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Abstract. Motivated by applications in threshold cryptography, we ini-
tiate the study of secret-sharing schemes that distribute a secret from a
large field F}, among n parties such that the recovery algorithm makes a
minimal number of additions. Existing schemes achieve either O(n log p)
additions (e.g., Shamir, Comm. of ACM, 1979) or at least £2(n?) opera-
tions independently of the field size (e.g., Cramer-Xing, EUROCRYPT,
2020). This leaves open the existence of a secret sharing whose recovery
algorithm can be computed by performing only O(n) additions.

We resolve the question in the affirmative and present such a near-
threshold secret sharing scheme that provides privacy against unautho-
rized sets of density at most 7, and correctness for authorized sets of
density at least 7, for any given arbitrarily close constants 7, < 7.. Re-
construction can be computed by making at most O(n) additions and,
in addition, (1) the share size is constant, (2) the sharing procedure also
makes O(n) additions, and (3) the scheme is a blackbox secret-sharing
scheme, i.e., the sharing and reconstruction algorithms work universally
for all finite abelian groups G. Prior to our work, no such scheme was
known even without features (1)—(3) and even for the ramp setting where
7p and 7. are far apart. As a by-product, we derive the first blackbox
near-threshold secret-sharing scheme with linear-time sharing. We also
present several concrete instantiations of our approach that seems prac-
tically efficient (e.g., for threshold discrete-log-based signatures).

Our constructions are combinatorial in nature. We combine graph-based
erasure codes that support “peeling-based” decoding with a new random-
ness extraction for low dimensional sub-space that is based on inner-
product with a small-integer vector. By combining these tools with the
blueprint of Cramer et al. (EUROCRYPT 2015), we derive efficient
secret-sharing scheme with far-apart thresholds. We then introduce a
general concatenation-like transform for secret-sharing schemes that al-
lows us to arbitrarily shrink the privacy-correctness gap with a minor
overhead. Our techniques enrich the secret-sharing toolbox and, in the
context of blackbox secret sharing, provide a new alternative to existing
number-theoretic approaches.
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1 Introduction

1.1 Motivation

Threshold signatures and threshold cryptosystems [22J21] typically rely on lin-
ear secret sharing schemes [41J9] “over the exponent” of some abelian group G.
Specifically, each server i holds a share s; of the secret key s, and, loosely speak-
ing, the signing process (or decryption process in threshold encryption) has the
following form: The client broadcasts to the servers a public value M (e.g., the
hash of the message on which we want to sign) and each server ¢ replies with
M?i. The goal of the client is to compute the signature M?. If the client gets
enough responses, say at least 7cn out of the n servers, she can compute the
signature (or decrypt the ciphertext) by computing a linear combination of the
shares “in the exponent”, i.e., [ M®%/, where the coefficients «; depend on the
set T of servers that are available, and satisfy > a;s; = s. The client computes
M<:% by raising each M?®: to the power of «;. By using repeated squaring, this
requires between log |«;| and 2log |o;| group multiplications, and so the overall
complexity for |T'| = n is about nlog |ay| multiplications

The cost of computing [ M % can be quite large when there are many
servers and when the group is large. For example, if one uses Shamir’s secret
sharing [41] the cost is £2(n log p) multiplications where p is the order of group G.
(This is without accounting to the cost of computing the Lagrange coefficients,
which could also be substantial [44].) Alternatively, by employing a blackbox
secret sharing (BBSS) [22J17] that works “universally” over any ring (or even
abelian group), the cost can be made independent of p. However, the best existing
schemes [19] use relatively large coefficients of bit-length {2(nlogn) and so the
recovery in the exponent takes at least £2(n? log n) multiplications. Furthermore,
this holds even for the ramp setting where the correctness 7. threshold of the
scheme is bounded away from the privacy threshold 7,. (See Section for more
details about related works.)

3 The overhead of computing [[ M®*i can be reduced by computing a multi-

exponentiation, namely computing the final result directly rather than computing
each M“% geparately and multiplying the results. This optimization, e.g. using
Pippenger’s algorithm [39], improves performance by a factor of O(logn), but when
logn < |a;| (which is the typical case in the threshold setting) this optimization has
a limited effect compared to our improvements.
One can partially get around this efficiency problem by adding interaction. Specif-
ically, the client can ask who is willing to participate in the recovery. Then, each
available party broadcasts her name. Finally, once the coalition is known the coeffi-
cients are determined and each party can locally raise her share to the power of a;
and send the result to the client that just needs to multiply everything. This solution
has two problems: It adds interaction and it’s not resilient to malicious parties. In
contrast, our solution is non-interactive and can be easily adapted to malicious set-
tings by assuming that the original shares are committed and that each “signature”
share consists of a zero-knowledge proof of consistency. In the discrete-log setting
this can be done relatively cheaply.
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Our goal in this paper is to design secret-sharing schemes in which the overall
complexity of the recovery is linear in the number of parties. More precisely, we
would like to minimize the number of group multiplications that are performed
during reconstructions. One should note that the question can (and will) be
studied purely in terms of linear secret sharing schemes regardless of the encryp-
tion/signature system that is being used. Keeping in mind that every addition
in Z,, translates into a multiplication over the group G, we are interested in the
following secret-sharing task:

Design a secret sharing scheme over Z, that supports secret-recovery
with a small number of additions. Sepcifically, is it possible to achieve
an asymptotic upper-bound of O(n) additions?

1.2 Owur Results

We initiate the study of Additive-Only Secret-Sharing Schemes (AOS) and settle
the above question in the affirmative for near-threshold secret sharing schemes.
Such schemes provide privacy against unauthorized sets of density at most 7p,
and correctness for authorized sets of density at least 7., given some arbitrarily-
close constants 7, < 7.. We prove the following main theorem.

Theorem 1 (main theorem). For every constants 0 < 7, < 7. < 1 there
exists an ensemble of (1,,7c) near-threshold secret sharing schemes whose re-
covery algorithm makes only O(n) additions. Moreover, (1) the share size is
constant, (2) the sharing also makes O(n) additions, and (3) the scheme is a
BBSS scheme and the sharing and reconstruction algorithms work universally
for all finite abelian groups G.

A few comments are in place.

— (Ensembles) The term ensemble refers to the fact that the scheme is pa-
rameterized with reusable public parameters that are sampled during the
randomized set-up of the system. It is guaranteed that, except with expo-
nentially small failure probability over the choice of the parameters, the
resulting scheme satisfies correctness and privacy for all sets of density at
most 7. and 7p, respectively. That is, each choice of the public parameter de-
fines a scheme, and for almost all choices, T.-correctness and and 7,-privacy
hold. The public parameters can be placed in a public file and can be re-used.
We can also completely remove the public parameters without affecting the
asymptotic complexity of the scheme at the expense of introducing a neg-
ligible statistical error in the correctness and privacy. (See Remark ) In
typical applications (e.g., threshold cryptography), this relaxation has a mi-
nor effect (if any) since the secret sharing scheme will be employed inside a
computational system that can be broken anyway with a small probability.

