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Abstract. We introduce a new type of mixing layer for the round func-
tion of cryptographic permutations, called circulant twin column parity
mixer (CPM), that is a generalization of the mixing layers in Keccak-f
and Xoodoo. While these mixing layers have a bitwise differential branch
number of 4 and a computational cost of 2 (bitwise) additions per bit, the
circulant twin CPMs we build have a bitwise differential branch number
of 12 at the expense of an increase in computational cost: depending on
the dimension this ranges between 3 and 3.34 XORs per bit. Our circu-
lant twin CPMs operate on a state in the form of a rectangular array and
can serve as mixing layer in a round function that has as non-linear step a
layer of S-boxes operating in parallel on the columns. When sandwiched
between two ShiftRow-like mappings, we can obtain a columnwise branch
number of 12 and hence it guarantees 12 active S-boxes per two rounds
in differential trails. Remarkably, the linear branch numbers (bitwise and
columnwise alike) of these mappings is only 4. However, we define the
transpose of a circulant twin CPM that has linear branch number of 12
and a differential branch number of 4. We give a concrete instantiation of
a permutation using such a mixing layer, named Gaston. It operates on
a state of 5× 64 bits and uses χ operating on columns for its non-linear
layer. Most notably, the Gaston round function is lightweight in that it
takes as few bitwise operations as the one of NIST lightweight standard
Ascon. We show that the best 3-round differential and linear trails of
Gaston have much higher weights than those of Ascon. Permutations
like Gaston can be very competitive in applications that rely for their se-
curity exclusively on good differential properties, such as keyed hashing
as in the compression phase of Farfalle.

Keywords: Mixing layer · Permutations · Branch number · Column
parity mixer (CPM) · Ascon

1 Introduction

Over the last decades there has been extensive research on lightweight cryp-
tographic primitives, where lightweight means with the objective of being im-
plemented on resource-constrained platforms, e.g., for the Internet of Things



(IoT), Radio Frequency ID (RFID) and sensors. Those platforms require a care-
ful trade-off between efficiency and security. A major challenge is to achieve
excellent performance results on a wide spectrum of target devices while pro-
viding a good security margin, and this at reasonable implementation cost. In
hardware implementations and in bit-sliced software implementations a good
estimate of the cost is the total number of binary Boolean operations (XOR,
(N)AND, (N)OR, NOT) required to execute the primitive. We will refer to this
as the gate cost.

In recent years, iterated cryptographic permutations have become increas-
ingly popular, but their design is very similar to that of the data path of block
ciphers. In so-called substitution-permutation networks (SPN), the round func-
tion has a linear layer and a non-linear S-box layer. In an SPN block cipher the
rounds are typically alternated with the addition of a round key, derived from
the cipher key by means of a key schedule. The linear layer often consists of the
composition of a mixing layer and a bit shuffle moving the bits around.

Many SPNs are designed according to the wide trail strategy and the best
know example of this is the Advanced Encryption Standard (AES) [13]. With this
strategy, one can easily prove strong upper bounds for the expected differential
probability of differential trails and for the correlation contribution of linear
trails. The simplicity of the strategy and this ability to prove trail bounds have
made it one of the most widely used design approaches for block ciphers and
permutations.

AES [13] operates on a state that can be represented as a 4×4 byte array. Its
mixing layer is called MixColumns and it considers each column of the state as a
4-byte vector and it multiplies them by a 4× 4-byte matrix. These matrices are
maximum-distance-separable (MDS): they have (differential and linear) branch
number 5. The AES linear layer also has a byte shuffle, called ShiftRows. Their
combination allows to prove that the number of active S-boxes in any 4-round
trail is 25, or in general, the square of the branch number [13]. In the context
of lightweight cryptography, there has been ample research about constructing
MDS matrices with low gate cost, see [3,18,24–26,28,35,37]. While most research
is about 4×4 matrices, the first MixColumn-like MDS matrices for use in crypto-
graphic round functions were 8× 8, introduced in the block cipher SHARK [34].
Later 8× 8 MDS matrices were used in the compression function of hash func-
tions such as Whirlpool [2] and there has also been research on reducing the gate
cost of such mappings [24]. Constructions that combine 8×8 MDS matrices with
an appropriate ShiftRows mapping have at least 92 = 81 active S-boxes in any
4-round trail. Still, it would be a stretch to call such mappings and ciphers that
make use of them lightweight.

A different flavor of the wide trail strategy we find in Ascon-p, the per-
mutation underlying Ascon [17], Keccak-f , the permutation underlying Kec-
cak [6], and the permutation Xoodoo [12]. The former two have a mixing layer
of the type column parity mixer (CPM) that cannot be split into a number of
parallel mappings but operates on the state as a whole. The mixing layer of
Ascon-p consists of separate mix mappings operating on the 5 rows of the state
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independently, combined with two mixing steps that act as enforcements of the
low-diffusion linear step in the S-box layer. The latter is the χ mapping borrowed
from Keccak-f , but then operating on 5-bit columns rather than rows.

In all three permutations the mixing layer has a branch number of 4 and hence
they have relatively low worst-case diffusion. Moreover, they do not lend them-
selves to easy proofs for strong lower bounds on the number of active S-boxes
over 4 or more rounds. Still, with computer-aided techniques, strong bounds
have been achieved for Keccak-f [32], Xoodoo [15] and Ascon-p [19, 30].

A study in [9] provides evidence that this approach outperforms MDS-based
designs in that they achieve lower upper bounds on the probability of differential
trails and the correlation contribution of linear trails for the same amount of
computation, often due to lighter rounds. Moreover, the paper shows that they
suffer less from clustering of trails.

The mixing layers in Xoodoo and Keccak-f both require 2 binary XOR
operations per bit of the state. In the permutation underlying Ascon, winner of
the NIST lightweight cryptography cipher competition [33], the mixing layer pL
costs similarly 2 binary XOR operations per bit. However, the part of the mixing
layer in the S-boxes pS has an additional cost of 1.2 binary XOR operations per
bit, totaling to 3.2 binary XOR operations per bit. In this split-up, the gate
cost of the non-linear layer is equal in all three permutations as all use the χ
mapping: 1 XOR, 1 AND and 1 NOT gate per state bit.

Our Contribution. In this work, we explore the possibility of using the mixing
budget of 3.2 binary XOR operations per bit, allocated for Ascon-p, differently.
We define a new type of mixing layer, the circulant twin CPM, a generalization
of the column parity mixers in Keccak-f and Xoodoo. Whereas the latter
have differential branch number 4, our twin CPM achieves differential branch
number 12. Remarkably, its linear branch number is equal to that of the mixing
layer of Keccak-f , Xoodoo and Ascon-p, namely 4. We show that we can
transpose a twin CPM resulting in linear branch number of 12 and differential
branch number of 4 with no effect on the gate cost. We provide a proof-of-concept
permutation that uses the twin CPM as its mixing layer that we name Gaston.
This permutation is lightweight in the sense that it takes the same number of
bitwise Boolean operations per round as Ascon-p. We show that Gaston achieves
very good differential trail behaviour for both differential, and even linear, trails
over 2 and 3 rounds.

Related Work. There is a lot of research that focuses on finding MDS matrices
that have low implementation cost. The efficiency of MDS matrices can be de-
fined in terms of several criteria such as the overall gate cost, latency or circuit
depth [3, 22, 23, 27, 29, 35]. Implementing an MDS matrix with branch number
9 (dimension 8) requires more than 6 XORs per bit. We know of no work that
investigates the gate cost of MDS matrices or other mixing layers with branch
number above 9. At least for MDS matrices existing research suggests that the
number of XORs per bit increases with the branch number. In Table 1, we com-
pare various types of mixing layers.
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Table 1: A comparison of different types of mixing layers. For MDS, the dimen-
sions in the second column represent the dimension of the matrix (defined over
the finite field) while for the rest it denotes the state size in bits. The symbols d,
m and n denote the degree of the field defining polynomial, the number of rows
and number of columns, respectively. For the first row of CPM, w represents the
number of 5×5 slices and w ∈ {8, 16, 32, 64} based on the variant of Keccak-f .

Mixing layer type Dimensions XORs Branch number Source
per bit Diff. Linear

MDS

3× 3, GF (2d) 5
3

+ 1
3d

4 4 [18]

4× 4, GF (2d) 2 + 3
4d
† 5 5 [18]

8× 8, GF (24) 6.06 9 9 [24]
8× 8, GF (28) 6.125 9 9 [24]

CPM
5× 5× w, GF (2) 2 4 4 [6]
3× 4× 32, GF (2) 2 4 4 [12]
m× n, GF (2) 2 + h−2

m
‡ 4 4 [36]

Ascon pL 5× 64, GF (2) 2 4 4 [17]

Twin CPM m× n, GF (2) 3 + 1
m

12 4 This work
Transpose of Twin CPM m× n, GF (2) 3 + 1

m
4 12 This work

† : For d = 4, 8 this bound is tight as shown in [37]. A 4× 4 matrix over GF (24) with
cost 35 XORs is used in Saturnin [10].
‡ : h is the Hamming weight of the parity-folding polynomial as defined in [36].

Outline. In Sec. 2, we recall different diffusion metrics for linear layers. The
circulant twin CPM and the bit shuffles which make up the linear layer are
defined in Sec. 3. The study of the differential diffusion properties of twin CPMs
is given in Sec. 4 while in Sec. 5 we discuss the equivalence relations that partition
the sets of the shift offsets that define the linear layer. We investigate the linear
mask properties of twin CPMs in Sec. 6. In Sec. 7, we describe the search strategy
for the shift offsets in the twin CPM mixing layer and row shifts of lightweight
permutation Gaston and further provide upper bounds on the weight of trails
over 2 and 3 rounds of Gaston using general-purpose solvers. In Sec. 8 we finalize
the specifications of Gaston and discuss how Gaston and variants can be used in
the Farfalle construction. In Sec. 9 we provide conclusions and open problems.

2 Diffusion Metrics for Linear Layers

We will study iterated permutations with a round function R consisting of a
linear layer that we will denote by λ and a non-linear layer that we will denote
by γ. We will assume R = γ ◦ λ. The other option would be R = λ ◦ γ. When
investigating difference (and mask) propagation through the round function the
variant can be addressed by a simple re-phasing.
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We assume the round function operates on a state A that consists of bits
arranged in an array of rows of equal length. We denote the set of all possible
states by A. Note that A forms a vector space with bitwise addition.

Orthogonal to the rows we have columns. We assume the non-linear layer
operates in parallel on the columns, as in Ascon-p [16] and Xoodoo [12].

Iterating such a round function provides resistance against differential (DC)
and linear cryptanalysis (LC) by the alternation of λ and γ. In particular, their
combination targets the avoidance of differential trails with high probability
and/or linear trails with high correlation contribution.

Within the linear layer there typically is a mixlayer that ensures that a bit
at its output depends on multiple bits at its input and that a difference in few
input bits propagates to multiple bits at its output. The mixlayer mixes bits
close to each other in the state and the role of the shuffles is to move bits close
to each other to positions that are far from each other. We call the mixlayer θ.

In this section we recall the basics of difference and linear propagation and
list some metrics for λ and θ such as the branch number and the branch his-
togram to provide an indicator of their performance in the round function of a
cryptographic permutation or block cipher.

2.1 Difference Propagation

Differential cryptanalysis exploits high-probability differentials [8]. Let f be a
transformation over Fn2 and let a be an input difference to f and b its output
difference. The combination of input difference and output difference (a, b) is
called a differential over f and its differential probability (DP) is defined as the
fraction of all possible input pairs with difference a that exhibit the difference b
after application of f to its members:

DP(a, b) =
#{x ∈ Fn2 | f(x)⊕ f(x⊕ a) = b}

2n
.

