
Skye: A Fast KDF based on Expanding PRF
and its Application to Signal

Amit Singh Bhati1 ID , Antońın Dufka2,

Elena Andreeva3 ID , Arnab Roy4 ID , and Bart Preneel1 ID

1 imec-COSIC, KU Leuven, Belgium,
{amitsingh.bhati,bart.preneel}@esat.kuleuven.be

2 Masaryk University, Brno, Czech Republic, dufkan@mail.muni.cz
3 Technical University of Vienna, Austria, elena.andreeva@tuwien.ac.at

4 Alpen-Adria University, Klagenfurt, Austria, arnab.roy@aau.at

Abstract. A Key Derivation Function KDF generates a uniform and
highly random key-stream from weakly random key material. KDFs are
broadly used in various security protocols such as digital signatures and
key exchange protocols. HKDF is the most deployed KDF in practice.
It is based on the extract-then-expand paradigm and is presently used,
among others, in the Signal Protocol for end-to-end encrypted messaging.
HKDF was proposed as a generic KDF for general input sources and
thus is not optimized for source-specific use cases such as key derivation
from Diffie-Hellman (DH) sources (i.e. DH shared secrets as key mate-
rial). Furthermore, the sequential HKDF design is unnecessarily slower
on some general-purpose platforms that benefit from parallelization.
In this work, we propose a novel, efficient and secure KDF called Skye.
Skye follows the extract-then-expand paradigm and consists of two algo-
rithms: efficient deterministic randomness extractor and expansion func-
tions. Instantiating our extractor for dedicated source-specific (e.g. DH
sources) inputs allows us to achieve a significant efficiency speed-up over
HKDF at the same security level. We provide concrete security analysis
of Skye and both its algorithms in the standard model.
We provide a software performance comparison of Skye with the AES-
based expanding PRF ButterKnife and HKDF with SHA-256 (as used in
Signal). Our results show that in isolation Skye performs from 4x to 47x
faster than HKDF, depending on the platform instruction support. We
further demonstrate that with such a performance gain, when Skye is
integrated within the current Signal implementation, we can achieve sig-
nificant overall improvements ranging from 38% to 64% relative speedup
in unidirectional messaging. Even in bidirectional messaging, that in-
cludes DH computation with dominating computational cost, Skye still
contributes to 12-36% relative speedup when just 10 messages are sent
and received at once.

Keywords: KDF · Deterministic Extraction · Extract-then-Expand · HKDF ·

X3DH · Signal · Expanding PRF · PRF-PRNG · Randomness Amplification

https://orcid.org/0000-0003-0843-4885
https://orcid.org/0000-0003-0964-8711
https://orcid.org/0000-0002-3284-7076
https://orcid.org/0000-0003-2005-9651

2 A.S. Bhati, A. Dufka, E. Andreeva, A. Roy and B. Preneel

1 Introduction

A Cryptographic Key Derivation Function (KDF) is an algorithm, that when
provided with a non-uniform or “weak” random key material can return a uni-
form and “highly” random arbitrarily large key-stream. KDFs are used for gen-
erating randomness for encryption, digital signatures, in key exchange protocols,
etc.

HKDF [28] was introduced in 2010 by Krawczyk et al. as a secure, generic
cryptographic KDF and by now is the most deployed KDF in practice. HKDF fol-
lows the extract-then-expand paradigm [28]. For a given non-uniform or “weak”
random key material, HKDF first extracts a relatively small but uniform and
“highly” random string via an internal randomness extractor function. Then, in
HKDF the extracted value is passed to a randomness expander : a pseudorandom
function PRF with variable length output. The output is a uniform and “highly”
random key-stream of some desired length.

HKDF is used in the popular Signal Protocol [35] for end-to-end encrypted
messaging. Its purpose there is to generate a fresh message key. The Signal
protocol (or Signal in short) uses HKDF in conjunction with the triple Elliptic-
curve Diffie–Hellman handshake [36] (X3DH) key agreement protocol. A number
of wide-spread applications of end-to-end encryption also make use of Signal
and internally call the X3DH handshake and a secure KDF (usually HKDF) to
establish a common secret for later cryptographic use. Examples here include
the popular instant messaging apps WhatsApp [34], Facebook Messenger [1],
Skype [31], Allo [33], Status [5], Secure Chat, Viber and Forsta. HKDF is also
implemented as a main component in the general Noise Protocol Framework
(NPF) [39] and Message Layer Security (MLS) [3]. HKDF is also used in TLS1.3
for generating encryption keys.

HKDF was proposed as a generic key derivation function for processing gen-
eral input-sources of some desired min-entropy. However, in many applications
the input sources are predefined, fixed and may contain a nice algebric structure,
such as the triple Elliptic-curve Diffie–Hellman handshake [36] (X3DH) protocol
component in Signal. As a generic or non-source-specific KDF, HKDF meets
some basic security and performance goals, but for concrete use cases, it might
not be best optimized for: 1. source-specific (randomness) extraction; 2. speed
or performance on common platforms; 3. reliance on weaker assumptions than
the present random oracle one for the SHA-256 compression function used in
HKDF.

A dedicated/source-specific KDF can efficiently leverage the structure of the
input randomness source during the extraction phase to optimize the process.
Note that the possibility of constructing (input) source-specific extractor func-
tions in a KDF under the extract-then-expand paradigm, was already discussed
in [28]. Some concrete examples here are the works on deterministic randomness
extraction from Diffie-Hellman schemes [15,23].

To further achieve secure and more efficient randomness expansion, a can-
didate building block is one that, unlike a compression function like SHA-2,
naturally expands its inputs. Cryptographically, such a function needs to also

Skye KDF and its Application to Signal 3

come with some pseudorandom properties or behave as a fixed output length
expanding pseudorandom function (PRF). Forkciphers [8] are such expanding
functions. Yet, forkciphers come with additional functionalities of inversion and
reconstruction that are not required for randomness expansion and additionally
limit the PRF security to birthday-bound (in block size). The recently proposed
PRF ButterKnife [7] is a dedicated expanding PRF design and hence a natural
KDF building block candidate. ButterKnife is a fixed output length expanding
PRF taking inputs of 256 bits and producing outputs of 1024 bits. ButterKnife
is based on AES and Deoxys-BC [26]. The underlying AES structure allows the
application of AES native instructions (NI) on all AES-NI supporting proces-
sors. Furthermore, ButterKnife is proven secure both generically (via a proof of
security) and cryptanalytically in [7]. Its security is further supported by the
cryptanalysis results for AES-PRF [21,38] and Deoxys-BC [17, 26,30,44].

Our Results

In this work we propose Skye, a novel extract-then-expand KDF based on an
expanding PRF. We provide a detailed security analysis of Skye and demonstrate
empirically the efficiency advantage of Skye over HKDF both directly and also
when used in Signal. We provide a discussion on possible Skye applications in
WhatsApp, Facebook Messenger, Skype, Allo, Status, Secure Chat, Viber, Forsta
and Blockchain-based X3DH (BCB-X3DH) for IoTs [41]. More concretely, our
contributions are as follows. We propose:

Deterministic extension for randomness extraction. In Sec. 7, we build
a novel, generic and deterministic function DExtf that aggregates the amount
of extracted randomness for any randomness extractor f when provided with
multiple and independent input samples. We formally prove that the outputs of
DExtf are indistinguishable from random binary strings.

Considering the randomness aggregation and extraction of the X3DH hand-
shake based input samples of the Signal Protocol, which consist of multiple (three
or four) DH shared secrets, DExtf is designed to handle multiple independent
samples and hence well-suited for optimal randomness extraction.

Secure DExtf instantiation for DH samples. In Sec. 7.2, we provide a
128-bit secure simple and efficient deterministic extractor as an instantiation
of DExtf . This is achieved by choosing a DH source-specific extractor func-
tion to instantiate f in DExtf . Applying the above-mentioned general result
(in Sec. 7), we construct an extractor with a higher security margin from the
msb/lsb (most/least significant bits based) extractor function for Diffie-Hellman
(DH) schemes in [15]. We prove the security of our instantiation by combining
the analysis of the generic DExtf and the security of msb/lsb based extractor [15].

Secure randomness expander. The outputs of the deterministic extractor
are processed by a variable-output-length (VOL) PRF or randomness expander
called FExp. In [28] two approaches towards constructing a randomness expander
are mentioned: based on a counter or feedback encryption modes. HKDF uses

4 A.S. Bhati, A. Dufka, E. Andreeva, A. Roy and B. Preneel

as a randomness expander, a keyed feedback mode over the HMAC [29] pseudo-
random function (PRF). To avoid the frequent rekeying of the feedback mode
and the consequent loss of speed for the target 128-bit security level, we adopt
a counter mode-like approach for our construction.

Our randomness expander FExp is motivated by the classical CTR$ [40] en-
cryption mode. FExp benefits from a naturally expanding underlying PRF func-
tion as opposed to a block cipher or compression function. The FExp design pro-
vides both security and efficiency improvements over the CTR$ [40] mode in the
randomness expansion context. When compared to the CTR$ mode (see Sec. 8),
FExp can accommodate larger and arbitrary (i.e. not necessarily random) inputs
and provides full n = 128-bit security as opposed to birthday-bound n/2 = 64-
bit, when instantiated with ButterKnife [7]. We provide a formal security proof of
FExp via the notion of indistinguishability from random binary strings, a notion
equivalent to the IND$ [40] encryption notion.

Skye: secure and more efficient alternative to HKDF in X3DH based
applications. In Sec. 5, we propose the Skye scheme as a dedicated KDF follow-
ing the extract-then-expand approach and using the two above-mentioned novel
extractor and expander functions DExtf and FExp, respectively. In other words,
Skye[f,PRFs] can be defined as a function based on two underlying primitives
- a weak source-specific extractor f (processed under DExtf extension) and an
expanding PRF PRFs (processed under FExp mode).

Concretely, we consider DH samples over Curve25519 as the input source to
exemplify the performance gain and concrete security of Skye over HKDF and
hence instantiate f with lsb. In Sec. 9, we show that when Skye is instantiated
with ButterKnife as the expanding PRFs, it achieves 128-bit CCS security [16,28].
HKDF [28] is also shown secure under the CCS security notion and informally,
CCS-security is defined as the indistinguishability of the KDF outputs from truly
random strings under a chosen input attack. The security of Skye is however
proven under a more practical (non random oracle) assumption than HKDF.

We provide software performance comparison (in Sec. 6) between HKDF and
Skye with their standard functionalities. Our results show that in isolation, Skye
performs from 4x to 47x faster than HKDF in various settings depending on the
availability of native instruction sets.

We then consider the Signal Protocol to demonstrate the performance gain
of Skye. We integrated Skye within the current implementation of Signal [2] and
show that under various settings with and without available native instruction
sets, Skye is able to provide 38-64% relative speedup in unidirectional messag-
ing. In bidirectional messaging, whose cost is dominated by DH computation,
the speedup depends on the number of messages sent at once. With a single mes-
sage, Skye achieves 3%-11% relative speedup; after sending just 10 messages, the
speedup rises to 12-36%, and with a further increase in the number of messages,
it converges to the unidirectional speedup.

Potential use cases of Skye beyond Signal. In this work, we also discuss
several potential applications of Skye (see Sec. 10), including MLS [3] where
multi-DH samples are used. However, we note that DH sources are not the only

Skye KDF and its Application to Signal 5

potential target for extraction and key derivation. Random binary strings of size
larger than their amount of entropy also need secure extraction. Same applies to
the post-quantum Signal variants, such as the KEM [13] based version which also
shares non uniform keys and makes multiple KDF calls (some hidden under KEM
calls) on them. The study of weak extractors fs (and thus a direct application
of Skye) for polynomial rings and isogenies is out of scope and hence left open
for future work.

Related Works

Randomness amplification. We note that one can use the result from Maurer
et al. [37, Corollary 2] in an iterative manner over a set of independent input
samples (that are generated using some weak extractor f) and with their ⋆ opera-
tion defined as XOR to extract randomness with similar security as our proposed
DExtf . However, we emphasize that our design approach is more general which
allows us to optimally extract (up to 100%) more randomness than the existing
solution.

For example, consider a set of v input samples with each providing w bits
of extracted randomness and λ bits of security when passed through some weak
extractor f . Now, let say we need a strengthened security of cλ bits from the
extracted final output for some integer c, then the existing solution of [37] can
only provide randomness up to (v/c)w bits whereas our solution DExtf can go
up to ⌊(v− c)/⌈c/2⌉⌋+1)w bits which is optimal (see App. B) for various values
of (v, c) as long as linear operations are used to extract randomness.

Our work can be seen as a generalization of Maurer et al. [37, Corollary 2] re-
sult with relatively simple and independent proof that 1. increases confidence in
the existing analysis 2. gives a more general and really better bound for amount
of extraction with an optimality proof for reasonable/practical sample sizes.

Related KDF notion. In the existing formal analysis of the Double Ratchet
protocol, Alwen et al. [4] formalized a KDF syntax called PRF-PRNG and it’s
security notion called P to cover what exactly is needed from a KDF function.
HKDF is also assumed to satisfy this notion.

For source-specific samples, Our KDF Skye targets the standard stronger
KDF notion of CCS-security, which by definition implies the P-security when
the KDF is used as a PRF-PRNG (in the context of Signal). We refer the reader
to App. E for more details on the PRF-PRNG syntax, how to convert a standard
syntax KDF into a PRF-PRNG and a formal claim with full proof of CCS to P
security reduction.

