
On Optimal Tightness for Key Exchange with
Full Forward Secrecy via Key Confirmation

Kai Gellert1, Kristian Gjøsteen2, H̊akon Jacobsen3,4, and Tibor Jager1

1 University of Wuppertal, {kai.gellert,jager}@uni-wuppertal.de
2 Norwegian University of Science and Technology, kristian.gjosteen@ntnu.no

3 Thales Norway
4 University of Oslo, hakon.jacobsen@its.uio.no

Abstract. A standard paradigm for building key exchange protocols
with full forward secrecy (and explicit authentication) is to add key con-
firmation messages to an underlying protocol having only weak forward
secrecy (and implicit authentication). Somewhat surprisingly, we show
through an impossibility result that this simple trick must nevertheless
incur a linear tightness loss in the number of parties for many natural
protocols. This includes Krawczyk’s HMQV protocol (CRYPTO 2005)
and the protocol of Cohn-Gordon et al. (CRYPTO 2019).

Cohn-Gordon et al. gave a very efficient underlying protocol with
weak forward secrecy having a linear security loss, and showed that this
is optimal for certain reductions. However, they also claimed that full
forward secrecy could be achieved by adding key confirmation messages,
and without any additional loss. Our impossibility result disproves this
claim, showing that their approach, in fact, has an overall quadratic loss.

Motivated by this predicament we seek to restore the original lin-
ear loss claim of Cohn-Gordon et al. by using a different proof strategy.
Specifically, we start by lowering the goal for the underlying protocol
with weak forward secrecy, to a selective security notion where the ad-
versary must commit to a long-term key it cannot reveal. This allows a
tight reduction rather than a linear loss reduction. Next, we show that
the protocol can be upgraded to full forward secrecy using key confirma-
tion messages with a linear tightness loss, even when starting from the
weaker selective security notion. Thus, our approach yields an overall
tightness loss for the fully forward-secret protocol that is only linear, as
originally claimed. Finally, we confirm that the underlying protocol of
Cohn-Gordon et al. can indeed be proven selectively secure, tightly.

1 Introduction

A security reduction is said to be tight if it preserves the security of the object
being reduced to. The benefit of a tight reduction is that it allows to closely

This work has been supported by the European Research Council (ERC) under the
European Union’s Horizon 2020 research and innovation programme, grant agree-
ment 802823.

relate the security of a complex object to a simpler and, hopefully, more easy
to analyze object. Moreover, a tight reduction allows cryptographic schemes to
be instantiated with optimal parameters in a theoretically sound way. Unfortu-
nately, for key exchange protocols the security reductions have historically been
inordinately non-tight. But recent works have started to address these deficien-
cies either by doing more careful analyses of existing protocols, or by proposing
new protocols more suitable for tighter reductions. Typically the approach has
either been to use digital signatures with tight multi-user security [2,16,25,17], or
signature-less protocols based on some variant of Diffie-Hellman [10,19]. While
the latter tend to be more efficient than the signature-based approaches in prac-
tice, the comparison isn’t completely fair since the signature-based protocols
provide full forward secrecy and explicit authentication (AKE) while the proto-
cols based on Diffie-Hellman ones only give weak forward secrecy and implicit
authentication.

Forward secrecy, authentication and key confirmation. Full forward secrecy refers
to the ability of a protocol to provide security of session keys even if the long-term
secret key of a communicating party is leaked [7]. It is considered an essential
standard security goal for modern key exchange protocols. Weak forward secrecy
achieves this property under the assumption that the adversary does not actively
interfere with the protocol messages in the sessions it attacks. The notions of
weak and full forward secrecy are intimately connected to authentication [4,8,13].

Explicit authentication guarantees that the intended communication partner
is indeed “online” and has actively participated in the protocol. Implicit authen-
tication guarantees that only the intended peer will be able to derive the same
session key. However, it does not guarantee that the peer actually has partici-
pated in the protocol. Typically, for key exchange protocols having only implicit
authentication, an adversary can efficiently impersonate Alice towards Bob, in
the sense that it sends messages on behalf of Alice and such that Bob derives
a session key that he believes is suitable for communicating with Alice, but the
adversary will still not be able to distinguish this session key from a random one.
The question then becomes: how can we upgrade from weak forward secrecy and
implicit authentication to full forward secrecy and explicit authentication, while
still maintaining tightness and efficiency?

A very natural idea is to have the participants send key confirmation mes-
sages derived from the session key. This solution is simple, efficient, and has
already been treated in multiple works [4,20,27,15,10,13]. Key confirmation en-
sures that a second protocol participant has indeed computed the same session
key and thus turns an implicitly authenticated protocol into an explicitly au-
thenticated protocol [13]. However, key confirmation also serves a dual role as
a simple tool for upgrading weak forward secrecy to full forward secrecy. The
HMQV-C [20] protocol is a notable example of this usage. In this paper we use
key confirmation in both senses above.

Finally, while implicit (resp. explicit) authentication often corresponds to
weak (resp. full) forward secrecy, we note that these are in fact separate notions.
Protocols having explicit authentication but no forward secrecy are common (see

for instance the AKEP1 protocol in [5, Fig. 2]). Examples of protocols achieving
full forward security without explicit authentication are given in [8, Protocol 4]
and [12, Fig. 3].

Does key confirmation preserve tightness? Suppose Π is an arbitrary key ex-
change protocol providing weak forward secrecy and implicit authentication.
The protocol participants exchange a session key using Π and from this derive
key confirmation messages as well as a new session key using a pseudorandom
function (PRF). They then exchange and verify the confirmation messages be-
fore outputting the new session key. Call this extended protocol Π+. Intuitively,
protocol Π+ should achieve explicit authentication via a tight reduction to the
implicit authentication of protocol Π as well as the multi-user security of the
PRF. Indeed, this is the claim of Theorem 6 in [10]. Unfortunately, this claim
turns out to be wrong. In fact, as we will show, for certain natural protocols, such
as the protocol from Cohn-Gordon et al. [10] and HMQV [20], adding key confir-
mation messages like this or in any other deterministic way must necessarily lose
a factor of U , where U is the number parties in the protocol. Hence, it seems
that the notions of weak forward secrecy and implicit authentication are too
weak to be tightly upgraded to full forward secrecy and explicit authentication
by simply adding key confirmation messages. Interestingly and surprisingly, we
will however also argue that an even weaker selective security notion is sufficient
to obtain security with the same linear loss, which provides a new approach to
obtain full forward secrecy with optimal linear tightness loss.

The flaw in Cohn-Gordon et al. [10]. The high-level idea of the security reduction
from protocol Π+ to protocol Π in [10] is as follows. The reduction uses Test or
Reveal queries to get the session keys from Π and uses these to simulate the key
confirmation messages of protocol Π+. However, the reduction must decide which
session keys it will reveal and which it will issue a Test query for. The trivial
standard strategy would be to guess which session the adversary will test, but
this cannot be deployed in [10] as it would immediately incur a linear security
loss in the number of users times the number of sessions per user. Instead, the
reduction proceeds as follows: once a session has reached an accepting state in
the underlying AKE protocol Π, the reduction will base its decision on which
query to use on the current freshness of the session. If the session is not fresh,
it will issue a Reveal query. If the session is fresh, it will issue a Test query.

The problem with this strategy is that the freshness notion is with respect to
protocol Π, which is only guaranteeing weak forward secrecy. Unfortunately this
notion is too weak (i.e., too restrictive) to accommodate the reduction. More
specifically, in a weak forward secrecy model the adversary is forbidden from
both being active in a Test session and revealing the long-term secret of its peer.
This is due to a classic attack described by [4] and [20] (see [8] and [12] for
further discussions).

In this attack the adversary A impersonates Alice towards Bob by creating
the DH share gx on her behalf. Once Bob receives this message he creates its
own DH share gy and accepts in protocol Π. Since A has not (yet) revealed the

long-term key of Alice, Bob is at this point still fresh in protocol Π according
to weak forward secrecy. Consequently, the reduction will issue a Test query in
order to simulate its key confirmation message. However, if A now reveals the
long-term key of Alice, then Bob will no longer be fresh (in protocol Π). At this
point the reduction is stuck. This means that the reduction in Theorem 6 of
Cohn-Gordon et al. [10] does not work. This issue has been confirmed by the
authors of [10].

1.1 Our contributions

While the reduction of [10] does not work, can the result nevertheless be sal-
vaged? On the one hand, we show that a tight reduction from full forward se-
crecy and explicit authentication to weak forward secrecy and implicit security
is impossible for a large class of compilers and protocols of interest for practical
applications. In particular, this includes the common key confirmation message
compiler discussed above and the key exchange protocol of [10]. We prove this
using a meta-reduction described in more detail below.

On the other hand, by considering what the actual end goal of [10] is, we
can in fact recover the intended result by a rearranging of arguments. That
is, the end goal is to create an as efficient as possible key exchange protocol
having full forward secrecy and explicit authentication, with optimal tightness.
Here, tightness is with respect to the lowest level building block of the protocol.
In the case of [10] this is the strong Diffie-Hellman (stDH) assumption [1]. It
was shown in [10] that a large class of DH-based implicitly authenticated key
exchange protocols must lose a factor of U when reducing to stDH, where U
is the number of parties. If the reduction from Π+ to Π had been tight, as
mistakenly claimed in [10], then the overall result would have been a protocol
Π+ with full forward secrecy and an optimal tightness loss of U to the stDH
assumption. However, in light of our impossibility result, the best one can hope
for using this approach is a loss of U2, since there is a tightness loss of U going
from Π+ to Π and a tightness loss of U going from Π to stDH.

But this begs the question: if we know from the beginning that we at least
have to lose a factor of U , is there some other way of structuring our arguments
in order to avoid a quadratic loss? The solution is to first reduce the security of
protocol Π+ to an even weaker notion of implicit security for protocol Π, taking
the “hit” of U here. Then, we show that this weaker notion for Π can be reduced
further to stDH but now tightly. Thus, overall we obtain a modular reduction
from Π+ down to stDH losing only a factor of U .

What is this weaker notion for Π? It is a type of selective security game where
the adversary needs to commit to a single party it will not reveal the long-term
key of. This is related to the selective security notion from [21], but differs in
two important ways. First, the requirement that one long-term key must stay
unrevealed—rather than simply being involved in some event—makes the two
notions technically incomparable (see Remark 1). Second, in [21] the adversary
commits to both parties and their sessions involved in the event. This incurs a
quadratic security loss, making it unsuitable for our purposes.

In summary, our main results are:

– We give a generic impossibility result showing that no security proof for
adding key confirmation to a weakly forward-secret key exchange protocol
can avoid a loss factor of U (Section 6).

– We provide an optimal security proof (i.e., with a linear loss in U) for adding
key confirmation, which reduces to a weaker security notion for the underly-
ing key exchange protocol (Section 4). This weaker notion allows us to avoid
a tightness loss when proving the underlying protocol secure.

– Finally, we give a tight proof of the CCGJJ protocol [10] under the weaker
notion, showing that the overall strategy achieves the end goal (Section 5).

