
A New Formulation of the Linear Equivalence
Problem and Shorter LESS Signatures

Edoardo Persichetti, Paolo Santini

Florida Atlantic University, Sapienza University of Rome and
Marche Polytechnic University

Abstract. The Linear Equivalence Problem (LEP) asks to find a linear
isometry between a given pair of linear codes; in the Hamming weight
this is known as a monomial map. LEP has been used in cryptography
to design the family of LESS signatures, which includes also some ad-
vanced schemes, such as as ring and identity-based signatures. All of
these schemes are obtained applying the Fiat-Shamir transformation to
a Sigma protocol, in which the prover’s responses contain a description
of how the monomial map acts on all code coordinates; such a descrip-
tion constitutes the vast majority of the signature size. In this paper, we
propose a new formulation of LEP, which we refer to as Information-Set
(IS)-LEP. Exploiting IS-LEP, it is enough for the prover to provide the
description of the monomial action only on an information set, instead
of all the coordinates. Thanks to this new formulation, we are able to
drastically reduce signature sizes for all LESS signature schemes, without
any relevant computational overhead. We prove that IS-LEP and LEP
are completely equivalent (indeed, the same problem), which means that
improvement comes with no additional security assumption, either.

1 Introduction

The Code Equivalence Problem (CEP) is a traditional problem of coding the-
ory, which asks to determine whether two given linear codes are equivalent to
each other. For the canonical (and most studied) case of isometries in the Ham-
ming metric, the notion of equivalence is linked to the existence of a generalized
permutation (i.e. with non-unitary scaling factors), also known as monomial
transformation. In such a setting, the problem is normally referred to as the
Linear Equivalence Problem (LEP).

The computational version of LEP, which is of interest in cryptography, may
appear to be somewhat less secure than other problems from coding theory such
as the well-known Syndrome Decoding Problem (SDP); unlike SDP, in fact, LEP
is probably not NP-hard, since this would imply the collapse of the polynomial
hierarchy [PR97]. Nevertheless, perhaps surprisingly, the best known algorithms
for LEP (at least, for the regime of interest) utilize an SDP solver as a subroutine.
Moreover, the application of an isometry to a linear code can be described as a
(non-commutative) group action with certain nice properties, which is exactly
the key for its use in cryptographic applications.

1.1 Related Works

The first cryptosystem built on LEP was presented in 2020 under the name
LESS, acronym for Linear Equivalence Signature Scheme [Bia+20]. The paper
describes a simple 3-pass Zero-Knowledge Identification (ZK-ID) protocol, and
then shows how this can be transformed into a full-fledged signature scheme via
Fiat-Shamir. In a follow-up work [Bar+21], the authors then refine the scheme
using some familiar protocol-level techniques such as the use of multiple keys
(to amplify soundness) and fixed-weight challenge strings (to reduce signature
length); the work also features new parameters, adjusted to withstand a novel
LEP solver introduced by Beullens [Beu20]. In fact, a comprehensive study of
solvers for LEP was subsequently put together in [Bar+23], with the aim of
presenting a clear picture of the best attack techniques, and a tool for selecting
secure parameters.

The group action structure connected to LEP proved to be appealing as a po-
tential building block in many constructions, developed in ensuing works: some
successfully, such as the ring and identity-based signatures proposed in [Bar+22],
some unsuccessfully (e.g. [ZZ21; PRS22]). Finally, the appearance of LESS has
been followed by several instantations in various other settings, including lat-
tices [DW22], matrix codes [Cho+22], trilinear forms [Tan+22; DG22] etc.

The essential structure of the LESS protocol is as follows. Starting from a
public code C , the prover generates their public key as C 1 “ µpC q where µ is a
linear isometry. Then, the protocol goes as in Figure 1.

C C ˚ C 1

µ

τ τ 1
“ τ ˝ µ´1

Fig. 1: Representation of the proof of knowledge structure in LESS

In each execution of the protocol, the prover samples an ephemeral map τ and
commits to C ˚ “ τpC q. The verifier then asks to disclose one of the following two
maps: the one on the left between C and C ˚, or the one on the right between C ˚

and C 1. The honest prover is always able to provide both maps, i.e., can always
construct a graph like the one in Figure 1. A cheating prover, instead, can only
craft one of the two maps at a given time and try to guess which one is going
to be asked; he cannot, however, reproduce the full graph, without knowing the
secret key (which requires to solve a LEP instance). This informal argument of
witness extractability intuitively leads to a soundness error of 1{2; to achieve
λ bits of security, it is then necessary to utilize standard error amplification
techniques such as parallel repetitions.

2

Linear codes are customarily represented through their generator matrices,
whereas isometries consist of column transformations together with a change of
basis. This means that, in practice, C 1 is represented as SµpGq, where G P Fkˆn

q

is a generator matrix for C and S is non-singular of size k. To check that two
codes are equal, one can compute a special generator matrix, say, the one in
systematic form, which can be naturally obtained with one Gaussian elimination.
This allows to greatly reduce the communication cost, because the prover can
commit to the hash of the systematic generator of C ˚: the verifier will recompute
such a matrix, hash it, and check consistence with the commitment. Without
this consideration, the LESS scheme would not be practical, since the size of
commitments would be gigantic.

Two meaningful improvements appeared in [Bar+21]. The first one consists
in having multiple codes in the public key, which allows to enrich the graph in
Figure 1 with some additional maps on the right. The corresponding graph is
reported in Figure 2; in the figure, we are denoting τ 1

i “ τ ˝ µ´1.

C C ˚

C 1
1

C 1
2

...

C 1
s

µ1

µ2

µs

τ

τ 1
1

τ 1
2

τ 1
s

Fig. 2: The LESS-FM proof of knowledge with multiple keys

With this variant, the verifier will choose either the map on the left or one of
the N maps on the right. It is easy to see that an adversary can reply correctly
only by guessing, in advance, which instance will be selected by the prover. This
leads to an amplified soundness error of 1

s`1 and, consequently, only λ
log2ps`1q

repetitions are required. With respect to the LESS scheme, this leads to an
improvement for what concerns both the signature size and the computational
overhead on the verifier’s side, since the number of parallel repetitions is reduced
by a factor log2ps ` 1q. Obviously, the price to pay is a steep increase in public
key size.

3

The second optimization introduced in LESS-FM consists of using challenges
with a non-uniform distribution, so that the map on the left is the one queried
most frequently. This is because such a map, being entirely random, can be
represented compactly by the seed used to generate it. To preserve the soundness
error, which now behaves like a binomial coefficient, one needs to increase the
number of overall repetitions; however, the number of maps on the right which
are verified (which cannot be compressed with seeds) is much smaller. This yields
a significant reduction in signature size, which is further improved by utilizing
a seed tree [BKP20] to efficiently transmit the seeds.

1.2 Our Contributions

In this work, we describe a new technique which greatly improves the perfor-
mance of the scheme. Unlike the ones described in LESS-FM, which are some-
what standard techniques applicable to any Sigma protocol with the same struc-
ture, our improvement is specific to the LEP setting.

A new method for verification. In a nutshell, our technique consists of a com-
pact way to verify the maps of the graph in Figure 2. The main idea is based
on the following key observation: if two linear codes are linearly equivalent, once
two information sets are mapped to each other, the remaining coordinates are
identical up to a linear isometry (i.e. a monomial), whose existence can be effi-
ciently checked. This means that the prover does not need to include the entire
map in his response, since a description of how the map acts on an information
set would be enough. This brings to a direct improvement in the signature size
of LESS signature schemes: instead of n log2pnq ` n log2pq ´ 1q bits, the binary
size for equivalences on the right is reduced to only k log2pnq ` k log2pq ´ 1q

bits. This reduces the size of responses by a factor equal to the code rate k{n:
since the codes employed in LESS have all rate « 1{2, we essentially halve the
communication cost (factoring out the cost of the small overhead due to seeds,
salts and other minor items).

A new notion of equivalence. Our improvement comes with several technical
caveats. The main concern, is that we have to make sure that this novel way to
verify that two codes are indeed equivalent, does not introduce vulnerabilities.
To do this, we introduce a new notion of equivalence, which we call Information
Set (IS) - linear equivalence, to emphasize that the focus is on how the linear
map acts on an information set. We then show that the associated decisional
problem, which we call IS-LEP, is literally the same as LEP: any solver for IS-
LEP can in fact be used to solve LEP, and viceversa. Formally, what we prove
is something stronger, namely that any “YES” (resp. “NO”) instance for LEP
is also a “YES” (resp. “NO”) instance for IS-LEP: this implies that IS-LEP and
LEP are actually the same problem. The definition of IS-LEP is the focus of
section 4.

