On the (Im)possibility of Distributed Samplers:
Lower Bounds and Party-Dynamic Constructions

Damiano Abram', Maciej Obremski?, and Peter Scholl

1" Aarhus University
{damiano.abram, peter.scholl}@cs.au.dk
2 National University of Singapore
obremski.mathOgmail.com

Abstract. Distributed samplers, introduced by Abram, Scholl and Yak-
oubov (Eurocrypt ’22), are a one-round, multi-party protocol for securely
sampling from any distribution. We give new lower and upper bounds for
constructing distributed samplers in challenging scenarios. First, we con-
sider the feasibility of distributed samplers with a malicious adversary
in the standard model; the only previous construction in this setting re-
lies on a random oracle. We show that for any UC-secure construction in
the standard model, even with a CRS, the output of the sampling pro-
tocol must have low entropy. This essentially implies that this type of
construction is useless in applications.

Secondly, we study the question of building distributed samplers in the
party-dynamic setting, where parties can join in an ad-hoc manner, and
the total number of parties is unbounded. Here, we obtain positive re-
sults. First, we build a special type of unbounded universal sampler,
which after a trusted setup, allows sampling from any distributed with
unbounded size. Our construction is in the shared randomness model,
where the parties have access to a shared random string, and uses indis-
tinguishability obfuscation and somewhere statistically binding hashing.
Next, using our unbounded universal sampler, we construct distributed
universal samplers in the party-dynamic setting. Our first construction
satisfies one-time selective security in the shared randomness model. Our
second construction is reusable and secure against a malicious adversary
in the random oracle model. Finally, we show how to use party-dynamic,
distributed universal samplers to produce ideal, correlated randomness
in the party-dynamic setting, in a single round of interaction.

1 Introduction

Many cryptographic protocols require public parameters to be generated in a se-
cure manner. This is the case, for instance, with trusted parameters used in many
succinct zero-knowledge proofs [BCCT12], or trusted RSA moduli used in cryp-
tographic accumulators [Bd94]. Using incorrectly or insecurely generated param-
eters in these settings can have devastating results, often completely breaking
the desired security properties. As a result, when such parameters are needed,

the parties involved may wish to run a secure multi-party computation proto-
col to generate them, guaranteeing security as long at least one of the parties is
honest. However, this type of setup protocol is typically expensive to carry out
and coordinate.

Universal samplers, introduced by Hofheinz et al. [HJKT16], offer a partial
solution to this problem. A universal sampler produces a single set of public
parameters, which can later be used to securely sample from any distribution.
In their strongest form, note that universal samplers are inherently tied to the
random oracle model: in fact, they can be seen as a type of random oracle for
sampling from arbitrary, structured distributions, without leaking the underlying
random coins in the process.

A downside of universal samplers is that they still require a trusted setup,
even if it only needs to be done once. Distributed samplers, recently introduced
by Abram, Scholl and Yakoubov [ASY22, AWZ23], work around this issue by al-
lowing parameters to be sampled using a secure multi-party protocol with min-
imal interaction. Fach party publishes a single message, after which all parties
can obtain a sample from the desired distribution. More formally, a distributed
sampler for n parties and a distribution D is defined by a pair of algorithms
(Gen, Sample), such that given a set of messages U; = Gen(1*,4), for i € [n], one
can compute a sample R + Sample(Uy,...,U,). The security requirement es-
sentially states that this one-round protocol must securely realize the ideal func-
tionality for sampling from D, even when up to n — 1 parties are corrupted.

The basic definition considers a ‘one-time’ or static setting, where there is
a single distribution D that is fixed ahead of time, and the parties can only
obtain a single sample from D. This can be considered either with security
against a passive adversary, or an active adversary. Active security is particularly
challenging, due to the need to handle a rushing adversary, who may choose
their messages U; after seeing the messages U; of the other parties. This allows
an attacker to “grind” different choices of their randomness, obtaining different
U;, until finding an output R that she likes. So, the best form of security one
can hope for in this setting is a relaxation of the ideal functionality for sampling,
where the adversary first obtains several samples from D, before settling on a
final output. A stronger variety of distributed samplers is one that is reusable,
for an unbounded number of queries. This is known as a distributed universal
sampler. Similarly to the case of a (non-distributed) universal sampler, this is
only possible to construct in the random oracle model.

Abram et al [ASY22] constructed distributed samplers in the plain model (no
CRS) for any distribution based on indistinguishability obfuscation and multi-
key fully homomorphic encryption. Their first construction is secure only against
a semi-malicious® and non-rushing adversary. This was then upgraded to ma-
licious security in the programmable random oracle model, with a construction
that is also reusable, and secure for adaptive choices of the desired distributions.
On top of this, they showed how distributed samplers can be used for sampling

3 A semi-malicious adversary is one who follows the protocol, but may choose their
random tape arbitrarily.

arbitrary forms of correlated randomness, often used in MPC protocols, with a
one-round protocol.

We note that the constructions in [ASY?22] are proven secure assuming that
the underlying primitives are secure against polynomially bounded adversaries.
This is in contrast to similar primitives like non-interactive MPC [HIJ*17] or
probabilistic i0 [CLTV15], for which the only general constructions are based on
subexponentially secure primitives. This highlights that the setting of computing
randomized functionalities, where no party has a private input, seems easier than
that of general computations.

1.1 Our Results

In this work, we further explore the feasibility of distributed samplers, pushing
their lower and upper limits with both impossibility results and more powerful
constructions. We focus on security in the UC model [Can01], which gives strong
composability guarantees.

Impossibility of Distributed Samplers Without Random Oracles. We
first pose the question: is it possible to build actively secure distributed samplers
in the standard model, that is, without random oracles? As a starting point, we
observe that actively secure distributed samplers cannot be built without a com-
mon reference string (CRS) in the UC model. This is an immediate consequence
of the UC impossibility for same-output probabilistic functions of [CKL03], since
the function D(]l’\) we want to compute has an unpredictable output and no in-
puts.

We observe also that generic actively secure distributed samplers without a
CRS cannot exist even in the standalone model with black-box simulation. If that
was not the case, by sequentially composing a distributed sampler with 2-round
active OT protocols in the CRS model such as [PVW08] or [DGH™'20], we would
obtain a 3-round OT protocol with active security and black-box simulation in
the plain model. The latter is known to be impossible [HV16].

For this reason, we investigate the CRS model. At first glance, it seems that
distributed samplers are then trivial: the CRS can directly encode a sample from
the desired distribution. This solution does not even need interaction. However,
interactive distributed samplers with a CRS may have some advantages over the
trivial construction, if the CRS can be reused multiple times and/or is easier to
generate, either by being short or unstructured (i.e. a uniformly random string).
We prove that if the construction is secure against rushing adversaries in the UC
model, none of the above properties can be satisfied in the standard model.

All of these impossibilities come from our main result, below. Although the
impossibility is in the UC model, we show that it even holds for a restricted
class of adversaries who always follow the protocol, but behave in a rushing
manner, sending their messages after receiving those of the honest parties. This
only strengthens our impossibility result.

Theorem 1.1 (Informal, c.f. Thm. 4.1). For any distributed sampler se-
cure against rushing adversaries in the UC model, for a distribution D where
Hoo (D) = w(log A\), we have that H(R|o) = O(log \), where o denotes the CRS
and R the output of the distributed sampler.*

This essentially rules out this flavour of distributed sampler for all practical
applications, as we discuss in the following corollaries.

Corollary 1: the collision probability is large. An immediate consequence of small
Shannon entropy is that the output of the distributed sampler has a high prob-
ability of a collision if the CRS is not changed. This implies that in applications
where more than one sample from D is needed, the same CRS cannot be reused.

Corollary 2: the CRS must be long. Less trivially, we show that this means
that the CRS must be at most O(\) bits smaller than the Yao incompressibility
entropy of D. Recall that this roughly measures the compressed size of a sample
from D, after applying any efficient compression algorithm. As a result, the CRS
must be almost as long as an output of D, after applying compression.

Corollary 3: the CRS must be ugly. Finally, we show that in meaningful scenar-
ios, the CRS must inherently be structured, or “ugly”, meaning that it requires
private coins to sample. In practice, this type of CRS must be generated by a
trusted party or multi-party computation protocol, whereas obtaining a CRS
that can be sampled from uniform randomness is much easier, relying only on a
public source of randomness (or a hash function modelled as a random oracle).

Conclusion. Put together, the above corollaries show that UC-secure distributed
samplers in the standard model, with rushing adversaries, are essentially useless.
Since the CRS can only be used once, is structured, and as long as an output of
D, in practice it will most likely be no easier to generate the CRS than to just
generate a sample from D.

Open questions. Our main impossibility result is in the UC model, with polynomial-
time simulation and dishonest majority. Recall that in this setting, rewinding
is not allowed and simulation is inherently black-box®. We leave to future work
the question of proving impossibilities — or finding constructions — for different
settings, such as an honest majority, rewinding and non-black-box simulation.

4 We use Hoo to denote the min-entropy. We use H to denote the Shannon entropy.
We refer to Appendix A.7 for formal definitions.

5 Although the UC model allows the simulator to depend on the real-world adversary,
the notion of security is still black-box. Indeed, it can be proven that a protocol is
UC-secure if and only if it is secure against the “dummy adversary”, who simply
follows the instructions given by the environment [Can01]. By reframing the model
in this way, we obtain a form of black-box simulation: security requires the existence
of a single simulator that works for every environment.

Positive Results: Party-Dynamic Distributed Samplers. On the positive
side, we give new results in settings where the parties have access to a random
oracle, or in some cases, a public source of uniform randomness, called the shared
randomness model. We construct party-dynamic distributed universal samplers,
where the messages are independent of the distribution we want to sample from,
the set of participants and their number, which is a priori unbounded. We anal-
yse two notions of security. In one-time, semi-malicious security, the messages
are used to generate a single sample, and the underlying distribution and set of
parties are chosen ahead of time. With reusable, active security, the same mes-
sages are used to generate samples for multiple distributions and multiple sub-
sets of participants, both adaptively chosen by the adversary. Distributed uni-
versal samplers, i.e. distributed samplers where the messages are independent of
the distribution, were already built in [ASY22]. Prior to this work, however, all
constructions were tailored to a specific set of players, which forced a restart of
the protocol if participants joined or left.

Applications. Constructions supporting dynamic participants are ideally suited
to non-interactive setup ceremonies for SNARKSs in a permisionless setting, such
as blockchains. More generally, they can be used for trusted setup in MPC
protocols: imagine a world where every institution (e.g. governments, NGOs,
intergovernmental organisations, private companies,. ..) publishes a distributed
universal sampler message on a public bulletin board. Any set of parties that
wants to run an MPC protocol can now non-interactively generate any CRS or
correlated randomness® they want by just combining the sampler messages of the
institutions they trust. The desired randomness is secure as long as just one of
the participant’s randomness is kept private. Furthermore, since our construction
is party-dynamic, new organisations can join the protocol at any time without
requiring further action from the others. Of course, the use of iO makes our
solution currently impractical. However, we highlight that the task of obfuscating
circuits is only required by the institutions (which likely have more resources);
the parties just need to evaluate the resulting programs. In other words, for our
solution to become practical, obfuscating does not need to be extremely efficient,
what matters is the efficiency of the evaluation.

Our results. A key tool we introduce for our party-dynamic constructions is an
unbounded universal sampler. Universal samplers are a way of securely sampling
from any distribution, after a trusted setup phase which outputs some public pa-
rameters, called the sampler parameters. Previous constructions [HJK*16, LZ17]
require the sampler parameters to be at least as large as the maximum size of
the distribution. In the unbounded setting, we impose no such constraint: the
circuit-size of the distribution can be arbitrarily large. Since the sample may be
bigger than the sampler parameters, this inherently means that we need some
additional source of randomness (such as the shared randomness model, or ran-
dom oracle). An immediate application of unbounded universal samplers is to

5 Using a party-dynamic distributed correlation sampler, discussed below.

compile any protocol with a large CRS into one with a small, reusable CRS in
the random oracle model. This technique was recently applied in a subsequent
manuscript’ [ABI*23] to build a private simultaneous messages protocol with
succinct public parameters and messages that have logarithmic size in the func-
tion input.

Theorem 1.2 (Informal). Assuming polynomially secure iO and somewhere
statistically binding hashing, there exist unbounded universal samplers in the
shared randommness model.

Using the unbounded universal sampler, we obtain the following.

Theorem 1.3 (Informal). Assuming polynomially secure iO and multi-key
FHE, there exist party-dynamic distributed universal samplers for any distribu-
tion, which are:

— One-time secure against a non-rushing, semi-malicious adversary, in the
shared randommness model

— Reusable and secure against a malicious and static adversary, in the UC
model with local random oracle (and assuming NIZK)

Party-Dynamic, Distributed Correlation Samplers. As an application
of our party-dynamic distributed samplers, we show how they can be used to
obtain party-dynamic, distributed, universal correlation samplers, where after
each party publishing a single, short, message, any subset of parties can obtain
large amounts of correlated samples Ry, ..., R,, defined by some arbitrary, cor-
related distributions (adaptively chosen after the messages are sent). Formally,
we phrase this construction in the language of (public-key) pseudorandom cor-
relation functions [BCG20, ASY22].

Theorem 1.4 (Informal). Assuming polynomially secure 1O and multi-key
FHE, there exist party-dynamic, public-key, pseudorandom universal correlation
functions, for adaptively-chosen correlations in the UC model with local random
oracle.

Such primitive can be used, for instance, to build party-dynamic MPC with
an information-theoretical online phase [DPSZ12, IKM*13, 10Z14] and non-
interactive offline phase: when a party joins the protocol, it just needs to sent
its public-key for the pseudorandom correlation function. After that, it can im-
mediately join the online phase, without the other players’ need to regenerate
their pseudorandom correlation function keys.

Roadmap. In Section 2, we present a technical overview of our results and a
discussion on related work. We describe notation and preliminaries in Section 3
and Appendix A. In Section 4, we formalise our lower bounds. We discuss suc-
cinct and unbounded universal samplers in Section 5. Finally, we present our
party-dynamic constructions in Section 6.

" The paper is also in submission to TCC 2023. We are happy to provide a copy on
request.

2 Technical Overview

We now give a high-level overview of the techniques used to obtain our results.

2.1 (Im)possibility of Distributed Samplers without Random Oracle

As we motivated in the introduction, actively secure distributed samplers in
the plain model with black-box simulation are impossible. In the CRS model,
instead, they are trivial to build: the CRS can directly encode a sample from the
underlying distribution. The result is a distributed sampler in which the parties
do not even need to communicate, since they just output the CRS.

We study how interactive constructions can improve upon the trivial solution.
In principle, the advantages can be multiple: the same CRS can be reused in
many distributed sampler executions producing independent-looking outputs.
Moreover, the CRS of distributed samplers can be nicer (i.e. easier to generate)
than the direct encoding of a sample, for instance because of the smaller size,
or because it is unstructured (i.e. a uniformly random string of bits). The result
of our analysis is that none of the above properties can be satisfied: without a
random oracle, distributed samplers essentially provide no advantage over the
trivial solution. In order for this impossibility to hold, we do not even need to
aim for active security, it suffices that the adversary is strongly semi-malicious:
it may adaptively choose the randomness of the corrupted parties after seeing
the honest messages, but all corrupted players follow the protocol.

On the Unpredictability of Distributed Samplers in the CRS Model.
All the negative results mentioned above are consequences of the main theorem of
this work: in a strongly semi-malicious distributed sampler, where the underlying
distribution D has high min-entropy, namely Hoo (D) = w(log A), the Shannon
entropy of the output conditioned on the CRS is O(log \).