One important consequence of our work is that future key exchange protocols
having only weak forward secrecy can now be designed towards the goal of
selective key secrecy, not full key secrecy. As shown by the analysis of CCGJJ
[10], this may simplify proofs significantly.

Basic idea of the impossibility result. Our impossibility result shows essentially
that if one constructs a protocol Π+ from an underlying implicitly authenticated
protocol Π by extending Π with two additional key confirmation messages, and
if the security analysis of Π+ includes a reduction R to the security of Π, then
R loses a factor which is at least linear in the number U of parties. The basic
idea of the argument is as follows.

We first define a (hypothetical) adversary A, which proceeds in four steps:

1. First A receives the public keys pk1, . . . , pkU of all parties.
2. Then it interacts with R to create a session si,j of protocol Π+ for every

pair of parties i, j. In all of these sessions the protocol is executed until R
outputs the first of the two key confirmation messages.
Note thatRmay simulate messages of Π+ that correspond to messages of the
underlying protocol Π by relaying these messages to its own security exper-
iment. However, R also has to simulate the first key confirmation messages,
which depend on the session key k of protocol Π.

3. Finally, A reveals the long-term secret keys of all but one party, receiving
ski for all i ∈ {1, . . . , U} \ {i∗}, where i∗ is chosen at random by A. Then A
uses these secret keys to verify all key confirmation messages received from
R for all sessions si,j with i 6= i∗. If at least one of these key confirmation
messages is invalid, then A terminates.

4. If all key confirmation messages are correct, then A breaks the security of
Π+ in a target session si∗,j for some j.

A is a valid adversary that breaks Π+ in the security experiment with max-
imal advantage. The choice of i∗ is perfectly hidden from the reduction until
Step 3 of A, as all queries in Step 2 are independent of i∗. Note in particular
that we can trivially simulate A, if R outputs at least one invalid key confirma-
tion message for any session si,j , i 6= i∗. Furthermore, note that we can always
simulate the first three steps of A efficiently.

We will essentially argue that the reduction R is only able to simulate all
key confirmation messages of sessions si,j of parties i 6= i∗ properly, if it asks its
security experiment to reveal the corresponding session keys ki,j . However, at
the same time R must not ask its security experiment to reveal the session key
ki∗,j of the target session si∗,j , as otherwise it cannot leverage A to break the
security of this session. Hence, the reduction faces the challenge that it has to
“predict” i∗ already in Step 2 of the adversary, in order to make sure that the
key confirmation messages are simulated correctly, but still A can be leveraged
to break the security of Π. Since i∗ is chosen uniformly from {1, . . . , U}, this
yields a linear loss in U .

We stress that this sketch of the impossibility result is simplified, the actual
formal result is more involved and subtle. For instance, in Section 6.1 we formu-
late precise conditions on which classes of reductions, protocols Π, and which
constructions of Π+ are covered by the impossibility result. These will cover the
construction from [10] but also many other natural constructions.

The common way of arguing that a reduction R does not “need” A in certain
cases is to perform a meta-reduction whereA can efficiently be simulated in these
cases. Normally, the standard approach of meta-reductions used in many prior
works, such as [18,23,3], is to rewind R in order to be able to simulateA properly.
Unfortunately, these results are usually only able to rule out reductions to non-
interactive hardness assumptions. In contrast, the assumption that Π is secure is
interactive. By rewinding R and running it multiple times with different queries
from the “snapshot” state, we might cause R to make a sequence of queries that
is not allowed in the key exchange security experiment of Π, such as revealing
and then testing the same session s. Hence, we need to find another argument
that avoids rewinding.

The main technical novelty of this result is that it consists of a combination
of several different meta-reductions that enable us to argue that the reduction
indeed “commits” itself to one particular choice of i∗ after simulating the key con-
firmation messages in Step 2 of A. The proof consists of several meta-reductions
that do not perform rewinding and only simulate the first two or three steps
of A (which can be done efficiently), in combination with a careful argument
showing that this is indeed sufficient.

2 Definitions

The formalism and definitions we use to model key exchange protocols are
adapted from de Saint Guilhelm et al. [13]. Unlike the traditional Bellare–
Rogaway [5,6,4] and (e)CK models [9,22], security in this model is not formulated
as a single all-in-one game that implicitly captures all the properties a protocol
should have. Instead, security is split into many smaller definitions that each
captures a single “atomic” security property. This leads to a slight increase in
the number of definitions, as well as the number proofs one have to carry out in
order to establish a protocol as “secure”. On the other hand, the advantage of

this approach is that each definition/property is much simpler and focused, and
many of the proofs will similarly also be very simple.

2.1 Syntax

A key exchange protocol is a tuple of algorithms (KeyGen, Init,Run) where KeyGen
is the long-term key generation algorithm; Init creates a session state at party i
having intended peer j and role role, and returns this session’s initial message
(empty if a responder role); and Run takes as input a session state st and a
message m and outputs an updated state st′ and response message m′.

Session state. A session state st consists of the following variables.

– accept ∈ {true, false,⊥} – indicates the status of the key exchange run; ini-
tialized to ⊥ and indicates a running, non-completed, session.

– key ∈ {0, 1}∗ ∪ {⊥} – the local session key derived during the key exchange
run; set once accept = true.

– role ∈ {init, resp} – the role of the session in the key exchange run.
– party – the party identity to which this session belongs.
– peer – the party identity of the intended peer for this key exchange run.
– sk – the secret long-term key of the party this session belongs to.
– pk – the public long-term key of the intended peer of the session.
– transcript – the (ordered) transcript of all messages sent and received by

session s. We use transcript− to denote the transcript minus the last message.
– aux – auxiliary protocol specific state, such as internal randomness and

ephemeral values.

Security experiment We shall use the generic formal experiment ExpPred
Π,U (A)

given in Fig. 1 to define the various security properties of a key exchange pro-
tocol (see Section 3). The experiment is parameterized on a security predicate
Pred that captures the security property being modeled. The experiment uses a
number of counters, variables and collections for bookkeeping purposes.

– query ctr – incremented for each query made by the adversary. Used to order
events in time; needed to define (full) forward secrecy.

– session ctr – incremented for each new session created. Each session state is
associated with a unique session number which functions as an administra-
tive label for that session (state). The session number is also given to the
adversary which can use it as an opaque handle to refer to a given session
in its queries. We use the notation “s.x” to refer to the variable x of the ses-
sion state identified by the administrative session number s. Note that the
adversary cannot “dereference” a session number in order to obtain internal
variables of the session state.

– Accepted, Tested, Revealed, RevealedLTK – associative arrays that records
when a session accepted, was tested, or when its session or long-term key
was revealed.

ExpPred
Π,U (A)

101: i∗ ← A
102: b $←− {0, 1}
103: query ctr← 0
104: session ctr← 0
105: Accepted← Dict
106: Revealed← Dict
107: RevealedLTK← Dict
108: Tested← Dict
109: sk,pk← Dict
110: for i ∈ [1 . . . U]:
111: (sk[i],pk[i]) $←− Π.KeyGen
112: RevealedLTK[i]← 0

113: b′ ← AO(pk)
114: return Pred

NewSession(i ∈ [1, U], j ∈ [1, U], role)

201: query ctr++
202: session ctr++
203: s← session ctr
204: Accepted[s]← 0
205: Revealed[s]← 0

206: Tested[s]← 0

207: (m, st)← Π.Init(i, j, role,pk[j], sk[i])
208: s.st ← st
209: return (s,m)

Send(s,m)

401: query ctr++
402: (m′, st ′)← Π.Run(s.st ,m)
403: s.st ← st ′

404: if s.accept = true:
405: Accepted[s]← query ctr

406: return m′

Reveal(s)

501: query ctr++
502: Revealed[s]← query ctr
503: return s.key

RevealLTK(i ∈ [1, U])

601: if RevealedLTK[i] 6= 0:
602: return ⊥
603: if i = i∗:
604: return ⊥
605: query ctr++
606: RevealedLTK[i]← query ctr
607: return sk[i]

Test(s)

701: query ctr++
702: if Tested[s] 6= 0:
703: return ⊥
704: if s.accept 6= true:
705: return ⊥
706: Tested[s]← query ctr
707: K0 ← s.key
708: K1

$←− K
709: return Kb

Fig. 1: Generic experiment parameterized on winning predicate Pred, where A
can make the queries in O = {NewSession,Send,Reveal,RevealLTK, Test }. Code

in dashed boxes is only for the key secrecy game; code in filled boxes is only
for the selective key secrecy game. The notation s.st ← st ′ means to assign all
the variables in st ′ to the corresponding variables associated with session s. Dict
defines an associative array.

Common predicates. It will be useful to introduce a number of predicates on the
security experiment.

Definition 1 (Origin sessions). A (possibly non-accepted) session s′ is an
origin-session for an accepted session s if predicate Orig(s, s′) holds true, where

Orig(s, s′) ⇐⇒ s′.transcript ∈ {s.transcript, s.transcript−}. (1)

Definition 2 (Partnering). Two sessions s, s′ are partners if they have match-
ing conversations; that is, if the predicate Partner(s, s′) holds true, where

Partner(s, s′) ⇐⇒ s.transcript = s′.transcript. (2)

Like [13] we do not require partners to agree upon each other’s identities.
This is an authentication property which will be covered by other definitions in
Section 3. Unlike [13] we use matching conversations instead of abstract session
identifiers as our partnering mechanism. This is mainly done for the sake of
concreteness and is not a fundamental difference, although certain well-known
pitfalls need to be avoided when using matching conversations [24].

Definition 3 (SameKey). The predicate SameKey(s, s′) holds true if the ses-
sions both have established a session key and they are equal, that is

SameKey(s, s′) ⇐⇒ [s.key = s′.key 6= ⊥]. (3)

Definition 4 (Authentication fresh). A session is authentication fresh if
the long-term key of its intended peer has not been revealed, that is:

aFresh(s) ⇐⇒ RevealedLTK[s.peer] = 0. (4)

Finally, we define freshness predicates used for the key secrecy games. These
come in two flavors: weak forward secrecy and full forward secrecy [4]. Common
to both is that the adversary cannot reveal the session key of a tested session
or its partner. The difference is how long-term key leakage is handled. For weak
forward secrecy the adversary is forbidden from revealing the long-term key of
a session’s peer if it was actively interfering in the protocol run of the session
(indicated by the lack of an origin-session for the session in question). For full
forward secrecy this restriction is lifted, provided the leak happened after the
session in question accepted.

Definition 5 (Session key freshness). Let s.peer = j. The kFreshWFS(s)
(resp. kFreshFFS(s)) predicate hold if:

Revealed[s] = 0 (5)

∀s′ :: Partner(s, s′) =⇒ Revealed[s′] = 0 ∧ Tested[s′] = 0 (6)

(wFS) {s′ | Orig(s, s′)} = ∅ =⇒ aFresh(s) (7)

(fFS) {s′ | Orig(s, s′)} = ∅ =⇒ aFresh(s) ∨ (RevealedLTK[j] > Accepted[s])
(8)

3 Protocol security properties

This section defines the security properties a secure key exchange protocol ought
to have. The breakdown follows that of [13] and consists of: soundness proper-
ties (match and key-match soundness); various authentication properties (im-
plicit/explicit key and entity authentication); and session key secrecy. An ap-
plication will typically require all of these properties. Refer to [13] for further
discussion and background.