As the main result, [4] claims to provide a standard model proof for the Dou-
ble Ratchet and Signal protocol. However, our observations (see App. E) shows
that the analysis is not actually free from ROs when the KDF is instantiated
with HKDF or the sketched alternative of [4] that rely on idealized assumptions.
This begs the important question of - “Can we design a KDF for Signal that is

6 A.S. Bhati, A. Dufka, E. Andreeva, A. Roy and B. Preneel

free from idealized assumptions and is equally or more efficient than the current
solution - HKDF?”

Our work solves this problem with a positive answer. We provide Skye KDF
that follows the standard KDF syntax [28] and is shown CCS [16, 28]-secure in
the standard model.

2 Notations

Strings. All strings are binary strings. The set of all strings of length n (for a
positive integer n) is denoted by {0, 1}n and the set of all strings of all possible
lengths is denoted by {0, 1}∗. We denote by Func(m,n) the set of all functions
with domain {0, 1}m and range {0, 1}n. For a string X of ℓ bits, we let X[i]
denote the ith bit of X for i = 0, . . . , ℓ−1 (starting from the left) and X[i . . . j] =
X[i]∥X[i + 1]∥ . . . ∥X[j] for 0 ≤ i < j < ℓ. We let msbℓ(X) = X[0 . . . (ℓ − 1)]
denote the ℓ leftmost (most significant) bits of X and lsbr(X) = X[(|X| −
r) . . . (|X| − 1)] the r rightmost (least significant) bits of X, such that X =
msbχ(X)∥lsb|X|−χ(X) for any 0 ≤ χ ≤ |X|. Given an xn-bit string X, we let

X1, . . . , Xx
n←− X denote a partitioning of X into n-bit blocks, such that |Xi| = n

for i = 1, . . . , x.

Miscellaneous. The symbol ⊥ denotes an error signal, or an undefined value.
We denote by X ←$ X , a sampling of an element X from a finite set X following
the uniform distribution. We use lexicographic comparison of tuples of integers;
i.e. (i′, j′) < (i, j) iff i′ < i or i′ = i and j′ < j. We denote the set of natural
numbers by N. For a matrix M , we use M [ij] to denote the ijth entry of M .
For equations Eis with 1 ≤ i ≤ a (for some a ∈ N), we use the indexed set
S = {Ei|1 ≤ i ≤ a} to denote the system of equations Eis.

3 Key Derivation Function

The goal of a KDF is to derive one or more cryptographically secure secret keys (of
any fixed length) from a source of initial keying material (IKM) that can contain
a good amount of randomness but is not distributed uniformly. The notion of
cryptographically secure keys is usually associated with pseudorandom keys,
i.e. keys that are computationally indistinguishable from a uniformly random
string of the same length. Formally, a source of IKM can be defined as follows.

Definition 1 (Source of IKM [28]). A source of initial keying material (or
simply source) Σ is a two-valued probability distribution (Z, CZ) generated by an
efficient probabilistic algorithm (we will refer to both the probability distribution
as well as the generating algorithm by Σ).

A KDF function tackles the case when the initial keying material is not pseudo-
random or uniformly random, e.g. the initial keying material is obtained from a
weak process that uses renewable sources of randomness, a weak random number
generator, random sampling over a group or Diffie-Hellman values computed in

Skye KDF and its Application to Signal 7

a (key-exchange) protocol. In these settings a KDF function is constructed using
the so-called extract-then-expand paradigm.

3.1 Extract-then-Expand Paradigm

A KDF constructed under the extract-then-expand paradigm is defined via its
two components. The first one is a randomness extractor Ext that extracts a
fixed-length pseudorandom key K from an “imperfect” source of initial keying
material. The second component is a randomness expander Exp that expands
the key K to a variable-length output (required cryptographic key material).
The latter is usually built using a regular pseudorandom function (PRF) with
output extension via counter or feedback encryption modes [28,40].

An extractor Ext is supposed to produce “close-to-random” outputs in a
computational or statistical sense, from an input that is sampled from the cor-
responding source key material distribution. An extraction process may have an
additional non-secret input or salt value, that is either randomized or kept con-
stant. When the salt value is constant the extractor and the corresponding KDF
are called deterministic extractor and deterministic KDF, respectively. The ex-
pander function Exp uses the pseudorandom key K that is output from the Ext
and produces cryptographic keys Kkdf of a specified length. The function Exp
takes the output length parameter as one of the inputs.

A KDF scheme is formally defined over the following inputs: the source key
material Z, the extractor salt salt (may be null or constant), the length ℓ of key
bits to be produced by KDF, and a context variable or auxiliary info string γ
(may be null). The latter string should include key-related information that is
uniquely (and cryptographically) bound to the produced output. For example,
it may include, information about the application or protocol calling the KDF,
session-specific information like nonces, time, session identifiers, etc. The KDF
evaluation is defined as:

K = Ext(salt;Z) ,

Kkdf = Exp(K; γ; ℓ) .

HKDF key derivation function. The HKDF [28] is a generic KDF instanti-

ated with HMAC following the extract-then-expand approach. In the extraction
phase a pseudorandom key K is derived from an initial keying material IKM
and a randomly chosen salt value (optional) as following

K = HMAC(salt, IKM).

In the expansion phase the HMAC is applied again to generate the final output
Kkdf = K1∥K2∥ . . . ∥Kt[1 . . . ℓ] (for some integer t defined as ⌈ℓ/nHMAC⌉ where ℓ
is the desired output length of HKDF and nHMAC is the output size of HMAC)
as

K1 = HMAC(K, γ∥0) ,
Ki+1 = HMAC(K,Ki∥γ∥i) , 1 ≤ i < t .

Here γ denotes the context variable.

8 A.S. Bhati, A. Dufka, E. Andreeva, A. Roy and B. Preneel

3.2 Deterministic Multi-sample KDF

We call a KDF multi-sample if it can take multiple independent samples from its
input source altogether and can combine those to provide a relatively large and
highly random output with the same or increased security than its single-sample
variant.

Formally, a deterministic multi-sample KDF scheme Π : ({0, 1}∗)v × Γ ×
N → {0, 1}∗ takes three arguments; a set Z of v values Zis (binary strings)
sampled from a source of keying material (defined in Def. 1), a context variable
or auxiliary info γ (optional, i.e., can be set to the null string or a constant) and
the desired output length ℓ. The function returns an ℓ-bit binary string Kkdf .
HKDF [28] can be seen as an example of a deterministic multi-sample KDF
scheme when its salt value is set to a constant.

4 KDF calls in the Signal Protocol

The Signal Protocol uses the Double Ratchet algorithm [35], the X3DH
(triple Elliptic-curve Diffie–Hellman) handshake [36], the key derivation func-
tion HKDF [28], and an AEAD mode as cryptographic functions to achieve
security. The popular variant of the Signal Protocol with 128-bit security uses
the concrete instances of Curve25519 [11], AES-256, and HMAC-SHA256 as its
underlying cryptographic primitives.

(a)

KDF type Input type
Corr. argument

Size (in bits)
in HKDF

KDF1
Info value γ context variable 256
X3DH output IKM 256 × (3 or 4)
Null string salt 256

KDF2
Null string context variable 256

Ephemeral DH key IKM 256
root key salt 256

KDF3
Null string context variable 256
constant IKM 256
chain key salt 256

(b)

Fig. 1: (a) The three types of KDF calls in the Signal Protocol. Here IKM rep-
resents the initial keying material which is defined as the concatenation of (3
or) 4 (depending upon the availability of the corresponding one-time prekeys for
DH4, see [35]) DH shared secrets from the X3DH handshake. (b) Types and
sizes of Signal’s KDF’s inputs in terms of HKDF-HMAC-SHA-256’s arguments.

Skye KDF and its Application to Signal 9

The Signal Protocol as defined in [35] makes KDF calls for three different
purposes (see Fig. 1a): 1. to generate a root key from the X3DH outputs and
the info value γ; 2. to generate a chain key, a header encryption key and
a new root key from the present root key and an ephemeral DH shared
secret key; and 3. to generate a message key and a new chain key from the
old chain key and a predefined constant. These three processes are each realized
by a KDF which we denote here by KDF1, KDF2 and KDF3, respectively. The
main differences between those lie in the types and sizes of their inputs and
outputs. Furthermore, KDF1 is used first and only once in a session (between
two users) to generate the initial root key.

Later, when a user sends s > 0 many concurrent messages to another user,
the root key is used along with a fresh DH shared secret as an input to KDF2
to produce a chain key and update the root key. This call is then followed by s
many iterative KDF3 calls with the ith chain key as input to generate the ith

message keys and the i + 1th chain key for 1 ≤ i ≤ s. Fig. 1a illustrates the
sequence of calls with its input and output values.

Current implementation libraries [2] of Signal Protocol use HKDF [28] for
each of these KDF calls. When instantiated with HKDF, the type and size of
each input of Signal’s KDF calls in terms of HKDF’s arguments is provided in
Table 1b (for 128-bit secure version).

Skye as a (more efficient) alternative to HKDF for Signal.

I. For all KDF1 calls in Signal Protocol, the salt values for HKDF are set to
a constant (null string) and with that the underlying SHA-256 compression
function of HKDF is treated as a random oracle (RO) to achieve the claimed
security level (see Lemma 10 and its following paragraphs in [28]). While this
is a requirement for general HKDF input sources, it might be possible to relax
this RO requirement for the underlying primitives in Signal.

The reliance on specific randomness sources like the one used for the X3DH
handshakes aids towards a simplified and efficient extraction KDF phase in Sig-
nal. Note that such possibility is discussed in [28]. In the expansion phase on the
other hand, one can benefit both security- and efficiency-wise from an in-built ex-
panding cryptographic primitive with pseudorandom properties (indistinguisha-
bility from a set of random functions or permutations), such as the ones captured
by the forkcipher [8] (e.g., ForkSkinny [8]; based on the lightweight ISO standard
SKINNY [9]), multiforkcipher [6] and expanding PRF [7] (e.g., Butterknife [7];
based on AES and Deoxys-BC [26]) notions. Note that HKDF currently uses a
“compressing” primitive instead (HMAC-SHA-256) in a key feedback mode for
the expansion phase.

II. Fig. 1a clearly shows that only the KDF1 call requires the use of both
the randomness extraction and expansion functions. The calls to KDF2 and
KDF3 are always made over pseudorandom key inputs that are generated by
the prior KDF calls. More specifically, the root keys that are fed to KDF2 calls
are pseudorandom keys as they are generated by the KDF1 calls and the chain
keys that are fed to KDF3 calls are pseudorandom keys as they are generated

10 A.S. Bhati, A. Dufka, E. Andreeva, A. Roy and B. Preneel

by the KDF2 calls. In such cases, the extraction phase becomes redundant and
the HKDF for KDF2 and KDF3 can be replaced by calling a fast and secure
PRF (using the pseudorandom keys) that will provide the required expansion.

Addressing the above points, we propose Skye – a new KDF which improves
upon HKDF in the Signal Protocol. In fact, we replace HKDF with Skye (as
a KDF for the KDF1 and as its expanding component Exp for the KDF2 and
KDF3 calls) and as a consequence we improve the performance of Signal Pro-
tocol by a very significant margin with achieving 128-bit security level. In the
following sections, we define Skye and provide our software performance compar-
ison (with HKDF) results. For simplicity, we limit our discussion to the 128-bit
secure variant of the Signal protocol. Our results can be analogously used for
the stronger variant of the protocol with 224-bit security.

5 Skye: An Expanding PRF based KDF

In this section, we define Skye, a source-specific fast key derivation function for
the Signal protocol. Skye’s design uses an expanding pseudorandom function
(instead of a compression function) as the underlying primitive. An expanding
pseudorandom function PRFs is a symmetric primitive that transforms a fixed
length (2n-bit) input X into a larger fixed-length (sn-bit with s ≥ 2) output Y
via a secret key K of k bits. Formally, PRFs is defined as:

PRFs : {0, 1}k × {0, 1}2n → {0, 1}sn

Let K denote the key space {0, 1}k in the rest of the paper.

PRF security definition. We now recall the standard security definition of
prf security for any expanding PRF PRFs.

Definition 2 (PRF Advantage). For PRFs : {0, 1}k×{0, 1}2n → {0, 1}sn, let
A be an adversary whose goal is to distinguish PRFs(K, ·) and a uniform random
function R(·) : {0, 1}2n → {0, 1}sn by their oracle access. The advantage of A
against the prf-security of PRFs is then defined as

Advprf
PRFs

(A) =
∣∣Pr[K ←$ K : APRFs(K,·) ⇒ 1]

−Pr[R←$ Func(2n, sn) : AR(·) ⇒ 1]
∣∣.

Description of Skye. Skye is a deterministic multi-sample KDF that follows
the extract-then-expand approach. For extraction and expansion it uses a deter-
ministic source-specific extractor DExtf (which we instantiate with DExtlsb for
DH-source based applications such as the Signal Protocol) and a randomness
expander (variable output length PRF) FExp, respectively.

Skye in Signal. The inputs to Skye in Signal are:

Skye KDF and its Application to Signal 11

– the set Z of v = 3 or 4 (depending on the availability of the correspond-
ing one time prekeys, see [35]) independent samples DHi (i = 1, . . . , v) of
Diffie-Hellman (DH) shared secrets from the source group G defined over
Curve25519 where each sample is of length 2n;

– the auxiliary info γ ∈ {0, 1}2n;
– ℓ ∈ N denoting the desired output length;

Skye outputs Kexp ∈ {0, 1}ℓ (as shown in Fig. 2).

