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Abstract

Differential obliviousness (DO) is a privacy notion which mandates that the access patterns
of a program satisfy differential privacy. Earlier works have shown that in numerous applica-
tions, differential obliviousness allows us to circumvent fundamental barriers pertaining to fully
oblivious algorithms, resulting in asymptotical (and sometimes even polynomial) performance
improvements. Although DO has been applied to various contexts, including the design of al-
gorithms, data structures, and protocols, its compositional properties are not explored until the
recent work of Zhou et al. (Eurocrypt’23). Specifically, Zhou et al. showed that the original DO
notion is not composable. They then proposed a refinement of DO called neighbor-preserving
differential obliviousness (NPDO), and proved a basic composition for NPDO.

In Zhou et al.’s basic composition theorm for NPDO, the privacy loss is linear in k for k-fold
composition. In comparison, for standard differential privacy, we can enjoy roughly

√
k loss for

k-fold composition by applying the well-known advanced composition theorem. Therefore, a
natural question left open by their work is whether we can also prove an analogous advanced
composition for NPDO.

In this paper, we answer this question affirmatively. As a key step in proving an advanced
composition theorem for NPDO, we define a more operational notion called symmetric NPDO
which we prove to be equivalent to NPDO. Using symmetric NPDO as a stepping stone, we also
show how to generalize NPDO to more general notions of divergence, resulting in Rényi-NPDO,
zero-concentrated-NPDO, Gassian-NPDO, and g-NPDO notions. We also prove composition
theorems for these generalized notions of NPDO.

1 Introduction
Oblivious algorithms, first proposed by Goldreich and Ostrovsky [GO96, Gol87], are a family of
privacy-preserving algorithms whose memory access patterns are provably obfuscated and do not
leak any information about secret inputs. Oblivious algorithms have a broad class of applica-
tions, e.g., in cloud computing [SS13,WST12,sig22], blockchain applications [CZJ+17], secure pro-
cessors [RYF+13, LHH+15, MLS+13, SBTL18], and multi-party computation [GKK+12, LWN+15,
GHL+14]. They have also been deployed at a large-scale in practice (e.g., see Signal’s deploy-
ment [sig22] of Path ORAM).

Although a line of works [SCSL11,SvDS+13,WCS15,WNL+14,BCP15,RS21] have made obliv-
ious algorithms increasingly more efficient, oblivious algorithms nonetheless suffer from a couple
drawbacks. First, it is known that for numerous computational tasks, achieving full obliviousness
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must incur a logarithmic slow-down in comparison with insecure algorithms [GO96, Gol87, LN18].
Second, for scenarios where the (insecure) program’s runtime depends on the secret input, full
obliviousness demands that we pad the running time over every input to the worst-case over all
inputs — such padding can often incur a polynomial slow-down (e.g., for database joins [CZSC21]).

To overcome these drawbacks, Chan, Chung, Maggs, and Shi [CCMS19] introduced a relaxed
notion of access pattern privacy called differential obliviousness (DO). Unlike full obliviousness
which requires that the access patterns over any two inputs of the same length be indistinguish-
able [GO96, Gol87], differential obliviousness (DO) requires that the access patterns satisfy the
notion of differential privacy (DP) [DMNS06], i.e., the access patterns over two neighboring inputs
should be close in distribution by some mathematical notion. Chan et al. [CCMS19] showed that
for various computational tasks, DO allows us to circumvent the logarithmic barrier of full oblivi-
ousness; they and subsequent works [BNZ19,CZSC21] showed that DO avoids having to pad to the
worst-case running time, and in this way, DO can achieve polynomial speedup over full oblivious
algorithms.

Basic DO is not composable. When we design algorithms, it is customary to compose multiple
algorithmic building blocks. Specifically, we often want to apply algorithm M2 to the output of
another algorithm M1. For example, in SQL databases, we may want to make some Select query
and store the result as a table T ; later on, we may want to make another query over this table T .
Ideally, if both algorithms M1 and M2 satisfy DO, we would like the composed algorithm M2◦M1 to
be DO as well; moreover, we want a way to account for the privacy budget during such composition.

The original DO notion proposed by Chan et al. [CCMS19], however, did not lend to such
composition. To understand why, we first review their definition. Consider a randomized algorithm
M : X0 → X1 whose access patterns come from the view space V1. Let ∼0 denote a suitable
neighboring relation on the input domain X0 of M. The basic DO notion of Chan et al. [CCMS19]
is described below:

Definition 1.1 (Basic DO [CCMS19]). An algorithm (also called a mechanism) M is (ϵ, δ)-DO iff
for any neighboring x ∼0 x

′ ∈ X0, for any S ⊆ V1,

Pr[ViewM(x) ∈ S] ≤ eϵ · Pr[ViewM(x′) ∈ S] + δ. (1)

where ViewM(x) denotes the access patterns observed by the adversary when we execute M on the
input x.

To understand why basic DO does not lend to composition, observe that the above definition
guarantees closeness in distribution of the views (i.e., access patterns) only when the algorithm
M is executed on neighboring inputs. However, when we execute the first DO algorithm M1 over
two neighboring inputs x and x′, the respective outputs y := M1(x) and y′ := M1(x

′) may not be
neighboring. Therefore, when we pass the respective outputs y and y′ to the second algorithm M2,
the second mechanism M2 may not provide any meaningful guarantee even though it satisfies DO.
We also refer the reader to the work of Zhou et al. [ZSCM23] who gave several examples of natural
DO algorithms where neighboring inputs produce outputs that are far in distance.

For this reason, DO composition is intrinsically different from standard DP composition, and
we cannot use standard DP composition theorems [Vad17, DR14, DRV10] to reason about DO.
Specifically, in DO, the second mechanism M2 is applied to some hidden variable (i.e., the output
of the first algorithm M1) that is not in the adversary’s view when M1 is executed, and the basic
DO notion does not provide any meaningful guarantee about this hidden variable.
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A composable DO notion: neighbor-preserving DO (NPDO). Zhou et al. [ZSCM23]
argued that for DO to have broader application, composition is a necessary feature — for example,
one reason why standard DP is successful is due to its compositional properties. Therefore, Zhou et
al. [ZSCM23] proposed a composable variant of the DO notion called neighbor-preserving DO. At a
high level, they want to refine the basic DO notion to additionally require that “neighboring inputs
produce neighboring outputs”. However, the technicality is that many natural DO algorithms’
outputs are randomized, and they want to define a probabilistic notion of output-neighboring that
captures a broad class of natural DO algorithms. We now review their NPDO notion below — any
algorithm that satisfies NPDO also satisfies the basic DO notion of Chan et al. [CCMS19].
Definition 1.2 (NPDO [ZSCM23]). An algorithm M : X0 → X1 with view space V1 is (ϵ, δ)-NPDO
(w.r.t. input relation ∼0 and output relation ∼1), if for any neighboring x ∼0 x′ ∈ X0, for any
subset S ⊆ V1 ×X1,

Pr[ExecM(x) ∈ S] ≤ eϵ · Pr[ExecM(x′) ∈ N (S)] + δ, (2)
where ExM(x) denotes the following experiment: execute M on the input x, and output the view
(i.e., access patterns) observed by the adversary, as well as the outcome M(x); and the notation
N (S), i.e., the neighboring set of S, is defined as follows:

N (S) = {(v, y) ∈ V1 ×X1 | ∃(v, y′) ∈ S s.t. y ∼1 y
′}.

Zhou et al. [ZSCM23] showed that indeed, natural DO algorithms either satisfy or can easily be
adapted to satisfy the above NPDO notion. They additionally proved the following composition
theorem for NPDO.
Theorem 1.3 (NPDO composition [ZSCM23]). Suppose M1 : X0 → X1 is (ϵ1, δ1)-NDPO and
M2 : X1 → X2 is (ϵ2, δ2)-NPDO (w.r.t. each algorithm’s input/output neighboring relations), and
M1 has discrete view and output spaces. Then, the composed algorithm M2 ◦ M1 : X0 → X2 is
(ϵ1 + ϵ2, δ1 + δ2)-NDPO.

The above composition theorem also suggests a method for privacy budget accounting when
composing multiple NPDO algorithms. In particular, the privacy loss over time is additive, analo-
gous to the basic composition theorem of DP [Vad17, DR14]. More specifically, if we perform the
composition k times and each individual algorithm has the privacy parameter (ϵ, δ), then the k-fold
composed algorithm consumes a privacy budget of (kϵ, kδ).

Question 1: advanced composition for NPDO? Recall that for (ϵ, δ)-DP, we have an ad-
vanced composition theorem [Vad17,DR14,DRV10] which proves a tighter bound for k-fold standard
DP composition: suppose each individual mechanism satisfies (ϵ, δ)-DP, then k-fold composition
results in a (ϵ ·

√
2k ln 1

δ′ + 2kϵ2, kδ + δ′)-DP mechanism for an arbitrary δ′ ∈ [0, 1]. For a typical

choice ϵ < 1, the term ϵ ·
√

2k ln 1
δ′ dominates, and thus we can enjoy roughly a factor of

√
k in the

privacy loss using the advanced composition theorem, as opposed to the original factor k in the
basic composition theorem.

A natural question is whether NPDO can also enjoy such an improved bound for k-fold com-
position. As mentioned, since DO composition is intrinsically different from DP composition, we
cannot directly use the advanced composition theorem of DP to reason about NPDO composi-
tion. Further, for technical reasons to be discussed later in Section 1.1, we cannot extend Zhou
et al. [ZSCM23]’s proof to get advanced composition in any easy way. Therefore, the following
natural question is open:

Can we prove an advanced composition theorem for (ϵ, δ)-NPDO?
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Question 2: beyond the (ϵ, δ)-closeness notion. While the (ϵ, δ)-closeness notion (also called
δ-max divergence [DRV10]) is natural and intuitive, the standard DP literature recognized an
important limitation of this notion. For most natural DP mechanisms, one can often tune the pa-
rameters to achieve a tradeoff between the parameters ϵ and δ. However, proving that a mechanism
satisfies (ϵ, δ)-DP proves only a single point in this tradeoff curve, and fails to provide a knob to the
practitioner who must set the concrete parameters in practice. Therefore, a line of works proposed
to replace the (ϵ, δ)-closeness notion in DP with new divergence notions that can capture the entire
tradeoff curve, e.g., Rényi DP [Mir17], zero concentrated DP [BS16], Gaussian DP [DRS22], and
more recently, f -DP [DDR20, VZ23] which generalizes all of the above notions. The same works
also proved composition theorems for these new notions. In particular, (ϵ, δ)-DP can be viewed as
a special case of Rényi DP [Mir17], zero concentrated DP [BS16], and f -DP [DDR20]; and the ad-
vanced composition theorem of (ϵ, δ)-DP can be viewed as a corollary of the composition theorems
for Rényi DP [Mir17], zero concentrated DP [BS16], and f -DP [DDR20].

This raises another natural question:

Can we also replace the divergence notion in NPDO and have generalized notions of NPDO
that lend to composition?