4

Application to proofs of knowledge. In Section 5 we deal with the practical prob-
lem of embedding the verification of IS-LEP into proof-of-knowledge protocols
as in Figures 1 and 2. Indeed, unlike the existing schemes, in this case the prover
cannot commit anymore to the systematic form of C ˚. The issue is that now the
prover provides only a truncated representation of τ 1: consequently, the verifier
computes a code which is identical to C ˚ in k out of n coordinates, and so its
systematic form will be different from the one of C ˚. To circumvent this issue,
we modify the verification procedure and require that, after the computation of
the systematic form, both the verifier and the prover execute an ad-hoc function
which is an invariant under truncated monomial maps. We show that these ex-
tra steps have a cost which is much smaller than that of Gaussian elimination
so that, in practice, the overall computational cost is only slightly affected. We
also address the problem of communicating the information set which is used for
verification: with some clever tricks, this cost can be mitigated and also entirely
removed.

Practical outlook. Finally, in Section 6 we present some new instances of LESS
signatures. These include new instances also for the ring signatures described
in [Bar+22]. These are formulated with additional constraints and guidelines in
mind, oriented at providing the best performance for the intended use case, and
desired security level. Indeed, after recalling the state-of-the-art attacks on LEP,
we propose a simple procedure to design secure LEP instances. This leads to
parameters that are slightly larger than those employed in [Bar+21; Bar+22]
but are more conservative. To be sure, this new procedure not only rules out
the best attacks, i.e. the ones based on finding low-weight codewords (which
is computationally equivalent to SDP), but also possible improvements to such
attacks. This provides a very high level of confidence on the new parameters:
new attacks, in order to significantly lower the security level, would need to be
radically different from those based on low-weight codeword finding.

As mentioned before, the sizes resulting from this process are nearly half of
those that would be obtained without our improvement. To be precise, we are
able to produce signature sizes that range between 5 and 8.5 KiB, for NIST’s se-
curity category 1 (comparable to 128 bits of classical security). We also propose
parameters for categories 3 and 5, ranging respectively between 14 and 18.5 KiB
for the former, and 26 and 32.5 KiB for the latter. In all cases except one, the
sum of our public keys and signatures is below 100KiB. To complete the picture,
we include also some implementation figures, that we obtain by a reference im-
plementation in ANSI C. While these numbers are far from optimized, they are
still useful to show that the scheme is practical: indeed, the number of cycles is
comparable with that obtained measuring the reference code of e.g. SPHINCS+.

2 Notation and Background

In this section we establish the notation that we will use throughout the paper,
as well as recall basic concepts about linear codes.

5

2.1 Notation

As usual, we use Fq to indicate the finite field with q elements and F˚
q to indicate

its multiplicative group. Given a matrix A over Fq, we write ai to indicate its
i-th column. The general linear group formed by the non singular kˆk matrices
over Fq is indicated as GLk. For an ordered set J , we write AJ to indicate
the matrix formed by the columns of A that are indexed by the elements in J ;
equivalent notation is adopted for vectors. The identity with size k is indicated
as Ik, while 0 denotes the null-matrix (its dimensions will always be clear from
the context). The standard matrix product between A and B is indicated as
AB, i.e., without any operator. In some cases, to avoid confusion with other
operations, we will make it explicit and write the product as A ¨ B.

We denote by Sn the symmetric group on n elements, and consider its el-
ements as permutations of n objects. We represent permutations in one-line
notation, as n-tuples of the form π :“ pi1, i2, ¨ ¨ ¨ , inq, so that πpjq “ ij , i.e., π
moves the j-th element to position ij . For a vector a “ pa1, ¨ ¨ ¨ , anq, it holds
that

πpaq “
`

aπ´1p1q, ¨ ¨ ¨ , aπ´1pnq

˘

.

We denote by Mn the set of monomial tranformations, that is, transformations
of the form µ :“ pπ,vq with π P Sn and v P F˚n

q , acting as follows

µpaq “ πpaq

¨

˚

˚

˚

˝

v1
v2

. . .

vn

˛

‹

‹

‹

‚

“
`

v1aπ´1p1q, ¨ ¨ ¨ , vnaπ´1pnq

˘

.

We naturally extend the action of monomials on matrices A, i.e., µpAq indicates
the matrix resulting from the action of µ on the columns of A. For two mono-
mials µ, µ1 P Mn, we write µ ˝ µ1 to denote the monomial resulting from their
combination.

2.2 Linear Codes

A linear code C Ď Fn
q is a k-dimensional subspace of Fn

q . The quantity R “

k{n is called code rate, and any vector c P C is called codeword. A canonical
representation for a code is through a generator matrix, that is, a full-rank matrix
G P Fkˆn

q such that C “
␣

uG | u P Fk
q

(

. Any code admits multiple generator
matrices: for any S P GLk, which can be seen as a change of basis, it holds that
SG andG generate the same code. The dual code C K is the set of all vectors that
are orthogonal to codewords in C , that is, C K “

␣

v P Fn
q | cvJ “ 0, @c P C

(

.

It is easy to see that C K is a linear subspace of Fn
q with dimension r “ n ´ k

(which is normally called redundancy). The dual code is generated by a full-rank
matrix H P Frˆn

q , which is called parity-check matrix and is such that GHJ “ 0.
Obviously, for any S P GLr, H and SH are parity-check matrices for the same
code.

6

For J Ď t1, ¨ ¨ ¨ , nu, we write CJ :“ tcJ | c P C u. We say that a set J with
size k is an information set for a code C if, for any two distinct c, c1 P C , it
holds that cJ ‰ c1

J , which implies that CJ contains qk elements. Equivalently,
J is an information set if, for G being a generator matrix for C , it holds that
GJ is non singular. Normally, we say that a generator matrix G is in systematic
form if G “

`

Ik,V
˘

, where Ik is the identity matrix of size k and V P Fkˆn.
This matrix exists whenever J “ t1, ¨ ¨ ¨ , ku is an information set: starting from
any generator matrix G, we obtain the one in systematic form as G´1

J G. Also,
the systematic matrix is an invariant under changes of basis: if G1 “ SG, then
its systematic form is G1´1

J G1 “ G´1
J S´1SG “ G´1

J G.

In principle, there is no guarantee that t1, ¨ ¨ ¨ , ku is an information set. Thus,
sometimes one considers a slightly more general definition: given a matrix G, its
systematic form is G´1

J G, where J is the first (in some lexicographic ordering)
subset of t1, ¨ ¨ ¨ , nu of size k and such that GJ is non-singular. To encompass the
canonical definition of systematic matrix, we impose that the lexicographically
first set is t1, ¨ ¨ ¨ , ku. It is easy to see that also this generalized definition is
invariant under changes of basis: to emphasize this property, we will write SFpC q

to denote the function that, on input a linear code, returns its systematic form.

Finally, we summarize here the traditional notion of equivalence between two
codes, in the Hamming metric. To do this, we first clarify that we indicate with
µpC qq the linear code obtained by applying the monomial transformation µ to
all the codewords c P C .

Definition 1 (Linear Equivalence). We say that two codes C ,C 1 Ď Fn
q are

linearly equivalent, and write C „ C 1, if there exists a monomial transformation
µ P Mn such that C 1 “ µpC q. That is, given generator matrices G,G1 P Fkˆn

q

for C and C 1, respectively, the two codes are linearly equivalent if G1 “ SµpGq

for some non-singular matrix S P GLk, or analogously, if SFpC 1q “ SFpµpC qq.

The above definition encompasses the weaker notion of permutation equiva-
lence, which is the particular case where the monomial µ is a permutation.

3 The Code Equivalence Problem

The code equivalence problem generically asks, on input two codes C and C 1, to
find a linear isometry mapping one code into the other. The problem is sometimes
distinguished into into two versions, depending on the type of isometry that one
desires to identify. We present here only the more general one.

Problem 1 (Linear Equivalence Problem (LEP)) Given C ,C 1 Ď Fn
q with

dimension k, decide if C „ C 1, i.e., if there exists µ P Mn such that C 1 “ µpC q.
Equivalently, given G,G1 P Fkˆn

q (generators for C and C 1, respectively), decide
whether there exist µ P Mn and S P GLk such that G1 “ SµpGq.

It is easy to see that the the Permutation Equivalence Problem (PEP) is just
a special case of LEP, since any permutation is a monomial with scalar factors
equal to 1.

7

Avoiding Weak Instances. Given its importance in coding theory, LEP has been
studied for decades. As we have already mentioned, a well-known result states
that the NP-completeness of LEP would imply a collapse of the polynomial
hierarchy [PR97]. For PEP, there exist certain algorithms that can have a poly-
nomial running time [Sen00; BOS19]. Namely, these attacks take time times in

O
´

n3 ` q
rk
¯

and O
´

n2.3`rk
¯

, respectively, where rk is the dimension of the hull,

that is, the linear code C XC K. For random codes, the size of the hull tends to a
small constant [Sen97], so that the above attacks become essentially polynomial
in the code length. To counter these attacks, it suffices to use codes with large
enough hull, or even self-orthogonal codes, that is, codes such that C Ď C K. In
this extreme case, in fact, the hull is equal to the code itself, so that rk “ k “ Rn,
and the attacks in [Sen00; BOS19] take exponential time.