3.1 Match soundness

Match soundness is primarily a sanity check on the choice of partnering mech-
anism. Namely, partnered sessions should derive the same session key (9); and
sessions will at most have one partner (10).

Definition 6 (Match soundness). The Match predicate evaluates to 1 iff
∀s, s′, s′′:

Partner(s, s′) =⇒ SameKey(s, s′) (9)

(Partner(s, s′) ∧ Partner(s, s′′)) =⇒ s′ = s′′ (10)

The match soundness advantage of an adversary A is

AdvMatch
Π,U (A)

def
= Pr[ExpMatch

Π,U (A)⇒ 1] (11)

3.2 Key-match soundness

Key-match soundness (KMSound) is basically the converse of Match soundness.
While Match soundness says (among other things) that partners should have
equal session keys, KMSound says that sessions having equal session keys should
be partners.

Definition 7 (Key-match soundness). The KMSound predicate evaluates to
1 if and only if

∀s :: (aFresh(s) ∧ s.accept) =⇒ ∀s′ :: (SameKey(s, s′) =⇒ Partner(s, s′)) (12)

The key-match soundness advantage of an adversary A is

AdvKMSound
Π,U (A)

def
= Pr[ExpKMSound

Π,U (A)⇒ 1]. (13)

3.3 Implicit key authentication

Implicit key authentication stipulates that two sessions that derive the same
session key should agree upon whom they are sharing this key with.

Definition 8 (Implicit key authentication). The iKeyAuth predicate evalu-
ates to 1 if and only if

∀s :: s.accept =⇒ ∀s′ :: (SameKey(s, s′) =⇒ s.peer = s′.party)

The implicit key authentication advantage of an adversary A is

AdviKeyAuth
Π,U (A)

def
= Pr[ExpiKeyAuth

Π,U (A)⇒ 1]. (14)

3.4 Explicit key authentication

Explicit key authentication stipulates that any two sessions that derive the same
session key should agree upon whom they are sharing this key with (as for
implicit key authentication), and as long as the session is authentication fresh
some other session deriving the same session key should exist.

Obviously, the session that sends the last message can never guarantee that
this message arrives at its destination, which means that this session can only
achieve the notion of almost-full key authentication, namely that an origin ses-
sion should exist and any origin session that has derived a session key has derived
the same key. A session that receives the last message, however, can guarantee
that another session exists that has derived the same key, and thereby achieve
full key authentication.

Let Lrcv denote the collection of all sessions that receives the last message
of the protocol, and let Lsend denote the collection of all sessions that sends the
last message of the protocol.

Definition 9 (Explicit key authentication). The fexKeyAuth predicate (resp.
afexKeyAuth predicate) evaluates to 1 if and only if

∀s ∈ Lrcv (resp. Lsend) :: s.accept =⇒ ∀s′ :: (SameKey(s, s′)⇒ s.peer = s′.party) (15)

∧
(full) aFresh(s)⇒ ∃s′ :: SameKey(s, s′)

(almost-full) aFresh(s)⇒ ∃s′ ::
(
Orig(s, s′) ∧ [s′.key 6= ⊥ =⇒ SameKey(s, s′)]

)
The full (resp. almost-full) explicit key authentication advantage of A is

AdvfexKeyAuth
Π,U (A)

def
= Pr[ExpfexKeyAuth

Π,U (A)⇒ 1] (16)

AdvafexKeyAuth
Π,U (A)

def
= Pr[ExpafexKeyAuth

Π,U (A)⇒ 1] (17)

3.5 Explicit entity authentication

Explicit entity authentication is almost identical to explicit key authentication,
the only difference being that the former is based on the Partner predicate while
the latter is based on the SameKey predicate. Basically, explicit key authentica-
tion says that if a session with an honest peer accepts then there is some other
session holding the same session key, while explicit entity authentication says
that if a session with an honest peer accepts then it has a partner session.

Explicit key authentication and explicit entity authentication are closely re-
lated, as shown in [13] and further expounded in the full version.

Definition 10 (Explicit entity authentication). The fexEntAuth predicate
(resp. afexEntAuth predicate) evaluates to 1 if and only if

∀s ∈ Lrcv (resp. Lsend) :: s.accept =⇒ ∀s′ ::(Partner(s, s′) =⇒ s.peer = s′.party)

∧
(full) aFresh(s) =⇒ ∃s′ :: Partner(s, s′)

(almost-full) aFresh(s) =⇒ ∃s′ ::
(

Orig(s,s′) ∧ [s′.accept =⇒ Partner(s, s′)]
)

The full (resp. almost-full) explicit entity authentication advantage of A is

AdvfexEntAuth
Π,U (A)

def
= Pr[ExpfexEntAuth

Π,U (A)⇒ 1] (18)

AdvafexEntAuth
Π,U (A)

def
= Pr[ExpafexEntAuth

Π,U (A)⇒ 1] (19)

3.6 Key secrecy

Key secrecy is defined as usual with the adversary using a Test query to get the
real session key or a random key of a session. Note that the adversary may make
multiple test queries, and they all share the same challenge bit, so that either
all Test queries return real session keys, or all Test queries return random (and
independently) sampled keys. Our experiment does not prevent the adversary
from making Test queries for sessions that are not key fresh, so we need to
account for this in the definition of advantage (called the penalty-style in [26]).

Definition 11 (Key secrecy). If ∀s ∈ Tested :: kFreshWFS(s) = true (resp.
kFreshFFS(s) = true), the KeySecWFS (resp. KeySecFFS) predicate returns 1 if
and only if b′ = b. Else it returns b. The weak (resp. full) forward key secrecy
advantage of an adversary A is

AdvKeySecWFS
Π,U (A)

def
= 2 · Pr[ExpKeySecWFS

Π,U (A)⇒ 1]− 1 (20)

AdvKeySecFFS
Π,U (A)

def
= 2 · Pr[ExpKeySecFFS

Π,U (A)⇒ 1]− 1 (21)

Selective key secrecy. The selective key secrecy experiment is defined over the
experiment given in Fig. 1, where now the code inside the blue boxes is in-
cluded. In the selective security experiment the adversary has to commit to one
party it will not reveal the long-term key of throughout the game.

Definition 12 (Selective key secrecy). If ∀s ∈ Tested :: kFreshWFS(s) =
true, the S-KeySecWFS predicate returns 1 if and only if b′ = b. Else it returns b.
The selective key secrecy advantage of an adversary A is

AdvS-KeySecWFS
Π,U (A)

def
= 2 · Pr[ExpS-KeySecWFS

Π,U (A)⇒ 1]− 1. (22)

Remark 1. Ordinary key secrecy does not reduce trivially to selective key secrecy
with a U tightness loss as one might expect. Specifically, for an adversary that
starts by revealing all long-term keys a reduction to selective key secrecy will
not be able to simulate the one key it committed to. This makes our selective
security notion incomparable to the selective notion of [21].

Alice Bob

Πk, t, t′ k, t, t′

t

t′

accept if received t is valid

accept if received t′ is valid

Fig. 2: Protocol Π+ obtained by extending protocol Π with key confirmation
tags. All session variables in Π+ are inherited from Π, except for accept which
is defined as shown. The session sending the last message in protocol Π sends
tag t, and the session receiving the last message in protocol Π sends tag t′.

4 The security of adding key confirmation

Let Π denote an arbitrary key exchange protocol, and let Π+ denote the protocol
that extends Π by adding key confirmation messages from each side as illustrated
in Fig. 2. Conventionally, the key confirmation messages are derived from the
session key of Π using a PRF (and possibly a MAC) but in order to simplify
the later analysis we assume that Π produces session keys of the form (k, t, t′)
directly. Protocol Π+ is then derived from Π simply by defining its session key
to be k, and the key confirmation tags to be t and t′. Using this trick we can
relate the security of protocol Π+ purely to the security of protocol Π without
having to rely on PRFs or MACs.

Unfortunately, defining Π+ in terms of the key triple output by Π introduces
one technicality. We will often want to make an assertion of the form “if s and s′

have equal keys in protocol Π+ (meaning k), then they also have equal keys in
protocol Π (meaning (k, t, t′))”. While this assertion easily follows in practice—
for instance if (k, t, t′) is derived from the session transcript using a function
for which getting a collision just in k is unlikely, such as an extendable-output
function or a random oracle—in the generality we have presented Π and Π+

above the assertion does not automatically follow. Thus, to cleanly state and
prove our generic results we introduce the implication “equal k =⇒ equal
(k, t, t′)” as an explicit security property.

To this end, let prefix : {0, 1}∗ → {0, 1}∗ be a function that returns a prefix
of a particular length (left unspecified) from its argument and define

SamePrefix(s, s′) ⇐⇒ [s.key, s′.key 6= ⊥ ∧ prefix(s.key) = prefix(s′.key)]. (23)

Definition 13 (Same prefix security). The PreEqAllEq predicate evaluates
to 1 if and only if

∀s ∈ Lrcv :: s.accept =⇒ ∀s′ :: (SamePrefix(s, s′) =⇒ SameKey(s, s′)). (24)

The same prefix advantage of A is

AdvPreEqAllEq
Π,U (A)

def
= Pr[ExpPreEqAllEq

Π,U (A)⇒ 1]. (25)

We now state the first main theorem of the paper: a protocol with weak
forward secrecy can be upgraded to full forward secrecy by adding key confirma-
tion messages, and, moreover, this upgrade can be achieved with a linear security
loss in the number of parties. The second main theorem of the paper is that this
linear security loss is unavoidable for a larger class of compilers (see Section 6).

Theorem 1. Let A be an adversary against key secrecy for Π+. Then there exist
adversaries B1,B2, . . . ,B6, all with about the same runtime as A, such that

AdvKeySecFFS

Π+,U
(A) ≤ 4 · U ·AdvS-KeySecWFS

Π,U (B1) + 8 ·AdviKeyAuth
Π,U (B2) +

4US

2taglen

+ 12 ·AdvMatch
Π,U (B3) + 4 ·AdvKMSound

Π,U (B4) + 12 ·AdvPreEqAllEq
Π,U (B5)

+ 4 ·AdvKeySecWFS
Π,U (B6),

where taglen is the length of the key confirmation tags used by Π+ and S is the
number of sessions.

The proof of Theorem 1 is given in the full version. At a high level the proof
consists of two parts: one where all accepting sessions with peers whose long-
term keys are unrevealed have an origin session, and one where they don’t. In
the first case full forward key secrecy of protocol Π+ reduces straightforwardly
to the weak forward key secrecy of protocol Π. The main challenge is to deal
with the second case, namely to prove that protocol Π+ achieves explicit entity
authentication. In fact, the main technical tool for this is to prove that Π+

achieves explicit key authentication, which is where we use the selective key
secrecy notion. The proof of explicit key authentication is the focus of Section 4.1.