The restriction weight wr of a differential relates to its DP as DP = 2−wr .
We call a differential over the round function R a round differential. Round

differentials can be chained to form a differential trail. An r-round differential
trail Q is determined by the sequence of difference patterns before and after each
round (q0, q1, . . . , qr). The DP of a trail is the fraction of all possible input pairs
with difference q0 that exhibit difference qi after i rounds for all i ≤ r.

The DP of a trail is in general hard to compute and often approximated by
its expected DP (EDP). The EDP of a differential trail is the product of the DP
values of its round differentials and is what you would get if the round differen-
tials would act independently: EDP(Q) =

∏
0<i≤r DP(qi−1, qi). The restriction

weight of a trail is defined as the sum of the restriction weights of its round
differentials and hence 2−wr(Q) = EDP(Q).

2.2 Linear Propagation

Linear cryptanalysis exploits linear approximations with high correlation [31].
Let a be a mask that defines the linear Boolean function of input bits aTx of a
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transformation f and b one that defines the linear Boolean function of output
bits bTf(x). The combination of input mask and output mask (a, b) is called a
linear approximation over f and its correlation is determined as the probability
p over all inputs x that the linear function defined by a and the linear function
defined by b are equal, namely 2p− 1:

C(a, b) =
#{x ∈ Fn2 | aTx+ bTf(x) = 0}

2n−1
− 1 .

The correlation weight wc of a linear approximation is defined by C2 = 2−wc .
We call a linear approximation over the round function R a round linear

approximation. Round linear approximations can be chained to form a linear
trail. An r-round linear trail Q is determined by the sequence of masks before
and after each round (q0, q1, . . . , qr). The correlation contribution C of a trail
is defined as the product of the correlations of its round linear approximations:
C(Q) =

∏
0<i≤r C(qi−1, qi). The correlation weight of a linear trail relates to its

correlation C as C2 = 2−wc and is therefore the sum of the correlation weights
of its constituent round linear approximations.

2.3 Diffusion Metrics Related to Differences

In this section we discuss diffusion metrics for the propagation of differences. We
will indicate differences of state dimensions by the term state and its non-zero
bits or columns as active. Let wb(A) be the number of active bits in state A and
wc(A) its number of active columns. We call wb(A) the bit weight, wc(A) the
column weight of A and denote by L the linear layer.

The concept of branch number is an important metric for the diffusion power
of mixing layers. It was introduced in [14] and popularized through [13]. We will
generalize it to individual states. For simplicity, we will implicitly assume we are
dealing with differential branch numbers and omit the qualification “differential”.
We discuss the propagation of linear masks in Sec. 6.

Definition 1 (Bit branch number of a state). The bit branch number of
state A with respect to L is the sum of the bit weight of A and that of L(A):

Bb,L(A) = wb(A) + wb(L(A)) .

Definition 2 (Column branch number of a state). The column branch
number of state A with respect to L is the sum of the column weight of A and
that of L(A):

Bc,L(A) = wc(A) + wc(L(A)) .

The well-known branch numbers of a linear mapping are the minimum of
the corresponding branch number over all non-zero states. The bit and column
branch numbers are given by:

Bb(L) = min
A∈A\{0}

Bb,L(A) and Bc(L) = min
A∈A\{0}

Bc,L(A) .
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The branch numbers of a mapping give only limited information about its dif-
fusion power. We wish to compare several linear mappings according to their
diffusion power. High diffusion power means few states with low branch number.
In that respect, a more informative quantitative measure of the “immediate”
diffusion power is given by the branch histograms.

Definition 3 (Bit branch histogram). The bit branch histogram of L is the
histogram indicating the number of states per bit branch number:

Hb,L(w) = #{A ∈ A with Bb,L(A) = w} .

The bit branch histogram is the appropriate measure for a mixlayer like θ: a
mixlayer strives to minimize the number of states with low bit branch number.

Definition 4 (Column branch histogram). The column branch histogram
of L is the histogram indicating the number of states per column branch number:

Hc,L(w) = #{A ∈ A with Bc,L(A) = w} .

The column branch histogram is the appropriate measure for a linear layer
λ: it says something about the number of 2-round trails with a given number of
active columns and that lower bounds their weight. Good diffusion corresponds
to branch histograms with a low left tail.

2.4 Diffusion Metrics Related to Masks

As was shown in [14], the linear branch of a linear mapping specified by a matrix
M is equal to the differential branch number of MT, the transpose of M. When
talking about linear branch numbers of a linear mapping we will speak about
the (differential) branch number of its transpose.

Using the bit and column Hamming weight, we define the linear branch
number of a state A with respect to a linear layer L as the sum of the weights
of A and that of LT(A). Depending on the type of weight, we have two types of
linear branch number:

Bb,LT(A) = wb(A) + wb(L
T(A)) and Bc,LT(A) = wc(A) + wc(L

T(A)) .

The linear bit and column branch numbers of a mapping L are defined by

Bb(LT) = min
A∈A\{0}

Bb,LT(A) and Bc(LT) = min
A∈A\{0}

Bc,LT(A) .

The histograms are defined analogously.

3 Circulant Twin Column Parity Mixers and Row Shifts

The round function operates on a state A with m rows and n columns, that we
denote as Ai with 0 ≤ i < m. The bit in row i and column j is denoted as ai,j .
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As we wish our round function to be suited for software implementations, we
will assume the row length n is a power of two: n = 2`. Still, some of the lemmas
we prove are also valid if that is not the case.

We limit our choice of the steps of the round function, except for the round
constant addition, to mappings that commute with a cyclic shift of the state
in the horizontal direction. Such a property has been called shift-invariant,
translation-invariant or rotation-invariant but we will use the term circulant.
More formally, if τ is a mapping that shifts the state one position to the left,
then a mapping α is circulant if τ ◦ α = α ◦ τ . Circulance partitions the state
space into classes where a class contains all shifted versions of a given state. For
the vast majority of states these classes contain n members. In our investigations
on propagation, we can restrict ourselves to one representative of each class. We
adopt a convention how to choose that representative and call that canonical.

For γ, circulance simply means that it applies the same S-box to all columns.
For λ we assume it is a mixlayer sandwiched between two cyclic row shift steps
as in Xoodoo [12] and all three are circulant.

3.1 Cyclic Row Shifts

Similar to ShiftRows in Rijndael [13], the round function of Gaston has two bit
shuffles that cyclically shift the bits within the rows. We call them ρwest and
ρeast and we specify them as follow:

ρwest : Ai ← (Ai ≪ wi), for 0 ≤ i < m
ρeast : Ai ← (Ai ≪ ei), for 0 ≤ i < m .

Here (C ≪ r) denotes row C shifted over offset r, i.e., moving the bit in position
j to position j + r mod n. Sometimes we write τ r(C) for (C ≪ r).

Each row shift step is parameterized by m offsets, hence there are 2m shift
offset parameters: w0 to wm−1 and e0 to em−1. In the diffusion properties only
the differences between the offsets of ρwest (or ρeast) matter and therefore we
can fix one offset for each of them to 0. We set w0 = 0 and e0 = 0, and hence to
fully specify the row shift steps we must specify 2(m− 1) offsets. We will denote
the array of shift offsets for ρwest by Rw, the array of shift offsets for ρeast by
Re and their combination by Rρ.

3.2 Circulant Twin Column Parity Mixers

The mixlayer θ is what we call a circulant twin column parity mixer or twin
CPM for short. This is a variant of the column parity mixers as in Xoodoo and
Keccak-f . A circulant column parity mixer applied to our two-dimensional
state would look like this:

Ai ← Ai + (E ≪ u) for 0 ≤ i < m, with E ← (P + (P ≪ r)) and P ←
m−1∑
i=0

Ai .

(1)
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This mapping computes the bitwise sum of all rows, called the column parity
P , folds it to the θ-effect E and adds that to each row after shifting over some
offset u. Here folding consists of adding P and a shifted copy of P . The two shift
offsets r and u would be parameters. The CPM of (1) has a computational cost
of two XORs per bit. CPMs and their properties were studied in [36].

A circulant twin column parity mixer looks like this:

Ai ← Ai + (E ≪ u) for 0 ≤ i < m

with E ← (P + (P ≪ r)) + (Q+ (Q≪ s)),

and P ←
m−1∑
i=0

Ai and Q←
m−1∑
i=0

(Ai ≪ ti) . (2)

In (2), next to the column parity P , there is an additional column parity Q,
obtained by adding the rows where each one is first shifted over a row-specific
offset ti. Both parities P and Q are folded and the θ-effect E consists of the
sum of the two folded parities. The twin CPM of (2) has a computational cost
of 3+1/m XORs per bit, hence 3.2 for 5 rows and 3.333 for 3 rows. Like the row
shift steps, the twin CPM (2) is also a parameterized mapping. Its parameters
are: the two folding offsets r and s, the θ-effect addition offset u, and the m
offsets ti for computing parity Q. This totals to m + 3 shift offset parameters.
We denote the array of shift offsets for θ by Rθ and the combination of Rθ with
those of the row shift steps Rρ by Rλ. We divide Rθ into two parts: the ones
that determine the distribution of the bit weight of the θ-effect that we group
in RE = (s, t0, t1, t2, t3, t4) and u.

3.3 Polynomial Representation

The mixlayer θ and the row shifts ρwest and ρeast are specified in terms of two
operations: bitwise addition of rows and cyclic shifts. These operations lend
themselves to a representation of the rows of the state as polynomials with
coefficients in F2. We denote row i of a state by

Ai(X) =
∑
j

ai,jX
j for 0 ≤ i < m .

These are elements of F2[X], the ring of binary polynomials. Bitwise addition
of rows is just the addition of polynomials in F2[X]. A cyclic shift of a row Ai
over an offset r corresponds with the multiplication of Ai by the polynomial Xr

modulo 1 +Xn. It follows that we are working in the ring of binary polynomials
modulo 1 +Xn: F2[X]/(1 +Xn) and a state is a vector of m polynomials, hence
the state space A is (F2[X]/(1 +Xn))m.

In polynomial representation, the column parity mixer of (1) becomes:

Ai ← Ai +

m−1∑
j=0

(
Xu +Xu+r

)
Aj for 0 ≤ i < m .
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Here (Xu +Xu+r)Aj denotes the multiplication of the constant polynomial
(Xu +Xu+r) by a variable polynomial Aj modulo 1 +Xn.

The circulant twin CPM of (2) becomes:

Ai ← Ai +Xu
m−1∑
j=0

(
1 +Xr +Xtj +Xs+tj

)
Aj for 0 ≤ i < m .

We will denote the constant polynomials in this expression as ρj , hence

Ai ← Ai +XuE with E =

m−1∑
j=0

ρjAj and ρj = 1 +Xr +Xtj +Xs+tj . (3)

The polynomial representation of state and linear mappings can be quite
convenient in demonstrating properties. For example, Ai(x) is divisible by 1+X
iff Ai(1) = 0, that is, it has an even number of active bits.

3.4 The Inverse of a Circulant Twin CPM

Equation (3) represents m equations, one for each row Ai of the state. We
can rewrite it as a matrix equation where we represent the state A as an m-
dimensional vector with coordinates the rows polynomials. We denote the vector
containing the polynomials Ri = Xuρi by R and write 1 for an m-dimensional
vector with all coordinates equal to 1. Denoting the image by B, this gives:

B = A+ 1RTA = (I + 1RT)A ,

with I an m ×m unit matrix. For symmetry reasons, the inverse has a similar
shape: A = (I + 1R′

T
)B, where R′ is the vector of polynomials for the inverse.

Substitution results in: B = (I+1RT)(I+1R′
T

)B or simplified I = (I+1RT)(I+

1R′
T

). Working this out yields:

0 = 1RT + 1R′
T

+ 1RT1R′
T

= 1RT + 1R′
T

+ 1

∑
j

Rj

R′
T

= 1RT + 1

1 +
∑
j

Rj

R′
T
.