For LEP, however, it is still safe to use random codes, provided that the
underlying finite field is sufficiently large. Indeed, there exists a polynomial time
map that takes any LEP instance into a PEP instance, so that any solver for
PEP can be used to solve LEP. However, when q ě 5, this reduction always
ends in a self-dual code [SS13]. This guarantees that the algorithms in [Sen00;
BOS19] have maximum, exponential running time.

Attacks based on Low-weight Codeword Finding. The other class of attacks
against PEP and LEP is characterized by the search for codewords with low
Hamming weight (or subcodes with small support) [Leo82; Beu21; Bar+23].
The description of these attacks requires several technicalities which, due to lack
of space, we cannot report here. Yet, they all share the common principle of
looking at a small set of codewords (or subcodes) from which the action of µ can
be recovered. For instance, Leon’s algorithm [Leo82] requires to find, for each
code, all codewords with weight ď w, that is,

A “ tc P C | wtpcq ď wu , A1 “
␣

c1 P C 1 | wtpc1q ď w
(

.

This guarantees that µpAq “ A1 and, when w ! n, we have |A| ! |C | “ qk:
roughly, since A and A1 contain a few codewords, reconstructing µ gets easy.
Modern algorithms relax the requirements of Leon and, instead, aim to find
a sufficiently large number of collisions. This idea has been first proposed in
[Beu21] and then refined in [Bar+23]. Here, by collision, we refer to a pair of
codewords c P C , c1 P C 1 such that µpcq “ c1. When the Hamming weights of
c and c1 are sufficiently small, collisions can be determined efficiently. The gain
with respect to Leon’s algorithm depends on several technicalities but, as a rule
of thumb, it is enough to consider that this attack outperforms Leon’s only if q
is sufficiently large.

Note that the attack in [Beu21] actually uses two-dimensional subcodes in-
stead of codewords. However, as observed in [Bar+23], this attack can be im-
proved by first finding low-weight codewords and then using them to build sub-
codes. This allows to improve upon the attack in [Beu21] since the component
codewords have a much smaller support size than the resulting subcode, hence
finding them is much easier.

8

Conservative Design Criteria. In practice, once weak instances are excluded,
the best attacks against LEP are those based on low-weight codeword finding.
Fortunately, this is one of the oldest and most studied problems in coding theory
and we have a pretty consolidated picture about the cost of the best solvers,
which are Information-Set Decoding (ISD) algorithms. In particular, for non-
binary fields, the state-of-the-art is Peters’ ISD [Pet10]. In the following, we will
denote by CISDpq, n, k, wq the cost of finding a single codeword with weight w,
in a code defined over Fq, with length n and dimension k.

Looking at the attacks summarized above, we see that they all follow a general
model, where an attacker always pursues the following strategy: i) produce two
lists L1 and L2 with short codewords, ii) find collisions, i.e., pairs of elements in
L1 and L2 that are presumably mapped by µ, and iii) use collisions to reconstruct
the secret monomial. To obtain a conservative point of view on these attacks,
we make the following choices:

- we assume that the technique employed to find collisions has no cost;

- we assume that the attacker never finds fake collisions, i.e., never considers
pc, c1q as a collision even if c ‰ µpc1q. Note that fake collisions may make
the monomial reconstruction unfeasible or, at the very least, much more
complicated. In fact, the possibility of fake collisions is exactly the reason
why the attacks in [Beu21; Bar+23] focus only on short codewords and, most
importantly, work only when the finite field is large enough;

- we assume that knowing one collision is enough to retrieve significant and
useful information about the secret monomial. Notice that all attacks, in-
stead, require to find a sufficiently large number of collisions. For instance,
Leon’s algorithm requires to determine all codewords with some bounded
weight. Analogously, the attacks in [Beu21; Bar+23] reconstruct exactly the
secret monomial only if a sufficiently large number of (not fake) collisions is
available. Yet, there may be ways to improve the monomial reconstruction
phase (i.e., efficient techniques that require a smaller number of collisions),
or to make use of some partial information. To show why this a concrete
possibility, consider the case in which C contains only one minimum weight
codeword c. This gets mapped into c1 “ µpcq P C 1. The pair pc, c1q already
provides some information about µ: for instance, if ci “ 0 and c1

j ‰ 0, we
learn that µ does not move i in position j.

Taking into account the above three conservative assumptions, we use the fol-
lowing criteria to select secure LEP instances.

Criterion 1 Let q, n, k denote, respectively, the finite field size, code length and
dimension. We consider only q ě 5 and random codes. We select n, k, q so
that, for any w P t1, ¨ ¨ ¨ , nu, finding lists L1 Ď C and L2 Ď C 1 with weight-w
codewords and such that L2 X µpL1q “ tµpcq | c P L1u is non empty, takes time
greater than 2λ.

9

This translates into a very simple way to select parameters. Indeed, let L1 and
L2 have the same size ℓ. Then, the cost to produce these lists is

f
`

ℓ,Npwq
˘

¨
CISDpn, k, q, wq

Npwq
,

where the terms fpℓ,Npwqq take into account the number of ISD calls to find ℓ
distinct codewords. The term Npwq accounts for the number of codewords with
weight w: since codes are random, this is well estimated as

Npwq “

ˆ

n

w

˙

pq ´ 1qwq´pn´kq.

The cost of each ISD call is divided byNpwq since, when multiple solutions exists,
the probability that ISD returns something gets larger; this effect is normally
referred to as Decoding One Out of Many (DOOM).

We now observe that, on average, we have

|L2 X µpL1q| “
|L1| ¨ |L2|

Npwq
“

ℓ2

Npwq
.

Indeed, for each codeword in L2, there is only one good collision among the Npwq

codewords in C . Since we populate L1 with ℓ random codewords, the probability
that such a codeword is indeed in L1 is ℓ

Npwq
. It follows that, in order to have at

least one collision in the expectation, it must hold that ℓ2 ě Npwq, which implies
ℓ ě

a

Npwq. So, ℓ ! Npwq and ℓ calls to ISD return, with high probability, ℓ
distinct codewords [Beu21]. Consequently, we have

f
`

ℓ,Npwq
˘

« ℓ “
a

Npwq.

Consequently, Criterion 1 translates into the following criterion.

Criterion 2 We consider random codes defined over Fq with q ě 5, and choose
q, n, k so that, for any w, it holds that

1
a

Npwq
¨ CISDpn, k, q, wq ą 2λ.

The above criterion emphasizes the fact that, when weak instances are avoided
and in light of existing attacks, solving LEP reduces to finding low-weight code-
words.

At the end of the day, as we will see in Section 6, the parameters we consider
in this paper are only slightly bigger than those previously proposed in [Bar+21].

10

4 A New Formulation

In this section we show that LEP can be reformulated using a more convenient
notion of equivalence, which allows for a much more compact representation for
the solution to the equivalence problem. We introduce a new definition of equiv-
alence between codes, which we call Information Set (IS) - Linear Equivalence,
and then define the associated decisional problem IS-LEP. The main difference
between LEP and IS-LEP is in that, for the latter, one is interested only in how
the linear map acts on an information set (i.e., on k positions instead of n). We
then show that IS-LEP is effectively the same as LEP, namely, that any “YES”
(resp., “NO”) instance of IS-LEP is also a “YES” (resp., “NO”) instance for
LEP.

4.1 Splitting Monomials with respect to Information Sets

To begin, we introduce some additional notation, which will help improve the
readability of the next topics.

Definition 2. Let G “ pg1, ¨ ¨ ¨ ,gnq P Fkˆn
q , µ “ pπ,vq P Mn and G1 “

µpGq. For any J 1 “ tj1
1, ¨ ¨ ¨ , j1

ku Ď t1, ¨ ¨ ¨ , nu, we define J “ π´1pJ 1q “
␣

π´1pj1q | j1 P J 1
(

. We define µpJ ÞÑJ 1
q P Mk as the monomial transformation

such that µpJ ÞÑJ 1
qpGJq “ G1

J 1 . Equivalently, we define µpzJ ÞÑzJ 1
q P Mn´k as the

monomial transformation such that µpJ ÞÑJ 1
qpGt1,¨¨¨ ,nuzJq “ G1

t1,¨¨¨ ,nuzJ 1 .