4.1 Implicit to explicit key authentication

In this section, we establish that explicit key authentication can be based on
selective key secrecy, implicit key authentication, and same prefix security. This
is a key technical result needed to restore the tight security of the explicitly
authenticated protocol of [10]. The use of selective security may have further
applications in constructing highly efficient explicitly authenticated key exchange
protocols with full forward secrecy in the future.

Lemma 1. Let A be an adversary against full explicit key authentication for
Π+. Then there exists an adversary B2 against selective key secrecy and an ad-
versary B1 against implicit key authentication and same prefix security, both with
the same runtime as A, such that

AdvfexKeyAuth

Π+,U
(A) ≤ AdviKeyAuth

Π,U (B1)+AdvPreEqAllEq
Π,U (B1)+U ·AdvS-KeySecWFS

Π,U (B2)+
US

2taglen
,

where taglen is the length of the key confirmation tags used by Π+ and S is the
number of sessions.

We need to deal with two cases. The first case considers attacks on explicit
authentication that result from breaking implicit authentication of the underly-
ing protocol Π. This case does not incur a tightness loss.

The second case considers attacks on explicit authentication that rely on
breaking the weak forward secrecy of the underlying protocol Π. The important
point is that in order to break explicit authentication, the partner long-term
key must be unrevealed at the point in time where authentication is broken.
This means that the session will be fresh at the time authentication is broken,
which means that we can deduce the challenge bit at the point in time where
authentication is broken. Any subsequent reveal of the partner long-term key
can therefore be ignored.

Proof. The proof is structured as a sequence of games. Let WinGi
denote the

event that A wins in Game i. Winning in this case means that full explicit key
authentication in (15) from Definition 9 does not hold.

Game 0. This is the original game for protocol Π+. We have that

AdvfexKeyAuth
Π+,U (A) = Pr[WinG0]. (26)

Game 1. We modify the game so that if (15) does not hold for the Π part of a
session of Π+, then that session never accepts. Let ExceptG1

be the event that
this happens.

It is immediate that until ExceptG1
happens, Game 1 proceeds exactly as

Game 0, so

|Pr[WinG1]− Pr[WinG0]| ≤ Pr[ExceptG1
]. (27)

We create an adversary B1 against implicit key authentication for Π that
runs a copy of A and uses its experiment to run the Π part of Π+. When a
session of Π outputs a session key, B1 reveals the session key and uses that to
simulate sending and receiving the key confirmation messages. Let WinB1

denote
the probability that B1 wins.

It is immediate that B1 and its experiment together simulate the experiment
in Game 0 perfectly with respect to the copy of A run by B1. Since SameKey for
Π+ implies SamePrefix for Π, if (15) does not hold for Π+ in an execution, either
it will not hold when we consider the game as an execution of Π, or PreEqAllEq
will not hold when we consider the game as an execution of Π. In other words,

Pr[ExceptG1
] ≤ Pr[WiniKeyAuth

B1
] + Pr[WinPreEqAllEq

B1
]. (28)

Game 2. We modify the game by sampling j ∈ {1, 2, . . . , U} at the start. Let
Win′G2

be the event that WinG2
happens and one session for which authentication

is broken has the jth key as its peer’s public key. Clearly,

Pr[Win′G2
] ≥ 1

U
Pr[WinG2] =

1

U
Pr[WinG1]. (29)

Game 3. We modify the game so that if (15) holds for a session of Π+ that has
the jth key as its peer public key but it has no origin session, then that session
samples random tags to use for the Π+ part of the protocol, instead of the tags
output by Π.

It is immediate that

Pr[Win′G3
] ≤ S

2taglen
. (30)

We create an adversary B2 against selective key secrecy for Π that runs a copy
of A and uses its experiment to run the Π part of Π+, simulating the sending and
receiving of key confirmation messages as modified in Game 2, further modified
as follows:

– At the start, B2 selects an integer j ∈ {1, 2, . . . , U}.
– When a session of Π, using the ith key as its peer key, outputs a session key,

(15) holds for the session and it has no origin session, then:
• If i 6= j, then B2 reveals the session key of the session and uses that key

to simulate the Π+ part of the session.
• If i = j, then B2 tests the Π instance and uses that key to simulate the

Π+ part of the session.
– If A reveals the jth long-term key, B2 outputs 0 and stops.

If A breaks authentication for a session with the jth key as its peer key, B2

outputs 1, otherwise B2 outputs 0.
Let Win′B2,b denote the event that B2 outputs 1, when its experiment has the

secret bit b. We have that

AdvS-KeySecWFS
Π,U (B2) = |Pr[WinB2,0]− Pr[WinB2,1]|. (31)

If the experiment’s secret bit b = 0, then B2 perfectly simulates Game 2
with respect to the Win′G2

event, since the only observable difference is that
B2 terminates when Win′G2

no longer can occur (when the jth long-term key is
revealed), so

Pr[WinB2,0] = Pr[Win′G2
]. (32)

If the experiment’s secret bit b = 1, then B2 perfectly simulates Game 3 with
respect to the Win′G3

event, again because of termination, so

Pr[WinB2,1] = Pr[Win′G3
]. (33)

The claim follows from (26)–(33). ut

The same argument proves the similar statement:

Lemma 2. Let A be an adversary against almost full explicit key authentication
for Π+. Then there exists an adversary B2 against selective key secrecy and an
adversary B1 against implicit key authentication and same prefix security, both
with the same runtime as A, such that

AdvafexKeyAuth

Π+,U
(A) ≤ AdviKeyAuth

Π,U (B1)+AdvPreEqAllEq
Π,U (B1)+U ·AdvS-KeySecWFS

Π,U (B2)+
US

2taglen
,

where taglen is the length of the key confirmation tags used by Π+.

Alice Bob

U = gr V = gs
“Alice”, A, U

“Bob”, B, V
key← Π.KDF(ctxt‖V a‖Br‖V r) key← Π.KDF(ctxt‖As‖Ub‖Us)

Fig. 3: The CCGJJ protocol from [10] for prime-ordered group G with genera-
tor g. Alice has secret key a, public key A; Bob has secret key b, public key B.
Their context ctxt contains their names, their public keys and the two messages
U and V . We include names and public keys in the messages; in practice they
may be communicated in other ways.

4.2 Additional security reductions

Lemma 1 is the key result needed to show that protocol Π+ achieves explicit
authentication from the implicitly authenticated protocol Π in a manner that
only incurs a tightness loss of U . From this result all the other security properties
defined in Section 3 follow in a straightforward and modular way. That is, in
the full version we show that Π+ has all the security properties from Section 3
via reductions to the same properties of protocol Π, in addition to same prefix
security. Moreover, none of these reductions loses more than a factor of U (in
fact, most of the reductions are fully tight, and those that are not only accrue
the U term as a result of invoking Lemma 1).

5 The CCGJJ protocol

The CCGJJ protocol from Cohn-Gordon et al. [10] is a highly efficient implicitly
authenticated key exchange protocol with optimal tightness. We use this protocol
to illustrate our framework, which means that we need to prove various properties
for the protocol.

We begin by proving that the protocol has the basic properties we want, in
particular match soundness, key match soundness and the same prefix property.

Proposition 1. Let A be an adversary against the CCGJJ protocol. Then

AdvMatch
CCGJJ ,U (A) ≤ S2

2|key|
, AdvKMSound

CCGJJ ,U (A) ≤ S2

|G| and AdviKeyAuth
CCGJJ ,U (A) ≤ S2

2|key|
.

Proposition 2. Let A be an adversary against the CCGJJ protocol. Then

AdvPreEqAllEq
CCGJJ ,U (A) ≤ S2

2|key|−2taglen
.

Proposition 3. Let A be an adversary against selective key secrecy for CCGJJ.
Then there exists adversaries B1, B2 and B3 against strong Diffie-Hellman (in
group G with generator g) with essentially the same runtime as A such that

AdvS-KeySecWFS
CCGJJ ,U (A) ≤ AdvstDH

G (B1) + AdvstDH
G (B2) + AdvstDH

G (B3) +
US2

|G|

The proof closely follows the structure of the proof in [10], modelling Π.KDF
as a random oracle.

6 Impossibility of tightly-secure explicit authentication
via key confirmation

In this section we show that a large, natural, and widely-used class of compil-
ers for turning implicitly authenticated protocols into explicitly authenticated
protocols, inevitably must incur a linear security loss in the number of parties.
The class includes the generic compiler from [10] which was incorrectly claimed
to achieve tight security but also the MAC-based approach to turn HMQV into
HMQV-C [20] (which does not give explicit security bounds) and the compiler
by Yang [27] (which has a linear loss in the number of parties times sessions per
party).

6.1 Requirements on Π and Π+

We want to consider generic approaches that turn any implicitly authenticated
key exchange protocol Π into an explicitly authenticated protocol Π+. To this
end, we will in the sequel focus on underlying protocols Π and constructions Π+

that satisfy certain requirements that we will define in this section.

Messages of Π are independent of the secret key. We consider protocols Π where
the messages sent by a party are independent of the long-term secret key of this
party (and the long-term secret is only used during session key computation).
More precisely, we consider n-message protocols Π = (KeyGen, Init,Run), with
two associated session key computation algorithms Π.KDF,Π.KDF′. Recall that
Run is a state-dependent algorithm, i.e., the state “prescribes” which protocol
message needs to be generated next. The algorithms are executed as follows.

1. The initiator samples randomness rI uniformly from some space (depending
on the protocol) and uses this to compute the first protocol message and
session state as

(m1, st1)← Π.Init(I,R, init, pkR,−).

Here pkR is the public key of the intended communication partner (the re-
sponder). Note that I’s secret long-term key skI is not used to produce
m1, st1.

2. Upon receiving message m1 the responder samples uniform randomness rR
and initializes a session state as st ′2 ← Π.Init(R, I, resp, pkI ,−), then com-
putes the second protocol message and an updated state as

(m2, st2)← Π.Run(st ′2,m1).

Again, note that R’s secret long-term key skR is not used to produce m2, st2.

3. If n > 2, then the parties keep exchanging messages until the protocol is
finished. Hence, whenever a party with state st i−1 receives a message mi

with i < n, then it computes a message mi+1 and an updated state st i+1 as

(mi+1, st i+1)← Π.Run(st i−1,mi).

4. When a party receives the (n−1)th message mn−1, then it computes the nth

message and updated state stn as above, and—using the updated state and
secret long-term key sk—additionally outputs a session key as

k ← Π.KDF(stn, sk).

5. Similarly, when a party receives the nth message mn, it uses this, together
with its current state st i−1 and secret long-term key sk, to derive

k ← Π.KDF′(stn−1, sk,mn).