Taking the i-th component yields Ri =
(

1 +
∑
j Rj

)
R′i, hence R′i is given by

R′i =

1 +Xu
∑
j

ρj

−1Xuρi .

As the polynomials ρj are divisible by 1+X, the expression between the brackets
is coprime to 1 +X and hence to 1 +Xn, hence its inverse exists for any choice
of the shift offsets if n = 2`. Moreover, this inverse is in general dense, similar
to the inverse of θ in Keccak-p.
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4 Differential Diffusion Properties of Twin CPMs

In this section we study structural properties of twin CPMs that are a function of
their shift offsets. This leads to necessary conditions for achieving branch number
of 12 and suggests choices leading to a low left tail in the branch histogram. We
will group these conditions in a number of condition sets governing the shift
offsets. They have the form of inequalities and are always modulo n.

For a state A that has E = 0 in (2), a twin CPM acts like the identity. Its bit
branch number is simply its number of active bits times two. The set of states
with E = 0 forms a subspace of A and plays an important role in this section.

Definition 5 (θ-effect kernel). The subspace of A of states that have E = 0
in (2) for a twin CPM is its θ-effect kernel.

We will refer to the θ-effect kernel simply as the kernel. States in the kernel with
few active bits have a low branch number and are therefore undesirable.

In this section we start by characterizing the kernel, then we discuss unavoid-
able states in the kernel, followed by states that are avoidable by a good choice
of shift offsets and finally states with low branch number outside the kernel.

4.1 The Kernel and Its Dimension

We define the P -kernel as the subspace of A for which P = 0 in (2) and the
Q-kernel analogously. The dimension of the P -kernel is (m − 1)n. It is namely
the subspace of A that satisfies n independent linear equations: the parity of
each column shall be 0. The dimension of the Q-kernel is likewise (m− 1)n as it
is also a subspace of A that satisfies n independent linear equations.

We call the intersection of the P -kernel and the Q-kernel the PQ-kernel.
Clearly the PQ-kernel is a subspace of the θ-kernel. Its dimension depends on
the offsets ti but is at least (m−2)n+1. This is because the sum of all conditions
of the P -kernel is the sum of all conditions of the Q-kernel.

We call states in P -kernel with the lowest number of active bits, namely 2,
P -orbitals and similar states in the Q-kernel we call Q-orbitals.

Definition 6 (P -orbital). A P -orbital is a state with 2 active bits that are in
the same column: it has Ai = Xq and Aj = Xq for some q.

Definition 7 (Q-orbital). A Q-orbital is a state with 2 active bits contributing
to the same bit in Q: it has Ai = Xq+tj and Aj = Xq+ti for some q.

If for two rows i and j, we have ti = tj , then the state with two active rows
Ai = 1 and Aj = 1 is at the same time a P -orbital and a Q-orbital, and therefore
in the kernel. A 2-bit state in the kernel implies a branch number of at most 4
and clearly we want to avoid it. Therefore, we will take all offsets ti different.

Condition set 1. Conditions to avoid single-orbital states in the kernel:

ti 6= tj ,∀{i, j} ⊂ {0, 1, . . . ,m− 1} .

11



The following lemma says something about the dimension of the kernel if the
number of columns is a power of two: n = 2`.

Lemma 1. Let (1 +X)
d

= gcd(ρ0, ρ1, . . . , ρm−1, 1 +Xn) with n = 2`, then the
dimension of the kernel is (m− 1)n+ d.

Proof. As n = 2` we have 1 + Xn = 1 + X2` = (1 +X)
2`

= (1 +X)
n
. Then

there exists a j such that (1 +X)
d

= gcd(ρj , 1 +Xn). We can do a renumbering

such that gcd(ρ0, 1+Xn) = (1 +X)
d
, therefore this is without loss of generality.

We now rewrite ∑
j>0

ρjAj = ρ0A0 . (4)

The number of different solutions of (4) determines the dimension of the kernel.
We can choose Aj in the lefthand side freely, resulting in some value B and try
to solve B = ρ0A0 for A0. As all ρj are divisible by 1 + Xd, so is B. Hence,
we can divide both sides by 1 + Xd resulting in an equation B′ = πA0 with
B′ = B/(1 +X)

d
and π = ρ0/(1 +X)

d
. As π is coprime to 1 + Xn it has an

inverse and the solution is given by A0 = π−1B′. Moreover, if C is a solution for
A0 in (4), then C+β(X)(1 +X)

n−d
is also a solution as ρ0(1 +X)

n−d
= 0. The

term β(X)(1 +X)
n−d

can take on 2d possible values, namely those obtained by
taking for β the polynomials of degree less than d. Hence, the choice of the Aj
in the lefthand side accounts for dimension (m−1)n and the 2d values of A0 per
element of that vector space adds d to the dimension. ut

4.2 Minimizing the Kernel

By choosing our offsets well, we can ensure that all states in the kernel have
an even number of active bits. First in Lemma 2, we link the shape of the
polynomials ρj with the number of factors 1+X they contain. Then in Lemma 3
we prove that the kernel contains only states with an even number of bits if the
polynomials ρi satisfy a certain condition.

Lemma 2. Let n = 2` and 0 ≤ a < b < c < d < n. Then

gcd(Xa +Xb +Xc +Xd, 1 +Xn) = 1 +X ⇐⇒ a+ b+ c+ d mod 2 = 1 ,

i.e., if {a, b, c, d} has an odd number of odd integers.

Proof. Dividing Xa +Xb +Xc +Xd by 1 + X gives
∑
a≤i<bX

i +
∑
c≤i<dX

i.
This polynomial is only divisible by 1 + X if it has an even number of terms.
This expression has an even number of terms iff b− a and d− c are both odd or
both even, or equivalently iff a+ b+ c+ d is even. ut

Lemma 3. If n = 2` and for all polynomials ρj the GCD with 1 + Xn is the
same: gcd(ρj , 1+Xn) = 1+Xd with d < n, all states in the kernel have an even
number of active bits.

12



Proof. If gcd(ρj , 1 + Xn) = (1 +X)
d

then ρj mod (1 +X)
d+1

= (1 + X)d. We
now have

E mod (1 +X)
d+1

=

(∑
i

ρiAi

)
mod (1 +X)

d+1

=

(∑
i

(1 +X)
d
Ai

)
mod (1 +X)

d+1

=

(
(1 +X)

d
∑
i

Ai

)
mod (1 +X)

d+1

= (1 +X)
d

((∑
i

Ai

)
mod (1 +X)

)
.

If A has odd bit weight, (
∑
j Aj) mod (1 +X) = 1 and therefore E 6= 0. ut

We now give a corollary with a sufficient condition for minimizing the kernel.

Corollary 1. For n = 2`, if in θ we have r + s mod 2 = 1, then the dimension
of kernel is (m− 1)n+ 1 and only contains states with an even number of active
bits.

Proof. If r + s mod 2 = 1, then for all polynomials ρj we have (0 + r + tj +
(s + tj)) mod 2 = 1. Due to Lemma 2 this implies that for all ρj we have
gcd(ρj , 1 +Xn) = 1 +X. It follows from Lemma 3 that the kernel only contains
states with an even number of active bits and from Lemma 1 that the dimension
of the kernel is (m− 1)n+ 1. ut

4.3 Row Twins

Irrespective of the choice of shift offsets, the kernel contains states with 8 active
bits. These states have a specific structure and we call them row twins.

Definition 8. A state A is a row twin if it only has two active rows with indices
in {i, j} ⊂ {0, 1, . . . ,m− 1} and

Ai = ρj = 1 +Xr +Xti +Xs+ti , Aj = ρi = 1 +Xr +Xtj +Xs+tj ,

or if it is a shifted version of such a state.

Lemma 4. Row twins are in the kernel.

Proof. From (3) we have E = ρiAi + ρjAj = ρiρj + ρjρi = 0. ut
There are

(
m
2

)
= m(m− 1)/2 canonical row twins. To avoid row twins with less

than 8 active bits, each row in a row twins shall have 4 active bits implying that
the 4 powers in ρj shall be different. This results in a number of conditions for
the shift offsets of θ.

Condition set 2. Conditions to avoid row twins with less than 8 active bits:

r 6= 0, s 6= 0

ti 6= 0, ti 6= r, ti 6= −s, ti 6= r − s ∀i ∈ {0, 1, . . . ,m− 1}

13



4.4 Vortices

Irrespective of the choice of shift offsets, the kernel contains states with 6 active
bits. We call these vortices, after states with similar structure in Keccak-f .

Definition 9. A state A is a vortex if it only has three active rows with indices
in {i, j, k} ⊂ {0, 1, . . . ,m− 1} and

Ai = Xtj +Xtk , Aj = Xtk +Xti , Ak = Xti +Xtj ,

or if it is a shifted version of such a state.

Lemma 5. Vortices are in the kernel.

Proof. As P = Ai + Aj + Ak = 0, the vortex is in the P -kernel, and as Q =
XtiAi+X

tjAj+XtkAk = 0, it is in the Q-kernel. Hence it is in the θ- kernel. ut

As the indices of the active rows completely determine the shape of a vortex,
there are

(
5
3

)
= 10 canonical vortices. Due to the existence of vortices, the binary

branch number of any circulant twin CPM is at most 12.

4.5 Avoiding States in the Kernel with Less than 6 Active Bits

The Condition sets 1 are covered by a more general set of conditions to avoid
states in the kernel with 4 active bits. There are three types of such states and
we will cover them in the following three lemmas.

Lemma 6. For even n, let {i, j} ⊂ {0, 1, . . . ,m−1} and ti = tj +n/2, then the
state A with two active rows Ai = Aj = 1 +Xn/2 is in the kernel.

Proof. The state is in the P kernel as P = (1 + Xn/2) + (1 + Xn/2) = 0. It is
also in the Q-kernel as Q = Xtj (1 +Xn/2) + (Xtj+n/2)(1 +Xn/2) = 0. ut

Lemma 7. Let {i, j, k} ⊂ {0, 1, . . . ,m − 1} and ti + tj = 2tk, then the state A
with three active rows Ai = Xtk , Aj = Xti and Ak = Xtk +Xti is in the kernel.

Proof. The state is in the P -kernel as P = Xtk +Xti +Xtk +Xti = 0. It is also
in the Q-kernel as Q = Xti+tk +Xtj+ti +Xtk+tk +Xtk+ti = 0. ut

Lemma 8. Let {i, j, k, l} ⊂ {0, 1, . . . ,m−1} and ti+ tj = tk + tl, then the state
with 4 active rows Ai = 1, Aj = Xtk−tj , Ak = 1 and Al = Xti−tl is in the
kernel.

Proof. The state is in the P -kernel as 1 +Xtk−tj + 1 +Xti−tl = 0. It is also in
the q-kernel as Ai = Xti +Xtk +Xtk +Xti = 0. ut

These three lemmas combined with Condition sets 1 result in three types of
conditions that we group in the following set.
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Condition set 3. To avoid in-kernel states with 4 active bits (or 2 active bits).
For any set {i, j} ⊂ {0, 1, . . . ,m− 1} (for even n):

2ti 6= 2tj .

For any sets {i, j} ⊂ {0, 1, . . . ,m− 1} and k ∈ {0, 1, . . . ,m− 1} with k 6∈ {i, j}:

ti + tj 6= 2tk .

For any two sets {i, j} ⊂ {0, 1, . . . ,m − 1} and {k, l} ⊂ {0, 1, . . . ,m − 1} and
{i, j} ∩ {k, l} = ∅:

ti + tj 6= tk + tl .

4.6 States with Low Branch Number outside the Kernel

We now discuss structures that result in states outside the kernel with low branch
number. If the θ-effect E of a state has d active bits, the state has (bit) branch
number of at least md.