— (Main vs secondary features) We view the “near-threshold” property as
well as items (1-3) as “bonus” features. That is, even a weak theorem that, for
every large prime p, promises a ramp secret sharing scheme that supports
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some concrete privacy and correctness thresholds (7p,7c) (e.g., (1/3,2/3))
and achieves recovery with O(n) additions and, say, quadratic sharing com-
plexity and super-constant share size, would be useful for our usage scenarios.
Furthermore, to the best of our knowledge, even the existence of such a weak
scheme was open prior to this work. We will later present such weak versions
of the main theorem that have very good concrete complexity and are likely
to be useful in practice. (See Section [L.4])

— (Some advantages of the secondary features) The BBSS property is es-
pecially useful for RSA-based threshold cryptography (e.g., threshold RSA
signatures such as in [42]). Moreover, as a by-product, Theorem |[I| recov-
ers some recent fundamental results about the complexity of secret-sharing
schemes, such as the existence of BBSS near-threshold scheme with constant-
size shares [I9] and the existence of linear-time computable secret-sharing
schemes [23/16]. (See Section [L.5). In fact, to the best of our knowldge, even
if we ignore the complexity of recovery, our results are the first to obtain
linear-time computable BBSS schemes for any ramp-secret sharing scheme.

— (Application to LWE-based schemes) Our result is also relevant in
the context of LWE-based constructions (e.g., the threshold FHE of [10]).
In this case, instead of placing the shares s; € F, in the exponents, one
releases “noisy” versions of the shares modulo a larger prime ¢, and recovery
is applied over “noisy” shares. Large interpolation coefficients expand the
noise magnitude by a large factor and lead to errors (e.g., bad threshold-
decryption). To avoid this, one can encode separately each bit of the share,
however, this means that, in the recovery, each party has to send log p noisy
elements instead of a single one. Motivated by this problem, Ball et al. [2]
studied the problem of secret-sharing with 0-1 reconstruction coefficients.
(See Section [L.5]) We note that the binary-reconstruction requirement can
be typically relaxed to the more liberal requirement of an addition-only re-
construction algorithm with low depth since the bit-length of the noise grows
linearly with the “depth” of the algorithm. Indeed, all our constructions
achieve an optimal depth of O(logn), which makes them valuable also in the
LWE setting.

1.3 Technical Overview

Additive-only erasure codes. We begin by ignoring the privacy condition
in an attempt to construct “non-private” additive-only 7.-correct schemes with
a recovery algorithm that performs only O(n) operations. When privacy is re-
moved, this is essentially equivalent to erasure codes that correct in the presence
of (1 — 7c)-fraction of erasures. (For now, we think of the secret as a vector of
O(n) field elements.) Our first observation is that graph-theoretic codes, e.g., bi-
nary low-density parity-check (LDPC) codes [25] and their derivatives (e.g., [35])
admit an additive-only decoding algorithm.

Let us focus, for concreteness, on the LDPC case. An LDPC code that maps
k-long information words to n-long codewords is described by a (n—k) x n binary
parity-check matrix H which is sparse: i.e., each of its rows/columns contains
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a constant number of ones. The set of codewords is the right kernel of H, i.e.,
all vectors v € F2 for which Hv = 0"~*. We think of H as a constant-degree
bipartite graph G (the Tanner graph of H) whose n left vertices correspond to
the codeword and its right 7 —k nodes correspond to constraints nodes. (In other
words, each constraint corresponds to a row of H.) The constraint associated
with a right node asserts that the sum of all the left nodes connected to it is
0. Given a partial codeword yr = (y;)icr we use the following peeling-based
decoding algorithm: (1) For ¢ € T assign y; to the ith left vertex; (2) While
possible, pick a right (constraint) vertex r that all its neighbors 41, ...,i4—1 have
been assigned except for one neighbor i; and set the value of the isth left-node to
0—(i1+...+i4-1). It turns out that a proper choice of the graph (or the sparse
matrix) guarantees that, if one starts with a sufficiently large set of un-erased
symbols T', the decoding process never stops until all the codeword is recovered.
In particular, such codes can achieve a constant rate R = k/n and recover from
a constant fraction of erasures. (In fact, one can get an almost optimal trade-off
and, for any small € > 0, design a sparse LDPC that recovers the codeword from
(R + ¢) fraction of un-erased symbol, see e.g., [36J35].)

Observe that the above procedure works over any field, or even abelian group,
G. In particular, if the codeword is a vector that satisfies the equation Hv =
0"~* then the peeling-based decoder works properlyﬂ Indeed, the success of
the decoding is independent of the underlying domain and depends only on
the combinatorial properties of the graph. The decoder performs at most m
additions where m = O(n) is the number of edges in the constant-degree graph.
Let us further assume, for now, that the code also admits an encoder that maps
k-long vectors to n-long codewords by making O(n) blackbox additions. This
assumption does not hold in general for LDPC codes, but it holds for other
related codes that support similar peeling-based decoding with O(n) additions,
e.g., [35]. (We will also explain later how to generically rely on an arbitrary
LDPC code that does not satisfy this additional requirement.)

From additive-only codes to additive-only secret-sharing. It is well-
known that secret-sharing schemes are closely related to erasure codes [41IT4137].
The literature contains two main approaches for deriving secret-sharing from
codes. The first traditional approach of Massey [37] (which is also implicit in
Shamir’s work [41]) is algebraic in nature and relies on the dual-distance of the
code. Roughly speaking, the idea is to sample a codeword y = (s,y1,...,¥yn) and
deliver y; as the share of the ith party. An authorized coalition of density 7. can
recover the secret, by using decoding under (1 — 7)-fraction of erasures. It can
be proved that privacy holds for sets of density 7, if the code has a dual distance
of 7,n + 1. Unfortunately, the codes that are employed in our work (e.g., LDPC
codes) fail to achieve this property.

® The condition Hv = 0™ is well defined over any abelian group G by interpreting
the multiplication of a group element by an integer as iterated addition over G. See
Section [2] for details.
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A second, more modern, approach of Cramer et al. [16] is information-
theoretic in nature. The idea is to encode a random information vector r into a
codeword y = (y1,...,yn) and deliver y; as the share of the ith party. The main
observation is that, for a privacy threshold 7, that is strictly smaller from the
code’s rate R, a 7,-fraction of the parties has a small amount of information on
the information vector. Specifically, given their view, the information vector is
distributed uniformly over a set of size exponential in (R — 7,)n. Thus, one can
use pairwise independent hashing to extract from the codeword r an element
that is almost-uniform conditioned on the view of the adversary, and use this
element to pad the secret. (In fact, £2(n) secrets can be packed using this ap-
proach.) One can set the parameters so that the error is sufficiently small, and
apply a union-bound over all un-authorized sets. This leads to a collection of
ramp (or even near-threshold) secret sharing schemes. Furthermore, if the fam-
ily of hash functions is linear, the resulting scheme is linear, and if the code and
hash function are computable in linear-time then so is the secret sharing scheme.
Unfortunately, while there are pairwise-independent hash functions that can be
computed by a linear-size arithmetic circuit [30/423] we are not aware of any
pairwise-independent hash functions that can be computed by a linear number
of additions and we conjecture that such an object does not exist.

Our approach. Our approach follows the approach of Cramer et al. [I6] except
that instead of applying the hash function we apply to the information vector
r a random linear combination with small, constant-size integer coefficients. We
replace the information-theoretic argument with a linear-algebraic argument and
show that a random linear combination with small-integer coefficients “extracts”
well from any source that is uniformly distributed over “nice” low-dimensional
subspace. Furthermore, this extraction works in a domain-independent way. In
more detail, fix the generating matrix M of the code and a subset T', and consider
a random “small” integer column vector a € N¥. We show that a extracts well in
the following scenario: Fix an arbitrary group G, and consider a random vector

r & G*, then a - r is almost surely uniform over G even conditioned on the
T-restricted codeword (Mr)r. Equivalently, in linear algebraic terms, for every
prime p, the vector a almost surely falls out of the row span of My modulo p.