The messages must be independent of the secret key because we will construct
an efficient adversary which has to send messages on behalf of other parties
without knowing their secret keys. This includes typical implicitly authenticated
protocols, such as protocols where each party sends a group element gx for
random x← Zp and the long-term secret keys are only used during key derivation
at the end of the protocol. Many typical implicitly authenticated high-efficiency
protocols have messages that are independent of the secret key. This includes
in particular the implicitly authenticated variant of the CCGJJ19 protocol [10]
but also protocols such as HMQV [20].

One class of protocols which is not covered by this assumption are those based
on digital signatures, such as the signed Diffie-Hellman protocol. Digitally signing
messages is thus a way to circumvent our impossibility result. However, note that
implicitly authenticated key exchange protocols, such as [10,20], typically avoid
the use of digital signatures since they add a very significant overhead (w.r.t.
computation and communication) to the protocol. This holds in particular when
tightness is considered, where the most efficient signature schemes with fully
tight multi-user security (in the random oracle model) [14] are significantly more
expensive than corresponding schemes without tight security.

An extension to NAXOS-like protocols [22], where parties send a group el-
ement gx where x = H(sk, r) depends on the secret key of the sending party
and some randomness r, as well as to reductions in the random oracle model, is
discussed in Section 6.3.

Π+ adds key confirmation messages with canonical verification to Π. In the se-
quel let Π be an (implicitly authenticated) n-message protocol as defined above.
We consider (n + 1)-messages protocols Π+ defined in terms of Π, and two
associated functions Π+.Conf and Π+.KDF, where Π+.Conf computes the key
confirmation messages added to the protocol and Π+.KDF may perform addi-
tional key derivation. The first three steps of an execution of protocol Π+ are
identical to Π as described above. The remaining steps proceed as follows (cf.
Figure 4).

4. When a party receives the (n−1)th message mn−1, then it computes the nth

message of Π and updated state stn as above, and derives the session key of
Π as an intermediate key k ← Π.KDF(stn, sk)
Then it computes a key confirmation message mn+1 ← Π+.Conf(k, Tn), de-
pending on k and the transcript Tn = (m1, . . . ,mn) of all protocol messages
as sent and received by this party so far. The nth message of Π+ now con-
sists of the tuple (mn,mn+1), that is, the nth message of Π plus the key
confirmation message.

5. When a party receives the nth message of Π+ (mn,mn+1), then it derives
an intermediate key as k ← Π.KDF′(stn−1, sk,mn) using its current state
stn−1, long-term secret key sk, and message mn.
Then it checks the first key confirmation message by computing m′n+1 ←
Π+.Conf(k, Tn) and setting accept← true if and only if mn+1 = m′n+1.
If accept = false, then it outputs k′ = ⊥. If accept = true, then it sends
a second key confirmation message mn+2 ← Π+.Conf(k, Tn+1) and outputs
k′ ← Π+.KDF(k, Tn+2), where Tn+2 = (m1, . . . ,mn+2).

6. Finally, when a party receives the (n+ 1)th message of Π+, i.e., the second
key confirmation message, then it computes m′n+2 ← Π+.Conf(k, Tn+1) and
sets accept = true if and only if mn+2 = m′n+2. If accept = false, then it
outputs k′ = ⊥. If accept = true, then it outputs k′ ← Π+.KDF(k, Tn+2).

Alice Bob

n messages of Πk ← Π.KDF′(stn, skA,mn) k ← Π.KDF(stn−1, skB)

mn+1

mn+2

mn+1 ← Π+.Conf(k, Tn)
accept := (mn+1

?
= Π+.Conf(k, Tn))

mn+2 ← Π+.Conf(k, Tn+1)
k′ ← Π+.KDF(k, Tn+2)

accept := (mn+2
?
= Π+.Conf(k, Tn+1))

k′ ← Π+.KDF(k, Tn+2)

Fig. 4: Protocol Π+ extending protocol Π with key-confirmation messages. In
this concrete example Bob would have sent the last message mn of Π.

Remark 2. We have defined Π+ such that the first key confirmation message is
sent along with the last message of Π, and then the second key confirmation

message is sent as a reply. This adds one extra message to Π, that is, Π+ is
an (n + 1)-message protocol. Alternatively, we could have defined Π+ so that
the first key confirmation is sent as a reply to mn. This would have added two
messages to Π, making Π+ an (n+ 2)-message protocol. We consider the former
approach more natural, and is the approach used in CCGJJ19 [10] and HMQV-
C [20]. The latter approach is used by Yang [27]. Even though we only treat the
former variant here, our results apply equally to both variants.

Definition 14. Let Π+.Conf be such that key confirmation messages are el-
ements of {0, 1}β We say that Π+.Conf is δ-entropy-preserving, if for every
m ∈ {0, 1}β and every string T ′ holds that

Pr
k $←−K

[
Π+.Conf(k, T ′) = m

]
≤ δ

Security of Π+ from Π via a valid black-box reduction. We want to consider
generic constructions of a fully forward secret (and explicitly authenticated)
protocol Π+ based on the assumption that the underlying Π is a weakly forward
secret (and implicitly authenticated) protocol, plus possibly some additional as-
sumptions, e.g., on the primitives used to create the key confirmation messages,
and so on. This excludes artificial constructions of Π+ which run Π as a redun-
dant subroutine but where security is achieved in a completely different way, so
that Π is actually superfluous.

The most natural way to establish security of Π+ based on the security of Π is
to have a security analysis of Π+ which includes (possibly among other arguments
and reductions) at least one reduction R to the KeySecWFS security of Π. We
will argue that such a reduction cannot be tight. The full security analysis of Π+

might include further arguments, such as reductions to the security of primitives
used in the key confirmation messages.

More precisely, we assume that the security proof of Π+ includes a black-
box reduction R, which treats the adversary A as a black box by submitting
inputs and receiving outputs from A as specified in the explicitly authenticated
security model, and which is able to leverage any successful A (independently
of how A works internally) to break the KeySecWFS security of Π. Reduction
R has access to the KeySecWFS security experiment of protocol Π, and to an
adversary A on the KeySecFFS security of Π+. We require that for every party
i of the Π+ experiment, there exists a unique corresponding party i′ in the Π
security experiment, and that R relays all messages of Π between the adversary
and its security experiment. Hence, for every session si,j of Π+ there exists a
unique session s′i,j of Π. The additional key confirmation messages of Π+ are
simulated by R (in any arbitrary way).

We also assume that the reduction is always “valid”, i.e., it never makes
any trivially invalid queries in its KeySecWFS security experiment. For example
asking Reveal(s) and Test(s) against the same session s. We assume that a reduc-
tion rather aborts instead of making invalid queries. Obviously, any reduction R′
that does not satisfy this can be generically transformed into a reduction R that
does, with essentially the same running time and advantage, by simply putting

a wrapper around R′ that relays all queries and their replies but terminates R′
when it asks the first trivially invalid query.

Π has unique and efficiently verifiable secret keys. We assume that the public
key pk of every party running protocol Π uniquely determines a matching secret
key sk, and that one can efficiently and perfectly verify that a given sk matches a
given pk. Note that this also holds for many typical implicitly authenticated high-
efficiency protocols, in particular the CCGJJ19 protocol [10], but also HMQV
[20], NAXOS [22], and many more, where a public key is a group element y of
a group of order p and the matching secret key is the unique x ∈ Zp such that
gx = y.

It is known that it is generally difficult to reduce the security of a protocol
Π with unique secret keys tightly to the hardness of some non-interactive com-
plexity assumption, due to the general impossibility results of Bader et al. [3].
However, note that our impossibility result is not about the tightness of secu-
rity proofs for Π and reductions to non-interactive hardness assumptions, but
rather about the tightness of reducing the security of a protocol Π+ with key
confirmation to the security of some underlying protocol Π (which then may
or may not have a tight reduction to some hardness assumption). Hence, it is
independent of the question of whether Π has a tight security proof under some
(non-interactive) hardness assumption or not. Note also that in order to rule out
tight generic constructions of explicit authentication via key confirmation, it is
sufficient to rule out such constructions for protocols with unique secret keys, as
a generic construction should work in particular for protocols with unique keys.

6.2 Impossibility result

Theorem 2. Let Π be an AKE protocol and let Π+ be an AKE protocol con-
structed by extending Π with δ-entropy-preserving key confirmation. Let R be a
reduction which converts any adversary A against the KeySecFFS security of Π+

into an adversary R(A) against the implicitly authenticated KeySecWFS-security
of Π, such that Π, Π+, and R satisfy all requirements described in Section 6.1.
Let ε denote an upper bound on the advantage AdvKeySecWFS

Π,U (B) of any efficient
adversary B in the KeySecWFS security experiment for Π with U parties.

There exists a hypothetical adversary A with AdvKeySecFFS
Π+,U (A) = 1− 1/2|key|

such that for every reduction R = R(A) holds that

AdvKeySecWFS
Π,U (R(A)) ≤ 2

U
+ 5 · ε+

1

2|key|−1
+ δ

Interpretation of Theorem 2. If Π is secure (otherwise a reduction to the security
of Π is meaningless anyway), then ε is negligible. Furthermore, we can assume
that 1

2|key|−1 and δ are negligibly small, too, as otherwise there are trivial attacks
on Π+. Hence, we obtain that the advantage of any reduction R must be neg-
ligibly close to O(1/U). However, note that the adversary A against Π+ in the
above theorem has advantage ≈ 1. Hence, a reduction R cannot be tight, as it
must have a linear loss in the number of parties U .

Theorem 2 is formulated in terms of key secrecy, as it considers reductions
leveraging an adversary A breaking the full forward secrecy (KeySecFFS) of Π+.
However, the impossibility result could equally have been phrased in terms of
entity authentication. To see this, note that while the proof of Theorem 2 de-
scribes a meta-reduction which simulates a hypothetical adversary A breaking
key secrecy, in Step 4 of this hypothetical adversary A also breaks entity authen-
tication. Therefore one can equally phrase the theorem in terms of entity authen-
tication, the overall proof and arguments all remaining the same. Consequently,
Theorem 6 of [10], which is technically a claim about entity authentication and
not about key secrecy, cannot be correct by Theorem 2. This was confirmed by
the authors of [10].

Proof. As common in proofs based on meta-reductions [18,23,3] we first describe
an (inefficient) hypothetical adversary. Then we explain how this hypothetical
adversary is leveraged to prove the result, by showing that one can efficiently
simulate A for any reduction R that is “too tight”, which yields a contradiction.

Description of the hypothetical adversary. Consider the following (hypothetical)
adversary A for the explicitly authenticated security experiment.

1. A receives a dictionary pk containing all the public keys of all users. It picks
i∗ $←− {1, . . . , U} at random.

2. A initiates U(U − 1) protocol sessions as follows. For every party i it picks
U−1 random values ri,j for all j 6= i, that is, one for every party different from
party i. Then it uses the fact that protocol messages of Π are independent
of the secret long-term key to execute a run of protocol Π+ such that the
experiment outputs the first key confirmation message on behalf of j. A does
not respond with the second key confirmation message.
More precisely, if Π is an n-message protocol and n is even, then A imper-
sonates every party i as an initiator by querying

si,j ← NewSession(j, i, resp)

to create a session id si,j . Note that in our notation the session si,j refers
to a session where the adversary impersonates party i towards a session of
party j with session id si,j in the experiment. Then A uses ri,j to compute

(mi,j,1, st i,j,1)← Π.Init(i, j, init, pkj ,−)

and queries Send(si,j ,mi,j,1) in order to send mi,j,1 to the experiment on
behalf of party i.