This is because each active bit in E is added to m rows and if in a row it
is added to a passive bit, that bit is active after θ and vice versa, hence it will
always contribute 1 to the bit branch number. As the polynomials ρj all have
even parity, so does E and therefore the smallest non-zero value of d is 2. In
that case the branch number is at least 2m. If E has more than 2 active bits, it
has at least 4 and the branch number is at least 4m. In the following, we discuss
states with a low number of active bits before θ with 2 active bits in E.

Each of the polynomials ρj has 4 active bits and therefore for any single-bit
state A, E has 4 active bits. A state A outside the kernel with two active bits
may have 2, 4, 6 or 8 active bits in E. P - and Q-orbitals lead to at most 4 active
bits in E.

A P -orbital with active bits in (0, i) and (0, j) has Ai = 1 and Aj = 1 and 0
in other rows, and yields:

E = ρi + ρj = Xti +Xs+ti +Xtj +Xs+tj . (5)

A Q-orbital with active bits in (ti, j) and (tj , i) has Ai = Xtj and Aj = Xti

and 0 in the other rows and yields:

E = Xtjρi +Xtiρj = Xtj +Xr+ti +Xti +Xr+tj . (6)

If two exponents in (5) collide, we obtain an E with two active bits. The
same holds for (6) and this leads to 2

(
n
2

)
more conditions.

Condition set 4. Conditions for P -orbitals or Q-orbitals having E with two
active bits. For all {i, j} ∈ {0, 1, . . . ,m− 1}:

ti 6= tj + r

ti 6= tj + s .
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Notice that we can build a state with 3 active bits that has at most 4 active
bits in E by taking for the first two bits a Q-orbital and the last two bits a
P -orbital, or vice versa. For example, let the 3 active bits be at (tj , i), (ti, j) and
(ti, k), then we have:

E =Xtjρi +Xtiρj +Xtiρk = Xtj +Xr+tj +Xtk+ti +Xs+tk+ti . (7)

This can be seen as a chain: a Q-orbital followed by a P -orbital. Note that k can
be equal to i.

A P -orbital followed by a Q-orbital: (tk, i), (tk, j) and (tj , k), gives:

E =Xtkρi +Xtkρj +Xtjρk = Xtj +Xr+tj +Xti+tk +Xs+ti+tk . (8)

These chains can be generalized by building longer sequences of alternating
P -orbitals and Q-orbitals. The number of active bits grows with the chain length
and hence the longer the chains are, the less threatening.

5 Equivalence Classes of Shift Offset Vectors

In this section we discuss two equivalence relations that partition the sets of
shift offset vectors Rλ. The equivalence stems from alternative representations
of the state that lead to linear mappings λ with the same bit branch and column
branch histograms. These representations change the indexes of the bits, but
preserve grouping of bits in columns.

If we denote the alternative representation of a state A by A′, then we have
A′ = σ(A) with σ a bit shuffle. Clearly, B = λ(A) implies B′ = σ(B) =
σ(λ(A)) = σ(λ(σ−1(A′))). In other words, B′ = λ′(A′) with λ′ = σ ◦ λ ◦ σ−1.
As σ is a bit shuffle, the bit branch number of A with respect to λ is equal to
that of A′ with respect to λ′. Moreover, if σ preserves the grouping of bits in
columns, this is also true for the column branch number.

We will now describe two groups of bit shuffles whose elements convert a
mapping λ = ρwest ◦ θ ◦ ρeast characterized by some offset vector Rλ to a linear
mapping of the same shape but with a different offset vector.

5.1 Multiplicative Factor Equivalence

The first group of bit shuffles rearranges the bits within the rows of a state by
multiplying their horizontal indexes with a fixed constant q modulo n. Expres-
sions in the horizontal index shall be taken modulo n.

Definition 10 (Multiplicative shuffle). Let q ∈ (Z/nZ)
∗
, then πq is the

permutation over domain Fn2 defined by:

A′ = πq(A)⇔ ∀j ∈ Z/nZ : a′qj = aj ,

with A a row and aj its component at index j. We call πq the multiplicative
shuffle with shuffling factor q (operating on n-bit vectors).

16



Clearly, as q is coprime to n, πq has an inverse. It is πq−1 with q−1 the multi-
plicative inverse of q in (Z/nZ)

∗
.

Lemma 9. Let A′ = πq(A) and B′ = πq(B). Then, if B = (A≪ t) we have
B′ = (A′ ≪ qt), or equivalently, πq ◦ τ t ◦ πq−1 = τ qt.

Proof. Using A′ = πq(A), B′ = πq(B) and B = (A≪ t) yields:

∀i ∈ Z/nZ : b′qi = bi = ai+t = a′q(i+t) = a′qi+qt .

A change of variable j ← qi results in ∀j ∈ Z/nZ : b′j = a′j+qr, in other words
B′ = (A′ ≪ qt). ut

We can define a multiplicative shuffle on a rectangular state with m rows by
applying it to all its rows. Clearly, it preserves the grouping of bits in columns.

A linear layer λ with some offset vector Rλ only makes use of cyclic shifts
and row additions and therefore πq ◦λ◦πq−1 is of the same type but has an offset
vector that is given by qRλ, i.e., Rλ with all entries multiplied by q modulo n.

As offset vectors Rλ and qRλ with q coprime to n are equivalent, we can
limit investigating variants with a given entry fixed to some constant value. In
this respect the following lemma is useful.

Lemma 10. Assume n = 2` and q is coprime to n. Then if r is of the form u2d

with u odd, qr mod n is of the form v2d with v odd.

Proof. We have:

qu2d mod 2` = (qu mod 2`)(2d mod 2`) mod 2` = (qu mod 2`)2d mod 2`

The group (Z/2`Z)∗ consists of the odd integers < 2`. As the product of two
group elements is a group element, qu mod 2` ∈ (Z/2`Z)∗ and hence odd. ut

Corollary 2. Multiplication of shift offset by an invertible factor q modulo n =
2` preserves its parity: it maps odd to odd and even to even.

5.2 Implications for Rθ

Let us now focus on θ, in particular RE . According to Corollary 1, the kernel is
minimized by taking r odd and s even or vice versa. Let us assume r is odd. Then
we can fix its value to 1 in the offset vector RE without loss of generality: we can
obtain an offset vector with any possible odd value q for r by just multiplying
by q. We can limit s to even values in the interval [2, n/2]. It starts at 2 as
according to Condition sets 2 we wish s 6= 0. The end of the interval is n/2
due to the following reason. The two terms in ρi that depend on s are Xti and
Xs+ti . Assuming the offsets ti range over all possible values, Xa and Xb can
be obtained in two different ways: ti = a and s = b − a mod n or ti = b and
s = a−b mod n. The values of b−a and a−b cannot both be above n and hence
without loss of generality we can set the limit s ≤ n/2.

These restrictions on r and s reduce the number of options for RE from n7

to less than n6/2. When we add u to RE , we obtain Rθ and it turns out that
there are pairs of offset vectors Rθ that result in equivalent mappings θ.
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Lemma 11. The following offset vectors yield θ mappings that are equivalent

Rθ = [1, a, b0, . . . , bm−1, c]

R′θ = [1, a, 1− b0 − a, . . . , 1− bm−1 − a,−c− 1] .

Proof. Consider Rj = Xuρj = Xu +Xu+r +Xu+tj +Xu+s+tj . Filling in Rθ:

Rj = Xc +Xc+1 +Xc+bj +Xc+a+bj ,

and filling in R′θ:

R′j = X−c−1 +X−c +X−c−1+1−bj−a +X−c−1+1−bj

= X−c +X−c−1 +X−c−bj +X−c−bj−a .

Composition with π−1 yields R′′j = Xc +Xc+1 +Xc+bj +Xc+bj+a = Rj . ut

Note that the offset ti in R′θ is even if ti in Rθ is odd and vice versa. For the
case of odd m, we can avoid investigating equivalent offset vectors by requiring
the number of odd ti values in a canonical offset vector to be odd.

5.3 Row Order Equivalence

A row shuffle is a bit shuffle that keeps the order of the bits in the rows intact
but changes the order of the rows. Naturally it preserves both bit and column
branch numbers. As there are m! ways to shuffle m rows, this creates classes of
shift offsets of size up to m! that are equivalent.

As a canonical representation we can adopt the one where the offsets ti are
ordered by increasing value. Moreover, according to Condition sets 1 we should
take all ti different, thus we can adopt ∀0 < i < m : ti > ti−1. This reduces the
number of offset vectors RE to investigate to less than n/4

(
n
m

)
.

Corollary 3. All interesting classes of offset vectors RE are represented by the
lists with the following features

– r = 1 and s ∈ [2, n] and even,
– For all i > 0, ti > ti−1,
– tn−1 mod 2 =

∑
i<n−1 ti mod 2.

6 Linear Mask Propagation Properties

The propagation of linear masks through a linear mapping, important in the
context of linear cryptanalysis, can be easily described with the matrix repre-
sentation of the linear map. If we denote the matrix of L by M, we have U = MTV
with V the mask at the output and U the mask at its input.

For a twin CPM we wish to express its transpose in terms of row additions
and cyclic shifts. This allows expressing masks at the input as a function of masks
at the output. This is more convenient with the polynomial representation.
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6.1 Representing Masks as Polynomials

In linear cryptanalysis, a mask defines a linear function of state bits, i.e., a sum
of the state bits in positions where the mask is 1. If a state A has the shape of a
binary vector, the shape of the mask u is a binary vector of the same dimension
A and the linear function corresponding to mask u is given by uTA. In our case
the state is an array of m rows Ai and we can represent masks similarly, where
the linear function corresponding to a mask U is

∑
i Ui

TAi.
We will express the m rows of a mask by polynomials (U0, U1, . . . , Um−1) and

its propagation through θ in polynomial form.

Definition 11 (transpose of a polynomial). The transpose of a polynomial
P (X) ∈ F2[X]/(1 +Xn) is given by the polynomial P (X−1). Therefore, if P =∑
j pjX

j then PT(X) =
∑
i pjX

n−j mod n.

With this we can express linear functions of a state using polynomials.

Lemma 12 (Expression for a linear function). The linear function of a
state A ∈ (F2[X]/(1+Xn))m defined by a mask U ∈ (F2[X]/(1+Xn))m is given
by UTA mod X. In other words, it is the coefficient of X0 in UTA.

Proof. The coefficient of X0 in UT
i (X)Ai(X) mod 1+Xn = Ui(−X)Ai(X) mod

1 +Xn is
∑
j ui,jai,j . Taking the sum over all rows gives

∑
i,j ui,jai,j . ut

6.2 Mask Propagation through a Twin CPM

We will now show how input and output masks are related over a generalization
of a circulant twin CPM in polynomial representation.

Lemma 13 (Mask propagation throught a circulant mapping). Let L be
determined by a square matrix of polynomials ρi,j with Bj ← Aj +

∑
i ρi,jAi. An

input mask V ∈ (F2[X]/(1+Xn))m depends on an output mask U ∈ (F2[X]/(1+
Xn))m as:

Vi = Ui +
∑
j

ρTj,iUj .

Proof. We can compute an input mask V from the output mask U as follows:

∑
i

UT
i Bi =

∑
i

UT
i

Ai +
∑
j

ρi,jAj

 =
∑
i

UT
i Ai +

∑
j

∑
i

UT
i ρi,jAj

=
∑
i

UT
i Ai +

∑
i

∑
j

UT
j ρj,iAi =

∑
i

UT
i +

∑
j

UT
j ρj,i

Ai

=
∑
i

Ui +
∑
j

ρTj,iUj

T

Ai .

hence, we have
∑
i U

T
i Bi =

∑
i V

T
i Ai with Vi = Ui +

∑
j ρ

T
j,iUj . ut
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Therefore, the polynomial representation of the transpose of θ is given by:

Ai ← Ai +

4∑
j=0

X−u
(
1 +X−r +X−ti +X−s−ti

)
Aj .

