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Abstract

Sub-linear encrypted search algorithms (ESA) are highly efficient search algorithms that
operate on end-to-end encrypted data. ESAs can be built using a variety of cryptographic
primitives and can achieve different trade-offs between efficiency, expressiveness and leakage.
Since the introduction of ESAs, cryptographers have focused on both minimizing and attacking
their leakage but an important open problem in the field has been to provide a theoretical
framework with which leakage can be analyzed and better understood.

In this work, we propose such a framework. We model leakage profiles as Bayesian networks
and capture leakage attacks as statistical inference algorithms on these networks. We then for-
malize a notion we call coherence which, roughly speaking, captures the quality of the inference
given some observed leakage and an auxiliary distribution. In this work, we focus on partial and
full query recovery attacks, though our framework can be extended to capture data recovery
attacks as well.

We then use our framework to study the coherence of two common leakage patterns—the
query equality pattern and the volume pattern—against two well-known and powerful statistical
inference techniques. In each case, we provide generic bounds on the coherence in the sense that
they apply to arbitrary query and auxiliary distributions and concrete analyses for specific pairs
of query and auxiliary distributions.
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1 Introduction

Sub-linear encrypted search algorithms (ESA) are highly-efficient search algorithms that can be
executed on end-to-end encrypted data. ESAs are the core building block in the design of a
variety of end-to-end encrypted systems including encrypted cloud storage [12, 12, 47, 18] and
encrypted databases [2, 31, 35, 54, 34, 44]. Sub-linear ESAs can be designed based on a variety
of cryptographic primitives including structured encryption (STE), oblivious RAM (ORAM) and
property-preserving encryption (PPE). Intuitively, an ESA should reveal no partial information
about the data and/or queries but all sub-linear ESAs leak some information. This leakage is
typically captured with a leakage profile that formally and precisely describes what the scheme
reveals. While leakage profiles have proven to be an important conceptual and analytical tool, they
are purely descriptive and do not (and are not meant to) provide any explanatory value.

The presence of leakage in ESAs has motivated several complimentary research agendas: leakage
cryptanalysis which focuses on the design of attacks that try to exploit various leakage profiles in
order to recover information about the data and/or queries [26, 45, 11, 8, 38, 42, 24, 25, 40, 41];
leakage suppression which focuses on techniques to design low- and even zero-leakage (sub-linear)
ESAs [33, 32, 20, 48, 5]; and leakage quantification which focuses on quantifying the information
revealed by a given leakage profile [28, 27, 39].

Auxiliary information. The challenge of formulating a useful “theory of leakage” has been open
since [15, 14] first proposed the use of leakage profiles in the analysis of sub-linear ESAs. The main
conceptual challenges in developing such a theory, however, has been that leakage profiles on their
own do not capture everything that an adversary knows. In particular, they do not capture the
adversary’s auxiliary information about the query and/or data distribution which is a critical part
of any inference attack. So while it is relatively straightforward to develop a framework to analyze
leakage profiles as stand-alone objects (i.e., without properly integrating auxiliary information),
such a framework would not provide any useful insights as to whether a profile is exploitable or
not—which is ultimately the question we are interested in.

Formalizing attacks. In this work, we propose a new theoretical framework to analyze leakage
profiles and their vulnerability to inference attacks. More precisely, our framework provides: (1)
a new graphical/visual and intuitive representation of leakage profiles; (2) analytical techniques to
bound the success probability of powerful classes of attacks; and (3) a natural way to incorporate
the auxiliary information available to an adversary.

At a very high level, our framework makes use of a type of probabilistic graphical model called
Bayesian networks to formalize and analyze leakage profiles. Adversaries are then modeled as
Bayesian inference algorithms. More precisely, an inference attack can be viewed as a concrete
instantiation of the following statistical inference problem. Let X = (D,Q,L) be a multi-variate
random variable that consists of D which outputs a dataset, Q which outputs a query sequence and
L which outputs leakage. In addition, let A be an adversary’s prior over Q which is determined by
its auxiliary information. An inference attack is an inference algorithm that, given an instantiation
` of L and knowledge of A, infers information about Q and/or D. In most cases, the goal of the
attack is to recover the instantiations d and/or ` of D and L, respectively. If the target of the
attack is the query sequence then we refer to it as a query recovery attack whereas if the target is
the data then we call it a data recovery attack. If the goal is to recover these instantiations in whole
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then the attack is a full recovery attack but if the goal is to recover a part of the instantiations then
it is a partial recovery attack. If the goal is only to approximate the instantiations then we call it an
approximation attack. While our framework can be used to analyze all of the previously-mentioned
attack types, in this work we focus on full and partial query recovery attacks. 1

Modeling leakage. In our framework, a leakage profile is represented as a Bayesian network
which is a graphical representation of a multi-variate random variable and of the conditional de-
pendencies among its variables. Our use of Bayesian networks has several advantages: (1) it
provides us with a visual and intuitive representation of a leakage profile’s “dependency structure”;
and (2) it allows us to exploit this structure to derive bounds on an attack’s success probability.
More precisely, given a multi-variate random variable X = (D,Q,L) as above, a leakage profile is
represented as a Bayesian network NX over X which we refer to as a leakage network. Intuitively,
the usefulness of Bayesian networks is derived from the Bayesian chain rule which uses the de-
pendency structure of the network to simplify the joint probability of X which in turn simplifies
computations of the marginal distributions. In our setting, the dependency structure of the network
is determined by the leakage profile so one can already see how some profiles may lead to harder
or easier inference problems. Given a Bayesian network one can use analytical or computational
tools to carry out different kinds of inference tasks on the marginals. As discussed above, the task
we focus on this work is full and partial query recovery, i.e., inferring/estimating the instantiation
q of Q given an instantiation ` of L.

Coherence. Notice that, so far, we have not incorporated auxiliary information. To do so, we
consider an auxiliary distribution A that captures the information an adversary derives about q
from its auxiliary information.2 Given a leakage network, our goal is to bound the probability that
an adversary recovers information about q given some leakage ` derived from q and its auxiliary
distribution A. Here, recovering information about q is modeled as computing a recovery function
g over q. We formalize this intuition with a notion we call coherence 3 and study the coherence of
various leakage networks against two unbounded adversaries we call the hypothesis adversary Ahyp
and the MAP adversary Amap.
Ahyp is a partial query recovery adversary that, given `, A and a recovery function g, outputs the

element in the co-domain of g with the highest-probability pre-image with respect to the posterior
distribution Pr

[
A = q

∣∣L = `
]
. In statistical terms, this corresponds to the MAP test in hypothesis

testing where the hypotheses are of the form Hs : g(q) = s, with g : Qn → S. Amap is a full query
recovery adversary that, given ` and A, returns the maximum a-posteriori (MAP) estimate which
is the query sequence that maximizes the posterior distribution Pr

[
A = q

∣∣L = `
]
, viewed here as

a function of q. The MAP estimate is optimal in settings like full query recovery where the inferred
sequence must be exactly the same as the instantiation q of Q.4 Notice, however, that Amap uses
its auxiliary distribution A to estimate q and not the query distribution Q so the optimality of
the MAP estimate doesn’t necessarily hold. The MAP adversary Amap is still justified, however,
whenever the posterior of the auxiliary distribution Pr

[
A = q

∣∣L = `
]

converges in probability to
1As discussed in Section 2, a subset of data recovery attacks have already been studied formally whereas, as far

as we know, no theoretical model has every been proposed that can capture query recovery attacks.
2In Bayesian terms, the auxiliary distribution is the adversary’s prior but we call it the auxiliary to avoid confusion

with the prior distribution in Baye’s rule and Bayesian networks.
3The term coherence here is meant to capture the “quality” or “meaning” of the inference.
4More precisely, the MAP estimate is optimal in the sense that it minimizes the expected 0-1 loss.
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the posterior of the query distribution Pr
[
Q = q

∣∣L = `
]

as the size of the observed leakage `
grows. In other words, under this condition, Amap is asymptotically optimal.

Leakage patterns studied. We show coherence Theorems for three common leakage pat-
terns/profiles: (1) the query equality which reveals if and when two queries are for the same
label; (2) the volume pattern (sometimes referred to as the response length) which reveals the size
of query responses; and (3) the combination of query equality and volume patterns. We chose to
study these patterns because almost every searchable and structured encryption scheme leaks the
query equality and the volume pattern [50, 21, 15, 14, 37, 36, 17, 4, 13, 12, 16, 49] (note that this is
not meant to be an exhaustive list). Note that the volume pattern is also leaked by any encrypted
search algorithm based on oblivious RAM [22, 51].

Analysis and concrete examples. For each of these patterns/profiles, we show general Theo-
rems that bound the coherence against either Ahyp or Amap (as appropriate) for any pair of query
and auxiliary distributions, and a variety of concrete Theorems for specific pairs of query and
auxiliary distributions. For example, we consider the uniform distribution as well as a power-law
distribution to capture real-world settings. For the power-law distribution, we chose the Zipf dis-
tribution since it is known to capture many publicly-available datasets and query logs, as shown in
[29]. We also consider settings where the space of the query, data and auxiliary distributions are
distinct. As far as we know, this has never been considered formally but it is an important case to
study because, in practice, adversaries do not necessary know the client’s exact query space or the
exact dataset. We briefly summarize some of our findings:

• the coherence of the query equality pattern against full query recovery attacks is very small,
even when the size of the query space m and the sequence length n are small. While we do not
consider every possible pair of query and auxiliary distribution, this suggests that full query
attacks against query equality leakage might be challenging to mount. The coherence bounds
are tighter and significantly smaller when the query and auxiliary distributions have distinct
support (or query space). Informally, we were able to show—under some assumptions on m
and n—that when the query and auxiliary distributions are Zipf-distributed, the coherence ε
is very small; more precisely,

ε .
n

2 · en−1 · (ln(2))n+1 .

As a point of reference, for m = 800 and n = 200, the coherence is upper bounded by 2−576.

• the coherence of the volume pattern against full query recovery attacks is also very small in
all cases except when the auxiliary distribution is Zipf-distributed.

• the coherence of the query equality pattern against partial query recovery attacks that attempt
to test whether the query is a known value is mixed. We were able to show that, when
the query and auxiliary distributions are uniform, there is a limited space for which the
coherence is small. However, when the query distribution is Zipf-distributed and the auxiliary
distribution is uniform, our bounds show that the coherence is larger which suggests that query
equality pattern can be damaging with respect to an adversary that just wants to know if the
query matches a known value.
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Limitations and future work. While our framework already provides a new and powerful way
to model and analyze leakage, the analysis carried out in this work has limitations and should be
viewed as the first step in a longer term research agenda. The most immediate limitation of our work
is that it only considers i.i.d. leakage networks (i.e., where queries are sampled i.i.d.). Bounding
the coherence of these networks when queries are dependent would be very interesting and non-
trivial. A second limitation is that the leakage networks we analyze are only for static structures
so studying the coherence of leakage networks for dynamic encrypted structures would also be
interesting. A third limitation is that we do not consider settings where the query distributions can
change as a function of the observed leakage. This can be captured using our framework and would
likely be non-trivial to analyze. Of course, using our framework to study leakage networks that are
more complex than the ones we consider would also be interesting. Finally, we note that while our
framework is motivated by leakage in sub-linear ESAs, its applicability is not limited to encrypted
search. In fact, in the full version of this work we will show how it can be used to study the leakage
of other cryptographic primitives including, for example, secure multi-party computation (e.g., the
information about the inputs that is revealed by the outputs).

2 Related Work

Leakage was first modeled in encrypted search in [15] so that it would be explicit and not “hid-
den under the rug” by making implicit assumptions. The motivation was so that, in the future,
cryptanalysis could be performed. [14] further generalized the idea and proposed to parameter-
ize security with a leakage profile. In [33], a nomenclature for leakage patterns and profiles was
proposed. It has always been clear that leakage profiles only serve to describe leakage and not
to understand it so developing a proper “theory of leakage” is one of the oldest open problems in
the field. A modest step was taken Kamara, Moataz and Ohrimenko in [33] and Bost and Fouque
in [9] where the authors use simulation to compare leakage profiles that are subset/supersets of
each other. But the development of a real framework to analyze and study leakage has proven to
be challenging. Here, we review related work that proposes such frameworks. We note that our
focus is on comparing the frameworks that are described in these works and not the specific results
proved using the frameworks.

Biased coin game. In [53], Wright and Pouliot propose a framework to study full data recovery
attacks against the leakage of deterministic (DTE) and order-revealing encryption (ORE). At a
high level, their approach consists of reducing the problem of recovering DTE- and ORE-encrypted
data to winning two games the authors call the biased coin game (BCG) and the loaded dice
game (LDG). In the (m,n)-BCG, a challenger holds m biased coins each of which lands heads
with probability pi. The challenger then samples a coin according to a prior distribution π and
tosses that coin n times. It then provides its prior distribution over coins, the coin probabilities
(p1, . . . , pm) and the results of the n coin tosses to an adversary whose goal is to guess which coin
was chosen. The (m,n, d)-LDG is a generalization of the BCG to d-sided die. The authors then
show how winning the BCG leads to a full data recovery attack on DTE and how winning the LDG
leads to a full data recovery attack on ORE.

Quantitative information flow. In a pair of works, Jurado and Smith [28] and later Jurado,
Palamidessi and Smith [27], present a comprehensive framework to analyze the leakage of de-
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terministic and order-revealing encryption, respectively. Their approach is based on quantitative
information flow (QIF) which is a theoretical framework originally proposed to study the informa-
tion that a program reveals about a secret [1, 23]. For an introduction to QIF we refer the reader
to [3]. At a very high level, the framework models a leakage pattern as a channel which, together
with a prior distribution over the plaintexts, results in a distribution over posterior distributions
which the authors call the hyper-distribution. This hyper-distribution is known to the adversary
and, given some observed leakage, results in a specific posterior distribution. The framework also
models different adversarial goals as gain functions g which can be thought of as loss functions
from decision theory and machine learning. The prior g-vulnerability is then defined as the ex-
pected gain with respect to the prior distribution and the posterior g-vulnerability is defined as the
expected gain over the hyper-distribution. The g-leakage is then defined as the difference or the
quotient of the prior and posterior g-vulnerabilities. The authors study the g-leakage of DTE and
ORE for various gain functions and prior distributions and use their Theorems to design and study
mitigation techniques. Some results are quite surprising; e.g., the authors are able to show that
ideal ORE is safe to use against an adversary that wishes to recover an entire column if the values
in the column are sampled uniformly at random and the value space is larger than the number of
rows.

Leakage inversion. Closer to our own work, Kornaropoulos, Moyer, Papamanthou and Psomas
[39] propose a framework to study the leakage of searchable encryption schemes. Roughly speaking,
their approach is to characterize the set of all databases (technically multi-maps) that lead to the
same observed leakage as the target with respect to a certain leakage profile. This set is the target
database’s reconstruction space and the logarithm of its size is reported as the amount of information
revealed about the target database. The framework of [39] quantifies leakage with respect to full
data recovery attacks against (scheme specific) response identity leakage, which reveals the results
of a query. 5 Furthermore, it handles auxiliary information that can be modeled as a predicate
and that can be used to filter out items from the reconstruction space (e.g., “the data contains the
word crypto”).

PAC learning. Grubbs, Lacharite, Minaud and Paterson propose in [24] to use PAC learning
[52] as a framework to study approximate data reconstruction attacks. More precisely, they show
how, given O

(
d
ε log d

εδ

)
known queries sampled i.i.d, an adversary can recover an ε-approximation

of a column with probability at least 1− δ. Here, d is the VC-dimension of a concept class needed
for the reduction to PAC learning and an ε-approximation is, roughly speaking, a column whose
entries will be incorrect with probability at most ε. Similarly to the leakage inversion framework,
this approach focuses on data recovery attacks from response identity leakage but, unlike leakage
inversion, it only applies to known-query attacks.