All through the paper we carefully juggle different variants of entropy, each
bringing a unique set of properties we require during the proofs. Shannon entropy
H has a powerful chain rule. Collision entropy Hs gives us an elegant tool for
building distinguishers, but lacks a chain rule and is not invariant under compu-
tational indistinguishability (i.e. for two computationally indistinguishable ran-
dom variables, Ha can be vastly different). We also use min-entropy Hyo, this is
the smallest of the above mentioned and has the fewest properties. Our assump-
tion on the entropy of the random source D is Hoo (D) = w(log A) (clearly the task
is trivial if D is constant) — this becomes the weakest assumption one can make
using any of the above notions (and thus makes our theorem stronger). Finally,
Yao’s entropy is the only entropy we use that remains invariant under compu-
tational indistinguishability (i.e. two computationally indistinguishable random
variables have the same Yao entropy). For formal definitions please refer to Ap-
pendix A.7.

Distributed samplers against a rushing adversary. In order to understand the
idea behind the result, we need to recall the definition of distributed samplers
with security against an active adversary [ASY?22]. The corresponding function-
ality provides the adversary with as many samples from the underlying distribu-
tion as the adversary wants. The adversary can then select one of these values;
the functionality outputs it to all the honest parties. This kind of behaviour is
needed to model the fact that, in the case of a rushing adversary, the corrupted
parties see the honest messages before they publish their own. In other words,
before committing to a choice, they can always test their candidate messages
and discard them if they are not happy.

Definition 2.1 (Distributed sampler - security against rushing adver-
saries). Let D(]l’\) be an efficiently samplable distribution. An n-party actively

. .. L, AN -
secure (resp. strongly semi-maliciously secure) distributed sampler for D(1%) is
a one-round protocol implementing the functionality Fp (see Fig. 1) against a
static and active (resp. strongly semi-malicious) adversary corrupting up to n—1
parties.

THE FUNCTIONALITY Fp

Initialisation. On input Init from every honest party and the adversary, the
functionality activates and sets @ := 0. (Q will be used to keep track of queries.)
If all the parties are honest, the functionality outputs R & D(]IA) to every honest
party and sends R to the adversary, then it halts.

Query. On input Query from the adversary, the functionality samples R < D(1Y)
and creates a fresh label id. It sends (id, R) to the adversary and adds the pair to Q.
Output. On input (Output, Ei) from the adversary, the functionality retrieves the
only pair (id, R) € Q with id = id. Then, it outputs R to every honest party and
terminates.

Fig. 1: The distributed sampler functionality for rushing adversaries

The security model. We consider the UC model against the “dummy adversary”,
the one that simply follows the instructions given by the environment. We recall
that a protocol is UC-secure if and only if it is secure against the dummy ad-
versary [Can01]. In this setting, there exists a unique simulator that works for
every environment. Since the role of the adversary is essentially assumed by the
environment, we will use the terms adversary and environment interchangeably.
We work in the dishonest majority setting.

Our proof will only consider adversaries that behave honestly, i.e. they choose
the randomness of the corrupted parties uniformly at random and they follow
the protocol. Notice that since we are proving a lower bound, considering very
weak adversaries such as the honest one makes our results even stronger.

In the ideal world, the outputs are restricted to a small set. The simulator of
the distributed sampler needs to provide the honest parties’ messages and the
CRS to the adversary before learning the choices of the corrupted players. Since
the simulator runs in polynomial time, the number of samples received from the
functionality before the delivery is polynomially bounded. Let the corresponding
set be Q.

Once the adversary supplies the corrupted messages, the output of the proto-
col is fixed (indeed, we cannot rewind the adversary, as the UC model does not
allow it). If the latter belongs to @, the simulator can easily instruct the func-
tionality to output the right sample to all honest players. If instead that is not
the case, the only choice left for the simulator is to keep querying the function-
ality for new samples and hope for a collision. Since the distribution has high
min-entropy, this occurs with negligible probability. In other words, the output
must belong to @ with overwhelming probability. If that does not happen, the
adversary can easily distinguish the real protocol from the ideal world as the
simulator is not able to make the honest parties output the right result.

In the real world, the output is easily predictable from the CRS and the messages
of the honest parties. Let R denote the output of the distributed sampler, let o be
the CRS and let Uy and Ug denote the messages of the honest and the corrupted
parties respectively. The fact that the CRS and the messages of the honest parties
restrict the output is a set of polynomial size is a strong property. In particular,
the latter implies that H(R|o, Ug) = O(log A). This equality holds in the ideal
world, but what about the real world? Unfortunately, Shannon’s entropy does
not behave well under computational indistinguishability, i.e. computationally
indistinguishable random variables may have very different entropy. We prove,
however, that if the adversary honestly follows the protocol in the real world,
H(R|o,Ug) = O(log A).

Consider the distinguisher that, after receiving the CRS and Uy, keeps re-
generating the messages of the corrupted parties following the protocol, and
stores the outputs obtained in this way. In the ideal world, the distinguisher
will never obtain more than ¢(A) different samples, where ¢()\) is a polynomial
upper-bound on the cardinality of @), the set of values queried by the simulator
to the functionality. We notice that without loss of generality ¢(X) is known to
the distinguisher as the simulator is fixed.

Using a technical argument based on entropy, we show that if H(R| o, Ug) is
not O(log A\), in the real world, there exists a non-negligible function §(\) such
that for every polynomial j()\), the j-th output obtained by the distinguisher
differs from all the previous ones with probability at least §(A). The crucial
point is that 6(A) is independent of j. Indeed, as j increases, the probability of
obtaining new outputs becomes lower (the probability of colliding with one of
the previous outcomes gets higher and higher). If this probability decreases too
fast, the number of different outputs obtained by the distinguisher may converge
to a certain threshold smaller than ¢(\). Since the probability is always bounded
from below by &()), however, in the real world, the distinguisher is able to

[

SN

Uc

Fig. 2: Entropy diagram of the distributed sampler.

obtain more than ¢(\) different outputs in a polynomial number of steps. This
is sufficient to break security of distributed samplers.

The final result: an easy application of the strong chain rule. At this point,
proving our theorem becomes simple. Since we are considering an honest adver-
sary, the result described in the previous paragraph immediately implies that
H(R|o,Uc) is also O(log A). Furthermore, Uy is independent of Ue, given the
CRS. In other words, H({Ug|o) = H(Ug|o,Uc). By a simple application of the
strong chain rule for Shannon’s entropy, it is easy to show that H(R|o) =
O(log \).

Indeed, consider the entropy diagram in Fig. 2.8 Observe that H(R|o) corre-
sponds to the union of the blue, red, green and yellow areas, i.e. H(R|o) = a+b+
¢+ d. We know that H(R|o, Up) corresponds to the union of the red and yellow
areas, so, ¢ + d = H(R|o,Uy). Similarly, H(R|o,U¢) corresponds to the union
of the green and yellow areas, so, b+ d = H(R|o,Uc). We also observe that the
union of the blue and purple areas correspond to H(Ug|o) — H({Ug|o, Us) = 0,
so a + e1 + ez = 0. Finally, we notice that both e; 4+ e3 and d are non-negative.
Indeed, the former corresponds to H(Uglo, R) — H(Ug|o, R,Uc) > 0, whereas
the latter corresponds to H(R|o, Uy, Uc) > 0. The fact that e; +e2 > 0 also im-
plies that a <0, so

H(R|lo)=a+b+c+d<b+c+2d=H(R|o,Uy) + H(R|o,Uc) = O(log).

Bad News for Distributed Samplers. All the results we discuss below hold
in absence of a random oracle and for distributed samplers that achieve UC-
security against a strongly semi-malicious adversary.

8 The diagram is not completely general as some of the intersections between the sets
are empty, however, the figure is sufficiently generic to describe our argument.

10

Distributed sampler CRSs cannot be used twice. The first corollary of Theo-
rem 1.1 is that two distributed sampler executions using the same CRS have col-
liding outputs with non-negligible probability. We recall that our theorem ap-
plies when the min-entropy of the underlying distribution is high, i.e. w(log\).
For all such distributions, the collision probability is negligible, i.e. two indepen-
dent samples from D(]l)‘) will almost always be different. As a consequence, by
reusing the same CRS twice, we obtain samples that do not look independent.
The reason at the base of our first corollary is that, by a simple application of
Jensen’s inequality, the average collision entropy Ha(R| o) is bounded from above
by H(R| o) = O(log \). We recall that the average collision entropy is defined as

Hao(R| o) := —log(Pr[R = R))

where R and R’ are two distributed sampler outputs computed using the same
CRS o and the probability is also over the randomness of o. We conclude that
Pr[R = R'| > 1/poly(}).

Distributed sampler CRSs are long. We prove that CRSs of strongly semi-
malicious distributed samplers cannot be small: they can be at most O(log\)
bits shorter than the Yao entropy of the underlying distribution Hy,,(D)®.

We prove this result by first observing that Hyao(R| o) = O(log A). Indeed,
as we motivated in the previous paragraph, two distributed sampler executions
using the same CRS have colliding outputs with non-negligible probability. We
can therefore consider the Yao’s compressor that outputs nothing and the asso-
ciated decompressor that, provided with the CRS o, reruns the distributed sam-
pler protocol in its head and outputs the result R’. With 1/poly(\) probability,
R’ coincides with the input of the compressor.'? This is enough to conclude that
Hvao(R| o) = O(log).

We then show that Hyao(R| o) > Hyao(R) — |o|. We prove this by noticing
that, given a compressor-decompressor pair (¢/,d’) for Hy,o(R| o), we can build
a compressor-decompressor pair (¢, d) for Hy,o(R) as follows: ¢ provides its input
R to the distributed sampler simulator, corrupting no party. It obtains a fake
CRS o' that looks like the real one. It then outputs ¢’(R, 0’) along with ¢’. The
decompressor d is exactly the same as d’. The success probability of (¢, d) is the
same as for (¢, d') except for a negligible quantity. The size of the compressed
string has however grown by |o| bits, increasing Hy,,(R) by the same amount.

We point out that, in order to prove the above inequality, we cannot use the
Yao chain rule of [KPW13, Appendix B] as their compressor for Hy.o(R) has
0(2l71) size.

Distributed sampler CRSs are ugly. Suppose that there exists a strongly semi-
malicious distributed sampler for the distribution D having CRS o. We prove
that it is possible to non-interactively and securely generate a sample from D

9 The Yao entropy of D roughly measures how much a sample from D can be com-
pressed in polynomial time without losing information.
10 We can make the decompressor deterministic using a PRF.

11

given only ¢ and public random coins. In other words, if there exists a distributed
sampler with nice CRS, also the underlying distribution can be encoded in a nice
CRS. The second solution may be preferable as it often requires less communi-
cation. As an additional corollary, if the distributed sampler uses a URS (i.e. the
CRS is a random string of bits), we can sample from D using just public ran-
dom coins. So, in the random oracle model, we would not even need a CRS.

Our idea is that, given o and public random coins, each party can just re-
run the distributed sampler protocol with ¢ as CRS and the public coins as ran-
domness for the players. The result R is clearly indistinguishable from a sample
from D. However, in order to prove that this protocol is secure, we need to be
able to simulate o and the public coins, given R.

We simulate o by feeding R to the distributed sampler simulator (we corrupt
no party). Unfortunately, the simulator cannot provide us with the randomness
used by the parties. We proceed by brute-force: we rerun the protocol in our
head using the fake CRS and we hope that the output collides with R. If we fail,
we retry sampling a new fake CRS. Once we succeed, we output the fake o and
the randomness of the parties that led to the collision.

By the first corollary of Theorem 1.1, we know that, on average over R, the
collision probability is 1/poly(A). So, for a polynomial fraction of all possible
values R, the simulation succeeds after a polynomial number of tries. For the
remaining fraction of the support of D, our approach fails, meaning that the
CRS and the randomness of the parties might leak too much information about
the output.

In other words, the sampling protocol we described is secure only for a poly-
nomial fraction of the support of D. The good news is that it is possible to tell
if the result of our non-interactive sampling protocol lies in the secure subset or
not: the parties can locally run the simulator. If it succeeds with sufficiently high
frequency, they can be sure their output is secure, otherwise, they need to dis-
card it, generate a new ¢ and public coins and rerun the protocol. Since there is
a polynomial fraction of the support of D that will not be discarded, the play-
ers need a polynomial number of attempts before succeeding. We also point out
that the distribution of the outputs will be biased, but not significantly: if D
describes the distribution of another protocol’s CRS, it is still secure to use the
outputs of our procedure as CRSs for such protocol.

How General is the Impossibility? Our arguments seem to apply not only
to the UC model but also to the more powerful settings of security with super-
polynomial simulation, and standalone security with rewinding. Informally, what
Theorem 1.1 is saying is that the size of the distributed sampler messages sets
an information-theoretic bound B on the number of samples that a simulator
can encode in the messages it produces. An adversary can rerun the distributed
sampler protocol in its head a number of times that is significantly larger than
B. In the real world, it is supposed to obtain more than B distinct outputs, on
the other hand, in the ideal world, this does not happen. This suggests that the
impossibility holds even if we rely on superpolynomial simulation.

12

Even rewinding does not seems to help: in the ideal world, with high proba-
bility, the output R of the distributed sampler has non-negligible probability of
being resampled (i.e., if the distinguisher reruns the protocol in its head, regener-
ating the messages of the corrupted players, it has a high chance of reobtaining R
after a few tries). This is because R was the result of the rewinding process. If R
had a low probability of being resampled, the probability that rewinding output
R would have been low in the first place. On the other hand, in the real world,
R has very low probability of being resampled (we want H(R|o, Ug) = w(log A),
otherwise, we rerun into the problems of the UC model). This leads to a suc-
cessful attack. Whether this ideas can be formalised will be part of future work.

2.2 Constructing Unbounded Universal Samplers

Our first positive result is a construction of an unbounded universal sampler
in the shared randomness model. Recall that in a universal sampler (US), the
trusted setup algorithm outputs some sampler parameters U, which are later
used to securely sample from a distribution D. Our goal is to ensure that the
size of the circuit that samples from D may be unbounded, and in particular,
independent of U.

Succinct, Bounded Universal Samplers. We start by building a US that
is not totally unbounded, but is succinct, meaning that the size of U is only
polylogarithmic in the maximum circuit size L of the supported distribution D.
To see the challenge in achieving this, recall that the sampler parameters in the
selective, one-time universal sampler by Hofheinz et al. [HJK'16] consist of an
obfuscated program. To sample from a distribution D, the program is fed with
the circuit describing D. It then uses a puncturable PRF to generate random bits
used to sample from D and outputs the result. If we want to obtain succinctness
then there is no way the obfuscated program can evaluate the sampling circuit,
which may now be significantly larger than the sampler parameters. Therefore,
we cannot even provide D as input to the program, let alone evaluate it.

Taking advantage of the locality of garbled circuits. Our solution is to use garbled
circuits. We obfuscate a program SUSProg, which, instead of evaluating D itself,
will output a garbling of D along with one random label for each input wire and
both labels for each output wire. At any point in time, a party can evaluate the
garbled circuit produced by SUSProg obtaining a sample from D.

The big advantage of garbled circuits is its locality: as long as there is way to
retrieve the labels associated with the input and output wires of any gate g, we
can garble g without knowing the whole circuit to which g belongs. Specifically,
each execution of SUSProg takes as input a single gate of D and outputs its
garbling. The description of the gate will consists of a type (input, output, XOR
or AND) and identifiers for the input and output wires of the gate!!. Since the

11 Notice that the terminology distinguishes between input gate and input wire of a
gate. The first one is used to denote an input to the circuit, the second one is used

13

THE PROGRAM Psys|[K, hk]

Hardcoded: A PRF key K and an SSB hash key hk.
Input: SSB hash z of D, index ¢, gate g and SSB proof =.

1. If SSB.Verify(hk, z,4,g,7) = 0, output L.
2. gk + Fl(K, z)
3. Output Garble(1*, g, gk)

Fig. 3: Warm-up attempt for the unobfuscated SUS program

operations SUSProg needs to perform are now independent of D, the size of
SUSProg can remain small. A similar idea was adopted by Garg and Srinivasan
for the construction of obfuscation for Turing machines [GS18].

