=32 settings in the original method.

In addition, despite the higher parameters used in our method, the total time required for key
generation and reconstruction in our variant is occasionally smaller compared to the original ”non-
packed” method. We explain this phenomenon by the fact that our approach uses a smaller number
of digits for RLWE′ keys and uses fewer number Number Theoretic Transforms (NTTs) during the
process of generating and reconstructing keys in our approach, compared to the original method.

5 Conclusion

The size of bootstrapping keys can pose a significant challenge for real-world problems, and it
is crucial not to ignore this issue. Despite the overhead costs in bootstrapping time associated
with increased parameters in our method, our approach of packing keys demonstrates a substantial
reduction in key size for CGGI, BMMP, and ZYLZD schemes. It would be valuable to conduct
further research on the application and comparison of our key packing technique to other FHEW-
like schemes, such as the Torus variant TFHE [CGGI20], NTRU variant FINAL [BIP+22], and
automorphism variant LMKCDEY [LMK+23]. Our future plans also involve exploring the potential
of applying our key packing technique to BGV/BFV/CKKS schemes.

References

[AP14] Jacob Alperin-Sheriff and Chris Peikert. Faster bootstrapping with polynomial error.
In CRYPTO 2014, pages 297–314. Springer, 2014.

17

[BCC+22] Youngjin Bae, Jung Hee Cheon, Wonhee Cho, Jaehyung Kim, and Taekyung Kim.
Meta-bts: Bootstrapping precision beyond the limit. In Proceedings of the 2022
ACM SIGSAC Conference on Computer and Communications Security, pages 223–
234, 2022.

[BGV14] Zvika Brakerski, Craig Gentry, and Vinod Vaikuntanathan. (Leveled) Fully homomor-
phic encryption without bootstrapping. ACM Transactions on Computation Theory
(TOCT), 6(3):1–36, 2014.

[BIP+22] Charlotte Bonte, Ilia Iliashenko, Jeongeun Park, Hilder V. L. Pereira, and Nigel P.
Smart. FINAL: Faster FHE instantiated with NTRU and LWE. Cryptol. ePrint Arch.,
2022/074, 2022.

[BMMP18] Florian Bourse, Michele Minelli, Matthias Minihold, and Pascal Paillier. Fast homo-
morphic evaluation of deep discretized neural networks. In Advances in Cryptology –
CRYPTO 2018, pages 483–512. Springer, 2018.

[BMTH21] Jean-Philippe Bossuat, Christian Mouchet, Juan Troncoso-Pastoriza, and Jean-Pierre
Hubaux. Efficient bootstrapping for approximate homomorphic encryption with non-
sparse keys. In Advances in Cryptology – EUROCRYPT 2021. Springer, 2021.

[BV11] Zvika Brakerski and Vinod Vaikuntanathan. Fully homomorphic encryption from
Ring-LWE and security for key dependent messages. In Advances in Cryptology –
CRYPTO 2011, pages 505–524. Springer, 2011.

[CDKS21] Hao Chen, Wei Dai, Miran Kim, and Yongsoo Song. Efficient homomorphic conversion
between (Ring) LWE ciphertexts. In Applied Cryptography and Network Security.
Springer, 2021.

[CGGI17] Ilaria Chillotti, Nicolas Gama, Mariya Georgieva, and Malika Izabachene. Faster
packed homomorphic operations and efficient circuit bootstrapping for TFHE. In
Advances in Cryptology – ASIACRYPT 2017, pages 377–408. Springer, 2017.

[CGGI20] Ilaria Chillotti, Nicolas Gama, Mariya Georgieva, and Malika Izabachène. TFHE:
Fast fully homomorphic encryption over the torus. Journal of Cryptology, 33(1):34–
91, 2020.

[CHK+21] Jihoon Cho, Jincheol Ha, Seongkwang Kim, Byeonghak Lee, Joohee Lee, Jooyoung
Lee, Dukjae Moon, and Hyojin Yoon. Transciphering framework for approximate
homomorphic encryption. In Advances in Cryptology–ASIACRYPT 2021: 27th In-
ternational Conference on the Theory and Application of Cryptology and Informa-
tion Security, Singapore, December 6–10, 2021, Proceedings, Part III, pages 640–669.
Springer, 2021.

[CIL21] Hao Chen, Ilia Iliashenko, and Kim Laine. When HEAAN meets FV: a new some-
what homomorphic encryption with reduced memory overhead. In Cryptography and
Coding: 18th IMA International Conference, IMACC 2021, pages 265–285. Springer,
2021.