Summary. With respect to attacks, the BCG/LDG [53] and QIF [28, 27] frameworks model
full data recovery attacks against frequency and order leakage. The leakage inversion [39] and
PAC-based frameworks [24] model full data recovery attacks against response identity leakage. In
this work, we focus on full and partial query recovery attacks against query equality, volume and
joint query and volume leakage but our framework naturally and easily handles full and partial

5The response identity is sometimes referred to as the access pattern in the context of searchable symmetric
encryption
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data recovery attacks against any leakage profile that, as far as we know, has appeared in the
literature. With respect to auxiliary information, the BCG/LDG framework handles auxiliary
distributions that are within a certain statistical distance from the data distribution. The QIF
framework assumes the adversary’s auxiliary distribution is the same as the data distribution.
Leakage inversion studies auxiliary distributions that can be modeled as predicates and the PAC-
based framework assumes (non-distributional/perfect) auxiliary knowledge of client queries. Our
framework makes no assumption about auxiliary information.

3 Preliminaries

Notation. The set of all binary strings of length n is denoted as {0, 1}n, and the set of all
finite binary strings as {0, 1}∗. We write x ← χ to represent an element x being sampled from a
distribution χ, and x

$← X to represent an element x being sampled uniformly at random from a
set X. The output x of an algorithm A is denoted by x ← A. Given a sequence v of n elements,
we refer to its ith element as vi or v[i]. If S is a set then #S refers to its cardinality and 2S to its
powerset. We denote to the set of all functions from domain X to co-domain Y by [X→ Y]. Given
a function f : X → Y and a sequence x ∈ Xn, we sometimes write f(x) to denote the sequence
(f(x1), . . . , f(xn)). We write a ◦= b to denote that a is defined as b. We denote Stirling numbers of
the second kind by

{n
k

}
and the falling factorial by (m)i.

Probabilities. Given a discrete random variable X, we denote its distribution by pX(x) or p(x)
when X is clear. Given two discrete random variables X and Y , we denote the distribution of X
conditioned on Y = y for some y over the range of Y , by pX(x | y) or p(x | y) when X is clear . This
notation, which is common in Machine Learning, Statistics and the literature on Bayesian networks
can lead to confusion so we note that when writing p(x) or p(x | y), p is a function, x is a variable
of p and y is an instantiation of the random variable Y . In other words, p(x) ◦= fX(·), where fX is
the probability mass function of X and p(x | y) ◦= fX|Y=y(·), where fX|Y=y is the probability mass
function of X conditioned on Y = y.

Leakage patterns and profiles. A leakage profile ΛΣ = (LS,LO) is composed of a setup leakage
LS and an operation leakage LO. Each of these leakage functions can themselves be functions of
various leakage patterns. In this work, all leakage functions and leakage patterns are stateful. We
recall some leakage patterns that will appear throughout this work and refer the reader to [33] for
a more comprehensive treatment:

• the query equality takes as input a data structure and a query and reveals if and when the
query was repeated.

• the response length takes as input a data structure and an query and reveals the length of
the query’s response.

3.1 Bayesian Networks

Bayesian networks are a kind of probabilistic graphical model used to do probabilistic inference.
More precisely, they can be used to represent a joint distribution and to infer the marginal distribu-
tion of some subset of random variables conditioned on the instantiation of another set of random
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variables. In our setting, we will use Bayesian networks to infer the instantiations of unobserved
query variables conditioned on the instantiation of observed leakage variables.

Bayesian networks. A Bayesian networkNX over a multi-variate random variable X = (X1, . . . , Xn)
is a directed acyclic graph with the random variables Xi as vertices and directed edges between
variables that are conditionally dependent. In addition, each node Xi with incoming edges is labeled
with a conditional probability table defined as

cpt(Xi)
◦=
{
p(xi|z1, . . . , zm)

}
(z1,...,zm)∈Z1×···×Zm

,

where Z1, . . . , Zm ∈ X are the parents of Xi. We can partition the variables X into a subset of
evidence variables E ⊂ X, a set of intermediate variables I ⊂ X and a set of hidden variables
H ∈ X and use the Bayesian network to infer something about the hidden variables H given an
instantiation e of the evidence variables E. In this work, we will be interested in inferring the
maximum a-posteriori probability (MAP) estimate which is defined as

mapH|e
◦= arg max

h
p(h | e) = arg max

h
Pr
[
H = h

∣∣E = e
]

and computing the MAP test which is defined as

hypf,H|e
◦= arg max

s∈S

∑
h∈f−1(s)

p(h | e) = arg max
s∈S

∑
h∈f−1(s)

Pr
[
H = h

∣∣E = e
]

where f : H → S. The power of Bayesian networks comes from the Bayesian network chain rule
which states that

p(x) =
n∏
i=1

p(xi | prnt(Xi))

which is often more efficient to compute than the standard chain rule.

4 Definitions

A leakage network NX is a Bayesian network over a multi-variate random variable X = (X1, . . . , Xn)
whose variables can be partitioned into a set of data variables D ⊂ X, a set of query variables
Q ⊂ X, a set of intermediary variables I ⊂ X and a set of leakage variables L ⊂ X. An auxiliary
distribution is a random variable A over the same space as Q. If D = ∅, we say that NX is a query
network and if Q = ∅ we say that NX is a data network.

Coherence. Let NX be a leakage network, A be an adversary, A an auxiliary distribution and
g : D×Q1×· · ·×Qn → S be a recovery function and consider the following probabilistic experiment:

• CHRA,A,g(NX) :

1. the challenger samples the network (q,d, i, `)← NX;
2. the adversary outputs s← A(`,A);
3. if s = g(d, q) output 1 otherwise output 0.

9



Put(,)

Definition 4.1 (Coherence). We say that a leakage network NX is (ε,A,A, g)-coherent if∣∣∣∣Pr [ CHRA,A,g(NX) = 1 ]− 1
#S

∣∣∣∣ = ε.

Capturing different attacks. Definition 4.1 can be used to capture the coherence of a variety of
attacks. For example, by setting g to the function ϕ(q,d) that returns q, one can capture coherence
against full query recovery. By setting g to the function ψ(q,d) that returns d one can capture
coherence against full data recovery. One can also set g to a boolean function to capture coherence
against attacks that try to recover a bit or, as we will study in Section 5, to functions δq?(q) that
outputs 1 if q = q? and 0 otherwise in order to capture attacks that try to learn whether the query
is equal to some known q?.

Remark. Notice that the coherence is not an “absolute” security notion but a relative one in the
sense that it depends on the auxiliary distribution. In other words, a particular leakage network
could have low coherence when paired with a particular auxiliary distribution A but have high
coherence when paired with another auxiliary distribution A′.

The adversaries. We consider two adversaries Ahyp and Amap. Ahyp is a partial recovery adver-
sary that, given leakage `, an auxiliary distribution A and a recovery function g, computes the set
hypg,Q|e and outputs an element from it uniformly at random. Amap is a full recovery adversary
that, given leakage ` and an auxiliary distribution A, computes the set mapA|` and outputs a
sequence from it uniformly at random.

5 Partial Recovery Against Query Equality

In this Section, we analyze the coherence of i.i.d. query equality networks against partial query
recovery attacks. More precisely, we study leakage networks of the form N+

QEQ as described in
Figure 1. We note that, technically, the Bayesian network we use to capture the query equality
also reveals the size of the query space #Q through the output length of the random function f .
We add a + in N+

QEQ to denote this and note that it is possible to construct a Bayesian network
that captures only the query equality. Our first Theorem (Theorem 4 below) gives an upper bound
on the coherence of such networks against point recovery functions. Due to space constraints, the
proofs of all Theorems are in the appendix.

Theorem 1. The i.i.d. query equality network N+
QEQ is (ε,Ahyp,A, δ)-coherent with

ε =

∣∣∣∣∣∣ 1
m!

∑
q∈Qn

Pr [ Q = q ]
( ∑

`∈Lδ(q)

(
(m− λ`)! ·

∑
q′∈Qn

`

Pr
[
Q = q′

]))
− 1

#S

∣∣∣∣∣∣
where δ : Qn → S, Lδ(q)

◦= {` ∈ L | hypδ,Q|` = δ(q)}, Qn
` =

{
q ∈ Qn | qi = qj if `i = `j , ∀i, j

}
, λ`

the number of unique leakage values in the sequence ` and m ◦= #Q = #L.
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F Q1 Q2 . . . Qn

L1 L2 . . . Ln

Figure 1: N+
QEQ: the i.i.d. query equality network, where F outputs a function f chosen uniformly

at random from F ◦= [Q → L], each Qi outputs a query from Q and each Li outputs leakage from
L. In addition, each Li has a conditional probability table of the form p(`i | f, qi) = 1 if `i = f(qi)
and p(`i | f, qi) = 0 otherwise.

5.1 Uniform Queries with Uniform Auxiliary

We consider the case where both Q and A are multi-variate random variables composed of n
independent uniform random variables and the (partial) recovery function is a point function that
answers questions of the form: is the query equal to q??

Theorem 2. For all n ∈ N, if Q ∼ Unm and A ∼ Unm, then N+
QEQ is (ε,Ahyp,A, δ)-coherent with

ε =
∣∣∣∣Γ− 1

2

∣∣∣∣ ,
where,

Γ = mn − (m− 1)n
m2n

m∑
i=dx1e

(m)i ·
{
n

i

}
+ (m− 1)n

m2n

dx1e−1∑
i=0

(m)i ·
{
n

i

}
,

and x1 = (3m+ 1−
√

5m2 + 2m+ 1)/2.

5.2 Zipf Queries with Uniform Auxiliary

We consider the case where both Q and A are multi-variate random variables composed of n
independent Zipf-distributed random variables. A random variable X is Zipf distributed with
parameter s if for all k ∈ {1, · · · ,m}

Pr [X = k ] = k−s

Hm,s
,

where Hm,s = ∑m
i=1 1/ks is the general form of the harmonic number. We also assume the existence

of a permutation π : Q→ [m] that maps every query in the query space Q to a particular rank in
[m]. We denote by Zm,s the Zipf distribution over a query space of size m and parameter s.

Theorem 3. For all n ∈ N, if Q ∼ Znm,s and A ∼ Unm, then N+
QEQ is (ε,Ahyp,A, δ)-coherent with

ε ≤ max
{1

2 − Γ1,Γ2 −
1
2

}
,

where,

Γ1 = mn − (m− 1)n
mn ·Hn

m,s

m∑
i=dx1e

(m)i
ins
·
{
n

i

}
+ (m− 1)n
mn ·Hn

m,s

dx1e−1∑
i=0

(m)i
ins
·
{
n

i

}
.

11
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and,

Γ2 = mn − (m− 1)n
mn ·Hn

m,s

m∑
i=dx1e

(m)i
(i!)s ·

{
n

i

}
+ (m− 1)n
mn ·Hn

m,s

dx1e−1∑
i=0

(m)i
(i!)s ·

{
n

i

}

where x1 = (3m+ 1−
√

5m2 + 2m+ 1)/2.

5.3 Discussion

Theorems 2 and 3 analyze N+
QEQ’ s coherence against partial query recovery for various combi-

nations of query and auxiliary distributions but they can be hard to understand intuitively. To
address this, we plot them in Figure 2.

Uniform queries and auxiliaries. As illustrated by Figure 2a, N+
QEQ’s coherence is close to

1/2 for a non-trivial number of combinations of m and n. This matches the intuition that, if n is
fixed, the probability that an adversary can determine whether q? is queried will be small except
for a small range of m. Interestingly, this shows that there exists a sub-plane where m and n lead
to smaller coherence. For example, for m = 420 and n = 200, the coherence is 0.02. Note that the
graph was plotted with an increment of 20, so only 400 points from a possible 1 million points are
plotted so it is very likely that there are points that reach even smaller coherence.

Zipf queries and uniform auxiliaries. Theorem 3 only provides an upper bound on the coher-
ence but we can observe in Figure 2b that the values are larger than 0.5 for all 400 points plotted
in the graph. Intuitively, this suggests that when the queries are sampled i.i.d. from a Zipf distri-
bution, the query equality could reveal quite a bit of information about whether a query matches a
known value (e.g., a known keyword) even if the adversary has no auxiliary information. Improving
our bound, however, could also show that the coherence is smaller than our result suggests. Given
the combinatorial complexity, obtaining a better bound seems challenging.

Importance of rebuilding. This analysis shows that the coherence significantly increases when
the sequence length is larger (by some fraction) than the query space (see Figure 2a). However,
when the size of the query space is larger than the sequence length, then the coherence is small.
This implies the importance of rebuild protocols which, roughly speaking, reconstruct an encrypted
structure in such a way that leakage (here, the query equality) is “reset”. Rebuilding is a key
component in a number of recent structured ESAs [33, 20], and is present in most oblivious RAM
schemes [22, 51]. Our observation is that Theorems 2 and 3 can be used to schedule rebuilds. More
precisely, given a query space Q of size m, one can safely use a rebuildable ESA that leaks the
query equality for up to m/α queries before rebuilding, where α > 0 is a constant. Note that if the
bound of Theorem 3 can be further improved, it could also be used to better understand how large
a query sequence should be before rebuilding.

A technicality on rebuilding. It is worth mentioning that, for a fixed n, rebuilding slightly
changes the adversary’s probability of winning the coherence experiment. In particular, there is a
linear dependency between the winning probability and the number of rebuild operations. If the
client rebuilds after n′ queries, the probability that the adversary wins the coherence experiment

12
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(b) Zipf queries vs uniform auxiliariesm (Theorem 3).

Figure 2: Coherence of N+
QEQ against partial query recovery.

(when all random variables are independent) is

Pr

 dn/n′e⋃
i=1

CHRA,Ai,g(NXi) = 1

 ≤ dn/n′e · Pr [ CHRA,A,g(NX) = 1 ]

where Q = (Q1, . . . , Qn′) and A = (A1, . . . , An′), which follows from a union bound.

6 Full Recovery Against Query Equality

In this Section, we analyze the coherence of i.i.d. query equality networks against full query recovery
attacks.

Theorem 4. The i.i.d. query equality network N+
QEQ is (ε,Amap,A, ϕ)-coherent, with

ε =

∣∣∣∣∣∣ 1
m! ·

∑
f∈F

( ∑
q∈Qn1

1
#Sf(q)

· Pr [ Q = q ]
)
− 1
mn

∣∣∣∣∣∣ ,
where Sf(q)

◦= mapA|f(q), Qn
1
◦= {q ∈ Qn|q ∈ Sf(q)} and m ◦= #Q = #L.

Theorem 4 provides a closed form for the coherence against Amap for arbitrary Q and A. In
Section 6.1 we study specific distributions and derive simpler bounds. Specifically, we consider: (1)
uniform queries with uniform auxiliary distributions; and (2) uniform queries with Zipf auxiliary
distributions, and (3) Zipf queries with Zipf auxiliary distributions.

6.1 Uniform Queries and Uniform Auxiliary

We consider the case where both Q and A are multi-variate random variables composed of n
independent uniform random variables. We denote by Um the uniform distribution with a support
of size m.

13
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Theorem 5. For all n ∈ N, if Q ∼ Unm and A ∼ Unm, then N+
QEQ is (ε,Amap,A, ϕ)-coherent, with

ε =
∣∣∣∣∣ 1
mn
·
m∑
i=1

{
n

i

}
− 1
mn

∣∣∣∣∣ ,
where m = #Q.

While Theorem 5 applies to arbitrary m and n, it is not closed form. We show below, however,
that when m = n the coherence can be very small even for large values of n.

Corollary 6.1. For all n ∈ N, if Q ∼ Un, A ∼ Un and m = n = #Q, then N+
QEQ is

(ε,Amap,A, ϕ)-coherent with

ε ≤
( 0.792

log(n+ 1)

)n
.

Proof. First notice that when m = n,
m∑
i=1

{
n

i

}
=

n∑
i=0

{
n

i

}
= Bn,

where Bn is the Bell number. We also know from [7] that for all n > 0,

Bn ≤
( 0.792 · n

log(n+ 1)

)n
That is,

ε = 1
nn
·Bn −

1
nn
≤
( 0.792

log(n+ 1)

)n
− 1
nn
≤
( 0.792

log(n+ 1)

)n
.