1.1 Main Result 1: Advanced Composition Theorem for (ϵ, δ)-NPDO
Our first contribution is to prove an advanced composition theorem for (ϵ, δ)-NPDO, as stated
below.

Theorem 1.4 (Advanced composition theorem for NPDO). Let ϵ ≥ 0, δ, δ′ ∈ [0, 1] and k ≥ 2.
Suppose for i ∈ [k], the algorithm Mi : Xi−1 → Xi is (ϵ, δ)-NPDO with respect to the neighboring
relations for its input and output spaces. Further, suppose that M1, . . . ,Mk have finite output
and view spaces. Then, the composition Mk ◦ Mk−1 ◦ · · · ◦ M1 is (ϵ′, δ′ + kδ)-NPDO, where ϵ′ =

ϵ
√
2k ln 1

δ′ + 2kϵ2.

Challenges and technical highlight. The advanced composition for standard DP [Vad17,
DR14, DRV10] provides the following mathematical tool for reasoning about the divergence of
distributions. Given k pairs of distributions (W1, U1), (W2, U2), . . ., (Wk, Uk) such that for each
i ∈ [k], Wi and Ui are (ϵ, δ)-close (even when conditioned on W1, U1, . . . ,Wi−1, Ui−1), then the joint
distribution (W1,W2, . . . ,Wk) and (U1, U2, . . . , Uk) are (ϵ′, δ′+kδ)-close where ϵ′ and δ′ are defined
as in Theorem 1.4.

Unfortunately, for NPDO composition, we are unable to directly leverage the existing math-
ematical tool, because the NPDO definition (Definition 1.2) is not formulated as a statement of
divergence over two distributions, due to the interference of the N (·) operator on the right-hand-
side of Equation (2). To prove the advanced composition theorem for NPDO, we need the following
key insights.

1. Equivalent formulation of NPDO: symmetric NPDO. As a key stepping stone towards proving
advanced composition for NPDO, we first propose an alternative, equivalent formulation of
NPDO called symmetric NPDO. At a very high level, recall that Zhou et al. showed that
(ϵ, δ)-NPDO is equivalent to the existence of an (ϵ, δ)-matching in a bipartite graph where
each vertex captures the probability of seeing a particular (view, output) pair in a randomized
execution, and the two sides of the bipartite graph consider random executions over neighboring
inputs, respectively. Zhou et al.’s definition of an (ϵ, δ)-matching treats the two sides of the
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bipartite graph in an asymmetric manner. We first define an alternative notion called (ϵ, δ)-
symmetric-NPDO which can be viewed as a pair of (ϵ, δ)-matchings, one from each direction. It
is not hard to prove that (ϵ, δ)-symmetric-NPDO implies (ϵ, δ)-NPDO. We first prove that the
other direction is also true, that is, (ϵ, δ)-NPDO implies (ϵ, δ)-symmetric-NPDO as long as the
algorithm’s output and view spaces are finite. Proving this direction turns out to be technically
involved and is the most non-trivial step towards proving the advanced composition theorem
for NPDO (see Section 3.2 and Appendix A.2).

2. Symmetric NPDO expressed as divergence of two distributions. We then suggest an alterna-
tive way to view the new (ϵ, δ)-symmetric-NPDO notion. In particular, the symmetric (ϵ, δ)-
matching on the bipartite graph can be viewed as two different assignments of weights to the
edges of the bipartite graph, such that if we view each assignment as a probability distribution,
then the two distributions are (ϵ, δ)-close. This allows us to express (ϵ, δ)-NPDO as a diver-
gence notion on distributions. With this new view, we can now rely on the aforementioned
mathematical tool to reason about the divergence of distributions, which leads to our NPDO
advanced composition theorem.
While the original NPDO notion of Zhou et al. [ZSCM23] is more intuitive and sometimes easier

for algorithm designers to use, our new symmetric NPDO notion is likely more operational in proofs.
Therefore, the new symmetric NPDO notion can be of independent interest. For example, in the
subsequent Section 1.2, we show that the new alternative notion is amenable for generalizing to
other notions of divergence.

1.2 Main Result 2: Composition for Generalized Notions of NPDO
As mentioned, we want to generalize the divergence notion in NPDO to a more general one, e.g.,
the tradeoff function notion in f -DP [DDR20,VZ23] which generalizes a line of earlier works [Mir17,
BS16,DRS22,DDR20,VZ23].

A strawman attempt is to start with the basic (ϵ, δ)-DO notion by Chan et al. [CCMS19], which
is formulated as a statement on the divergence of two distributions. While we can easily replace
the divergence notion in basic (ϵ, δ)-DO with a more general one, the resulting notions would not
be composable for the same reason why (ϵ, δ)-DO is not composable.

To get composability, we want to start with the (ϵ, δ)-NPDO notion proposed by Zhou et
al. [ZSCM23]. However, as mentioned, their (ϵ, δ)-NPDO is not formulated as a statement of
divergence over two distributions due to theN (·) operator. Fortunately, recall that as a key stepping
stone in proving the advanced composition theorem for (ϵ, δ)-NPDO, we formulated an equivalent
notion, that is, (ϵ, δ)-symmetric-NPDO, which is indeed stated in terms of the divergence over two
distributions (defined as two ways to assign weights to a particular bipartite graph that capture
randomized executions on neighboring inputs). This alternative formulation of NPDO allows us
to easily replace the divergence notion with more general ones, resulting in Rényi-NPDO, zero
concentrated-NPDO, Gaussian-NPDO, and g-NPDO, which are analogous to Rényi-DP [Mir17],
zero concentrated-DP [BS16], Gaussian-DP [DRS22], and f -DP [DRS22], respectively.

Using the same proof framework we developed for proving the (ϵ, δ)-NPDO composition, we
then prove the corresponding composition theorems for Rényi-NPDO, zero concentrated-NPDO,
Gaussian-NPDO, and g-NPDO.

1.3 Additional Related Work
Earlier works have shown various applications of DO, and scenarios in which it can asymptoti-
cally outperform any fully oblivious algorithm. Beimel, Nissim, and Zaheri [BNZ19] apply DO
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to property testing, and they show that DO achieves an almost linear factor improvement over
any fully oblivious algorithm in the dense graph model and at most quadratic improvement in
the bounded degree model. Chu et al. [CZSC21] showed that DO algorithms can achieve an al-
most linear speedup over any fully oblivious algorithm for performing database joins. Gordon et
al. [GKLX22] showed that for the privacy amplification theorem in the shuffle model [CSU+19,
EFM+19, GDDa, BBGN19, GDD+b, GGK+, Che21], one can replace a fully secure shuffler with a
differentially oblivious shuffler, and retain almost the same privacy amplification guarantees. Gor-
don et al. [GKLX22]’s proof only works for the randomized response mechanism; more recently,
Zhou et al. [ZSCM23] showed how to generalize Gordon et al. [GKLX22]’s proof to any local DP
mechanism, by directly applying their NPDO composition theorem (Theorem 1.3).

A line of work [WCM18,PY19,PY23,KS21] focused on differentially oblivious RAM [WCM18,
PY19], differentially oblivious Turing Machines [KS21], or differentially oblivious data structures [PY23,
CCMS19, BKK+21]. In this line of work, the neighboring relation is defined over the sequence of
operations. This line of work has not considered composition; however, if these techniques need
to be composed to design new algorithms, and the second algorithm’s input operations come from
the first algorithm’s output, the same compositional issue will arise which we address in our work.
Wagh et al. [WCM18] explored differentially private Oblivious RAM (ORAM) as a relaxation of
standard ORAM. With this relaxation, they were able to achieve constant-factor improvements over
known ORAM constructions [SvDS+13, SvDS+18]. In an elegant work, Persiano and Yeo [PY19]
proved that a generic compiler that can compile any program to a “differentially oblivious” coun-
terpart must suffer from logarithmic slowdown. In a subsequent work, the same authors proved
more general lower bounds for differentially oblivious RAM and differentially oblivious data struc-
tures [PY23]. Chan et al. [CCMS19] showed that for range query data structures, using DO can
achieve asymptotic gains over any fully oblivious algorithm (even when we allow the fully oblivious
algorithm to leak the true length of the answer); and not only so, their DO algorithm achieves
non-interactivity which is not known for any fully oblivious data structures (with statistical se-
curity). Kellaris et al. [BKK+21] applied a computational notion of differential obliviousness to
an outsourced database application, and their construction relied on ORAM as a blackbox. The
subsequent work of Chan et al. [CCMS19] showed how to achieve the same goals without having
to rely on ORAM, and in a way that asymptotically outperforms applying a blackbox ORAM
scheme. The work of Komargodski and Shi [KS21] showed upper bounds and lower bounds for the
performance of differentially oblivious Turing Machines.

2 Preliminaries
We will use the following notations:

• For any x ∈ R, denote [x]+ := max(x, 0).
• We say that some set is discrete iff it is finite or countably infinite.
• If a distribution D is defined over some space Ω, we often use the notation D : Ω.

2.1 Execution Model
Consider an algorithm (also called a mechanism) M : X0 → X1, where X0 is its input space and X1

is its output space. For each data space Xi where i ∈ {0, 1}, there is some corresponding binary
neighboring relation ∼i that indicates that two data points are “close” in their respective space Xi.
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Unlike in the standard DP setting, the adversary cannot directly observe the algorithm’s output,
but can observe some behavioral patterns of the algorithm during the course of execution, henceforth
called the view. We model the view of the adversary as an element in some view space V1.

Just like the work of Zhou et al. [ZSCM23], our DO formulation is not tied to any particular
execution model. For example,

• M can be a RAM or PRAM program whose access patterns are observable by an adversary —
in this case, the access patterns of the program form the view; or

• M can be a protocol whose message communication patterns are observable by the adversary
— in this case, the communication patterns of the protocol form the view.

We use the following notation throughout the paper. Given some input x ∈ X0 to M, we define
the following random variables:

• The output OutM(x) is a distribution on X1.
• The view ViewM(x) is a distribution on V1.
• The execution ExecM(x) outputs the joint distribution (ViewM(x),OutM(x)) on the execution

space V1 ×X1.

Later in our technical sections, it is helpful to have a neighboring relation for the execution
space V1 × X1. In particular, we say that (v, x) is neighboring to (v′, x) iff v = v′ and x ∼1. For
this reason, without risk of ambiguity, we extend the notation ∼1 to denote a neighboring relation
for the execution space too.

Definition 2.1 (Extension of neighboring relation to execution space.). Given a binary neighboring
relation ∼1 on the output space X1, we extend it naturally to the execution space V1 × X1 by the
rule: (v, x) ∼1 (v

′, x′) iff v = v′ and x ∼1 x
′.

Sequential composition of algorithms. Given k mechanisms denoted M1, . . . ,Mk, where for
i ∈ [k], M : Xi−1 → Xi, the sequentially composed algorithm Mk ◦Mk−1 ◦ . . . ◦M1 : X0 → Xk is the
one that runs M1 first on some input x ∈ X0, then runs M2 on the output of M1, and so on.