The actual statement depends on the magnitude of the integers in M and
here the fact that the code has O(n) additive complexity plays on our side.
Roughly, the analysis, which uses elementary linear algebra and probability,
treats separately each small prime and each prime larger than some pg = O(n).
This resembles the case analysis of BBSS of [I9] with an important distinction:
In [I9] the authors design different schemes for each case and glue them together
via CRT, and in our case the construction is uniform and the distinction between
different primes happens only in the analysis. Indeed, conceptually, our approach
exploits the combinatorial structure induced by graph-based codes and avoids
the relatively complicated number theory that is employed by previous BBSS
schemes.



How to Recover a Secret with O(n) Additions 7

Deriving near-threshold schemes The techniques introduced so far yield
ramp secret sharing but they fall short of providing near-threshold BBSS schemes.
(The main loss is due to the analysis over small primes.) To obtain the main
theorem, we import the coding-theoretic paradigm of code concatenation to the
domain of secret sharing. Specifically, by using a simple combinatorial object
known as sampler graph that satisfies some expansion-like properties, we show
that it is possible to generically combine a “fast” ramp secret sharing scheme
over n parties with a “slow” near-threshold scheme over a constant number d of
parties, and derive a new near-threshold scheme that is almost as efficient as the
fast scheme. The efficiency degrades by a constant factor that depends on the
complexity of the slow scheme applied to d parties.

In our case, the fast scheme is the ramp secret sharing with O(n) additive
complexity for sharing and recovering from the previous section. The slow scheme
can be taken to be any BBSS near-threshold or even threshold scheme, such as
the scheme of Benaloh and Leichter [§] that is based on monotone formulas
for the threshold function. It should be emphasized that, in our setting, the
concatenation maneuver cannot be applied at the code level since the bottleneck
is not the code (i.e., the correctness properties) but the analysis of the BBSS
that incurs a loss in the privacy threshold.

We note that this amplification approach is quite generic and can be applied
to any natural efficiency measure as well as to robust secret-sharing schemes.
Concatenation techniques (aka party virtualization) are commonly used in the
context of secure computation and distributed computing [12/24/2829/31120] and
also appear in protocols for verifiable secret sharing [I]. However, to the best of
our knowledge, this technique was not used so far in the secret-sharing context.
(Though it was implicitly used when concatenated codes were employed, e.g.,
by [16] who employed the code of [27].) We believe that secret-sharing concate-
nation forms a useful tool in the secret-sharing toolbox that is likely to lead to
other applications and can probably simplify, in retrospect, previous construc-
tions. As our concrete setting demonstrates, in some scenarios, secret-sharing
concatenation cannot be replaced by concatenation in the code-level.

1.4 A Practical Instantiation

Theorem [I] mainly forms a feasibility result. However, our techniques give rise to
potentially practical ramp secret-sharing schemes. Let us focus for concreteness
on the problem of constructing threshold BLS-signatures [I1] instantiated over,
say, the commonly used BLS12-381 curve. In this case the signature is computed
as (H(m))® in a subgroup of the curve, whose order r is a prime which is 255 bits
long. The secret is s and secret sharing must be computed modulo 7. In this case,
we can focus on the prime p = r of bit length 255 and design an LSS over the
field F, = {0,...,p — 1}. (The following example works even for much smaller
primes.) Let us assume that there are n > 1000 parties. Assume that we have an
R-rate erasure code of codeword length n that can recover the information word
given 7. = (R + &.) un-erased symbols by making D - n additions for decoding.
Then, our basic construction (encode + extract via short inner-product) can be



8 B. Applebaum, O. Nir and B. Pinkas

set to have a privacy threshold of 7, = (R — &), except with statistical failure
probability of 27190, so that recovering a secret costs (D + (1.1/¢,)n additions.
(See Theorem ) For e, = 0.1 this adds an overhead of 11 operations per party.
Next, we should decide which code to use. There are numerous options here and
let us review some of them.

Using capacity-achieving LDPCs. We can use LDPC codes that almost achieve
the capacity, i.e., 7 = (R 4 &.) where . can be arbitrarily small (the compu-
tational overhead D grows with e.). Such an ensemble of LDPC codes appear
in [36I3538]. However, these codes typically achieve a weak correctness prop-
erty: For every authorized set T of density 7., a random code sampled from
the ensemble can decode a T-partial codeword, except with probability which
is inverse polynomial in the codeword length. Note that there are two issues
here: (1) a non-negligible error probability and (2) the existence of “bad sets”
for which decoding fails given a description of the code. The problem can be
fully avoided by using other ensembles that achieve sub-optimal, yet constant,
decoding capability and rateﬁ Regardless, we argue that even weakly-correct
ensembles of secret-sharing schemes may be useful in some scenarios. First, ob-
serve that privacy remains “strong”, that is, except for probability 271%°, the
scheme is private for every coalition of density 7.. Keeping this in mind, we can
think of the correctness threshold as a way to guarantee liveliness against ran-
dom failures. In this case, the weak correctness guarantee promises that most of
the time reconstruction succeeds. Furthermore, we can share the secret key in-
dependently also via some “slow” secret sharing scheme, e.g., Shamir. Whenever
the fast scheme fails (due to a failure of the decoding algorithm to handle some
authorized coalition T'), we can use the slow track to generate a signature via
Shamir’s reconstruction.

Using standard LDPCs. Suppose that the privacy and correctness threshold can
be far apart. A typical example is the case where 7, = 1/3 and 7. = 2/3 which
corresponds to the classical setting in MPC and byzantine agreement in which
the adversary can corrupt up to n/3 of the parties. In this case, we can use a
random (3,6) LDPC code whose binary parity-check matrix represents a graph
with left-degree of 3 and right degree of 6. (In fact, it is better to sub-sample
the code from a sub-family of “expurgated codes”). Peeling-based decoding takes
at most 3n additive operations and can correct up to 0.429-fraction of errors
for sufficiently large lengths n. Concretely, for n = 350 (resp., 700 and 1225),
decoding fails with probability smaller than 107% for erasure fractions of 0.3
(resp., 0.375 and 0.4), see [40, Figure 3.156]. The overall complexity of recovering
a secret or computing a signature is less than 10n additions (since e, = R—7p =
1/2-1/3=1/6).

Low complezity encoding. There are families of LDPC codes (and variants of
them) that admit fast and even linear-time encoding (see [40]). In fact, in our

5 In fact there are deterministic families of such codes and we employ them as part of
the proof of Theorem E
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context, there is a simple way to generically achieve this additional feature.
Instead of generating a codeword in the Kernel of an LDPC matrix H, sample a
truly random vector v and publish its syndrome Hv = z as public information.
The computation is fast (since H is sparse) and we can think about (H,z) as
the specification of the code. The peeling-based algorithm works as before except
that in each peeling step when looking at the ith constraint the right-hand side
value is set to be v;, which is whp non-zero. We abstract this idea via the notion
of public shares/header and think of z as public information that is left in a
public repository.

It is important to mention that this approach has a caveat. Whenever a secret
is reconstructed, the public share which potentially contains large field elements
should be combined in the computation (instead of only using 0’s for right-hand
side values). This means that a client who asks for a signature has to raise the
hashed document to the power of the typically-large entries of the public share
z. Still, this part of the computation can be pre-computed by the client non-
interactively or while waiting for the servers’ responses. Alternatively, we can
partially delegate the work to the servers by asking each of them to locally raise
the hashed document to the power of (v; : i € S) for a constant-size set of
indices that is determined pseudorandomly (e.g., by applying a hash function
on the identity of the server). In our concrete example, |v| = n/2 so if we ask
each party to handle, say C' random public entries, then 2n/3 of the parties are
expected to cover all but n/2 - e~4C/3 of the public elements, and so the client
is left with a small overhead. Of course, the whole problem can be avoided by
using codes with linear additive encoding complexity (e.g., the cascade LDPC
construction of [36]).