Determining µpJ ÞÑJ 1
q from the knowledge of µ “ pπ,vq and J 1 is easy. Indeed,

let us express µpJ ÞÑJ 1
q “

`

πpJ ÞÑJ 1
q,vpJ ÞÑJ 1

q
˘

. Then, it is enough to apply the
following rule: if the i-th column of G1

J 1 corresponds to the j-th column of GJ ,

multiplied by α, then we set πpJ ÞÑJ 1
qpjq “ i and v

pJ ÞÑJ 1
q

i “ α. With analogous

reasoning, one can compute µpzJ ÞÑzJ 1
q.

Splitting the action of a monomial with respect to a set J 1 is useful to un-
derstand how the map acts inside and outside an information set. Indeed, it is
easy to verify that the following relation holds

G1 “ S ¨ µpGq ùñ

#

G1
J 1 “ S ¨ µpJ ÞÑJ 1

qpGJq,

G1
t1,¨¨¨ ,nuzJ 1 “ S ¨ µpzJ ÞÑzJ 1

qpGt1,¨¨¨ ,nuzJq.
(1)

We will frequently make use of the above relations to describe how monomial
transformations act on specific sets of coordinates.

Example 1. Let us consider the example of n “ 8 and µ “ pπ,vq, with π “

p6, 5, 1, 3, 4, 7, 8, 2q and v “ p2, 3, 1, 5, 3, 4, 6, 1q over F7. We describe how µ can
be split, considering the set J 1 “ t2, 3, 6, 7u. We observe that the permutation
acts as follows (we are denoting a1 “ πpaq:

11

a1

a1
1

a2

a1
2

a3

a1
3

a4

a1
4

a5

a1
5

a6

a1
6

a7

a1
7

a8

a1
8

We have J “ t1, 4, 6, 8u, πpJ ÞÑJ 1
q “ p3, 2, 4, 1q and πpzJ ÞÑzJ 1

q “ p3, 1, 2, 4q. Con-
sidering also the action of v, we have that µpaq is:

2a3 3a8 1a4 5a5 3a2 4a1 6a6 1a7

Hence, vpJ ÞÑJ 1
q “ p3, 1, 4, 6q and vpzJ ÞÑzJ 1

q “ p2, 5, 3, 1q.

4.2 LEP with Information Sets

We are now ready to introduce the new notion of equivalence between codes
which, at a first glance, may seem rather different from the traditional notion
used to define LEP. Perhaps surprisingly, we are able to prove that the two
notions are exactly the same.

Definition 3 (Information Set (IS) - Linear Equivalence). We say that
two codes C ,C 1 Ď Fn

q are Information Set (IS) linearly equivalent, and write

C
˚
„ C 1, if there exist monomial transformations rµ P Mn, ζ P Mn´k and an

information set J 1 for both C 1 and rC “ rµpC q such that, for any codeword rc P rC ,
there exists a codeword in c1 P C 1 with

i) rcJ 1 “ c1
J 1 ;

ii) rct1,¨¨¨ ,nuzJ 1 “ ζ
`

c1
t1,¨¨¨ ,nuzJ 1

˘

.

Equivalently, given generator matrices rG,G1 P Fkˆn
q for rC and C 1, it must be

rG´1
J 1

rGt1,¨¨¨ ,nuzJ 1 “ ζ
`

G1´1
J 1 G1

t1,¨¨¨ ,nuzJ 1

˘

.

In other words, the two systematic generator matrices (computed with respect to
the set J 1) have the non-systematic parts which are identical, up to a monomial
transformation.

We associate this new notion of equivalence with the following decisional prob-
lem.

Problem 2 (Information Set-Linear Equivalence (IS-LEP)) Given two lin-

ear codes C ,C 1, determine whether C
˚
„ C 1.

12

In the following theorem we prove the core result of this section: LEP is equiva-
lent to IS-LEP. Technically, we show that two codes are linearly equivalent if and
only if they are also IS-linearly equivalent: this implies that any “YES” (resp.
“NO”) instance pC ,C 1q for LEP is a “YES” (resp. “NO”) instance for IS-LEP,
and viceversa. Hence, IS linear equivalence is merely a different formulation of
the traditional notion of linear equivalence.

Theorem 1 (Equivalence between IS-LEP and LEP). For any pair of

linear codes C ,C 1 Ď Fn
q , it holds C „ C 1 ðñ C

˚
„ C 1.

Proof. We first prove that C „ C 1 implies C
˚
„ C 1. Let us consider two generator

matrices G,G1 P Fkˆn
q for two equivalent codes C and C 1. Consequently, it holds

G1 “ SµpGq for some non-singular S P Fkˆk
q and µ “ pπ,vq P Mn. Seeing that C

and C 1 are also IS-linearly equivalent is trivial. Indeed, let J 1 be an information
set for C 1, and J “ π´1pJ 1q (recall Definition 2). Because of (1), we have

G1
J 1 “ SµpJ ÞÑJ 1

qpGJq, G1
t1,¨¨¨ ,nuzJ 1 “ SµpzJ ÞÑzJ 1

qpGt1,¨¨¨ ,nuzJq.

Representing the action of monomials through matrices, we rewrite the above
relations as

G1
J 1 “ SGJM

1, G1
t1,¨¨¨ ,nuzJ 1 “ SGt1,¨¨¨ ,nuzJM

2,

with M1 P Fkˆk
q and M2 P Fpn´kqˆpn´kq

q . Reducing G1 with respect to J 1, and
considering only the non-systematic part, we obtain the matrix

A “ G1´1
J 1 G1

t1,¨¨¨ ,nuzJ 1

“
`

SGJM
1
˘´1

SGt1,¨¨¨ ,nuzJM
2

“ M1´1G´1
J Gt1,¨¨¨ ,nuzJM

2.

Let rµ P Mn be an arbitrary monomial such that rµpJ ÞÑJ 1
q “ µpJ ÞÑJ 1

q and,
generically, rµpzJ ÞÑzJ 1

q “ µpzJ ÞÑzJ 1
q ˝ ζ, where ζ P Mn´k can be any mono-

mial transformation. Using again matrices to represent monomials, we associate
rµpJ ÞÑJ 1

q “ µpJ ÞÑJ 1
q with M1 and rµpzJ ÞÑzJ 1

q with ĂM2 which, in general, is different
from M2. Let rG “ rµpGq, and consider the non-systematic part of the matrix
we obtain by row reducing with respect to J 1. Taking again (1) into account, we
have

rG´1
J 1

rGt1,¨¨¨ ,nuzJ 1 “
`

GJM
1
˘´1

Gt1,¨¨¨ ,nuzJ
ĂM2

“ M1´1G´1
J Gt1,¨¨¨ ,nuzJ

loooooooooooomoooooooooooon

AM2´1

ĂM2

“ AM2´1
ĂM2 “ ζpAq

with ζ P Mn´k being the monomial associated to M2´1
ĂM2. This proves that C

and C 1 are indeed IS-linearly equivalent.

13

We now show the other way around, i.e., that two codes that are IS-linearly
equivalent are also linearly equivalent. We consider again two generator matrices
G and G1 and assume we know an information set J 1 and monomials rµ P Mn,
ζ P Mn´k that satisfy the requirements for IS-linear equivalence. Let rG “ rµpGq.

The non-systematic parts of G1 and rG, when reducing with respect to J 1, are

A1 “ G1´1
J 1 G1

t1,¨¨¨ ,nuzJ 1 , rA “ rG´1
J 1

rGt1,¨¨¨ ,nuzJ 1 .

By definition of IS-linear equivalence, we have that

rA “ ζpA1q “ A1Z “ G1´1
J 1 G1

t1,¨¨¨ ,nuzJ 1Z,

for some monomial ζ P Mn´k associated with the matrix Z P Fpn´kqˆpn´kq
q . Let

us again split the action of rµ, using the information set J 1. We write rµ “ prπ, rvq,
set J “ rπ´1pJ 1q and represent rµpJ ÞÑJ 1

q and rµpzJ ÞÑzJ 1
q through the monomial

matrices ĂM1 P Fkˆk
q and ĂM2 P Fpn´kqˆpn´kq

q . We then have

rGJ 1 “ rµpJ ÞÑJ 1
qpGJq “ GJ

ĂM1,

rGt1,¨¨¨ ,nuzJ 1 “ rµpzJ ÞÑzJ 1
qpGt1,¨¨¨ ,nuzJq “ Gt1,¨¨¨ ,nuzJ

ĂM2.

Thus

rA “ rG´1
J 1

rGt1,¨¨¨ ,nuzJ 1

“
`

GJ
ĂM1

˘´1`
Gt1,¨¨¨ ,nuzJ

ĂM2
˘

.