We assume that act of passing the output of Mi−1 to Mi does not generate any observable event
for the adversary. For example, as explained by Zhou et al. [ZSCM23], if we consider M1, . . . ,Mk to
be RAM algorithms, we can assume that Mi−1 writes its output on some output tape, and then the
next algorithm Mi will simply treat Mi−1’s output tape as its input tape. In natural DO or NPDO
algorithms [ZSCM23], to hide output and input lengths, Mi−1 may actually write some extra filler
symbols on its output tape beyond the actual output; and similarly, Mi may make some fake reads
from its input tape. The access patterns incurred by reading or writing input/output tapes are
treated as part of the view of each individual algorithm concerned.

2.2 Divergence Notions
We define some useful divergence notions that measure the closeness of two distributions.

Max divergence and (ϵ, δ)-closeness. First, we review the max-divergence notion that is used
by (ϵ, δ)-DP and (ϵ, δ)-DO.
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Definition 2.2 (δ-max divergence). Suppose δ ∈ [0, 1]. Given distributions A and B on the same
sample space Ω, the δ-max divergence is defined as follows:

Dδ(A‖B) = sup
S⊆Ω:Pr[A∈S]≥δ

[
log

Pr[A ∈ S]− δ

Pr[B ∈ S]

]
+

. (3)

In fact, Dδ(A‖B) ≤ ϵ is equivalent to the following:

∀S ⊆ Ω,Pr[A ∈ S] ≤ eϵ · Pr[B ∈ S] + δ. (4)

Definition 2.3 ((ϵ, δ)-close). Given two distributions A and B on the same sample space Ω, we
say A and B are (ϵ, δ)-close if

max(Dδ(A‖B),Dδ(B‖A)) ≤ ϵ.

Max divergence w.r.t. some neighboring relation. As mentioned in Section 1.1, the NPDO
notion by Zhou et al. [ZSCM23] cannot be expressed as a standard divergence notion between two
distributions, since the notion is defined with respect to some neighboring relation ∼.

For convenience, we introduce a new max-divergence notion that is defined w.r.t. to some
neighboring relation ∼.

Definition 2.4 (δ-max divergence w.r.t. neighboring relation ∼). Given two distributions A and
B defined over some space Ω and a neighboring relation ∼, for 0 ≤ δ ≤ 1, the divergence Dδ

∼(A‖B)
is the infimum over ϵ ≥ 0 such that for every S ⊆ Ω,

Pr[A ∈ S] ≤ eϵ · Pr[B ∈ N (S)] + δ,

where the neighbor set N (S) is defined as N (S) := {b ∈ Ω | ∃a ∈ S, a ∼ b}.

Using Definition 2.4, we can restate the NPDO notion (Definition 1.2) as follows:

Definition 2.5 (NPDO: restatement of Definition 1.2). An algorithm M : X0 → X1 with the view
space V, input neighboring relation ∼0, and output neighboring relation ∼1 is said (ϵ, δ)-NPDO iff
for any for all neighboring inputs x ∼0 x

′ from X0, Dδ
∼1

(ExecM(x)‖ExecM(x′)) ≤ ϵ.

2.3 (ϵ, δ)-NPDO and (ϵ, δ)-Matching
Zhou et al. [ZSCM23] showed that an algorithm M satisfies (ϵ, δ)-NPDO iff there exists an (ϵ, δ)-
matching in a specific bipartite graph that encodes the distribution of two neighboring executions
Exec(x) and Exec(x′) where x and x′ are neighboring. Consider an algorithm M : X → Y with the
view space V. Recall that a randomized execution Exec(x) over some input x ∈ X gives a (view,
output) pair henceforth denoted (v, y) ∈ V×Y . Henceforth we use ∼0 to denote input-neighboring,
and use and ∼1 to denote output-neighboring. By Definition 2.1, we also use the same notation ∼1

to denote an extended neighboring relation on the execution space V × Y .

Bipartite graph induced by two distributions. Let M : X → Y be an algorithm with the
view space V. Consider two randomized executions ExecM(x) and ExecM(x′) on two neighboring
inputs x ∼ x′, and create the following bipartite graph:

• Each vertex on the left corresponds to a pair (v, y) ∈ V ×Y , and the weight on the vertex is its
probability density measure in ExecM(x).
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• Similarly, each vertex on the right corresponds to a pair (v′, y′) ∈ V ×Y , and the weight on the
vertex is its probability measure in ExecM(x′).

• Draw an edge between (v, y) and (v′, y′) iff (v, y) ∼1 (v
′, y′), i.e., iff v′ = v and y′ ∼1 y.

In the above, the bipartite graph is induced by the two distributions ExecM(x) and ExecM(x′)
and the neighboring relation ∼1. More generally, we can also define a bipartite graph induced by
any two distributions and w.r.t. some neighboring relation ∼.

(ϵ, δ)-matching. Finding an (ϵ, δ)-matching on the aforementioned bipartite graph can be thought
of as redistributing the weight of every left vertex to its incident edges, such that the following
properties are satisfied:

• For every vertex on the left, the sum of weights on all incident edges is upper bounded by the
vertex’s weight;

• For every vertex on the right, the sum of weights on all incident edges is at most eϵ times the
vertex’s weight;

• The sum of all edge weights is at least 1− δ.

More intuitively, one can imagine that each left vertex is a factory which has produced some
percentage of the supplies, and the total amount of supplies produced is 1. Each right vertex is
some consumer who is requesting some percentage of the supplies, and the total amount requested
is also 1. Now, the factories want to route their supplies to the consumers, such that each consumer
does not receive more than eϵ times their requested amount; and moreover, all but δ fraction of the
supplies must be successfully distributed.

Formally, we define (ϵ, δ)-matching for any two distributions A and B defined over the same
space Ω, and w.r.t. to some neighboring relation ∼.

Definition 2.6 ((ϵ, δ)-matching). Given two distributions A and B defined over Ω , and a neigh-
boring relation ∼, an (ϵ, δ)-matching from A to B denoted w : Ω × Ω → [0, 1] is a mapping that
satisfies the following conditions:

1. For all a ∈ Ω and b ∈ Ω, w(a, b) > 0 only if a ∼ b;
2. For all a ∈ Ω,

∑
b∈Ω

w(a, b) ≤ Pr[A = a];

3. For all b ∈ Ω,
∑
a∈Ω

w(a, b) ≤ eϵ · Pr[B = b];

4.
∑
a∈Ω

∑
b∈Ω

w(a, b) ≥ 1− δ.

As mentioned, the best way to understand the above definition is to think of the bipartite graph
induced by the distributions A and B, and redistributing weights from left vertices to incident edges.

(ϵ, δ)-NPDO and (ϵ, δ)-matching. Zhou et al. [ZSCM23] showed the following equivalence be-
tween (ϵ, δ)-NPDO and the existence of an (ϵ, δ)-matching in the bipartite graph induced by two
randomized executions ExecM(x) and ExecM(x′) on neighboring inputs x and x′.

Lemma 2.7 (Equivalence of Dδ
∼ ≤ ϵ and existence of an (ϵ, δ)-matching). Suppose A and B are

distributions over some discrete sample space Ω, and let ∼ be a neighboring relation on Ω. Under
the Axiom of Choice, the following statements are equivalent:

9



1. Dδ
∼(A‖B) ≤ ϵ.

2. There exists an (ϵ, δ)-matching from A to B w.r.t. ∼.

As a direct corollary of Lemma 2.7, we have the following:

Corollary 2.8 (Equivalence of (ϵ, δ)-NPDO and existence of an (ϵ, δ)-matching). Let M : X → Y
be an algorithm with the view space V, input relation ∼0, and output relation ∼1. Suppose that V
and Y are discrete spaces, then, the following statements are equivalent under the Axiom of Choice:

1. M satisfies (ϵ, δ)-NPDO;
2. For any x ∼0 x′ from X , there exists an (ϵ, δ)-matching from ExecM(x) to ExecM(x′) w.r.t. the

extended neighboring relation ∼1 for the execution space V × Y.

3 Symmetric NPDO
Recall that (ϵ, δ)-NPDO is expressed in the form of the δ-max divergence w.r.t. some neighboring
relation ∼ (Definition 2.4). To prove an advanced composition theorem for NPDO, we want to
leverage mathematical tools for reasoning about the divergence between composed distributions —
however, existing tools work only for standard notions of divergence that is not defined w.r.t. to
some relation ∼.

In this section, we introduce an equivalent formulation of (ϵ, δ)-NPDO called (ϵ, δ)-symmetric-
NPDO. The new notion (ϵ, δ)-symmetric-NPDO is indeed expressed in the form of standard δ-
max divergence over two distributions (Definition 2.2) — the challenge is how to define these two
distributions such that the resulting definition is equivalent to the original (ϵ, δ)-NPDO.

3.1 Neighbor-Respecting Refined Distribution
In Section 2.3, we introduced the notion of an induced bipartite graph given two distributions A
and B and some neighboring relation ∼. We also defined an (ϵ, δ)-matching from A to B and w.r.t.
∼. Our first idea is to interpret the edge weights (henceforth denoted W ) in the (ϵ, δ)-matching as
a distribution. Unfortunately, W may not form a valid distribution because the edge weights may
not sum to 1 due to the δ probability mass remaining.

Neighbor-respecting refined distribution. We will instead consider a distribution of weights
from the left vertices to its incident edges such that all weights must be completely distributed with-
out any remainder. With this intuition in mind, we can define a notion called a neighbor-respecting
refined distribution. Intuitively, given a distribution A on some space Ω with the neighboring re-
lation ∼, imagine a bipartite graph where the left vertex set Ω1 and the right vertex set Ω2 are
both equal to Ω, and each left vertex has a weight equal to its probability measure in A. Further,
(a, a′) ∈ Ω1 × Ω2 is an edge in the graph iff a ∼ a′. Now, imagine that we want to completely
redistribute the left vertices’ weights onto its incident edges, such that there is no weight remain-
ing. The resulting assignment of weights on the edges W : (Ω1 × Ω2) → [0, 1] can be viewed as a
distribution, and we call it the neighbor-respecting refined distribution of A w.r.t. ∼.

More formally, we define neighbor-respecting refined distribution as below.

Definition 3.1 (Neighbor-respecting refined distribution). Let Ω1 and Ω2 be two discrete sets both
equal to Ω, and let ∼ be a neighboring relation on Ω. Let A be a distribution on Ω1 and let W be a
distribution on Ω1 × Ω2. We say that the distribution W is a neighbor-respect refined distribution
of A w.r.t. ∼ iff

10



• The marginal distribution of W on Ω1 henceforth denoted W|Ω1
is equal to A.

• For any (a, a′) in the support of W , it must be that a ∼ a′.