The above discussion covers only a few of the possible instantiations and
other choices would likely lead to different efficiency trade-offs. We, therefore,
present our constructions and proofs in a modular way that generically supports
both weakly-correct ensembles and public shares/headers.

1.5 Related Work

There is a rich literature that tries to improve various efficiency measures of
secret sharing schemes and most notably the share size (See Beimel’s survey [6]).
While we are not aware of previous works that studied the additive complezity
of recovering secrets, let us mention some of the most relevant previous works.

Linear-time sharing. Druk and Ishai [23] constructed near-threshold linear secret
sharing schemes (LSS) over constant-size fields in which one can share a secret
by computing O(n) arithmetic operations where multiplication is counted as
a single operation. Cramer et al. [I6] extended this result to the case where
the secret is a vector of length 2(n). It seems likely that these constructions
generalize to larger fields IF,. However, the recovery and sharing algorithms in
this case use arbitrary field elements, which leads to O(nlogp) additions. (Also
note that, unlike [16], in our setting of threshold cryptography the secret is
naturally interpreted as a single element in a large field or ring.)
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BBSS schemes. BBSS schemes were first introduced by Desmedt and Frankel [22]
and were further developed by [I7II8/19] (see also references therein). Near-
threshold BBSS with constant-size shares were recently constructed by [19].
Roughly speaking, they (1) glue together, via CRT, schemes that work individ-
ually for each prime p < n and combine the result with (2) a scheme that works
simultaneously for all large primes. Consequently, part (1) of the construction
induces recovery coefficients whose order is of the order of nth primorial integer
P, (the product of the first n primes). Since the bit-length of P, is £2(nlogn)
this means that recovering the secret under scheme (1) takes 2(n?logn) addi-
tions. Part (2) has also similar complexity since it employs “Reed-Solomon over
the integers” where each entry is of magnitude £2(nlogn), leading to 2(n?logn)
addition during reconstruction.

Secret sharing with small recovery coefficients. Ball et al. [3] studied the related
problem of designing threshold LSS in which the secret can be recovered by a
0-1 linear combination. Note that the existence of such a scheme with constant-
size shares would also lead to recovery by O(n) additions. Unfortunately, Ball et
al. rule out this possibility by showing that if the recovery vector is a 0-1 vector,
the share size must be 2(nlogn) assuming that the field is of characteristic
2 or (for general fields) assuming that the scheme satisfies a natural uniform
distribution requirement. Our results bypass this lower-bound by considering
the more general recovery model of O(n)-size additive circuit and by allowing a
gap between the privacy and correctness thresholdsE]

On the positive side, it is observed in [3] that a “bit-decomposition” of
Shamir’s scheme gives rise to a secret sharing scheme in which each share con-
tains log || field elements for |F| > n. Reconstruction can be applied by taking
a 0-1 linear combination of the shares, and so the number of additions over F is
£2(nlog|F|) for a linear threshold of ©(n). From our perspective, this variant has
no advantage over “standard” Shamir as the total number of additions remains
the same, i.e., 2(nlog |F|).

As already mentioned, for the motivating application in [3] (i.e., slow-noise-
growth in LWE-based construction), the binary-reconstruction requirement can
be typically relaxed to the more liberal requirement of an addition-only recon-
struction algorithm with low (e.g., logn) depth. From this point of view, our
solutions are valuable also in the LWE setting.

2 Preliminaries

By default, all logarithms are taken to base 2. We let ha(-) denote the binary
entropy function, that maps a real number « € (0, 1) to ho(a) = —aloga— (1 —
a)log(l — «) and is set to zero for o € {0,1}. We use the following standard
estimate for the binomial coefficients

( " ) < gha(@n, (1)

an

7 We do not know whether both relaxations are needed.
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For a matrix M we let M; and M? denote the ith row and th column of M,
respectively. All vectors are column vectors by default. For two random variables
X and Y, we say that X =Y if they are identically distributed.

2.1 Secret Sharing: Definitions

We begin by recalling the notion of a partial access structures, that defines au-
thorized and unauthorized sets while allowing a gap between them. A ramp
access structures is a partial access structures with two thresholds, where all
sets smaller than the first threshold are unauthorized and all sets larger than
the second threshold are authorized.

Definition 1 (partial access structure and ramp access structure). A
partial access structure over n parties is a pair I' = (I'y, 1) where Iy, I7 C 2]
are non-empty collections of sets such that B € A for every A € Iy, B € I.
Sets in Iy are called authorized, and sets in Iy are called unauthorized.

For 0 < 1y < 7c < 1, the (1p,7c)-ramp access structure over n parties I' =

(I'v, I'h) is defined by letting Iy be the collection of all subsets of size at most Tyn
and letting I'y be the collection of all subsets of size at least Tcn.

We move on and define the semantics of secret-sharing schemes. Our def-
inition is equivalent to standard definitions (e.g., [715]) though our syntax is
slightly different. Notably, the dealing function, which distributes the shares,
(S1,...,8n), of the secret s, is also allowed to generate an additional “public’
share, s,,41 that is available to all parties.

Definition 2 (Secret-sharing schemes). A pair of deterministic algorithms,
(Deal,Rec) is a secret-sharing scheme that realizes a (possibly partial) access
structure I' = (I, I'1) with domain of secrets S, domain of random strings R,
and finite domains of shares Sy, ..., Sy and Sp11 (the latter domain is for public
shares) if the following hold:

— (Correctness): For any authorized set T € I'y and every secret s € S, the
following T-correctness property holds:

Pr[Rec(T, (si)ierufnt1y) # 5] = 0,

where ($1,.-.,8n, Snt+1) ¥id Deal(s). (The latter notation means that r is
selected uniformly at random from R, and (s1,...,Sn,Sn+1) = Deal(s;r).)

— (Privacy): For any unauthorized set T € Iy and every secret s € S, the
following T-privacy property holds:

(si)ierufn+1} = (8))ieTufnt1}

R . .
where (81,...,8n,Sn+1) < Deal(s) is a random s-sharing, and the vector

R . . .
(81,580, 8n41) < Deal(0) is a random 0-sharing for some fixed canonical
element 0 in S.

Note that privacy is a property of the sharing algorithm Deal.
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Ensembles of secret sharing. Let I' = {I',},,cj be a sequence of access structures
where I, is an n-party (possibly partial) access structure. A triple of efficient
algorithms (Setup, Deal, Rec) is a d-ensemble of I' secret sharing schemes if for

every n, except with probability 1 — §(n) over the choice of pp ¥i3 Setup(1™), the
n-party scheme (Dealyp, Recp,,) realizes I,. We highlight the following properties
of this definition.

— We refer to § as the failure or error probability of the ensemble and take it
by default to be negligible in n.

— The ensemble is e-weakly-correct if the correctness property is relaxed so
that for every n and every authorized set T of I,, with probability 1 — e(n)

over the choice of pp ¥id Setup(1™), the scheme (Dealy,, Recpp) is T-correct.

— One can define weakly-private ensembles analogously though we will not use
this variant in the paper. That is, in this paper even for a & weakly-correct
ensemble, except with probability § over the choice of the public parameters,
privacy holds over all unauthorized sets.