Skye[PRFs]

Fig. 2: Skye KDF in the context of Signal Protocol. See Fig. 3 and 4a for the
internals of functions DExtlsb and FExp.

The DExtlsb in Skye takes the inputs Z and an integer k denoting the output
size of DExtlsb. It then produces a k-bit output Kext. Then, Kext together with γ
and ℓ are given as input to the FExp. The FExp using a fixed PRFs (with key size
k, input size 2n and output size sn) produces the ℓ-bit Kexp. The description of
DExtlsb and FExp are outlined in Fig. 3 and 4a respectively.

Fig. 3: DExtlsb: A deterministic extractor that can extract up to 212 bits of
randomness with 128 bits of security from 3 or 4 random, independent and fresh
DH shared secrets that are X3DH outputs over Curve25519.

12 A.S. Bhati, A. Dufka, E. Andreeva, A. Roy and B. Preneel

(a)

FExp(K,γ, ℓ)

//K ∈ K, γ ∈ {0, 1}2n, ℓ ∈ N

K1,K2, . . . ,Ks ← PRFs(K, γ), jlast ← ⌊⌈ℓ/n⌉/s⌋, slast ← ⌈ℓ/n⌉ − jlasts

for j in [0...jlast − 2] do

K(j+1)s+1,K(j+1)s+2, . . . ,K(j+2)s ← PRFs(K,K1∥(K2 ⊕ ⟨j⟩))
Kjlasts+1,Kjlasts+2, . . . ,K⌈ℓ/n⌉ ← PRFslast(K,K1∥(K2 ⊕ ⟨jlast⟩))
Kexp ← K1∥ . . . ∥K⌈ℓ/n⌉[1 . . . ℓ]

return Kexp

(b)

Fig. 4: (a) FExp mode of randomness expansion. Here K denotes the secret key
to the PRFs and ⟨j⟩ is a suitable n-bit binary encoding of j (e.g., 0n−⌈log2(j)⌉∥j).
Here each concatenation separates n-bit (block size) strings. (b) FExp mode
pseudocode.

Parameters Argument types Sizes

set Z DExtlsb input 256 × (3 or 4) bits

Kext DExtlsb output k = 128 bits

info value γ FExp input 256 bits

Kexp FExp output ℓ bits

Table 1: Parameter sizes of input-output arguments in DExtlsb and FExp compo-
nents of Skye[ButterKnife].

We note that although in Fig. 2 k seems as an external input to the underlying
block DExtlsb, for a fixed PRFs it is fixed to its keysize. Hence, it is not considered
as a part of the global inputs to Skye[f,PRFs]. For simplicity, we also drop f
from the global inputs (hence denoting only Skye[PRFs]) whenever it is fixed to
lsb i.e. when working with DH-sources.

Why instantiate with ButterKnife [7]?
The PRFs in Skye is instantiated with ButterKnife (where n = 128 bits and s = 8)
for the following reasons:

Skye KDF and its Application to Signal 13

– It is based on AES and Deoxys-BC [26] (one of the CAESAR [10] winners)
and hence can make use of the AES native instructions (NI) on all supporting
processors.

– It provides a very large expansion of s = 8.
– Its design structure provides efficient key-scheduling [7] that allows to save

the frequent cost of key scheduling.
– The construction comes with extensive cryptanalysis [7] as well as a proof

of security [7]. Further, its security strength is supported by the extensive
cryptanalytic results of AES-PRF [21,38] and Deoxys-BC [17, 26,30,44].

The parameter sizes of DExtlsb and FExp with ButterKnife are described in Ta-
ble 1.

6 Software Performance of Skye

In this section, we present the performance evaluation of our implementation of
Skye in comparison to HKDF both in an isolated setting and integrated within
the current Signal Protocol implementation [2]. In measurements, we use the
Rust implementation of HKDF, currently used in the Signal Protocol implemen-
tation. Our implementation of Skye is also done in Rust, and it is instantiated
with ButterKnife implementation in C. We present measurements on the x86 64
platform and consider the performances both with and without using relevant
instruction set extensions (AES-NI and SHA-NI). All measurements were per-
formed with AMD Ryzen 7 5800X CPU.

6.1 Isolated Performance

To provide a direct performance comparison, we measured the time5 required to
perform execution of what is needed in Signal Protocol to send up to n messages
in a sequence. This benchmark includes the computation of KDF1, KDF2, and
then n executions of KDF3, but it does not include the time needed to compute
the inputs to the key derivation function (i.e., they are taken as constants), nor
the time required to perform any follow-up operations like message encryption
with the derived key.

The results of the measurement are shown in Table 2. On average, implemen-
tation with AES-NI and SHA-NI extensions enabled achieved at least 91% (or
≥11x) speedup, while implementation without these extensions achieved at least
76% (or ≥4x) speedup. On platforms that do support AES-NI but not SHA-NI6,
the achieved speedup is at least 98% (or ≥47x) on average, as HKDF cannot
utilize AES-NI instructions, but Skye instantiated with ButterKnife can.

5 We measure wall-clock time with ns precision to be consistent with benchmarks
present in the Signal Protocol implementation.

6 SHA-NI support was released for public markets in 2017-18 with Intel’s Goldmont
microarchitecture. All processors and devices before that and many after that do
not have the support for SHA-NI.

14 A.S. Bhati, A. Dufka, E. Andreeva, A. Roy and B. Preneel

n Skye HKDF Skye HKDF
with NI with NI without NI without NI

1 157 1739 1794 7404

2 218 2595 2666 11014

3 273 3459 3542 14640

4 336 4318 4414 18275

5 389 5179 5289 21901

6 453 6035 6164 25535

7 505 6894 7037 29160

8 570 7753 7919 32785

9 622 8617 8787 36406

10 688 9470 9667 40036

Table 2: The mean time (in ns) required to generate n message keys using Skye
and HKDF with and without support for AES-NI and SHA-NI extensions. The
measurements were repeated 104 times.

6.2 Performance within Signal

To evaluate the real performance gain of employing Skye in the Signal Protocol,
we integrated Skye within the current Signal Protocol implementation [2]. First,
we present the results from extended benchmarks of the original Signal code. In
these settings, we assume that session initialization has already been performed
(this includes the one time cost of X3DH computation and KDF1 call), and we
measure the subsequent communication.

We note that Signal library also supports group messaging however, each
group message is handled as a direct message to each receiver in the group. In
other words, if there are N members in the group, signal client sends N messages
individually encrypted with the derived ratchet key of each participant. Hence,
we stick to two-party messaging for analyzing performance in both direct and
group messaging.

One-way messaging: In this setting, we cover a scenario in which one party
is sending messages to another party in sequence without receiving any reply
in between the messages. Fig. 5a presents the results of measuring the time
it takes the party to encrypt n messages.7 The relative speedup was mostly
independent of n and was on average equal to 38% with NI instructions, 47%
without NI instructions, and 64% with AES-NI but not SHA-NI8. For complete
measurements results, see Table 4 in App. F.

Both-way messaging: Since the previous setting does not include the com-
putational cost of DH-ratchet that occurs in bidirectional communication, we

7 We use one block test messages of size 128 bits (i.e. 16 characters).
8 Note that in this case AES-NI and SHA-NI were also used for message encryption
and authentication so this number (64%) cannot be computed from the figure and
is based on the full measurement.

Skye KDF and its Application to Signal 15

also present results from the following setting: a party sends n messages (in se-
quence) to another party, which replies with n messages. In Fig. 5b, we present
the time required to encrypt and decrypt these sent and received messages, re-
spectively. Since the DH computation cost diminishes the impact of the rest of
the computation (especially when the number of made KDF calls is very low),
we gain only around 3% with single message i.e. n = 1 for the implementation
with NI instructions, but we emphasize that (as expected) with more messages,
the speedup easily improves and tends towards the results of earlier experiment
of one-way messaging. For example, the speedup quickly improves here to 12%
for n = 10. Similarly, without NI, instructions we gain a speedup of around 9%
with n = 1, and with n = 10, it reaches to 27%. And lastly, with the partial
extension support (with AES-NI but not SHA-NI) we get 11% with n = 1 that
goes to 36% with n = 10. For complete measurements results, see Table 5 in
App. F.

Speedup due to the use of expanding PRF. In the unidirectional experi-
ment, 81%-93% of the total performance gain is due to the use of an expanding
PRF (ButterKnife) in place of a compression function and the rest 19%-7% is
due to the replacement of KDF2 and KDF3 calls by simply the expander func-
tion FExp. Similarly, in the bidirectional experiment, with 10 messages, 78%-86%
of the total performance gain is due to the use of an expanding PRF and the
rest 22%-14% is due to the KDF2 and KDF3 replacements which illustrates the
advantage of adding an expanding PRF.

2 4 6 8 10
Messages

0

10

20

30

40

50

60

T
im

e
(µ

s)

HKDF (without NI)

Skye (without NI)

HKDF (with NI)

Skye (with NI)

(a)

2 4 6 8 10
Messages

200

250

300

350

400

450

500

T
im

e
(µ

s)

HKDF (without NI)

Skye (without NI)

HKDF (with NI)

Skye (with NI)

(b)

Fig. 5: (a) The mean time (in µs) required to encrypt n messages in the Signal
Protocol implementation using Skye and HKDF. (b) The mean time (in µs)
required to encrypt (on sender side) then decrypt (on receiver side) n messages,
and then encrypt (on receiver side) and decrypt (on sender side) another n
messages in the Signal Protocol implementation using Skye and HKDF. In both
cases, the measurements were performed for variants with and without AES-NI
and SHA-NI support. The encrypted messages were of less than 16 characters.
All measurements were repeated 103 times.

16 A.S. Bhati, A. Dufka, E. Andreeva, A. Roy and B. Preneel

We now provide some basic definitions contributing towards the full design
specification and security analysis of Skye.

7 Randomness Extraction Phase

We first recall some preliminary definitions that are required for presenting our
results.

Definition 3 (Statistical Distance). Let X and Y be two random variables
taking values from a finite set X . The statistical distance between X and Y is
the value of the following expression:

SD(X,Y) =
1

2

∑
x∈X
|Pr[X = x]− Pr[Y = x]| .

7.1 Elliptic Curve Decisional Diffie-Hellman (ECDDH) Problem [12]

Let G be a public cyclic subgroup (of size a prime q) of an elliptic curve group
E(Fp) over the finite field Fp of size prime p. Let P be a randomly chosen
generator of G, then for some secret and randomly chosen a, c ∈ Z∗

q and a
randomly chosen Q ∈ G, it is hard to determine whether Q = acP or Q ̸= acP
when provided with P, aP, cP and Q. Formally, we define the advantage of an
adversary A against solving ECDDH in G as

Advecddh
G (A) = |Pr[A(P, aP, cP, acP) = 1]

− Pr[A(P, aP, cP,Q) = 1]|

where the probability is over the random choices of a, c ∈ Z∗
q , P,Q ∈ G and

the internal randomness of A.
The ECDDH assumption (with respect to G) states that for all efficient adver-
saries, the value of advantage Advecddh

G (A) is reasonably small.
In the remaining section, we now show how to build a strong extractor from a

weak extractor and provide its security analysis. Formally, an extractor is defined
as follows:

Definition 4 ((X, ϵ)-extractor [28]). Let X be a random variable that takes
values in {0, 1}x and Uw denote a random variable uniformly distributed in
{0, 1}w for some positive integers x and w, where Uw and X are independent.
We say that for some non-negative integer d, the function f : {0, 1}x×{0, 1}d →
{0, 1}w is an (X, ϵ)-extractor if

SD((f(X, salt), salt), (Uw, salt)) ≤ ϵ

where the salt is a d-bit value which is made public upon sampling.

We note that the salt value can be a null string or constant (in case of deter-
ministic extractors). Further, since the salt sampling is independent to f,X and
Uw, for simplicity, we slightly abuse the notation and omit both salt terms from
the second arguments in the expression of Def. 4 . In other words, the expression
becomes

SD(f(X, salt), Uw) ≤ ϵ .

Skye KDF and its Application to Signal 17

7.2 DExt: A Generic and Deterministic Extension Towards
Improved Security of any Extractor

In this section, we describe how to build a stronger extractor DExtf which can
more securely extract the same or larger amount of randomness from a relatively
weak extractor f given multiple independent samples. Our construction uses only
simple and cheap operators like concatenation and XOR to avoid additional
computational cost. Unlike the prior works based on extraction from multiple
sources [18,19,22,27,42], our construction requires independence only within the
samples where the source of these samples can still remain the same. An example
here is multiple independent DH handshakes defined over the same source group.

Definition of DExtf . We provide a definition of the extended extractor DExtf
in Fig. 6 as a function that takes as inputs:

– a set Z = {Z1, Z2, . . . , Zv} of v many z-bit (when represented in binary)
independent samples chosen from some public finite sets S1, S2, . . . , Sv, re-
spectively (all of these sets could be same) for some positive integer z;

– the desired output length k;
– a positive integer e (security parameter);
– a pair (f, ϵ) with f : {0, 1}z × {0, 1}d → {0, 1}w being a (UZi , ϵ)-extractor

for some ϵ > 0, positive integers d and w and all 1 ≤ i ≤ v;
– a d-bit salt value salt (if any).