Making the garbled gates consistent. The first problem is that we need to ensure
that different gates are garbled consistently, in that whenever a wire of the circuit
is re-used, the same wire labels are used. As a consequence, all the executions of
SUSProg associated with D cannot be independent, they all need to have access
to some common information.

To ensure this, we use a master garbling key gk to derive, using a PRF F/,
the randomness needed by the garbling and the random bits given as input to
D. Formally, the labels associated with a wire w will be (KO, kL) + F(gk,w).
For each input gate g, we also use F' to sample a random input bit, and give out
the corresponding wire label. For each XOR or AND gate g, we additionally use
F' to sample a permutation to reorder the ciphertexts. For each output gate, we
provide both wire labels.

We observe that every execution of SUSProg associated with D needs to
retrieve the same key gk. Furthermore, different distributions D and D’ need to
use independent-looking garbling keys. If that is not the case, we risk garbling
different circuits using the same labels, which would compromise privacy.

We solve these issues by providing SUSProg also with a hash z of the circuit
D. Since the size of z is O(log L), we can input it to SUSProg without any
troubles. The obfuscated program SUSProg will be equipped with a puncturable
PRF F; and a key K. Using z as input for F, SUSProg will retrieve gk and use
the latter to garble the provided gate. By the collision resistance of the hash
function, different distributions will correspond to different hashes and so, by
the security of the puncturable PRF, to independent-looking garbling keys. To
make this argument compatible with indistinguishability obfuscation, we use a
somewhere statistically binding (SSB) hash function [HW15].

to denote the input to a gate, i.e. the bit to which we apply an XOR or an AND. A
similar discussion applies to output gates and output wires.

14

Limiting the leakage using SSB hashing. So far, nothing prevents the adversary
from garbling a circuit using SUSProg while providing an inconsistent digest z.
This means that the adversary can retrieve the randomness used to produce the
sample from D by simply garbling the identity function along with z = Hash(D).

Luckily, SSB hash functions help us in countering this attack. Indeed, SSB
hashing can be used to prove that a certain gate g is the i-th element in the
preimage of z. So, if we provide the proof along with z, g, i and the SSB hash
key hk, the obfuscated program is able to check if g really is the i-th gate of D.
If the verification succeeds, the program can garble g using gk, otherwise, it can
simply output L.

SSB hash functions set an upper bound on the length of the messages that
can be hashed. In our construction, we set this to L()) blocks'?. A nice feature
of some SSB hashing schemes [HW15] is that both the hash key and the SSB
proofs have size O(log L). Furthermore, the proofs can also be verified in O(log L)
time. In other words, verifying the proofs in the code of SUSProg does not blow
up the size of the program.

We present the construction so far in the program shown in Fig. 3. To
summarise, the adversary can make SUSProg output only the garbling of D
or independent-looking information. Indeed, any execution inputting a hash
other than z would lead to an independent-looking garbling key and hence,
independent-looking information. If instead z is input, all the adversary can re-
ceive is the garbled gates of D. If it tries to provide a different gate, the hash
check will fail.

Taking control over the outputs with a trapdoor. To prove security, we need to
argue that our program reveals no information in addition to the output of the
garbled circuit. This is formalised by saying that we can simulate SUSProg given
a sample R from D. Clearly, the simulated SUSProg needs to output R when run
on D. Unfortunately, our obfuscated program cannot satisfy this property in the
current state. Indeed, the sample R may contain significantly more information
than the size of SUSProg.

Here, we rely on the shared randomness model, where we require any party
obtaining a sample to have a long, uniform string u. Using u, we equip SUSProg
with a trapdoor that allows us to program its output in the security proof; we do
this using the delayed backdoor programming technique from the adaptive uni-
versal sampler in [HJK'16], also used in the malicious constructions of [ASY22].
To garble the i-th gate g;, we provide SUSProg with a w;, corresponding to the i-
th block of the randomness u. We hardcode into our program an additional key
k for a special kind of authenticated encryption scheme. In each execution, af-
ter verifying the SSB proofs, SUSProg tries to decrypt w; using k. If decryption
succeeds, the program outputs the underlying plaintext, otherwise it resumes its
usual behaviour, i.e. it garbles the provided gate.

The encryption scheme, which is based on puncturable PRFs, is designed so
that ciphertexts are indistinguishable from random strings, but the overwhelm-

12 Bach block will be the description of a different gate.

15

ing majority of strings are not valid ciphertexts. When a random wu; is input into
SUSProg, then, the probability of activating the trapdoor is negligible. In the
simulation, however, u will be the encryption of a garbled circuit simulated us-
ing R and D. By the security of iO, the adversary will not be able to tell if the
output is generated using the trapdoor or the standard procedure.

Binding the trapdoor to the distribution. Finally, there is one weakness remaining
in the construction: we need to bind the random string u to the distribution D. At
the moment, the adversary can easily tell if u hides the encryption of a random
circuit or not. It can simply garble D twice, once using u and once inputting a
random string. If the outputs differ, it must be that w activates the trapdoor.

Clearly, we cannot prevent the adversary from choosing the distribution and
the random string as it pleases, however, we can make sure that for different
choices of (D, u), we obtain independent-looking executions. Specifically, instead
of equipping SUSProg with a hardcoded trapdoor key k, we generate k along
with gk using the PRF Fj. Recall that the input given to F} is a hash of D.
In this way, different distributions would use different trapdoor keys and so w
would activate the trapdoor only in conjunction with D.

Finally, we also want to ensure that when given different random strings,
the garbled circuit output by SUSProg changes. That corresponds to having a
different garbling key gk. To ensure this, in each execution, we provide SUSProg
also with an SSB hash h of u. We then input h into the puncturable PRF F}
along with z. In conclusion, we obtain a different garbling key and a different
trapdoor key for every choice of distribution and random string. To ensure that
the string u; input to the program is consistent with the hash h, we additionally
modify SUSProg to receive an SSB proof that w; is the i-th block of the preimage
of h. The program checks the proof and outputs the garbled gate only if the
verification succeeds. Otherwise, it outputs L.

To summarise, if the adversary does not input (h, z) into SUSProg, the pro-
gram outputs information that looks independent of the sample R. If it inputs
(z,h) instead, the adversary is forced to provide a pair (g;,u;) for a certain i €
[L] where g; denotes the i-th gate of D. If this is the case, the adversary receives
the scheduled garbling of g;, otherwise, it receives L.

We present an informal description of the final version of the program in
Fig. 4. For the complete, formal construction and its security proof, we refer to
Section 5.1.

From Succinct to Unbounded Universal Samplers. Once we have a suc-
cinct, but bounded, US, it is quite straightforward to obtain an unbounded US.
Our construction will simply run the setup procedure from the succinct US, and
output its sampler parameters U. This already allows us to sample from any dis-
tribution D up to some polynomial bound. To sample from a larger D, we sim-
ply use U to run the setup algorithm for a second succinct US, with a bound of
twice the size (since the first US was succinct, this will always be possible for a
sufficiently large security parameter). This process is then iterated until we have
a sampler that can support the distribution D.

16

THE PROGRAM Psys|[K, hk]

Hardcoded: A PRF key K and an SSB hash key hk.
Input: SSB hashes h and z of u and D respectively, index i € [L], random
string v, gate g and SSB proofs m and 7’.

b+ SSB.Verify(hk, h,i,v, 7r)

b« SSB.Verify(hk7 2,1, 9, 7r')

If b=0or b =0, output L.

(gk, k) < F1 (K, (h,z))

z + Dec(k,v)

If x # L, output z.

Otherwise, output Garble(1*, g, gk)

N OUE W=

Fig. 4: Informal description of the unobfuscated SUS program

For technical reasons, to prove this construction secure we need an additional
property of the unbounded US, which we call randomness extractability. Intu-
itively, this says that given a sampler output R and the randomness that was
used to compute the sampler parameters, it is possible to extract the random-
ness that “explains” the output R from distribution D. We show that this prop-
erty holds for our construction, and in fact is easily achievable in a generic way
for any universal sampler.

2.3 Building Unbounded and Party-Dynamic, Distributed Universal
Samplers

Our next goal is to obtain unbounded distributed universal samplers, where the
sampler is derived from n messages, one from each out of a set of n parties. As
well as allowing the choice of distribution D to be unbounded, and not tied to
the sampler parameters, here we also want the sampler to be party-dynamic, so
the set of parties can be chosen dynamically from an unbounded set of possible
parties.

A toy construction of a bounded, party-dynamic distributed sampler can be
easily obtained from any n-party distributed sampler for a fixed number of par-
ties: each party simply runs the i-party distributed sampler algorithm, for i =
2,...,n, and publishes all the n — 1 messages. Of course, this construction re-
quires the size of each message to scale at least linearly with n.

To get an unbounded construction, we modify this blueprint by instead hav-
ing each party publish a single message consisting of an unbounded universal
sampler. Later, to sample from a distribution with some size-n subset of the par-
ties, those parties’ unbounded USes will each be used to generate an n-party dis-
tributed sampler message on-the-fly. Since we use an unbounded US, this con-
struction is inherently tied to the shared randomness model, where the subset

17

of n parties must all hold a common string of uniform bits to obtain their sam-
ple. We prove security in the one-time setting, against a non-rushing and semi-
malicious adversary.

Modelling Active Security. In the non-rushing setting, modelling security is quite
straightforward and similar to the case of non-party-dynamic definitions. When
moving to an active adversary, however, we have to be careful how to define
security. Recall that with a static of parties, active security of a distributed
sampler is defined using an ideal functionality, which allows the adversary to
obtain several samples from the distribution D, before settling on one it likes.
This corresponds to the fact that in a construction, every choice of a corrupt
party’s randomness may lead to a different result from D.

In the party-dynamic setting, we consider a static adversary in the UC model:
whenever a new party joins the system, the adversary must decide whether that
party is corrupted or not. At the same time, we need a way to model the fact
that the adversary can try candidate messages of a corrupt party P;, obtaining
different samples, before P; has actually joined the system. To do this, we allow
the adversary to input a label id;, corresponding to a new choice of message
for P;, and can then obtain a sample for the desired subset of parties that
includes P;. When P; eventually joins, the adversary can either choose one of
the previously sent labels, “fixing” the relevant outputs to the corresponding
samples, or choose a fresh label which leads to freshly sampled outputs.

Achieving Active Security and Reusability. Next, we upgrade our construction
to be actively secure, and also reusable for an unbounded number of queries on
arbitrary distributions. We do this in a black-box way, starting from any one-
time secure, party-dynamic construction. The main idea is to have each party
publish an adaptive (or reusable), bounded universal sampler [HJK*16] as its
message, together with a NIZK showing that it is well-formed. Then, whenever a
subset of parties wants to obtain a sample, the adaptive US is used to generate a
message for a one-time, party-dynamic distributed US. By relying on a reusable
US, we ensure that each message from the one-time, party-dynamic construction
is only used once. Recall that our one-time, party-dynamic construction requires
a source of public, shared randomness u to obtain the sample; to generate u in
a reusable way, we use a random oracle.

There is still one problem with this approach, though. An adversary may
still adaptively choose the messages of the corrupt parties, and the distribution
D, after seeing the honest parties’ messages from the one-time, party-dynamic
distributed US (which is not secure against a rushing adversary). To fix this,
we again rely on the random oracle model. We force the adversary to commit
to its messages before seeing these messages, by making it query the random
oracle with input the subset of parties, distribution D, and adaptive universal
sampler messages. The output of the random oracle is a A-bit tag, which is fed
into the adaptive US before generating the one-time messages. Since the tag is
unpredictable, this ensures that the adversary cannot learn any outputs without
first committing to its messages.

18

Party-Dynamic, Public-Key Pseudorandom Universal Correlation Func-
tions (PCFs). Our last construction is an application of party-dynamic dis-
tributed universal samplers, for generating correlated randomness. A public-key
PCF [BCG*20, ASY22| is a one-round protocol for securely sampling from n
correlated random variables, where each party obtains one of the outputs, while
learning nothing of the other parties’ outputs. We show how to build public-
key PCF's in the party-dynamic setting where the correlation is adaptively cho-
sen after the messages of the parties are sent. Our construction is quite sim-
ple, and follows the blueprint of the previous construction for a fixed number of
parties [ASY22]: each party sends a public key for a PKE scheme, plus a mes-
sage for a distributed universal sampler. The distributed universal sampler mes-
sages are then used to sample from the distribution that encrypts the n outputs
of the correlation function under each of the parties’ public keys, allowing only
the correct party to recover its output. By relying on our party-dynamic dis-
tributed universal sampler, we immediately obtain a public-key, universal PCF
in the party-dynamic setting.

We present the construction directly in the actively secure and reusable set-
ting (in the random oracle model). Because of this, we achieve the stronger no-
tion of an ideal public-key PCF, which securely realizes the ideal sampling func-
tionality (with suitable relaxations to account for rushing adversaries). In con-
trast, without a random oracle, this type of PCF is impossible to achieve, un-
less one allows the parties’ messages to be as long as the total output length of
all queries to the correlation.

2.4 Related Work

Non-interactive key exchange. The setting of party-dynamic distributed sam-
plers is similar to unbounded non-interactive key exchange (NIKE), which can
be built using 10 [KRS15]. NIKE is in some way similar to a distributed sam-
pler for the uniform distribution, but it satisfies a weaker security definition: the
output of the NIKE is guaranteed to look random only if no party is corrupted.
This implies, for instance, that the derived output may depend only on the ran-
domness of one party. Distributed samplers instead achieve security even when
the adversary takes part in the computation. This difference allows NIKE to
avoid many issues related to entropy.

One-round MPC. Distributed samplers can also be viewed as an inputless ver-
sion of non-interactive MPC [HIJ*17]. We recall that non-interactive MPC un-
avoidably achieves a weak definition of security in which the adversary is al-
lowed to learn the residual function (i.e. the function obtained by fixing the in-
puts of the honest parties while leaving the other inputs free). To achieve this,
the primitive needs to rely on a PKI.

The fact that distributed samplers have no inputs gives a huge advantage:
it allows us to satisfy a standard definition of security, without even needing
PKIs. Notice that the naive idea of running an NIMPC protocol that, on input

19

T1,...,Tn, Outputs D(]IA; r1@® - ®ry,) does not give a distributed sampler for
D, due to the residual function attack.

Two-round reusable MPC. Another related primitive is multi-party, reusable
non-interactive secure computation (MrNISC) [BL20], which performs MPC in
the party-dynamic setting with minimal interaction. In their construction, based
on LWE, parties use the first round to publish encryptions of their input, and
later, can publish second round messages for computing any desired function
with a subset of parties. While related to distributed samplers, MrNISC does
not allow secret randomness to be used in the function, unless it is encoded as
part of the inputs in the first round; therefore, it does not seem to help with
building a distributed sampler.

10 for Turing machines. Our construction for unbounded universal samplers
uses garbled circuits to achieve succinctness, in a similar way to constructions of
iO for Turing machines [GS18]. One key difference, however, is that in our setting
we are able to prove security relying only on polynomially secure primitives, while
all existing constructions of iO for Turing machines rely on subexponentially
secure primitives in their security proofs. We note that another construction of
iO for Turing machines [BFK*19] uses the shared randomness model to avoid
the size of the obfuscated program growing with a bound on the input. This is
related to our use of shared randomness for removing the size dependency in our
succinct universal sampler, however, the techniques are different.

Recent work on distributed samplers. In [AWZ23], Abram, Waters and Zhandry
presented solutions to circumvent the impossibility proven in this paper. Instead
of aiming for a simulation-based security definition, they show that, using strong
primitives (including subexponential i0) but no random oracle, it is possible to
implement game-based definitions for distributed samplers that allow removing
trusted setups in one round while preserving the hardness of search problems
and the security of most protocols against active adversaries.