All the following variants of secret sharing (e.g., additive only secret-sharing) can
be naturally generalized to the setting of secret sharing collections. Whenever
possible, we keep this extension implicit.

Remark 1 (Boosting weakly-correct ensembles). Any § < 1 — 1/poly(n) weakly-
correct ensemble with a negligible failure probability can be amplified into a
standard ensemble by independently sampling k = O(n/log(1/6)) public param-
eters ppy, ..., pp; and sharing the secret £ times independently with respect to
each public parameter pp,. This increases the sharing complexity and share size
by a factor of k, however we can keep the expected running time of recovery es-
sentially unchanged by applying the original recovery algorithm on the ith copy
for a randomly chosen i € [k] and re-try if recovery fails.

Remark 2 (deterministic constructions, public parameters and public shares).
When the Setup algorithm is deterministic, the ensemble is referred to simply
as a secret-sharing scheme. We note that one can always turn an ensemble to
a deterministic construction (with statistical error) by pushing the public pa-
rameters as part of the public share. However, there is a conceptual difference
between the public parameters and public share since the former can be sam-
pled once and for all (and re-used over repeated applications) whereas the latter
should be freshly sampled together with secret.

2.2 Additive-Only Algorithms and BBSS

An additive algorithm A is an algorithm that receives two types of inputs, arith-
metic data inputs * = (x1,...,2;) and some binary meta-data information
T = (T1,...,Ty). The algorithm A manipulates the arithmetic data by making
queries to an addition/subtraction oracle that takes two arithmetic elements and
returns their sum/difference. The binary meta-information can be manipulated
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arbitrarily. The algorithm generates arithmetic outputs y = (y1,...,y¢). In prin-
ciple, we can allow also binary outputs though we will not need this extension
in this paper. The additive complexity of A is the maximal number of additions
and subtractions that it performsEI For simplicity, we will ignore the complex-
ity of non-arithmetic operations. Indeed, in all our constructions, the arithmetic
complexity dominates the binary complexity. For any fixing 7" of the binary in-
puts and any fixing of an Abelian group G, the algorithm A% (z) = A%(T,x)
defines a mapping from z € G* to y € G’. This mapping can be always de-
scribed by an £ x k integer matrix M such that, for every ¢ € [m], it holds that
Yi = Z?Zl M, jx; where for a positive integer k (resp., negative integer) and
group element g € G we write k - g for k-iterated additions (resp., subtractions)
of g and when k = 0 we let kg be the neutral element of G which will be denoted
by 0.

Additive-Only Secret sharing: Syntax. We say that an (ensemble of) secret-
sharing schemes is Additive-Only if both the distribution and recovery algorithms
are additive only algorithms. For the recovery algorithm Rec the arithmetic in-
puts are the shares and the binary inputs are the public-parameters pp and the
set of parties T' that will be represented by an n-bit vector. For the distribution
algorithm Deal, the vector of random elements r = (r1,...,r) and the secret
s are treated as arithmetic inputs and the public-parameters pp are treated as
binary inputs. As a result, the distribution algorithm can be always represented
by an integer distribution matriz M whose rows are labeled by indices in [n)
such that the rows that are labeled by 4 correspond to the computation of the
shares of the ith party. That is, for secret s and randomness r = (rq,...,7%),
the share that the ith party gets is all the entries M; - (7)) for which the row j
is labeled by i. Throughout the paper, we will always assume that each party
gets a single group element as a share and so we may assume that the ith share
is computed by the ith row of M. We assume that the public share consists of
{ group elements and is computed by the last ¢ rows of M so the distribution
matrix is always an (n + £) x (1 + k) integer matrix.

Additive-Only Secret sharing: Semantics. We say that an additive-only secret-
sharing scheme (AOS) (Deal, Rec) realizes an access structure I" over an Abelian
group G if (Deal®, Rec®) realizes I. We say that (Deal, Rec) is a black-box secret-
sharing (BBSS) for I' if (Deal®, Rec®) realizes I for every Abelian group G. We
say that an additive only distribution algorithm Deal realizes I" over G if there
exists an additive-only reconstruction algorithm Rec such that (Deal, Rec) realize
I’ over G. Similarly, we say that Deal is a BBSS for I if there exists an additive-
only reconstruction algorithm Rec such that (Deal, Rec) form a BBSS for I'.

8 One can always reduce the number of subtractions to 1 at the expense of doubling the
number of addition by maintaining for each intermediate arithmetic value v a pair of
values a, b such that v = a—b and postpone the actual subtraction to the end. See [43]
proof of Thm 2.11] for a similar statement for the case of division/multiplication
operations.
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The following proposition follows from pioneering works about linear secret
sharing and black-box secret sharing [32J5/17] and relates the correctness and
privacy properties of an AOS to the properties of the distribution algorithm, and,
more specifically, to the linear-algebraic properties of the distribution matrix M.

Proposition 1 (implicit in [32IE/I7]). An additive distribution algorithm
Deal with an (n+4£) x k integer distribution matriz M realizes an access structure
I" over I, for a prime p if and only if:

— (correctness) For every authorized set T C [n], the unit vector e; = (10"~1)
is spanned, modulo p, by the rows of matriz My that contains all the rows
M;,i € [T] and all the “public-share” rows (M1, ..., My).

— (privacy) For every unauthorized set T C [n], the unit vector e; = (10"~ 1) is
not spanned, modulo p, by the rows of matrix My that contains all the rows
M;,i € T and all the “public-share” rows (Mp41, . .., M;). Equivalently, there
exists a sweeping (column) vector vy € N™ such that Mpvr = 0 (mod p)
but {e1,vr) # 0 (mod p).

Moreover, Deal is a BBSS for I' if the above holds for every prime p.

The first part follows from the works of Karchmer and Wigderson [32] and
Beimel [5] about the relation between linear secret sharing schemes over finite
fields and span programs. The “Moreover” part implicitly follows from the work
of Cramer and Fehr [I7], and specifically, from Lemma 1 that asserts that an
integer system over the integers is solvable if and only if it is solvable over any
prime. (Indeed both the privacy and correctness conditions boils down to the
solvability of an integer linear system).

2.3 Additive-Only Erasure Codes

A pair of deterministic encoder and decoder algorithms (Enc,Dec) forms an
(n,k) erasure code over alphabet X with correctness capability of n erasures
if Enc maps an information word in X* to a codeword in X", and for every
(1 — n)n-subset T, and every information word z € X* and T-partial codeword
yr = (Enc(z);)ier the decoder Dec(T, yr) returns x. We consider a non-standard
notion of codes with header in which Enc(x) also outputs a public header z € 2™
that is always fully available to the decoder and is not subject to erasures.
(Jumping ahead public headers correspond to public shares.) If one stores the
entire information word in the public header then erasures are trivial to correct.
To avoid such trivialities, we require that the length of the information word, k,
will be larger than the length m of the header. Furthermore, letting pu := m/n
be the header rate, we define the rate R of the scheme to be % —pu=%E"m and
require a positive rate R. This definition matches the standard definition of rate
when there is no public header (i.e., m, u = 0).

We say that (Enc, Dec) are additive-only erasure codes if the algorithms are
additive-only algorithms, i.e., the information word, codeword and public header
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are all treated as vectors of arithmetic elements over a general abelian group G
and the set T is treated as a binary input. We require that correctness holds
over any instantiation of an abelian group G.