Symmetrically, let B be a distribution on Ω2 and let U be a distribution on Ω1 × Ω2. We say
that the distribution U is a neighbor-respect refined distribution of B w.r.t. ∼ iff

• The marginal distribution of U on Ω2 henceforth denoted W|Ω2
is equal to B.

• For any (a, a′) in the support of U , it must be that a ∼ a′.

Using the terminology of neighbor-respecting refined distribution, the existence of an (ϵ, δ)-
matching from A to B w.r.t. ∼ is in fact equivalent to the existence of a neighbor-respecting
refined distribution W on the space Ω1 × Ω2 of A w.r.t. ∼ such that Dδ(W|Ω2

||B) ≤ ϵ.

Lemma 3.2. Let Ω1 = Ω2 = Ω denote a discrete set with the neighboring relation ∼, and let A and
B be distributions on Ω1 and Ω2, respectively. Under the Axiom of Choice, the following statements
are equivalent:

• There exists an (ϵ, δ)-matching from A to B w.r.t. ∼.
• There exists a neighbor-respecting refined distribution W over Ω1 ×Ω2 of A w.r.t. ∼, such that

Dδ(W|Ω2
||B) ≤ ϵ.

Proof. Deferred to Appendix A.1.

Just like the (ϵ, δ)-matching notion, the distribution W in Lemma 3.2 can be viewed as a way to
re-distribute the weights on the sources (defined by the distribution A), in a way that approximately
respects the capacities of the destinations (defined by the distribution B). The difference between
an (ϵ, δ)-matching and W is the following. An (ϵ, δ)-matching allows δ mass to remain at the
sources, and requires that each destination receive no more than eϵ times its capacity (henceforth
called the eϵ-relaxed capacity). By contrast, the neighbor-respecting refined distribution W insists
that all mass be routed away from the sources; however, the condition Dδ(W|Ω2

||B) ≤ ϵ says that
we can tolerate up to δ total excess over all destinations, relative to their eϵ-relaxed capacities.

3.2 Symmetric NPDO
Our symmetric NPDO notion is defined in a way similar to Lemma 3.2. However, Lemma 3.2
is asymmetric and considers only one neighbor-respecting distributions W that can be viewed as
routing probability mass from left to right. In symmetric NPDO, we make the definition symmetric
by having two neighbor-respecting distributions W and U — one can be viewed as routing weights
from the left to the right, and the other routing weights from the right to the left. Further, the two
distributions W and U must be (ϵ, δ)-close.

Definition 3.3 ((ϵ, δ)-symmetric NPDO). An algorithm M : X → Y with the view space V is
said to satisfy (ϵ, δ)-symmetric NPDO w.r.t. input relation ∼0 and output relation ∼1, iff for any
neighboring inputs x ∼0 x

′ from X , the following hold for the two distributions ExecM(x) : V1 ×Y1
and ExecM(x′) : V2 × Y2 where V1 = V2 = V and Y1 = Y2 = Y:

• There exist two neighbor-respecting refined distributions W and U , of ExecM(x) and ExecM(x′)
respectively, both defined over V1 × Y1 × V2 × Y2 and w.r.t. ∼1;

• W and U are (ϵ, δ)-close.

11



We prove the following theorem that shows the equivalence of NPDO and symmetric NPDO —
this is the most non-trivial step in proving the NPDO advanced composition theorem.

Theorem 3.4 (Equivalence of NPDO and symmetric NPDO). Suppose that an algorithm M : X →
Y has finite view and output spaces. Then, M satisfies (ϵ, δ)-NPDO w.r.t. input relation ∼0 and
output relation ∼1 iff it satisfies (ϵ, δ)-symmetric-NPDO w.r.t. ∼0 and ∼1.

Proof. We provide an informal proof roadmap below and the full proof is deferred to Appendix A.2.

Proof roadmap. The direction that symmetric NPDO implies NPDO is easy. The other di-
rection, i.e., NPDO implies symmetric NPDO, is much more involved to prove. We explain the
high-level intuition of our proof (Appendix A.2) below.

Two arbitrary neighbor-respecting refined distributions W and U may not be (ϵ, δ)-close. In-
stead, the idea is to consider the pair (ϵ, δ)-matchings w and u induced by W and U and gradually
adjust the weights of w and u, until for every “edge” a ∼ b, the weights are close to each other, i.e.,
e−ϵu(a, b) ≤ w(a, b) ≤ eϵu(a, b). Then, we convert the final pair of matchings to a pair of refined
distributions W ′ and U ′ and then W ′ and U ′ are (ϵ, δ)-close.

The adjustment algorithm goes as follows. For each step, we first find all the “violating” edge
in the bipartite graph, such that if w(a, b) > eϵu(a, b), we assign a direction (b → a) to the edge,
and vice versa. The idea is that we start with any violating edge, say b → a. It means that the
weight of u(a, b) is too small and we try to increase it. When we gradually increase u(a, b), either
the violating edge will be removed, or the constraint of u on b will become tight. We prove that
in the latter case, we can always find a new violating edge b → a′ to be adjusted. We now try to
adjust the weight u(a, b), u(a′, b) simultaneously (we want to increase u(a, b) and decrease u(a′, b)).
We again adjust them until one violating edge is removed or the constraint on a′ is tight (the
constraint on b will be preserved because we are increasing and decreasing the same amount on
u(a, b), u(a′, b)). We again prove that there exists some violating edge (a′ → b′) in the latter case.
The algorithm continues that before we find a loop, each time we will adjust all the visited violated
edge simultaneously, until we can remove one violating edge, or all the constraints over the vertices
of those edges are tight. In the latter case, we can always find a new violating edge and repeat the
process. Finally, if we find a loop, we can always find the minimum adjustment required on the
loop to remove at least one violating edge and adjust all edges on the loop correspondingly, which
guarantees to remove one violating edge.

For this proof to work, we need the view and output spaces to be finite1 We can see that the
adjustment algorithm goes in steps. To ensure the algorithm stops in finite steps, we require the
mechanism’s space to be finite, such that there’s no path consisting of violating edges of infinite
length. Also, since each step only guarantees to remove one violating edge, we may need infinite
step to remove all the violating edges if there are infinitely many of them.

4 Advanced Composition for (ϵ, δ)-NPDO
Given Theorem 3.4, to prove the advanced composition theorem for NPDO (Theorem 1.4), we can
instead prove it for symmetric NPDO. Since symmetric NPDO is expressed in the form of max

1In fact, if we assume the axiom of choice, the bipartite graph can be infinite as long as each connected component
of the bipartite graph is finite. We call this case locally finite.
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divergence over two distributions, we will be able to rely on standard tools to reason about the dis-
tance between composed distributions. Specifically, we will make use of the advanced composition
theorem for standard DP which we define below.

4.1 Additional Preliminary
Theorem 4.1 (Advanced k-fold adaptive composition theorem for (ϵ, δ)-DP [DRV10]). Suppose
mechanisms M1, . . . ,Mk are (ϵ, δ)-DP and we consider the k-fold adaptive composition M = Mk ◦
Mk−1 ◦ · · · ◦M1. Then, for all δ′ > 0, M is (ϵ′, kδ + δ′)-DP, where ϵ′ = ϵ

√
2k ln 1

δ′ + 2kϵ2.

4.2 Proof of Theorem 1.4
With all the tools prepared, we now present the proof to the advanced composition theorem for
(ϵ, δ)-NPDO. Below, we set up the appropriate random experiments such that we can eventually
leverage the standard advanced composition of DP to complete the proof.

Theorem 4.2 (Advanced composition theorem for NPDO: restatement of Theorem 1.4). Let ϵ ≥ 0,
δ, δ′ ∈ [0, 1] and k ≥ 2. Suppose for i ∈ [k], the algorithm Mi : Yi−1 → Yi with view space Vi is
(ϵ, δ)-NPDO with respect to the neighboring relations in its input and output spaces. Suppose that
all algorithms have finite output and view spaces. Then, the composition M = Mk ◦Mk−1 ◦ · · · ◦M1

is (ϵ′, δ′ + kδ)-NPDO, where ϵ′ = ϵ
√

2k ln 1
δ′ + 2kϵ2.

Proof. To avoid excessive notation uses, we consider a simpler case where all mechanisms M1, . . . ,Mk

shares the same view space V, same input/output space Y and same input/output relation ∼. The
following proof can be easily generalized to the case in the original theorem statement.

Fix a pair of input y0, y
′
0 for the k-fold composition mechanism M. The experiment ExecM(y0)

is described below, and ExecM(y′0) is defined similarly.

• For i = 1, . . . , k, (vi, yi) ← ExecMi(yi−1), where vi is the view and yi is the i-th intermediate
output.

• The experiment outputs (v1, . . . , vk, yk), where v1, . . . , vk are the views observed by the adversary
and yk is the final output.

Recall that in the symmetric NPDO definition 3.3, we need to find two statistically close refined
distributions W and U for ExecM(y0) and ExecM(y′0), correspondingly. We now construct W as
follows.

• For i = 1, . . . , k:

– Given a neighboring pair yi−1 ∼ y′i−1, there’s a pair of (ϵ, δ)-close refined distribution,
W

yi−1,y
′
i−1

i , U
yi−1,y

′
i−1

i , such that W
yi−1,y

′
i−1

i are refined distributions for ExecMi(yi−1) and
ExecMi(y′i−1), correspondingly.

– Sample ((vi, yi), (vi, y
′
i)) from W

yi−1,y
′
i−1

i .

• Output ((v1, . . . , vk, yk), (v1, . . . , vk, y
′
k)).

We can construct U similarly, where for each step i ∈ [k], we sample ((vi, yi), (vi, y
′
i)) from

U
yi−1,y

′
i−1

i instead. Notice to make the definitions consistent, given any pair of neighboring inputs
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yi−1 ∼ y′i−1, the pair of refined distributions W
yi−1,y

′
i−1

i , U
yi−1,y

′
i−1

i will be a unique pair of refined
distributions.

Now let’s check W ’s marginal distribution over the variables (v1, . . . , vk, yk) is exactly ExecM(y0):
for i ∈ [k], W yi−1,y

′
i−1

i ’s marginal distribution over the variables (vi, yi) is exactly ExecMi(yi−1), which
is the same as the original random experiment of ExecM(y0). Similarly, U ’s marginal distribution
over the variables (v′1, . . . , v

′
k, y

′
k) is exactly ExecM(y′0).

The final step is to prove that W and U are (ϵ′, δ′ + kδ)-close. In fact, W can be considered
as a post-processed distribution of the joint distribution of

(
W

y0,y′0
1 ,W

y1,y′1
2 , . . . ,W

yk−1,y
′
k−1

k

)
. Here,

for i ∈ {2, . . . , k}, each W
yi−1,y

′
i−1

i is adaptively dependent on the sampling result of the previous
step W

yi−2,y
′
i−2

i−1 . Similarly, U can be considered as a post-processed distribution of the joint distri-
bution of

(
U

y0,y′0
1 , U

y1,y′1
2 , . . . , U

yk−1,y
′
k−1

k

)
. Now, for each i ∈ [k], we know W

yi−1,y
′
i−1

i and U
yi−2,y

′
i−2

i−1

are (ϵ, δ)-close. Therefore, applying the k-fold composition theorem from standard (ϵ, δ)-DP (The-
orem 4.1) and we get that W and U are (ϵ′, δ′ + kδ)-close for ϵ′ = ϵ

√
2k ln 1

δ′ + 2kϵ2 and any
δ′ > 0.