If Π is a two-message protocol, then the experiment will respond
with the second message of Π and the key confirmation message on
behalf of j. If Π has more than two messages (i.e., n ∈ {4, 6, 8, . . .}),
then A continues to simulate all further messages of Π using st i,j,1 on
behalf of i by appropriate Send queries, until the experiment outputs
the first key confirmation message.

If Π is an n-message protocol for odd n, then A proceeds similarly,
except that instead of sending the first protocol message, it queries
(mi,j,1, si,j) ← NewSession(j, i, init) in order to receive the first pro-
tocol message mi,j,1 from j to i and a corresponding session id si,j .

Thus, in totalA obtains U(U−1) key confirmation messages from its security
experiment. We will later consider reductions R simulating the experiment
of Π+ by relaying all messages of Π to the security experiment of Π. But since
the key confirmation messages exist only in Π+ and not in Π, R is forced
to somehow simulate the key confirmation messages. However, we will argue
that these key confirmation messages are difficult to simulate properly for
any R without predicting the index i∗ chosen by A in its next step.

3. So far all queries of A were independent of i∗. Now A reveals the long-
term keys of all users except for i∗, by querying RevealLTK(i) for all i ∈
{1, . . . , U}\{i∗}. The adversary aborts if anything is wrong. More precisely:
(a) It checks whether all secret keys returned by the experiment match the

public keys and aborts if not. Here we use that Π has unique and effi-
ciently verifiable secret keys.
Intuitively, this forces a reduction R simulating the experiment to relay
all RevealLTK queries to the security experiment of Π. Otherwise, we can
leverage R to break Π due to the fact that it is able to output a valid,
non-revealed, long-term secret key. We prove this below.

(b) For all i ∈ {1, . . . , U}\{i∗} and all j 6= i, A uses its randomness ri,j and
ski to compute all intermediate session keys ki,j (i.e., the session key of
protocol Π of the session between i and j). To this end, it computes

ki,j ← Π.KDF′(st i,j,n−1, ski,mi,j,n)

and then uses ki,j and the transcript Ti,j,n of the first n protocol messages
of the session between i and j to test whether the key confirmation mes-
sage produced by the security experiment in this session indeed match
the correct key confirmation message determined by ki,j and the protocol
transcript Ti,j,n. This is done by computing

m′i,j,n+1 ← Π+.Conf(ki,j , Ti,j,n)

and checking whether mi,j,n+1 = m′i,j,n+1. A aborts if any key confirma-
tion message is incorrect.
Intuitively, this forces a reduction R simulating the security experiment
to produce correct key confirmation messages for all sessions where R
simulates party j. Below we’ll argue that this is difficult for a reduction
without predicting the index i∗, which incurs a linear security loss.

4. This last step is the “hypothetical” part of the adversary. A computes the
unique value ski∗ that corresponds to the secret key of party i∗. We inten-
tionally do not specify precisely how this is done, as a black-box reduction
should be able to leverage any adversary that somehow accomplishes this in
some way. Then A finishes the key exchange protocol on behalf of i∗ with
any party j, for instance for j = 1.

To this end, it computes the intermediate key from Π as

ki∗,j ← Π.KDF′(st i∗,j,n−1, ski∗ ,mi∗,j,n)

and sets accept ← true if and only if mi∗,j,n+1 = Π+.Conf(ki∗,j , Ti∗,j,n+1),
where Ti∗,j,n+1 is the transcript of all protocol messages of the session be-
tween i∗ and j as observed by A. If accept = false, then A aborts.
If accept = true, then A derives and sends the second key confirmation
message of Π+.5 Since si∗,j has not been revealed and no partner has been
revealed, corrupted, or tested, it is eligible for a Test query.
Now A asks Test(si∗,j) and receives back a key k′, which is either the “real”
session key or a random key. A then computes k ← Π+.KDF(k, Ti∗,j,n+2),
where Ti∗,j,n+2 is the transcript of all protocol messages of the session be-
tween i∗ and j as observed by A. It outputs 1 if k = k′ and 0 otherwise.

Note that A is a correct (hypothetical) adversary against the explicitly au-
thenticated KeySecFFS security of Π+ with

AdvKeySecFFS
Π+,U (A) = 1− 1/2|key|

The term 1/2|key| is the probability that a random key k′ equals the “real” ses-
sion key k “by accident”, which is the only case where A answers incorrectly.
Note that this is the best possible advantage that an adversary that asks only a
single Test query can achieve in the security experiment. Hence, any black-box
reduction R that works for any correct adversary should work in particular for
A. As common in proofs based on meta-reductions, such as [11,18,23,3] our hy-
pothetical adversary is not efficient but we will show how it can be efficiently
simulated if the reduction R is tight. This yields that either the reduction must
be non-tight, or the underlying hardness assumption (that Π is secure in an
implicitly authenticated sense) must be wrong. Since we assume that Π is se-
cure (as otherwise any reduction to the security of Π is meaningless and trivial,
anyway), we conclude that R must be non-tight.

Analysis of R. Consider the following sequence of games, where we denote with
Xi the advantage ofR(A) in the KeySecWFS security experiment of Π in Game i.
Proofs for the lemmas can be found in the full version.

Game 0. As described in Section 6.1, we consider reductions R which have
access to the KeySec security experiment of protocol Π, and to an adversary A
on the explicitly authenticated KeySec security of Π+. This game consists of an
execution of any such reduction R with our hypothetical adversary. We have

X0 = AdvKeySecWFS
Π,U (R(A))

5 This step already breaks entity authentication of Π+ since the long-term key of
si∗,j ’s peer has not been revealed. However, since we focus on forward security here
we let A continue.

Recall from Section 6.1 that for every party i of the Π+ experiment, there
exists a unique corresponding party i′ in the Π security experiment. Recall also
that R relays all messages of Π between the adversary and its security experi-
ment, such that for every session si,j of Π+ there exists a unique session s′i,j of
Π, and that we assume that R does not make any invalid queries in its security
experiment that make R trivially “lose” the KeySec security experiment.

Game 1. Recall that according to Definition 1 the origin predicate evaluates to
Orig(s, s′) = true for two sessions s, s′, if the transcript of s′ is equal to or a prefix
of the transcript of s. Recall also that session key freshness (Definition 5) allows
to reveal the long-term key of s’s peer if there exists s′ with Orig(s, s′) = true.

Note that A impersonates one communication partner of every session cre-
ated with R using independent randomness, and that R relays all protocol mes-
sages of Π between its own experiment and A. Hence, intuitively it should be
unlikely that there exist any two sessions s, s′ of Π such that Orig(s, s′) = true,
and thus long-term key reveals of peers should not be allowed (as this would en-
able a trivial attack, where A sends a message on behalf of a party and it knows
the corresponding secret key, such that it can trivially compute the session key
and break the KeySec security). However, it might happen by coincidence, e.g.,
if A and the security experiment of Π happen to choose the same randomness.

The security of Π implies that the probability of this to happen is negligibly
small. In Game 1 we ensure that indeed there are no two sessions s, s′ such that
Orig(s, s′) = true holds “by accident”. Note that all sessions of Π are created in
Step 2 of A, therefore it suffices to consider the experiment until the end of Step
2 of A, that is, before A asks the first RevealLTK query in Step 3.

Game 1 is identical to Game 0, except that we raise event WrongOrigin and
abort, if at the end of Step 2 of the adversary there exist any two sessions s, s′

such that Orig(s, s′) = true. We have

|X1 −X0| ≤ Pr [WrongOrigin]

Hence, after Game 1 we are guaranteed that there are no two sessions s, s′

such that Orig(s, s′) = true, and thus R is not allowed to reveal the long-term
key of a test session’s peer.

Lemma 3. There exists an efficient adversary B1 against the key secrecy of Π
with

AdvKeySecWFS
Π,U (B1) ≥ Pr [WrongOrigin]

Game 2. This game is identical to Game 1, except that we abort if the event
NotAllRevLTK(i) happens, where NotAllRevLTK(i) is the event that R has not
asked RevealLTK(i) for all i 6= i∗ before A reaches Step 4. In other words, if
NotAllRevLTK(i) happens, then when A reaches Step 4 there exists an index
i 6= i∗ such that R has never queried RevealLTK(i). We have

|X2 −X1| ≤ Pr [NotAllRevLTK(i)]

Hence, from Game 2 on we are guaranteed that every reduction R must
satisfy all the following properties simultaneously throughout its execution:

– Throughout its execution, R eventually asks RevealLTK(i) for all i 6= i∗, as
otherwise event NotAllRevLTK(i) occurs.

– R does not query RevealLTK(i∗), because this would mean that R learns all
parties’ long-term keys, which would make the reduction trivially invalid,
since it could not issue a Test query to any session started by our A.

– R does not query Test(si,j) for any session si,j with i 6= i∗, as for none of the
sessions si,j there exists an origin session and therefore this would violate
session key freshness (Definition 5), and so the reduction would be trivially
invalid.

Lemma 4. There exists an efficient adversary B2 against the key secrecy of Π
with

AdvKeySecWFS
Π,U (B2) ≥ Pr [NotAllRevLTK(i)]− 1/2|key|.

Game 3. This game is identical to Game 2, except that we abort if the event
IncorrectConf happens, where IncorrectConf is the event that R outputs at least
one key confirmation message such thatA aborts in Step 3. Note that IncorrectConf
occurs, if there exists any session si,j with i 6= i∗ where R outputs a key confir-
mation message mi,j,n+1 such that

mi,j,n+1 6= Π+.Conf(ki,j , Ti,j,n)

where ki,j ← Π.KDF′(st i,j,n−1, ski,mi,j,n) and st i,j,n−1 is the session state de-
termined by ski and transcript Ti,j,n. We have

|X3 −X2| ≤ Pr [IncorrectConf]

Hence, from Game 3 on we are guarenteed that R outputs correct key confirma-
tion messages for all si,j with i 6= i∗.

Lemma 5. There exists an efficient adversary B3 against the key secrecy of Π
with

AdvKeySecWFS
Π,U (B3) ≥ Pr [IncorrectConf]

Observe that the decision whether A aborts is already made at the end of
Step 2 of the adversary, where all queries of A are independent of i∗, and in
particular before A asks any RevealLTK query in Step 3. Intuitively, this forces
R to output correct key confirmation messages for all sessions si,j with i 6= i∗.

Game 4. This game is identical to Game 3, except that we abort if R queries
Test(si∗,j) for any session of party j with i∗, where i∗ is the index chosen by A,
before Step 2 of A ends, that is, before A makes the first RevealLTK query.