This translates readily to:

Ai ←Ai + ((E + (F ≫ ti)) ≫ u) for 0 ≤ i < m with

E ← P + (P ≫ r) , F ← P + (P ≫ s) and P ←
4∑
i=0

Ai . (9)

We see two θ-effects, E and F with different folding offsets: r and s. They are
both added to the rows, where the second one is shifted over different offsets ti.

6.3 Low-Weight 3-Round Linear Trails

The P -kernel of θT consists of all states with an even number of active bits in
each column. It has elements with only two active bits, namely P -orbitals, in
total n

(
m
2

)
of them. It follows that the bit branch number of θT is at most 4.

It is also at least 4 because for any state A with a single active bit θT(A) and(
θT
)−1

(A) have more than 3 bits.
If all shift offsets in Rw are different and similarly all shift offsets in Re, the

bit branch number of θT translates to a column branch number of 4 for λT. As
an active column has at least weight (and minimum reverse weight) 2, it follows
that there are 2-round trails with weight 8.

For three rounds we consider a particular type of linear trails. We know a
single-bit mask at the output of χ, restricted to a single column, is correlated
to the same single-bit mask at its input with correlation 1/2. Therefore, with
respect to masks with at most a single active bit per column, χ can act as the
identity. The type of 3-round linear trails we consider are those where this is the
case for the middle χ.

An orbital at θ of the second round is transformed by ρwest
−1, goes through

χ unchanged and is then transformed by ρeast
−1 to end up at the output of θ of

the first round. If these bits are in the same column, they form again an orbital
and are in the kernel, implying that we see it unchanged at the input of θ. This
would mean a 3-round trail that has in each χ-step only two active bits, thus
with weight only 12.

We can avoid these by having conditions on the shift offsets formed by the
combination of ρwest and ρeast. We will denote them by ci = ei + wi.

From the example above, we should ensure ∀i, j : ci 6= cj . These are the rules
of Condition sets 1, applied to ci. Similarly, violation of the rules in Condition
sets 3 applied to ci would lead to trails with 4-bit states in the kernel of θT in
two consecutive rounds, and thus to 3-round linear trails with weight only 24.

We cannot avoid the existence of linear trails with 6-bit states in the kernel
of θT in two consecutive rounds, and these result in 3-round linear trails with
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weight at most 36. In particular, they are like the vortices of Definition 9, but
with ci taking the place of ti. In total there are

(
m
3

)
canonical vortices and there

may be additional trails with 6-bit states in the kernel of θT in two consecutive
rounds. If the 6 active bits of the masks at input/output of the χ steps in these
trails are not in 6 different columns, the weight goes under 36.

6.4 Transpose of Twin CPMs

Twin CPMs have stronger diffusion for the propagation of differences than for
the propagation of masks. In some use cases we may wish to have the inverse.
For those cases we can use the transpose of a twin CPM as specified in (9).

7 Application: the Design of Gaston

In this section we will illustrate the power of circulant twin CPMs by building a
concrete iterated permutation using it as the mixing layer in its round function.
Our permutation operates on a two-dimensional state with the same dimensions
as Ascon-p and we decided to call it Gaston.

7.1 The Structure of the Round Function and Shape of the State

Gaston operates on 320-bit states with m = 5 rows and n = 64 columns. Its
round function consists of a linear layer followed by a non-linear layer. As in
the iterated permutation Xoodoo [12], the linear layer consists of the mixlayer
θ, preceded and followed by row shift steps ρwest and ρeast respectively and a
round constant addition ι. The non-linear layer consists of the application of the
χ-mapping that operates in parallel on the 5-bit columns. The main differences
with the Xoodoo round function are that θ is a circulant twin CPM rather than
a circulant CPM and that the state has 5-bit columns rather than 3-bit columns.

After fixing the round function structure, the design effort mainly consists of
determining the shift offsets of the mixlayer and the row shift steps. We discuss
our search strategy to find shift offsets for the mixlayer as well as for the two
row shuffles in Sec. 7.2, the procedure we followed for Rθ in Sec. 7.3 and for Rρ

in Sec. 7.4 and Sec. 7.5.

7.2 General Search Strategy

As discussed in Sec. 3, the shift offsets of the linear layer λ are gathered in a
shift offset vector Rλ = (Rθ,Rρ). We aim to find a shift offset vector Rλ that
minimizes the maximum DP value of differentials over a fixed round version
of Gaston, say with 4 rounds. Determining the maximum DP value of 4-round
differentials is actually a huge task, even for a single value of Rλ. Moreover, the
number of Rλ values is astronomical: It has 3m + 1 entries each in the range
[0, 63], thus for Gaston there are 6416 = 296 possible values. Taking into account
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the equivalence classes discussed in Sec. 5 this reduces to 16
(
64
5

)
649 ≈ 281, but

it remains astronomical.

With minimization of the maximum DP of differentials over 4-round Gaston
being infeasible, we turn to local optimization. In particular, we will choose a
value for Rλ that gives rise to a linear layer λ with a column branch number of
12. There are many such values of Rλ and as secondary criterion we look at the
left tail in the column branch histogram of the corresponding mappings λ.

For λ to have a column branch number of 12, θ must have a bit branch
number of 12. Moreover, the height of the tail of the column branch histogram
of λ depends strongly on that of the bit branch histogram of θ. Both the bit
branch number and the height of the tail of the bit branch histogram of θ are
fully determined by Rθ. Therefore, we opt for a two-phase approach: we first
determine Rθ and then only Rρ, where we choose Rθ based on quantitative bit-
level diffusion properties of θ and Rρ is chosen to translate this bit-level diffusion
to the column level for λ.

Our two phases are each divided into a number of steps. In particular, for
Rρ we first find a suitable candidate for Rw before making a choice on Re.

7.3 Selecting the Offsets of Rθ

To find the offsets for Rθ, the steps are the following:

1. RE-condition-filtering: we eliminate all RE candidates leading to avoidable
in-kernel states with less than 6 active bits. This phase reduces the 16

(
64
5

)
≈

227 RE candidates that move on to the next phase to 14 282 988 ≈ 223

candidates.

2. RE-kernel-filtering: we keep the RE candidates that have no in-kernel states
with less than 6 active bits and count the number of in-kernel states with 6
active bits. There are 828 candidates for RE with 11 6-bit states.

3. RE-candidate-pool: for each RE candidate we compute the θ-effect E of all
states with 3 active bits and keep those that minimize the number of 3-bit
states that result in E having 2 active bits. This minimum turns out to be
1 and there are 3 such candidates for RE .

4. u-selection: we exhaustively test all u candidates and select the value that
moves all active bits to different columns for states outside the kernel with
5 active bits or less. After this phase Rθ is fully determined.

RE-Condition-Filtering. Several cases of in-kernel and out-of-kernel states with
bit branch number less than 12 are avoidable by discarding shift offsets defined
in Sec. 4. More specifically, we discard candidates leading to single-orbital states
(Condition sets 1) as well as 2-bit and 4-bit states in the kernel (Condition
sets 3). Offsets that result in in-kernel states with an odd number of active bits,
in-kernel row twins states with less that 8 active bits (Condition sets 2) and
2-bit states that have a θ-effect E with 2 active bits (Condition sets 4) are also
eliminated.
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RE-Kernel-Filtering. For each RE candidate we generate all states up to 6
active bits and discard any candidate that leads to in-kernel states with 4 active
bits as well as 2-bit states with 2 bits in E that were not caught during the RE-
condition-filtering phase. We keep those that result in the minimum number of
in-kernel states with bit branch number of 12.

RE-Candidate-Pool. For each RE candidate we look at the θ-effect E of all
out-of-kernel states with less than 6 active input bits. For a θ-effect E with 2
active bits the bitwise branch number is at least 10. If E has 4 active bits then
states have a bitwise branch number of at least 20. During this phase we discard
RE candidates that do not minimize the number of 3-bit states with 2 bits in
E. We report in Table 2 the histograms for the chosen candidate (right table)
and we also give an example of a discarded RE candidate (left table).

Table 2: 2-dimensional histograms giving the number of states according to the
number of active bits in the θ-effect (vertical axis) and the number of active bits
at the input (horizontal axis). We have RE = (1, 20, 4, 6, 21, 33, 61) at the left
and RE = (1, 18, 25, 32, 52, 60, 63) at the right.

3 4 5 6

0 11
2 6 28 168 868

3 4 5 6

0 11
2 1 24 158 686

u-Selection. For the 3 RE candidates, we generate the histogram listing the
number of states according to the bit weight at input and output for all u values.
We generate all states with at most 6 active input bits and at most 2 active bits
in the θ-effect E. In the generated histograms, we see that u impacts an effect
that we call affected-loss that we now explain. An active bit in an unaffected
column contributes 2 to the branch number and an active bit in an affected
column does not contribute to it. We choose the u candidate that minimizes
that affected-loss. As the offset u shifts the θ-effect E before it is added to the
rows, we only need to look at out-of-kernel states. We chose to look only at those
with few active bits that have two active bits in E as that is where the risk of
getting a branch number below 12 is. We select the u value where active bits do
not overlap with affected columns for all states up to 5 active bits. We report
in Table 4 the histogram associated to the chosen candidate and we also give an
example of a u candidate that can be discarded in Table 3. In particular, there
are 24 4-bit states with 2 bits in E and a bit overlapping with a affected column
costs 2 bits. If u is fixed to 29 then out of these 24 states there are 3 states
that have an image with 10 active bits. It means that there are 2 bits at the
input that are overlapping with an affected column. Moreover, 2 states have an
image with 12 active bits which means that 1 bit is overlapping with an affected
column. For u = 23 all 24 4-bit states will have an image with 14 active bits. We
report in Table 4 the bit branch histogram associated to the chosen candidate.
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Table 3: 2-dimensional bit weight histograms for RE = (1, 18, 25, 32, 52, 60, 63)
with offset u = 29.

6 7 8 9 10 11 12 13 14 15

3 1
4 3 2 19
5 6 2 150
6 11 2 3 40 73

Table 4: 2-dimensional bit weight histogram for RE = (1, 18, 25, 32, 52, 60, 63)
with offset u = 23.

6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23

1 5
2 29
3 1 5 149
4 24 1 14 67
5 158 3 17 289 506
6 11 18 15 653 42 132 3012
7 1 200 143 4447 578 1930 29567
8 346 18 25 1421 1432 25849 7119 24174
9 94 303 12900 16428 207062 81499 284023
10 10952 1247 3139 94506 141168 1313837 894509
11 17 58 10545 39889 842033 1492497 10832247 9631128

7.4 Selecting the Offsets of Rw

The mixlayer θ being set, we can generate low-branch number in-kernel and out-
of-kernel states. The role of the row shuffle Rw is to move bits that are in the
same column in a state at the output of θ to different columns at the output of
λ. To determine Rw we proceed with the following steps:

1. Rw-kernel-filtering: for each Rw candidate we apply ρwest to the 11 in-kernel
states with 6 active bits, see Table 4. We keep those that shift all 6 bits to
different columns at the output of λ. This phase reduces the 63∗62∗61∗60 ≈
224 candidates for Rw to 3 943 564 ≈ 222.

2. Rw-condition-filtering: we reduce the set of Rw candidates by keeping those
that for the 10 bits in any 2 affected columns are moved to at least 9 dif-
ferent columns. This reduces the set of 222 candidates for Rw candidates to
1 362 650 ≈ 220 candidates.

3. Rw-kernel-filtering: we apply each Rw candidate to all in-kernel states with
8 active bits, see Table 4. We keep those that shift at most 2 active bits to
the same column. We are left with 9212 candidates.