Recalling that rA “ A1Z ùñ rAZ´1 “ A1 and the expression for A1, we get
`

GJ
ĂM1

˘´1
Gt1,¨¨¨ ,nuzJ

ĂM2Z´1 “ G1´1
J 1 G1

t1,¨¨¨ ,nuzJ 1 ,

from which
Gt1,¨¨¨ ,nuzJ

ĂM2Z´1 “ GJ
ĂM1G1´1

J 1 G1
t1,¨¨¨ ,nuzJ 1 . (2)

We are now finally ready to determine the S P GLk and µ P Mn that would
solve LEP on G and G1. Indeed, let µ such that µpJ ÞÑJ 1

q corresponds to ĂM1 and
µpzJ ÞÑzJ 1

q corresponds to ĂM2Z´1, and S “ G1
J 1
ĂM1´1G´1

J . In the positions of
SµpGq which are indexed by J 1, we have

SµpJ ÞÑJ 1
qpGJq “ SGJ

ĂM1

“ G1
J 1
ĂM1´1G´1

J GJ
ĂM1 “ G1

J 1 ,

while in the positions which are not indexed by J 1,

SµpzJ ÞÑzJ 1
qpGq “ SGt1,¨¨¨ ,nuzJ

ĂM2Z

“ G1
J 1
ĂM1´1G´1

J
looooooomooooooon

S

GJ
ĂM1G1´1

J 1 G1
t1,¨¨¨ ,nuzJ 1

loooooooooooooomoooooooooooooon

Gt1,¨¨¨ ,nuzJ
ĂM2Z

(Using (2))

“ G1
t1,¨¨¨ ,nuzJ 1 .

[\

14

We conclude this section by showing how, from the knowledge of a solution for
LEP, one can derive a solution to IS-LEP, which is more convenient in terms
of communication cost. This depends on how the action of a monomial can be
represented. To this end, we introduce the following functions, which we will use
to represent the action of rµ.

Definition 4. Let µ “ pπ,vq P Mn. For J 1 “ tj1
1, ¨ ¨ ¨ , j1

ku Ď t1, ¨ ¨ ¨ , nu with
size k, we define

Truncpµ, J 1q “
`

π˚,v˚
˘

“

´

`

π´1pj1
1q, π´1pj1

2q, ¨ ¨ ¨ , π´1pj1
kq
˘

,
`

vj1
1
, vj1

2
, ¨ ¨ ¨ , vj1

k

˘

¯

.

Notice that π˚ is an ordered subset of t1, ¨ ¨ ¨ , nu with size k, that is, π˚ “

pj˚
1 , ¨ ¨ ¨ , j˚

k q. Also, v˚ “ pv˚
1 , ¨ ¨ ¨ , v˚

k q “ vJ 1 is represented as a length-k vector
over F˚

q .

Definition 5. We define Apply
`

pπ˚,v˚q,G
˘

as the function that outputs the
matrix U P Fkˆk

q such that, if the i-th entry of π˚ is j P t1, ¨ ¨ ¨ , nu, has i-th
column ui “ v˚

i gj, where gj denotes the j-column of G.

Remark 1. The elements of π˚ and J “ π´1pJ 1q are the same, but have a dif-
ferent order. While J represents an information set (and, coherently with the
notation we are using, is a non-ordered set), π˚ is meant to describe how π acts
on the coordinates which are moved to J 1. Consequently, it is important that
π˚ is seen as an ordered set. Notice that π˚ describes the action of π only on k
coordinates (hence, the function is called Trunc, which stand for truncated).

Remark 2. If J 1 is the information set that has been used to compute pπ˚,v˚q

using the monomial µ and J “ π´1pJ 1q, then U “ µJ ÞÑJ 1

pGq.

We first observe that representing π˚ requires k log2pnq bits while v˚ takes
k log2pq ´ 1q bits. The implication on signatures based on LEP is easy to see. In
fact, all existing schemes communicate monomial transformations using n log2pnq`

n log2pq ´ 1q bits, i.e., the action of the monomial is fully represented. We are
aiming at reducing this size thanks to the convenient representation we have
defined above. However, this requires some additional technical steps (e.g. modi-
fications in how commitments are computed). Thus, we postpone this discussion
to the next section, and we conclude the current one by showing that communi-
cating Truncpµ, J 1q is enough to verify a solution to IS-LEP, in a time which is
essentially not modified with respect to LEP.

Proposition 1 Let C and C 1 be two linearly equivalent codes, i.e., there exists
µ “ pπ,vq P Mn such that C 1 “ µpC q. Let G,G1 P Fkˆn

q be generator matrices
for such codes. To show that C and C 1 are IS-linearly equivalent, it is enough
to provide Truncpµ, J 1q. Verifying the solution for IS-LEP takes a time which is
polynomial in n and, in practice, is the same as computing two RREFs.

15

Proof. Since the codes are linearly equivalent, there exists S P GLk such that
G1 “ SµpGq. Let us indicate J “ π´1pJ 1q ; thanks to (1), we can write

G1
J 1 “ SµpJ ÞÑJ 1

qpGJq,

G1
t1,¨¨¨ ,nuzJ 1 “ SµpzJ ÞÑzJ 1

qpGt1,¨¨¨ ,nuzJq.

Let U “ Apply
`

pπ˚,v˚q,G
˘

, which is

Gt1,¨¨¨ ,nuzπ˚ “ Gt1,¨¨¨ ,nuzJ .

Indeed, we consider that π˚ is identical to J , up to a reordering of the elements,
hence t1, ¨ ¨ ¨ , nuztj˚

1 , ¨ ¨ ¨ , j˚
k u “ t1, ¨ ¨ ¨ , nuzJ . We now compute the RREFs of

both G1 and rG with respect to J 1. The non-systematic parts of the two matrices
are, respectively,

A1 “ G1´1
J 1 G1

t1,¨¨¨ ,nuzJ 1

“
`

S ¨ µpJ ÞÑJ 1
qpGJq

˘´1
¨ S ¨ µpzJ ÞÑzJ 1

qpGt1,¨¨¨ ,nuzJq

“
`

µpJ ÞÑJ 1
qpGJq

˘´1
¨ µpzJ ÞÑzJ 1

qpGt1,¨¨¨ ,nuzJq

“
`

µpJ ÞÑJ 1
qpGJq

˘´1
¨ Gt1,¨¨¨ ,nuzJZ,

and

rA “ rG´1
J 1

rGt1,¨¨¨ ,nuzJ 1

“
`

µpJ ÞÑJ 1
qpGJq

˘´1
¨ Gt1,¨¨¨ ,nuzJ

“ A1 ¨ Z´1,

where Z is the matrix associated to µzJ ÞÑzJ 1

. To conclude verification, one should
acknowledge that indeed A1 and rA are identical, up to a monomial transforma-
tion. This can be easily verified. For instance, it is enough to consider scalar
multiples of the columns in A1 and search whether rA contains an identical col-
umn. Namely, we start with i “ 1 (i.e, consider the first column a1

i “ a1
1): if,

in rA, we find a column in position j P t1, ¨ ¨ ¨ , n ´ ku and such that za1
1 “ ra1

j ,
then we know that ζ moves the first coordinate in position j, and scales it by z.
We then repeat the reasoning, considering i “ 2 and searching for the matching
column in the positions t1, ¨ ¨ ¨ , n ´ kuzj. Iterating this procedure, we have that
we successfully end the search (i.e., we find a match for all columns of A1) if
and only if there indeed exists such a monomial Z. The cost of this procedure is
Opn2q, which is smaller than that of computing the RREFs, which is in Opn3q.

[\

Example 2. Let q “ 11, n “ 5 and k “ 2. Let C be the code generated by

G “

ˆ

9 3 1 1 4
2 5 5 10 1

˙

.

16

Let µ “ pπ,vq with π “ p2, 1, 5, 3, 4q and v “ p5, 6, 8, 9, 3q and C 1 “ µpC q. To

represent the code, we use the generator matrix G1 “ SµpGq with S “

ˆ

0 4
4 10

˙

,

so that

G1 “

ˆ

1 4 1 3 5
2 6 7 3 8

˙

.

Let J 1 “ t1, 4u, which is an information set for C 1 since G1
J 1 “

ˆ

1 3
2 3

˙

is non-

singular (its determinant is 8). We have Truncpµ, J 1q “ pπ˚,v˚q where π˚ “

tπ´1p1q, π´1p4qu “ tj˚
1 , j

˚
2 u “ t2, 5u and v˚ “ vJ 1 “ pv˚

1 , v
˚
2 q “ p5, 9q. We now

consider U “ Apply
`

pπ˚,v˚q,G
˘

and have

U “

´

v˚
1 gj˚

1
, v˚

2 gj˚
2

¯

“
`

5g2 , 9g5

˘

“

ˆ

5 ¨

ˆ

3
5

˙

, 9 ¨

ˆ

4
1

˙˙

“

ˆ

4 3
3 9

˙

.