DExtf then uses the (UZi
, ϵ)-extractor (for all 1 ≤ i ≤ v) f and the function

invXOR (defined in Def. 5) and outputs a k-bit string Kext if k ≤ wb or ⊥
otherwise. Here, UZi denotes a random variable distributed according to the
sampling of Zis from the set Si for all is, respectively, b =

⌊
v−c
⌈c/2⌉

⌋
+ 1 and

c = mini{ci ∈ N| bi(2ϵ)ci ≤ 2−e+1, bi =
⌊

v−ci
⌈ci/2⌉

⌋
+ 1} . We note that the

parameters c, e, b and the function f are important to define DExtf , its design
optimality (Theorem 6) and security (Theorem 1 and its following corollary).

Fig. 6: DExtf : A (UZ , b(2ϵ)
c/2)-extractor (with upto wb bits of extraction) pa-

rameterized by a relatively small and weak (UZi
, ϵ)-extractor f (with upto w

bits of extraction). Here UZi and UZ denote random variables distributed ac-
cording to the sampling of Zis from Sis for all is and of corresponding Z from
the Cartesian product of all Sis, respectively.

18 A.S. Bhati, A. Dufka, E. Andreeva, A. Roy and B. Preneel

Definition 5 (XOR-based Involvement). We define invXOR as a function
that maps a wv-bit binary string a1∥a2∥ · · · ∥av where all ais are w-bit binary
strings (equivalently elements of F2w for some integer w ≥ 0) and an integer
c < v to an wb-bit binary string as follows:

invXOR(a1∥a2∥ · · · ∥av, c) = ⊕c
i=1ai∥ ⊕i=c+⌈c/2⌉

i=1+⌈c/2⌉ ai∥ · · · ∥ ⊕i=c+(b−1)⌈c/2⌉
i=1+(b−1)⌈c/2⌉ ai

where b = ⌊(v − c)/⌈c/2⌉⌋+ 1 .

We refer the reader to App. B for a detailed analysis and discussion on the (sub-
)optimality of the DExtf construction. This analysis shows that although finding
an optimal extension for randomness extraction over arbitrary values of v, c is
hard, it is possible to construct one for v < 6 (the relevant case in practice) and
DExtf is one example of such extensions.
With all necessary definitions in place, we are now ready to give the formal
security statement of DExtf in Theorem 1.

Theorem 1. Let Z1, Z2, . . . , Zv be v independent z-bit binary strings that are
chosen from the public finite sets S1, S2, . . . , Sv, respectively for some positive
integer z. Let f be a public function with a range in {0, 1}w for some positive
integer w. Let k and c be two positive integers, such that c ≤ v and k ≤ wb where
b = ⌊(v − c)/⌈c/2⌉⌋+1. If there exists an ϵ > 0 such that f is a (UZi

, ϵ)-extractor
for all i then, we have

SD(UD, Uk) ≤
b

2
(2ϵ)c .

Here UZi
is a random variable distributed according to the sampling of Zis in

the set Si. Uk is a random variable uniformly distributed over {0, 1}k. UD is a
random variable distributed according to the outputs of DExtf (of size k bits)
when provided with Z1, Z2, . . . , Zv, k, c and salt (if any) as inputs.

Increasing the value of c for a fixed distribution of Zis will increase the security
of the final outputs linearly, but will also hyperbolically decrease the maximum
possible length of the final outputs. This trade-off is important and explains why
it is good to leave c a free variable in the theorem (this can later be defined ac-
cording to the requirements of an application). We defer the proof of Theorem 1
to App. C.1.

7.3 DExtf Instantiation based on msb/lsb Function

In this section, we show that for applications like the Signal Protocol where the
KDF source of inputs is a subgroup of an elliptic curve group and the input
distribution is computationally indistinguishable from the uniform distribution
over the source, one can instantiate the underlying function f of DExtf by the
functions msb or lsb. More concretely, we recall one of the two main theorems
from the work of Chevalier et al. [15] on the security of lsbk function as a deter-
ministic extractor (this function does not require any additional salt during its
evaluation) and combine it with Theorem 1 to amplify the extracted output’s
size and security.

Skye KDF and its Application to Signal 19

Theorem 2 (msb/lsb extraction, Theorem 14, [15]). Let p be an ℓp-bit
prime, G a subgroup of E(Fp) of cardinality q generated by P0, q being an ℓq-
bit prime, UG and Uk be two random variables uniformly distributed in G and
{0, 1}k, respectively for some positive integer k. Then we have

SD(lsbk(UG), Uk) ≤ 2(k+ℓp+log2 ℓp)/2+3−ℓq .

By combining the results from Theorem 1 and 2 we obtain the following corollary:

Corollary 1. Let p be an ℓp-bit prime, G a subgroup of E(Fp) of cardinal-
ity q generated by P0, q being an ℓq-bit prime, UD a random variable dis-
tributed according to the outputs of DExtlsb for v many chosen uniform and
independent samples from G with two positive integers k and c(< v) and
b = ⌊(v − c)/⌈c/2⌉⌋ + 1. Let Uk be a random variable uniformly distributed in
{0, 1}k. We have SD(UD, Uk) ≤ 2−e for some positive integer e if

2ℓq − ℓp − log2 ℓp − 6 ≥ 2(e+ log2 b− 1)

c
+

⌈
k

b

⌉
.

In the concrete settings of the Signal Protocol, we have the source group G
defined as the cyclic subgroup of Curve25519 [11] using the base point x = 9 (one
of the NIST standards for ECC [14] targeting 128-bit security) with ℓp = 256 bits
and 253 ≥ ℓq ≥ 252. Further, under the ECDDH [12] assumption (see Sec. 7.1),
the X3DH [36] handshake over G provides at least 3 uniform and independent
group elements as DH shared secrets. Hence, from Corollary 1, we have that
DExt can output upto k = 212 bits of randomness with security of e = 128 bits
when provided with fresh, independent and random X3DH outputs with the
least significant byte (a.k.a. the clamped [32] byte that contains three fixed bits
as 0s) dropped.

Note that with the results from [15] (Theorem 2) one can achieve the same
amount of randomness, i.e. k ≈ 212 bits by concatenating the outputs of f = lsb,
but with at most security of e = 82 bits when provided with at least v = 3
uniform and independent samples from the group G.

Let us consider the following example to clarify a different implication of this
result. For a fixed sample size v = 10, source settings p = 256 and q ≥ 252, and
a security parameter e = 80, the input size that can be extracted in the final
concatenated output (computed as concatenation of the outputs of f = lsb) is
only ≈ 26% (according to the results of [15]). On the other hand, the same is
improved to 52% (according to our results) when evaluated with DExtlsb under
the same settings.

To summarize, for a given X3DH output with 3 (resp. 4) random, in-
dependent and fresh DH samples (defined after dropping the fixed/clamped
byte) as DH1∥DH2∥DH3 (resp. DH1∥DH2∥DH3∥DH4) over Curve25519,
we have shown that under the ECDDH assumption the string lsb⌈k/2⌉(DH1 ⊕
DH2)∥lsbk−⌈k/2⌉(DH2 ⊕ DH3) (resp. lsb⌈k/3⌉(DH1 ⊕ DH2)∥lsb⌈k/3⌉(DH2 ⊕
DH3)∥lsbk−2⌈k/3⌉(DH3⊕DH4)) is indistinguishable from a k-bit uniform ran-
dom string with a security of at least 128 bits when k ≤ 212. A simplified version

20 A.S. Bhati, A. Dufka, E. Andreeva, A. Roy and B. Preneel

of DExtf in the Signal Protocol with f defined by the lsb function is provided in
Fig. 3.

8 Randomness Expansion Phase

Randomness expansion or key-stream generation is a process to generate a large
amount of random bits from relatively smaller random and secret keys. Formally,
a randomness expander scheme Π : K × Γ × N → {0, 1}∗ takes a k-bit key
K ∈ K, the desired output length ℓ ∈ N and an additional arbitrary but fixed
length binary string γ ∈ Γ as inputs and returns an ℓ-bit binary string Kexp as
an output.

In [28], two approaches are discussed to construct randomness expanders:
counter and feedback encryption mode style. HKDF uses a randomness expander
that is defined using a key feedback mode over HMAC. HMAC in key feedback
mode performs slow due to the frequent rekeying in HMAC calls (consequence
of using feedback mode) and double hashing per HMAC call (consequence of
using HMAC). In order to avoid these speed breakers, while maintaining 128-bit
security level, we turn to the counter mode-like approach and consider some
built-in expanding primitives such as a PRFs with s ≥ 2 as the underlying
primitive. The known counter mode CTR$ (CTR with random IV) [40] is a
good randomness expander, however, in its original form it accommodates γs
only if they are chosen uniformly at random and are of size n bits (where n is
the underlying block size).

Our proposal FExp is a highly efficient randomness expander that can accom-
modate arbitrary γs of size 2n bits. Further, unlike CTR$ mode which can only
provide n/2 bits of security under the indistinguishability from random strings
IND$ [40] notion, we show that FExp mode (for a given secret random key) pro-
vides full n-bit security under the same security notion. We adjust the notion
under the syntax of a randomness expander scheme and denote it by gexp below.

gexp Security. The security of a randomness expander or in short, Exp scheme
Π is defined with the help of the games gexp-real and gexp-ideal in Fig. 7. The
security of Π is measured as the indistinguishability of its outputs from random
strings in a chosen input attack. More precisely, given Π and an adversary A
who interacts with either gexp-real or gexp-ideal, we define A’s advantage at
breaking the gexp security of Π as:

Advgexp
Π (A) =

∣∣Pr[Agexp-real ⇒ 1]− Pr[Agexp-ideal ⇒ 1]
∣∣ .

8.1 FExp: A PRFs-based Randomness Expander

We provide a definition for our randomness expansion scheme based on an ex-
panding (fixed output length) PRF PRFs.

Definition of FExp. For a fixed expanding PRF PRFs : K×{0, 1}2n → {0, 1}sn
with s ≥ 2, FExp takes in a key K ∈ K, the auxiliary info γ ∈ {0, 1}2n and the

Skye KDF and its Application to Signal 21

desired output length ℓ ∈ N as inputs. It then uses the PRFs as shown in Fig. 4a
and outputs the key-stream Kexp ∈ {0, 1}ℓ.
We give a formal statement of the FExp security and support it with a security
proof. The formal security claim is stated in Theorem 3.

Theorem 3 (Security of FExp). Let PRFs be an expanding pseudorandom
function with a secret and uniform random key K ∈ K and s ≥ 2. Then for any
adversary A who makes at most q FExp queries such that the total number of
PRFs calls induced by all the queries is at most σ =

∑q
i=1 ℓi with ℓi being the

output length (in sn-bit blocks) of ith query, we have

Advgexp
FExp(A) ≤ Advprf

PRFs
(B) + 2q(σ − q)

22n

for some adversary B who makes at most σ queries, and runs in time given by
the running time of A plus γ0 · σ for some constant γ0.

We use combinatorics and reduction to prove Theorem 3 and defer the proof to
App. C.2.

Game gexp-real

//K ←$ {0, 1}k

Oracle E(γ, ℓ)
return Π(K, γ, ℓ)

b← AE

return b

Game gexp-ideal

//K ←$ {0, 1}k

Oracle E(γ, ℓ)
return RFK,γ [1 . . . ℓ]

b← AE

return b

Fig. 7: Games gexp-real and gexp-ideal defining the security of an Exp scheme
Π. Here RFK,γ is a function (independently sampled for every (K, γ)) that out-
puts arbitrary many uniform random bits.

9 Security Analysis of Skye

The security of a KDF scheme depends on the properties of its source of initial
keying material (IKM, Def. 1) from which Z is chosen. We refer the reader to [28]
for various examples of such sources. Although this definition does not specify
the inputs to the Σ algorithm, it provides a pair (Z, CZ) where Z (the sample
set) represents the secret IKM as the input to a KDF, while CZ represents a
set of some auxiliary knowledge about Z (or its distribution). This auxiliary
information is available to the attacker and hence can be used in the security
treatment of a KDF. In other words, a KDF is expected to be “secure” on inputs
Z even when the value CZ is available to the attacker. To exemplify, in a Diffie-
Hellman value Z will consist of a value gxy while CZ could represent the set

22 A.S. Bhati, A. Dufka, E. Andreeva, A. Roy and B. Preneel

{p, q, g, gx, gy}. In a different application, say a random number generator that
works by hashing samples of system events in a computer system, the value CZ
may include some of the sampled events used to generate Z.

Towards defining the security of Skye, we recall the min-entropy and m-
entropy source definitions from [28].

Definition 6 (min-entropy [28]). A probability distribution X has min-entropy
(at least) m if for all a in the support of X and for a random variable X drawn
according to X , Pr(X = a) ≤ 2−m.

Definition 7 (m-entropy source [28]). We say that Σ is a statistical m-
entropy source if for all s and a in the support of the distribution Σ, the condi-
tional probability Pr(Z = s|CZ = a) induced by Σ is at most 2−m. We say that Σ
is a computational m-entropy source (or simply an m-entropy source) if there is
a statistical m-entropy source Σ′ that is computationally indistinguishable from
Σ.