6.2 Uniform Queries with Zipf Auxiliaries

We consider the case where Q is a multi-variate random variable composed of n independent
uniform random variables and A is composed of n independent Zipf-distributed random variables.

Theorem 6. For all n ∈ N, if Q ∼ Unm and A ∼ Znm,s, then N+
QEQ is (ε,Amap,A, ϕ)-coherent with

ε ≤ max
{ 1
mn

,
1
mn
·
m∑
i=1

i! ·
{
n

i

}
− 1
mn

}

where m = #Q.

While Theorem 6 applies to arbitrary values of m and n, it is not closed-form so we give an
approximation when n = m below.

Corollary 6.2. For n ≥ 2, if Q ∼ Unm, A ∼ Znm,s and m = n, then for large values of n, N+
QEQ is

(ε,Amap,A, ϕ)-coherent with
ε .

n

2 · en−1 · (ln(2))n+1 .
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Proof. First notice that when m = n,
m∑
i=1

i! ·
{
n

i

}
=

n∑
i=0

i! ·
{
n

i

}
= Fn,

where Fn is the Fubini number (or the ordered Bell number). We also know from [6] that

Fn = n!
2(log(2))n+1 + o

(
(n− 1)!

)
≈ n!

2(log(2))n+1 ,

where the second equality holds for large numbers of n. In addition, for large values of n, we also
have

Fn ·
1
nn
− 1
nn
≥ 1
nn

Finally, since n! ≤ nn+1/en−1 and putting it all together we obtain

ε ≤ Fn ·
1
nn
− 1
nn
≤ Fn ·

1
nn

.
n

2 · en−1 · (log(2))n+1 .

6.3 Zipf Queries with Zipf Auxiliaries

We consider the case where both Q and A are multi-variate random variables composed of n inde-
pendent Zipf-distributed random variables with the same underlying permutation π and parameter
s.

Theorem 7. For all n ∈ N, if Q ∼ Znm,s and A ∼ Znm,s, then N+
QEQ is (ε,Amap,A, ϕ)-coherent

with
ε ≤ max

{ 1
mn
− 1
Hn
m,s

·
m∑
i=1

(i!)1−s ·
{
n

i

}
,

1
Hn
m,s

·
m∑
i=1

i−n·s ·
{
n

i

}
− 1
mn

}
,

where m = #Q.

6.4 Uniform Queries with Distinct Uniform Auxiliary

So far, we assumed that the query and auxiliary distributions share the same support which cap-
tures cases where the adversary knows the exact queries a client samples from. In the following
subsections, we consider cases where the support of the query distribution Q and the auxiliary
distributions A are distinct. Specifically, we are interested in the cases where A ⊂ Q and where
Q ⊂ A. The former captures cases where the adversary knows only a part of the client’s support
and the latter captures settings where the adversary has access to a distribution with support that
includes the client’s support. We consider uniform queries with uniform auxiliaries and Zipf queries
with Zipf auxiliaries. We define mq

◦= #Q and ma
◦= #A.

Theorem 8. For all n ∈ N, if Q ∼ Unmq , A ∼ Unma, and A ⊂ Q then N+
QEQ is (ε,Amap,A, ϕ)-

coherent with
ε =

∣∣∣∣∣ 1
mn
q

·
ma∑
i=1

{
n

i

}
− 1
mn
q

∣∣∣∣∣ .
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In the following corollary we show that when ma = o(mq), the coherence is significantly smaller
than when the query and auxiliary distributions share the same support. This shows that full query
recovery attacks are much harder when A ⊂ Q.

Corollary 6.3. For all n ∈ N, if ma = n, mq = n lnn, Q ∼ Unmq and A ∼ Unma, then N+
QEQ is

(ε,Amap,A, ϕ)-coherent with

ε ≤
( 0.792

log2 n

)n
.

The proof is omitted as it is similar to the proof of Corollary 6.1.

We now consider the case where Q ⊂ A.

Theorem 9. For all n ∈ N, if Q ∼ Unmq , A ∼ Unma, and Q ⊂ A then N+
QEQ is (ε,Amap,A, ϕ)-

coherent with

ε ≤ 1
mn
q

·
mq∑
i=1

(
mq · e
ma

)i
·
{
n

i

}
.

6.5 Zipf Queries with Distinct Zipf Auxiliaries

We consider the case where Q is a multi-variate random variable composed of n independent Zipf-
distributed random variables over a support Q with parameter sq and permutation πq, and A is
composed of n independent Zipf-distributed random variables over a support A with parameter sa
and permutation πa. When A ⊂ Q, we use γ to refer to the maximum rank in Q of any query in A.
More formally, let γ ∈ [mq −ma] such that for all q ∈ A, πq[q] ≥ γ. When Q ⊂ A, we use θ to refer
to the maximum rank of a query that belongs to A and not to Q. More formally, let θ ∈ [mq + 1]
such that π−1

a [i] ∈ Q for all i ∈ [θ] and π−1
a [θ + 1] /∈ Q .

Theorem 10. For all n ∈ N, if Q ∼ Znmq ,sq , A ∼ Znma,sa, and A ⊂ Q then N+
QEQ is (ε,Amap,A, ϕ)-

coherent with

ε ≤ max
{ 1
mn
q

− 1
Hn
mq ,sq

·
ma∑
i=1

{n
i

}
(γ + i)sq ·n ,

1
Hn
mq ,sq · γsq ·n

·
ma∑
i=1

i! ·
{
n

i

}
− 1
mn
q

}
Though the upper bound obtained in Theorem 10 is not tight, we can show that there are cases

where the coherence can be very small.

Corollary 6.4. For all n ≥ 2, if ma = n, mq = n lnn, Q ∼ Znmq ,1, A ∼ Znma,1, γ = n/ log(n),
then N+

QEQ is (ε,Amap,A, ϕ)-coherent with

ε .
n

2 · en−1 · (ln(2))n+1 .

Proof. Assuming ma = n and sq = sa = 1, then we have from the proof of Theorem 10 ,

Pr [ CHR = 1 ] ≤ 1
Hn
n log(n),1 · γn

·
n∑
i=1

i! ·
{
n

i

}

= (logn)n
Hn
n log(n),1 · nn

· Fn
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where Fn is the Fubini number. And we know that for all n ≥ 1, Hn,1 ≥ log(n) which gives

Pr [ CHR = 1 ] ≤ (logn)n
(log(n logn))n · nn · Fn ≤

1
nn
· Fn

And since Fn ≥ 2, then
Fn ·

1
nn
− 1
nn
≥ 1
nn

which means that the second term of the maximum value in Theorem 10 is the upper bound of the
coherence such that

ε ≤ Fn ·
1
nn
− 1
nn
≤ Fn ·

1
nn

.
n

2 · en−1 · (ln(2))n+1 ,

where the second inequality follows from the same argument in Corollary 6.2.

Theorem 11. For all n ∈ N, if Q ∼ Znmq ,sq , A ∼ Znma,sa, and Q ⊂ A then N+
VOL is (ε,Amap,A, ϕ)-

coherent with

ε ≤ max
{ 1
mn
q

− 1
Hn
mq ,sq

·
θ∑
i=1

{n
i

}
isq ·n

,
1

Hn
mq ,sq

·
θ∑
i=1

(i!)1−sq ·
{
n

i

}
− 1
mn
q

}

6.6 Discussion

In this section, we plot and analyze the coherence of N+
QEQ against full query recovery attacks and

studied in Theorems 5, 6, 8, 9, 10 and 11.6 Note that these graphs (and all the remaining coherence
plots) plot the log of the coherence.

Uniform queries and auxiliaries. Figure 3a plots the coherence for uniform queries and aux-
iliaries. Overall, one can see that the coherence is extremely small even for small and moderate
values of m and n. One can also see that it shrinks significantly when m and n increase. For
example, for m = 800 and n = 200, we found that ε ≤ 2−1011. It is worth noting that we limited
the support size to m = 1000 due to computational limitations, but most leakage attacks tend to
use datasets with a much larger query space. For example, the Enron dataset [10] has a query
space of size m > 105 which would lead to much smaller coherence.

Uniform queries with Zipf auxiliaries. Figure 3b plots the coherence for uniform queries
and Zipf auxiliaries. Compared to the uniform/uniform case above, the coherence is significantly
larger even for large values of m and n. This is mainly due to our bound being loose and could
potentially be improved. Note, however, that while the coherence is larger, it is still small and
suggests that full query recovery over against i.i.d. query equality networks is challenging when the
query distribution is uniform and the auxiliaries are Zipf. For example, for m = 800 and n = 200,
we found that ε ≤ 2−576.

6In this section, we consider m, n ≥ 20 which implies that for all the Theorems shown in Section 6, the coherence
is upper bounded by the second term of the max function.
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Uniform queries with distinct uniform auxiliaries. In this setting we consider two cases:
(1) when A ⊂ Q; and (2) when Q ⊂ A. Note that the the second case, where the adversary and the
client do not share the same query space, is more realistic. The coherence for the case A ⊂ Q is
plotted in Figures 3d. Here, we made an additional assumption that the size of the query space, mq,
is 10 times larger than the size of the auxiliary space, ma.7 In the distinct setting, the coherence is
significantly smaller than when the query and auxiliary distributions share the same space space.
One can also notice that it is extremely small even for small values of ma and n. For example,
for ma = 20 and n = 20, we see that ε ≤ 2−106. And when we increase ma and n, the coherence
decreases significantly. For example, when ma = 800 and n = 200, ε ≤ 2−1676. Figure 3c plots the
coherence when Q ⊂ A and ma = 10 · mq. The shape of the coherence is similar to the case of
uniform queries and auxiliaries but with smaller values—though the bound obtained in Theorem 9
is not tight. For example, when mq = 800 and n = 200, ε ≤ 2−1094.

Zipf queries with distinct Zipf auxiliaries. We again consider the cases where: (1) A ⊂ Q;
and (2) Q ⊂ A. Figure 3e plots the coherence when γ = n/ logn, where γ is the maximum rank in
Q for any query in A. For example, for n = 200 and γ = 38, which captures that the probability of
querying from A is at most Pr [Q = 38 ] where Q ∼ Zmq ,sq . We observe that the coherence is small
when ma is small. This is intuitive because when the auxiliary space is small, the adversary can
only guess a small number of sequences whereas the client can generate a large number of query
sequences. For example when ma = 100 and n = 200, we found that ε ≤ 2−704, whereas when
ma = 800 and n = 200, ε ≤ 2−345. We would also like to point out that the shape of the graph
varies as a function of γ. As γ tends to 1, the coherence is much larger (see Theorem 10). Figure 3e
plots the coherence when θ = logmq. Recall that θ is the maximum rank of a query that belongs
to A and not to Q. For example, for mq = 200, θ = 5 means that there exist four queries in Q
that have ranks 1 to 4 and no query in Q that has rank 5 in A. We observe that the coherence is
small when mq is small. Given the bound shown in Theorem 11, this is intuitive since we made θ
depend on the size of the query space. And the larger mq is, the larger θ is and therefore the larger
the coherence is. For example, when mq = 20 and n = 200, ε ≤ 2−365, while when mq = 800 and
n = 200, ε ≤ 2−112.

A remark on rebuilding. Contrary to the partial recovery setting, the need for rebuilding is
less clear in this setting. In fact, all the coherence values were small for our choice of parameters.

7 Full Recovery Against Volume

In this Section, we analyze the coherence of i.i.d. volume networks against full query recovery
attacks. More precisely, we study leakage networks NVOL of the form described in Figure 4, where
the random variable D outputs a function d from the space

DN =
{
d ∈

[
Q→ {?}[N−m+1]

] ∣∣∣∣ m∑
i=1

#d(qi) = N

}
and where m = #Q and N ∈ N such that N ≥ m. The functions d ∈ D are meant to model
multi-maps which are data structures that map queries (usually called labels) to tuples. Here, N

7This factor was not picked arbitrarily. We observed that in the Enron email dataset [10], the keyword space of a
single user’ s inbox is at least 10 times smaller than the size of the keyword space of the entire dataset.
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(a) Uniform queries and auxiliaries (Theorem 5.
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(b) Uniform queries vs Zipf auxiliaries (Theorem 6).
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(c) Uniform queries and auxiliaries, A ⊂ Q and mq =
10ma (Theorem 8).
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(d) Zipf queries and Zipf auxiliaries, Q ⊂ A and ma =
10mq (Theorem 9).
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(e) Zipf queries and Zipf auxiliaries, A ⊂ Q and γ =
n/ logn (Theorem 10).
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(f) Uniform queries and auxiliaries, Q ⊂ A and θ =
logmq (Theorem 11).

Figure 3: Log-coherence of N+
QEQ against full query recovery.

captures the size of the multi-map, i.e., the sum of its tuple lengths. Similar to the query equality
case, we note that, technically, the Bayesian network we use to capture the volume also reveals the
size of the query space #Q as well as the size of the multi-map N through the output length of the
function d ∈ DN . We add a + in N+

VOL to denote this.
Here, we often decompose the adversary’ s auxiliary distribution A into a set of random variables

AQ which denote its auxiliary random variables over the queries and AD which denotes its auxiliary
distribution over the data. Our first Theorem (Theorem 12 below) gives an upper bound on the
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D Q1 Q2 . . . Qn

L1 L2 . . . Ln

Figure 4: N+
VOL: the i.i.d. volume network, where D outputs a multi-map d from DN , each Qi

outputs a query from Q and each Li outputs leakage from L. In addition, each Li has a conditional
probability table of the form p(`i | d, qi) = 1 if `i = #d(qi) and p(`i | d, qi) = 0 otherwise.

coherence of such networks.
Theorem 12. The i.i.d. volume network N+

VOL is (ε,Amap,A, ψ)-coherent with

ε =

∣∣∣∣∣∣
∑
d∈DN

( ∑
q∈Qn1

1
#S#d(q)

· Pr [ Q = q ] · Pr [D = d ]
)
− 1
mn

∣∣∣∣∣∣ ,
where S#d(q) := mapAQ|#d(q) and Qn

1 := {q ∈ Qn|q ∈ S#d(q)}.

7.1 Uniform Data and Queries with Uniform Auxiliaries

We consider the case where Q and AQ are multi-variate random variables composed of n indepen-
dent uniform random variables and where D and AD are uniform random variables over DN .
Claim 1. For all m,N ∈ N such that m ≤ N , if d is sampled uniformly at random from DN , then

Pr [D = d ] = 1(N−1
m−1

) .
Proof. First recall that m ◦= #Q and that d is sampled uniformly at random from DN which is the
set of functions that map Q to {?}N−m+1 such that

#d(q1) + #d(q2) + · · ·+ #d(qm) = N.

where for all i ∈ [m], #d(qi) ≥ 1 (this follows from the fact that in a multi-map every label has
tuple length at least 1). Our task then is to count the number of such functions. The number of
solutions can be obtained by using a stars and bars argument. Consider m distinguishable bins
and N balls. The number of ways the N balls can be allocated to the bins is equivalent to putting
m− 1 bars in N − 1 positions between the stars (since the bins are not allowed to be empty in our
case). And there are

(N−1
m−1

)
ways of setting the bars. This is exactly the same number of solutions

the above equation can have.

Theorem 13. For all n ∈ N, if Q ∼ Unm, A ∼ Unm, D ∼ UDN and AD ∼ UDN then N+
VOL is

(ε,Amap,A, ϕ)-coherent with

ε ≤ max
{ 1
mn

,
1
mn
·
m′∑
i=1

{
n

i

}
− 1
mn

}
where m′ = min(m,

√
2N)
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Similar to Corollary 6.1, we present below an asymptotic approximation when
√

2N = n and
m < n, that states that the coherence can be very small for large values of n.

Corollary 7.1. If Q ∼ Unm, A ∼ Unm, D ∼ UDN and AD ∼ UDN with
√

2N = n and m >
√

2N
then N+

VOL is (ε,Amap,A, ϕ)-coherent with

ε ≤
( 0.792 · n
m · log(n+ 1)

)n
.

We omit the details of the proof since it is similar to the one of Corollary 6.1.