4. Rw-candidate-pool: we apply each Rw candidate to out-of-kernel states with
at most bit branch number 18. We keep those where at most one column
will have two active bits at the output of λ. There are 24 candidates.

Rw-Kernel-Filtering. The desired effect of ρwest is the following. For low-branch-
number states, the row shuffle ρwest should move active bits in the state after θ
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to different columns at the output of λ. When bits cluster in columns it results
in a state having a column branch number under λ smaller than the bit branch
number under θ. The effect of active bits at the output of θ ending up in the
same column after λ is called bit huddling [9]. In this phase, for all Rw values we
check whether for the 11 states with bit branch number 12 there is bit huddling
at the output of λ and keep only those where there is none.

Rw-Condition-Filtering. For states outside the kernel, the state at the output
of θ will have a number of affected columns. For low-branch-number states,
typically an affected column will have most of its bits active, most often all of
them. Now, if we have a state consisting of two affected columns at the output
of θ, the positions of these affected columns can be chosen such that there are
at least 2 bits in the same column after ρwest: the 10 bits huddle to 9 columns.
By a judicious choice of the shift offsets in Rw this number can be limited to
not be lower than 9 for any two affected column position. The conditions on the
shift offsets to limit this bit huddling coincide with Condition sets 3.

Rw-Kernel-Filtering. We keep any Rw that moves the 8 active bits before ρwest

to at least 7 different columns after ρwest.

Rw-Candidate-Pool. We require that a Rw candidate moves active bits in the
state before ρwest to different columns after ρwest. We minimize the bit huddling
effect to one column having at most 2 active bits.

7.5 Selecting the Offsets of Re

Following the procedure to determine a suitable Rw, for each of the 24 Rw

candidates we go through the following steps to make a choice on Re:

1. Re-kernel-filtering: the Re candidates are selected from the set of Rw can-
didates passing the Rw-kernel-filtering phase.

2. Re-condition-filtering: for each Re candidate we take into account Rw. We
eliminate any Re that results in vortices with less than 4 bits remaining in
the kernel of θT for two successive rounds.

3. Re-vortices-filtering: we apply each (Rw,Re) candidate to the 10 canonical
vortices obtained by the combination of ρwest and ρeast. Candidates that
result in vortices with less than 6 bits in the kernel of θT for two successive
rounds when χ acts as the identity are discarded.

4. Rρ-tie-break: we check the minimum squared correlation C2 of 3-round linear
trails in the kernel of θT for the (Rw,Re) candidates.

Re-Kernel-Filtering. The conditions for a Re candidate in this step are the same
as the conditions for a Rw candidate in the Rw-kernel-filtering step, but applied
to the additive inverses of the ρeast shift offsets that we denote as −Re. A Re

candidate passes the step if it moves all bits of the 11 6-bit states at the input
of θ to different columns after ρeast

−1. As all these 6-bit states are in-kernel, the
bits before and after θ are the same. Thus, the list of candidates for −Re is the
same as the list of candidates generated during the Rw-kernel-filtering step.
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Re-Condition-Filtering. As described in Sec. 6.3, we eliminate all candidates
leading up to low-weight 3-round linear trails with 4-bit states in the kernel of
θT in two consecutive rounds when χ acts as the identity. The conditions to
discard those offsets coincide with Condition sets 3 applied to ρwest + ρeast and
ensure that we don’t obtain a 3-round in-kernel linear trail with weight 24 when
χ acts as the identity.

Re-Vortices-Filtering. As stated in Sec. 6.3, we can generate all 10 canonical
vortices obtained from the combination of Rw and Re. For each candidate, we
apply ρeast

−1, ρwest as well as ρwest ◦ρeast ◦ρwest and require that all 6 bits in the
10 vortices are moved to different columns after each operation. Doing so ensures
that we avoid vortices with 6 active bits in the kernel of θT in two consecutive
rounds which lead to 3-round linear trails with weight less than 36.

Rρ-Tie-Break. For a (Rw,Re) candidate, we model the linear propagation be-
havior of the permutation with SMT and we check the minimum weight of
3-round linear trails in the kernel of θT. We select a candidate that maximizes
the minimum squared correlation C2 of trails over 3 rounds in the kernel of θT.
The parameters for the linear layer are given in Table 6 in Sec. 8.

7.6 Trail Search and Bounds

Several of the steps in the selection process for the linear layer require the gener-
ation of states up to some branch number. To generate these states, we use the
tree traversal technique and we make use of the two-level tree search as well as
canonicity and a score function, both defined in [19]. We further use Satisfiabil-
ity Modulo Theories (SMT) and Mixed-Integer Linear Programming (MILP) in
a hybrid manner [30] to obtain bounds on the differential and linear trails (see
Appendix A). We then discuss our results in Table 5.

Two-Level Tree Search. The two-level tree traversal strategy introduced in [19]
allows efficiently generating all states with branch number below a given target.
The strategy arranges the states in a tree with nodes identified by a row list,
that specifies the active rows of the state. The parent of a state is the row list
with the last row removed and the root of the tree is the empty list. The active
rows are lists of active bits, indicated by their x-coordinates. When traversing
the tree, going to the first child of a node corresponds to adding the smallest
possible active row after its last active row in the list. Going to the sibling of a
node corresponds to iterating the last active row to the next value. Lastly, going
to the parent of a node is done by removing the last active row from the row
list.

Canonicity. The linear layer λ and the non-linear layer χ are both shift invariant
with respect to translation along the horizontal axis. This symmetry property
partitions the state space into equivalence classes and we only need to visit one
node per class. The representative of such a class is called a canonical state and
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corresponds to the smallest state of its class, for some order relation. We adopt
an order relation where a non-canonical state has no canonical descendants.
Hence, we can safely prune complete subtrees of non-canonical state in the tree.

Score. We denote by score the function that gives a lower bound on the branch
number of a node and all its descendants. It allows us to safely prune complete
subtrees from nodes with score higher than the target branch number. Moreover,
we are only interested in low-branch number states and thus the states generation
can be limited by the number of active bits in the θ-effect E. Since the addition
of a bit in a state at the input of θ always adds 4 active bits at the output of θ
with the number of affected columns, it is enough to generate all states with a
score below 4 times the limit weight at the input.

SMT and MILP Models for Analysis of Trails in Gaston. Since the automated
methods for searching differential and linear trails are well known, we omit their
description in this section due to space limitation. However, we discuss the mod-
eling for both automated tools in Appendix A.

Results. We use the parameters from Table 6 to compute the differential and
linear properties of Gaston and compare them with Ascon in Table 5.

Table 5: Differential and linear bounds of Gaston where kernel of E and P are
taken at the first round. The exact numbers in the table represents the minimum
values.

Differential

Gaston Ascon
Ker(E) = 0 Ker(E) 6= 0

Column-wise branch number 12 13− 16 4
Weight of 2-round trail (B.1) 24 26− 34 8
Weight of 3-round trail (B.1) ≤ 106 - 40

Linear

Ker(P ) = 0 Ker(P ) 6= 0

Column-wise branch number 4 21 4
Weight of 2-round trail 8 42 8

Weight of 3-round trail (B.2) 34 ≥ 44 28

From Table 5, we observe that the column-wise branch number (differential)
of Gaston’s mixing layer is three times larger than that of Ascon, while the
linear column-wise branch number of both mixing layers are the same. The best
3-round differential trail we find for Gaston has weight 106, much higher than
Ascon’s 3-round differential trail with weight 40. Moreover, the optimal weight
of Gaston’s 3-round linear trail is 34 while it is 28 for Ascon.
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Algorithm 1 Definition of Gaston
Parameters: Number q of rounds
for Round index i from 1− q up to 0 do A = Ri(A)

The round function R:
for index j from 0 to 4 do Aj ← (Aj ≪ ej) . ρeast
E ← (

∑
Aj + (

∑
Aj ≪ r)) + (

∑
(Aj ≪ tj) + (

∑
(Aj ≪ tj) ≪ s))

for index j from 0 to 4 do Aj ← Aj + (E ≪ u) . θ
for index j from 0 to 4 do Aj ← (Aj ≪ wj) . ρwest

A0 ← A0 + Ci . ι
for index j from 0 to 4 do Aj ← Aj +Aj+1 ·Aj+2 . χ

8 Specifications of Gaston and Use Case

In this section we provide a non-ambiguous specification of the Gaston family of
permutations and present a concrete use case.

As in Ascon-p and Xoodoo, the number of rounds in Gaston is not fixed but
depends on the use case. The round function is the same for all rounds, except
for the round constants. As in Xoodoo and Ascon-p, the round constants
are numbered from the last round backwards, therefore, the last round always
has the same round constant, irrespective of the number of rounds and likewise
the penultimate round, etc. The round constants used in Gaston correspond
to those used in Ascon-p . Algorithm 1 describes Gaston and uses the shift
offset parameters alongside the round constants that are specified in Table 6.
We denote by Aj ·Aj′ the bitwise product (AND) of rows Aj and Aj′ while Aj
denotes the bitwise complement of row Aj . A reference implementation of Gaston
is available at https://gitlab.science.ru.nl/selhirch/circulanttwincpm.

Table 6: List of parameters for the linear diffusion layer of Gaston at the left and
the round constants Ci with −11 ≤ i ≤ 0, in hexadecimal notation at the right.

Index Rθ = (r s tj u) Rw Re

0 1 18 25 23 0 0
1 32 56 60
2 52 31 22
3 60 46 27
4 63 43 4

i Ci i Ci i Ci i Ci

−11 0xf0 −8 0xc3 −5 0x96 −2 0x69

−10 0xe1 −7 0xb4 −4 0x87 −1 0x5a

−9 0xd2 −6 0xa5 −3 0x78 0 0x4b

A permutation by itself does not constitute as a cryptographic primitive, it
must be used in a construction to be cryptographically useful. Constructions in-
clude Even-Mansour [20] to build a block cipher, Farfalle [4] to build a deck func-
tion (a variable-input-length variable-output-length pseudorandom function),
sponge to build a hash function or an extendable output function (XOF) [5]
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and (monkey)duplex [7] as a basis for authenticated encryption schemes like
Ascon. There is a actually quite a list of permutation-based constructions and
modes and this list is still growing.

We believe Gaston, and in some cases a similar permutation using a transpose
twin CPM, are competitive in most of these constructions but choosing the re-
quired number of rounds would require some more comprehensive cryptanalysis.
In Farfalle however the security depends mostly on differential and correlation
properties and the number of rounds is easier to choose based on existing anal-
ysis. Therefore we will concentrate on that use case in this subsection.

Farfalle makes use of 4 permutations that in the case of Xoofff all are
6-round Xoodoo. When instantiated with Gaston, we propose the following:

pc in the compression layer. In [21] it has been shown that the strength against
inner collisions in Farfalle is given by maxa

∑
b DP2(a, b) ≤ maxa,b DP(a, b)

under reasonable assumptions. To achieve 128 bits of security with respect
to this, it is sufficient that maxa,b DP(a, b) ≤ 2−128. With the current bounds
we are confident that 4 rounds are sufficient.

pe in the expansion layer. This permutation needs to protect against state/key-
recovery attacks using output only and to avoid biases in the output. For
the latter the input-output correlations are important and therefore a Gaston
variant with a transpose twin CPM would be the logical choice. Assuming the
squared correlation of the best linear trails for this variant would be similar
to the DP of differential trails for Gaston, 4 rounds would be sufficient to
avoid detectable biases in the output. Moreover, based on the cryptanalysis
of [11], the high diffusion of the twin CPM in Gaston in comparison to that of
the CPM of Xoodoo would make 4 rounds sufficient to offer a comfortable
security margin with respect to state/key-recovery attacks.

pd between the compression and expansion layer. Its role is to protect against
input/output attacks. Here the algebraic degree of the concatenation of pd
and pe is relevant rather than difference propagation and correlation. Here a
Gaston variant with a classical CPM would be the logical choice, thanks to
its low gate cost of 2 XORs per state bit. We believe again 4 rounds would
be sufficient, resulting in an algebraic degree close to 256.

pb for deriving the initial mask from the key K. The purpose of this permutation
is to diffuse the key bits to the mask in case of a biased key. Here we propose
to take Gaston with 4 rounds where the reduction in rounds with respect to
Xoodoo is motivated by the higher diffusion of the twin CPM as compared
to the CPM.