3 Preliminaries

Notation. We denote the security parameter by A. Even when not explicitly
written, we assume that all random variables depend on A. We use bold font to
denote vectors, e.g. v, single coordinates will be indicated using subscripts, e.g.
v;. The symbol ~. denotes computational indistinguishability. We represent the
set of corrupted players by C, the set of honest players is instead denoted by
H. We indicate the bit-length of any string s by [s|. If ¢ is a circuit, we use a
similar notation |c| to denote the number of gates. We use struct(c) to denote
the structure of ¢. With an abuse of notation, we identify distributions D with
circuits mapping uniformly random strings of bits into samples. We say that a
distribution is efficient if its circuit has poly(\) size.

20

If an algorithm Alg is assisted by an oracle H in its computations on input =,
we write Alg™ (x). We use a simple arrow < to assign the output of a determin-
istic algorithm Alg(z) or a fixed value ¢ to a variable a, i.e. we write a + Alg(x)
and a < c. If the algorithm is instead randomised, we write a < Alg(z). The
notation assumes that in this case, Alg(x) is provided also with uniformly sam-
pled randomness. We write instead a < Alg(xz; r) if we fix the randomness of the
algorithm to be . Finally, we write a <~ X where X is a finite set, to denote
that a is uniformly sampled from X. If instead a is sampled from a distribution
D, we write a & .

We present additional preliminaries, including a discussion about distributed
samplers and entropy, in Appendix A.

4 Impossibility of Distributed Samplers without Random
Oracle

We now present and prove our main theorem, namely that in a strong semi-
malicious distributed sampler H(R|o) = O(log \). The idea was sketched in the
technical overview (see Section 2.1).

Theorem 4.1. Let D(1%) be an efficient distribution such that Hoo (D) = w(log \).
In a strongly semi-maliciously secure distributed sampler for D(]l)‘) in the UC
model, we have that H(R| o) = O(log \).

Proof. Consider the distributed sampler execution in which the adversary con-
trols a subset C of parties, but behaves exactly as in the protocol. In particu-
lar, the adversary waits to receive the messages of the honest parties and then
it generates random (and independent) messages for the corrupted parties.

Let Sample be the algorithm used by the parties to reconstruct their output.
In order to be as general as possible, compared to Def. A.1, we change the syntax
of the procedure by providing it also with the CRS o, the index i of the party
running it and the randomness used by P; to generate its DS message U;. Let
Gen(]l’\,a, j) be the algorithm used by party P; to generate its message. We
assume that such algorithm requires L; () bits of randomness. Suppose that the
generation of the CRS requires L(\) bits of randomness.

Consider the security game of the protocol, we start by focusing on the ideal
world. Since the simulator runs in polynomial time, there exists a polynomial
upper bound ¢(A) on the number of samples the simulator queries to the func-
tionality before providing (o, Ug) to the adversary. Let @ be the set containing
the responses to these queries.

Claim 4.1. In the ideal world, with overwhelming probability, R € Q.

Proof of the claim. After the adversary provides Ug, the output of the protocol
R is determined and known to the adversary. Notice that, if everybody is honest
in the real world, all the parties obtain the same R with overwhelming proba-
bility, so R is well defined. If that was not the case, the adversary can easily dis-
tinguish the protocol from the simulation (in the ideal world, the honest parties

21

always output the same value, in the real one they would not). After receiving
Uc, the simulator needs to communicate to the functionality that it must out-
put R to the honest parties.

Now, observe that

Pr[D(1") = R] =) Pr[R =] - Pr[D(I") = 2] <

< max Pr[D(1*) = 2] = 27 (P) = g=w(logA),
So, Pr[D(1*) = R] is negligible.

As a consequence, the simulator can make the honest parties output R only
if R € Q. Indeed, once R is fixed, the probability that any subsequent query
to the functionality collides with R is negligible. We conclude that R € @ with
overwhelming probability, otherwise it would be possible to distinguish between
real world and ideal world. |

The next claim is used to prove that, in the real world, H(R|Ug,0) =
O(log A\). We introduce some notation.

Let p(A) be a polynomial and let ¢ be the index of a fixed corrupted party.
Consider the algorithm ’D&Hﬁ(]l)‘) defined as follows:

L.VjeC: r;& {0,130
2.VjeC: Uj & Gen(]l’\,a,j; T5)
3. Output R’ < Sample(o, Uy, Uf, ¢, 7))

Let S be the random variable denoting the set of samples produced by running
Dj, (1) p(\) times.

Un,o
Iiet Ey be the random variable having value 1 if R is well defined (i.e. every

party outputs the same value), 0 otherwise. Similarly, let £; be random vari-
able having value 1 if R € S, 0 otherwise. Finally, we define M(\) := L(\) +

>icn) Li(A)-

Claim 4.2. Suppose that, in the real world, H(R|Up, o) is not O(log A). Then,
for every Ao € N, there exists X\ > Ao such that Pr[R & S|Ey = 1] > 1/M()).
Proof of the claim. Observe that, for every x,y, z, w, we have

Pr[R=2|Ug =y,0 =2, =w]|=Pr[R=2|Ug =y,0 = z].

Indeed, given Uy = y and o = z, the value of R is determined only by the
randomness used to generate Us. Such randomness is independent of S. So,
H(R|Upy,0,5) = H(R|Ug, o). We have that

H(R|UH,) (R|UH7J,S)SH(R,E0|UH,O',S)=
H(R|UH70353E0)+H(E0|UH707‘S) <
H(R|UH7Ua Sa EO) + HO(EO) -
H(

RlUH,O',S,E())—I—l. (1)

22

Now, we have that H(R|Up, 0, S, Ey) is equal to
Pr[Ey =0]-H(R|Ug,0,5,Ey =0) +Pr[Ey = 1] - H(R|Ug,0,5,Ey = 1). (2)
We know that Pr[Ey = 0] is negligible, moreover,
H(R | Un, 0,8, By = 0) < Ho(R) < log (25 T 240) = m(w).
i€[n]
We have proven that H(R | Uy, 0,5, Ey = 0) = poly(}), so, putting it together
with (1) and (2), we obtain
H(R|Ug,o0) <H(R|Ug,0,5,Ey =1)+ 1+ negl(\). (3)
Now, we observe that
H(R|Upy,0,S, Eq = 1) <H(R,E,|Upy,0,5 Ey=1) =
(RlUH,O',S,El,EQ = 1) + H(El ‘ Uy,o0,S,FEy = 1)
(R|UH707S7E17E0_1)+H()
:H(R|UH7UaSaE17EO*1)+1 (4)
Furthermore, H(R|Up, 0, S, E1, Eg = 1) is equal to
Pr[E; =0|Eg =1]-H(R|Up,0,5,F1 =0,Ey = 1)+
PI'[El:1|E0:1]‘H(R|UH,CT,S,E1:1,E0:1). (5)
We observe that
H(R‘UH50'7S7E1 = 17E0 = 1) =
=> PriS=w]-HR|Un,0,8 =w, By =1,E =1) <

SZPI‘[S:w]Ho(R|S:U},E1 :l,Eozl) <

< ZPr[S = w] - log(p(N)) = log(p(N)). (6)

We also notice that

H(R|Ug,0,S,E1 =0,Ey = 1) < Ho(R M)+ D Li(\) (7)

i€[n]

Now, suppose that there exists A\g € N such that, for all A > A\g, Pr[F; = 0|Ey =
1] < 1/M(X). We would have that
H(R|Uyg,o0) <H(R|Ug,0,S, Eg=1) + 1+ negl(\) < by (3)
<H(R|Un,0,S,E1,Ey =1)+ 2+ negl(A) < by (4)
1
< N0 M(X) +log(p(\)) + 2+ negl(A\) = by (5),(6),(7)
=log(p(\)) + 3 + negl().

23

So, H(R|Ug, o) would be O(log\) contradicting our initial assumption. We
conclude that for every \g € N, there exists A > A¢ such that Pr[E; = 0|Ey =
1] > 1/M(N). []

Claim 4.3. In the real world, H(R|Ug, o) = O(log A).

Proof of the claim. By contradiction suppose that, in the real world, H(R | Uy, o)
is not O(log \).

Now, consider the adversary A that, given o, Uy, samples (g(A\) + 1) - A -
M()) independent elements from D’UHJ(]l’\) and outputs 1 if and only if it
obtains strictly more than g(\) distinct values in this way. We show that such
adversary can distinguish between real world and ideal world with non-negligible
advantage.

First of all, we notice that A runs in polynomial time. Let R;‘, . be the output

of the j-th execution of DbH,a(ﬂA)~ Observe that the distribution of R’ con-

ditioned on Uy, o is the same as the distribution of R,, the output of the ¢-th
party, conditioned on Uy, o. By Claim 4.1,

Pr[R;, ¢ Q] = Pr[R, & Q] < Pr[Ey = 0] + Pr[R & Q] = negl()\).

Hence, by the union bound and due to the fact that |Q| < ¢()\), in the ideal
world, A outputs 0 with overwhelming probability.

Now, let S; be the random variable containing the values of the first j — 1
samples from D}, _(1%). We know that, in the real world,

Ug,o
Pr[R;}L € S;]=Pr[R, € 5] =
= PI'[EO = 0] . PI“[RL S Sleo = 0] + PI‘[E() = 1] . PT[RL S Sj‘E() = 1] <
< negl(A\) + Pr[R € S;|Ey = 1].

We conclude that, for every A\g € N, there exists a A > A such that
Pr[R, €8] <1——
PeETE T 2M(N)

Now, we observe that, for every Ay € N, there exists a A > Ag such that

1 A-M(N)
and so, by the union bound, for the same values of A,

Pr([S(go) 1) aar1] < gN)] <Pr[3j st [Sjam| =[Sy aml] <

A-M(N)
<@+ (1= 57077)

. 1 AM(N)
i (g(A) + 1) (1 - 2M(/\)> =0

Observe that

24

s0, Pr[|S(gon)+ a-m+1] < q(A)] is definitively smaller than 1/3. Therefore, for
every Ao € N, there exists a A > \g such that

Adv4(\) = |Pr[A(1Y) = 0lideal] — Pr[A(1") = O|real]| >
>1—negl(\)—1/3>1/2-1/3.

We conclude that A distinguishes between the real world and the ideal world
with non-negligible advantage. This contradicts the security of the distributed
sampler, therefore, in the real world, H(R |Ug, o) = O(log A). |

Claim 4.4. In the real world, we have that H(R|Ug, o) = O(log).

Proof of the claim. The messages of the corrupted parties are distributed as in
the fully honest case. So, switching the role of honest and corrupted parties does
not affect the distribution of (o, (U;)ic[n),). By applying the result of Claim 4.3
on the new set of corrupted parties, we obtain that H(R|U¢g, o) = O(logA). B

Claim 4.5. In the real world, H(R| o) = O(log \).
Proof of the claim. By the strong chain rule of Shannon’s entropy, we have that

HR|Ug,o0) +H(R|Uc,0) —H(R|Ug,Uc,0)+

+HUg o) =H{Ug |Uc,0)+

+H({Uc¢ |R,Un,0) —H({Uc | R,0) =
=H(R, Uy |o) —H{Ug | o) + H(R,Uc | o) — H(U¢ | o)+

—H(R,Un,Uc o)+ HUy,Uc | o)+

+HWUg|o) —HUw,Uc|o) + HUc | o)+

+H{Uc,R,Uy |0) —H(R,Uy |0) —H({Uc,R|0) +H(R|0o) =
=H(R| o).

We observe that H{Ug | R,Un,0) < H({U¢|R,0) and H(R|Ug,Uc,0) > 0.
Moreover, since Uy and Ue are independent given o, H{Uy |0) = H{Ug | Uc, o).
We conclude that, by Claim 4.3 and 4.4, H(R | o) < H(R|Un,0)+H(R|Uc,0) =
O(log A).

O

4.1 Distributed Sampler CRSs Cannot be Used Twice

We now discuss the first consequence of Theorem 4.1. Suppose that our distri-
bution D(1*) has high min-entropy, i.e. Hoo (D) = w(log A). We observe that the
probability that two independent samples from D(]l)‘) collide is negligible. In-
deed, denoting the two independent outputs by R and R’, we have

PI[R — R/] — 2—H2(D) S 2—H0@(D) — 2—w(log>\).

25

We show, however, that if we run a strongly semi-maliciously secure distributed
sampler for D(ll’\) twice using the same CRS, the outputs collide with non-
negligible probability. As a consequence, we cannot hope to reuse the same CRS
to generate independent looking samples.

Corollary 4.2. Let D(]l’\) be an efficiently samplable distribution such that
Hoo (D) = w(log A). Consider a strongly semi-maliciously secure distributed sam-
pler protocol for D(]l)‘) in the UC model and let R and R’ denote the outputs of
two protocol executions having the same CRS. Then, Pr[R = R'] > 1/poly(\).

Proof. By Theorem 4.1, we know that H(R|o) = O(log A). Now, we have that
Pr[R=R]=Y Prlo=2] - Pr[R=R|o=2=Y Prlo =z 27 "Er=2) >
z

z
> ZPr[a = 2] . 27 H(Rlo=2)
z

We observe that f(z) := 27" is a convex function, so, by Jensen’s inequality

PI‘[R _ R/] > ZPI‘[O’ _ Z] . 27H(R|U:Z) > 92— >, Prlo=z]-H(R|o=2) _ 27H(R\o').
Observe that 27H(El9) = 1 /poly(\). O

4.2 Distributed Sampler CRSs Cannot be Short

A second consequence of Theorem 4.1 is that the CRSs of strongly semi-maliciously
secure distributed samplers cannot be short. Specifically, the bit-length of the
CRS |o| must be at most O(log A) bits shorter than Hyao (D).

The Yao entropy Hyao(R|o) must be small. Although Yao’s entropy and Shan-
non’s entropy can assume very different values, we prove that if H(R|o) =
O(log A), also Hyao(R|o) = O(log A). Indeed, by Corollary 4.2, we know that two
distributed sampler executions using the same CRS have colliding outputs with
non-negligible probability. We can therefore consider the compressor that on in-
put (R, o) outputs the empty string and the decompressor that on input o, runs
the distributed sampler using o as CRS, outputting the result R’. Since there
is a 1/poly(X) probability that R = R’, we conclude that Hy,o(R|o) = O(log A).
Observe that we can make the decompressor deterministic using a PRF.

A chain rule for Yao’s entropy. To conclude our argument, we show that
Hyao(R[0) > Hyao(R) — o] (8)
By the security of distributed samplers in the fully honest case, R and D(]IA) are

computationally indistinguishable, so, Hyao(R) = Hvao(D). From this, we easily
deduce that Hyao(D) — |o| < O(log A).

26

We highlight that in [KPW13, Appendix B], Krenn et al. proved the chain
rule for Yao’s entropy, which seems to immediately imply (8). Unfortunately, this
is not the case. The idea at the base of their proof is that given a compressor-
decompressor pair (¢, d) for Hyao(R|o), we can build a new compressor-decom-
pressor pair for Hy,o(R) with the same success probability as (c¢,d). On in-
put R, the new compressor performs a brute-force search for a ¢’ such that
d(¢(R,0"),0’) = R, then it outputs ¢(R,c’),0’. The decompressor instead is
identical to d. Since, the output size of the new compressor is |o| bits larger than
¢’s, we obtain that Hvao(R|o) > Hyao(R) — |o|. Observe however that if |o| is
more than O(log \), the new compressor does not run in polynomial time. That
prevents us from using their result.

We notice that in our setting, the new compressor does not need to perform
a brute-force search. Indeed, in order to obtain a ¢’, it can just feed R to the
distributed sampler simulator for the fully honest case and pick the CRS con-
tained in the simulated view. The latter is indistinguishable from the the real
CRS used for the generation of R. This allows us to prove the chain rule even if
|o| is more than O(log A).

Corollary 4.3. Suppose that Hy (D) = w(log A). If OWFs exist, the CRS ¢ of a
strongly semi-maliciously secure distributed sampler for D(]l)‘) in the UC model
must satisfy Hyao(D) — |o| < O(log \).

Proof. We start by proving the following claim.
Claim 4.1. In the distributed sampler protocol, Hyao(R|o) = O(log \).