Recall that we have already established in Game 2 that R cannot make a
Test(si,j) query for any session si,j with i 6= i∗ throughout the game. Hence, if
R makes a Test(si∗,j) query already in Step 2 of A, then it correctly predicts
the random i∗. Since all queries of A are independent of i∗ until the beginning
of Step 3, we have

|X4 −X3| ≤
1

U

Game 5. Now we additionally abort if R queries Reveal(si∗,j) for all sessions
with party i∗, where i∗ is the index chosen by A, before Step 2 of A ends, that
is, before A makes the first RevealLTK query in its Step 3. We claim that

|X5 −X4| = 0.

Note that none of the sessions created by R with its security experiment
has an origin-session due to the construction of A and since we have ruled
out the event WrongOrigin in Game 1. Recall also that R must eventually ask
RevealLTK(i) for all i 6= i∗, as established in Game 2. Hence, R must not ask
a Test(si,j) query for any session si,j with i 6= i∗, as this would violate the
aFresh(si,j) predicate of the kFreshWFS(si,j) definition. However, if R would
now also query Reveal(si∗,j) for all sessions of party i∗, then R would not be
allowed to query Test(si,j) for any session si,j with i = i∗, as this would violate
the kFreshWFS(si,j) definition.

In this case, no fresh session would remain for which R could make a Test
query. Hence, this would be an invalid sequence of queries, and since we assume
that R does not make any such invalid queries this cannot happen.

Game 6. This game is identical to Game 5, except that we abort if the event
AllConfCorrect happens, where AllConfCorrect occurs if R outputs all key confir-
mation messages correctly in Step 2. Specifically, AllConfCorrect occurs if

mi,j,n+1 = Π+.Conf(ki,j , Ti,j,n)

holds for all sessions si,j , and thus for all sessions si∗,j for some j. We have

|X6 −X5| ≤ Pr [AllConfCorrect]

Hence, from Game 6 on we are guarenteed that R outputs correct key con-
firmation messages for all si,j with i 6= i∗ as otherwise we abort due to Game 5,
but there must be at least one incorrect key confirmation message for a session
si∗,j , as otherwise we abort due to Game 6.

Lemma 6. There exists an efficient adversary B6 against the key secrecy of Π
with

AdvKeySecWFS
Π,U (B6) ≥ Pr [AllConfCorrect]

2
− 1

2|key|
− δ (34)

Analysis of Game 6. Finally, we claim that

X6 ≤
1

U
.

In order to see this, consider the state of R in Game 6 immediately after it has
output all key confirmation messages, that is, after Step 2 and before Step 3 of
A. We have established that R must output correct key confirmation messages
for all sessions si,j with i 6= i∗, as otherwise event IncorrectConf occurs. However,
it also must output at least one incorrect key confirmation messages in Step 2 of
A, as otherwise event AllConfCorrect occurs. However, before Step 3, all queries
made by A are independent of i∗, so essentially R has to “predict” the uniform
choice of i∗ $←− {1, . . . , U}, which happens with probability at most 1/U . ut

6.3 Discussion of extensions and generalizations

Extension to NAXOS-like protocols. One limitation of the impossibility result
is that it requires that all protocol messages are independent of the long-term
secret key. As already discussed, this holds for many implictly-authenticated, in
particular those aiming at maximal efficiency. However, one interesting class of
protocols that are unfortunately excluded are NAXOS-like protocols [22], where
parties send a group element gx where x = H(sk, r) depends on the secret key
of the sending party and some randomness r.

We expect that Theorem 2 can also be generalized to such protocols, though.
Recall that our hypothetical adversary A establishes protocol sessions between
all parties in its Step 2. However, since it did not yet reveal any parties’ long-term
keys at this step, it cannot compute x = H(sk, r) for the real secret key sk of a
party. Observe, though that in such NAXOS-like protocols a party receiving gx

is not able to verify that x = H(sk, r), because the receiving party also doesn’t
know sk (and also not r). Even though a reduction R might somehow be able
to check consistency of x (e.g., using the random oracle queries made by A),
it would still have to continue the key exchange protocol like the real security
experiment. Hence, A could simply pick x at random and send gx to R, and R
would have to continue the protocol and send a key confirmation message at the
end, which leads to a similar security loss as in the proof of Theorem 2, with
almost exactly the same argument that it essentially requires R to “predict” the
index i∗ chosen by A already in Step 2 of A.

The reason why we did not consider this extension is because it seems that
we would either have to consider specific protocols concretely, such as specifi-
cally NAXOS, which would reduce the generality of the result, or alternatively
we would have had to define a general notion of “efficient simulatability” of
secret-key-dependent protocol messages. We refrained from the former to obtain
a general impossibility result which explains the core reason of the inherent se-
curity loss of standard ways to do key confirmation, and from the latter because
the argument in the proof of Theorem 2 is already relatively complex due to
the inherent complexity of key exchange security models, and we preferred an
as-clean-as-possible and more rigorous argument over full generality.

Extension to key confirmation in the random oracle model. Note that the argu-
ment in the proof of Theorem 2, specifically the construction of adversary B6 in
Lemma 6, uses the key confirmation mn+1 as a “test value” to check whether
a given challenge key k is real or random. This exploits that the message mn+1

produced by R in the tested session is computed deterministically as

mn+1 = Π+.Conf(k′, Tn)

from the real session key k′ and the public transcript Tn of protocol messages.
Note that this accurately models the approach to do key confirmation used and
incorrectly claimed to be tightly secure in [10]. It also covers the new approach
described in the present paper, which additionally leverages selective security,
since both are in the standard-model, that is, without random oracles.

Given that most highly-efficient implicitly authenticated protocols are proven
secure in the random oracle model, one might ask whether it is possible to give
a tightly-secure construction of Π+ from Π in the random oracle model. For
instance, one could consider computing the key confirmation message as

mn+1 = H(k′, Tn)

If H is modeled as a random oracle, then this could enable a reduction to avoid
the “commitment” implied by the key confirmation messages that it has to
simulate properly, by just sending random strings mn+1 that then might later
be “explained” as proper hash values by the R, if necessary.

We expect that this approach also fails and once again we have an inherent
tightness loss. The reason for this is because the reduction would also have to
simulate the random oracle H consistently. But in order to achieve this, R would
have to be able to distinguish a random oracle query H(k′, Tn) using the “real”
key (in which case it would have to return mn+1) from a query H(k′′, Tn) using
an independent string k′′. Since k′ is the session key of Π, the reduction would
thus have to be able to distinguish session keys of Π from random, which should
give rise to another attacker B on Π that proceeds as follows:

1. B is again a meta-reduction, which runs R as a subroutine, relays all queries
between R and its security experiment, and simulates our hypothetical ad-
versary A until the end of Step 2.

2. Then B picks an arbitrary random session si,j and queries Test(si,j) to the
security experiment of Π, receving back a challenge key k.

3. Now B issues many random oracle queries of the form H(ki, Tn) to R, where
k1, ..., kQ are chosen at random, but k` := k is defined as the challenge key
k for some random index ` $←− {1, . . . , Q}.

4. Now either R is able to distinguish the query with a “real” key k from a
“random” one. In this case, B can also distinguish the real key from a random
one, by checking whether mn+1 = H(k`, Tn).
OrR is not able to distinguish the query with a “real” key k from a “random”
one. In this case, R will fail with probability 1− 1/Q, so that once again we
can simulate A efficiently because it aborts if R fails.

The above proof idea is only a sketch, and we expect a rigorous proof to be
significantly more complex and subtle. Therefore we chose to focus on the simpler
and cleaner case of ruling out tight standard model constructions, as this is also
what was claimed in [10] and is achieved in the present paper.

References

1. Abdalla, M., Bellare, M., Rogaway, P.: The oracle Diffie-Hellman assump-
tions and an analysis of DHIES. In: Naccache, D. (ed.) CT-RSA 2001. LNCS,
vol. 2020, pp. 143–158. Springer, Heidelberg (Apr 2001). https://doi.org/10.

1007/3-540-45353-9_12 4

2. Bader, C., Hofheinz, D., Jager, T., Kiltz, E., Li, Y.: Tightly-secure authenti-
cated key exchange. In: Dodis, Y., Nielsen, J.B. (eds.) TCC 2015, Part I. LNCS,
vol. 9014, pp. 629–658. Springer, Heidelberg (Mar 2015). https://doi.org/10.

1007/978-3-662-46494-6_26 2

3. Bader, C., Jager, T., Li, Y., Schäge, S.: On the impossibility of tight cryptographic
reductions. In: Fischlin, M., Coron, J.S. (eds.) EUROCRYPT 2016, Part II. LNCS,
vol. 9666, pp. 273–304. Springer, Heidelberg (May 2016). https://doi.org/10.
1007/978-3-662-49896-5_10 6, 22, 23, 25

4. Bellare, M., Pointcheval, D., Rogaway, P.: Authenticated key exchange secure
against dictionary attacks. In: Preneel, B. (ed.) EUROCRYPT 2000. LNCS,
vol. 1807, pp. 139–155. Springer, Heidelberg (May 2000). https://doi.org/10.
1007/3-540-45539-6_11 2, 3, 6, 9

5. Bellare, M., Rogaway, P.: Entity authentication and key distribution. In: Stinson,
D.R. (ed.) CRYPTO’93. LNCS, vol. 773, pp. 232–249. Springer, Heidelberg (Aug
1994). https://doi.org/10.1007/3-540-48329-2_21 3, 6

6. Bellare, M., Rogaway, P.: Provably secure session key distribution: The three party
case. In: 27th ACM STOC. pp. 57–66. ACM Press (May / Jun 1995). https:

//doi.org/10.1145/225058.225084 6

7. Boyd, C., Gellert, K.: A Modern View on Forward Security. The Computer Journal
64(4), 639–652 (08 2020). https://doi.org/10.1093/comjnl/bxaa104, https://
doi.org/10.1093/comjnl/bxaa104 2

8. Boyd, C., González Nieto, J.M.: On forward secrecy in one-round key exchange. In:
Chen, L. (ed.) 13th IMA International Conference on Cryptography and Coding.
LNCS, vol. 7089, pp. 451–468. Springer, Heidelberg (Dec 2011) 2, 3

9. Canetti, R., Krawczyk, H.: Analysis of key-exchange protocols and their use for
building secure channels. In: Pfitzmann, B. (ed.) EUROCRYPT 2001. LNCS,
vol. 2045, pp. 453–474. Springer, Heidelberg (May 2001). https://doi.org/10.
1007/3-540-44987-6_28 6

10. Cohn-Gordon, K., Cremers, C., Gjøsteen, K., Jacobsen, H., Jager, T.: Highly effi-
cient key exchange protocols with optimal tightness. In: Boldyreva, A., Micciancio,
D. (eds.) CRYPTO 2019, Part III. LNCS, vol. 11694, pp. 767–797. Springer, Hei-
delberg (Aug 2019). https://doi.org/10.1007/978-3-030-26954-8_25 2, 3, 4,
5, 6, 14, 17, 18, 19, 21, 22, 23, 29, 30