Ensembles of erasure codes are defined in the natural way. A tuple C =
(CG, Enc,Dec) is a d-ensemble of additive erasure codes that corrects up to 7
erasures with a rate of R and public-information rate p if, except with probability

1—4 over the choice of cp & CG(1™), it holds that (Enccp, Deccp) form an additive
erasure-code with k = (R + p)n long information word, n-long codewords, and
pn-long public header, that corrects up to n erasures. The ensemble is §-weakly
correct if for every n and (1 — n)n-subset T, except with probability 1 — § over

cp i CG(1™), it holds that for every information word € X* and codeword
(y,z) = (Enc(x)) the decoder Dec(T, (y;)icT, 2) returns z.

3 The Basic Construction

In the basic construction, the vector of shares is sampled as a random codeword 7,
and the ith party receives the ith entry of this codeword. In addition, we sample
a random vector a of coefficients is sampled that is as long as the codeword.
The public information includes the public part of the codeword (if it exists),
the vector a, and the value 2o = s+, a;r;, where s is the secret that is shared.
If the codeword r is reconstructed, then the secret s can be recovered from zg.
We also show below that an unauthorized set learns no information about the
secret.

Construction 2 (from additive codes to AOS). Let C = (CG, Enc, Dec) be
a (possibly weak) §-ensemble of additive erasure codes that corrects a fraction of

1 — 7. erasures with a rate of R and public-information rate p. For a parameter
¢ € N, define the AOS Sharing = (Setup, Deal, Rec) as follows:

1. Setup(1™): Sample a code parameters via cp ¥id CG(1™) and an integer vector
ad {0,...,¢— 1}(R+”)n, output pp = (1™, cp,a).

2. Dealpp(s): Sample a random information codeword y € G™ and a (possibly
empty) public header z1 € GM'™ by computing (y,z1) = Encep(r) where v £
GUE+m™ s o random information word. Set y; to the share of the ith party,
compute 2o = s + Y . a;r;, and set the public share z = (2o, 21).

3. Recop (T, z,yr): For a set T of size at most Tcn, recover the information word
r € G™ via the decoding-under-erasure algorithm Decep (21, T, yr), and output
§=),a;T; — 2.

Analysis. The correctness of the scheme (over any group) follows trivially from
the correctness of the erasure code. Also, if the code ensemble is only weakly-
correct then so is the resulting secret-sharing ensemble. The additive complexity
of sharing/recovering is exactly the complexity of encoding/decoding plus the
complexity of recovering the secret from zp, which is (R + p)n[log(c — 1)] +
(R + p)n < nflog(c — 1)] + n. (The inequality holds since, by assumption,
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R+ p < 1.) The parallel additive complexity is loglog c+logn+log(R+u)+1 <
loglog ¢+ logn + 1. The next sub-sections (Sections and will be devoted
to the privacy analysis and will focus on the case where the scheme is applied
over IF,, for a fixed prime.

3.1 Privacy Lemmas

To analyze the privacy of the scheme, we restrict our attention to a fixed prime
and make use of the following simple claims.

Claim 3 (privacy from linear independence). Fix the code parameters cp,
a prime p and a set T C [n]. Let G denote the generating matriz of the code Encep
and let G denote the sub-matrix of G that is obtained by keeping the rows that
are indexed by the set T and the “public” part. Then, the secret-sharing scheme
from Construction@ indezed by pp = (1™, cp,a) is T-private over F, if and only
if the vector a is not in the row-span of G over IF,.

Proof. Let G be the (n + pn) x (Rn + un) generating matrix of the code Ence,
whose last un rows correspond to the public header of the encoding. The distri-
bution matrix M of the scheme is the ((1 4 p)n + 1) x (1 4+ (R + p)n) integer

. 0+mn @ . .
matrix M = 1 o) Let My denote the sub-matrix of M that contains

the rows that are indexed by T and the last pun + 1 rows (that corresponds to
the public share). By Proposition (1| privacy for a set T over F,, is equivalent to
the requirement that Mz does not span the vector e; over F,, which happens, in
our case, if and only if Gp does not span the vector a. a

The following claim shows that a random small-integer vector is likely to fall
out of the span of a degenerate matrix.

Claim 4. Let M be an k x £ integer matriz with k < ¢, let p be a prime and
c be a positive integer. Then the probability that a randomly chosen vector a €
o—k

{0,...,¢c— 1}1Z is in the row-span of M computed modulo p, is at most a, " =

2~ (og(t/acpDU=F) where ., equals to 1/c if ¢ < p and to [¢/p]/c otherwise.
Note that a., < 1/c+ 1/p for every c and p.

Proof. Denote the row span (modulo p) of M by V. The matrix M has k¥’ < k
independent columns M™%, ..., M%" over F,. Let I = {i1,...,ip} C [¢] denote
the set of positions of these columns. Then, for every j ¢ I, we can write the jth
column M7 as M!a; for some coefficient (row) vector «; € F’;/, and therefore,
every vector v € V is fully determined by its values over the I-coordinates, i.e.,
vj = o - vy for every index j ¢ I. Hence, we can write Pryla € V] as

Z P;r[a =] = Z lz;r[aj = vy] HPr[aj = - vg)

veV veV j¢I

< Z P;r[af = vy] Hac,p < ag{;\f\) < 9~ (log 1/ac,p)(sz),
veV J¢I
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where the first equality is due to the independence of the entries of a, and the
first inequality holds since, for each j and each b € {0,...,p — 1} the probability
that a; = b (mod p) is at most a . The claim follows. O

By combining the above claims, we derive the following lemma.

Lemma 1 (privacy for a fixed prime). For every code parameter cp, pa-
rameter ¢ € N, and prime p the following holds. For every set T C [n] of
size t < Rn, the secret-sharing scheme from Construction |4 with parameters
pp = (17, cp,a) is T-private over F), with probability of 9=(logaz,)(Rn=t) 4pep
the choice of a. Furthermore, for 1, that satisfies hao(1p) < (R — 7p)log 04;11,,
the scheme is Ty-private over F,, except with exponentially small probability of

gnha(r)=(R=mp)log ez ) — 9=2(n) gyer the choice of a.

Proof. Fix the code parameters cp, a prime p and a set T C [n], and let G
denote the generating matrix of the code Enccp, and G denote the sub-matrix
of G that is obtained by keeping the rows that are indexed by the set T and the
“public” part (as in Claim .

The first part follows from Claims {4| and [3| by recalling that Gr is a (t +
pn) X (Rn + pn) matrix for (t + pn) < (Rn + pn), and the “furthermore” part

follows by a union-bound over all T,n-size subsets of n and by using the standard
inequality ( ) < 9nha(m) a

n
3.2 Immediate Corollaries

Let us record two useful corollaries.

Theorem 5 (AOS with optimal privacy for fixed large primes). For
every € > 0, rate R > 0 and error parameter $ > 0, take c to be a constant of bit
length at least (ho(1,) + B)/(R—7p). Then, C’onstruction@ instantiated with the
constant ¢ and an §-ensemble (resp., weak §-ensemble) of R-rate (1 —7)-erasure
codes yields an AOS-ensemble with the following properties:

— (Complexity) The additive complexity (resp., parallel additive complexity)
of sharing/recovering is exactly the complexity of encoding/decoding plus
n([log(c — 1)] + 1) (resp., logloge+logn +1).

— (Correctness) Except with probability 0 over the choice of the code parameters
cp and for every choice of a, the scheme is Tc-correct for every prime (resp.,
weakly Tc-correct if the coding ensemble is weakly correct).

— (Privacy) For every cp € Setup(1™) and every prime p > ¢, except with
probability 27P" over the choice of a, the algorithm Deal(in cp,a) @5 (Tp =
R — e)-private.