Proof of the claim. Consider the following randomised pair of compressor and
decompressor:

— On input a pair (R, o), the compressor ¢ outputs the empty string.
— On input o, the decompressor d runs the distributed sampler protocol in-
its-head using o as CRS. Then, it outputs the result R’.

Observe that Pr[d(c¢(R, 0),0) = R] = Pr[R = R’]. Since R and R’ are the outputs
of two distributed sampler executions using the same CRS, by Corollary 4.2, we

know that 1

poly(A)
Now, consider the deterministic decompressor d’ that performs exactly the same
operations as d, but uses a PRF F to generate its randomness, i.e. d’ has a
random PRF key K hard-coded in its circuit and it generates its randomness by
computing F(K, o). By the security of the PRF

Pr[d(c(R,0),0) = R]

1
poly(A)
Notice that the probability in the first term is also over K. So,

Pr(d (¢c(R,0),0) = R] > Pr[d(c(R,0),0) = R] — negl()\)

/ o L , R
poly (V) <Pr[d'(¢(R,0),0) = R] = ZE: @ -Pr[d'(¢(R,0),0) = R|K = 2] <

<maxPr[d'(¢(R,0),0) = R|K = z].

xT

27

Let & be the value of associated with the maximum, let d, be the decompressor
having K = . We have proven that the pair (¢, d}) is successful in compressing
and decompressing with probability greater than 1/poly(A). We conclude that
Hvao(R|o) = O(log). |

Claim 4.2. In the distributed sampler protocol, Hyao(R|o) > Hyao(R) — |o].

Proof of the claim. Suppose that Hvyao(R|o) < k(M) for some function k(A).
Then, there exists a compressor-decompressor pair (¢, d) such that
24

Prld(c(R,0"),0") = R] > = — negl()).

2k
We now design a new compressor ¢ for R: ¢ feeds its input R to the distributed
sampler simulator Sim for the fully-honest case. The latter provides a CRS o’
and the messages of all the parties. The compressor outputs ¢(R, o’) as well as ¢”.

Let o be the CRS used to generate R. By the security of the distributed
sampler in the fully honest case, we know that the triple (o, (U;);ie[n), R) in the

protocol is computationally indistinguishable from (Sim(1*, R'), R') where R’ &
D(1%). We conclude that the pairs (R, o) and (R,0’) are also computationally
indistinguishable. As a consequence,

Pr[d(c(R,0),0) = R] — Pr[d(c(R,0"),0") = R]| = negl()).
We conclude that

Pr[d(é¢(R)) = R] = Pr[d(c(R,0"),0") = R] > Pr[d(c(R,0’),0") = R] — negl(\) >
¢ ol+|o|

> - —negl(})

o — negl(\).

~ ok+lo]
Observe that £4|o| is the output size of ¢é. Notice also that ¢ is not deterministic,
however, we can make it so adopting the same technique used in Claim 4.1, i.e. by
generating its randomness using a PRF. Specifically, consider the deterministic
compressor ¢ which has a PRF key K hard-coded in its circuit and generates
its randomness by computing F(K, R), performing then the same operations as
¢. By the security of the PRF, we have that

Prld(¢(R)) = R] — Pr[d(é(R)) = R]| = negl()).

So,
ol+|o|

— negl(\).
As in the proof of the previous claim, the probability in the first term is also
over K. So,

ol+|o|

Sirfer — neel(V) < Prld(¢'(R)) = R] = > L @ (R) = RIK = 2] <

<maxPr[d(¢(R)) = R|K = z].

T

Let & be the value of = associated with the maximum, let &, be the decompressor
having K = . We have proven that the pair (&, d) succeeds in compressing
and decompressing R with probability greater than 2¢+l7l /2k+ol _ negl()), so
Hvao(R) < k(X)) + |o]. We conclude that Hyao(R|o) > Hyao(R) — |0 |

By Claims 4.1 and 4.2, we have O(log A\) = Hyao(R|0) > Hyao(R) — |o|. We
notice that, by the security of the distributed sampler in the fully honest case,
R is computationally indistinguishable from D(1%), 50, Hyao(R) = Hyao(D). We
conclude that Hvao(D) — o] < O(log A). O

4.3 Distributed Sampler CRSs Cannot be (too) Nice

The niceness of a CRS cannot be defined in a mathematical way. However, in-
formally speaking, we can say that a CRS is nicer than another if it is easier
to produce in an MPC setting, e.g. a uniformly random string of bits (i.e. a
URS) is simpler to generate than a random RSA modulus of unknown factori-
sation. Indeed, if we aim for security with abort, we can generate a URS using
a simple commit-then-reveal approach. On the other hand, all the state-of-the-
art constructions for the generation of RSA moduli rely on rejection sampling:
first the parties generate secret-shared (or encrypted) candidate primes p and g,
they multiply them and apply expensive (bi)primality tests on the secret-shared
data [FLOP18, HMR ™19, CCD"20]. After sufficiently many trials (the number
depends on the size of the modulus), the players obtain a valid RSA modulus
with high probability. This results in rather complex protocols.

In the previous sections, we have seen that the CRS of distributed samplers
cannot be used more then once and cannot be short. These facts suggest that
directly encoding a sample from D(1) in a CRS is probably better than relying
on a distributed sampler protocol for D(]IA). At least in the first case, the parties
spare one round of interaction. But what if the CRS used by the distributed
sampler is nicer than any encoding of ’D(]1>‘)? We prove that this cannot happen
as it is always possible to non-interactively generate samples from D(]l)‘) using
only distributed sampler CRSs and public random coins.

Non-interactive generation of samples from D(]lA) using a distributed sampler
CRS and random bits. In this section, we observe that a distributed sampler for
D(1%) allows us to construct an efficient deterministic function De that maps
pairs consisting of a distributed sampler CRS ¢ and uniformly random bits 7 into
values R that are computationally indistinguishable from D(]l)‘). This algorithm
trivially outputs the result of the distributed sampler using ¢ as CRS and r as
randomness for the parties. The interesting fact is that if the distributed sampler
is strongly semi-maliciously secure in the UC model, the algorithm is efficiently
invertible with non-negligible probability. Specifically, we prove that there exists
an efficient PPT algorithm test, that outputs 1 with 1/poly(A) probability when
run over a sample R < D(]l)‘). Moreover, if this event occur, it is possible to
efficiently find a pair (o, 7) that looks random over De ' (R).

29

In other words, if we provide the parties with a distributed sampler CRS o
and public uniformly random bits r, the parties can obtain a sample R from
D(]l’\) without any interaction. Furthermore, with 1/poly(A) probability, (o, r)
reveals no information in addition to what can be already inferred from R.
Finally, the honest parties can tell when (o,7) reveals too much information,
having therefore the opportunity to reject R and restart.

Biases in the distribution. Notice that the selective rejection biases the distribu-
tion of the output. However, any cryptographic protocol basing its security on
R will remain secure even if R is sampled according to the biased distribution.
Indeed, at least a polynomial fraction of the samples is not rejected. If the pro-
tocol was insecure in the new setting, there would be a non-negligible probabil-
ity of sampling a bad R even in the original protocol, which would therefore be
insecure.

Why is De invertible with non-negligible probability? Our idea is based on the
fact that in a strongly semi-malicious distributed sampler, H(R|o) is small. In
other words, the CRS of the protocol describes the output with high precision.
Obtaining the exact CRS used for the generation of R is usually hard, however,
the simulator for the fully-honest case can provide us with a functionally equiv-
alent object.

In order to completely describe R, we need to extract also randomness
r for the parties, so that, using r in conjunction with the CRS, we obtain
R. Unfortunately, the simulator cannot provide much help here. Indeed, given
(0, (Us)iem)) & Sim(]l)‘, R), it is usually hard to extract the randomness r used
to generate (U;);e[n)- Actually, such 7 might not even exist. Luckily, in Corollary
4.2, we have proven that two executions of a strongly semi-maliciously secure
distributed sampler using the same CRS have colliding outputs with 1/poly())
probability. So, if we run the distributed sampler protocol again using o’ as CRS,
we obtain R again with non-negligible probability. Clearly, in the new execu-
tion, the value of (U;);e[n) has probably changed, however, this time we know
the randomness 1’ used to generate the messages.

On average invertibility. We observe that the probability of succeeding in in-
verting De is also over the outcome of R. In other words, we just know that the
average probability of inverting R is 1/poly(\). That does not mean that the
overwhelming majority of values R is efficiently invertible: if R assumes an un-
lucky value, we can try to invert as many times as we want without any hope
of succeeding. We could prove, however, that there always exists a polynomial
fraction of the space of events for which R is easy to invert.

We also noticed that it is possible to efficiently test if R is easy to invert or
not. Indeed, we can just try to invert it many times, if the success frequency is
lower than a certain threshold, we can reject R, otherwise, we accept it. We used
the Chernoff bound to find the threshold and the maximum number of inversion
attempts. In particular, we needed test to succeed with at least 1/poly(\) prob-
ability.

30

THE GAME G'7'(1%)
The challenger performs the following operations

b & {0,1}

o & CRS(1Y), r & u(1)

R + De(ao,r)

If test(R) = 0, go back to step 2.

If b = 0, provide the adversary with (o,7), otherwise provide it with En(R).

CU o =

The adversary wins if it terminates its execution outputting b.

Fig. 5: Invertibility game

The special case of URSs. As a corollary of the result described in this section,
if the distributed sampler uses a URS, it is possible to securely generate samples
from D(]l)‘) using public random coins only. In particular, in the random ora-
cle model, the parties can securely sample from D(]l’\) without interacting and
without needing any CRS.

We formalise our result below.

Corollary 4.4. Suppose that Hoo (D) = w(logA) and there exists a strongly
semi-maliciously secure distributed sampler for D(1") in the UC model. Let
CRS(]I)‘) be the algorithm used to generate the CRS of the protocol. Then, there
exist a deterministic polynomial algorithm De and PPT algorithms En and test
such that

— De(CRS(1Y),U(1")) ~, D(1*)

— Prltest(D(1")) = 1] > 1/poly())

— No PPT adversary can win the game QL’""(]I)‘) (see Fig. 5) with non-negligible
advantage.

Proof. We start by defining the algorithm De, which on input ¢ and random
string r, runs the distributed sampler protocol using o as CRS and r as random-
ness for the parties, outputting the result.

Claim 4.1. De(CRS(1"),U(1")) ~. D(1*)

Proof of the claim. We observe that R := De(CRS(I*),U(1")) is distributed
exactly as the distributed sampler output. By the security of the distributed
sampler, we conclude that R ~, D(1). |

We now define the PPT algorithm Inv as follows: Inv feeds the input R to the
distributed sampler simulator for the fully honest case. In this way, it obtains a
fake CRS o’ and messages (U;)c|y,)- Finally, Inv picks a uniformly random string
r and outputs (o’,r).

31

Claim 4.2. Let R denote a sample from D(]l)‘). Then, there exists a polynomial

q(X) such that
1

Pr[De(Inv(R)) = R| > ——
[De(nv(R)) = A >
Proof of the claim. Let (¢’,7) := Inv(R). By the security of distributed samplers,
we know that (¢, R) is computationally indistinguishable from (o, De(o,7))
where o ¢~ CRS(1%) and 7 is uniformly random. We conclude that for = and 7’
independent and uniformly random

(0, De(o,7"),De(a,7)) ~c (o, R, De(c’, 1)) (9)
By Corollary 4.2, we know that
1
Pr[De(o,r’) = De(o,r)] >
(De(o:1') = Dl)] =~
We conclude that, by (9),
1
Pr[De(Inv(R)) = R] = Pr[De(o’,7') = R] > ——— — negl(\) >
De(inu(R)) =) = PilDe(o’, ") = 1 > —_L - —negi() = L
|

We now define the algorithm test as follows: on input R, test checks if
De(Inv(R)) = R for 4 - g(A) times. If the equation is satisfied less than A times,
test outputs 0, otherwise it output 1.

In a similar way, we define En: on input R, En computes (¢/,7) < Inv(R) and
checks if De(o’, r) = R. If that is the case, it outputs (¢’, r). Otherwise, it repeats
the operation. If the procedure fails for more than 8\ - g(A), En outputs L.

Claim 4.3.

1
Prltest(D(1%)) = 1] > ——
rftest(D(1%))]_8“)
Proof of the claim. We define p, := Pr[De(Inv(z)) = z]. Let R be a sample from
D(1%). By Claim 4.2, we know that
1
Elpr] = Y Pr[R =] p, = Pr[De(Inv(R)) = R] > ey

Since 0 < p, < 1, we have that E[p%] < E[pg], so, by the Paley-Zygmund
inequality,

&=
)

1
-Elpr] > 100N

>

e
e

1 1 [Pr]

P [> 7] >Pp [> “E[pr]| >
er 2 gyl 2 Pripe = Bl 2 4 e
Define now (25004 = {z|ps > ﬁ} Suppose now that & € (2g50q. If we run the

check De(Inv(x)) = x for 8\ - g(A) times, by the Chernoff bound, we know that
it succeeds more than

1
3 “AA(A) - pe > A

32

times with overwhelming probability. So if # € (25004, test(x) = 1 with over-
whelming probability. We conclude that

Prltest(R) = 1] > Prftest(R) = 1|R € {2400d] - Pr[R € 2g00d] >
1

> min Prftest(z) = 1] Pr(R € Qgoed] > g

Claim 4.4. No PPT adversary can win the game gﬂ"(]l)‘) (see Fig. 5) with non-
negligible advantage.

Proof of the claim. As in the previous claim, let p, := Pr[De(Inv(z)) = z]. De-
fine now 2paq = {z|p. < ﬁ()\)}. Suppose that = € (2p,q. If we run the check

De(Inv(z)) = x for 4\ - g(X) times, by the Chernoff bound, we know that it suc-
ceeds less than

2-40q(A) - pe < A

times with overwhelming probability. So, if © € (2y,4, test(z) = 0 with over-
whelming probability.

Let R <& D(1"). We observe that
Pr[En(R) = L|test(R) = 1] < Pr[R € 2paqltest(R) = 1] + Pr[En(R) = L|R & (2pad].
We know that

Prltest(R) = 1|R € 2pad]
P Q a =1/ <
r[R € (paaltest(RR) = 1] < Prltest(R) = 1] -

< 8q(A) - max Prltest(z) = 1] = negl(\).

Furthermore,

Pr[En(R) = L|R & $2bad] > m(izn Pr[En(z) = L].
x bad
Notice that for every = & pad, Pz > #(/\). Observe also that En tries to invert
the input up to 8\-q(A) > \/p, times, so, with overwhelming probability En(z) #
1. We conclude that Pr[En(R) = L[test(R) = 1] = negl(A).

Now, suppose that En(R) = (¢/,7') # L. We recall that ¢’ is obtained
by running Sim(]l’\,R), so by the security of distributed samplers (R,o’) ~,
(De(o,7),0) where ¢ & CRS(1*) and r & U(1"). We also know that 7 is
random conditioned on satisfying De(o’,7’) = R. In other words, (R,o’,r’) is

computationally indistinguishable from (De(o,r), 0, 7). We conclude our proof
observing that (R,En(R)) ~. (De(o,r), En(De(o,1))). |

O

33

5 Succinct and Unbounded Universal Samplers

Universal samplers. In [HJK'16], Hofheinz et al. introduced the notion of uni-
versal sampler: a particular type of trusted setup, called the sampler parame-
ters, which allows non-interactively and securely generating samples from any
distribution D. The authors considered two notions of security. The first one is
selective, one-time security, meaning that for a certain distribution D fixed be-
fore generating the sampler parameters, the construction reveals no information
in addition to the corresponding sample. The second notion is adaptive security,
meaning that the sampler parameters can generate samples from multiple dis-
tributions adaptively chosen by the adversary, even after seeing the parameters.
If adaptive security holds, the construction is still guaranteed to reveal no infor-
mation in addition to the outputs. Unfortunately, adaptive universal samplers
can only exist in the random oracle model.