7.2 Zipf Data and Queries with Zipf Auxiliaries

We consider the case where Q and AQ are multi-variate random variables composed of n inde-
pendent Zipf-distributed random variables and where D and AD are uniform random variables
over DN . In particular, we consider power-law shaped multi-maps where DN now represents all
permutations from Q to tuples that have sizes in S where

S =
{

N

Hm,s′
,

N

2s′ ·Hm,1
, · · · , N

ms′ ·Hm,s′

}
and DN =

{
d ∈

[
Q→ {?}S

]}
Our choice of power-law-shaped multi-maps is not arbitrary. The evaluation of almost every

leakage attack on exact keyword search [26, 11, 8, 30] uses datasets datasets that are power-law
shaped, e.g., the Enron email dataset [10], the Wikipedia corpus [19], or the Arabidopsis Information
Resource (TAIR) database [43].8

Theorem 14. For all n ∈ N, if Q ∼ Znm,s, A ∼ Znms,, D ∼ UDN and AD ∼ UDN then N+
QeVo is

(ε,Amap,A, ϕ)-coherent with

ε ≤ max
{ 1
mn
− 1
Hn
m,s

·
m∑
i=1

i−n·s ·
{
n

i

}
,

1
Hn
m,s

·
m∑
i=1

(i!)1−s ·
{
n

i

}
− 1
mn

}

7.3 Zipf Data and Queries with Distinct Zipf Query Auxiliary and Uniform
Data Auxiliary

In this section, we consider the case where the adversary does not necessarily know the entire
support and only knows a subset of the volumes in S. In particular, we consider the adversary’s
query auxiliary distribution to be a Zipf with a support A ⊂ Q, a parameter sa, and a permutation
πa; and its data auxiliary distribution to be uniform over a set of volumes SA ⊂ S. In particular,
the possible multi-maps belong to the set D̄N where

DN =
{
d ∈

[
Q→ {?}SA

]}
.

8Note however that in our analysis we pick S to have a Zipf-like distribution where every query maps to a different,
unique volume in S. One could modify this setup by allowing queries to map to the same volume but this would
overcomplicates the analysis which is not necessary for this first work.
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Theorem 15. For all n ∈ N, if Q ∼ Znmq ,sq , A ∼ Znma,sa, D ∼ UDN , AD ∼ UD̄N and A ⊂ Q then
N+

QeVo is (ε,Amap,A, ϕ)-coherent with

ε ≤ max
{ 1
mn
− 1
Hn
mq ,sq

·
ma∑
i=1

(ma)i ·
{n
i

}
(mq)i · (γ + i)sq ·n ,

1
Hn
mq ,sq · γsq ·n

·
ma∑
i=1

(ma)i
(mq)i

· i! ·
{
n

i

}
− 1
mn

}

where γ the rank as defined in Section 6.5.

7.4 Discussion

As for the previous Theorems, it is challenging to interpret the coherence bounds in Theorems 13
and 15 so we plot them in Figure 5 for various values of m, n, N and γ.9

Uniform data and queries and uniform auxiliaries. We consider two cases with different
multi-map sizes: (1) where N = 103; and (2) where N = 104. One can see that increasing the
size of the multi-map N leads to slightly larger coherence for small values of m. This is expected
since in Theorem 13, the summation goes to m′ = min(

√
2N,m) and for large values of N and m,

m′ increases. Figure 5a plots the coherence when N = 103, and one can see that it is extremely
small. For example, for m = 100 and n = 200, ε ≤ 2−415. The coherence decreases significantly
as we increase both m and n. Interestingly, even though were only able to show an upper bound,
N+

VOL’s coherence is smaller than N+
QEQ’s when the query and auxiliary distributions are uniform

(see Section 6). In Figure 5b, we see that increasing N has a slight impact which is expected as
highlighted above. For example, for m = 100 and n = 200, ε ≤ 2−411.

Zipf data and queries and Zipf auxiliaries. We consider two cases with different values of
γ: (1) where γ = logn; and (2) where γ = n/ logn. One can clearly see the impact of picking
larger γ. Recall that γ is the maximum rank in Q for any query in A. So the smaller it is, the
higher the coherence is. The first case captures cases where the permutation of the adversary’s Zipf
distribution is similar to the client’s, whereas the second case captures the opposite. Intuitively, γ
can be thought of as a metric that captures some form of distance between the client and adversary’
s Zipf distributions. In Figure 5c, the coherence is large compared to all the previous settings we
analyzed. Part of this is because we were only able to obtain a lower bound—which means it could
potentially improve in the future—but another part is simply because, for small values of γ, the
MAP adversary does very well as it is be able to predict a larger number of sequences correctly.
Recall that a crucial step in the proof of Theorem 15 is based on the observation that the number of
query sequences that an adversary guesses is small compared to the uniform case (and sometimes
can even be equal to 1), and this is due in part to the skewness of the distribution. While we
mentioned above that the coherence is large compared to the previous cases, the concrete values
are still small and do not suggest that N+

v ol leakage is harmful even in this case. For example, for
m = 800 and n = 200, ε ≤ 2−172. In Figure 5d, we observe that when we increase γ, the coherence
decreases significantly. For example, for m = 800 and n = 200, ε ≤ 2−707. This is expected since γ
is in the denominator of the bound.

9As for the previous section, since we pick m, n ≥ 20, we can simply show that the coherence upper bounds in all
the Theorems of this section are equal to the second term of the max function.
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(a) Uniform queries and data and uniform auxiliaries
with N = 103 (Theorem 13).
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(b) Uniform queries and data and uniform auxiliaries
with N = 104 (Theorem 13).
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(c) Zipf queries and data and Zipf auxiliaries with
γ = logn (Theorem 15).
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(d) Zipf queries and data and Zipf auxiliaries with
γ = n/ logn (Theorem 15).

Figure 5: Log-coherence of N+
VOL against full query recovery.

8 Full Recovery Against Query Equality and Volume

In this Section, we analyze the coherence of i.i.d. query equality and volume networks against full
query recovery attacks. More precisely, we study leakage networks NQeVo as described in Figure 6
with DN as in Section 8. Similar to the query equality and volume cases, we add a + in N+

QeVo to
denote that our network reveals both m and N . Our first Theorem (Theorem 16 below) gives an
upper bound on the coherence of such networks.
Theorem 16. The i.i.d. query-volume network N+

QeVo is (ε,Amap,A, ϕ)-coherent with

ε =

∣∣∣∣∣∣ 1
m! ·

∑
f∈F

∑
d∈DN

( ∑
q∈Qn1

1
#S`

· Pr [ Q = q ] · Pr [D = d ]
)
− 1
mn

∣∣∣∣∣∣ ,
where S`

◦= mapAQ|` and Qn
1 := {q ∈ Qn|q ∈ S`} and `i = (f(qi),#d(qi)) for all i ∈ [n].

The proof of this theorem is similar to Theorems 4 and 12.

8.1 Uniform Data and Queries with Uniform Auxiliaries

Let Q and AQ be multi-variate random variables composed of n independent uniform random
variables, and let D and AD be uniform random variables.
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D F Q1 Q2 . . . Qn

L1 L2 . . . Ln

Figure 6: N+
QeVo: the i.i.d. query equality and volume network, where D outputs a function d

uniformly at random from DN , F outputs a function uniformly at random from F ◦= [Q→ L] and
each Qi outputs a query from Q and each Li outputs leakage from L. In addition, each Li has a
conditional probability table of the form p(`i | d, f, qi) = 1 if `i =

(
f(qi),#d(qi)

)
and p(`i | d, qi) = 0

otherwise.

Theorem 17. For all n ∈ N, if Q ∼ Unm, A ∼ Unm, D ∼ UDN and AD ∼ UDN then N+
QeVo is

(ε,Amap,A, ϕ)-coherent with

ε =
∣∣∣∣∣ 1
mn
·
m∑
i=1

{
n

i

}
− 1
mn

∣∣∣∣∣ ,
where m = #Q.
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A Proofs for Section 5 (Partial Recovery Against Query Equality)

Theorem 1. The i.i.d. query equality network N+
QEQ is (ε,Ahyp,A, δ)-coherent with

ε =

∣∣∣∣∣∣ 1
m!

∑
q∈Qn

Pr [ Q = q ]
( ∑

`∈Lδ(q)

(
(m− λ`)! ·

∑
q′∈Qn

`

Pr
[
Q = q′

]))
− 1

#S

∣∣∣∣∣∣
where δ : Qn → S, Lδ(q)

◦= {` ∈ L | hypδ,Q|` = δ(q)}, Qn
` =

{
q ∈ Qn | qi = qj if `i = `j , ∀i, j

}
, λ`

the number of unique leakage values in the sequence ` and m ◦= #Q = #L.

Proof. For visual clarity, we will denote the random variable CHRA,A,g(NX) simply as CHR
throughout all the proofs in the paper. First, observe

Pr [ CHR = 1 ] =
∑

`∈Ln
Pr [ CHR = 1|L = ` ] · Pr [ L = ` ] (1)

=
∑

q∈Qn

( ∑
`∈Ln

Pr [ CHR = 1|L = `,Q = q ] · Pr [ Q = q ] · Pr [ L = ` ]
)

(2)

We know that,

Pr [ L = ` ] = 1
m!

∑
f∈F

( ∑
q∈Qn

Pr [ L = `|F = f,Q = q ] · Pr [ Q = q ]
)

= 1
m!

∑
q∈Qn

`

·Pr [ Q = q ] ·
(∑
f∈F

Pr [ L = `|F = f,Q = q ]
)

(3)

= (m− λ)!
m!

∑
q∈Qn

`

Pr [ Q = q ] (4)

Equation 3 simply follows from the observation that the only valid query sequences are the ones
that coincide with the leakage. These query sequences are the ones that belong to the following set

Qn
` =

{
q ∈ Qn|qi = qj if li = lj ∀i, j

}
And Equation 4 follows from the fact that

Pr [ L = `|A = q, F = f ] =
{

1 if q ∈ Qn
`

0 otherwise.

and therefore the number of functions f such that Pr [ L = `|F = f,Q = q ] = 1 is equal to (m−λ`)!
where λ` is the number of unique leakage values. On the other hand, based on the definition of
coherence experiment, we know that

Pr [ CHR = 1|L = `,Q = q ] =
{

1 if ` ∈ Lδ(q)
0 otherwise.
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where Lδ(q) = {` ∈ Ln | hypδ,A|` = δ(q)}, which is equivalent to

Pr [ CHR = 1|L = `,Q = q ] =
{

1 if Pδ(`) ≥ Pi∀ i ∈ S \ {δ(`)}
0 otherwise.

where for all i ∈ S,
Pi(`) =

∑
q∈δ−1(i)

Pr [ A = q|L = ` ]

In the following, we compute the posterior so we can determine the quantities above. First, we
have

Pr [ A = q|L = ` ] = Pr [ L = `|A = q ] · Pr [ A = q ]
Pr [ L = ` ]

= Pr [ A = q ]
Pr [ L = ` ] ·

1
m!

∑
f∈F

Pr [ L = `|A = q, F = f ]

= Pr [ A = q ]
(m− λ)!∑q′∈Qn

`
Pr [ Q = q′ ] ·

∑
f∈F

Pr [ L = `|A = q, F = f ]

And based on the value of Pr [ L = `|A = q, F = f ] that we have detailed above, we obtain

Pr [ A = q|L = ` ] =

 Pr [ A = q ] ·
(∑

q′∈Qn
`

Pr [ Q = q′ ]
)−1

if q ∈ Qn
`

0 otherwise.

Given the above, we obtain a more precise representation of the partition Pi, for i ∈ {0, 1}, such
that

Pi(`) =
∑

q∈δ−1(i)
⋂

Qn
`

Pr [ A = q ] ·
( ∑

q′∈Qn
`

Pr
[
Q = q′

])−1
.

Finally, plugging the results above in Equation 2, we obtain

Pr [ CHR = 1 ] = 1
m!

∑
q∈Qn

Pr [ Q = q ]
( ∑

`∈Lδ(q)

(
(m− λ`)! ·

∑
q′∈Qn

`

Pr
[
Q = q′

]))

where λ` is the number of unique leakage value in the sequence `. Finally, subtraction 1/#S and
taking the absolute value concludes our proof.

Theorem 2. For all n ∈ N, if Q ∼ Unm and A ∼ Unm, then N+
QEQ is (ε,Ahyp,A, δ)-coherent with

ε =
∣∣∣∣Γ− 1

2

∣∣∣∣ ,
where,

Γ = mn − (m− 1)n
m2n

m∑
i=dx1e

(m)i ·
{
n

i

}
+ (m− 1)n

m2n

dx1e−1∑
i=0

(m)i ·
{
n

i

}
,

and x1 = (3m+ 1−
√

5m2 + 2m+ 1)/2.
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Proof. First, observe that the recovery function partitions the query space into two sets S0 = δ−1(0)
and S1 = δ−1(1) such that

S0 =
{

q ∈ Qn |∃ i ∈ [n], qi = q?
}

and S1 =
{

q ∈ Qn |∀ i ∈ [n], qi 6= q?
}
.

From Theorem 1, we know that for i ∈ {0, 1},

Pi(`) =
∑

q∈Si
⋂

Qn
`

Pr [ A = q ] ·
( ∑

q′∈Qn
`

Pr
[
Q = q′

])−1

= 1
mn
·
( ∑

q′∈Qn
`

Pr
[
Q = q′

])−1
·#
(
Si
⋂

Qn
`

)

In order to quantify the partial coherence, the main challenge consists of determining the leakage
sequences that compose the set Lδ. Based on the definition of Lδ, identifying these sequences boil
down to solving the following inequality for all ` ∈ L,

R(`) = P0(`)
P1(`) =

#
(
S0
⋂
Qn

`

)
#
(
S1
⋂
Qn

`

) ≥ 1

It is easy to see that

#
(
S0
⋂

Qn
`

)
= λ` ·m · (m− 1) · · · (m− λ` + 2) = λ` ·m!

(m− λ` + 1)! .

The above is exactly the number of query sequences that coincide with ` and that contain the query
q? as one of the queries. Similarly,

#
(
S1
⋂

Qn
`

)
= (m− 1) · (m− 2) · · · (m− 1− (λ` − 1)) = (m− 1)!

(m− λ` − 1)! ,

where here instead we don’t want any query to be equal to q? and this explains why we start from
(m− 1) in the quantity above. Given the above quantities, we can rewrite R(`) as

R(`) = λ` ·m
(m− λ` + 1) · (m− λ`)

Solving R(`) ≥ 1 is equivalent to solving λ2
` − λ`(3m+ 1) +m2 +m ≤ 0. This quadratic inequality

has two roots such that

x1 = 3m+ 1−
√

5m2 + 2m+ 1
2 and x2 = 3m+ 1 +

√
5m2 + 2m+ 1
2

This implies that ` ∈ L0 iff λ` ∈ {dx1e, · · · , bx2c}; but since x2 > m, then λ` ∈ {dx1e, · · · ,m}.
Given the result of Theorem 1, we have

Pr [ CHR = 1 ] = 1
m!

∑
q∈Qn

Pr [ Q = q ]
( ∑

`∈Lδ(q)

(
(m− λ`)! ·

∑
q′∈Qn

`

Pr
[
Q = q′

]))
(5)
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= 1
m! ·mn

∑
k∈{0,1}

( ∑
q∈Sk

( ∑
`∈Lδ(q)

(
(m− λ`)! ·

∑
q′∈Qn

`

Pr
[
Q = q′

])))
(6)

= 1
m! ·mn

∑
q∈S0

( m∑
i=dx1e

( ∑
`∈Lni

(
(m− i)! ·

∑
q′∈Qn

`,i

Pr
[
Q = q′

])))

+ 1
m! ·mn

∑
q∈S1

( dx1e−1∑
i=0

( ∑
`∈Lni

(
(m− i)! ·

∑
q′∈Qn

`,i

Pr
[
Q = q′

])))
(7)

= 1
m! ·m2n

∑
q∈S0

( m∑
i=dx1e

( ∑
`∈Lni

(
(m− i)! ·#Qn

`,i

)))

+ 1
m! ·m2n

∑
q∈S1

( dx1e−1∑
i=0

( ∑
`∈Lni

(
(m− i)! ·#Qn

`,i

)))

= 1
m! ·m2n

∑
q∈S0

( m∑
i=dx1e

( ∑
`∈Lni

(
(m− i)! · m!