CCS Security. We follow the original CCS-security definition from [16,28] for a
secure KDF with an m-entropy source Σ in the adaptive chosen context informa-
tion (γ) model with a single salt. Our CCS formalization for an m-entropy source
makes use of the two security games ccs-real and ccs-ideal, see Fig. 8 in App. A.
The CCS-security is then defined as the indistinguishability of the KDF gener-
ated outputs Kkdf from truly random strings under a chosen input attack. More
precisely, given a KDF scheme Π and an adaptive adversary A, who interacts
with either ccs-real or ccs-ideal, the A’s advantage at breaking the CCS secu-
rity of Π is defined as AdvCCS

Π (A) =
∣∣Pr[Accs-real ⇒ 1]− Pr[Accs-ideal ⇒ 1]

∣∣ .
9.1 Security of Skye

We now give the Skye security statement in Theorem 4.

Theorem 4 (Security of Skye). Let PRFs : K × {0, 1}2n → {0, 1}sn be an
expanding pseudorandom function with s ≥ 2 and key size k ≤ 212 bits. Let Σ =
(Z, CZ) be an input source. Let Z is sampled from a set containing secret, random,
independent and fresh X3DH handshake outputs computed over the group G,
where G is defined as the cyclic subgroup of Curve25519 using the base point
x = 9 [11]. Then, for all adversaries A who make q Skye queries in at most
σ =

∑q
i=1 ℓi PRFs calls with ℓi being the output length (in sn-bit blocks) of ith

query, we have

AdvCCS
Skye[PRFs](A) ≤ Advprf

PRFs
(B) +Advecddh

G (C) + q

2128
+

2q(σ − q)

22n

for adversaries B and C making at most σ and 4q PRFs and ECDDH (over G)
queries, respectively and running in time given by the running time of A plus
γ0 · σ for some constant γ0.

We defer the proof of Theorem 4 to App. C.3. In our implementation, we
instantiate Skye with PRFs = Butterknife to achieve 128-bit security i.e. n = k =
128.

Skye KDF and its Application to Signal 23

10 Discussion and Future Research

Curve448 and 224-bit security. The Skye’s instantiation defined in this article
for the Signal Protocol specifically targets 128-bit security that is defined us-
ing Curve25519. The 224-bit secure version of the Signal Protocol is based on
Curve448. This rises a natural question of whether the Skye syntax and similar
security proof arguments also works for the 224-bit version of Signal.

We note that the general study of the underlying components of Skye is
directly applicable for constructing 224-bit secure Skye. A 224-bit secure Skye
can be defined with the same syntax, and similar security proof arguments when
Curve25519 is replaced by Curve448. However, we avoid a detailed study of Skye
with Curve448 in this paper as currently no expanding PRF exists with key
security > 128 bits, input size > 256 bits and no ideal cipher or RO assumptions.
With this motivation, we leave the research of finding efficient expanding PRFs
with at least 224 bits of standard model security as an open problem.

Network latency and IoT devices. The changes we are proposing improve
performance on the cryptographic level of the Signal implementation, but the
impact of such computations on the overall performance of modern smartphones
and laptops is low when network latency is included. Nonetheless, this tradeoff
is not the same for all kinds of devices and network setups. Low-performance
hardware, e.g., IoT devices or wireless sensor networks, could greatly benefit
from these improvements, enabling a wider deployment of the Signal protocol.

Energy efficiency. Although we present improved time efficiency as the main
result, an associated benefit is lower energy consumption. Energy savings are rel-
evant even in settings where the network latency overshadows the performance.

Security under compromised X3DH samples. To avoid the reliance on
strong RO assumptions, our present analysis of Skye for Signal application as-
sumes at least 3 uncompromised X3DH keys and that results in stronger standard
model security when compared to HKDF. In the case when there are at most 2
uncompromised X3DH keys (and assuming user doesn’t periodically update the
compromised ones), the security will be achieved by “assuming that the PRFs

behave as an ideal object (RO)” (similarly to the security treatment in [20]).
This analysis is a subject of separate treatment.

Skye applications beyond Signal and DH sources. Our results on the per-
formance of Skye in Signal Protocol indicate that similar applications (that are
based on Signal and X3DH protocol) such as WhatsApp, Facebook Messenger,
Skype, Allo, Status, Secure Chat, Viber, Forsta and Blockchain-based-X3DH
for IoTs should also get significant boost when instantiated with Skye. We leave
their concrete performance analysis to future research.

We also emphasize that Skye is based on a generic design of DExtf and that
its security analysis is not limited to Curve25519 points as input source. Hence,
realizing the potential of Skye beyond DH sources (and finding corresponding
weak extractors fs) can also be considered as an important direction for future

24 A.S. Bhati, A. Dufka, E. Andreeva, A. Roy and B. Preneel

works. This includes exploring its application in the ongoing Message Layer
Security (MLS) [3] and Post-Quantum Signal [13] projects.

On instantiation of PRFs. The security of ButterKnife is argued in detail by the
authors and till date no attack against it is found. However, we emphasize that
beyond the use of ButterKnife, any suitably designed expanding primitive PRFs

in Skye is equally able to provide a secure and efficient alternative to HKDF.
For example, one can also use ForkSkinny but then the gains when compared
with ButterKnife would be significantly less such as half (i.e. up to 64-bits) PRF-
security and slower speed (as ForkSkinny performs slower than ButterKnife and
does not have NI support on regular platforms).

DExt beyond linear systems. The number of extracted bits from DExt and
their security might be improved for the same inputs when non-linear multivari-
ate equations (with the extra cost of field multiplications) are used. Studying
such systems was out of the scope and motivation of this paper and we leave
the design and analysis of further generalized yet efficient DExt-like extensions
as an open problem.

References

1. Messenger secret conversations: Technical whitepaper https://fbnewsroomus.

files.wordpress.com/2016/07/secret_conversations_whitepaper-1.pdf

2. Signal Protocol software libraries Github [accessed on 05/02/2023], https://

github.com/signalapp/

3. The Messaging Layer Security (MLS) Protocol Work in Progress, Internet-Draft,
draft-ietf-mls-protocol-17, 19 December 2022, https://datatracker.ietf.org/

doc/html/draft-ietf-mls-protocol-17

4. Alwen, J., Coretti, S., Dodis, Y.: The Double Ratchet: Security Notions, Proofs,
and Modularization for the Signal Protocol. In: Ishai, Y., Rijmen, V. (eds.) Ad-
vances in Cryptology – EUROCRYPT 2019. pp. 129–158. Springer International
Publishing, Cham (2019)

5. Andrea Piana, Pedro Pombeiro, C.P.O.T.D.E.: Specifications for Status clients -
5/SECURE-TRANSPORT https://specs.status.im/spec/5

6. Andreeva, E., Bhati, A.S., Preneel, B., Vizár, D.: 1, 2, 3, Fork: Counter Mode
Variants based on a Generalized Forkcipher. IACR Trans. Symmetric Cryptol.
2021(3), 1–35 (2021)

7. Andreeva, E., Cogliati, B., Lallemand, V., Minier, M., Purnal, A., Roy, A.: Masked
Iterate-Fork-Iterate: A new Design Paradigm for Tweakable Expanding Pseudoran-
dom Function. Cryptology ePrint Archive (2022)

8. Andreeva, E., Lallemand, V., Purnal, A., Reyhanitabar, R., Roy, A., Vizár, D.:
Forkcipher: a New Primitive for Authenticated Encryption of Very Short Messages.
In: International Conference on the Theory and Application of Cryptology and
Information Security. pp. 153–182. Springer (2019)

9. Beierle, C., Jean, J., Kölbl, S., Leander, G., Moradi, A., Peyrin, T., Sasaki, Y.,
Sasdrich, P., Sim, S.M.: The SKINNY family of block ciphers and its low-latency
variant MANTIS. In: Annual International Cryptology Conference (CRYPTO).
pp. 123–153. Springer (2016)

https://fbnewsroomus.files.wordpress.com/2016/07/secret_conversations_whitepaper-1.pdf
https://fbnewsroomus.files.wordpress.com/2016/07/secret_conversations_whitepaper-1.pdf
https://github.com/signalapp/
https://github.com/signalapp/
https://datatracker.ietf.org/doc/html/draft-ietf-mls-protocol-17
https://datatracker.ietf.org/doc/html/draft-ietf-mls-protocol-17
https://specs.status.im/spec/5

Skye KDF and its Application to Signal 25

10. Bernstein, D.J.: Cryptographic competitions: CAESAR. http://competitions.
cr.yp.to

11. Bernstein, D.J.: Curve25519: new Diffie-Hellman speed records. In: International
Workshop on Public Key Cryptography. pp. 207–228. Springer (2006)

12. Boneh, D.: The Decision Diffie-Hellman problem. In: Buhler, J.P. (ed.) Algorithmic
Number Theory. pp. 48–63. Springer Berlin Heidelberg, Berlin, Heidelberg (1998)

13. Brendel, J., Fiedler, R., Günther, F., Janson, C., Stebila, D.: Post-quantum
asynchronous deniable key exchange and the signal handshake. In: Public-Key
Cryptography–PKC 2022: 25th IACR International Conference on Practice and
Theory of Public-Key Cryptography, Virtual Event, March 8–11, 2022, Proceed-
ings, Part II. pp. 3–34. Springer (2022)

14. Chen, L., Moody, D., Regenscheid, A., Randall, K.: SP800-186, Recommendations
for discrete logarithm-based cryptography: Elliptic curve domain parameters. Tech.
rep., National Institute of Standards and Technology (2019)

15. Chevalier, C., Fouque, P.A., Pointcheval, D., Zimmer, S.: Optimal Randomness
Extraction from a Diffie-Hellman Element. EUROCRYPT 2009 p. 572 (2009)

16. Chuah, C.W., Dawson, E., Simpson, L.: Key derivation function: the SCKDF
scheme. In: IFIP International Information Security Conference. pp. 125–138.
Springer (2013)

17. Cid, C., Huang, T., Peyrin, T., Sasaki, Y., Song, L.: A security analysis of De-
oxys and its internal tweakable block ciphers. IACR Transactions on Symmetric
Cryptology pp. 73–107 (2017)

18. Ciss, A.A.: Two-sources randomness extractors for elliptic curves. arXiv preprint
arXiv:1404.2226 (2014)

19. Ciss, A.A., Sow, D.: Two-Source Randomness Extractors for Elliptic Curves for
Authenticated Key Exchange. In: International Conference on Codes, Cryptology,
and Information Security. pp. 85–95. Springer (2017)

20. Cohn-Gordon, K., Cremers, C., Dowling, B., Garratt, L., Stebila, D.: A For-
mal Security Analysis of the Signal Messaging Protocol. In: 2017 IEEE Eu-
ropean Symposium on Security and Privacy (EuroS P). pp. 451–466 (2017).
https://doi.org/10.1109/EuroSP.2017.27

21. Derbez, P., Iwata, T., Sun, L., Sun, S., Todo, Y., Wang, H., Wang, M.: Crypt-
analysis of AES-PRF and its dual. IACR Transactions on Symmetric Cryptology
2018(2) (2018)

22. Dodis, Y., Elbaz, A., Oliveira, R., Raz, R.: Improved randomness extraction from
two independent sources. In: Approximation, randomization, and combinatorial
optimization. Algorithms and techniques, pp. 334–344. Springer (2004)

23. Fouque, P., Pointcheval, D., Stern, J., Zimmer, S.: Hardness of Distinguishing the
MSB or LSB of Secret Keys in Diffie-Hellman Schemes. In: Bugliesi, M., Preneel,
B., Sassone, V., Wegener, I. (eds.) Automata, Languages and Programming, 33rd
International Colloquium, ICALP, Venice, Italy, 2006, Part II. Lecture Notes in
Computer Science, vol. 4052, pp. 240–251. Springer (2006). https://doi.org/10.
1007/11787006_21, https://doi.org/10.1007/11787006_21

24. Gilbert, E.N.: A comparison of signalling alphabets. The Bell system technical
journal 31(3), 504–522 (1952)

25. Grassl, M.: Bounds on the minimum distance of linear codes and quantum codes.
Online available at http://www.codetables.de (2007), accessed on 2021-06-25

26. Jean, J., Nikolić, I., Peyrin, T., Seurin, Y.: Submission to CAESAR : Deoxys v1.41
(October 2016), http://competitions.cr.yp.to/round3/deoxysv141.pdf

http://competitions.cr.yp.to
http://competitions.cr.yp.to
https://doi.org/10.1109/EuroSP.2017.27
https://doi.org/10.1109/EuroSP.2017.27
https://doi.org/10.1007/11787006_21
https://doi.org/10.1007/11787006_21
https://doi.org/10.1007/11787006_21
https://doi.org/10.1007/11787006_21
https://doi.org/10.1007/11787006_21
http://www.codetables.de
http://competitions.cr.yp.to/round3/deoxysv141.pdf

26 A.S. Bhati, A. Dufka, E. Andreeva, A. Roy and B. Preneel

27. Kolyang, D., Sow, D., Ciss, A.A., Tchapgnouo, H.B.: Two-sources randomness
extractors in finite fields and in elliptic curves. African Journal of Research in
Computer Science and Applied Mathematics 24 (2017)

28. Krawczyk, H.: Cryptographic extraction and key derivation: The HKDF scheme.
In: Annual Cryptology Conference. pp. 631–648. Springer (2010)

29. Krawczyk, H., Bellare, M., Canetti, R.: HMAC: Keyed-hashing for message au-
thentication (1997)

30. Liu, Y., Shi, B., Gu, D., Zhao, F., Li, W., Liu, Z.: Improved meet-in-the-middle
attacks on reduced-round Deoxys-BC-256. The Computer Journal 63(12), 1859–
1870 (2020)