Remark 4.3. Since our proof provides a reduction to the standard k-fold composition theorem of
(ϵ, δ)-DP, one can have tighter bound on the privacy parameters based on tighter analyses of k-fold
DP composition (e.g. Kairouz et al. [KOV15] and Murtagh et al. [MV16]).

5 Defining NPDO with a General Divergence Notion
In Section 3, we saw that (ϵ, δ)-NPDO can be defined in terms of Dδ divergence over neighbor-
respecting refined distributions. In the literature, other notions of divergence have been considered,
such as Rényi divergence [Mir17,BS16], trade-off function [DDR20,VZ23], and others [DRS22].

In this section, we will generalize differential obliviousness to other notions of divergence.

Divergence notion. Suppose G is some divergence notion for comparing two distributions on the
same sample space. Suppose ϵ is some parameter that indicates divergence, where smaller means
the two distributions are closer. Then, we use the notation

G(P‖Q) ≤ ϵ

to mean two distributions P and Q are ϵ-close under G. In general, G does not have to be symmetric
and it may return either a single value or a function. For example, δ-max divergence Dδ(P ||Q)
and Rényi divergence (see Definition 6.1) return a single value, whereas the Pow(·||·) function
(see Definition 6.6 and Equation (6)) returns a function. In the case G(P‖Q) and ϵ are functions,
then ≤ means that less than or equal to at every point.

For a divergence notion G to be used in a privacy definition, we want it to be well-formed in
the sense that the following data processing inequality should be satisfied.

Definition 5.1 (Data processing inequality). A divergence notion G satisfies the data processing
inequality if given any two joint distributions (X,Y ) and (X ′, Y ′) on the same space, the corre-
sponding marginal distributions satisfy the monotone property:

G(X‖X ′) ≤ G((X,Y )‖(X ′, Y ′)).
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One way to generalize DO to general divergence notions is to extend the original DO notion of
Chan et al. [CCMS19], resulting in the following definition.

Definition 5.2 (Generic DO). Let M : X → Y be an algorithm with input relation ∼0 and output
relation ∼1, let G be a divergence notion, and let ϵ be some corresponding divergence parameter.
We say that M is ϵ-DO(G) if for all neighboring inputs x ∼0 x

′ from X , the distributions ViewM(x)
and ViewM(x′) are close in the following sense:

G(ViewM(x)‖ViewM(x′)) ≤ ϵ.

The above generic DO notion, however, suffers from the same limitation as the original DO
notion [CCMS19] — it is not amenable to composition.

Since we care about composition, we will instead generalize the (ϵ, δ)-NPDO notion to more gen-
eral notions of divergence. Generalizing with the original NPDO definition of Zhou et al. [ZSCM23]
is unnatural since the NPDO notion is not defined as a standard divergence notion over two distri-
butions due to the N (·) operator in Equation (2). Fortunately, to prove the advanced theorem for
NPDO, we defined an equivalent notion called symmetric NPDO, and symmetric NPDO is indeed
defined as the divergence over a pair of neighbor-respecting refined distributions. Therefore, we can
extend the symmetric NPDO notion when generalizing to other divergence notions. The resulting
notion is called generic NPDO as defined below.

Definition 5.3 (Generic NPDO). Let M : X → Y be a randomized algorithm with view space V,
input relation ∼0 and output relation ∼1 (which can be extended to the execution space V ×Y). Let
G be a divergence notion, and ϵ be some corresponding divergence parameter.

Then, we say that M is ϵ-NPDO(G) if for all neighboring inputs x ∼0 x′, there exists a pair
of neighbor-respecting refined distributions W and U of ExecM(x) and ExecM(x′), respectively, such
that the following holds:

G(W‖U) ≤ ϵ. (5)

Additional notations: neighbor-respecting refinement pairing. Since we always use a
pair of neighbor-respecting refines distributions together (e.g., Definitions 3.3 and 5.3), it helps to
introduce some new notations.

Henceforth, we will use the notation φ = (W,U) to denote a pair of neighbor-respecting refined
distributions of ExecM(x) and ExecM(x′), respectively, and we say that φ = (W,U) is a neighbor-
respecting refinement pairing between ExecM(x) and ExecM(x′). Given such a neighbor-respecting
refinement pairing, we use the notation φ(ExecM(x)) = W and φ(ExecM(x′)) = U .

We also introduce the following notation to denote the divergence of a neighbor-respecting
refinement pairing φ:

Gφ(ExecM(x)‖ExecM(x′)) = G(φ(ExecM(x))‖φ(ExecM(x′)))

Using this notation, we can rephrase Equation (5) as:

Gφ(ExecM(x)‖ExecM(x′)) ≤ ϵ.
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6 NPDO Composition for Various Divergence Notions
6.1 Rényi NPDO and Zero Concentrated NPDO
Rényi NPDO. Rényi DP [Mir17] of order α is based on the Rényi divergence of order α defined
as:

Dα(P‖Q) =
1

α− 1
log

(
EP

(
p

q

)α−1
)

=
1

α− 1
log

∫
pαq1−α.

A mechanism M is (α, ϵ)-RDP if for all neighboring input pairs x and x′, Dα(M(x)‖M(x′)) ≤
ϵ. We can analogously define (α, ϵ)-Rényi NPDO by instantiate the generic NPDO notion as ϵ-
NPDO(Dα), i.e., plugging the Dα divergence into the generic NPDO definition in 5.3:

Definition 6.1 ((α, ϵ)-Rényi NPDO). An algorithm M : X → Y is (α, ϵ)-Rényi NPDO w.r.t input
neighboring relation ∼0 and output neighboring relation ∼1 iff for any neighboring input pair x ∼0 x

′

from X , there exists a refinement pair φ(x, x′) w.r.t. ∼1 such that

Dφ(x,x′)
α (ExecM(x)‖(ExecM(x′)) ≤ ϵ.

Rényi divergence has the following composition theorem:

Lemma 6.2 ( [Mir17]). Suppose distributions X and X ′ on sample space X satisfy that Dα(X‖X ′) ≤
ϵ1. Also, for any x ∈ X , distributions Y (x) and Y ′(x) on sample space Y satisfy that Dα(Y (x)‖Y ′(x)) ≤
ϵ2. Then,

Dα

(
(X,Y (X))‖(X ′, Y (X ′))

)
≤ ϵ1 + ϵ2.

Based on this lemma, we can prove the composition theorem for (α, ϵ)-Rényi NPDO.

Theorem 6.3 (Composition theorem for (α, ϵ)-Rényi NPDO). Suppose M1 : X → Y is (α, ϵ1)-
Rényi NPDO with respect to the neighboring relations ∼0 in its input and ∼1 in output spaces.
Suppose M2 : Y → Z is (α, ϵ2)-Rényi NPDO with respect to the neighboring relations ∼1 in its
input and ∼2 in output spaces. Then, the composition M = M2 ◦M1 is (α, ϵ1 + ϵ2)-Rényi NPDO
w.r.t ∼0 and ∼2.

Proof. Let V1 and V2 be the view space for M1 and M2, respectively. Fix a pair of neighboring
intpus x ∼0 x′ ∈ X for M. Our final goal is define a neighbor-respecting refinement pairing φ
(depending on the ordered pair (x, x′)) between the two execution distributions ExecM2◦M1(·) on x
and x′ satisfying Definition 5.3.

Observe that both execution distributions are on the sample space V1 × V2 × Z. Note that, in
our extended relation, neighboring tuples must have the same element in the view space; this let
us slightly simplify the notation when we consider neighbor-respecting refinements.

Because M1 is (α, ϵ1)-Rényi NPDO, there exists a neighbor-respecting refinement pairing µ(ExecM1(x))
and µ(ExecM1(x′)), which are two distributions on (V1 × Y)× (V ′1 × Y ′), such that

Dµ
α(Exec

M1(x)‖ExecM1(x′)) ≤ ϵ1.

For any y ∼1 y′, because M2 is (α, ϵ2)-Rényi NPDO, there exists a neighbor-respecting refine-
ment pairing σ(y,y′)(ExecM2(y)) and σ(y,y′)(ExecM2(y′)) which are two distributions on (V2 × Z) ×
(V ′2 ×Z ′), such that

Dσ(y,y′)
α (ExecM2(y)‖ExecM2(y′)) ≤ ϵ2.
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Now let’s define the refinement pair φ(ExecM2◦M1(x)) and φ(ExecM2◦M1(x′)), which are two
distributions over (V1 × V2 × Z) × (V ′1 × V ′2 × Z ′). We highlight the difference of them with
underlining.

• φ(ExecM2◦M1(x)):

– Sample ((v1, y), (v1, y
′)) from µ(ExecM1(x)).

– Based on y, y′, sample ((v2, z), (v2, z
′)) from σ(y,y′)(ExecM2(y)).

– Output ((v1, v2, z), (v1, v2, z
′)).

• φ(ExecM2◦M1(x′)):

– Sample ((v1, y), (v1, y
′)) from µ(ExecM1(x′)).

– Based on y, y′, sample ((v2, z), (v2, z
′)) from σ(y,y′)(ExecM2(y′)).

– Output ((v1, v2, z), (v1, v2, z
′)).

We verify that the marginal distribution of φ(ExecM2◦M1(x)) over V1 × V2 × Z is exactly
ExecM2◦M1(x):

1. The marginal distribution of µ(ExecM1(x)) over the variables (v1, y) is exactly ExecM1(x);

2. Conditioned on all pair of y, y′, the marginal distribution of σ(y,y′)(ExecM2(y)) over the vari-
ables (v2, z) is exactly ExecM2(y).

Similarly, the marginal distribution of φ(ExecM2◦M1(x′)) over V ′1×V ′2×Z ′ is exactly ExecM2◦M1(x′).
Finally, we have

Dα(φ(Exec
M2◦M1(x))‖φ(ExecM2◦M1(x′)))

≤Dα

((
µ(ExecM1(x)), σ(y,y′)(ExecM2(y))

)
‖
(
µ(ExecM1(x′)), σ(y,y′)(ExecM2(y′))

))
(data processing inequality)

≤ϵ1 + ϵ2. (Lemma 6.2)

Zero Concentrated NPDO. Zero concentrated DP (zCDP) [BS16] is defined based on the
following divergence:

Dz(P‖Q) := sup
α>1

1

α
· Dα(P‖Q).