(m− i)!

)))

+ 1
m! ·m2n

∑
q∈S1

( dx1e−1∑
i=0

( ∑
`∈Lni

(
(m− i)! · m!

(m− i)!

)))
(8)

= 1
m2n

∑
q∈S0

( m∑
i=dx1e

#Lni
)

+ 1
m2n

∑
q∈S1

( dx1e−1∑
i=0

#Lni
)

= #S0
m2n

m∑
i=dx1e

(
m

i

)
· i! ·

{
n

i

}
+ #S1
m2n

( dx1e−1∑
i=0

(
m

i

)
· i! ·

{
n

i

}
(9)

= #S0
m2n

m∑
i=dx1e

(m)i ·
{
n

i

}
+ #S1
m2n

( dx1e−1∑
i=0

(m)i ·
{
n

i

}

= mn − (m− 1)n
m2n

m∑
i=dx1e

(m)i ·
{
n

i

}
+ (m− 1)n

m2n

dx1e−1∑
i=0

(m)i ·
{
n

i

}
(10)

Equality 5 is from the result of Theorem 4. In Equality 6, we simply partition the query space to
Qn = S0

⋃
S1. Equality 7 follows from our result above that ` ∈ Lδ iff m ≥ λ` ≥ dx1e and we denote

by Lni the leakage sequences that have i unique values. Equation 8 holds since #Qn
`,i = m!/(m− i)!

as shown in Theorem 4. Equation 9 follows from the fact that the set Lni consists of all sequences
that have length n and that contain i unique values. This is a standard result from set partitioning
and we will provide more details in Theorem 5, this quantity is equal to

(m
i

)
· i! ·

{n
i

}
. Equation 10

holds as #S1 = (m− 1)n and S0 = Qn \ S1.

Theorem 3. For all n ∈ N, if Q ∼ Znm,s and A ∼ Unm, then N+
QEQ is (ε,Ahyp,A, δ)-coherent with

ε ≤ max
{1

2 − Γ1,Γ2 −
1
2

}
,
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where,

Γ1 = mn − (m− 1)n
mn ·Hn

m,s

m∑
i=dx1e

(m)i
ins
·
{
n

i

}
+ (m− 1)n
mn ·Hn

m,s

dx1e−1∑
i=0

(m)i
ins
·
{
n

i

}
.

and,

Γ2 = mn − (m− 1)n
mn ·Hn

m,s

m∑
i=dx1e

(m)i
(i!)s ·

{
n

i

}
+ (m− 1)n
mn ·Hn

m,s

dx1e−1∑
i=0

(m)i
(i!)s ·

{
n

i

}

where x1 = (3m+ 1−
√

5m2 + 2m+ 1)/2.

Proof. Given that Q ∼ Znm,s, we have shown in Theorem 11 that any query sequence with i unique
queries can be written as

Pr [ Q = q ] = 1
Hn
m,s

i∏
k=1

1
ks·ak

≤ 1
Hn
m,s · (i!)s

.

And from Theorem 7,
Pr [ Q = q ] ≥ 1

Hn
m,s · i−ns

.

From Theorem 2, we know that

Pr [ CHR = 1 ] = 1
m! ·mn

∑
q∈S0

( m∑
i=dx1e

( ∑
`∈Lni

(
(m− i)! ·

∑
q′∈Qn

`,i

Pr
[
Q = q′

])))

+ 1
m! ·mn

∑
q∈S1

( dx1e−1∑
i=0

( ∑
`∈Lni

(
(m− i)! ·

∑
q′∈Qn

`,i

Pr
[
Q = q′

])))

≤ mn − (m− 1)n
mn ·Hn

m,s

m∑
i=dx1e

(m)i
(i!)s ·

{
n

i

}
+ (m− 1)n
mn ·Hn

m,s

dx1e−1∑
i=0

(m)i
(i!)s ·

{
n

i

}
(11)

where (m)i is the falling factorial. And similarly, we can show that

Pr [ CHR = 1 ] ≥ mn − (m− 1)n
mn ·Hn

m,s

m∑
i=dx1e

(m)i
ins
·
{
n

i

}
+ (m− 1)n
mn ·Hn

m,s

dx1e−1∑
i=0

(m)i
ins
·
{
n

i

}
.

Leveraging the result from Lemma E.1 concludes the proof.

B Proofs for Section 6 (Full Recovery Against Query Equality)

Theorem 4. The i.i.d. query equality network N+
QEQ is (ε,Amap,A, ϕ)-coherent, with

ε =

∣∣∣∣∣∣ 1
m! ·

∑
f∈F

( ∑
q∈Qn1

1
#Sf(q)

· Pr [ Q = q ]
)
− 1
mn

∣∣∣∣∣∣ ,
where Sf(q)

◦= mapA|f(q), Qn
1
◦= {q ∈ Qn|q ∈ Sf(q)} and m ◦= #Q = #L.
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Proof. Recall that F is the random variable that outputs a bijection uniformly at random in from
F ◦= [Q→ L], where #Q = #L = m. It follows then that for all f ∈ F, Pr [F = f ] = 1/m!. Recall
that Q = (Q1, · · · ,Qn) is a sequence of n random variables distributed according to the query
distribution. We then have,

Pr [ CHR = 1 ] =
∑
f∈F

Pr [ CHR = 1|F = f ] · Pr [F = f ]

= 1
m! ·

∑
f∈F

( ∑
q∈Qn

Pr [ CHR = 1|F = f,Q = q ] · Pr [ Q = q ]
)
.

We decompose the query sequence space Qn in two disjoint sets: (1) Qn
1 := {q ∈ Qn|q ∈ S`}; and

(2) Qn
1 := {q ∈ Qn|q /∈ S`} where S` := mapA|`, where ` = f(q). It is clear that Qn = Qn

1
⋃
Qn

2
and therefore that,

Pr [ CHR = 1 ] = 1
m! ·

∑
f∈F

( ∑
q∈Qn1

Pr [ CHR = 1|F = f,Q = q ]

+
∑

q∈Qn2

Pr [ CHR = 1|F = f,Q = q ] · Pr [ Q = q ]
)
.

Observe that the probability of the event {CHR = 1|F = f,Q = q} is equal to 1/#S` when
q ∈ Qn

1 since we uniformly at random pick a query in S`. In other words given the fact that we
know that the sampled query sequence q is the set S`, then it is just a matter of guessing the right
query sequence. On the other hand, the probability of the same event is equal to 0 when q ∈ Qn

2
since by definition q /∈ S`. Then we have

Pr [ CHR = 1 ] = 1
m! ·

∑
f∈F

( ∑
q∈Qn1

1
#S`

· Pr [ Q = q ]
)
.

which concludes out proof.

Theorem 5. For all n ∈ N, if Q ∼ Unm and A ∼ Unm, then N+
QEQ is (ε,Amap,A, ϕ)-coherent, with

ε =
∣∣∣∣∣ 1
mn
·
m∑
i=1

{
n

i

}
− 1
mn

∣∣∣∣∣ ,
where m = #Q.

Proof. We denote by F the random variable that is equal to a bijection in the set F := [Q → L]
such that #Q = #L = m. The variable F is uniformly distributed such that Pr [F = f ] = 1/m!.
Let Q = (Q1, · · · ,Qn) and A = (A1, · · · , An) be two sequences of n random variables. We then
have

Pr [ CHR = 1 ] = 1
m! ·

∑
f∈F

( ∑
q∈Qn1

1
#Sf(q)

· Pr [ Q = q ]
)

(12)
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= 1
m! ·mn

·
∑
f∈F

( ∑
q∈Qn1

1
#Sf(q)

)
(13)

= 1
m! ·mn

·
∑
f∈F

( m∑
i=1

( ∑
q∈Qn1,i

1
#Sf(q)

))
(14)

Equation 12 is the result of Theorem 4. Equation 13 holds since

Pr [ Q = q ] =
n∏
i=1

Pr [ Qi = qi ] = 1/mn,

and since the variables Qi are independent. Equation 14 corresponds to the partitioning of the
space Qn

1 into m disjoints sets such that the ith set is composed of query sequences with i unique
queries. More formally, we have

Qn
1,i =

{
q = (q1, · · · , qn) ∈ Qn

1 | #set({qj}j∈[n]) = i

}
,

where set(·) is a set and therefore does not account for redundant elements. It is also easy to see
that

Qn
1 =

m⋃
i=1

Qn
1,i,

since any query sequence can have at most m unique queries and m is the size of the query space
Q. Now we need to perform two steps: (1) calculate the size of Qn

1 ; and (2) calculate the size of
Sf(q). First notice that we can rewrite Sf(q) as follows:

Sf(q) = mapA|`

= arg max
q′∈Qn

{
Pr
[
A = q′

∣∣L = f(q)
]}

= arg max
q′∈Qn

{
Pr
[
L = f(q)

∣∣A = q′
]
· Pr [ A = q′ ]

Pr [ L = f(q) ]

}
= arg max

q′∈Qn

{
Pr
[
L = f(q)

∣∣A = q′
]
·
n∏
j=1

Pr
[
Aj = q′j

]}
(15)

= arg max
q′∈Qn

{∑
f∈F

Pr
[
L = f(q)

∣∣A = q′, F = f
]
· Pr [F = f ] ·

n∏
j=1

Pr
[
Aj = q′j

]}

= arg max
q′∈Qn

{∑
f∈F

Pr
[
L = f(q)

∣∣A = q′, F = f
]
·
n∏
j=1

Pr
[
Aj = q′j

]}
(16)

Equation 15 follows from the independence of Qi’s while Equation 16 holds since Pr [F = f ] is a
constant. Also note that

Pr
[
L = f(q)

∣∣A = q′, F = f
]

=
{

1 if f(q′i) = f(qi) ∀i ∈ [n]
0 otherwise.
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We now need to compute the number of functions f for which

Pr
[
L = f(q)

∣∣A = q′, F = f
]

= 1.

We show that the number of such functions is (m− λ)!, where λ is the number of unique elements
in f(q). First, notice that for fixed leakage ` = f(q), the possible query sequences q′ ∈ Qn that
can lead to ` are the sequences such that for all 1 ≤ j, k ≤ n, q′j = q′k if and only if `j = `k. In
particular, we define

Qn
f(q)

◦=
{

q′ ∈ Qn | q′j = q′k iff f(qj) = f(qk) ∀j, k ∈ [n]
}
.

Based on this observation, it is easy to see that the number of unique queries in any query sequence
q′ ∈ Qn

f(q) is equal to the number of unique leakage values in f(q) such that #set({q′j}j∈[n]) =
#set({f(qj)}j∈[n]). Let λ be the size of set({q′j}j∈[n]). That is, given a fixed leakage f(q), and a
possible query sequence q′ ∈ Qn

f(q), the number of functions f that verify these constraints is equal
to (m − λ)!. To see why, note that in both q′ and f(q) there are λ unique queries and leakage
values, respectively. In particular, these λ values define a part of the bijection f but there are m−λ
points in the space that are still undefined. That is, there are (m − λ)! possible functions, f , for
the remaining values. So now we can plug this result in the equation above such that

Sf(q) = arg max
q′∈Qn

f(q)

{
(m− λ)! ·

n∏
j=1

Pr
[
Aj = q′j

]}
(17)

= arg max
q′∈Qn

`

{ n∏
j=1

Pr
[
Aj = q′j

]}

= arg max
q′∈Qn

`

{ 1
mn

}
= Qn

f(q) (18)

Equation 17 follows from Equation 16 by reducing the set of query sequences to the possible set of
query sequences Qn

f(q) and by counting the number of function f as discussed above. Equation 18
holds since all queries have the same probability equal to 1/mn.

Now that we have shown that Sf(q) = Qn
f(q), we can reduce calculating the size of Sf(q) to

calculating the size of Qn
f(q). In particular, without loss of generality, consider that f(q) has λ

unique values. Notice that Qn
f(q) is the set of all query sequences composed of λ unique queries

such that q′j = q′k if and only if f(qj) = f(qk), for all j, k ∈ [n]. The number of such sequences is
equal to

m · (m− 1) · (m− 2) · · · (m− λ+ 1) = m!
(m− λ)! .

Moreover given that Sf(q) = Qn
f(q), we can rewrite Qn

1,i as

Qn
1,i =

{
q ∈ Qn

1 | #set({qj}j∈[n]) = i

}
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=
{

q ∈ Qn| #set({qj}j∈[n]) = i and q ∈ Sf(q)

}
=
{

q ∈ Qn| #set({qj}j∈[n]) = i and q ∈ Qn
f(q)

}
=
{

q ∈ Qn| #set({qj}j∈[n]) = i

}
= Qn

i

The last equality holds since the condition {q ∈ Qn
f(q)} is always true. In particular, given a

permutation f , qj = qk iff f(qj) = f(qk), for all j, k ∈ [n]. So now plugging the above results in
Equation 16, we obtain

Pr [ CHR = 1 ] = 1
m! ·mn

·
∑
f∈F

( m∑
i=1

( ∑
q∈Qni

(m− i)!
m!

))

= 1
m! ·mn

·
∑
f∈F

( m∑
i=1

(mi )∑
j=1

( ∑
q∈Qni,j

(m− i)!
m!

))
(19)

= 1
m! ·mn

·
∑
f∈F

( m∑
i=1

(
m

i

)
· (m− i)!

m! ·#Qn
i,j∗

))
(20)

Equation 19 follows from a decomposition of the set Qn
i into

(m
i

)
subsets Qn

i,j . Every subset Qn
i,j is

composed of sequence of queries that have a unique set of queries, and notice that we can create(m
i

)
possible sets of unique queries of size i. Equation 20 follows from the fact that these subsets

have the same size for a fixed i. We prove this in the following claim.

Claim 2. For all j ∈ N, we have

#Qn
i,j = i! ·

{
n

i

}
.

Proof. Recall that Qn
i,j is the set of sequences composed of i unique queries. Given a fixed j,

the set of unique queries is also fixed and is equal to {qj1, · · · , q
j
i }, where qji ∈ Q for all i ∈ [m].

Counting the number of sequences in Qn
i,j is equivalent to the following partitioning problem: given

a set of n elements, in how many ways can we partition it in i blocks, such that the blocks are
distinguishable? To see why, note that the elements in this question are the indexes of the query
sequence. Furthermore, a block can be thought of as the assignment of subset of indexes to a query
qjk for k ∈ [i].

This answer to the above question in the case of indistinguishable block is a standard counting
problem where the number of ways is equal to Stirling number of second kind{

n

i

}
= 1
i! ·

i∑
j=1

(−1)i
(
i

j

)
(i− j)n

However, in our cases, the i blocks are distinguishable and therefore any permutation should be
accounted for which then gives that the total number of ways of partitioning is equal to i! ·

{n
i

}
.
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Given Claim 20, we now have

Pr [ CHR = 1 ] = 1
m! ·mn

·
∑
f∈F

( m∑
i=1

(
m

i

)
· (m− i)!

m! · i! ·
{
n

i

}))

= 1
m! ·mn

·
∑
f∈F

( m∑
i=1

{
n

i

}))

= 1
mn
·
m∑
i=1

{
n

i

}

Subtracting by 1/mn and taking the absolute value conclude our proof.

Theorem 6. For all n ∈ N, if Q ∼ Unm and A ∼ Znm,s, then N+
QEQ is (ε,Amap,A, ϕ)-coherent with

ε ≤ max
{ 1
mn

,
1
mn
·
m∑
i=1

i! ·
{
n

i

}
− 1
mn

}
where m = #Q.

Proof. We showed in Equation 14 of the proof of Theorem 5 that

Pr [ CHR = 1 ] = 1
m! ·mn

·
∑
f∈F

( m∑
i=1

( ∑
q∈Qn1,i

1
#Sf(q)

))

where Qn
1,i is the set of query sequences with i unique queries and such that the queries q ∈ Sf(q),

for some fixed f ∈ F. More formally, we have

Qn
1,i =

{
q = (q1, · · · , qn) ∈ Qn | #set({qj}j∈[n]) = i and q ∈ Sf(q)

}
,

We can partition the set Qn
1,i more in such a way that it contains a fixed set of unique queries.