31. Lund, J.: Signal partners with Microsoft to bring end-to-end encryption to Skype
https://signal.org/blog/skype-partnership/

32. Madden, N.: What’s the Curve25519 clamping all about? https://neilmadden.

blog/2020/05/28/whats-the-curve25519-clamping-all-about/

33. Marlinspike, M.: Open whisper systems partners with Google on end-to-end en-
cryption for Allo https://signal.org/blog/allo/

34. Marlinspike, M.: WhatsApp’s Signal Protocol integration is now complete https:

//signal.org/blog/whatsapp-complete/

35. Marlinspike, M., Perrin, T.: The double Ratchet algorithm, November
2016 https://whispersystems.org/docs/specifications/doubleratchet/

doubleratchet.pdf

36. Marlinspike, M., Perrin, T.: The X3DH key agreement protocol. Open Whisper
Systems (2016), https://signal.org/docs/specifications/x3dh/x3dh.pdf

37. Maurer, U., Pietrzak, K., Renner, R.: Indistinguishability amplification. In: Ad-
vances in Cryptology-CRYPTO 2007: 27th Annual International Cryptology Con-
ference, Santa Barbara, CA, USA, August 19-23, 2007. Proceedings 27. pp. 130–
149. Springer (2007)

38. Mennink, B., Neves, S.: Optimal PRFs from blockcipher designs. IACR Transac-
tions on Symmetric Cryptology pp. 228–252 (2017)

39. Perrin, T.: The Noise protocol framework (2016), noiseprotocol.org
40. Rogaway, P.: Evaluation of some blockcipher modes of operation. Cryptography

Research and Evaluation Committees (CRYPTREC) for the Government of Japan
(2011), https://crossbowerbt.github.io/docs/crypto/rogaway_modes.pdf

41. Ruggeri, A., Celesti, A., Fazio, M., Galletta, A., Villari, M.: BCB-X3DH: a
Blockchain Based Improved Version of the Extended Triple Diffie-Hellman Pro-
tocol. In: 2020 Second IEEE International Conference on Trust, Privacy and
Security in Intelligent Systems and Applications (TPS-ISA). pp. 73–78 (2020).
https://doi.org/10.1109/TPS-ISA50397.2020.00020

42. Tchapgnouo, H.B., Ciss, A.A.: Multi-sources Randomness Extraction over Finite
Fields and Elliptic Curve. arXiv preprint arXiv:1502.00433 (2015)

43. Varshamov, R.R.: Estimate of the number of signals in error correcting codes.
Docklady Akad. Nauk, SSSR 117, 739–741 (1957)

44. Zhao, B., Dong, X., Jia, K.: New related-tweakey boomerang and rectangle attacks
on Deoxys-BC including BDT effect. IACR Transactions on Symmetric Cryptology
pp. 121–151 (2019)

https://signal.org/blog/skype-partnership/
https://neilmadden.blog/2020/05/28/whats-the-curve25519-clamping-all-about/
https://neilmadden.blog/2020/05/28/whats-the-curve25519-clamping-all-about/
https://signal.org/blog/allo/
https://signal.org/blog/whatsapp-complete/
https://signal.org/blog/whatsapp-complete/
https://whispersystems.org/docs/specifications/doubleratchet/doubleratchet.pdf
https://whispersystems.org/docs/specifications/doubleratchet/doubleratchet.pdf
https://signal.org/docs/specifications/x3dh/x3dh.pdf
noiseprotocol.org
https://crossbowerbt.github.io/docs/crypto/rogaway_modes.pdf
https://doi.org/10.1109/TPS-ISA50397.2020.00020
https://doi.org/10.1109/TPS-ISA50397.2020.00020

Skye KDF and its Application to Signal 27

A CCS Security Games

Game ccs-real

//Iγ = {}
//γc = ⊥ until provided by A
(Z, CZ)← Σ //m-entropy source

Oracle Derive(γ, ℓ)

define Iγ = Iγ ∪ {γ}
if γ ̸= γc

return (Π(Z, γ, ℓ), salt)

else //challenge query

return (Π(Z, γ, ℓ), salt)

(γc, ℓc), b← ADerive

//challenge query and the

//final output bit of A
if γc ∈ Iγ

return ⊥
else

return b

Game ccs-ideal

//Iγ = {}
//γc = ⊥ until provided by A
(Z, CZ)← Σ //m-entropy source

Oracle Derive(γ, ℓ)

define Iγ = Iγ ∪ {γ}
if γ ̸= γc

return (Π(Z, γ, ℓ), salt)

else //challenge query

return (RFZ,γ [1 . . . ℓ], salt)

(γc, ℓc), b← ADerive

//challenge query and the

//final output bit of A
if γc ∈ Iγ

return ⊥
else

return b

Fig. 8: Games ccs-real and ccs-ideal defining the CCS-security of a KDF
scheme. Here RFZ,γ is a function (independently sampled for every (Z, γ)) that
outputs arbitrary many uniform random bits and salt denotes the internally
sampled salt value which is used in the queries Derive(·, ·) (Note that this salt
here can be a uniform random string or fixed to some constant or null string.
However, we let its sampling remain general in the security definition).

B (Sub-)Optimality Analysis of DExtf

In this section we provide the security analysis of our proposed extractor and
its instantiation. We start with the basic definitions that are required for the
analyses presented in this section.

28 A.S. Bhati, A. Dufka, E. Andreeva, A. Roy and B. Preneel

Definition 8 (Consistent system). A system of linear equations over a field
F is called consistent if it has at least one solution in F.

Definition 9 (Coefficient matrix). For a given set S of linear equations, the
coefficient matrix CS of S is defined by a matrix with ith row as the coefficients
of the variables in the ith linear equation of the set S.

Definition 10 (Binary linear code). A binary linear code of length n and
rank k is a linear subspace C with dimension k of the vector space Fk

2 where F2

is the binary field. The vectors in C are called codewords.

Definition 11 (Hamming distance). For any binary linear code C, the Ham-
ming distance between any two codewords in C is defined as the number of ele-
ments in which the codewords differ.

Any binary linear code C can be represented by [n, k, d]2 where n is the
length of a codeword in C, d is the minimum of Hamming distances of all pairs
of codewords in C and k is the rank of C. The maximum number of codewords in
any [n, k, d]2 code is denoted by A2(n, d). This implies that k ≤ log2(A2(n, d)).

We now introduce two new definitions called degree of involvement and min-
degree of involvement for the upcoming analysis.

Definition 12 (Degree of involvement). Let S = {Ei|1 ≤ i ≤ a} be a
consistent system of equations of v variables over a field F and let x0 be one
of these v variables then the degree of involvement diS of x0 is defined as the
minimum number of other variables on which the value of x0 depends in S.

To exemplify, consider the following system of one equation with 3 variables
over R, S1 = {x + y + z = 3} where V = {x, y, z}. Clearly, any variable in V
has 2 degrees of involvement as its value depends on the other two variables.
Now, as another example, consider the following system of three equations over
R, S2 = {x+ y+ z = 3, x+ y = 2, z = 1}. Unlike to the previous example, in S2

where z is now fixed by another equation, we have zero degree of involvement
left in the system for z. Similarly, for x and y, the degree of involvement is 1 as
they depend on each other.

Definition 13 (Min-degree of involvement). Let S = {Ei|1 ≤ i ≤ a} be a
consistent system of equations of v variables defined by the set V = {V1, V2, . . . , Vv}
over a field F then the min-degree of involvement (MDI) mdi of S is defined as
the minimum of diS(Vi) for 1 ≤ i ≤ a.

We note that the MDI of a system is not equal to its degree of freedom.
In fact, one can show that the degree of freedom for a system S is equal to
the “maximum” of diS(x) over all variables x in S. However, for this work the
important extremum on these degrees is the minimum defined above as the
MDI of a system. The definition of degree of freedom is provided below for
completeness.

Skye KDF and its Application to Signal 29

Definition 14 (Degree of freedom). Let S = {Ei|1 ≤ i ≤ a} be a system
of linear equations of v variables defined by the set V = {V1, V2, . . . , Vv} over
a field F and let Vf ⊂ V be the largest subset of V such that for all possible
values of the variables of Vf in F, all equations of S holds. We use the term
“free variable” to denote a variable in Vf and the degree of freedom df of S is
defined as df(S) = |Vf |.

Next, we state necessary theorems towards the construction of DExtf . We
emphasize that to extract optimal randomness from a given input a = {ai}vi=1

and c, one would need to find one of the largest system S of linear equations
containing v variables (each variable corresponding to an element in the set a)
with binary coefficients and with mdi(S) = c− 1. Below in Theorem 5 we show
that this problem is equivalent to finding a [v, log2(A2(v, c)), c]2 optimal binary
linear code which has been considered hard for general values of v, c and that
there is no polynomial-time algorithm that can find a [v, log2(A2(v, c)), c]2 code
for arbitrary values of v, c.

Theorem 5. Let Sc be the collection of all consistent systems Sj = {Ej
i |1 ≤

i ≤ aj} of linear equations in v variables defined by the set V = {V1, V2, . . . , Vv}
over the binary field F2w (for some integer w ≥ 0) with binary coefficients and
for each S ∈ Sc we have mdi(S) = c− 1 for some positive integer c ≤ v then for
a system S∗ ∈ Sc such that |S∗| = maxj{aj |Sj ∈ Sc} we have

|S∗| = log2(A2(v, c)) .

Proof of Theorem 5 is straightforward from the fact that the coefficient matrix
CS for any system S ∈ Sc can be equivalently seen as a basis set of codewords
a.k.a. the generator matrix for a [v, |S|, c]2 code. Hence, for S∗ as defined, we
have 2|S

∗| = A2(v, c) and thus the result of the theorem.
We further note that there exists a good lower bound on A2(v, c) called

the Gilbert–Varshamov bound [24, 43] (which states that log2(A2(v, c)) ≥ ⌊v −
log2

∑c−2
i=0

(
v
i

)
⌋ and proves the existence of a [v, |S|, c]2 code with |S| ≥ ⌊v −

log2
∑c−2

i=0

(
v
i

)
⌋), however, there does not exist any deterministic method that

can construct a linear code satisfying the Gilbert–Varshamov (GV) bound.
For our work, we settle with a comparatively loose lower bound of |S| = b =

⌊(v− c)/⌈c/2⌉⌋+1 (which is very close to GV or even optimal for settings where
v is very small and quite loose, otherwise) but with a deterministic algorithm E
that can construct linear codes satisfying this bound (as shown below in Def. 15
and Theorem 6).

Definition 15. E is a deterministic algorithm that, when provided with two in-
tegers v and c ≤ v, first computes a coefficient matrix CS with its ijth entry
CS [ij] defined as

CS [ij] =

{
1 if ⌈c/2⌉(i− 1) + 1 ≤ j ≤ ⌈c/2⌉(i− 1) + c

0 o/w

30 A.S. Bhati, A. Dufka, E. Andreeva, A. Roy and B. Preneel

and then for a variable set {V1, V2, . . . , Vv} with independent variables over the
binary field F2w (for some integer w ≥ 0), it returns the corresponding consistent
system S of CS.

Theorem 6. Every system S returned by the algorithm E as defined above in
Def. 15 has mdi(S) = c− 1.

We defer the proof of Theorem 6 to App. C.4 and provide Table 3 in App.
D showing the differences between log2(A2(v, c)) and b = ⌊(v− c)/⌈c/2⌉⌋+1 for
various values of v and c up to sample sizes v ≤ 10. From the table, one can
infer that our definition of b can be considered very good for small values of v
and even optimal for v ≤ 5 (which is pretty sufficient in practice).

Further, we note that the construction of DExtf allows variable sample sizes,
security parameters and output sizes, therefore, for a deterministic and faster ex-
ecution of this algorithm, we fix b to ⌊(v−c)/⌈c/2⌉⌋+1. However, we recommend
that for applications where sample size, security parameter and output size is
defined only once, one may use a better or even optimal code (i.e. log2(A2(v, c))
instead of b), if exists to extract more randomness with almost the same secu-
rity. We refer the reader to codetables.de [25] for existing tables of optimal
[v, log2(A2(v, c)), c]2 codes for certain v, c settings.

In this paper, b is treated as a positive integer, defined as ⌊(v− c)/⌈c/2⌉⌋+1
for another positive integers v, c. Therefore, all results that are defined in terms
of b and c in this paper are directly applicable to any application for which a
different and larger value for b exists.

For simplicity, we have provided (and used in the rest of this paper) an
equivalent definition of the algorithm E as a function called invXOR (see Def. 5).

Equivalence between the two definitions can be easily understood from the
fact that for a given variable set {V1, V2, . . . , Vv} and their corresponding values
as a set {a1, a2, . . . av}, each concatenation in the output of invXOR function
corresponds to an equation in the generated system S of E and vice versa.