A mechanism M is ϵ-zCDP if for all neighboring inputs x and x′, Dz(M(x)‖M(x′)) ≤ ϵ. We can
analogously define ϵ-zNPDO by plugging Dz in the generic definition 5.3 as follows.
Definition 6.4 (ϵ-zNPDO). A mechanism M : X → Y with view space V is ϵ-zNPDO w.r.t input
neighboring relation ∼0 and output neighboring relation ∼1 if for any neighboring input pair x ∼0 x

′

from X , there exists a refinement pair φ(x, x′) w.r.t ∼1 such that
Dφ(x,x′)
z (ExecM(x)‖(ExecM(x′)) ≤ ϵ.

Based on nearly the same proof as Theorem 6.3, we can have the following composition theorem:
Theorem 6.5 (Composition theorem for ϵ-zNPDO). Suppose M1 : X → Y is ϵ1-zNPDO with
respect to the neighboring relations ∼0 in its input and ∼1 in output spaces. Suppose M2 : Y → Z is
ϵ2-zNPDO with respect to the neighboring relations ∼1 in its input and ∼2 in output spaces. Then,
the composition M = M2 ◦M1 is (ϵ1 + ϵ2)-zNPDO w.r.t ∼0 and ∼2.
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6.2 g-NPDO
Dong et al. [DRS22] defined f -DP which uses tradeoff functions to characterize the divergence
between distributions. We will define an analogous notion for differential obliviousness calld g-
NPDO. As mentioned later in Section 6.3 and in Section 6.4, we can view composition of Gaussian-
NPDO and (ϵ, δ)-NPDO as special cases of g-NPDO.

6.2.1 Background: From Tradeoff Functions to Power Functions

Our g-NPDO notion will use power functions to characterize divergence. To understand the power
function, we first review the notion of a tradeoff function.

Tradeoff function. Given two distributions H0 and H1, the tradeoff function T(H0‖H1) outputs
a function that captures the tradeoff curve between two types of errors.

Since our divergence measure will be a function, it helps to define a partial order for two
functions. Let f1 and f2 be two functions, then f1 ≤ f2 means that for all x ∈ [0, 1], f1(x) ≤ f2(x).

More formally, tradeoff functions are inspired by hypothesis testing.

Definition 6.6 (Tradeoff Function). Suppose H0 and H1 are distributions on the same sample
space, where H0 is interpreted as the null hypothesis and H1 as the alternate hypothesis. Define the
tradeoff function T(H0‖H1) : [0, 1] → [0, 1] such that given a value x ∈ [0, 1], the function returns
the probability of Type-2 error (accepting H1) for the most powerful (randomized) test that has the
probability of Type-1 error (rejecting H0) being exactly x.

A tradeoff function T(H0||H1) measures the similarity between two distributions. A larger
function function means the two distributions are closer. The class of tradeoff functions has a
maximal element x 7→ 1 − x, which corresponds to two identical distributions (corresponding to
the diagonal line in Figure 1(a)). Dong et al. [DRS22] provide more detailed explanation about the
intuition behind Definition 6.6.

Example: tradeoff functions for (ϵ, δ)-closeness. Figure 1(a) shows the tradeoff function:

fϵ,δ(x) := max{0, e−ϵ · (1− δ − x),−eϵ · x+ 1− δ}.

Wasserman and Zhou [WZ10] showed that if two distributions H0 and H1 are (ϵ, δ)-close, then the
tradeoff function T(H0||H1) has to be above fϵ,δ, but below y = 1− x.
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Figure 1: Examples: tradeoff functions and power functions for (ϵ, δ)-closeness. Here ϵ = 1, δ = 0.3.
(a) is the curve for fϵ,δ and (b) is the curve for gϵ,δ.

From tradeoff functions to power functions. We want to use T(·||·) which outputs a tradeoff
function as a divergence notion, but directly using it is unnatural because a larger tradeoff function
means closer in distance. We therefore flip the sign and define a related notion called a power
function denoted Pow(H0‖H1):

Pow(H0‖H1) := 1− T(H0‖H1) (6)

We can use Pow(·||·) as the corresponding the divergence notion which outputs a power function
when given two distributions.

With power functions, a smaller function means closer in distance which is more intuitive.
The identity function is the minimal element over all power functions (see the diagonal line in
Figure 1(b)).

The power function also has a natural interpretation in the context of hypothesis testing. Specif-
ically, the power of a test refers to one minus the Type-2 error.

Example: power functions for (ϵ, δ)-closeness. In Figure 1(b), we see that the corresponding
power function for fϵ,δ is:

gϵ,δ(x) := max{1, 1− e−ϵ(1− δ − x), eϵ · x+ δ}. (7)

Hence, if two distributions H0 and H1 are (ϵ, δ)-close, then the power function Pow(H0||H1) has to
be below gϵ,δ, but above the diagonal line y = x.

Another way to interpret the power function is to think of it as the fractional knapsack problem
— see the remark below.

Remark 6.7 (Intuition: power function as the fractional knapsack problem [Kad68]). Given
distributions H0 and H1 on some sample space Ω and a value α ∈ [0, 1], the power function
Pow(H0‖H1)(x) can be interpreted as an instance of the fractional knapsack problem as follows:

• Each element ω ∈ Ω has weight H0(ω) and reward H1(ω).
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• The parameter x gives the capacity constraint on the weight.
• The value Pow(H0‖H1)(x) is the maximum achievable reward subject to the capacity constraint,

where an item may be selected fractionally.
(The fractional feature is only relevant when the sample space Ω is discrete.)

In fact, the Neyman-Pearson lemma [NP33] can be interpreted as the classical observation
that the the maximum reward-to-weight ratio heuristic can solve the fractional knapsack problem
optimally.

With the above fractional knapsack interpretation, we can think of the divergence notion as
follows. When two distributions H0 and H1 are the same, it is clear that given any capacity
constraint x, the maximum reward is also x; this means the power function is exactly the identity
function. However, if the two distributions are very different, this means that there are items whose
reward-to-weight ratios are large; hence, in this case, the power function can initially grow faster
than the identity function.

6.2.2 Properties of Power Functions

Naturally, all natural properties of tradeoff functions [DRS22] can be expressed equivalently in
terms of power functions, albeit with some slight modifications. Unless otherwise stated, we will
mostly work with power functions, and quote counterparts from [DRS22] where appropriate.
Fact 6.8 (Valid power functions [DRS22, Proposition 2.2]). Suppose g : [0, 1]→ [0, 1] is a function.
Then, there exist distributions X and Y such that Pow(X‖Y ) = g iff g is continuous, concave and
g(x) ≥ x for all x ∈ [0, 1].
Proof. (Sketch) One can take X to be the uniform distribution on [0, 1] and Y to be the distribution
on [0, 1] with g as the CDF.

Ubiquity of power functions. Intuitively, the ubiquity of the power function comes from the
following fact: the power function summarizes the “difference” between two distributions, and it
contains enough information such that any well-formed divergence between the distributions can be
computed solely based on the power function. Here, well-formed divergence means the divergence
satisfy the data processing inequality in Definition 5.1, which should be a basic property for all
divergence notions used to define privacy.
Fact 6.9 (Ubiquity of power functions [DRS22, Proposition B.1]). Suppose a divergence notion
G(·‖·) satisfies the data processing inequality, then there exists a functional ℓG such that G(X‖Y ) =
ℓG(Pow(X‖Y )).

Tensor product and composition. As remarked in [DRS22], the tensor product gives a com-
plete characterization of many known DP compositions, which eventually allows us to transfer
abundant composition result for normal DP to NPDO.
Definition 6.10 (Tensor product). Given any two power functions g1, g2 such that there exist some
distributions X,X ′, Y, Y ′ where g1 = Pow(X‖X ′) and g2 = Pow(Y ‖Y ′), the tensor product of g1, g2
is defined as

g1 ⊗ g2 := Pow(X × Y ‖X ′ × Y ′),

where the product distribution X × Y means that sampling from X and Y independently.
Moreover, the tensor product g1 ⊗ g2 is well-defined that g1 ⊗ g2 is the same for any such

distributions X,X ′, Y, Y ′.
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Theorem 6.11 (Adaptive composition for power functions [DRS22]). Let g1 and g2 be two power
functions. Suppose distributions X and X ′ on sample space X satisfy that Pow(X‖X ′) ≤ g1. Also,
for any x ∈ X , distributions Y (x) and Y ′(x) on sample space Y satisfy that Pow(Y (x)‖Y ′(x)) ≤ g2.
Then,

Pow
(
(X,Y (X))‖(X ′, Y (X ′))

)
≤ g1 ⊗ g2.

6.2.3 g-NPDO and Composition

Definition 6.12 (g-NPDO). Given a power function g, an algorithm M : X → Y is said to be
g-NPDO w.r.t. its input and output relations iff it is g-NPDO(Pow) by Definition 5.3 w.r.t. its
input and output relations.

Theorem 6.13 (Composition theorem for g-NPDO). Let M1 : X → Y and M2 : Y → Z be two
randomized algorithms. Suppose that for i ∈ {1, 2}, Mi is gi-NPDO w.r.t. its corresponding input
and output neighboring relations. Then, the composed algorithm M2◦M1 : X → Z is g1⊗g2-NPDO.

Proof. Fix a pair of inputs x ∼0 x
′. The refinement pair φ is defined exactly the same as the proof

of Theorem 6.3. The remaining proof is nearly the same as in Theorem 6.3 except that in the final
step, we use Theorem 6.11:

Pow(φ(ExecM2◦M1(x))‖φ(ExecM2◦M1(x′)))

≤Pow
((

µ(ExecM1(x)), σ(y,y′)(ExecM2(y))
)
‖
(
µ(ExecM1(x′)), σ(y,y′)(ExecM2(y′))

))
(data processing inequality)

≤g1 ⊗ g2. (Theorem 6.11)

6.3 (ϵ, δ)-NPDO
Our g-NPDO composition theorem (Theorem 6.13) gives an alternative way to prove the advanced
theorem for (ϵ, δ)-NPDO (Theorem 6.16). As mentioned, if two distributions A and B are (ϵ, δ)-
close, then Pow(A||B) ≤ gϵ,δ where gϵ,δ is defined in Equation (7).

Therefore, Theorem 6.16 follows directly from Theorem 6.13 and the following lemma (Lemma 6.14)
which was described by Dong et al. [DRS22].

Lemma 6.14 ( [DRS22]). For all ϵ ≥ 0, δ, δ′ ∈ [0, 1] and k ≥ 2,

g⊗k
ϵ,δ ≤ gϵ′,δ′+kδ

where ϵ′ = ϵ
√
2k ln 1

δ′ + 2kϵ2.

6.4 Gaussian NPDO
In this section, we define Gaussian NPDO and prove a composition theorem for Gaussian NPDO.
It turns out Gaussian NPDO composition can be viewed as a special case of g-NPDO composition.