Thus, all 4 permutations have 4 rounds instead of 6 rounds. The rounds of
Gaston are slightly more expensive per bit than those of Xoodoo but this is
still compensated by the decrease in number of rounds. Additionally, the Gaston-
based Farfalle instance operates on smaller blocks than Xoofff, 320 bits instead
of 384. This is an advantage on constrained platforms. We believe this provides
a promising perspective for the future adoption of Gaston and its variants.
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9 Conclusions

Circulant twin CPMs are a generalization of CPMs used as mixing layer in Kec-
cak-f and Xoodoo. Together with their transpose, they form a new category of
mixing layer that has very high local diffusion in the form of a differential branch
number (linear branch number for the transpose) not seen before for such a low
cost. The optimization for differential or linear branch number is a new feature
that allows to get a much higher specific branch number for the same amount
of computation than MDS matrices.

We use a twin CPM in a proof-of-concept lightweight permutation Gaston
that has a round function that has the same width, shape and gate cost as
that of Ascon-p. Due to its high branch number, the best 2-round differential
trails in Gaston have weight 24 vs. 8 in Ascon-p. Even though the linear branch
number of our mixing layer in Gaston is only 4, the best 3-round linear trails
of Gaston have weight 34 vs. 28 in Ascon-p. No 3-round differential trails were
found with weight less than 106 while in Ascon-p there are 3-round differential
trails with weight 40.

Open Problems. For Gaston it would be interesting to have tighter bounds for the
weight of differential trails over more than 2 rounds and linear trails over more
than 3 rounds. This will require the introduction of new techniques. Moreover,
interesting aspects to investigate are clustering of differential trails in differen-
tials, clustering of linear trails in linear approximations and the validation of
the approximation of the DP of differential trails by DP(Q) ≈ 2−wr(Q). Another
direction for future research is to explore permutations operating on states with
other dimensions such as those of Xoodoo.

Finally, it would be interesting to more closely investigate the use of Gas-
ton-like permutations within constructions like Farfalle, (monkey)-duplex such
as Ascon or Xoodyak and others and do a comprehensive analysis of the per-
mutation in that context.
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authenticated encryption and hashing. J. Cryptol. 34(3), 33 (2021), https://doi.
org/10.1007/s00145-021-09398-9

18. Duval, S., Leurent, G.: MDS matrices with lightweight circuits. IACR Trans. Sym-
metric Cryptol. 2018(2), 48–78 (2018), https://doi.org/10.13154/tosc.v2018.
i2.48-78

19. El Hirch, S., Mella, S., Mehrdad, A., Daemen, J.: Improved differential and lin-
ear trail bounds for ASCON. IACR Trans. Symmetric Cryptol. 2022(4), 145–178
(2022), https://doi.org/10.46586/tosc.v2022.i4.145-178

20. Even, S., Mansour, Y.: A construction of a cipher from a single pseudoran-
dom permutation. In: Imai, H., Rivest, R.L., Matsumoto, T. (eds.) Advances
in Cryptology - ASIACRYPT ’91, International Conference on the Theory and
Applications of Cryptology, Fujiyoshida, Japan, November 11-14, 1991, Proceed-
ings. Lecture Notes in Computer Science, vol. 739, pp. 210–224. Springer (1991),
https://doi.org/10.1007/3-540-57332-1_17

21. Fuchs, J., Rotella, Y., Daemen, J.: On the security of keyed hashing based on
an unkeyed block function. IACR Cryptol. ePrint Arch. p. 1172 (2022), https:
//eprint.iacr.org/2022/1172

22. Guo, J., Peyrin, T., Poschmann, A.: The PHOTON family of lightweight hash
functions. In: Rogaway, P. (ed.) Advances in Cryptology - CRYPTO 2011 - 31st
Annual Cryptology Conference, Santa Barbara, CA, USA, August 14-18, 2011.
Proceedings. Lecture Notes in Computer Science, vol. 6841, pp. 222–239. Springer
(2011), https://doi.org/10.1007/978-3-642-22792-9_13

23. Guo, J., Peyrin, T., Poschmann, A., Robshaw, M.J.B.: The LED block cipher. In:
Preneel, B., Takagi, T. (eds.) Cryptographic Hardware and Embedded Systems -
CHES 2011 - 13th International Workshop, Nara, Japan, September 28 - October
1, 2011. Proceedings. Lecture Notes in Computer Science, vol. 6917, pp. 326–341.
Springer (2011), https://doi.org/10.1007/978-3-642-23951-9_22

24. Kranz, T., Leander, G., Stoffelen, K., Wiemer, F.: Shorter linear straight-line
programs for MDS matrices. IACR Trans. Symmetric Cryptol. 2017(4), 188–211
(2017), https://doi.org/10.13154/tosc.v2017.i4.188-211

25. Li, C., Wang, Q.: Design of lightweight linear diffusion layers from near-mds
matrices. IACR Trans. Symmetric Cryptol. 2017(1), 129–155 (2017), https:

//doi.org/10.13154/tosc.v2017.i1.129-155

26. Li, S., Sun, S., Shi, D., Li, C., Hu, L.: Lightweight iterative MDS matrices: How
small can we go? IACR Trans. Symmetric Cryptol. 2019(4), 147–170 (2019),
https://doi.org/10.13154/tosc.v2019.i4.147-170

27. Li, Y., Wang, M.: On the construction of lightweight circulant involutory MDS
matrices. In: Peyrin, T. (ed.) Fast Software Encryption - 23rd International Con-
ference, FSE 2016, Bochum, Germany, March 20-23, 2016, Revised Selected Pa-

32

https://doi.org/10.1007/978-3-662-04722-4
https://doi.org/10.1007/978-3-662-04722-4
http://jda.noekeon.org/
https://eprint.iacr.org/2022/1088
https://ascon.iaik.tugraz.at/
https://doi.org/10.1007/s00145-021-09398-9
https://doi.org/10.1007/s00145-021-09398-9
https://doi.org/10.13154/tosc.v2018.i2.48-78
https://doi.org/10.13154/tosc.v2018.i2.48-78
https://doi.org/10.46586/tosc.v2022.i4.145-178
https://doi.org/10.1007/3-540-57332-1_17
https://eprint.iacr.org/2022/1172
https://eprint.iacr.org/2022/1172
https://doi.org/10.1007/978-3-642-22792-9_13
https://doi.org/10.1007/978-3-642-23951-9_22
https://doi.org/10.13154/tosc.v2017.i4.188-211
https://doi.org/10.13154/tosc.v2017.i1.129-155
https://doi.org/10.13154/tosc.v2017.i1.129-155
https://doi.org/10.13154/tosc.v2019.i4.147-170


pers. Lecture Notes in Computer Science, vol. 9783, pp. 121–139. Springer (2016),
https://doi.org/10.1007/978-3-662-52993-5_7

28. Liu, M., Sim, S.M.: Lightweight MDS generalized circulant matrices. In: Peyrin,
T. (ed.) Fast Software Encryption - 23rd International Conference, FSE 2016,
Bochum, Germany, March 20-23, 2016, Revised Selected Papers. Lecture Notes in
Computer Science, vol. 9783, pp. 101–120. Springer (2016), https://doi.org/10.
1007/978-3-662-52993-5_6

29. Liu, M., Sim, S.M.: Lightweight MDS generalized circulant matrices. In: Peyrin,
T. (ed.) Fast Software Encryption - 23rd International Conference, FSE 2016,
Bochum, Germany, March 20-23, 2016, Revised Selected Papers. Lecture Notes in
Computer Science, vol. 9783, pp. 101–120. Springer (2016), https://doi.org/10.
1007/978-3-662-52993-5_6

30. Makarim, R.H., Rohit, R.: Towards tight differential bounds of Ascon: a hybrid
usage of SMT and MILP. IACR Trans. Symmetric Cryptol. 2022(3), 303–340
(2022), https://doi.org/10.46586/tosc.v2022.i3.303-340

31. Matsui, M., Yamagishi, A.: A new method for known plaintext attack of FEAL
cipher. In: Rueppel, R.A. (ed.) Advances in Cryptology - EUROCRYPT ’92, Work-
shop on the Theory and Application of of Cryptographic Techniques, Balatonfüred,
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In order to obtain bounds on the differential and linear branch number of Gaston,
we use Satisfiability Modulo Theories (SMT) and Mixed-Integer Linear Program-
ming (MILP) in a hybrid manner [30]. We discuss the construction of the models
for both automated tools followed by the discussion on the obtained bounds. We
restrict our discussion on the model for differential trails since the one for linear
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trails is analogous. The source codes for both differential and linear trails are
available at https://gitlab.science.ru.nl/selhirch/circulanttwincpm.

A.1 MILP Model for Computing Differential Weight

Our MILP modeling consists of three steps, namely 1) model constraints for a
single round, i.e., 5-bit χ S-box and the linear layer λ = ρwest ◦ θ ◦ ρeast, 2) add
constraints for multiple rounds by extending the previous step, and 3) add the
objective function to minimize the weight.

Constraints for χ. Let {xi}4i=0 and {yi}4i=0 be binary variables denoting the
input and output difference of χ, respectively. We use the approach from [1,
Appendix B] to model weights of differential transitions. More precisely, we first
divide the DDT of χ into multiple DDTs based on weights. Then for each DDT,
we compute the minimized product-of-sum (POS) representation of Boolean
functions using Logic Friday. Each POS form is then converted into a set of
linear inequalities where these inequalities remove the impossible propagations
in DDT [1, Sec. 3]. Finally, the differential transitions via χ can be modeled by
the following inequalities.

x0 + x1 + x2 + x3 + x4 ≥ d, x0 + x1 + x2 + x3 + x4 ≤ 5 · d
y0 + y1 + y2 + y3 + y4 ≥ d, y0 + y1 + y2 + y3 + y4 ≤ 5 · d

w(2) + w(3) + w(4) = d

4∑
i=0

ajixi +

4∑
i=0

bjiyi + cj − 10 · w(2) ≥ 0, for j = 0, . . . , `(w(2))− 1

4∑
i=0

djixi +

4∑
i=0

ejiyi + f j − 10 · w(3) ≥ 0, for j = 0, . . . , `(w(3))− 1

4∑
i=0

gji xi +

4∑
i=0

hjiyi + kj − 10 · w(4) ≥ 0, for j = 0, . . . , `(w(4))− 1 .

(10)

In (10), d,w(2), w(3), w(4) are binary variables. We enforce d = 1 if and only
if the S-box is active. The variables w(2), w(4), w(4) mean the difference prop-
agates through χ with weight either 2, 3 and 4, respectively. The number of
linear inequalities (number of terms in the POS representation) corresponding
to weight 2, 3 and 4 is given by `(w(2)), `(w(4)) and `(w(4)), respectively. We pro-
vide the values of `(w(2)), `(w(4)), `(w(4)) and coefficients (aji , b

j
i , c

j), (dji , e
j
i , f

j)

and (gji , h
j
i , k

j) in our codes.

Constraints for Linear layer. Let {yi}319i=0 and {xi}319i=0 be the input and
output difference of the linear layer, respectively. Since the linear layer is a com-
position of different operations (see Sec. 3.1 and 3.2), we explain the modeling
procedure for each individual operation. For simplicity, in this section we use
the notation [i+ j] which means i+ j mod 64.