C Omitted Security Proofs

C.1 Proof of Theorem 1

Proof. We are given v independent z-bit elements Z1, . . . , Zv (when represented
as binary strings) that are chosen from some public finite sets S1, S2, . . . , Sv,
respectively for some positive integer z and a public function f (that may or may
not require a random salt value for its evaluation) with a range in {0, 1}w for
some positive integer w. Let us now consider Uw as a random variable uniformly
distributed over {0, 1}w. For some ϵ > 0, we have SD(f(UZi

, salt), Uw) ≤ ϵ for
all i. Since the value of salt is sampled once and used for all values of Zi, for
simplicity, we denote f(UZi , salt) by f(UZi) in the rest of the proof. Let c, k be
two positive integers and b = ⌊(v − c)/⌈c/2⌉⌋ + 1 such that w = ⌈k/b⌉. Now,
from the definition of SD and ϵ we have

SD(f(UZi), Uw) =
1

2

∑
x∈Uw

∣∣∣∣Pr[f(UZi
) = x]− 1

2w

∣∣∣∣ ≤ ϵ . (1)

codetables.de

Skye KDF and its Application to Signal 31

Also, since an element of UD of size k that corresponds to Z1, . . . , Zv can be
equivalently defined as invXOR(f(Z1)∥f(Z2)∥ · · · ∥f(Zv), c)[1 . . . k], we have for
k′ = b⌈k/b⌉,

SD(UD, Uk) ≤ SD(invXOR(f(UZ1
)∥f(UZ2

)∥ · · ·
· · · ∥f(UZv

), c), Uk′)

= SD(⊕c
i=1f(UZi

)∥ ⊕i=c+⌈c/2⌉
i=1+⌈c/2⌉ f(UZi

)∥ · · ·

· · · ∥ ⊕i=c+(b−1)⌈c/2⌉
i=1+(b−1)⌈c/2⌉ f(UZi

), Uk′)

We denote ⊕i=c+(j−1)⌈c/2⌉
i=1+(j−1)⌈c/2⌉f(UZi) by Ufj . Hence, we have

SD(UD, Uk) ≤ SD(Uf1∥Uf2∥ · · · ∥Ufb , Uk′)

=
1

2

∑
x∈Uk′

|Pr[Uf1∥Uf2∥ · · · ∥Ufb = x]− Pr[Uk′ = x]|

=
1

2

∑
x∈Uk′

x1,...,xb
w←−x

∣∣∣∣∣
b∏

j=1

Pr[Ufj = xj]− 1

2k′

∣∣∣∣∣ .
The last equality holds due to the fact that for each Ufj the corresponding
subset of Zis contains at least one new/fresh independent element from the
corresponding main set Z (note that this is true for all positive values of c).
Hence all Ufj s can be considered independent from each other. Now, with some
basic algebra we can show that for all yjs

b∏
j=1

yj −
1

2k′ =

b∑
j=1

(1

2w

)j−1 (
yj −

1

2w

) b∏
j′=j+1

yj′

 .

Hence, we have SD(UD, Uk)

≤ 1

2

∑
x∈Uk′

x1,...,xb
w←−x

b∑
j=1

∣∣∣∣∣∣
(

1

2w

)j−1 (
Pr[Ufj = xj]− 1

2w

) b∏
j′=j+1

Pr[Ufj′ = xj′]

∣∣∣∣∣∣
=

b∑
j=1

1

2wj−w+1

∑
x∈Uk′

x1,...,xb
w←−x

∣∣∣∣∣∣
(
Pr[Ufj = xj]− 1

2w

) b∏
j′=j+1

Pr[Ufj′ = xj′]

∣∣∣∣∣∣
=

b∑
j=1

1

2wj−w+1

 ∑
xj∈Uw

∣∣∣∣Pr[Ufj = xj]− 1

2w

∣∣∣∣


 b∏
j′=j+1

∑
xj′∈Uw

Pr[Ufj′ = xj′]

 j−1∏
j′=1

∑
xj′∈Uw

1



32 A.S. Bhati, A. Dufka, E. Andreeva, A. Roy and B. Preneel

=

b∑
j=1

SD(Ufj , Uw) . (2)

Claim (1). For ϵ > 0 defined as above we have SD(Ufj , Uw) ≤ (2ϵ)c/2 for all
1 ≤ j ≤ b.

Let us assume for a moment that Claim (1) holds then combining this result
with Eqn. 2 gives us the result of Theorem 1 and completes its proof. We now

prove the result of Claim (1). Let us recall that Ufj = ⊕i=c+(j−1)⌈c/2⌉
i=1+(j−1)⌈c/2⌉f(UZi

)

for all 1 ≤ j ≤ b. Again, for simplicity, we denote 1 + (j − 1)⌈c/2⌉ and
c+ (j − 1)⌈c/2⌉ by α and β, respectively. This implies

SD(Ufj , Uw)

= SD(⊕β
i=αf(UZi), Uw)

=
1

2

∑
xj∈Uw

∣∣∣∣Pr[⊕β
i=αf(UZi) = xj]− 1

2w

∣∣∣∣

=
1

2

∑
xj∈Uw

∣∣∣∣∣∣∣∣∣∣
∑

⊕β
i=αxij=xj ,

xij∈f(UZi
)

Pr[∧β
i=α(f(UZi) = xij)]− 1

2w

∣∣∣∣∣∣∣∣∣∣
.

As we know, the system of linear equations that corresponds to the outputs
of invXOR (i.e. a system with equations defined by the concatenated blocks of
an invXOR output) has mdi = c − 1, which means every variable f(UZi

) in the

equation Ej := ⊕β
i=αf(UZi) = xj has at least c− 1 degree of involvement. Now,

since for all js, Ej contains exactly β − α = c− 1 variables, we have for all Ejs
and xij as defined above

Pr[∧βi=α(f(UZi
) = xij)] =

β∏
i=α

Pr[f(UZi
) = xij] .

Hence, we get SD(Ufj , Uw)

=
1

2

∑
xj∈Uw

∣∣∣∣∣∣∣∣∣∣
∑

⊕β
i=αxij=xj ,

xij∈f(UZi
)

β∏
i=α

Pr[f(UZi) = xij]− 1

2w

∣∣∣∣∣∣∣∣∣∣
=

1

2

∑
xj∈Uw

∣∣∣∣∣∣∣∣∣∣
∑

⊕β
i=αxij=xj ,

xij∈f(UZi
)

β∏
i=α

Pr[f(UZi) = xij]−
∑

⊕β
i=αxij=xj ,
xij∈Uw

β∏
i=α

1

2w

∣∣∣∣∣∣∣∣∣∣

Skye KDF and its Application to Signal 33

≤ 1

2

∑
xj∈Uw

∣∣∣∣∣∣∣∣∣
∑

⊕β
i=αxij=xj ,
xij∈Uw

β∏
i=α

Pr[f(UZi) = xij]−
∑

⊕β
i=αxij=xj ,
xij∈Uw

β∏
i=α

1

2w

∣∣∣∣∣∣∣∣∣
≤ 1

2

∑
xj∈Uw

∑
⊕β

i=αxij=xj ,
xij∈Uw

β∏
i=α

∣∣∣∣Pr[f(UZi) = xij]− 1

2w

∣∣∣∣
=

1

2

∑
xij∈Uw

β∏
i=α

∣∣∣∣Pr[f(UZi) = xij]− 1

2w

∣∣∣∣
=

1

2

β∏
i=α

2 · SD(f(UZi), Uw) ≤ 1

2
(2ϵ)c .

Here the first inequality holds because |f(UZi
)| ≤ |Uw| = 2w for all 1 ≤ i ≤ v

and the last inequality follows from Eqn. 1.

C.2 Proof of Theorem 3

Proof. We first replace PRFs(K, ·) with a uniformly sampled random function
f(·)←$ Func(2n, sn)) and let FExp[f] denote the FExp mode that uses f instead
of PRFs, which yields

Advgexp
FExp[PRFs]

(A) ≤ Advprf
PRFs

(B) +Advgexp
FExp[f](A) .

Let us consider that A makes at most q FExp queries with ith query con-
taining ℓi f calls and hence calling f for total σ =

∑q
i=1 ℓi many times. Clearly,

by definition of f , we know that all the output bits are random and uniformly
distributed as long all the queried σ many inputs to f are unique. In other
words, if all the queried f inputs in query i are denoted by the ordered multiset
Qi = {xi

j}
ℓi
j=1 = {γi,Ki

1∥Ki
2,K

i
1∥(Ki

2 ⊕ ⟨1⟩), . . . ,Ki
1∥(Ki

2 ⊕ ⟨ℓi − 2⟩)} then we
have

Advgexp
FExp[f](A) ≤ Pr[∃(i, j) < (i′, j′) such that xi

j = xi′
j′] . (3)

Case Analysis.
Case 1 [When j = j′ = 1]. Under this case, all (xi

j , x
i′

j′) pairs are defined as

(γi, γi′) with γi ̸= γi′ ∀i ̸= i′ and hence Pr[xi
j = xi′

j′] = 0.
Case 2 [When j = 1 ∨ j′ = 1 but j ̸= j′]. Under this case, we always have
either xi

j = Ki
1∥(Ki

2 ⊕ ⟨j⟩) or xi′

j′ = Ki′

1 ∥(Ki′

2 ⊕ ⟨j′⟩) and since each one of

Ki
1,K

i
2,K

i′

1 and Ki′

2 are outputs of a uniform random function (f), they are
uniformly distributed over {0, 1}n. Therefore, Pr[xi

j = xi′

j′] = 1/22n. W.l.o.g., let
us assume that j = 1 and then there are total q and at most σ− q many choices
to pick (i, j) and (i′j′), respectively.
Case 3 [When i = i′ and j ̸= 1 ∧ j′ ̸= 1]. Under this case, all (xi

j , x
i′

j′) pairs are

defined as (Ki
1∥(Ki

2 ⊕ ⟨j⟩,Ki
1∥(Ki

2 ⊕ ⟨j′⟩) with j ̸= j′ hence Pr[xi
j = xi′

j′] = 0.

34 A.S. Bhati, A. Dufka, E. Andreeva, A. Roy and B. Preneel

Case 4 [When i ̸= i′ and j ̸= 1 ∧ j′ ̸= 1]. Under this case, we always have

xi
j = Ki

1∥(Ki
2 ⊕ ⟨j⟩) and xi′

j′ = Ki′

1 ∥(Ki′

2 ⊕ ⟨j′⟩). Hence, we can write

Pr[xi
j = xi′

j′] = Pr[(Ki
1 ⊕Ki′

1)∥(Ki
2 ⊕Ki′

2) = 0n∥(⟨j⟩ ⊕ ⟨j′⟩)] . (4)

Now, since each one of Ki
1,K

i
2,K

i′

1 and Ki′

2 are outputs of a uniform random
function (f), they are uniformly distributed over {0, 1}n and hence Pr[xi

j =

xi′

j′] = 1/22n. Additionally, we observe from Eqn. 4 with ⟨c⟩ = ⟨j⟩ ⊕ ⟨j′⟩ that
there are total σ − q and at most q many choices for (i, c) and i′, respectively.

Combining all these results into Eqn. 3 gives us

Advgexp
FExp[f](A) ≤

2q(σ − q)

22n

and hence the result of Theorem 3.

C.3 Proof of Theorem 4

Proof. Let us first define an event E which says that the key fed to the un-
derlying FExp component of the Skye construction over a total of q queries is
secret and indistinguishable from a uniform random binary string. Let us now
recall from Sec. 8.1 that if the key to the FExp construction is secret and indis-
tinguishable from a uniform random binary string then the outputs of FExp are
independent and indistinguishable from uniform random binary strings (of same
length) with adversarial advantage as defined in Theorem 3. Further, one can
also note from the security definition of CCS that the only difference between the
real and ideal CCS games w.r.t. Skye is the corresponding outputs being uniform
random or not. This as described above under the event E is upper bounded by
Advgexp

FExp[PRFs]
(A′) for some adversary A′ against FExp that uses A (restricted

under the event E) as a subroutine. Now, for Skye with a source group G defined
as in Theorem 4 (over Curve25519) we have that under the ECDDH assumption
on G, Pr(¬E) is upper bounded by q · SD(DExtlsb(UZ), Uk) and thus

AdvCCS
Skye[PRFs](A) ≤ Advecddh

G (C) + q · SD(DExtlsb(UZ), Uk)

+Advgexp
FExp[PRFs]

(A′)

≤ Advprf
PRFs

(B) +Advecddh
G (C) + q

2128
+

+
2q(σ − q)

22n
.

The second inequality above is derived from Theorem 3 and Corollary 1 which
states that for k ≤ 212, DExtlsb is a (UZ , 2

−128)-deterministic extractor. This
completes the proof of Theorem 4.

C.4 Proof of Theorem 6

Proof. Let S denote a system returned by the algorithm E as defined in Def. 15
and let CS denote the corresponding coefficient matrix of S then we have that

Skye KDF and its Application to Signal 35

the ijth entry of CS can be defined as

CS [ij] =

{
1 if ⌈c/2⌉(i− 1) + 1 ≤ j ≤ ⌈c/2⌉(i− 1) + c

0 o/w
.

Let U = {Ei1 , Ei2 , . . . Eix} denote an arbitrary subset of the system S with
size x > 1. Clearly, if we show that the combined XOR of all equations in U
always contains at least c many 1s then we can say that no linear combination
of equations in S can have degree of involvement < c− 1 and hence the claim of
the Theorem.

Now, to prove the above statement, we use the following simple approach. Let
us first define an indexed set U ′ as the sorted version of U where the equations
are sorted by the value of their corresponding first column indices js in CS with
C[ij] entry as 1. In other words, the sorted set U ′ will have the entries in the
same order as they are defined in S. Clearly, the combined XOR of U will be
same as of U ′. Now, one can note that in this definition of CS , every row contains
at least ⌈c/2⌉ many unique 1s entries than others. Hence, the combined XOR of
U ′ will always have the unique 1s entries of the first and the last equation of U ′

which in total will be 2⌈c/2⌉ ≥ c many 1s.