Limitations on the size of supported distributions. Independently of the notion
of security, all known universal sampler constructions [HJKT16] suffer from a
particular limitation: the circuit size of the supported distributions is bounded
from above by the size of the sampler parameters. In this paper, we show how
to get around this problem. We highlight that in order to obtain a truly non-
interactive solution, we are forced to rely on a random oracle. Indeed, in the
plain model, the parameters cannot be smaller than the Yao incompressibility
entropy of the sample we want to produce.

Succinct and unbounded universal samplers. Rather than aiming full-on to our
objective, we linger in the plain model for a little longer and we rephrase the
definition of universal sampler. We relax the sampling algorithm, Sample, to take
as input a long string of uniform bits w, as well as the trusted sampler parameters
U. In our final solution, called an unbounded universal sampler (UUS), U will
impose no restrictions on the set of supported distributions. Instead, we require
the length of w to depend on the distribution. The good news is that if u is too
short to sample from our distribution, it is not hard to extend it (e.g. using a
coin tossing protocol or in the random oracle model). Notice that by extending
u, we increase the entropy of the setup and so, get around the impossibility.

In our quest for unbounded universal samplers, we introduce an intermediate
stepping stone of a succinct universal sampler (SUS). An SUS differs from an
unbounded one as its sampler parameters U set a polynomial upper bound L on
the circuit size of the supported distributions. However, we also require that U
can be generated using a circuit of poly(\,log L) size. This implies that the size
of U is also polylog(L).

We first recall the definition of a universal sampler from [HJK'16], which
we refer to as a bounded universal sampler. For now, we focus on selective, one-
time security. Compared with [HJKT16], we explicitly give the size bound as
an input to Setup, instead of fixing it in advance. We also allow Sample to take
as input some public random coins u, of length p(\, |D|) bits, where p is some
polynomial and D is the distribution being sampled from.

34

Definition 5.1 (Bounded Universal Sampler). Let p(\, X) be a polynomial.
A (bounded) universal sampler is a pair of algorithms (Setup,Sample) with the
following syntax:

1. Setup is a PPT algorithm taking as input the security parameter 1% and a
polynomial bound L(X). The output is a sampler U.

2. Sample is a deterministic algorithm taking as input a sampler U, a distribu-
tion D(\) with circuit size |D| < L()\) and a random string w € {0, 1}PMIPD,
The output is a sample R.

We say that the US satisfies selective one-time security if there exists a PPT
simulator Sim such that, for every polynomial L(\) and distribution D with |D| <
L(X), no PPT adversary can distinguish between

U& Setup(]l)‘,L)
Uu,R| 4 & {0,1}p0IPD) and {U,'u,,R
R + Sample(U, D, u)

R&ED
(w,U) & Sim(1*, L, D, R)

The definition of selective, one-time security states that, for any distribution
D fixed ahead of time, R = Sample(U, D, u) is indistinguishable from a random
sample from D. Furthermore, the pair (U, u) leaks no information in addition to
R. We also point out that for bounded universal samplers, the length of u does
not need to depend on D, we can simply set it to p(A, L). Finally, we notice that
the selective, one-time universal sampler of [HJK*16] is a bounded universal
sampler where p(A, X) = 0.

We also consider the following succinctness property (which is not satisfied
by [HIK16]).

Definition 5.2 (Succinct, Bounded Universal Sampler). We say that a
bounded US is succinct if the circuit size of Setup(1*, L) is [Setup(1*,L)| <
poly(A,log L).

In our final goal of an unbounded universal sampler, we remove the size
constraint on D.

Definition 5.3 (Unbounded Universal Sampler). An unbounded universal
sampler is defined the same way as a bounded US, except that (1) the Setup
algorithm omits the L(\) argument, and (2) the Sample algorithm only requires
that |D| = poly(\) (and still w € {0,1}PNIPD),

Randomness extractability in universal samplers. We now introduce a new prop-
erty, which is needed later for our party-dynamic distributed US (Section 6). We
say that a universal sampler is randomness extractable if knowing the random
coins used for generating the sampler parameters allows us to retrieve the ran-
domness used to produce the sampled output. In other words, if R is the univer-
sal sampler output for a distribution D, given the randomness used to compute
the CRS, we can extract p such that R = D(]l)‘; p). Since we use this property

35

to learn information about the samples produced by an adversarially generated
sampler, we ask extractability to hold for every choice of the coins used by the
adversary. Furthermore, we allow the extractor to simulate the public random
coins u used to generate R from the sampler, giving the option of inserting a
trapdoor to help.

Definition 5.4 (Randomness Extractable Universal Sampler). Suppose
that (Setup,Sample) is a universal sampler, let M(\) denote the bit-length of
the randomness needed by Setup. We say that (Setup,Sample) is randomness
extractable if there exists a PPT algorithm Extract such that, for any py €
{0, 13MN) | polynomial L(N) and supported distribution D(17%), it holds that

U < Setup(1*, L; po)
Pr D(]lx; p) =R (p,u) & Extract(]l)‘,D,L,po) =1 —negl(A)
R < Sample(U, D, u)

and the following distributions are indistinguishable
{’U/, Po "U, <i {07 1}p()\,\D|)} s {U, PO‘(Pa ’LL) & EXtraCt(ﬂA7 D7 La pO)} :

We define the randomness extractability property also for unbounded universal
samplers. In such case, we need to modify the syntaz: we remove L(\) from the
inputs of Setup and Extract.

We note that the construction of [HJK*16] is randomness extractable, be-
cause the Setup algorithm samples a PRF key that is used to generate the ran-
domness p for the sampled output. In cases where the property does not obviously
hold, though, we note that it can be obtained without loss of generality. Indeed,
if (Setup, Sample) is not randomness extractable, we can easily build a universal
sampler (Setup’, Sample’) that is randomness extractable. The new scheme works
exactly as (Setup, Sample) but the random coins w are slightly longer: they now
encode a public key pk for a PKE scheme with pseudorandom public keys'3. In-
stead of directly sampling from a distribution D, the new universal sampler sam-
ples from the distribution that outputs (R, Encyc(p)) where R = D(1%; p). The
extractor can generate the random coins u such that it knows the secret key for
pk, which it uses as a trapdoor to learn the randomness p used to generate R.

5.1 Our Succinct Universal Sampler

We now present a succinct universal sampler based on polynomially secure iO
and SSB hash functions. We refer back to Section 2.2 for an informal overview
of the techniques and their motivation. Below, we give the detailed construction
and a brief description.

13 PKE with pseudorandom public keys is easily built from standard assumptions such
as DDH or LWE.

36

Detailed construction. The formal description of our succinct universal sam-
pler is presented in Fig. 6. The description of the unobfuscated program we de-
signed is in Fig. 7.

Recall that L()) is the bound on the circuit size of the distribution D. Let
m(A) be an upper bound on the bit-length of a garbled gate. The construction
uses the following ingredients:

— SSB hash function SSB = (Gen, Hash, Open, Verify), with hash length fsn ().
Used to compress the circuit of D, and the random coins u, into short digests.

— 10 scheme iO.

— Puncturable PRF (F, Punct;): maps 2¢l,4n-bit nonces into two A-bit strings
gk and k. The key gk is used for randomness in garbling, while k& is the
authenticated encryption key.

— Puncturable PRF (Fy, Puncts): maps (log L)-bit nonces into 2m(\) A-bit
strings (y?,y1,...,4%,yL,). This PRF is used to generate randomness for
the encryption scheme in the trapdoor.

— Garbling and evaluation functions GC.Garble, GC.Eval

We now expand upon the flavour of Yao’s garbled circuits we use. Given a
A-bit garbling key gk, we define the function G «+ GC.GarbIe(]l)‘,g,gk), which
outputs a garbling of the gate g using gk as source of randomness. Formally, the
labels of any wire w connected to g are obtained as (k2, kL) < F(gk,w). If g is
an input gate, the algorithm also assigns a pseudorandom value for that input,
given by the bit by < F(gk, g), and then outputs only the label associated with
that bit, i.e. Xy < En(by, e4) where e, represent the encoding information of the
input gate g. If instead, ¢ is an XOR or an AND gate, the permutation applied
on the ciphertexts in the garbling is 7, < F'(gk, g)'*. This is all the randomness
the garbler needs.

The encryption scheme used in the trapdoor encrypts an m(\)-bit message
x using a nonce ¢ € [L] and the key k, and works as follows. It first computes
(W, ut, ..,y yk) < Fy(k,i), and then outputs the string (v',v?,...,0™)
where v/ = yJO. if z; =0, vl = yj1 otherwise. Decryption is performed by revers-
ing the operations. If there exists an index j such that v/ ¢ {ij, yjl}7 decryption
fails. The nonce 7 will correspond to the index of the gate we want to garble.

The sampler parameters output by Sample contain an obfuscation of the
program Psys (Fig. 7). When generating a sample from a distribution D, with
auxiliary random coins w, the program is run on input a hash A of the random
coins, and a hash z of the circuit description of D. Recall that u and D themselves
are too long to be input to the program directly. The program also takes as input
a gate index 4, and the corresponding gate ¢’, and also the i-th portion of the
random coins, denoted v.

First, the program checks the hashes are valid, to prevent malicious queries
for inconsistent gates or random coins, and then it generates the garbling key
gk and trapdoor encryption key k. It then checks for a trapdoor, outputting the
embedded message if one exists, and otherwise, outputs the garbling of gate ¢'.

14 We assume that F generates sufficiently long outputs. We truncate the excess bits.

37

SuccCINCT UNIVERSAL SAMPLER
Let p(A, X) = A-m(\) - X where m()) is the output size of Garble.
Setup (1%, L(\)):

1. hk & SSB.Gen(1*, L, 0)

2. K& {01

3. SUSProg & iO(1*, Psus[K, hk])
4. Output U := (hk, SUSProg)

Sample(U = (hk,SUSProg), D, u) :
Let g := (gi)icp|) be a description of the gates of D. Let u; be the i-th (A-m(X))-
bit block of u.

1. h < SSB.Hash(hk, u)
2. z < SSB.Hash(hk, g)
3. Vie[|D|]: m & SSB.Open(hk, u,1)
4. Vie||D|]: = & SSB.Open(hk, g, 1)
5. Vi€ [|D|]: Gi < SUSProg(h, z,u;, gi, mi, ;) (see Fig. 7)
6. output R + GC.Eval(G)
Fig.6: A succinct universal sampler
Psus|[K, hk]

Hardcoded: A PRF key K and an SSB hash key hk.
Input: Hashes h and z, index i € [L], random string v, gate ¢’ and SSB proofs
7 and 7.

b+ SSB.Verify(hk, h,i,v, 7r)

b’ < SSB.Verify (hk, 2,4, g, ')
Ifb=0or b =0, output L.
(gk, k) «+ F1 SK, (h,z))
Wyt Yo Ym) < Fa(k,)
For every j € [m] define

S ok W=

0 if y? =,
z; <1 if yjl- =7,
1 otherwise.

7. If z; € {0, 1} for every j € [m], output z.
8. Otherwise, output Garble(1%, ¢, gk)

Fig. 7: The unobfuscated succinct universal sampler program

38

Theorem 5.5. Let L(\) be a polynomial. If SSB = (Gen, Hash, Open, Verify) is
an SSB hash function, iO is an indistinguishability obfuscator, (Fy,Puncty) and
(Fy, Puncty) are puncturable PRFs and Yao’s garbled circuits are secure, the
construction in Fig. 6 is a bounded universal sampler satisfying selective one-
time security and randomness extractability.

Moreover, suppose that iO is an obfuscator for the class of circuits of size
s(A\). If the circuits for SSB.Gen, SSB.Verify and for the evaluation of Fs on
punctured and unpunctured keys have poly(\ log L) size and the circuit for iO
has poly(\, s) size, the universal sampler in Fig. 6 is succinct.

We observe that the SSB construction of [HW15], puncturable PRFs based
on GGM [KPTZ13, BW13, BGI14, GGMS86] and most of the iO schemes satisfy
the properties for succinctness. We also point out that L()), actually, does not
need to be polynomial. Unfortunately, however, in order to satisfy selective one-
time security for a super-polynomial L(\), we need to rely on a subexponentially
secure iO scheme and on a subexponentially hiding SSB hash function.

Proof. We prove selective one-time security independently on whether L()) is
polynomial or not. We do this through a series of computationally indistinguish-
able hybrids. The only difference between the two cases will be that the number
of hybrids will be polynomial if and only if L(\) is polynomial. If L(\) is super-
polynomial, we need subexponentially secure primitives in order to achieve in-
distinguishability in spite of the exponential number of hybrids.

We mark changes using red font. Let D be the distribution addressed by
the selective, one-time security game. Let g be the circuit describing D. In the
proof, we define h and Zz as SSB.Hash(hk,u) and SSB.Hash(hk, g) respectively.
We always assume that the key K is sampled uniformly over {0,1}*.

Hybrid 0. This corresponds to the left distribution in Def. 5.1. The adversary
is provided with an honestly generated U = (hk, SUSProg) <~ Setup(1*, L()\)),
a random sting u < {0, 1}*™IPD and R < Sample(U, D,).

Hybrid 1. In this hybrid, the challenger punctures the PRF key K in (ﬁ, E)
and hardcodes the result in SUSProg. Furthermore, it programs the correct out-
put in SUSProg by storing (gk, k) « F1 (K, (h,z)) in it. Notice that by the cor-
rectness of the puncturable PRF F1, the input-output behaviour of Psys remains
the same. So, by the security of iO, Hybrid 1 is indistinguishable from Hybrid 0.

More formally, the computations performed by the challenger for the gener-
ation of SUSProg become the following (all the other operations in the game re-
main the same).

1. K « Punct, (K, (h,2))
2. (gk,k) « F1 (K, (h,?))
3. SUSProg < i0(1*, PL s [KK, hk, h, 2, gk, k]) (see Fig. 8)
Hybrid 2. In this hybrid, the challenger samples the keys gT(and & uni-

formly in {0, 1} instead of computing Fy (K, (h,k)). Notice that this hybrid is
indistinguishable from Hybrid 1 by the security of the puncturable PRF F3.

39

[,hk,]

Hardcoded: A punctured PRF key K, an SSB hash key hk, the hashes h and
z and the keys (gk, k).

Input: Hashes h and z, index i € [L], random string v, gate ¢’ and SSB proofs
7 and 7.

b+ SSB.Verify(hk, h,i,v, 7r)

b’ < SSB.Verify (hk, 2,4, g, ")

Ifb=0or b =0, output L.

If h="hand z = 2, set gk < gk and k « k.
Otherwise, (gk, k) « F1 (K, (h, z)).

(y%y%w . '7y?n7y'r1n) A Fz(k,l)

For every j € [m] define

N T W=

0 ify?:Uj7
Tj <1 1ny1,:UJ'7

1 otherwise.

8. If x; € {0,1} for every j € [m], output z.
9. Otherwise, output Garble(1%*, ¢, gk)

Fig.8: The unobfuscated succinct universal sampler program — Hybrid 1

More formally, the operations performed by the challenger for the generation
of SUSProg become the following.

1. K « Punct; (K, (h,2))

2. gk & {0,1}*

3. k<& {013

4. SUSProg <& i0(1*, PLys[KK, hk, , 7, gk, k]) (see Fig. 8)

We now introduce a counter | and we initially set it to 0. For each value
assumed by [, we proceed from Hybrid 3.1.0 to Hybrid 3.l.4. We then increment
I by 1 and we repeat the procedure starting from Hybrid 3.(I + 1).0. We stop
when [= |D| + 1. At that point, we move to Hybrid 4.1.0 keeping | unvaried.

Hybrid 3./.0. In this hybrid, the challenger makes the hash key hk statisti-
cally binding at index [. Furthermore, the challenger changes the program Psys.
Specifically, if the inputs h and 2 coincide with h and 2 and i < [, the program
tries now to decrypt v using k. If the operation succeeds, Psys outputs the re-
sult, otherwise, it outputs L. All the rest, including the generation of u, remains
as in the previous hybrid.