Proof. The choice of ¢ guarantees that 5 < logc(R — 7p) — ha(7,). The theorem
now follows from Lemma [I| by recalling that e, = 1/c when p > c. O
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Note that the privacy threshold is almost optimal: it can be arbitrarily close to R
from below. Indeed, if the underlying code is near-optimal, i.e., decoding works
even when we have only 7. = (R+¢)n non-erased symbols for an arbitrarily small
constant € (given to the code-generation algorithm), we get a near-threshold
AOS whose privacy-to-correctness gap, 7. — 7p, is 2¢. Furthermore, the concrete
constants are relatively small! Assuming that the failure probability should be
at most 27" (which makes sense if there are at least 100 parties), we can take
B =1 and use a constant c of bit length at most 2(R — 7,)~*. If the number of
parties is n > 1000, then /3 can be taken to be 0.1 and the complexity is at most
LI(R—7,)" L

If we do not care about the optimality of the privacy threshold, we can derive
a scheme that works for every fixed prime (including small primes such as p = 2)
with high probability.

Theorem 6 (AOS for small primes). For every rate R > 0 there exists small
constants T, 3 such that Construction @ instantiated with any constant ¢ > 2
and §-ensemble (resp., weak §-ensemble) of R-rate (1 — 7c)-erasure codes yields
an AOS-ensemble with the following properties:

— Correctness and complezity as in Theorem [

— (Privacy) For every cp € Setup(1™) and every prime p > 2, except with
probability 275" over the choice of a, the algorithm Deal(in cp,a) 1 Tp-private.
Consequently, the ensemble is T,-private simultaneously for all primes smaller
than, say, 2°™/2, except with probability 2~5"/2.

Proof. First, observe that for every prime p and constant ¢ > 2 it holds that
acp < 5/6. Indeed, if ¢ = 2, it holds that as , = 1/p < 1/2 for every prime p > 2;
and if ¢ > 3, we have aep, < 1/p+1/c <1/2+1/3 =5/6 for every prime p > 2.
Next, take 7, to be a sufficiently small constant for which (R—7,) log(6/5)—ha (1)
is positive and take 8 < (R — 7,)10g(6/5) — ha(7,). This guarantees that 5 <
((R—1p)log o), — ha(7p)) and the main part of the theorem now follows from
Lemma [T} The “Consequently” part follows by applying a union bound over all
primes of size at most 2°7/2. ad

4 Analyzing the Basic Construction over all Primes
Simultaneously

The above theorems are not sufficiently strong to handle infinitely many primes
simultaneously. For this purpose, we will have to apply a more refined argument
that exploits the fact that our sharing algorithm makes a linear number of ad-
ditions. Let us start with the following claim that will replace Claim [4] In the
following, we say that an integer vector v € N has an additive complexity of e if
the mapping that takes an integer vector 2 € N* to (v,z) can be computed by
applying at most e additions/subtractions.
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Claim 7. Let M be an k x £ integer matriz where k < £ and assume that each
row of M has an additive complexity of 6E| Let b be an integer and c be a prime
of size at least 2b. Then, except with failure probability b*—*(2e + 1) over the

choice of a € {0,...,c— 1}6,
3 integer vector v € [£b]* s.t.  Muv = 0F and (v,a) # 0, (2)

where arithmetic is over the integers. Consequently, whenever (@ happens, the
vector a is not in the row span of M modulo p for every prime p > 2(c — 1)be.

Proof. Let N := b*"%/(2e + 1)¥ and let V denote the set of integer vectors
0 # v € [+b]* for which the equality Mv = 0* holds over the integers. We begin
by showing that V is of size at least N — 1. To see this, consider the mapping p
that takes v € [1..b]* and sends it to Mv (computed over the integers). Observe
that the i-th entry of Mv is an integer in the range [—be, .., be] and therefore the
image of p is of size at most (2be+1)F < b*(2e+1)*. Since the domain of p is of
size b’, by the pigeonhole principle, there exist a set of at least N = b*~% /(2e+1)*
distinct input vectors vy, ...,vy_1 that are all mapped to the same output. By
the linearity of p, the N — 1 vectors {v; —vo|l <i < N — 1} are all non-zero
vectors that are mapped by p to zero.

Let us further filter the set V' C [1 — b,b — 1] by choosing a maximal subset
V' C V of vectors that are linearly independent over F.. Denote the size of V' by
N'. Observe that the mod-c projected set of vectors {v mod ¢ : v € V'} contains
N’ distinct non-zero vectors since V' C [1 — b,b — 1] and since the length of
the interval, [1 — b,b — 1], is smaller than 2b < ¢. Therefore, ¢V —1 > |V| and
N">log,(|[V|+1) = log.(N).

To complete the main argument, it suffices to show that, except with prob-
ability ¢V < 1/N, there exists a vector v € V' for which (v,a) # 0 (mod c¢).
To see this, consider the random variables

((v,a) (mod C))vEV’

induced by the choice of a € {0,...,c—1}" = F%. These random variables are
mutually independent (since the vectors in V” are linearly independent) and each
of them is uniformly distributed over F.. Therefore, the probability that all of
them simultaneously take the value zero is ¢V ‘<1 /N as promised.

Finally, the “consequently” part follows, by noting that the integer (v, a) is in
the interval [£(c—1)bf] and so (v,a) (mod p) # 0 for every prime p > 2(c—1)bl.
Since Mv = 0% (mod p), v certifies that the vector a is not in the row-span of
M over IF),. a

In order to employ Claim [7}, we will need a good upper-bound e on the
complexity of each row of the generating matrix of the underlying erasure code.
Let us refer to such a code as e-bounded. We note that every code whose encoding
can be computed by a linear number of additions can be turned into an O(1)-
bounded code.

9 The hypothesis can be relaxed so that e only upper-bounds the average additive
complexity of the rows in M.
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Claim 8. There exists an efficient transformation that takes a constant a €
[0,1] and an additive erasure code C = (CG, Enc, Dec) whose additive complexity
is An and outputs an (A/a)-bounded additive erasure code C' = (CG, Enc’, Dec’)
whose parameters almost match the ones of C. Specifically, C' has an additive
complexity of An, public rate of at least u— v, rate of R—« and it can correct up
to n—« erasures where u, R and n are the public rate, rate and erasure correction
capability of C. Furthermore, if C is a (possibly weak) §-ensemble then so is C’.

Proof. Fix some cp € CG(1™) and observe that the average complexity of a row
in the generating matrix of Ence, is at most (1‘;‘72)71 < A. Let us remove an
a-fraction of the outputs whose complexity is the largest and let Encép denote
the resulting code. By Markov’s inequality the resulting code is (A/«)-bounded.
Decoding can be performed by invoking Dec, while treating the removed entries

as additional erasures. The other properties of the code can be easily verified. O

Theorem 9 (AOS for all large primes). For every constants R, > 0, e €
N, 7, € (0, R), error parameter 3 > 0, and b € N whose bit-length logb is at least
(8 + ha(7p) + (log(e) +2) (1 + 7)) /(R — 7p) the following holds. Construction 4
instantiated with any prime ¢ > 2b and §-ensemble (resp., weak §-ensemble)
e-bounded (1 — 7c)-erasure codes with rate R and public rate pu yields an AOS-
ensemble with the following properties:

— Correctness and efficiency as in Theorem[5]

— (Privacy) For every cp € Setup(1"), except with probability 2~°" over the
choice of a, the algorithm Deal(in ¢y q) is simultaneously Tp-private for all
primes p larger than c®n (or even p > 2¢cb(u + R)n).