Analogous to µ-Gaussian-DP [DRS22], we can define µ-Gaussian-NPDO as follows:

Definition 6.15 (µ-Gaussian NPDO). Let N(µ, σ2) denote the Gaussian distribution with mean
µ and variance σ2. An algorithm M : X → Y is µ-Gaussian NPDO w.r.t. its input and output
relations iff it is gµ-NPDO by Definition 6.12 where gµ := Pow(N(0, 1)‖N(µ, 1)).
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Example. In Figure 2, we depict the Gaussian power functions gµ for different parameters µ and
compare them with the power function representing (ϵ, δ)-closeness.
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Figure 2: Comparing the power functions of Gaussian gµ and (ϵ, δ)-closeness. Here, ϵ = 1, δ = 0.4.
For smaller µ = 0.5, 1, 1.5, gµ is (ϵ, δ)-close; for larger µ = 2.5, gµ is not (ϵ, δ)-close. The line y = x
represents the power function for two identical distributions.

Theorem 6.16 (Composition theorem for µ-Gaussian NPDO). Suppose for i ∈ [k], the algorithm
Mi : Yi−1 → Yi with view space Vi is µi-Gaussian NPDO with respect to the neighboring relations
in its input and output spaces. Then, the composition M = Mk ◦ Mk−1 ◦ · · · ◦ M1 is µ-Gaussian
NPDO, where

µ =
√
µ2
1 + µ2

2 + · · ·+ µ2
k.

Proof. It is a direct corollary of the g-NPDO composition theorem Theorem 6.13 and the compo-
sition theorem of the Gaussian power functions [DRS22]: for any µ1, . . . , µk ≥ 0, ⊗i∈[k]gµi = gµ

where µ =
√

µ2
1 + µ2

2 + · · ·+ µ2
k
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A Deferred Proofs from Section 3
A.1 Proof of Lemma 3.2
First, we show that given and (ϵ, δ)-matching, we can create a suitable neighbor-respecting re-
fined distribution W . Suppose W is induced from the (ϵ, δ)-matching, and moreover, the re-
maining δ weight at the sources will be assigned to self edges of the form (a, a). More specif-
ically, if some source in the left vertex set a has some weight remaining in the (ϵ, δ)-matching,
we simply assign the remaining weight on the edge (a, a). By construction, the marginal dis-
tribution of W over Ω1 is indeed A. Therefore, we just need to prove that for any subset S,
Pr[W|Ω2

∈ S] ≤ eϵ Pr[B ∈ S] + δ. Notice that since W is valid distribution,
∑

a∼bW (a, b) = 1.
Also, by the definition of (ϵ, δ)-matching

∑
a∼bw(a, b) ≥ 1 − δ. Also, for all a ∼ b, W (a, b) ≥

w(a, b). Thus, for any subset T , we have that
∑

(a,b)∈T W (a, b) ≤
∑

(a,b)∈T w(a, b) + δ. Then,∑
b∈S Pr[W|Ω2

∈ S] =
∑

b∈S
∑

a∼bW (a, b) ≤
∑

b∈S
∑

a∼bw(a, b) + δ. By the definition of (ϵ, δ)-
matching,

∑
b∈S
∑

a∼bw(a, b) ≤ eϵ
∑

b∈S Pr[B = b], which concludes the first part of the proof.
Next, we show that given a satisfying neighbor-respecting refined distribution W , we can con-

struct an (ϵ, δ)-matching w(·, ·). In fact, it is easy to construct such w. We first let w(a, b) = W (a, b)
for all a ∼ b. For any “overflowing” vertex b ∈ Ω2, such that Pr[W|Ω2

= b] =
∑

a∼bW (a, b) >
eϵ Pr[B = b], we continuously reduce some weight of w on some adjacent edges (a, b), until∑

a∼bw(a, b) = Pr[B = b]. We do the adjustment simultaneously for all “overflowing” vertices
because the adjustments will not interfere with each other. We only need to prove that the total
“reduced weight” is no more than δ, so the matching satisfies that

∑
a,bw(a, b) ≥ 1 − δ. Since

Dδ(W|Ω2
‖B) ≤ ϵ, we have that∑

b∈Ω2

[
Pr[W|Ω2

= b]− eϵ Pr[B = b]
]
+
≤ δ,

which is exactly the amount of the reduced weight of w.
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A.2 Equivalence of NPDO and Symmetric NPDO
The following lemma allows us to show that the weaker notion of NPDO in [ZSCM23] can achieve
the symmetric property for the case of finite sample spaces.

Lemma A.1 (Bridging the Symmetry Gap). Suppose A and B are distributions on finite sample
spaces Ω1 and Ω2, respectively, where ∼ is a neighboring relation on (Ω1,Ω2). Let ϵ ≥ 0 and
0 ≤ δ ≤ 1. Suppose Dδ

∼(A‖B) ≤ ϵ and Dδ
∼(B‖A) ≤ ϵ, i.e., A and B are (ϵ, δ)-close w.r.t the

neighboring relation ∼. Then, there exists a refinement pairing W and U for A and B such that
max{Dδ(W‖U),Dδ(U‖W )} ≤ ϵ.

Remark A.2. The converse of Lemma A.1 is trivial.

Proof. In this proof, we visualize the relation ∼ as a bipartite graph on (Ω1,Ω2). For i ∈ Ω1 and
j ∈ Ω2, we use A(i) and B(j) to denote the corresponding probability masses. Sometimes, we
denote ρ := eϵ for convenience.

Since Dδ
∼(A‖B) ≤ ϵ, we have an (ϵ, δ)-matching w w.r.t ∼ from A to B. Also, Dδ

∼(B‖A) ≤ ϵ,
so we have an (ϵ, δ)-matching u w.r.t ∼ from B to A. For each edge (i, j) ∈ Ω1×Ω2 that i ∼ j, we
have the edge weights w(i, j) and u(i, j).

Constraints on w and u. We have the following constraints on w:

• Conservation constraint. For any i ∈ Ω1,
∑

j∈Ω2:j∼iw(i, j) ≤ A(i).

• Receiving constraint. For any j ∈ Ω2,
∑

i∈Ω1:i∼j w(i, j) ≤ ρB(j).

• Total weight constraint.
∑

(i,j):i∼j w(i, j) ≥ 1− δ.

We have the following constraints on u:

• Receiving constraint. For any i ∈ Ω1,
∑

j∈Ω2:j∼i u(i, j) ≤ ρA(i).

• Conservation constraint. For any j ∈ Ω2,
∑

i∈Ω1:i∼j u(i, j) ≤ B(j).

• Total weight constraint.
∑

(i,j):i∼j u(i, j) ≥ 1− δ.

Violating Edge. An edge (i, j) is called a legal edge if the following condition is satisfied:

e−ϵ · u(i, j) ≤ w(i, j) ≤ eϵ · u(i, j).

Otherwise, it is called a violating edge. If there is no violating edge, based on the matchings w
and u, we can define induce two distributions W and U as a neighbor-respecting refinement pairing
φ between A and B using the idea in the proof of Lemma 2.7. We first check that Dδ(W‖U) ≤ ϵ.
For any S ⊆ Ω1 × Ω2, we have

Pr[W ∈ S] ≤
∑

(i,j)∈Ω1×Ω2

w(i, j) + δ ≤
∑

(i,j)∈Ω1×Ω2

eϵ · u(i, j) + δ ≤ eϵ Pr[U ∈ S] + δ,

where the first inequality follows from the total weight constraint on w and the second inequality
follows because there is no violating edge. Similarly, we can show that Dδ(U‖W ) ≤ ϵ. Hence, W
and U are indeed the required refinement pair.
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Algorithm 1: OneStepAdjust
1 If any violating edge becomes legal during the execution, the algorithm halts.
2 Find a violating edge i1, j1 such that w(i1, j1) > ρu(i1, j1) ;
3 if Conservation constraint at j1 is not tight then
4 Let ∆ be the minimum of the following:

• (w(i1, j1)− ρu(i1, j1))/ρ ; // The min amount of increasing u(i1, j1) to fix (j1 → i1)

• B(j1)−
∑

i:i∼j1
u(i, j1) ; // The slack of the conservation constraint at j1

• ρA(i1)−
∑

j:j∼i1
u(i1, j) ; // The slack of the receiving constraint at i1

Increase u(i1, j1) by ∆ ;
5 end
6 while Receving constraint at i1 is not tight do
7 Find an edge (i′, j1) such that w(i′, j1) < ρu(i′, j1) ;
8 Let ∆ be the minimum of the following:

• (w(i1, j1)− ρu(i1, j1))/ρ ; // The min amount of increasing u(i1, j1) to fix (j1 → i1)

• (ρu(i′, j1)− w(i′, j1))/ρ ; // The max amount of legally decreasing u(i′, j1)

• ρA(i1)−
∑

j:j∼i1
u(i1, j) ; // The slack of the receiving constraint at i1

Increase u(i1, j1) and decrease u(i′, j1) by ∆;
9 end

10 Let the visited path P = (j1, i1) ;
11 while true do
12 Let the last vertex in P be it ∈ Ω1 ;

// When the last vertex in P is some jt ∈ Ω2, the adjustment will be made

symmetically on the weights of u.
13 Find a violating edge (it → jt+1) that u(it, jt+1) > ρw(it, jt+1) ;
14 if jt+1 is not visited then
15 Append jt+1 to P ;
16 for ℓ = t, . . . , 1 do
17 if jℓ+1 is tight then break;
18 Let ∆ℓ be the minimum of the following:

• ρB(jℓ+1)−
∑

i:i∼jℓ+1
w(i, jℓ+1) ; // The slack of the receiving constraint at jℓ+1

• (u(iℓ, jℓ+1)− ρw(iℓ, jℓ+1))/ρ ; // The min amount of increasing w(iℓ, jℓ+1) to fix

(iℓ → jℓ+1)

• w(iℓ, jℓ)− ρu(iℓ, jℓ) ; // The min amount of decreasing w(iℓ, jℓ) to fix (iℓ ← jℓ)

Increase w(iℓ, jℓ+1) and decrease w(iℓ, jℓ) by ∆ ;
19 end
20 else
21 Let the loop be (jc1 → ic1 → · · · → jcm → icm) and denote jcm+1 = jc1 ;
22 Let ∆ be the minimal adjustment for w to make one edge legal along the loop ;
23 For all t ∈ [m], decrease w(ict , jct) and increase w(ict , jct+1) by ∆ ; // At least

one violating edge becomes legal.

24 end
25 end
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Edge Weights Adjustment. Our goal is to adjust the edge weights w and u such that all edges
eventually become legal, while maintaining all weight constraints.

The easy case is ρ = 1, because we simply set the w′(i, j) = u′(i, j) = w(i,j)+u(i,j)
2 . It is easy to

verify that w′ and u′ satisfy all the requirements. Hence, we assume ρ > 1 for the rest of the proof.
We consider a subgraph of the bipartite graph consisting of violation edges. We assign a direction

to each violating edge, depending on how the condition is violated. For i ∈ Ω1 and j ∈ Ω2:

• If w(i, j) > ρu(i, j), we assign a direction (j → i) to the edge.

• If u(i, j) > ρw(i, j), we assign a direction (i→ j) to the edge.