Notice that we have
(m
i

)
possible combinations. That is, we can write

Qn
1,i =

(mi )⋃
j=1

Qn
1,i,j

where Qn
1,i,j is only composed of query sequences that have the same set of unique queries. As a

result, we can rewrite the Equation above as

Pr [ CHR = 1 ] = 1
m! ·mn

·
∑
f∈F

( m∑
i=1

( (mi )∑
j=1

( ∑
q∈Qn1,i,j

1
#S`

)))
.

However, we can show that among all of the possible combinations only a single one is valid. This
holds given that the probability mass function of the Zipf distribution is strictly non-increasing.
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Claim 3. There exists a j∗ ∈ {1, · · · ,
(m
i

)
} such that

Qn
1,i = Qn

1,i,j∗ .

Proof. Consider a query sequence q ∈ Qn
1,i, and recall that there are different combinations of

i queries (there are
(m
i

)
). Given that the Ai’s are Zipf-distributed, among all of the possible

combinations, there is only a single one, j?, such that Qn
1,i,j∗ 6= ∅. In other words, the only

sequences q that verify q ∈ Sf(q) are the ones in Qn
1,i,j∗ . To see why, notice that the probability

mass function of a Zipf distribution is a strictly non-increasing function: if k > r, then k−s

Hm,s
< r−s

Hm,s
.

So the best combination of queries is the one that has ranks (1, · · · , i), and therefore these queries
are (π−1(1), · · · , π−1(i)). Without loss of generality, we refer to this combination as the j?th
combination. More formally, recall that we have shown as part of the proof in Theorem 5 that

Sf(q) = arg max
q′∈Qn

f(q)

{ n∏
j=1

Pr
[
Aj = q′j

]}
,

where
Qn
f(q) =

{
q′ ∈ Qn | q′j = q′k iff f(qj) = f(qk) ∀j, k ∈ [n]

}
.

We can rewrite the equation above as

Sf(q) = arg max
q′∈Qn

f(q)

{ 1
Hn
m,s

λ∏
i=1

(a−si )ki
}
,

where λ is the number of unique values in f(q), a = (a1, · · · , aλ) are the ranks of the query sequence
q′ and k = (k1, · · · , kλ) are the occurrences of the unique values in f(q). Observe that the query
sequence that maximizes the above quantity is the query sequence where a = (1, · · · , λ), for a fixed
k, s, and λ.

To summarize, for j ∈ {1, · · · ,m} \ j?, and for all q ∈ Qn
1,i with the jth combination of unique

queries, we have q /∈ Sf(q), which then implies that Qn
1,i,j = ∅.

Given the result of the above claim, we then have

Pr [ CHR = 1 ] = 1
m! ·mn

·
∑
f∈F

( m∑
i=1

( ∑
q∈Qn1,i,j?

1
#Sf(q)

))

≤ 1
m! ·mn

·
∑
f∈F

( m∑
i=1

#Qn
1,i,j?

)

= 1
m! ·mn

·
∑
f∈F

( m∑
i=1

i! ·
{
n

i

})
(21)

= 1
mn
·
m∑
i=1

i! ·
{
n

i

}
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where Equation 21 holds since counting the number of query sequences in Qn
1,i,j? is the same as

counting the number of ways we can partition a set of n elements into i blocks where the blocks
are distinguishable – refer to the proof of Theorem 5 for more details. That is, Qn

1,i,j? = i! ·
{n
i

}
. 10

Leveraging the result of Lemma E.1 where the lower bound is 0 concludes our proof.

Theorem 7. For all n ∈ N, if Q ∼ Znm,s and A ∼ Znm,s, then N+
QEQ is (ε,Amap,A, ϕ)-coherent

with
ε ≤ max

{ 1
mn
− 1
Hn
m,s

·
m∑
i=1

(i!)1−s ·
{
n

i

}
,

1
Hn
m,s

·
m∑
i=1

i−n·s ·
{
n

i

}
− 1
mn

}
,

where m = #Q.

Proof. Given the result from Theorem 4, we have

Pr [ CHR = 1 ] = 1
m! ·

∑
f∈F

( ∑
q∈Qn1

1
#Sf(q)

· Pr [ Q = q ]
)

= 1
m! ·

∑
f∈F

( m∑
i=1

( (mi )∑
j=1

( ∑
q∈Qn1,i,j

1
#Sf(q)

· Pr [ Q = q ]
)))

= 1
m! ·

∑
f∈F

( m∑
i=1

( ∑
q∈Qn1,i,j?

1
#Sf(q)

· Pr [ Q = q ]
))

(22)

where the three equalities above follow from the same arguments in Theorem 5 except that the
probability mass function of the multi-variate random variable Q is Zipf-distributed and therefore is
a function of the query sequence contrary to the case of the uniform distribution where all sequences
are equally likely. In particular, given that Q ∼ Znm,s, then for any q ∈ Qn

1,i,j? we have

Pr [ Q = q ] =
n∏
k=1

Pr [Qk = qk ] = 1
Hn
m,s

·
i∏

k=1

1
(ks)ak ,

where ak is the multiplicity of the kth query in the j?th combination and ∑i
k=1 ak = n. Recall

that j? represents the index of the combination that corresponds to the i queries that maximize the
posterior, and as shown in Theorem 6, j? corresponds to the i first queries with the highest ranks
in Q ∼ Znm,s given a permutation π. In the following, we are interested in obtaining a lower-bound
of the above probability mass function independently of the multiplicities ak which would allow us
to later derive a lower-bound for the coherence probability. In particular, given that k ≤ i we have

i∑
k=1

s · ak · log(k) ≤
i∑

k=1
s · ak · log(i)

10Note that this bound is very loose because we consider #Sf(q) to be the maximum (i.e., 1) for all query sequences
in Qn1,i,j? . There are many query sequences, however, that do not belong to Sf(q) but that we are still accounting
for in our worst-case bound. In other words, there are query sequences in q ∈ Qn1,i where the combination is j?, but
q /∈ Sf(q). Obtaining a tighter bound is an interesting open problem that would require a more complex counting
argument.

40



Put(,)

i∑
k=1

log(ks·ak) ≤ n · log(i)

1
Hn
m,s

· i−n·s ≤ 1
Hn
m,s

·
i∏

k=1

1
(ks)ak

Given the above, we can now obtain a lower-bound for Equation 22 such that

Pr [ CHR = 1 ] ≥ 1
m! ·Hn

m,s

·
∑
f∈F

( m∑
i=1

i−n·s
( ∑

q∈Qn1,i,j?

1
#Sf(q)

))

≥ 1
m! ·Hn

m,s

·
∑
f∈F

( m∑
i=1

i−n·s
( ∑

q∈Qn1,i,j?

1
i!

))
(23)

= 1
m! ·Hn

m,s

·
∑
f∈F

( m∑
i=1

i−n·si! ·
{
n

i

}
· 1
i!

))
(24)

= 1
Hn
m,s

·
m∑
i=1

i−n·s ·
{
n

i

}
.

Inequality 23 follows from the observation that for any query sequence q ∈ Qn
1,i,j? , we have #Sf(q) ≤

i!. The upper-bound is reached when all i unique queries appear exactly the same number of times
in q. Equality 24 holds as the size of the set Qn

1,i,j? is equal to i! ·
{n
i

}
, refer to Theorem 6 for more

details.
We now show an upper bound for Equation 22 by first observing that

Pr [ Q = q ] 1
Hn
m,s

·
i∏

k=1

1
(ks)ak ≤

1
Hn
m,s

1
(i!)s ,

and this holds since multiplicities ak for k ∈ [i] are non-increasing with the higher associated
to smallest rank – recall that this is the way how one could maximize the Zipf probability mass
function as shown in Theorem 6. Given the above inequality and the fact that #Sf(q) ≥ 1 for all
q ∈ Qn, it is easy to show that

Pr [ CHR = 1 ] ≤ 1
Hn
m,s

·
m∑
i=1

(i!)1−s ·
{
n

i

}
.

Leveraging the result of Lemma E.1, we conclude our proof.

Theorem 8. For all n ∈ N, if Q ∼ Unmq , A ∼ Unma, and A ⊂ Q then N+
QEQ is (ε,Amap,A, ϕ)-

coherent with
ε =

∣∣∣∣∣ 1
mn
q

·
ma∑
i=1

{
n

i

}
− 1
mn
q

∣∣∣∣∣ .
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Proof. From Theorem 4, we know

Pr [ CHR = 1 ] = 1
mq!
·
∑
f∈F

( ∑
q∈Qn1

1
#Sf(q)

· Pr [ Q = q ]
)

= 1
mq! ·mn

q

·
∑
f∈F

( mq∑
i=1

( ∑
q∈Qn1,i

1
#Sf(q)

))

Now, observe that an adversary can only output query sequences that it knows which implies that
any query sequence that is composed of queries that are not in A will never be part of Sf(q). More
formally, if q ∈ Qn

1,i \ An1,i then q /∈ Sf(q). Also observe that the number of possible unique queries
in An1,i is ma which is smaller than mq = #Q. Then, we obtain

Pr [ CHR = 1 ] = 1
mq! ·mn

q

·
∑
f∈F

( ma∑
i=1

( ∑
q∈An1,i

1
#Sf(q)

))

Following the same proof in Theorem 5, we can show that for all q ∈ An1,i for i ∈ [ma],

#Sf(q) = ma!
(ma − i)!

.

Putting everything together we obtain,

Pr [ CHR = 1 ] = 1
mq! ·mn

q

·
∑
f∈F

( ma∑
i=1

( (mai )∑
j=1

(ma − i)!
ma!

·#An1,i,j
)

(25)

= 1
mq! ·mn

q

·
∑
f∈F

( ma∑
i=1

(
ma

i

)
· (ma − i)!

ma!
· i! ·

{
n

i

})
(26)

= 1
mn
q

·
ma∑
i=1

{
n

i

}
.

Note that in Equation 25, we further partition the set A1,i = ⋃(mai )
j=1 A1,i,j where A1,i,j represents

the set of all query sequences that have a fixed set of i distinct queries. Equation 26 holds as the
size of the set A1,i,j is equal to i! ·

{n
i

}
following the same argument made in Theorem 5. Finally,

subtracting 1/mn
q and taking the absolute value concludes our proof.

Theorem 9. For all n ∈ N, if Q ∼ Unmq , A ∼ Unma, and Q ⊂ A then N+
QEQ is (ε,Amap,A, ϕ)-

coherent with

ε ≤ 1
mn
q

·
mq∑
i=1

(
mq · e
ma

)i
·
{
n

i

}
.

Proof. Similar to Theorem 8, we have

Pr [ CHR = 1 ] = 1
mq! ·mn

q

·
∑
f∈F

( mq∑
i=1

( ∑
q∈Qn1,i

1
#Sf(q)

))
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= 1
mq! ·mn

q

·
∑
f∈F

( mq∑
i=1

( (mqi )∑
j=1

( ∑
q∈Qn1,i,j

1
#Sf(q)

)))

= 1
mq! ·mn

q

·
∑
f∈F

( mq∑
i=1

( (mqi )∑
j=1

( ∑
q∈Qn1,i,j

(ma − i)!
ma!

))
(27)

= 1
mq! ·mn

q

·
∑
f∈F

( mq∑
i=1

(
mq

i

)
· i! ·

{
n

i

}
(ma − i)!
ma!

)
(28)

= 1
mn
q

·
mq∑
i=1

(
mq

i

)(
ma

i

)−1

·
{
n

i

}

Equality 27 follows from the fact that the most likely sequences the adversary outputs given a
leakage sequence will include query sequences that in An. This is why the size of the set Sf(q) is
function of ma and not mq. Equality 28 holds since the size of the set Qn

1,i,j is equal to i! ·
{n
i

}
as

shown in Theorem 5. We further simplify the above equation by observing that for all 1 ≤ k ≤ n,(
n

k

)k
≤
(
n

k

)
≤
(
n · e
k

)k
,

We then obtain,

Pr [ CHR = 1 ] ≤ 1
mn
q

·
mq∑
i=1

(
mq · e
ma

)i
·
{
n

i

}
.

Subtracting 1/mn and taking the absolute value completes the proof.

Theorem 10. For all n ∈ N, if Q ∼ Znmq ,sq , A ∼ Znma,sa, and A ⊂ Q then N+
QEQ is (ε,Amap,A, ϕ)-

coherent with

ε ≤ max
{ 1
mn
q

− 1
Hn
mq ,sq

·
ma∑
i=1

{n
i

}
(γ + i)sq ·n ,

1
Hn
mq ,sq · γsq ·n

·
ma∑
i=1

i! ·
{
n

i

}
− 1
mn
q

}

Proof. Similar to Theorem 9, we have

Pr [ CHR = 1 ] = 1
mq!
·
∑
f∈F

( mq∑
i=1

( ∑
q∈Qn1,i,j?

1
#Sf(q)

· Pr [ Q = q ]
))

= 1
mq!
·
∑
f∈F

( ma∑
i=1

( ∑
q∈An1,i,j?

1
#Sf(q)

· Pr [ Q = q ]
))

(29)

Equation 29 follows from the fact that the adversary can only output sequences in An and that the
possible number of unique queries is at most ma. Recall that A1,i,j? represents the set of all query
sequences that belong to Sf(q) and that are composed of a fixed set of i unique queries. Now, let’s
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denote by γ the maximum rank in Q of any query in A. More formally, let γ ∈ [mq−ma] such that
for all q ∈ A, πq[q] ≥ γ, then we can write for all q ∈ A1,i,j? ,

Pr [ Q = q ] =
n∏
k=1

Pr [Qk = qk ] = 1
Hn
mq ,sq

·
i+γ∏
k=γ

1
(ksq)ak

Following the same algebraic computations as in Theorem 7, we can show that for all i ∈ [ma],

1
Hn
mq ,sq · (γ + i)sq ·n ≤

1
Hn
mq ,sq

·
i+γ∏
k=γ

1
(ksq)ak ≤

1
Hn
mq ,sq · γsq ·n

Given the above, we can rewrite Equation 29 such that

Pr [ CHR = 1 ] ≥ 1
mq! ·Hn

mq ,sq · γsq ·n
·
∑
f∈F

( ma∑
i=1

( ∑
q∈An1,i,j?

1
#Sf(q)

))

≥ 1
mq! ·Hn

mq ,s

·
∑
f∈F

( ma∑
i=1

( ∑
q∈An1,i,j?

1
i! · (γ + i)sq ·n

))
(30)

≥ 1
Hn
mq ,s

·
ma∑
i=1

{n
i

}
(γ + i)sq ·n

Equation 30 holds since as shown in Theorem 6, for all q ∈ An1,i,j? , #Sf(q) ≤ i!. Similarly, we show
that

Pr [ CHR = 1 ] ≤ 1
Hn
mq ,sq · γsq ·n

·
ma∑
i=1

i! ·
{
n

i

}

Using Lemma E.1 we conclude our proof.

Theorem 11. For all n ∈ N, if Q ∼ Znmq ,sq , A ∼ Znma,sa, and Q ⊂ A then N+
VOL is (ε,Amap,A, ϕ)-

coherent with

ε ≤ max
{ 1
mn
q

− 1
Hn
mq ,sq

·
θ∑
i=1

{n
i

}
isq ·n

,
1

Hn
mq ,sq

·
θ∑
i=1

(i!)1−sq ·
{
n

i

}
− 1
mn
q

}
Proof. Similar to Theorem 10, we have

Pr [ CHR = 1 ] = 1
mq!
·
∑
f∈F

( mq∑
i=1

( ∑
q∈Qn1,i,j?

1
#Sf(q)

· Pr [ Q = q ]
))

= 1
mq!
·
∑
f∈F

( θ∑
i=1

( ∑
q∈Qn1,i,j?