Since t1, ¨ ¨ ¨ , nuztj˚
1 , j

˚
2 u “ t1, 3, 4u, we have

Gt1,¨¨¨ ,nuzπ˚ “ pg1,g3,g4q “

ˆ

9 1 1
2 5 10

˙

.

We now compute the non-systematic part of G1, after RREF with respect to J 1,
and obtain

A1 “ G1´1
J 1 G1

t1,¨¨¨ ,nuzJ 1 “ pg1
1,g

1
4q´1pg1

2,g
1
3,g

1
5q

“

ˆ

1 3
2 3

˙´1ˆ
4 1 5
6 7 8

˙

“

ˆ

2 6 3
8 2 8

˙

.

Finally, we have

rA “ U´1Gt1,¨¨¨ ,nuzπ˚ “

ˆ

4 3
3 9

˙´1ˆ
9 1 1
2 5 10

˙

“

ˆ

4 1 9
5 10 3

˙

.

Now, we observe that

a1
1 “ 6 ¨ ra1, a1

2 “ 8 ¨ ra3, ra3 “ 8 ¨ a1
2.

This confirms that A1 and rA are equal, up to a monomial transformation.

5 Compact Proofs of Equivalence from IS-LEP

Recall that in a proof-of-knowledge constructed from LEP, the protocol goes as
follows (see Figure 1):

- there are two equivalent (public) codes C and C1, with C1 “ σpCq for some
(secret) map σ;

17

- the prover samples a random transformation τ P Mn and commits to C˚ “

τpCq; this is done by applying a function CommitpC˚q whose output is h P

t0; 1u2λ;

- the verifier either asks for the random map (i.e., a proof that C „ C˚q and
receives τ , or for the one involving the public code (i.e., a proof that C˚ „ C1)
and receives τ 1 “ τ ˝ σ´1;

- the verifier either checks that h “ Commit
`

τpCq
˘

, or that h “ Commit
`

τ 1pC1q
˘

.

Note that we must necessarily assume that the commitment is obtained via a
hash function, since otherwise one would need to publish C˚, which requires at
least kpn ´ kq log2pqq bits (assuming a generator matrix in systematic form is
employed). Currently, the commitment function is implemented as

Commit “ Hash
`

SFpCq
˘

: C ÞÑ t0, 1u2λ.

This works well since it satisfies two fundamental properties:

i) the systematic generator matrix is an invariant of the code;
ii) the commitment function is relatively easy to compute.

The second property is obviously necessary to have a practical scheme, while
the first one is crucial to guarantee verification, when the verifier asks for the
equivalence on the right. Indeed, in this case he computes τ 1pG1q, which generates
the same code as τpGq. However, the two generator matrices are not the same:
generically, it holds that τpG1q “ S ¨ τ 1pGq for some non-singular S P GLk.
Thanks to use of the systematic form, we get rid of this discrepancy.

To put it differently, the systematic form is used as an easy-to-compute rep-
resentative for a code1. As we have seen in the previous section, with the IS-LEP
formulation we can reduce significantly the communication cost. However, the
commitment function which is currently employed will not work anymore, since
the prover provides only a portion of τ 1. In this section we describe an efficient so-
lution to circumvent this issue. This requires to modify the commitment function
and use a new invariant which, fortunately, can be computed with essentially the
same cost of a RREF. This leads to a direct improvement in all schemes based
on LEP, for what concerns all relevant aspects: we reduce the communication
cost (in practice k « 0.5n so we almost halve it) and essentially keep the compu-
tational cost unchanged. Also, we do not introduce a new security assumption
since, as we showed in the previous section, IS-LEP and LEP are two different
formulations of the very same problem.

5.1 A New Invariant for Codes

Let us recall the concept of lexicographic ordering for vectors and matrices over
a finite field.
1 There exist other invariants, but their computation is much harder. For instance,
the prover may commit to the hash of the weight enumerator function. However, its
computation requires Opqkq operations and is obviously unfeasible

18

Definition 6 (Lexicographic Ordering). We define a lexicographic ordering
over Fq “ tx1, x2, ¨ ¨ ¨ , xqu as

x1
Lex
ă x2

Lex
ă ¨ ¨ ¨

Lex
ă xq.

For two vectors a,b, we write a
Lex
ă b if there exists an i such that aj “ bj for all

j ă i, and ai
Lex
ă bi. Analogously, for two matrices A and B, we write A

Lex
ă B

if there exists an i such that aj “ bj for all j ă i and ai
Lex
ă bi, where ai and

bi denote the i-th columns of A and B, respectively. We write A
Lex
ď B if either

A “ B or A
Lex
ă B.

Using the notion of lexicographic ordering defined above, we can define a rep-
resentative for the orbit of a matrix, under the action of monomial transforma-
tions2.

Definition 7 (First Lexicographic Matrix). Given A P Fmˆu
q , we denote

its orbit under the action of Mu as MupAq “ tτpAq |τ P Mu u. Then, we define
MinLexpAq as the function that returns the first lexicographic matrix in the orbit,
that is

MinLexpAq “ A˚ ðñ A˚
Lex
ď pA, @pA P MupAq.

Note that the above definitions hold for any arbitrary choice of lexicographic
ordering. However, since we are mostly interested in prime finite fields, from

now on we focus on the simplest and most natural ordering, that is 0
Lex
ă 1

Lex
ă

2
Lex
ă ¨ ¨ ¨

Lex
ă q ´ 1. If A has m rows and u columns, computing MinLex takes in

the worst case Opumq operations over Fq: indeed, it is enough to first scale each
column so that the first non null element is 1 and then sort the columns so that
they are in ascending lexicographic ordering. An example is given in Figure 3.

ˆ

5 0 3 8
10 5 7 0

˙

Scale columns
ÝÝÝÝÝÝÝÝÝÑ

ˆ

1 0 1 1
2 1 6 0

˙

Reorder columns
ÝÝÝÝÝÝÝÝÝÝÝÑ

ˆ

0 1 1 1
1 0 2 6

˙

Fig. 3: Example of computation of MinLex, for a matrix with m “ 2 rows, u “ 4
columns, with values over F11.

We finally have all the necessary tools to define our proposed invariant func-
tion, which we call SF˚. Details about how the function operates are given in Al-
gorithm 1. Basically, it computes the systematic form and then computes MinLex
on the non systematic part. Since computingMinLex is much easier than a RREF,
computing SF˚ essentially requires the same cost as SF. We observe that, in the

2 In the context of code linear equivalence, this concepts have been first used by
Beullens [Beu21].

19

wide majority of cases, the employed information set is J˚ “ t1, ¨ ¨ ¨ , ku (i.e.,
the one that is tested first). Indeed, the probability that this set is valid can be
estimated by considering the probability that a random k ˆ k matrix over Fq is
non-singular, that is

k´1
ź

i“1

1 ´ q´i « 1 ´
1

q
.

For instance, for q “ 127, this is approximately 0.992.

To conclude this section, we show that the function SF˚ possesses exactly
the invariance properties we need.

Proposition 2 Let G,G1 P Fkˆn
q be the generator matrices of two linearly

equivalent codes, i.e., G1 “ SµpGq for some S P GLk and µ P Mn. Let J
˚,A˚ “

SF˚
pG1q. Let pπ˚,v˚q “ Truncpµ, J˚q and U “ Apply

`

pπ˚,v˚q,G
˘

. Then, for
any τ and any S, it holds that

A˚ “ MinLexpU´1Gt1,¨¨¨ ,nuzπ˚ q.

Proof. Let J be the set of columns that get moved to J˚. Because of RREF, the
effect of S gets canceled. So, RREF with respect to J˚ yields

A1 “ U´1G1
t1,¨¨¨ ,nuzJ˚ “ U´1µpJ ÞÑJ˚

qpGt1,¨¨¨ ,nuzJq,

which is identical (up to a monomial transformation) to

A2 “ U´1Gt1,¨¨¨ ,nuzπ˚ “ U´1Gt1,¨¨¨ ,nuzJ .

This means that they are in the same orbit, i.e., A1 P Mn´kpA2q: computation
of MinLex returns the same matrix. [\

Algorithm 1: Function SF˚

Input: matrix A P Fkˆn
q

Output: failure or matrix A˚
P Fkˆpn´kq

q

1 Find the first J˚
Ď t1, ¨ ¨ ¨ , nu of size k and such that RankpGJ˚ q “ k;

2 Set A “ G´1
J˚Gt1,¨¨¨ ,nuzJ˚ ;// Non systematic part after RREF

3 Compute A˚
“ MinLexpAq;// Compute first lexicographic matrix

4 Return J˚, A˚.

5.2 Proof-of-knowledge with IS-LEP

We now describe how the proof-of-knowledge protocol used in the family of LESS
schemes [Bia+20; Bar+21; Bar+22] can be reformulated to take into account IS-
LEP. In Figure 4 we have reported the description of one round of the LESS-FM
protocol, taking into account verification based on IS-LEP.