Our strategy is to adjust w and u iteratively, until all edges are legal. We will maintain the
receiving and conservation constraints during the adjustment. Also, our adjustment will only
maintain or increase the total weight of w or u, so they still satisfy the total weight constraint. In
each step, we will make at least one violating edge legal without any legal edge becoming violating
again. This guarantees that the adjustment process will terminate in a finite number of steps.

One Step Adjustment. We start from any violating edge. Without loss of generality, say i1 ∈ Ω1

and j1 ∈ Ω2 form a violating edge such that the direction is j1 → i1, i.e., w(i1, j1) > ρu(i1, j1),
which means u(i1, j1) is too small and we will try to increase it.

Case 1: The conservation constraint at j1 and the receiving constraint at i1 are both not tight.
We can directly increase u(i1, j1) until at least one constraint becomes tight.

Case 2: The conservation constraint at j1 is tight but the receiving constraint at i1 is not tight.
We have that ρ

∑
i∼j1

u(i, j1) = ρB(j) ≥
∑

i∼j1
w(i, j1). But as long as ρu(i1, j1) < w(i1, j1), there

must be an i′, such that ρu(i′, j1) > w(i′, j1). We can increase u(i1, j1) and decrease u(i′, j1) until
the receiving constraint at i1 is tight or ρu(i′, j1) = w(i′, j1). If we cannot decrease u(i′, j1) anymore,
we can always find another i′′ ∈ Ω1 and continue. Notice that since we will simultaneously increase
an edge and decrease an edge by the same amount, the total weight constraint is maintained.

Case 3: The tricky case is that the receiving constraint at i1 ∈ Ω1 becomes tight before j1 → i1
becomes legal. We next argue that there must exist j2 ∈ Ω2 such that the edge (i1 → j2) is violating.
The reason is that we know the receiving constraint at i1 is tight:

∑
j∼i1

u(i1, j) = ρA(i1) ≥
ρ
∑

j∼i1
w(i1, j). Moreover, i1 has an incoming violating edge (i1, j1): u(i1, j1) ≤ ρu(i1, j) <

w(i1, j1) ≤ ρw(i1, j1). Hence, there must exists a violating edge (i1 → j2) that u(i1, j2) > ρw(i1, j2).
Now, suppose the receiving constraint at j2 is not tight. We can now similarly increase w(i1, j2)
and decrease w(i1, j1) simultaneously, until one edge becomes legal or the receving constraints at
j2 becomes tight.

RT

RT

RTRT

(a) (b) (c)

Figure 3: Illustration of Case 3. When the receiving constraint at i1 becomes tight, there will
be a j2 such that i1 → j2. Adjusting the weight of w(i1, j1), w(i1, j2) will lead to three possible
case: (a) (i1 → j2)becomes legal; (b) Both receiving constraint at i1 and j2 become tight; (c)
(j1 → i1)becomes legal.

29



We can now see a repeating pattern. Whenver a vertex has tight receiving constraint and
at least one incoming violating edge, it has an outgoing violating edge. We call such a vertex
as a tight vertex. It applies to j2 and there must exist a violating edge (j2 → i2) such that
w(i2, j2) > ρu(i2, j2). Again, if i2 is not tight, then we are able to increase u(i2, j2) and decrease
u(i1, j2). Notice that now i1 is not tight because of the decreasing of u(i1, j2). We can now adjust
u(i1, j1) and u(i′, j1) until one edge becomes legal or i1 is tight.

The full description of our strategy is described as following and also presented in Algorithm 1.
Suppose the current visited path P contains vertices j1, i1, j2, i2, . . . , jt, it. By construction,

all the vertices along the path except j1 have tight receiving constraints. By the aforementioned
argument, there exists a violation edge (it → jt+1). Now, assume jt+1 is not visited before. If jt+1’s
receiving constraint is not tight, we are able to increase w(it, jt+1) and decrease w(it, jt), until jt+1

becomes tight. We now know jt is not tight. If the previous adjustment does not fix any edges, we
can continue to do the adjustment “backward” along the path: increase w(it−1, jt) and decrease
w(it−1, jt−1). We keep doing the “back adjustment propagation” until one edge becomes legal or all
the vertices along the path except j1 become tight again. We then add jt+1 to the path and repeat
the process if no edge is fixed. The case when the last vertex in P is some jt ∈ Ω2 is symmetrical,
except that we are adjusting the weight of u instead of w.

Now, what if jt+1 is visited before? It means we find a loop consisting of violating edges. Say
the loop has 2m vertices: (jc1 , ic1 , . . . , jcm , icm). Take ∆ be the minimal amount of adjustment for w
to make at least one edge along the loop legal. We can now adjust all the w weights along the loop:
decrease all w(ict , jct) by ∆ and increase w(ict , jct+1) by ∆. We will also decrease w(icm , jc1) by ∆.
This ensures that at least one of the edge along the loop will become legal and it will not violate
any receiving nor any preserving constraints because we are always adjusting a pair of adjacent
edge to any vertex simultaneously. Finally, this also maintains the total weight constraint because
there are exactly m edges increased by ∆ and m edges decreased by ∆!

This process will terminate in a finite number of steps because we consider finite sample spaces
Ω1 and Ω2.

B Group Privacy Theorem for NPDO
In this section, we provide the characterization of group privacy theorem for NPDO, described in
the language of power function.

Triangle Inequality and Group Privacy. Given the privacy guarantee for neighboring inputs,
group privacy refers to the privacy guarantees that can be deduced for multi-hop neighboring inputs.
When we define differential privacy or NPDO with power functions, the group privacy theorem is
consequence of the triangle ineuqality.

Fact B.1 (Triangle Inequality for Power Functions [DRS22, Theorem 2.14]). Suppose X,Y, Z are
distributions on the same sample space such that Pow(X‖Y ) ≤ g1 and Pow(Y ‖Z) ≤ g2. Then,
Pow(X‖Z) ≤ g2 ◦ g1, where the composition is defined as (g2 ◦ g1)(x) := g2(g1(x)).

In other words, Pow(X‖Z) ≤ Pow(Y ‖Z) ◦ Pow(X‖Y ).

Proof. (Sketch) Let S be any measurable subset in the sample space. From Pow(X‖Y ) ≤ g1, we
have Pr[Y ∈ S] ≤ g1(Pr[X ∈ S]). From Pow(Y ‖Z) ≤ g2, we have Pr[Z ∈ S] ≤ g2(Pr[Y ∈ S]) ≤
(g2 ◦ g1)(Pr[X ∈ S]), as required.
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To achieve a similar result to Fact B.1 for NPDO, we need a corresponding lemma that considers
the neighbor-respecting refinement pairing that is involved in the definition of NPDO(Pow) as in
Definition 5.3.

Lemma B.2 (Triangle Inequality for Refinement Pairs). Suppose X1, X2 and X3 are distribu-
tions on sample spaces Ω1, Ω2 and Ω3, respectively. Furthermore, suppose for each i ∈ {1, 2},
there is some neighbor-respecting refinement pairing µi between Xi and Xi+1 with respect to some
neighboring relation ∼i on (Ωi,Ωi+1) such that Powµi(Xi‖Xi+1) ≤ gi.

Then, by defining a neighboring relation ∼3 on (Ω1,Ω3) as having a common neighbor in Ω2,
there exists a neighbor-respecting refinement pairing φ between X1 and X3 (w.r.t. ∼3) such that
Powφ(X1‖X3) ≤ g2 ◦ g1.

Proof. We first define refinements for all three distributions X1, X2 and X3 on the common sample
space Ω1 × Ω2 × Ω3.

From the given pairing µ1 between X1 and X2, we can write µ1(X1) = (X1, Y
(1)
2 (X1)), where

Y
(1)
2 (u) is the conditional distribution on Ω2 given X1 = u. (From the neighboring-respecting

property, the support of Y (1)
2 (u) may contain only neighbors of u.) Similarly, we can write µ1(X2) =

(Y
(2)
1 (X2), X2), where Y

(2)
1 (v) is the conditional distribution on Ω1 given X2 = v.

For the pairing µ2 between X2 and X3, we define the following similarly for distributions in
Ω2 × Ω3: µ2(X2) = (X2, Y

(2)
3 (X2)) and µ2(X3) = (Y

(3)
2 (X3), X3).

Next, we can define the refinement triplet ρ̂ for all three distributions on Ω1 × Ω2 × Ω3:

• ρ̂(X1) = (X1, Y
(1)
2 (X1), Y

(2)
3 (Y

(1)
2 (X1))):

– Sample u ∈ Ω1 according to X1;
– Sample v ∈ Ω2 from Y

(1)
2 (u);

– Sample w ∈ Ω3 from Y
(2)
3 (v);

– Output (u, v, w), which ensures that u ∼1 v ∼2 w.

• ρ̂(X2) = (Y
(2)
1 (X2), X2, Y

(2)
3 (X2)):

– Sample v ∈ Ω2 from X2;
– Sample u from Y

(2)
1 (v);

– Sample w from Y
(2)
3 (v);

– Output (u, v, w), which ensures that u ∼1 v ∼2 w.

• ρ̂(X3) = (Y
(2)
1 (Y

(3)
2 (X3)), Y

(3)
2 (X3), X3)

– Sample w ∈ Ω3 from X3;
– Sample v ∈ Ω2 from Y

(3)
2 (w);

– Sample u ∈ Ω1 from Y
(2)
1 (v);

– Output (u, v, w), which ensures that u ∼1 v ∼2 w.

Now we have
Pow(ρ̂(X1)‖ρ̂(X2)) = Pow(µ1(X1)‖µ1(X2)) ≤ g1.
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This is a consequence of the post-processing theorem of power function, because starting from the
distribution pair µ1 on Ω1 × Ω2, one applies the same conditional distribution Y

(2)
3 (·) on Ω3 given

the generated value in Ω2 to produce the distribution pair ρ̂. By a similar argument, we have

Pow(ρ̂(X2)‖ρ̂(X3)) = Pow(µ2(X2)‖µ1(X3)) ≤ g2.

Finally, we can define the neighbor-respecting refinement pairing ρ between X1 and X3 by the
marginal distribution of ρ̂(X1) and ρ̂(X3) over Ω1 × Ω3. Then, we have: Pow(ρ(X1)‖ρ(X3)) ≤
Pow(ρ̂(X1)‖ρ̂(X3)) ≤ g2 ◦ g1, where the first inequality is due to data processing and the second
inequality follows from Fact B.1. Moreover, from the construction, if (u,w) is in the support of
ρ(X1) or ρ(X3), then there exists v ∈ Ω2 such that u ∼1 v ∼2 w. This completes the proof.

Corollary B.3. Suppose a mechanism is g-NPDO(Pow) with respect to its input and output neigh-
boring relations. Then, the mechanism is g◦k-NPDO(Pow) with respect to its k-hop input and
output neighboring relations.

Proof. This can be proved by induction on k, where the inductive step is a straightforward appli-
cation of Lemma B.2.
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