1
#Sf(q)

· Pr [ Q = q ]
))

(31)

In Equation 31, we know that if the number of unique queries exceeds θ, then there is no possible
query sequence that can belong to Sf(q). To see why, notice that when the number of unique
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queries is strictly higher than θ them any sequence the adversary is going to output has to contain
a query that belongs to A but not to Q. Now, we need to bound the probability of observing a
query sequence q. Following the same steps in Theorem 7, we can show that for all q ∈ Qn

1,i,j? ,

1
Hn
mq ,sq · isq ·n

≤
n∏
k=1

Pr [Qk = qk ]

and,

Pr [ Q = q ] =
n∏
k=1

Pr [Qk = qk ] = 1
Hn
mq ,sq

·
i∏

k=1

1
(ksq)ak ≤

1
Hn
mq ,sq · (i!)sq

The last inequality holds as the multiplicities, (ak)k∈[i], have to verify a1 ≥ a2 ≥ · · · ≥ ai given
that the highest rank will always be assigned to the most frequent query in a given query sequence,
refer to Theorem 6 for more details. Given the above, we then obtain

1
Hn
mq ,sq

·
θ∑
i=1

{n
i

}
isq ·n

≤ Pr [ CHR = 1 ] ≤ 1
Hn
mq ,sq

·
θ∑
i=1

(i!)1−sq ·
{
n

i

}
.

Applying Lemma E.1 concludes our proof.

C Proofs for Section 7 (Full Recovery Against Volume)

Theorem 12. The i.i.d. volume network N+
VOL is (ε,Amap,A, ψ)-coherent with

ε =

∣∣∣∣∣∣
∑
d∈DN

( ∑
q∈Qn1

1
#S#d(q)

· Pr [ Q = q ] · Pr [D = d ]
)
− 1
mn

∣∣∣∣∣∣ ,
where S#d(q) := mapAQ|#d(q) and Qn

1 := {q ∈ Qn|q ∈ S#d(q)}.

Proof. We have by definition,

Pr [ CHR = 1 ] =
∑
d∈DN

Pr [ CHR = 1|D = d ] · Pr [D = d ]

=
∑
d∈DN

( ∑
q∈Qn

Pr [ CHR = 1|D = d,Q = q ] · Pr [ Q = q ] · Pr [D = d ]
)

We then divide the query sequence space Qn in two disjoint sets: (1) Qn
1 := {q ∈ Qn|q ∈ S#d(q)},

and (2) Qn
1 := {q ∈ Qn|q /∈ S#d(q)} where S#d(q) := mapAQ|#d(q). Similarly to Theorem 4, we can

easily show that

Pr [ CHR = 1 ] =
∑
d∈DN

( ∑
q∈Qn1

Pr [ CHR = 1|D = d,Q = q ]

+
∑

q∈Qn2

Pr [ CHR = 1|D = d,Q = q ] · Pr [ Q = q ] · Pr [D = d ]
)
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=
∑
d∈DN

( ∑
q∈Qn1

1
#S#d(q)

· Pr [ Q = q ] · Pr [D = d ]
)
.

Finally, subtracting 1/mn and taking the absolute value concludes the proof.

Theorem 13. For all n ∈ N, if Q ∼ Unm, A ∼ Unm, D ∼ UDN and AD ∼ UDN then N+
VOL is

(ε,Amap,A, ϕ)-coherent with

ε ≤ max
{ 1
mn

,
1
mn
·
m′∑
i=1

{
n

i

}
− 1
mn

}

where m′ = min(m,
√

2N)

Proof. First, we rewrite the result of Theorem 12 as

Pr [ CHR = 1 ] =
∑
d∈DN

( ∑
q∈Qn1

1
#S#d(q)

· Pr [ Q = q ] · Pr [D = d ]
)

= 1
mn ·

(N−1
m−1

) · ∑
d∈DN

( ∑
q∈Qn1

1
#S#d(q)

)

where the second Equation follows from plugging in the probability mass functions of D and Q and
from Qn

1 := {q ∈ Qn|q ∈ S#d(q)}. Now we are interested in finding a more concrete representation
of the set S#d(q) so we can characterize the possible query sequences. Specifically, we have by
definition

S#d(q) = mapAQ|#d(q)

= arg max
q′∈Qn

{
Pr
[
AQ = q′

∣∣L = #d(q)
]}

= arg max
q′∈Qn

{
Pr
[
L = #d(q)

∣∣AQ = q′
]
· Pr [ AQ = q′ ]

Pr [ L = #d(q) ]

}
= arg max

q′∈Qn

{ ∑
d′∈DN

Pr
[
L = #d(q)

∣∣AQ = q′, AD = d′
]
· Pr

[
AD = d′

]
· Pr

[
AQ = q′

]}

= arg max
q′∈Qn

{ ∑
d′∈DN

Pr
[
L = #d(q)

∣∣AQ = q′, AD = d′
]
· 1
mn ·

(N−1
m−1

)} (32)

= arg max
q′∈Qn

{ ∑
d′∈DN

Pr
[
L = #d(q)

∣∣AQ = q′, AD = d′
]}

(33)
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Equation 32 holds since both AQ and AD are uniform while Equation 33 holds because removing
constants does not change the argmax. On the other hand, note that

Pr
[
L = #d(q)

∣∣AQ = q′, AD = d′
]

=
{

1 if #d′(q′i) = #d(qi) ∀i ∈ [n]
0 otherwise.

In particular, the constraint #d′(q′i) = #d(qi) implies that the query sequences q′ have to have at
least λ unique queries where λ is the number of unique volumes such that λ := #set({#d(qi)}i∈[n]).
More formally, the set of such query sequences is

Qn
#d(q) =

{
q′ ∈ Qn | q′i 6= q′j if #d(qi) 6= #d(qj) ∀i, j ∈ [n]

}
.

It is important to note that the number of unique queries can be larger than λ and still verify the
condition above. For instance, consider queries that have the same volume. We denote the number
of unique queries in q′ to be equal to γ where γ := #set({q′i}i∈[n]). Furthermore, the condition also
implies that, given q′, only a subset of functions in DN are possible. We denote this by

D#d(q),q′ =
{
d′ ∈ DN | #d′(q′i) = #d(qi) ∀i ∈ [n]

}
.

So we can rewrite Equation 33 as

S#d(q) = arg max
q′∈Qn#d(q)

{
#D#d(q),q′

}
.

Now we need to identify which query sequence(s) maximize #D#d(q),q′ . Notice that this set is
largest when the number of unique queries γ is the smallest. The reason is that the more queries
we know, the more of the function we know and, therefore, the remaining queries will have to
“share” a much smaller set of volumes. We prove this observation more formally in the claim
below.

Claim 4. Given a volume leakage #d(q),

max
q′∈Qn#d(q)

#D#d(q),q′ = max
q′∈Qn#d(q),λ

#D#d(q),q′ =
(
N −

∑
l∈Uniq l − 1

m− λ− 1

)

where Qn
#d(q),γ =

{
q′ ∈ Qn

#d(q) | #set({q′i}i∈[n] = γ)
}

, Uniq = set({#d(qi)}i∈[n]) and λ = #Uniq.

Proof. Consider a query sequence q′ ∈ Qn
#d(q) with γ unique queries, i.e., q′ ∈ Qn

#d(q),γ . Without
loss of generality, assume that these queries are {qm−γ+1, · · · , qm}. In addition we know that these
γ queries have volumes in set({#d(qi)}i∈[n]) and that at least λ have distinct volumes—this simply
follows from the definition of Qn

#d(q). For now, assume that the γ − λ queries got assigned to
arbitrary volumes. We denote the volumes of the queries {l?1, · · · , l?γ} such that the first λ elements
in this set are unique. Now counting the elements in #D#d(q),q′ is equivalent to solving the following
equation

#d′(q1) + · · ·+ #d′(qm−γ) = N −
γ∑
i=1

l?i
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Based on a stars and bars argument (refer to Claim 1 for more details), we have the number of
possible solutions and therefore the number of possible multi-maps is equal to(

N −
∑γ
i=1 l

?
i − 1

m− γ − 1

)
.

In the case of γ = λ, the above quantity is equal to(
N −

∑λ
i=1 l

?
i − 1

m− λ− 1

)
.

The only remaining step is to show that the above value reaches its maximum when γ = λ. For
this we make use of Pascal’s rule that states that for al k ∈ [n− 1],(

n

k

)
=
(
n− 1
k

)
+
(
n− 1
k − 1

)

where we start by n = N −
∑λ
i=1 l

?
i − 1 and k = m − λ − 1 and we apply several recursive steps

before reaching n′ = N −
∑γ
i=1 l

?
i − 1 and k′ = m− γ − 1 since n′ ≤ n and k′ ≤ k. Note that all of

these recursive steps are additive and therefore we have for all γ ≥ λ(
N −

∑λ
i=1 l

?
i − 1

m− λ− 1

)
≥
(
N −

∑γ
i=1 l

?
i − 1

m− γ − 1

)

which concludes our proof.

Given the claim above we can rewrite S#d(q) as

S#d(q) = arg max
q′∈Qn#d(q),λ

{
#D#d(q),q′

}

= arg max
q′∈Qn#d(q),λ

{(
N −

∑
l∈Uniq l − 1

m− λ− 1

)}

= Qn
#d(q),λ =

{
q′ ∈ Qn | q′i = q′j iff #d(qi) = #d(qj) ∀i, j ∈ [n]

}
(34)

Equation 34 holds because of the following: recall that Qn
#d(q),λ is the set of possible query sequences

q′ such that q′i 6= q′j if #d(qi) 6= #d(qj) for all i, j ∈ [n]. That is, it leaves open the possibility that a
different query can occur in the positions in d(q) that have the same volume. If that occurs then the
number of unique queries will strictly exceed λ which is never going to happen since q′ ∈ Qn

#d(q),λ
which has the restriction that q′ has exactly λ unique queries. In other words, every volume is
mapped to a unique query. More formally, we have q′i = q′j iff #d(qi) = #d(qj) for all i, j ∈ [n].
Now it is easy to see that the size of S#d(q) is

S#d(q) = m · (m− 1) · · · (m− λ+ 1) = m!
(m− λ)! .

48



Put(,)

Given the above result and setting α = (mn ·
(N−1
m−1

)
)−1, we obtain

Pr [ CHR = 1 ] = α ·
∑
d∈DN

( ∑
q∈Qn1

1
#S#d(q)

)

= α ·
m′∑
j=1

( ∑
d∈Dj

( ∑
q∈Qn1

1
#S#d(q)

))
(35)

= α ·
m′∑
j=1

( ∑
d∈Dj

( j∑
i=1

∑
q∈Qn1,i

1
#S#d(q)

)))
(36)

Equation 35 is a decomposition of the space DN into m′ subsets Dj such that each subset Dj is
the set of functions d with j unique volumes, i.e., j = #set({#d(qi)}i∈[m]). It is easy to see that
DN = ⋃m′

j=1 Dj where m′ is the maximum on the number of possible unique volumes a multi-map
can have. We will show below that m′ = min(m,

√
2N). Equation 36 represents a decomposition

of the query space into subsets where each subset Qn
1,i corresponds to the query sequences q ∈ Qn

1
with i unique queries, i.e.,

Qn
1,i =

{
q ∈ Qn

1 | #set({qj}j∈[n]) = i

}
.

Claim 5. We show that there does not exist d ∈ D such that

#set
({

#d(qi)
}
i∈[m]

)
> min

(
m,
√

2N
)

Proof. Given that the sum of all the m volumes should not exceed N , we want to maximize the
non-zero values of the following equation:

x1 + 2x3 + · · ·+ (N −m+ 1)xN−m+1 = N,

where {1, · · · , N −m+ 1} are the possible volumes. The maximum is reached when we select the
smallest volumes that can lead to N , since otherwise we will reach N faster and therefore use less
unique volumes. In particular finding the maximum number of unique volumes θ is equivalent to
solving the equation:

θ∑
i=1

i = N ≡ θ2 + θ − 2N = 0,

where the solution is
θ =
√

8N + 1− 1
2 ≤

√
2N

which follows from the fact that
√

8N + 1 ≤
√

8N +
√

1 = 2
√

2N + 1. However we know that the
number of unique volumes cannot exceed m, the size of the query space, so the number of unique
volumes is at most min(m,

√
2N).
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Given the above results, we now have

Pr [ CHR = 1 ] = α ·
m′∑
j=1

( ∑
d∈Dj

( j∑
i=1

( (mi )∑
k=1

∑
q∈Qn1,i,k

1
#S#d(q)

))))
(37)

= α ·
m′∑
j=1

( ∑
d∈Dj

( j∑
i=1

( (mi )∑
k=1

∑
q∈Qn1,i,k

(m− i)!
m!

))))
(38)

≤ α ·
m′∑
j=1

( ∑
d∈Dj

( j∑
i=1

( (mi )∑
k=1

i! ·
{
n

i

}
(m− i)!
m!

))))
(39)

= α ·
m′∑
j=1

( ∑
d∈Dj

( j∑
i=1

(
m

i

)
i! ·
{
n

i

}
(m− i)!
m!

)))

= α ·
m′∑
j=1

( ∑
d∈Dj

( j∑
i=1

{
n

i

})))

≤ α ·
( m′∑
i=1

{
n

i

})
·
m′∑
j=1

( ∑
d∈Dj

1
))

(40)

≤ α ·
( m′∑
i=1

{
n

i

})
·#DN = 1

mn
·
m′∑
i=1

{
n

i

}

Equation 37 is a further decomposition of the query sequence space into subsets Qn
1,i,k where we

fix a particular combination of the i unique queries. Note that there are
(m
i

)
ways to pick i unique

queries for a query space of size m. Equation 38 simply replaces #S#d(q) with its value which we
previously computed. In Equation 39, the size of Qn

1,i,k is i! ·
{n
i

}
(we refer the reader to Theorem 5

for the detailed argument). Note also that we have accounted for all possible query sequences in
Qn

1,i,k which is an upper-bound. To see why, note that there might be query sequences q′ ∈ Qn
1,i,k

with a fixed i queries such that i is larger than the number of unique volumes in S#d(q), for a
particular multi-map d.11 Equation 40 is a simple upper bound where we set j = m′ so that the
sum ∑m′

i=1
{n
i

}
is the largest and is a constant that no longer depends on which function we pick.

Finally, leveraging the result of Lemma E.1 concludes our proof.

Theorem 14. For all n ∈ N, if Q ∼ Znm,s, A ∼ Znms,, D ∼ UDN and AD ∼ UDN then N+
QeVo is

(ε,Amap,A, ϕ)-coherent with

ε ≤ max
{ 1
mn
− 1
Hn
m,s

·
m∑
i=1

i−n·s ·
{
n

i

}
,

1
Hn
m,s

·
m∑
i=1

(i!)1−s ·
{
n

i

}
− 1
mn

}
11This is a crucial step in the proof which makes our bound quite loose. In order to tighten the bound, one would

need to find which combination of i unique queries are valid in the sense that i is equal to the number of unique
volumes in #d(q) for a specific function d. We leave this question as an interesting open problem.
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Proof. From Theorem 12, we know

Pr [ CHR = 1 ] =
∑
d∈DN

( ∑
q∈Qn1

1
#S#d(q)

· Pr [ Q = q ] · Pr [D = d ]
)

= 1
m! ·

∑
d∈DN

( ∑
q∈Qn1

1
#S#d(q)

· Pr [ Q = q ]
)

(41)

Equation 41 holds as the number of multi-maps with volumes in S is equal to m!. Given that we fix
S, the only aspect that can vary is how we assign the m keywords to the m unique volumes which
can be done in m! ways. In the following, we focus on calculating S#d(q).