20

Private Key µ1, ¨ ¨ ¨ , µs P Mn

Public Key Matrices tG1
i “ SF

`

µipGq
˘

u1ďiďs

PROVER VERIFIER

Sample τ
$

ÐÝ Mn

Compute G˚
“ τpGq

Compute J˚,A˚
“ SF˚

pG˚
q

Compute h “ HashpA˚
q

h
ÝÝÑ

Sample b
$

ÐÝ t0, ¨ ¨ ¨ , su
b

ÐÝÝ

If b “ 0 :
Set f :“ τ

Else:
Set τ 1

“ τ ˝ µ´1
b

Set pπ˚,v˚
q “ Truncpτ 1, J˚

q

Set f “ pπ˚,v˚
q

f
ÝÝÑ

If b “ 0:
Compute G˚

“ τpGq

Compute J˚,A˚
“ SF˚

pG˚
q

Verify h “ Hash
`

A˚
˘

Else:
Compute U “ Apply

`

pπ˚,v˚
q,G1

b

˘

Verify h “ Hash
´

MinLex
`

U´1
pG1

bqt1,¨¨¨ ,nuzπ˚

˘

¯

Fig. 4: One round of LESS-FM using IS-LEP

The protocol possesses all the properties that are required by a ZK proof of
knowledge. Completeness holds because of Proposition 2, while Zero-Knowledge
is guaranteed by the fact that pπ˚,v˚q is a truncated representation of τ 1, which
is uniformly distributed over Mn. The only property which is not obvious is
special soundness; for this reason, we present a detailed analysis next.

Proposition 3 The protocol of Figure 4 is 2-special sound.

Proof. Let us consider two accepting transcripts, associated with the same com-
mitment h and two different challenges b and rb. We assume that both b and rb
are different from 0 (the case where one of the challenges is 0 trivially follows
and is therefore omitted). We denote by pπ˚,v˚q the response for challenge b,

and by prπ˚, rv˚q the one for challenge rb. We now show that, from the knowledge
of these two accepting transcripts, either a hash collision has been found, or a
monomial map from Cb to C

rb can be computed in polynomial time.

Let U “ Apply
`

pπ˚,v˚, qGb

˘

and rU “ Apply
`

prπ˚, rv˚q,G
rb

˘

. Since both are
accepting transcripts, it follows that either a hash collision has been found, or

MinLex
`

U´1pG1
bqt1,¨¨¨ ,nuzπ˚

looooooooooomooooooooooon

A

˘

“ MinLex
`

rU´1pG1
rb
qt1,¨¨¨ ,nuzrπ˚

looooooooooomooooooooooon

rA

˘

.

21

This means that one knows two monomial transformations ζ, rζ P Mn´k such

that ζpAq “ rζprAq “ A˚.
Remember that what Apply does is applying a monomial transformation that

modifies only the k coordinates which are included in π˚. In other words, starting
from Gb, one possesses the generator matrix for an equivalent code, in the form
`

U,G1
bt1,¨¨¨ ,nuzπ˚

˘

. Let us denote by σ P Mn the monomial such that σpG1
bq “

`

U,G1
bt1,¨¨¨ ,nuzπ˚

˘

. Doing RREF with respect to the first k positions, we find a

generator matrix for the same code, in the form
`

Ik,A
˘

. If we now apply another
monomial transformation σ1 P Mn, acting as the identity in the first k positions
and as ζ in the last n´ k positions, we end up with

`

Ik, ζpAq
˘

“
`

Ik,A
˚
˘

. This
means that Cb, the code generated by Gb, is equivalent to the one C ˚ generated
by

`

Ik,A
˚
˘

: the equivalence between the two codes is given by σ1 ˝ σ.

The same chain of transformations can be applied to G1
rb
, and would bring

us to the code generated by
`

Ik, rζprAq
˘

“
`

Ik,A
˚
˘

. To summarize all the trans-
formations we used, see Figure 5.

Gb

`

U, pGbqt1,¨¨¨ ,nuzπ˚

˘

`

Ik,A
˘

`

Ik,A
˚
˘

G
rb

`

U, pG
rbqt1,¨¨¨ ,nuzrπ˚

˘

`

Ik, rA
˘

µ
rb ˝ µ´1

b

σ

RREF

σ1

rσ

RREF

rσ1

Fig. 5: Transformations from Cb and C
rb to a common code C ˚

In the end, we found a code C ˚ which is equivalent to both Cb and C
rb, and we

also know the transformations that map Cb into C ˚ and C
rb into C ˚. Combining

such transformations, we are able to find a map between Cb and C
rb. [\

For what concerns computational complexity, as in LESS-FM, the most time
consuming operation remains the systematic form computation.

22

6 New Instances for LESS Signatures

In this section, we report on the practical impact of our new techniques, in the
context of LESS, as well as schemes derived from it. To begin with, we recall
the parameters that were proposed in LESS-FM. Table 1, below, is an excerpt
from [Bar+21].

Optimization Type Code Params Prot. Params pk sig
Criterion n k q t ω s (KiB) (KiB)

Min. pk size Mono 198 94 251 283 28 2 9.77 15.2
Min. sig size Perm 235 108 251 66 19 16 205.74 5.25

Min. pk + sig size Perm 230 115 127 233 31 2 11.57 10.39

Table 1: Parameter sets for LESS-FM, for λ “ 128 classical bits of security.

At this point, a few comments on these parameters are due. First, note
that two out of three parameter sets use permutation equivalence, namely those
which aim at minimizing the signature in some way. This make sense, since a
permutation can be described utilizing only n log2pnq bits, as opposed to the
n log2pnq ` n log2pq ´ 1q necessary for a monomial matrix; the latter term in-
cludes in fact the cost of storing the non-zero scaling factors. However, in this
work (as well as subsequent ones) we will focus mainly on the monomial case. In
fact, using permutations requires additional care in the definition of the proto-
col. For instance, as we have seen in Section 3, it makes the scheme vulnerable
to certain types of algebraic attacks, so that it is not safe to use random codes.
This presents a challenge in practice, as generating self-orthogonal codes can be
quite expensive.

Secondly, as mentioned at the end of Section 3, we adopt a new, conservative
criterion for choosing parameters with respect to best attacks, which leads to
different choices for code lengths and dimensions. Furthermore, we include in
our thought process some considerations connected to implementation efficiency,
which were absent in the LESS-FM work: for instance, we restrict our attention
to the value q “ 127, which is optimal in this sense, and avoid parameters which
would yield excessive data sizes. With respect to the latter, we decide then to
remain within the psychological threshold of 100 kB.

Finally, as we transition from a mostly theoretical design, to one with a
practical outlook, we provide parameters for higher security levels. For this, we
follow NIST’s guidance and align with their proposed definitions for categories
1, 3 and 5. We report the new data in Table 2, with a slightly different layout.
Indeed, we no longer need to specify the type of equivalence considered, since this
is always monomial. Also, the optimization criterion is no longer purely aimed
at “minimizing” quantities. Instead, we use the nomenclature LESS-αβ which
recalls simultaneously the security level achieved (via the number α P t1, 3, 5u),
and the characteristics of the resulting choice (via the letter β). To be precise,

23

we use “b” for “balanced”, i.e. a set which yields similar sizes for public key and
signature; “s” for “short”, i.e. a set which sacrifices public-key size in favor of
signature; and “i”, only for category 1, for an “intermediate” set.

NIST Parameter Code Params Prot. Params pk sig
Cat. Set n k q t ω s (KiB) (KiB)

1
LESS-1b

252 126 127
247 30 2 13.7 8.4 (15.3)

LESS-1i 244 20 4 41.1 6.1 (10.7)
LESS-1s 198 17 8 95.9 5.2 (9.2)

3
LESS-3b

400 200 127
759 33 2 34.5 17.6 (30.5)

LESS-3s 895 26 3 68.9 14.1 (24.2)

5
LESS-5b

548 274 127
1352 40 2 64.6 31.1 (53.8)

LESS-5s 907 37 3 129.0 26.1 (48.8)

Table 2: New parameter sets for LESS, for different security categories.

To illustrate the advantage of our technique, in Table 2 we have reported
signature sizes for both the scheme with, and without the new technique; to do
so, we have use the format xpyq where x is the optimized signature size, and y
the unoptimized one.

Next, we report some timings. We start with those obtained for an unopti-
mized reference implementation in ANSI C, which are to be considered purely in
the spirit of exemplification. The values are collected on an Intel Core i7-12700K,
on a P-core, clocked at 4.9 GHz. Clock cycle values collected via rtdscp, as aver-
ages of 100 primitive runs. The computer is endowed with 64 GiB of PC5-19200
DDR5 and is running Debian 11. The source was compiled with gcc 10.2.1-
20210110 (version packaged with the distribution), with -O3 -march=native

compilation options.