D A Code Difference Table

v
c

1 2 3 4 5 6 7 8 9 10

1 0 0 0 0 0 0 0 0 0 0

2 0 0 0 0 0 0 0 0 0

3 0 0 0 1 1 1 1 2

4 0 0 0 1 1 1 1

5 0 0 0 0 0 1

6 0 0 0 0 0

7 0 0 0 0

8 0 0 0

9 0 0

10 0

Table 3: A table showing the differences between the actual value of log2(A2(v, c))
and b for various values of v and c upto sample sizes v ≤ 10. The optimal values
of log2(A2(v, c)) are taken from codetables.de [25].

E PRF-PRNG vs CCS security

Alwen et al. [4] proposed a syntax called PRF-PRNG for KDFs in Signal. In
simpler words, a PRF-PRNG takes three inputs - the current state/key σ, an

codetables.de

36 A.S. Bhati, A. Dufka, E. Andreeva, A. Roy and B. Preneel

input I (which in Signal’s context will be Z∥γ) and the output length ℓ (left
implicit in the original description of [4]) and returns a string R of length ℓ bits
and a new state/key to be updated σ′. Any PRF-PRNG = (P-init, P-up) is
consist of two algorithms - P-init which is used to initiate the PRF-PRNG by
generating the first state/key σ (for this it may use some preshared secret key)
and P-up which is used over the PRF-PRNG inputs as defined above to generate
the outputs.

The paper also defines a security notion P for PRF-PRNG schemes which
we will refer here as prf-prng for ease of understanding. For Signal’s application,
the same paper mentions two KDF examples with prf-prng security, namely,
HKDF and PRP-then-PRG [4]. We note here that HKDF is prf-prng-secure when
its underlying compression function is assumed as RO whereas the proposed
PRP-then-PRG is prf-prng-secure when the PRP is initialized with a preshared
“uniform” random secret key. This assumption of preshared symmetric key can
not be met in practice for two arbitrary parties that are communicating for the
first time which makes PRP-then-PRG inapplicable to Signal. We also note that
this incompatibility can be countered by assuming the PRP to be an ideal cipher
(which is analogous to the RO assumption) and hence initializing the key with
some public constant.

How to define a PRF-PRNG using KDFs with standard syntax. We
first formally define a simple way of converting a KDF with the standard syntax
(as defined in [28]) into a PRF-PRNG and then state the formal claim on relation
among the two mentioned KDF security notions in Theorem 7.

Let Π(Z, γ, ℓ) and Π ′(Z ′, γ′, ℓ′) be two standard syntax KDF functions then
we can define a PRF-PRNG as ΠPP = (P-init, P-up) where P-init is just a
constant function that returns σ0 = 0s for s being the state size of the PRF-
PRNG and for the i(≥ 1)th query to the PRF-PRNG, we have

P-up(σi−1, Ii = Zi∥γi, ℓi) =

{
σ1∥R1 = Π(Z1, γ1, ℓ1 + s) when i = 1

σi∥Ri = Π ′(σi−1, Zi∥γi, ℓi + s) when i > 1 .
(5)

Note that Π and Π ′ can be same but we don’t fix them here for generality.

Theorem 7 (CCS implies prf-prng). Let Π and Π ′ be two CCS-secure schemes
w.r.t. distributions Σ = (Z, CZ) and Σ = (Π(Z, γ, ℓ), CZ∥γ∥ℓ), respectively then
the PRF-PRNG ΠPP defined using Π and Π ′ as shown above will be prf-prng-
secure under same input sources. More concretely, for all adversaries A who
make total q ΠPP queries, we have

Advprf-prng
ΠPP[Π,Π′](A) ≤ AdvCCS

Π (B) +AdvCCS
Π′ (C)

for some adversaries B and C making at most q1 and q2 queries to Π and Π ′,
respectively such that q1+ q2 = q and running in time given by the running time
of A plus α0 · q for some constant α0.

Proof (Theorem 7). Let us recall from Sec. 9 and Fig. 8 that the CCS security of
a KDF(Z, γ, ℓ) w.r.t. the input source (Z, CZ) implies that the output of a KDF

Skye KDF and its Application to Signal 37

query where the input has either unique γ value or independently sampled Z
value is indistinguishable from RFZ,γ [1 . . . ℓ] i.e. uniform random binary string
of length ℓ bits. Let us now slightly abuse the notation for simplicity and denote
by f and f ′ two functions that take inputs of the form (Z, γ, ℓ) and return
RFZ,γ∥Π [1 . . . ℓ] and RFZ,γ∥Π′ [1 . . . ℓ] as outputs, respectively. This gives us

Advprf-prng
ΠPP[Π,Π′](A) ≤ AdvCCS

Π (B) +AdvCCS
Π′ (C) +Advprf-prng

ΠPP[f,f ′](A) .

Note that for any input (σ, I = Z∥γ, ℓ), ΠPP[f, f
′] as per Eqn. 5 will always

return independently sampled uniform random strings (σ′∥R) when I is unique
(which implies that all returned chall-prf outputs in prf-prng games [4, Fig. 7] are
indistinguishable from random strings). Similarly, for any input (σ, I = Z∥γ, ℓ),
ΠPP[f, f

′] will always return independently sampled uniform random strings
R when σ is the uncompromised current state (which implies that all returned
chall-prng outputs in prf-prng games [4, Fig. 7] are indistinguishable from random

strings). This implies Advprf-prng
ΠPP[f,f ′](A) = 0 and hence the result. ⊓⊔

Clearly for Signal, setting Π = Skye (referring to KDF1 calls) and Π ′ = FExp
(referring to KDF2 and KDF3 calls; which is CCS-secure as the input samples
contain the current state value which is uniformly random and secret and thus
can be used as the key to the PRF) gives us a ΠPP that covers all three types
of KDF calls in Signal. The security here can be deduced from Theorem 7 that
says for all adversaries A making a total of q queries to ΠPP, there exists some
adversary B making at most q queries and running in time given by the running
time of A plus some constant α · q such that

Advprf-prng
ΠPP[Skye,FExp]

(A) ≤ AdvCCS
Skye(B) .

We emphasize that as motivated in Sec. 6, this idea of using FExp in place
of full Skye for KDF2 and KDF3 calls in Signal gives significant performance
benefits.

F Performance Details

In this section, we provide the benchmark tables Table 4 and 5 that correspond
to the performance plots of Fig. 5a and 5b, respectively.

38 A.S. Bhati, A. Dufka, E. Andreeva, A. Roy and B. Preneel

n HKDF Skye HKDF Skye HKDF Skye

with AES-NI without AES-NI with AES-NI
with SHA-NI without SHA-NI without SHA-NI

1 2.22 ± 0.02 1.38 ± 0.01 6.51 ± 0.32 3.44 ± 0.03 6.47 ± 0.05 2.32 ± 0.03

2 4.48 ± 0.03 2.79 ± 0.02 12.97 ± 0.09 6.88 ± 0.04 12.95 ± 0.1 4.65 ± 0.03

3 6.7 ± 0.04 4.13 ± 0.03 19.43 ± 0.09 10.33 ± 0.22 19.4 ± 0.1 6.97 ± 0.04

4 8.92 ± 0.04 5.5 ± 0.08 25.93 ± 0.08 13.81 ± 0.49 25.88 ± 0.21 9.31 ± 0.06

5 11.14 ± 0.07 6.94 ± 0.05 32.48 ± 0.23 17.22 ± 0.21 32.36 ± 0.24 11.63 ± 0.09

6 13.34 ± 0.12 8.25 ± 0.05 38.82 ± 0.1 20.68 ± 0.05 38.86 ± 0.26 13.92 ± 0.27

7 15.68 ± 0.09 9.6 ± 0.08 45.42 ± 0.13 24.12 ± 0.46 45.33 ± 0.32 16.25 ± 0.12

8 17.98 ± 0.13 10.98 ± 0.1 51.82 ± 0.19 27.49 ± 0.07 51.86 ± 0.18 18.59 ± 0.14

9 20.07 ± 0.12 12.36 ± 0.12 58.38 ± 0.22 30.9 ± 0.27 58.35 ± 0.34 20.89 ± 0.07

10 22.33 ± 0.07 13.76 ± 0.31 64.89 ± 0.22 34.33 ± 0.29 64.81 ± 0.23 23.17 ± 0.12

20 44.44 ± 0.15 27.66 ± 1.38 129.82 ± 0.43 68.73 ± 0.18 129.48 ± 0.97 46.33 ± 0.18

30 66.68 ± 0.19 41.24 ± 0.28 194.63 ± 0.48 103.02 ± 0.58 194.16 ± 0.78 69.37 ± 0.43

40 88.66 ± 0.75 55.99 ± 0.25 260.27 ± 0.79 137.27 ± 0.68 258.92 ± 0.82 92.74 ± 0.31

50 111.6 ± 0.38 68.66 ± 0.53 324.22 ± 1.16 171.74 ± 1.59 323.76 ± 3.69 115.77 ± 0.71

60 133.79 ± 0.47 83.87 ± 0.51 389.55 ± 0.65 206.8 ± 0.52 388.39 ± 3.2 138.9 ± 1.01

70 155.49 ± 1.12 96.82 ± 0.58 453.72 ± 0.89 240.95 ± 0.64 453.18 ± 1.42 162.21 ± 1.07

80 178.02 ± 1.46 110.22 ± 0.81 518.02 ± 1.93 275.16 ± 1.84 517.8 ± 3.09 185.4 ± 0.66

90 201.36 ± 0.84 124.52 ± 0.47 582.89 ± 1.93 309.23 ± 1.77 582.69 ± 1.21 208.51 ± 1.31

100 222.8 ± 1.59 137.57 ± 1.05 649.14 ± 2.18 343.14 ± 1.99 646.73 ± 7.1 232.95 ± 10.46

Table 4: The mean time ± standard deviation (in µs) required to encrypt n
messages sent by one party to the other.

n HKDF Skye HKDF Skye HKDF Skye

with AES-NI without AES-NI with AES-NI
with SHA-NI without SHA-NI without SHA-NI

1 200.65 ± 1.12 194.51 ± 1.01 225.74 ± 1.86 204.82 ± 1.57 226.35 ± 1.37 201.42 ± 0.51

2 212.71 ± 1.81 203.19 ± 0.74 254.0 ± 0.8 221.24 ± 0.49 254.8 ± 2.01 214.08 ± 1.63

3 224.6 ± 1.79 211.19 ± 1.71 283.92 ± 7.51 238.06 ± 0.62 283.95 ± 1.05 226.12 ± 2.16

4 236.46 ± 0.69 219.88 ± 1.68 312.14 ± 0.9 254.73 ± 1.19 313.06 ± 1.02 238.73 ± 1.81

5 249.48 ± 1.52 229.85 ± 1.61 342.48 ± 2.38 272.02 ± 0.69 342.95 ± 1.1 251.37 ± 0.6

6 261.41 ± 1.79 237.91 ± 0.77 371.38 ± 1.48 288.83 ± 0.96 372.77 ± 8.9 264.32 ± 1.9

7 273.36 ± 1.4 246.89 ± 2.11 400.75 ± 1.27 305.93 ± 2.02 401.4 ± 1.54 276.52 ± 1.01

8 285.22 ± 1.13 255.93 ± 2.28 429.51 ± 1.06 322.96 ± 0.68 430.53 ± 1.11 288.91 ± 7.07

9 296.93 ± 1.6 264.1 ± 3.08 459.52 ± 1.13 337.91 ± 1.05 460.04 ± 3.28 300.99 ± 0.77

10 308.73 ± 0.64 272.63 ± 1.63 488.46 ± 1.15 355.45 ± 1.33 488.52 ± 1.71 313.48 ± 0.73

20 428.98 ± 0.89 361.04 ± 2.63 781.15 ± 6.48 522.62 ± 1.46 780.11 ± 2.08 437.46 ± 1.35

30 545.92 ± 1.08 446.9 ± 2.44 1071.67 ± 3.4 688.91 ± 3.74 1071.74 ± 9.22 559.56 ± 1.3

40 667.88 ± 8.06 535.84 ± 3.14 1364.68 ± 2.87 856.07 ± 2.04 1363.87 ± 8.33 684.44 ± 2.26

50 786.88 ± 1.78 621.98 ± 3.3 1652.43 ± 2.88 1021.6 ± 2.34 1655.0 ± 10.11 807.02 ± 2.37

60 905.83 ± 4.57 710.14 ± 10.74 1948.63 ± 12.21 1190.16 ± 4.19 1946.28 ± 3.94 935.55 ± 6.16

70 1025.61 ± 3.97 796.48 ± 5.8 2237.93 ± 4.99 1357.24 ± 2.92 2235.78 ± 4.38 1056.3 ± 2.32

80 1146.73 ± 2.48 888.52 ± 3.11 2528.96 ± 6.65 1523.47 ± 10.06 2530.07 ± 15.57 1184.09 ± 3.27

90 1263.38 ± 6.85 975.91 ± 6.12 2820.42 ± 9.19 1690.03 ± 6.13 2818.72 ± 9.55 1308.08 ± 3.49

100 1382.64 ± 2.92 1063.36 ± 8.75 3115.64 ± 18.99 1855.34 ± 3.72 3109.68 ± 17.06 1433.14 ± 7.3

Table 5: The mean time ± standard deviation (in µs) required to encrypt (and
decrypt) n messages that are sent (and received) by one party to (and from,
respectively) the other.

	Skye: A Fast KDF based on Expanding PRF and its Application to Signal