S#d(q) = arg max
q′∈Qn

{
Pr
[
A = q′

∣∣L = #d(q)
]}

= arg max
q′∈Qn

{
Pr
[
L = #d(q)

∣∣A = q′
]
· Pr [ A = q′ ]

Pr [ L = #d(q) ]

}
= arg max

q′∈Qn

{
Pr
[
L = #d(q)

∣∣A = q′
]
· Pr

[
A = q′

]}
= arg max

q′∈Qn

{
Pr
[
A = q′

]
·
∑
d′∈DN

Pr
[
L = #d(q)

∣∣A = q′, D′ = d′
]
· Pr

[
D′ = d′

]}

= arg max
q′∈Qn

{
Pr
[
A = q′

]
·
∑
d′∈DN

Pr
[
L = #d(q)

∣∣A = q′, D′ = d′
]}

= arg max
q′∈Qn

d(q)

{
Pr
[
A = q′

]
·
∑
d′∈DN

Pr
[
L = #d(q)

∣∣A = q′, D′ = d′
]}

(42)

= arg max
q′∈Qn

d(q)

{
Pr
[
A = q′

]
· (m− λd(q))

}
= arg max

q′∈Qn
d(q)

{
Pr
[
A = q′

]}
(43)

Equation 42 follows from the fact that the only query sequences for which the conditional probability
is not null are the one that belong to Qn

d(q) where

Qn
d(q) =

{
q ∈ Qn |qi = qj if #d(qi) = #d(qj), ∀ i, j ∈ [n]

}
.

And given that A is Zipf-distributed, then as shown in Theorem 6, the query sequences that
maximize S#d(q) are the ones composed of the λd(q) queries with the highest ranks, where λd(q)
represents the number of unique volumes in d(q). In addition, these queries also verify the fact that
the volume appearing the most in a query sequence will be assigned to the query with the highest
rank, the second appearing most with the second highest rank and so on and so forth. And similar
to Theorem 7, we can show that

1 ≤ S#d(q) ≤ λd(q)!

We are also going to leverage a previous result shown in Theorem 7 where given that Q ∼ Znm,s,
then for all q ∈ Qn,

Pr [ Q = q ] ≥ 1
Hn
m,s

· i−n·s
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Plugging the above results in Equation 41, we obtain

Pr [ CHR = 1 ] = 1
m! ·

∑
d∈DN

( m∑
i=1

( ∑
q∈Qn1,i

1
#S#d(q)

· Pr [ Q = q ]
))

(44)

≥ 1
m! ·

∑
d∈DN

( m∑
i=1

( ∑
q∈Qn1,i

1
i! ·

1
Hn
m,s

· i−n·s
))

= 1
m! ·

∑
d∈DN

( m∑
i=1

1
i! ·

1
Hn
m,s

· i−n·s
(mi )∑
j=1

#Qn
1,i,j

)

= 1
m! ·

∑
d∈DN

( m∑
i=1

1
i! ·

1
Hn
m,s

· i−n·s ·#Qn
1,i,j?

)
(45)

= 1
m! ·

∑
d∈DN

( m∑
i=1

1
Hn
m,s

· i−n·s ·
{
n

i

})
(46)

= 1
Hn
m,s

·
m∑
i=1

i−n·s ·
{
n

i

}

Equation 44 results from the fact that every multi-map d ∈ DN has m distinct volumes. Equation 45
follows from the argument above that there is only a unique set of i unique queries that maximizes
#Sd(q). Finally, Equation 46 follows from the fact that the size of Qn

1,i,j? is equal to i! ·
{n
i

}
, refer

to Theorem 5 for more details.
Similarly, we can compute a upper bound as follows. First, as shown in Theorem 11, we have

Pr [ Q = q ] ≤ 1
Hn
m,s

· (i!)−s

and following the same steps as above and with the observation that for all q ∈ Qn
1,i, #S#d(q) ≥ 1,

we can show that
Pr [ CHR = 1 ] ≤ 1

Hn
m,s

·
m∑
i=1

(i!)1−s ·
{
n

i

}
.

Finally, using the result of Lemma E.1 concludes our proof.

Theorem 15. For all n ∈ N, if Q ∼ Znmq ,sq , A ∼ Znma,sa, D ∼ UDN , AD ∼ UD̄N and A ⊂ Q then
N+

QeVo is (ε,Amap,A, ϕ)-coherent with

ε ≤ max
{ 1
mn
− 1
Hn
mq ,sq

·
ma∑
i=1

(ma)i ·
{n
i

}
(mq)i · (γ + i)sq ·n ,

1
Hn
mq ,sq · γsq ·n

·
ma∑
i=1

(ma)i
(mq)i

· i! ·
{
n

i

}
− 1
mn

}
where γ the rank as defined in Section 6.5.

Proof. From Theorem 12, we know that

Pr [ CHR = 1 ] =
∑
d∈DN

( ∑
q∈Qn1

1
#S#d(q)

· Pr [ Q = q ] · Pr [D = d ]
)
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= 1
mq!
·
∑
d∈DN

( ∑
q∈Qn1

1
#S#d(q)

· Pr [ Q = q ]
)

(47)

= 1
mq!
·
∑
d∈DN

( ma∑
i=1

( (mqi )∑
j=1

( ∑
q∈An1,i,j

1
#S#d(q)

· Pr [ Q = q ]
)))

(48)

where A1,i,j introduced in Equation 48 represents the set of all query sequences that belong to
S#d(q) and that are composed of a fixed set of i unique queries. On the other hand, and as shown
in Theorem 14, we know that

S#d(q) = arg max
q′∈Qn

d(q)

{
Pr
[
A = q′

]
·
∑
d′∈DN

Pr
[
L = #d(q)

∣∣A = q′, D′ = d′
]}

= arg max
q′∈Qn

d(q)

{
Pr
[
A = q′

]
·

∑
d′∈D#d(q),q′

Pr
[
L = #d(q)

∣∣A = q′, D′ = d′
]}

(49)

= arg max
q′∈Qn

d(q)

{
Pr
[
A = q′

]
·#Dd(q),q′

}

= arg max
q′∈Qn

d(q)

{
Pr
[
A = q′

]
· (ma − λd(q))!

}
= arg max

q′∈Qn
d(q)

{
Pr
[
A = q′

]}
(50)

Equation 49 simply specifies the set of possible databases DN,d(q) for which the set S#d(q) is not
empty such that for all q′ ∈ Qn

d(q),

Dd(q),q′ =
{
d′ ∈ D̄N | #d(qi) = #d′(q′i) ∀i ∈ [n]

}
.

Also recall from Theorem 6 that since A are Zipf-distributed, the query sequences that maxi-
mizes #S#d(q) are the ones composed of the λ#d(q) queries with the highest ranks based on the
permutation πa. Leveraging this observation, we can rewrite Equation 48 such that

Pr [ CHR = 1 ] = 1
mq!
·
∑
d∈DN

( ma∑
i=1

( ∑
q∈An1,i,j?

1
#S#d(q)

· Pr [ Q = q ]
))

= 1
mq!
·
ma∑
i=1

( ∑
d∈DiN

( ∑
q∈An1,i,j?

1
#S#d(q)

· Pr [ Q = q ]
))

(51)

Equation 51 swaps two summations and replaces DN by DiN as the latter is the only subset of
possible multi-maps for which the set S#d(q) is non-empty, for all q ∈ An1,i,j . More formally we
define DiN such that

DiN =
{
d ∈ DN | d(q) ∈ SA ∀q ∈

{
π−1
a (1), · · · , π−1

a (i)
}}
.

In the following, we are interested in computing the size of the set DiN , for all i ∈ [ma].

Claim 6. For all i ∈ [ma], and N ∈ N, we have

#DiN =
(
ma

i

)
· i! · (mq − i)!
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Proof. By definition DiN is composed of all multi-maps such that i a-priori fixed queries have
volumes in SA. The number of ways we can assign i volumes from ma volumes is equal to i! ·

(ma
i

)
since the order of the assignment matters. Assigning the remaining queries to the remaining volumes
in S can be done in (mq − 1)!.

In the following, we will compute a lower and an upper bound for the {CHR = 1} event. But
before, recall that since A ⊂ Q and Q ∼ Znmq ,sq , we can write for all q ∈ A1,i,j ,

1
Hn
mq ,sq · (γ + i)sq ·n ≤ Pr [ Q = q ] ≤ 1

Hn
mq ,sq · γsq ·n

where γ is the rank value defined in Section 6. And that for all q ∈ An1,i,j? , we have

1 ≤ #S#d(q) ≤ i!

First, the upper bound can be calculated as follows,

Pr [ CHR = 1 ] ≤ 1
mq!
·
ma∑
i=1

( ∑
d∈DiN

( ∑
q∈An1,i,j?

1
Hn
mq ,sq · γsq ·n

))
(52)

= 1
mq!
·
ma∑
i=1

(#DiN ·#An1,i,j?
Hn
mq ,sq · γsq ·n

)
(53)

= 1
mq!
·
ma∑
i=1

((ma
i

)
· i! · (mq − i)! · i! ·

{n
i

}
Hn
mq ,sq · γsq ·n

)
(54)

= 1
Hn
mq ,sq · γsq ·n

·
ma∑
i=1

(ma)i
(mq)i

· i! ·
{
n

i

}
(55)

Similarly, we can show that the lower bound is equal to

Pr [ CHR = 1 ] ≥ 1
Hn
mq ,sq

·
ma∑
i=1

(ma)i
(mq)i · (γ + i)sq ·n ·

{
n

i

}

Finally, using Lemma E.1 concludes the proof.

D Proofs for Section 8 (Full Recovery Against Query Equality
and Volume)

Theorem 16. The i.i.d. query-volume network N+
QeVo is (ε,Amap,A, ϕ)-coherent with

ε =

∣∣∣∣∣∣ 1
m! ·

∑
f∈F

∑
d∈DN

( ∑
q∈Qn1

1
#S`

· Pr [ Q = q ] · Pr [D = d ]
)
− 1
mn

∣∣∣∣∣∣ ,
where S`

◦= mapAQ|` and Qn
1 := {q ∈ Qn|q ∈ S`} and `i = (f(qi),#d(qi)) for all i ∈ [n].
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Theorem 17. For all n ∈ N, if Q ∼ Unm, A ∼ Unm, D ∼ UDN and AD ∼ UDN then N+
QeVo is

(ε,Amap,A, ϕ)-coherent with

ε =
∣∣∣∣∣ 1
mn
·
m∑
i=1

{
n

i

}
− 1
mn

∣∣∣∣∣ ,
where m = #Q.

Proof. We use the same notation as the proofs of both Theorem 5 and Theorem 13. Given our
assumptions, we can rewrite the general form of the coherence from Theorem 16 as

Pr [ CHR = 1 ] = 1
m! ·mn ·

(N−1
m−1

) ∑
f∈F

( ∑
d∈DN

( ∑
q∈Qn1

1
#S`

))

where ` = (`1, . . . , `n) and `i = (f(qi),#d(qi)) for all i ∈ [n]. Now we further study the set S` to
better understand its structure. We have

S` = mapAQ|`

= arg max
q′∈Qn

{
Pr
[
AQ = q′

∣∣ (L1,L2) = (`1, `2)
]}

(56)

= arg max
q′∈Qn

{
Pr
[
L1 = `1

∣∣AQ = q′,L2 = `2
]
·

Pr
[
AQ = q′

∣∣L2 = `2
]

Pr
[
L1 = `1

∣∣L2 = `2
] } (57)

= arg max
q′∈Qn

{
Pr
[
L1 = `1

∣∣AQ = q′,L2 = `2
]
·

Pr
[
L2 = `2

∣∣AQ = q′
]
· Pr [ AQ = q′ ]

Pr [ L2 = `2 ]

}
(58)

= arg max
q′∈Qn

{
Pr
[
L1 = f(q)

∣∣AQ = q′,L2 = #d(q)
]
· Pr

[
L2 = #d(q)

∣∣AQ = q′
]}

= arg max
q′∈Qn

{(∑
f∈F

Pr
[
L1 = f(q)

∣∣AQ = q′,L2 = #d(q), F = f
])

·
( ∑
d′∈D

Pr
[
L2 = #d(q)

∣∣AQ = q′, AD = d′
])}

In Equation 57 we decompose L into two random variables (L1,L2). Equation 58 holds using Bayes’
rule for three events while Equation 58 follows from the standard Bayes’ rule. First, note that

Pr
[
L1 = f(q)

∣∣AQ = q′,L2 = #d(q), F = f
]

= 1,

if q′ ∈ Qn
f(q), where

Qn
f(q)

◦=
{

q′ ∈ Qn | q′j = q′k iff f(qj) = f(qk) ∀j, k ∈ [n]
}
.

Note that the second condition {L2 = #d(q)} does not change which query sequence is possible.
And from Theorem 5, we know that the number of possible functions f is equal to (m− λ)! where
λ is the number of unique queries in f(q). On the other hand, we know from Theorem 13 that
Pr
[
L2 = #d(q)

∣∣AQ = q′, D′ = d′
]

is equal to 1 if q ∈ Qn
#d(q) where

Qn
#d(q) =

{
q′ ∈ Qn | q′i 6= q′j if #d(qi) 6= #d(qj) ∀i, j ∈ [n]

}
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and the number of possible functions d is equal to #D#d(q),q′ where

D#d(q),q′ =
{
d′ ∈ DN | #d′(q′i) = #d(qi) ∀i ∈ [n]

}
The most important observation here is that

Qn
f(q) ⊆ Qn

#d(q)

This holds since several combinations of queries remain possible in the positions in #d(q) where
the volume is the same which, in turn, leads to more query sequences. This is however not true
for Qn

f(q) since we know the exact position of the unique queries. Based on this observation, we
rewrite S` as

S` = arg max
q′∈Qn

f(q)

{
(m− λ)! ·#D#d(q),q′

}

= arg max
q′∈Qn

f(q)

{
#D#d(q),q′

}

= arg max
q′∈Qn

f(q)

{(
N −

∑
i∈P #d(q)− 1

m− λ− 1

)}
(59)

= Qn
f(q)

where P is a set of λ indices such that for all i, j ∈ P , f(qi) 6= f(qj). Equation 59 follows from
Theorem 13 where we computed the size of #D#d(q),q′ . Note that the size of this set is constant
and does not vary since: (1) we know that there are λ unique queries; and (2) given `, we know
exactly all the volumes of all the λ unique queries. Also recall that #Qn

f(q) = m!/(m−λ)!, so using
the same query space decomposition techniques from the proof of Theorem 5 we can show that

Pr [ CHR = 1 ] = 1
mn
·
m∑
i=1

{
n

i

}
. (60)

Finally, subtracting 1/mn and taking the absolute value ends our proof.

E A Useful Lemma

When analyzing coherence, it is often the case that one cannot compute the exact probability that
an adversary wins the coherence experiment but instead can only obtain a lower and/or an upper
bound. In this case, the following Lemma can be useful to derive an upper bound on the coherence.

Lemma E.1. If a, b and ε are reals in [0, 1] such that |a − b| = ε, and if there exists u, l ∈ R+

such that l ≤ a ≤ u, then

ε ≤ max
{
b− l, u− b

}
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Proof. First, we have by assumption that l − b ≤ a− b ≤ u− b. We need to consider two cases. If
a− b ≥ 0, then a− b = ε and therefore

ε ≤ u− b.

Otherwise if a− b < 0, then a− b = −ε and therefore

ε ≤ b− l.

This concludes the proof.

57


	Introduction
	Related Work
	Preliminaries
	Bayesian Networks

	Definitions
	Partial Recovery Against Query Equality
	Uniform Queries with Uniform Auxiliary
	Zipf Queries with Uniform Auxiliary
	Discussion

	Full Recovery Against Query Equality
	Uniform Queries and Uniform Auxiliary
	Uniform Queries with Zipf Auxiliaries
	Zipf Queries with Zipf Auxiliaries
	Uniform Queries with Distinct Uniform Auxiliary
	Zipf Queries with Distinct Zipf Auxiliaries
	Discussion

	Full Recovery Against Volume
	Uniform Data and Queries with Uniform Auxiliaries
	Zipf Data and Queries with Zipf Auxiliaries
	Zipf Data and Queries with Distinct Zipf Query Auxiliary and Uniform Data Auxiliary
	Discussion

	Full Recovery Against Query Equality and Volume
	Uniform Data and Queries with Uniform Auxiliaries

	Proofs for Section 5 (Partial Recovery Against Query Equality)
	Proofs for Section 6 (Full Recovery Against Query Equality)
	Proofs for Section 7 (Full Recovery Against Volume)
	Proofs for Section 8 (Full Recovery Against Query Equality and Volume)
	A Useful Lemma