NIST Parameter KeyGen Sign Verify
Cat. Set (Mcycles) (Mcycles) (Mcycles)

1
LESS-1b 3.4 878.7 890.8
LESS-1i 9.8 876.6 883.6
LESS-1s 23.0 703.6 714.7

3
LESS-3b 9.3 7224.1 7315.8
LESS-3s 18.3 8527.4 8608.6

5
LESS-5b 24.4 33787.7 34014.0
LESS-5s 48.0 22621.5 22703.3

Table 3: Timings for the reference implementation of LESS.

24

To provide a hint at the improved performance that we can obtain by lever-
aging more advanced tools, we report below the results of an additional imple-
mentation. Since, as explained above, the RREF computation is by far the most
expensive operation, this implementation is realized by amending the ANSI C
reference code with Gaussian Elimination code implemented using AVX2 C in-
trinsics. The test system was a Dell OptiPlex XE4, a mid-range 2022 desktop
system with Intel Core i7-12700 CPU running at 2.1 GHz. The test programs
were executed on a single CPU thread with frequency scaling disabled. The sys-
tem has 64GB of physical RAM and was running Ubuntu 22.04.2 LTS Linux
operating system, and the C test code was compiled with gcc 11.3.0 packaged
in that operating system. Compilation and optimization flags were zverb|-Wall
-Wextra -Ofast -march=native|.

NIST Parameter KeyGen Sign Verify
Cat. Set (Mcycles) (Mcycles) (Mcycles)

1
LESS-1b 0.9 263.6 271.4
LESS-1i 2.3 254.3 263.4
LESS-1s 5.1 206.6 213.4

3
LESS-3b 2.8 2446.9 2521.4
LESS-3s 5.2 2984.3 3075.1

5
LESS-5b 6.4 10212.6 10458.8
LESS-5s 11.7 6763.2 7016.5

Table 4: Timings for the additional implementation of LESS.

To complete our showcase, we report below the data obtained while applying
our technique to the LESS-based ring signature scheme.

Parameter Code Params Prot. Params pk sig
Set n k q t ω r (kB) (kB)

I

230 115 127 233 31

23

11.6

8.6 (10.8)
II 26 11.6 (13.8)
III 212 17.5 (19.7)
IV 221 26.5 (28.7)

Table 5: Parameter sets for ring signatures based on LESS, for λ “ 128 classical
bits of security.

Table 5 is an excerpt from [Bar+22], with some caveats. First, note that
the parameter s is missing, as the optimization involving multiple codes was
not used; instead, we have a new parameter r corresponding to the size of the
ring of users. Secondly, all the instances presented in [Bar+22] were based on
permutation equivalence (and thus the “Type” column is omitted). In this case,

25

rather than presenting entirely new parameters based on (IS-)LEP, we simply
calculate the sizes that we would obtain applying our technique to PEP, i.e.
replacing n log2pnq bits with k log2pnq bits whenever a permutation needs to be
transmitted. We use the same xpyq format as above, where now the unoptimized
value y corresponds to the sizes appearing in [Bar+22].

Note that, compared to the reduction obtained for LESS, in the case of ring
signature the improvement is considerably less relevant. This is mainly because
a large part of the signature size, in such a scheme, is comprised of the cost
of transmitting a Merkle proof, which is proportional to the (logarithm) of the
number of users in the ring. It is worth considering, however, that this is exactly
the feature that makes the scheme appealing in the first place, and so we are
satisfied with our improvement being less impactful in this case.

Acknowledgements

The work of the first author is generously sponsored by NSF grant 1906360 and
NSA grant H98230-22-1-0328.

References

[Bar+21] A. Barenghi et al. “LESS-FM: Fine-Tuning Signatures from the Code
Equivalence Problem”. In: PQCrypto 2021. Ed. by J. H. Cheon and
J. Tillich. Vol. 12841. LNCS. Springer, 2021, pp. 23–43.

[Bar+22] A. Barenghi et al. “Advanced Signature Functionalities from the
Code Equivalence Problem”. In: International Journal of Computer
Mathematics: Computer Systems Theory 0.ja (2022), pp. 1–.

[Bar+23] A. Barenghi et al. “On the Computational Hardness of the Code
Equivalence Problem in Cryptography”. In: Advances in Mathemat-
ics of Communications 17.1 (2023), pp. 23–55.

[Beu20] W. Beullens. “Sigma protocols for MQ, PKP and SIS, and fishy sig-
nature schemes”. In: Annual International Conference on the The-
ory and Applications of Cryptographic Techniques. Springer. 2020,
pp. 183–211.

[Beu21] W. Beullens. “Not enough LESS: An improved algorithm for solv-
ing code equivalence problems over Fq”. In: Selected Areas in Cryp-
tography: 27th International Conference, Halifax, NS, Canada (Vir-
tual Event), October 21-23, 2020, Revised Selected Papers. Springer.
2021, pp. 387–403.

[Bia+20] J.-F. Biasse et al. “LESS is More: Code-Based Signatures Without
Syndromes”. In: AFRICACRYPT. Ed. by A. Nitaj and A. Youssef.
Springer, 2020, pp. 45–65.

26

[BKP20] W. Beullens, S. Katsumata, and F. Pintore. “Calamari and Falafl:
logarithmic (linkable) ring signatures from isogenies and lattices”.
In: Advances in Cryptology–ASIACRYPT 2020: 26th International
Conference on the Theory and Application of Cryptology and In-
formation Security, Daejeon, South Korea, December 7–11, 2020,
Proceedings, Part II. Springer. 2020, pp. 464–492.

[BOS19] M. Bardet, A. Otmani, and M. Saeed-Taha. “Permutation Code
Equivalence is Not Harder Than Graph Isomorphism When Hulls
Are Trivial”. In: IEEE ISIT 2019. July 2019, pp. 2464–2468.

[Cho+22] T. Chou et al. “Take your MEDS: Digital Signatures from Matrix
Code Equivalence”. In: Cryptology ePrint Archive (2022).

[DG22] G. D’Alconzo and A. Gangemi. “TRIFORS: LINKable Trilinear Forms
Ring Signature”. In: Cryptology ePrint Archive (2022).

[DW22] L. Ducas and W. van Woerden. “On the lattice isomorphism prob-
lem, quadratic forms, remarkable lattices, and cryptography”. In:
Advances in Cryptology–EUROCRYPT 2022: 41st Annual Interna-
tional Conference on the Theory and Applications of Cryptographic
Techniques, Trondheim, Norway, May 30–June 3, 2022, Proceedings,
Part III. Springer. 2022, pp. 643–673.

[Leo82] J. Leon. “Computing automorphism groups of error-correcting codes”.
In: IEEE Transactions on Information Theory 28.3 (May 1982),
pp. 496–511.

[Pet10] C. Peters. “Information-set decoding for linear codes over Fq”. In:
International Workshop on Post-Quantum Cryptography. Springer.
2010, pp. 81–94.

[PR97] E. Petrank and R. M. Roth. “Is code equivalence easy to decide?”
In: IEEE Transactions on Information Theory 43.5 (Sept. 1997),
pp. 1602–1604.

[PRS22] E. Persichetti, T. H. Randrianarisoa, and P. Santini. “An Attack on
a Non-Interactive Key Exchange from Code Equivalence”. In: Tatra
Mountains Mathematical Publications 82.2 (2022), pp. 53–64.

[Sen00] N. Sendrier. “The Support Splitting Algorithm”. In: Information
Theory, IEEE Transactions on (Aug. 2000), pp. 1193–1203.

[Sen97] N. Sendrier. “On the dimension of the hull”. In: SIAM Journal on
Discrete Mathematics 10.2 (1997), pp. 282–293.

[SS13] N. Sendrier and D. E. Simos. “The Hardness of Code Equivalence
over F q and Its Application to Code-Based Cryptography”. In:
Post-Quantum Cryptography: 5th International Workshop, PQCrypto
2013, Limoges, France, June 4-7, 2013. Proceedings 5. Springer.
2013, pp. 203–216.

[Tan+22] G. Tang et al. “Practical post-quantum signature schemes from iso-
morphism problems of trilinear forms”. In: Advances in Cryptology–
EUROCRYPT 2022: 41st Annual International Conference on the
Theory and Applications of Cryptographic Techniques, Trondheim,

27

Norway, May 30–June 3, 2022, Proceedings, Part III. Springer. 2022,
pp. 582–612.

[ZZ21] Z. Zhang and F. Zhang. Code-Based Non-Interactive Key Exchange
Can Be Made. Cryptology ePrint Archive, Report 2021/1619. 2021.

28