Proof. Fix some prime ¢ > 2b. Fix n and code parameters cp € Setup(1™) and
let G denote the (n + un) x (Rn + pn) generating matrix of the code Encp
whose last un rows correspond to the public header of the encoding. For a set
T of size T,, let G denote the sub-matrix of G that is obtained by keeping the
rows that are indexed by the set T and the “public” part (as in Claim . By
Claim [3] it suffices to show that, except with probability 277", the event
happens for G for every set T of size 7,n. Recall that Gr has k = (1 + 75)n
rows and ¢ = (R + p)n columns and each of its rows has an additive complexity
of e. Hence, by Claim 7}, the event happens for any fixed T', with probability
at most bF~*(2e + 1)* < 277" where

n = (R —7p)(logb) — (log(e) + 2)(u + 7p)-

When the bit length of b is larger than (8 +ha(7)+ (log(e) +2)(u+7p)) /(R—Tp),
we get that 7 > 8+ ha(7), which, by a union bound over all T’s, yields the result.
O

For example, for every fixing of constants R > 0, e € N, we can take 7, € (0, R)
to be arbitrarily close to R (up to any small constant), and get an arbitrary
exponential small error probability for all primes larger than c?n by taking a
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sufficiently large constant c. Alternatively, when the code has no public infor-
mation (¢ = 0), for every fixed odd prime ¢, there exist some (small) constants
7, € (0, R), 8 > 0 for which the construction achieves 7,-privacy except with ex-
ponentially small probability of 2=#" simultaneously for all primes larger than
c2n.

In any case, by combining the above theorem with Theorem [6] and Proposi-
tion [T} we derive the following theorem.

Theorem 10 (AOS for all primes). For every rate R > 0 there exists con-
stants 15, 3 and c such that Construction [J instantiated with ¢ and 6-ensemble
(resp., weak §-ensemble) of R-rate (1—1c)-erasure codes yields an AOS-ensemble
with the following properties:

— Correctness and complezity as in Theorem [3

— (Privacy) For every cp € Setup(1™) and every prime p > 2, except with
probability 25" over the choice of a, the algorithm Deal(1n cp,a) is Tp-private
simultaneously for all primes.

There exists a (deterministic) construction of AOS erasure codes with linear
complexity constant rate and constant erasure capability (e.g., by using the
Capalbo et al. [I3] unbalanced expanders in the cascade construction of Luby et
al. [35]). Thus, by Proposition |1}, we derive the following corollary.

Corollary 1. For some constants 0 < 1, < 7. < 1 there exists an (Tp, 7c)-ramp
ensemble of BBSS scheme with constant-size shares, and where the recovery and
sharing algorithms make only O(n) additions, and thee setup algorithm errs with
probability 2= . Furthermore, the public share is a single field element and so
it can be completely removed (by appending it to each party’s share).

Remark 3 (compressing the ensemble parameters). Since the underlying code is
computed the public parameters of the secret sharing ensemble contain only the
vector a whose length is O(n) bits. Following [34J16] this public information can
be completely eliminated via information dispersal. Specifically, encode the vec-
tor a into a vector A € {0,1}°(™ using some AOS-ensemble of erasure codes
with linear complexity and hand A; to the ith party. The share size remains con-
stant and the additive complexity of sharing and recovering remains unchanged.
Of course, this introduces a negligible error probability in the recovery algorithm
and a negligible deviation in the privacy.

5 Deriving Near-Threshold Schemes

We will need the following proposition about the existence of bipartite sampler
graphs.

Proposition 2 (efficient samplers [3326]). For every positive constants & >
0,6 > 0, there exists a constant d = O(1/(e%5)) and a poly(n,1/e,1/5)-time
algorithm that on input 1™ outputs an bipartite graph G = ((L, R), E) with the
the following properties:
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~

|L| = |R| = n and the right degree of G is d.

2. For every S C L, it holds that for at least 1 —6 fraction of the vertices r € R,
it holds that

ds(r) 15|

<eg
d n

— )

where dg(r) is the number of vertices in S that are connected to r.
A graph that satisfies the above properties is called an (n,d, e, d)-sampler.

The following lemma takes an outer “fast” ramp scheme with “bad threshold”
over n parties and near-threshold “slow” scheme over a constant d = O(1) num-
ber of parties, and generates a new near-optimal scheme over n parties whose
complexity (sharing, reconstruction and share size) are inherited from the fast
scheme up to a constant multiplicative overhead that depends on d.

Lemma 2. For every €,d,d and n and (n,d,e,0)-sampler G = ((L, R), E) the
following holds for any e < v < 1—e. Let (Dealoyt, Recoyut) be an “outer” (§,1—0)-
ramp secret sharing scheme over n parties and let (Dealy, Reciy) be an “inner”
(v —e,v+e)-ramp secret sharing scheme over d parties. Define a secret-sharing
scheme (Deal, Rec) over the n parties in L as follows:

1. Deal(s): Generate n “virtual shares” (s..)rer i Dealoyt(s). For each r € R,

share each virtual share s;. via (s,¢)eer(r) & Dealin(s].) where L(r) C L is
the set of left neighbors of a vertex r € R in the graph G. Set the share of
the £ € L party to be (s,.¢)rcr(e) where R(C) C R is the set of right neighbors
of a vertex £ € L.

2. Rec(T, (si)ier): For a left set T C L denote by
R (T) ={re R:dp(r) > (v +¢)d}

the set of right vertices r that have at least (v + €)d neighbors in T'. Recover
all the virtual secrets (s;) for r € Ry (T) by applying Recin((s;. ))ecL(rnT)
and output the result of Recout((s).)rer, (1))-

Then the secret-sharing scheme (Deal,Rec) is a (v — 2¢,7v + 2¢)-ramp secret
sharing scheme.

Proof. For correctness, consider a left set T" of size at least y+2¢. By the sampling
properties of G, the set Ry (T) is of size at least 1 — ¢ and so, by the correctness
of the inner scheme, at least 1 — § fraction of the virtual shares are recovered
by the coalition T'. Hence, correctness follows from the correctness of the outer
secret-sharing schemes.

For privacy, consider a left set T of size at most v — 2e and let R_(T) =
{r € R:dp(r) < (y — €)d} be the set of right vertices r that have at most (y—e¢)d
neighbors in T'. By the sampling properties of G, the set R_(T) is of size at least
1 — 0 and so, by the privacy of the inner scheme, at least 1 — ¢ fraction of the
virtual shares are perfectly hidden from the coalition 7. Hence, privacy follows
from the privacy of the outer secret-sharing schemes. ad



How to Recover a Secret with O(n) Additions 23

We note that the above lemma naturally generalizes to the case where the graph
is unbalanced. (We omit the details since this variant is not needed here).

For every constant € > 0, we can instantiate the lemma with an outer (4,1 —
0)-ramp AOS of linear additive complexity O(n) (e.g., from Corollary [1) and an
inner ~d-threshold AOS over d = O(1) parties of complexity polynomial in d
(say based on the formula construction of [§]) and derive a near-threshold AOS
with linear complexity as promised by the main theorem (restated here for the
convenience of the reader).

Theorem 11 (Theorem (1| restated). For every constants 0 < 7, < 7c < 1
there exists an ensemble of (7p,7.) near-threshold ensemble of secret sharing
schemes whose recovery algorithm makes only O(n) additions. Moreover, (1) the
share size is constant, (2) the sharing also makes O(n) additions, and (3) the
scheme is a BBSS scheme and the sharing and reconstruction algorithms work
universally for all finite Abelian groups G.

Acknowledgements We thank Amos Beimel for helpful discussions.
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