34

https://gitlab.science.ru.nl/selhirch/circulanttwincpm


State after ρeast. This operation performs left cyclic rotation on each row of the
input state with shift offset vector Re = (e0, e1, e2, e3, e4). Accordingly, there
are no new constraints and the updated state is given by

z64·j+i ← y64·j+ [ej+i], for i = 0, . . . , 63 and j = 0, . . . , 4 . (11)

The P Operation. For each column of the state in (11), this operation computes
the column-parity. To model it, we simply need to consider the bitwise XOR
modeling of 5 binary variables. For each column, this can be done as follows.

zi + z64+i + z128+i + z192+i + z256+i + pi = 2 · ui, for i = 0, . . . , 63 . (12)

Here pi ∈ {0, 1} and ui ∈ {0, 1, 2, 3}. Notice that pi = 1 if and only if the
Hamming weight of the i-th column, i.e., (zi, z64+i, z128+i, z192+i, z256+i) is odd.

The Q Operation. This operation has two steps. First, the rows 0, 1, 2, 3 and 4 of
state in (11) are cyclically shifted to the left by t0, t1, t2, t3 and t4, respectively.
Second, we compute the column-parity of this state. Thus, similar to the P
operation, we need to model the bitwise XOR modeling of 5 binary variables.
For columns i = 0, . . . , 63, the constraints are as follows.

z[i+t0] + z64+[i+t1] + z128+[i+t2] + z192+[i+t3] + z256+[i+t4] + qi = 2 · vi .

Here qi ∈ {0, 1} and vi ∈ {0, 1, 2, 3}.

The E Operation. This operation computes the θ-effect using variables {pi}63i=0,
{qi}63i=0 and their shifted versions. To model it, we have the following constraints.

pi + p[i+r] + qi + q[i+s] + gi = 2 · bi, for i = 0, . . . , 63 . (13)

In (13), we have gi ∈ {0, 1}, bi ∈ {0, 1, 2} and (r, s) are the shift offsets from Rθ.

State after XORing Shifted Version of Variables {gi}63i=0. Given the shift offset
u from Rθ, consider {g[i+u]}63i=0. Let {fi}319i=0 be binary variables denoting state
after XORing {g[i+u]}63i=0 to each row in (11). We have the following constraints
for this operation.

g[i+u] + z64·j+i − f64·j+i ≥ 0

g[i+u] − z64·j+i + f64·j+i ≥ 0

−g[i+u] + z64·j+i + f64·j+i ≥ 0

−g[i+u] − z64·j+i − f64·j+i ≥ −2

 for i = 0, . . . , 63

 for j = 0, . . . , 4 (14)

Note that the four inequalities in (14) remove the impossible propagations (0, 0, 1),
(0, 1, 0), (1, 0, 0) and (1, 1, 1).

State after ρwest. This operation performs left cyclic rotation on each row of
the input state {fi}319i=0 with shift offset vector Rw = (w0, w1, w2, w3, w4). The
output state is given as follows.

x64·j+i ← f64·j+[wj+i], for i = 0, . . . , 63 and j = 0, . . . , 4 . (15)
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Constraints for Multiple Rounds. We add the aforementioned constraints
for 64 S-boxes and for the linear layer in each round. Furthermore, we add a
constraint that the sum of input active bits is at least 1 in order to ensure a
nonzero input difference.

Objective Function. Let w
(2)
i,0 , . . . , w

(2)
i,63, w

(3)
i,0 , . . . , w

(3)
i,63, w

(4)
i,0 , . . . , w

(4)
i,63 be the

variables denoting the activity (along with weights) of 64 S-boxes at round i.
Then for r rounds, the objective function as given in (16) is to minimize the
weight of a r-round differential trail.

min
( r−1∑
i=0

63∑
j=0

2 · w(2)
i,j + 3 · w(3)

i,j + 4 · w(4)
i,j

)
(16)

A.2 SMT Modeling

Constraints for the Linear Layer. The SMT constraints for the differential (resp.
linear) propagation of θ is immediate to derive from its definition in (2) (resp.
its transpose in (9)). This is also the case for the differential propagation of ρeast
and ρwest, in which their transpose for the linear propagation performs bitwise
rotation in the opposite direction.

Constraints for χ. For the differential propagation of the nonlinear layer χ,
we construct the set of constraints for χ based on a Boolean function, say f ,
that defines the (in)-validity of a differential. Concretely, for any nonzero weight
differential (x, y), we define f(x‖y) = 1 and 0 otherwise, where x‖y denotes
the vector concatenation of x and y. The constraints that represent f can be
constructed in a row-by-row basis from the DDT of χ. The inclusion of the weight
in the model is immediate to derive using an auxiliary variable that stores the
weight from a given differential. Note that this approach is generic and works
for any small-size permutation.

Reducing Search Time. Due to the complexity of the function θ in Gaston, the
SMT solver takes a substantial amount of time to find a trail of weight less than
a chosen bound, even for a satisfiable instance of a small number of rounds. One
strategy to reduce the search time of a SMT solver is to add new restrictions that
simplify the constraints. We are particularly interested in a set of trails where
the effect of θ on a state at a particular round is minimal such as the states that
lie in the θ-kernel.

B Differential and Linear Trails of Gaston

B.1 Differential Trails

Figure 1 depicts the optimal 2-round differential trail of Gaston while Fig. 2 gives
a differential trail for 3-round with the best found weight of 106. Note that this
may not be the optimal weight of a 3-round trail.
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................................................................

..........1...................................1.................
1...............................................................
.....1.......1...........................1......................
................................................................
---------------------------------------------------------------- χ
................................................................
..........1...................................1.................
1...............................................................
.....1.......1...........................1......................
................................................................
---------------------------------------------------------------- ρeast

................................................................

..............1...................................1.............

..........................................1.....................

..............1...........................1.......1.............

................................................................
---------------------------------------------------------------- θ
................................................................
..............1...................................1.............
..........................................1.....................
..............1...........................1.......1.............
................................................................
---------------------------------------------------------------- ρwest

................................................................

......................1...................................1.....

...........1....................................................

....1...........................1...........................1...

................................................................
---------------------------------------------------------------- χ
...........1....................................................
...........1..........1...................................1.1...
...........1................................................1...
....1...........................1...........................1...
......................1.........................................

Fig. 1: 2-round differential trail with 12 [6, 6] active S-boxes and weight 24 [12,
12]

B.2 Linear Trails

Figure 3 depicts the optimal 3-round linear trail of Gaston with weight 34.

C Inverse of θ

In Fig. 4 we illustrate the density of the inverse of θ: it corresponds to the
preimage of a state that has a single active bit at position (0, 0). Other states
with a single active bit have preimages with similar shape and Hamming weight.

D Test Vectors
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.............................................1.................1

...........................................................1....

......................................1.................1.......

...........................................1..........1......1..

...............................1.................1..............
---------------------------------------------------------------- χ
.............................................1.................1
...........................................................1....
......................................1.................1.......
...........................................1..........1......1..
...............................1.................1..............
---------------------------------------------------------------- ρeast

.............................................1.................1

...............................................................1

................1.................1.............................

................1..........1......1.............................

...........................1.................1..................
---------------------------------------------------------------- θ
.............................................1.................1
...............................................................1
................1.................1.............................
................1..........1......1.............................
...........................1.................1..................
---------------------------------------------------------------- ρwest

.............................................1.................1

.......1........................................................

...1.............................................1..............

..................................1..........1......1...........

..1.............................................1...............
---------------------------------------------------------------- χ
...1.........................................1.................1
.......1........................................................
...1..............................1.............11..1...........
..................................1.............1...1...........
..1.............................................1...............
---------------------------------------------------------------- ρeast

...1.........................................1.................1

...........1....................................................

............1.............11..1..............1..................

.......1.............1...1......................................

............................................1.................1.
---------------------------------------------------------------- θ
...1...1.............1................1.....11.....1.1.........1
.......1...1.........1................1.....1......1.1..........
.......1....1........1....11..1.......1.....11.....1.1..........
.........................1............1.....1......1.1..........
.......1.............1................1............1.1........1.
---------------------------------------------------------------- ρwest

...1...1.............1................1.....11.....1.1.........1

...............1...1.........1................1.....1......1.1..

.......1.....11.....1.1.................1....1........1....11..1

.....1.1...................................1............1.....1.

........1.1........1........1.............1................1....
---------------------------------------------------------------- χ
...1.........11......1................1.....1......1.1.....1.1..
..............11...1.........1..........1..1..1.....1........11.
.............11.....1.1.....1...........1..1.1........1....11.11
.....1.1...................................1.1..........1.....11
........1.1.................1.............1..................1..

Fig. 2: 3-round differential trail with 50 [10, 9, 31] active S-boxes and weight 106
[20, 19, 67]
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............................1...............................1...

...1.........................1..................................

...1.........................1..................................

............................................................1...

...........1....................1...........................1...
---------------------------------------------------------------- χ
............................1...................................
...1.........................1..................................
................................................................
............................................................1...
...........1....................1...............................
---------------------------------------------------------------- ρeast

............................1...................................

.......1.........................1..............................

................................................................

.................................1..............................

.......1....................1...................................
---------------------------------------------------------------- θ
............................1...................................
.......1.........................1..............................
................................................................
.................................1..............................
.......1....................1...................................
---------------------------------------------------------------- ρwest

............................1...................................

...............1.........................1......................

................................................................

...................................................1............

............................1....................1..............
---------------------------------------------------------------- χ
................................................................
...............1.........................1......................
.........................................1......................
...................................................1............
............................1....................1..............
---------------------------------------------------------------- ρeast

................................................................

...................1.........................1..................

...................1............................................

........................1.......................................

........................1....................1..................
---------------------------------------------------------------- θ
................................................................
...................1.........................1..................
...................1............................................
........................1.......................................
........................1....................1..................
---------------------------------------------------------------- ρwest

................................................................

...........................1.........................1..........

....................................................1...........

..........................................1.....................

..1..........................................1..................
---------------------------------------------------------------- χ
.............................................1..................
...........................1.........................1..........
....................................................11..........
..........................................1.........1...........
..1.......................................1..1..................

Fig. 3: 3-round linear trail with [6, 5, 6] active S-boxes and weight 34 [12, 10, 12]
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1001011011110010010010100100100001011100100101111100001000011110
0100000010101100000011011000110000001100100001011110101001000011
0111011100101010101101111100110111001100011011001110010010000100
1100101000010111100000110001010100001100111011101101000010011110
1010110110011010100101001001000011001010111100000101110001100000

Fig. 4: θ-preimage of a state with a single active bit at (0, 0), with θ the mixing
layer in Gaston

0x0000000000000000

0x0000000000000000

0x0000000000000000

0x0000000000000000

0x0000000000000000

0x88B326096BEBC635

0x6CA8FB64BC5CE6CA

0xF1CE3840D8190713

0x54D70067438689B5

0xF17FE863F958F32B

0x1F4AD9906DA6A254

0x4B84D7F83F2BDDFA

0x468A0853578A00E3

0x6C05A0506DF7F66E

0x4EFB22112453C964

0x1BA89B5B5C4583B6

0x22135709AE53417D

0x9847B975E9EC9F3D

0xCE042DF2A402591D

0x563EC68FC30307EA

0xFFFFFFFFFFFFFFFF

0x0123456789ABCDEF

0xFEDCBA9876543210

0xAAAAAAAAAAAAAAAA

0x0101010101010101

0x3117D51B14937067

0x338F17F773C13F79

0xDFB86E0868D252AB

0x0D461D35EB863DE7

0x08BCE3E354C7231A

Table 7: Test vectors for 12-rounds of Gaston. The input and its coresponding
output are on the left-side and the right-side respectively.
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