Notice that if [= 0, ¢ cannot be smaller than [, so the new block of code
is never executed. Moreover, hk was already statistically binding in 0. Since the
input-output behaviour of the program remains unvaried, by the security of iO,

40

Hardcoded: A punctured PRF key K, an SSB hash key hk, the hashes h and
z, the keys (gk, k) and the index [.

Input: Hashes h and z, index i € [L], random string v, gate ¢’ and SSB proofs
7 and 7.

b+ SSB.Verify(hk, h,i,v, 7r)

b’ < SSB.Verify (hk, 2,4, g, ")
Ifb=0orb =0, output L. _ N
If h=h and z = Z, set gk < gk and k «+ k.
Otherwise, (gk, k) < Fi (F, (h, z))
(y%y%w . '7y?n7y'r1n) A Fz(k,l)

For every j € [m] define

N T W=

0 if y? =7,
zj <1 if yjlv =7,
1 otherwise.
8. If z; € {0,1} for every j € [m], output z.

9. If h=hand z =Z and 7 < [, output L.
10. Otherwise, output Garble(1*, ¢, gk)

Fig.9: The unobfuscated succinct universal sampler program — Hybrid 3.7.0.

no PPT adversary can distinguish between Hybrid 2 and Hybrid 3.0.0. If instead
{ > 0, Hybrid 3.1.0 is identical to Hybrid 3.(I — 1).4.
Formally, the challenger produces SUSProg by computing

~

SUSProg < iO(1", P2,s[K, hk, h, Z, gk, k,1]) (see Fig. 9).

Hybrid 3.[.1. In this hybrid, the challenger punctures % in [and hardcodes
the punctured key in SUSProg. Moreover, it computes G| Garble(]l)‘,gl,gk)
and, for every j € [m] and b € {0, 1}, sets

ﬂ? — u{ ifb= é{, j];’ £ 40,1} otherwise.

Finally, it hardcodes (79,1, . .., 9%, ¥%,) into the program. Such a tuple will be
used by SUSProg when (h,z,i) = (ﬁ,?,l), instead of computing FQ(E,Z). The
last modification we apply to SUSProg is that when (h, z,i) = (h,%,1) and the
decryption of v in the trapdoor fails, the program outputs L. The code of the
unobfuscated version of SUSProg can be found in Fig. 10.

We argue that the new program maintains the same input-output behaviour
as in the previous hybrid. As a consequence, by the security of iO, no PPT
adversary can distinguish between Hybrid 3.1.0 and 3.1.1. We analyse the inputs
case by case:

41

— If (h,2,i) # (iL,é’,l), the input-output behaviour of P&;s (see Fig. 9) and
P3ys (see Fig. 10) are the same by the correctness of puncturable PRFs.
Indeed, line 6 of P3 s is never run. Moreover, line 10 is run only if it was
run in P2 .

— If (h,z,i) = (ﬁ, 2,0) but (v, g") # (w, g1), with overwhelming probability over
the randomness of hk, both P25 and P35 output L. This is because the
SSB key is binding at position {.

— 1f (h, z,i,0,9') = (h, 2,1, us,g;) but either 7 or 7’ does not verify, both Pys
and PSUS output L.

— If (h,2,4,v,¢') = (iL7 2,1,u;, 1) and both m and 7/ verify, the output of P g

o~

is G;. Indeed, for every j € [m], we have z; = éf as
i . ,
gjqz =) =Y.
. -G P .
Moreover, for every j € [m], we have yjl ! # v with overwhelming proba-
bility. The output of PSQUS was the same. Indeed, since u; was sampled inde-

pendently of %, with overwhelming probability, there existed a j € [m] such
that u] ¢ {y?,yjl} (we recall that y?,y} were computed by evaluating the

o~

PRF F; with key & in position [).
Formally, the challenger generates SUSProg as follows.

R (N E

. k « Puncty(k,1)

.G Garble(]li\?gl,gAl<)

. Vjieml: @G’J —u

viem]: g% &0

. SUSProg & i0(1*, P2ys[K, hk, h, Z,gk, k. 1, (7%);.]) (see Fig. 10)

S Ot s W N

Hybrid 3...2. In this hybrid, the challenger generates all the values (ﬂ;’) b as

015015+ Uoms Um) 4= Fo(K, D).

Moreover, for every j € [m], the challenger sets u{ — @;’ where b = @{ . Observe
that this hybrid is indistinguishable from Hybrid 3.l.1 by the security of the
puncturable PRF F5. Formally, the challenger now generates SUSProg and u; as
follows:

& {01

— Punctg(z,l)
G+ Garble(]lA,gl,g/I})
(@) < Falk,1)

. PR
Vi€ m]: w <y

)N‘\)

AR S

42

K, hk,h, 2, gk, I,
g

Hardcoded: A punctured PRF keys K and k, an SSB hash key hk, the hashes
h and Z, the key gk, the index [and the values (7});,.

Input: Hashes h and z, index i € [L], random string v, gate g’ and SSB proofs
m and 7'

b « SSB.Verify (hk, h, i,v,)

b+ SSB.Verify (hk, 2,4, ¢, ')

Ifb=0orb =0, output L. _ B

If h=h and z = Z, set gk < gk and k + k.

Otherwise, (gk, k) + F1 (K, (h, 2)).

Ifh=hand z=7%and i = [, set Y < 3 for every j € [m] and b € {0, 1}.
Otherwise, compute (y?,y1,...,¥%, y) — Fa (k, z)

For every j € [m] define

PN O N

0 if y? =,
Tj< 91 if yjl- =7,
1 otherwise.
9. If z; € {0,1} for every j € [m], output z.

10. f h=h and z =z and ¢ < [, output L.
11. Otherwise, output Garble(1*, ¢, gk)

Fig. 10: The unobfuscated succinct universal sampler program — Hybrid 3.7.1

6. SUSProg < i0(1*, P3ys[K., hk, h, 2, gk, k, 1, (7%),]) (see Fig. 10)

Hybrid 3./.3. In this hybrid, rather than obfuscating P3¢ (see Fig. 10), the
challenge generates SUSProg using P25 (see Fig. 9) hardcoding [+ 1 instead of
l. Specifically, it sets

SUSProg < iO(1", P2,s[K, hk, h, Z, gk, k, [+ 1]).

The generation of u; remains as in Hybrid 3.1.2. We observe that the input-output
behaviour of SUSProg remains the same as in the previous hybrid. Indeed, the
changes can affect only executions where (h, z,i) = (h, z,1). Since in the previous
hybrid @;?)M = Fg@,l), the program SUSProg behaves as before even in the
above case. We conclude that Hybrid 3./.2 and Hybrid 3.1.3 are indistinguishable
by the security of iO.

Hybrid 3./.4. In this hybrid, the challenger makes hk statistically binding
at index [+ 1

hk < SSB.Gen(1*, L, 1 + 1).

We conclude that Hybrid 3./.4 is indistinguishable from Hybrid 3.0.3 by the
hiding property of SSB hashing.

43

At this point, we go to Hybrid 3.(I 4 1).0 incrementing ! by 1. If I = |D| + 1,
notice that w hides now an encryption of a garbling of G. In this case, we proceed
to Hybrid 4.1.0 keeping [unvaried. We then continue to Hybrid 4.l.1. At that
point, we increment again [and we move on to Hybrid 4.(1+1).0. We stop when
I1=L(\).

Hybrid 4.1.0. This hybrid is identical to Hybrid 3.1.3: the challenger incre-
ments by 1 the threshold [stored in SUSProg. Specifically, when (h, z) = (h, 2),
i = [and the decryption in the trapdoor fails, the new program Psys immediately
outputs L. Previously, instead, SUSProg garbled the provided gate using gk. We
observe that hk is statistically binding at index [, so, when ¢ = [the input-output
behaviour of SUSProg remains the same as before. Indeed, with overwhelming
probability, there exists no (¢, 7") such that SSB.Verify(hk,z,l,¢',7’) = 1. We
conclude that if | = |D| + 1, Hybrid 4.1.0 is indistinguishable from Hybrid 3.(I —
1).4 by the security of iO. Furthermore, for the same reason, Hybrid 4.1.0 is in-
distinguishable from Hybrid 4.(I — 1).1 for [> |D| + 1.

Formally, the challenger now generates SUSProg as

SUSProg < iO(1, P2,s[K, hk, h, %, gk, k, [+ 1]) (see Fig. 9).

Hybrid 4...1. This hybrid is identical to Hybrid 3.1.4: the challenger makes
hk statistically binding at index [+ 1

hk < SSB.Gen(1*, L, 1 + 1).

We conclude that Hybrid 4.[.1 is indistinguishable from Hybrid 4.l.0 by the
hiding property of SSB hashing.

At this point, we increment I. If | < L(\), we move again to Hybrid 4.1.0,
otherwise we proceed to Hybrid 5. N

Hybrid 5. In this hybrid, we notice that SUSProg does not use gk anymore.
So, we remove it from the program. Notice that the input-output behaviour of
SUSProg remains unvaried, so Hybrid 5 is indistinguishable from Hybrid 4.L.1
by the security of obfuscation.

Formally, the challenger generates now SUSProg as

SUSProg < iO(1, P4s[K, hk, 1,2, k]) (see Fig. 11).

Hybrid 6. We observe that the program SUSProg contains no information
about gk. Therefore, in this hybrid, the challenger generates the garbled circuit
hidden in u using true randomness instead of extracting it from gk using a PRF.
We conclude that this hybrid is indistinguishable from Hybrid 5 by the PRF
security.

Let ¢p denote the bit-length of the randomness need by D. Formally, the
challenger generates now u as follows:

1. k< {0,1}*
2. (G, e,d) & Garble(1*, D)

44

Hardcoded: A punctured PRF key K, an SSB hash key hk, the hashes h and
z and the key k.

Input: Hashes h and z, index i € [L], random string v, gate ¢’ and SSB proofs
7 and 7.

b+ SSB.Verify(hk, h,i,v, 7r)

b’ < SSB.Verify (hk, 2,4, g, ")
Ifb=0orb =0, output L.

If h="hand z =7, set k < k.
Otherwise, (gk, k) < Fi (F, (h, z))
(y%y%w . '7y?n7y'r1n) A Fz(k,l)

For every j € [m] define

N W

0 if y? =7,
zj <1 if yjlv =7,
1 otherwise.
8. If z; € {0,1} for every j € [m], output z.

9. If h="h and z = Z, output L.
10. Otherwise, output Garble(1*, ¢, gk)

N o ol W

ch

Fig. 11: The unobfuscated succinct universal sampler program — Hybrid 5

r < {0,1}
. X + En(r,e)
Yie[Dl] s (Wl)in Fy(k, i) N
.Vie[D]Jand j € [m]: wul + yf’j where b = GY.
Hybrid 7. This hybrid corresponds to the right distribution in Def. 5.1. The
allenger generates now the garbled circuit hidden in w using the simulator

GC.Sim (1%, struct(D), R) where R < D. By the security of garbled circuits,
Hybrid 6 and Hybrid 7 are indistinguishable. Formally, the operations performed
by the SUS simulator Sim(]1>‘7 L, D, R) are the following.

NS ok W

hk & SSB.Gen(1*, L, L)

k& {0,112

(G, X, d) & GC.Sim(]l’\,struct(D),R)

(Gi)ieyoy) + (X, G, d)

Vie Dl (yh,)im « Falk,i) N
Vie[|D|] and j € [m]: u] « y?; where b= G7.
h < SSB.Hash(hk, u)

45

8. Z + SSB.Hash(hk, g)

9. K & {0,1}*

10. K < Punct; (K, (h, 2))

11. SUSProg & iO(1*, P& s[K, hk, h, 2, k]) (see Fig. 11)
12. Output (hk,SUSProg).

Succinctness. We analyse the size of the unobfuscated programs Psys, Pl s,
P2ys, Pdus and Pds. We observe that the only parts that depend on L are the
input ¢ € [L], the SSB proofs 7 and 7/, their verification, the evaluation of the
puncturable PRF F,, the hash key hk, the punctured key k and the index .
Also the description of the gate ¢’ and the circuit for Garble may depend on L as
length of the identifiers of the wires grows with L. The dependency is however
logarithmic. We notice that the size of of ¢ and [is log L. Also the comparisons
that are sometimes computed between ¢ and | and |D| can be computed using
O(log L) gates.

By hypothesis, the circuits needed for the evaluation of Fy(k,4) and Fy(k, 1)
have O(log L) size. We conclude that also the size of k is O(log L).

Finally, by the assumptions on SSB, the size of the circuit describing SSB.Gen
and SSB.Verify is also O(log L). As a consequence, the size of hk, 7 and 7’ is also
O(log L). We conclude that all programs Psys, P25, P2ys, Poys and Pg,g have
size smaller than g(\,log L) for a certain polynomial g(A, X).

Now, let iO be an indistinguishability obfuscator for the class of circuits hav-
ing size smaller than ¢(\,log L). Notice that such class contains all the pro-
grams we used in the hybrids. We know that the size of the circuit describ-
ing i0 is poly(A, g(A, log L)). We conclude that the size of the circuit describing
Setup(]l)‘,L()\)) is poly(A,log L).

Randomness Extractability. The extractor is provided with D, L()) and the
random coins pg fed into Setup. The coins allow us to retrieve the PRF key K
and the hash key hk used in the construction.

The extractor can sample a random u < {0,1}?IPD. With overwhelming
probability, the execution of Sample(U, D, u) does not activate the trapdoor in
SUSProg. We can argue for this using entropy. We observe that for every i € [L],
the Yao entropy of u; is 2\ - m(A), so, for every compressor-decompressor pair
(¢, d) where ¢ has an £(\)-bit output, we have

Pr(d(c(u;)) = u;] < 2%

> W + negl()\).

Now consider the circuit ¢ that on input u;, performs the same operations as in
Psus (see Fig. 7) and outputs (k, z). In particular, the compressor ¢ generates K
and hk using pg as randomness. Then, it hashes w and the circuit for D obtaining
h and z. Finally it runs Psys on input (h,z) along with i and u;'°. We also

5 The compressor can skip the verification of the SSB proofs.

46

consider the decompressor d that on input (k,) computes (v, y3, ..., 9%, yk) +
F5(k,4) and outputs, for every j € [m], y? where b = x;. If such b does not exists
for any j, the decompressor outputs L.

We notice that c uses u in its code without knowing anything about it except
for its i-th entry u;. We fix the values (u;);»; so that Pr[d(c(u;)) = w;] is
maximal. Observe that the output size of ¢ is £(A) = A +m(N).

The probability that the w generated by the extractor triggers the trapdoor
in SUSProg when used in conjunction with the index i is smaller than the prob-
ability that d(c(ul-)) = u;. In other words, it is bounded by

9A+m(A)
Prld(c(u;)) = u;] < S () + negl()).
We observe that the RHS of the above equation is negligible.

Since, the probability of triggering the trapdoor is negligible, it means that
the outputs of SUSProg are generated by directly garbling D and using gk as
source of randomness. We notice that also the bits input into the circuit are gen-
erated using gk. The garbling key gk can be computed as (gk, k) + Fy (K, (h, 2)).
So, the extractor is able to retrieve the randomness used to generate the sample
with overwhelming probability. U

5.2 Building Unbounded Universal Samplers from Polynomially
Secure Primitives

We now explain how we can use succinct universal samplers to build an un-
bounded universal sampler. By combining the result in this section with Theo-
rem 5.5, we conclude that it is possible to design unbounded universal samplers
based on polynomially secure primitives only (including iO).

The construction is rather simple: we start from a succinct universal sam-
pler having bound L(X). This sampler immediately allows to sample from any
distribution of size smaller than L()). If instead our distribution D(1*) has size
s(A) > L()\), we use the succinct universal sampler to generate a succinct uni-
versal sampler with bound 2L()). If s(A) < 2L()), we can now use the new uni-
versal sampler to compute the output, otherwise, we repeat the operation, gen-
erating another universal sampler with twice as big circuit bound. Since D(]lA)
is efficiently samplable, we are sure that we stop after a polynomial number of
iterations. We formalise our idea in Fig. 12.