11. Coron, J.S.: Optimal security proofs for PSS and other signature schemes. In:
Knudsen, L.R. (ed.) EUROCRYPT 2002. LNCS, vol. 2332, pp. 272–287. Springer,
Heidelberg (Apr / May 2002). https://doi.org/10.1007/3-540-46035-7_18 25

12. Cremers, C., Feltz, M.: Beyond eCK: perfect forward secrecy under actor com-
promise and ephemeral-key reveal. Des. Codes Cryptogr. 74(1), 183–218 (2015),
https://doi.org/10.1007/s10623-013-9852-1 3

13. de Saint Guilhem, C., Fischlin, M., Warinschi, B.: Authentication in key-exchange:
Definitions, relations and composition. In: Jia, L., Küsters, R. (eds.) CSF 2020
Computer Security Foundations Symposium. pp. 288–303. IEEE Computer Society
Press (2020). https://doi.org/10.1109/CSF49147.2020.00028 2, 6, 9, 10, 11

https://doi.org/10.1007/3-540-45353-9_12
https://doi.org/10.1007/3-540-45353-9_12
https://doi.org/10.1007/3-540-45353-9_12
https://doi.org/10.1007/3-540-45353-9_12
https://doi.org/10.1007/978-3-662-46494-6_26
https://doi.org/10.1007/978-3-662-46494-6_26
https://doi.org/10.1007/978-3-662-46494-6_26
https://doi.org/10.1007/978-3-662-46494-6_26
https://doi.org/10.1007/978-3-662-49896-5_10
https://doi.org/10.1007/978-3-662-49896-5_10
https://doi.org/10.1007/978-3-662-49896-5_10
https://doi.org/10.1007/978-3-662-49896-5_10
https://doi.org/10.1007/3-540-45539-6_11
https://doi.org/10.1007/3-540-45539-6_11
https://doi.org/10.1007/3-540-45539-6_11
https://doi.org/10.1007/3-540-45539-6_11
https://doi.org/10.1007/3-540-48329-2_21
https://doi.org/10.1007/3-540-48329-2_21
https://doi.org/10.1145/225058.225084
https://doi.org/10.1145/225058.225084
https://doi.org/10.1145/225058.225084
https://doi.org/10.1145/225058.225084
https://doi.org/10.1093/comjnl/bxaa104
https://doi.org/10.1093/comjnl/bxaa104
https://doi.org/10.1093/comjnl/bxaa104
https://doi.org/10.1093/comjnl/bxaa104
https://doi.org/10.1007/3-540-44987-6_28
https://doi.org/10.1007/3-540-44987-6_28
https://doi.org/10.1007/3-540-44987-6_28
https://doi.org/10.1007/3-540-44987-6_28
https://doi.org/10.1007/978-3-030-26954-8_25
https://doi.org/10.1007/978-3-030-26954-8_25
https://doi.org/10.1007/3-540-46035-7_18
https://doi.org/10.1007/3-540-46035-7_18
https://doi.org/10.1007/s10623-013-9852-1
https://doi.org/10.1109/CSF49147.2020.00028
https://doi.org/10.1109/CSF49147.2020.00028

14. Diemert, D., Gellert, K., Jager, T., Lyu, L.: More efficient digital signatures
with tight multi-user security. In: Garay, J. (ed.) PKC 2021, Part II. LNCS, vol.
12711, pp. 1–31. Springer, Heidelberg (May 2021). https://doi.org/10.1007/

978-3-030-75248-4_1 19
15. Fischlin, M., Günther, F., Schmidt, B., Warinschi, B.: Key confirmation in key

exchange: A formal treatment and implications for TLS 1.3. In: 2016 IEEE Sym-
posium on Security and Privacy. pp. 452–469. IEEE Computer Society Press (May
2016). https://doi.org/10.1109/SP.2016.34 2

16. Gjøsteen, K., Jager, T.: Practical and tightly-secure digital signatures and au-
thenticated key exchange. In: Shacham, H., Boldyreva, A. (eds.) CRYPTO 2018,
Part II. LNCS, vol. 10992, pp. 95–125. Springer, Heidelberg (Aug 2018). https:
//doi.org/10.1007/978-3-319-96881-0_4 2

17. Han, S., Jager, T., Kiltz, E., Liu, S., Pan, J., Riepel, D., Schäge, S.: Authenti-
cated key exchange and signatures with tight security in the standard model. In:
Malkin, T., Peikert, C. (eds.) CRYPTO 2021, Part IV. LNCS, vol. 12828, pp. 670–
700. Springer, Heidelberg, Virtual Event (Aug 2021). https://doi.org/10.1007/
978-3-030-84259-8_23 2

18. Hofheinz, D., Jager, T., Knapp, E.: Waters signatures with optimal security re-
duction. In: Fischlin, M., Buchmann, J., Manulis, M. (eds.) PKC 2012. LNCS,
vol. 7293, pp. 66–83. Springer, Heidelberg (May 2012). https://doi.org/10.1007/
978-3-642-30057-8_5 6, 23, 25

19. Jager, T., Kiltz, E., Riepel, D., Schäge, S.: Tightly-secure authenticated key ex-
change, revisited. In: Canteaut, A., Standaert, F.X. (eds.) EUROCRYPT 2021,
Part I. LNCS, vol. 12696, pp. 117–146. Springer, Heidelberg (Oct 2021). https:
//doi.org/10.1007/978-3-030-77870-5_5 2

20. Krawczyk, H.: HMQV: A high-performance secure Diffie-Hellman protocol. In:
Shoup, V. (ed.) CRYPTO 2005. LNCS, vol. 3621, pp. 546–566. Springer, Heidelberg
(Aug 2005). https://doi.org/10.1007/11535218_33 2, 3, 18, 19, 21, 22

21. Krawczyk, H., Paterson, K.G., Wee, H.: On the security of the TLS protocol: A
systematic analysis. In: Canetti, R., Garay, J.A. (eds.) CRYPTO 2013, Part I.
LNCS, vol. 8042, pp. 429–448. Springer, Heidelberg (Aug 2013). https://doi.

org/10.1007/978-3-642-40041-4_24 4, 12
22. LaMacchia, B.A., Lauter, K., Mityagin, A.: Stronger security of authenticated key

exchange. In: Susilo, W., Liu, J.K., Mu, Y. (eds.) ProvSec 2007. LNCS, vol. 4784,
pp. 1–16. Springer, Heidelberg (Nov 2007) 6, 19, 22, 29

23. Lewko, A.B., Waters, B.: Why proving HIBE systems secure is difficult. In: Nguyen,
P.Q., Oswald, E. (eds.) EUROCRYPT 2014. LNCS, vol. 8441, pp. 58–76. Springer,
Heidelberg (May 2014). https://doi.org/10.1007/978-3-642-55220-5_4 6, 23,
25

24. Li, Y., Schäge, S.: No-match attacks and robust partnering definitions: Defin-
ing trivial attacks for security protocols is not trivial. In: Thuraisingham, B.M.,
Evans, D., Malkin, T., Xu, D. (eds.) ACM CCS 2017. pp. 1343–1360. ACM Press
(Oct / Nov 2017). https://doi.org/10.1145/3133956.3134006 9

25. Pan, J., Qian, C., Ringerud, M.: Signed diffie-hellman key exchange with
tight security. In: Paterson, K.G. (ed.) CT-RSA 2021. LNCS, vol. 12704,
pp. 201–226. Springer, Heidelberg (May 2021). https://doi.org/10.1007/

978-3-030-75539-3_9 2
26. Rogaway, P., Zhang, Y.: Simplifying game-based definitions - indistinguishability

up to correctness and its application to stateful AE. In: Shacham, H., Boldyreva,
A. (eds.) CRYPTO 2018, Part II. LNCS, vol. 10992, pp. 3–32. Springer, Heidelberg
(Aug 2018). https://doi.org/10.1007/978-3-319-96881-0_1 12

https://doi.org/10.1007/978-3-030-75248-4_1
https://doi.org/10.1007/978-3-030-75248-4_1
https://doi.org/10.1007/978-3-030-75248-4_1
https://doi.org/10.1007/978-3-030-75248-4_1
https://doi.org/10.1109/SP.2016.34
https://doi.org/10.1109/SP.2016.34
https://doi.org/10.1007/978-3-319-96881-0_4
https://doi.org/10.1007/978-3-319-96881-0_4
https://doi.org/10.1007/978-3-319-96881-0_4
https://doi.org/10.1007/978-3-319-96881-0_4
https://doi.org/10.1007/978-3-030-84259-8_23
https://doi.org/10.1007/978-3-030-84259-8_23
https://doi.org/10.1007/978-3-030-84259-8_23
https://doi.org/10.1007/978-3-030-84259-8_23
https://doi.org/10.1007/978-3-642-30057-8_5
https://doi.org/10.1007/978-3-642-30057-8_5
https://doi.org/10.1007/978-3-642-30057-8_5
https://doi.org/10.1007/978-3-642-30057-8_5
https://doi.org/10.1007/978-3-030-77870-5_5
https://doi.org/10.1007/978-3-030-77870-5_5
https://doi.org/10.1007/978-3-030-77870-5_5
https://doi.org/10.1007/978-3-030-77870-5_5
https://doi.org/10.1007/11535218_33
https://doi.org/10.1007/11535218_33
https://doi.org/10.1007/978-3-642-40041-4_24
https://doi.org/10.1007/978-3-642-40041-4_24
https://doi.org/10.1007/978-3-642-40041-4_24
https://doi.org/10.1007/978-3-642-40041-4_24
https://doi.org/10.1007/978-3-642-55220-5_4
https://doi.org/10.1007/978-3-642-55220-5_4
https://doi.org/10.1145/3133956.3134006
https://doi.org/10.1145/3133956.3134006
https://doi.org/10.1007/978-3-030-75539-3_9
https://doi.org/10.1007/978-3-030-75539-3_9
https://doi.org/10.1007/978-3-030-75539-3_9
https://doi.org/10.1007/978-3-030-75539-3_9
https://doi.org/10.1007/978-3-319-96881-0_1
https://doi.org/10.1007/978-3-319-96881-0_1

27. Yang, Z.: Modelling simultaneous mutual authentication for authenticated key ex-
change. In: FPS. Lecture Notes in Computer Science, vol. 8352, pp. 46–62. Springer
(2013) 2, 18, 21

	On Optimal Tightness for Key Exchange with Full Forward Secrecy via Key Confirmation
	Introduction
	Our contributions

	Definitions
	Syntax

	Protocol security properties
	Match soundness
	Key-match soundness
	Implicit key authentication
	Explicit key authentication
	Explicit entity authentication
	Key secrecy

	The security of adding key confirmation
	Implicit to explicit key authentication
	Additional security reductions

	The CCGJJ protocol
	Impossibility of tightly-secure explicit authentication via key confirmation
	Requirements on and +
	Impossibility result
	Discussion of extensions and generalizations