18

[CKKS17] Jung Hee Cheon, Andrey Kim, Miran Kim, and Yongsoo Song. Homomorphic encryp-
tion for arithmetic of approximate numbers. In Advances in Cryptology – ASIACRYPT
2017, pages 409–437. Springer, 2017.

[DM15] Léo Ducas and Daniele Micciancio. FHEW: bootstrapping homomorphic encryption
in less than a second. In EUROCRYPT 2015, pages 617–640. Springer, 2015.

[GdMRT23] Francisco AA Gomes, Filipe de Matos, Paulo Rego, and Fernando Trinta. Analysis
of the impact of homomorphic algorithm on offloading of mobile application tasks.
In 2023 IEEE 20th Consumer Communications & Networking Conference (CCNC),
pages 961–962. IEEE, 2023.

[Gen09] Craig Gentry. Fully homomorphic encryption using ideal lattices. In Proceedings of the
forty-first annual ACM Symposium on Theory of Computing, pages 169–178. ACM,
2009.

[GINX16] Nicolas Gama, Malika Izabachene, Phong Q Nguyen, and Xiang Xie. Structural lat-
tice reduction: Generalized worst-case to average-case reductions and homomorphic
cryptosystems. In EUROCRYPT 2016, pages 528–558. Springer, 2016.

[KDE+21] Andrey Kim, Maxim Deryabin, Jieun Eom, Rakyong Choi, Yongwoo Lee, Whan
Ghang, and Donghoon Yoo. General bootstrapping approach for RLWE-based ho-
momorphic encryption. Cryptol. ePrint Arch., 2021/691, 2021.

[KPZ21] Andrey Kim, Yuriy Polyakov, and Vincent Zucca. Revisiting homomorphic encryption
schemes for finite fields. In Advances in Cryptology – ASIACRYPT 2021, pages 608–
639. Springer, 2021.

[LHH+21] Wen-jie Lu, Zhicong Huang, Cheng Hong, Yiping Ma, and Hunter Qu. PEGASUS:
Bridging polynomial and non-polynomial evaluations in homomorphic encryption. In
2021 IEEE symposium on Security and Privacy (S&P), pages 1057–1073. IEEE, 2021.

[LLKN22] Joon-Woo Lee, Eunsang Lee, Young-Sik Kim, and Jong-Seon No. Hierarchical galois
key management systems for privacy preserving aiaas with homomorphic encryption.
Cryptology ePrint Archive, 2022.

[LMK+23] Yongwoo Lee, Daniele Micciancio, Andrey Kim, Rakyong Choi, Maxim Deryabin,
Jieun Eom, and Donghoon Yoo. Efficient fhew bootstrapping with small evaluation
keys, and applications to threshold homomorphic encryption. In Advances in Cryp-
tology – EUROCRYPT 2023, pages 227–256. Springer, 2023.

[MP21] Daniele Micciancio and Yuriy Polyakov. Bootstrapping in FHEW-like cryptosystems.
In WAHC’21, pages 17–28. ACM, 2021.

[NLV11] Michael Naehrig, Kristin Lauter, and Vinod Vaikuntanathan. Can homomorphic en-
cryption be practical? In Proceedings of the 3rd ACM workshop on Cloud computing
security workshop, pages 113–124, 2011.

[Ope22] OpenFHE. Open-Source Fully Homomorphic Encryption Library. https://github.

com/openfheorg/openfhe-development, 2022.

19

[PCFBC19] Goiuri Peralta, Raul G Cid-Fuentes, Josu Bilbao, and Pedro M Crespo. Homomorphic
encryption and network coding in iot architectures: Advantages and future challenges.
Electronics, 8(8):827, 2019.

[RTD+21] Wang Ren, Xin Tong, Jing Du, Na Wang, Shan Cang Li, Geyong Min, Zhiwei Zhao,
and Ali Kashif Bashir. Privacy-preserving using homomorphic encryption in mobile
iot systems. Computer Communications, 165:105–111, 2021.

[SK19] Rakesh Shrestha and Shiho Kim. Integration of iot with blockchain and homomorphic
encryption: Challenging issues and opportunities. In Advances in computers, volume
115, pages 293–331. Elsevier, 2019.

[ZYL+18] Tanping Zhou, Xiaoyuan Yang, Longfei Liu, Wei Zhang, and Ningbo Li. Faster boot-
strapping with multiple addends. IEEE Access, 6:49868–49876, 2018.

20