Theorem 5.6. If (SUS.Setup, SUS.Sample) is a succinct universal sampler sat-
isfying selective, one-time security, then the construction (UUS.Setup, UUS.Sample)
in Fig. 12 is an unbounded universal sampler satisfying selective, one-time se-
curity. Moreover, if (SUS.Setup,SUS.Sample) is randomness extractable, also
(UUS.Setup, UUS.Sample) is randomness extractable.

Proof. We start by arguing that E()\) exists.

47

R Unbounded Universal Sampler
Let L(A) be a polynomial such that, for every ¢ € N and A € N,
|SUS.Setup (1%, 27" - L(X))| < 2°- L(N).

UUS.Setup(1*):
1. output U & SUS.Setup(]lA,E()\))

UUS.Sample(U, D(1*),u) : Define t := [log(|D|/L)]. For every i € [t], define D; to
be the circuit describing SUS.Setup(1*,2"-). Rewrite w as (uo,u1, . . . , us) where
u;—1 is a random p(A, |D;|)-bit string and u, is p(A, |D|)-bit long.

1. Uo «—U
2. For i = 1,2,...7t : U; <—SUS.SampIe(Ui,hDi,ui,l)
3. Output R + SUS.Sample(U;, D, ut)

Fig.12: An unbounded universal sampler

Claim 5.1. There exists a polynomial E(/\) such that, for every i € N and \ €
N,
|SUS.Setup (1%, 2771 L(\)) | < 27 - L(N).

Proof of the claim. Since (SUS.Setup,SUS.Sample) is succinct, we know that
there exists a polynomial ¢(\, L) such that

|SUS.Setup(1*, L)| < (), log L)
for sufficiently large A and L. Define ¢ := degq(X,Y) + 1, we know that
|SUS.Setup(1*, L)| < q(\,log L) < (X -log L)°
for A > A\g and L > Ly. As a consequence, for every A > Ao, i € N and L > Lo,
SUS.Setup(1*,27%1 - L) < q(\, log(2"7 - L)) < (A -log(2'*! - L))"
Now, define L'()) := A°T! and observe that

(A-log (2771 L'(N))° ((c+1)-logA+i+1)° _ ((c+1)-log A+ (i + 1) -27%/¢)°
2i . L/(\) N 2i .\ - A

We observe that lim; o, (i +1) - 2-%/¢ = (), to there exists a constant d such that

(A-log(2*1 - L'(V))° _ ((e+1) -log A +d)°
20 L/(N) - A oo

0.

As a consequence, there exists A\; € N such that (A-log(21%1-L'())))" < 20-L'(\)
for every A > A; and i € N. We define E()\) := L'(X\ + A) where
A =min{\ € NJ]A > X\g, A > A\, L'(\) > Lo}

Notice that L’(A) is an increasing function, so L(\) > L for every A€ N. W

48

The above claim shows that the succinct universal sampler U; can sample
from the distribution D;;1. We observe that ¢ = polylog(\). Indeed, we know
that |D(1")| is smaller than a polynomial s()), so t < log s(\) —log L(\) + 1 =
polylog(A). We also notice that all the bounds input in SUS.Setup are smaller
than 2¢ - z()\) = poly(A). In other words, all the bounds input into SUS.Setup
are polynomial.

Claim 5.2. The construction in Fig. 12 satisfies selective one-time security.

Proof of the claim. We proceed with a series of ¢ + 1 indistinguishable hybrids.
Starting from the real execution of the universal sampler and moving towards
the simulated one. We present the simulator in the last stage.

Hybrid 0. This hybrid corresponds to the left distribution in Def. 5.3: we
generate U as in the construction and we sample u uniformly at random.

Hybrid 1. In this hybrid, we generate U and u using the SUS simulator.
Specifically, we start by sampling U; ¢ SUS.Setup(]lA,2 . Z()\)) Then, we set
(uo, U) & SUS.Sim(]l)‘,Z()\),Dl7 Uy). All the elements (u;);~o are sampled uni-
formly at random. Notice that Hybrid 1 is indistinguishable from Hybrid 0 by
the selective one-time security of the succinct universal sampler.

Hybrid i for i = 2,...,t. This hybrid is identical to Hybrid i — 1 except that
we change the way we generate U;_; and u;_1. Similarly to Hybrid 1, we compute

U; € SUS.Setup (1,27 - L(\)).
Then, we feed U; in the SUS simulator
(ui1,U;_1) < SUS.Sim(1*, 21 - L(X), D;, Us).

Notice that U;_; is then immediately fed into another execution of SUS.Sim. This
hybrid is indistinguishable from Hybrid 7 — 1 by the selective one-time security
of the succinct universal sampler.

Hybrid ¢ + 1. In this hybrid, corresponding to the right distribution in
Def. 5.3, we change the way in which we generate U; and u;. We repeat the same
procedure as before. Specifically, we sample R < D(]IA) and we compute

(ug, Up) & SUS.Sim(1*,2¢ - L(\), D, R).

Once again, this hybrid is indistinguishable from the previous one by the selective
one-time security of the succinct universal sampler.

To summarise, the operations performed by the unbounded universal sampler
simulator UUS.Sim(]l)‘, D(1), R) are the following.

1. t + [log(|D|/L)]

2. (ug, Up) & SUS.Sim(1*,2¢ - L(\), D, R)

3. Fori=tt—1,...,1: (uji_1,Ui_1) <& SUS.Sim(1*,20=1 . L(\), Dy, Us)
4. Output w := (ug,uq,...,us) and Up.

49

Clearly, we have that UUS.Sample(Up, D, u) = R. [|

Claim 5.3. If (SUS.Setup, SUS.Sample) is randomness extractable, also the un-
bounded universal sampler (UUS.Setup, UUS.Sample) is randomness extractable.

Proof of the claim. We consider the extractor UUS.Extract(1*, D(1%), py) which
performs the following operations

1. For i = 1, 2, .o ,t : (p,, ui—l) (i SUS.Extract(]l’\, ’Dz(]l)\), 21-71 . E()\), pi—l)

2. (p,uz) & SUS.Extract (1%, D(1*), 2 - L()), p;)
3. output p and uw := (ug,u,. .., us).

We argue that the value u simulated by the extractor is indistinguishable
from random even for an adversary knowing pg, though a series of ¢ + 1 indistin-
guishable hybrids. Along the way, we also show that R, the sample from D(]l)‘)
generated by the universal sampler, coincides with D(]l/\; p) with overwhelming
probability.

Hybrid 0. This hybrid corresponds to the real execution of the unbounded
universal sampler: we generate U using po as randomness and we sample u
uniformly. We provide the adversary with (pg, u).

Hybrid ¢ for ¢ = 1,2,...,t. This hybrid is identical to Hybrid i — 1 except
that we change the way we generate u;_1. Specifically, we compute

(pi,ui1) & SUS.Extract(]l”\,DZ-(]lA), 271 LN, pi-1)-

We know that, with overwhelming probability, we have U; = Di(]l’\; pi). Here U;
denotes the i-th succinct universal sampler generated in UUS.Sample(U, D(IlA), u).
Furthermore, we know that the distribution of (pg,w) is indistinguishable from
the one in Hybrid ¢ — 1 thanks to the property of the SUS extractor.

Hybrid t + 1. This hybrid corresponds to the simulated execution in which
u is generated by the extractor. Compared to Hybrid ¢, we change the way in
which we generate u;. Specifically, we compute

(p,ur) & SUS.Extract (1%, D(1%),2¢ - L(\), pr).

We know that, with overwhelming probability, we have R = D(11>‘; p). Further-
more, we know that the distribution of (pg,u) is indistinguishable from the one
in Hybrid ¢ thanks to the property of the SUS extractor. |

O

6 Party-Dynamic Distributed Universal Samplers

Distributed universal samplers. In [ASY22], the authors designed an n-party
distributed universal sampler (DUS). This is a particular distributed sampler
that is not tailored to any specific distribution D: the latter can be provided as
input to the sampling algorithm. In particular, the messages published by the

50

parties are independent of D. Abram, Scholl and Yakoubov present two types of
constructions. The first one achieves weakly semi-malicious security as long as we
generate only one sample and the corresponding distribution is fixed before the
generation of the messages. The second one achieves active security and permits
reusing the same messages to sample from multiple distributions (of bounded
size). The latter can be adaptively chosen by the environment after fixing the
messages. While the first construction was built in the plain model, the second
one had to rely on a random oracle.

Party-dynamic distributed universal samplers. In this section, we define and con-
struct an even more powerful DUS. Not only we allow the messages to be inde-
pendent of the distribution we sample from, we also require that the messages
are independent of the group of participants, setting no upper bound on their
number. We call the result a party-dynamic distributed universal sampler.

Following the blueprint of [ASY?22], we define party-dynamic DUSs in two
flavours: with one-time, weakly semi-malicious security and with reusable, ac-
tive security. In the first case, the construction guarantees security for only one
sample and only as long as the distribution, the subset of parties taking part to
the computation as well as the randomness of the corrupted players are fixed
before the generation of the honest messages. Furthermore, the adversary is not
allowed to deviate from the protocol except for the choice of the randomness of
the corrupted parties. In the second case, instead, the adversary is free to mis-
behave as it pleases. It can activate parties at any point in time and reuse the
same messages to sample from multiple distributions and with different subsets
of participants. Furthermore, all its decisions, including the messages of the cor-
rupted parties, can be made after seeing the honest-parties messages. The result
is a very powerful primitive: every player just needs to publish a single messages
on a bulletin board upon activation. No subsequent communication is needed,
the players can gather in subsets (potentially more than one at the same time)
and use the already published messages to sample from any distribution. All the
parties in the same group are guaranteed to receive the same output without
learning any additional information.

The relation between party-dynamic DUSs and random oracles. Both notions of
party-dynamic distributed universal samplers are inherently tied to random or-
acles, the second one more than the first. In the reusable version of the primi-
tive, the random oracle is fundamental to gain control over the adaptive choices
made by the adversary. Without it, we would run into the same impossibility
results described in Section 4. The other reason why we need the random ora-
cle is instead connected to the entropy of the outputs. In particular, the size of
a DUS message needs to be larger than the Yao entropy of the outputs that can
be produced from it. If we consider the ideal execution of a DUS, a honest mes-
sage should be able to output ideal samples'® even if all the other players are
corrupted. Since we aim to produce an independent sample from any queried

16 With ideal samples we mean truly random samples from the queried distributions.

51

distribution and for any subset of parties involved in the computation, without
random oracle, the size of the messages would blow up. This would happen even
if we bounded the set of parties and the set of supported distributions. We high-
light that our construction sets no such bounds.

The entropy argument described above applies, to some extent, also to one-
time party-dynamic distributed samplers. Here, our setting is easier as the mes-
sages are used to create a single sample, however, the entropy of such sample
can be arbitrarily big.

6.1 Omne-Time, Party-Dynamic DUS

In this section, we formalise the definition of one-time party-dynamic DUS with
weakly semi-malicious security. We then present the first construction of this
kind.

To get around the entropy problem highlighted in the above paragraph, we
adopt the same approach used for UUSes: we split the messages into a small
structured part and a long random string of bits. We require the structured part
to be independent of the sampled distributions and the group of participants.
The size of the random string is instead allowed to change based on the number
of parties and the distribution we want to sample from. In the end, the total
entropy in the construction will be sufficient to achieve security, but since we
can build the unstructured part of the messages using a random oracle (or any
other source of public randomness), all the information sent by the players will
be independent of the group of participants and the distributions. We therefore
obtain exactly what we aimed for.

Definition 6.1 (One-time, party-dynamic distributed universal sam-
pler). Let pp(\, X) be a polynomial for any efficiently samplable distribution
D(]l)‘). A party-dynamic, distributed universal sampler is a pair of PPT algo-
rithms (Gen, Sample) with the following syntaz:

1. Gen takes as input the security parameter 1*. The output s the distributed
sampler message U. We assume that Gen needs M () bits of randomness.

2. Sample is a deterministic algorithm taking as input a set of parties P of any
size n. = poly(\), a distribution D(1%) of circuit size poly(\), n messages
(Ui)iep, n random strings (u;)iem) of size pp(A,n) each. The output is a
sample R.

We say that the distributed sampler is weakly semi-maliciously, one-time secure
if there exists a PPT simulator Sim such that, for every set P € 2101} of size
poly(X), every subset C C P of corrupted parties, associated randomness (7;)icc,
and every efficiently samplable distribution D(]l)‘), the following two distributions

52

are computationally indistinguishable.

ry & {0,1}M™) Vie H

(Ui)iep, (Wi)iep | Us + Gen(1Y; 1y) vieP

(ri)iccs B |y & {0, 13p2ONIPD VieP
R+ Sample(P, (U;) ep, (uj)jep, D)

(Us)iep, (ui)iep
(ri)icc, R

RE DAY
(Ui, wi)iep € Sim(1Y,P,C, D, R, (ri)icc)

The above definition states that even for the worst choice of the random-
ness of the corrupted parties, the adversary cannot distinguish between the real
DUS messages and fake ones specifically crafted to output an ideal sample from
D when used in conjunction with the corrupted messages. In other words, the
construction does not reveal any information i addition to the output. We high-
light that in order for this definition to work, it is fundamental that the adver-
sary provides the corrupted randomness, the set of participant and the distribu-
tion before the honest messages are dealt. We also notice that we do not allow
the adversary to control the unstructured part of the corrupted messages: we
are modelling the fact that the latter will be generated by the random oracle.

Our Construction. The idea at the base of our one-time, party-dynamic DUS
is very simple: we let each party publish the structured part of an unbounded
universal sampler. If a subset of n participants, for any n € N, wants to sample
from a distribution D, they generate random n-party distributed sampler mes-
sages for the distribution D using their unbounded universal samplers. In par-
ticular, the UUS of party P; is used to produce the DS message of P;. In this
way, the adversary obtains the DS messages of the honest parties without learn-
ing any other information. All is left to do is to reconstruct the distributed sam-
pler output, which will look like a sample from D. As long as one party is hon-
est, no additional information about the output is revealed.
The formal description of our solution is presented in Fig. 13.

Theorem 6.2. Suppose that UUS = (Setup, Sample) is an unbounded universal
sampler with selective, one-time security and randomness extractability. For any
n € N and efficient distribution D, let DSS be an n-party distributed sampler
for D with weak, semi-malicious security. Then, the construction in Fig. 13 is
a party-dynamic distributed universal sampler with weakly semi-malicious, one-
time security.

Proof. We prove the result though a series of computationally indistinguishable
hybrids. Let D be the efficient distribution we want to sample from. Let P be
the subset of parties that needs to compute the sample, we denote |P| by n. In
each hybrid, we mark the changed operations using red font.

53

PARTY-DYNAMIC DISTRIBUTED SAMPLER WITH WEAKLY SEMI-MALICIOUS
SECURITY

Let DS denote an n-party, weakly semi-malicious distributed sampler for the
distribution D. For every i € [n], let D; be the distribution described by
DSP.Gen(1*, 7). We define pp (A, n) := q()\,maxie[n”l)ﬂ) where ¢ is the polyno-
mial describing the length of the random strings input in the unbounded univer-
sal sampler UUS.

Gen(1*) :
1. Output U & UUS.Setup(1*).

Sample(P, (Ui)iep, (ui)ier, D) :
Let n be |P].

1. Relabel the indices in P as 1,...,n.
2. VieP: V; <« UUS.Sample(U;, D;, u;).
3. output R «+ DSY.Sample(V1,Vz, ..., Vy).

Fig. 13: Party-dynamic distributed sampler with one-time, weakly semi-malicious
security

Hybrid 0. This hybrid corresponds to the real world: we generate the un-
bounded universal samplers of the honest parties according to the protocol and
the random strings (u;);ep are sampled at random.

Hybrid 1. In this hybrid, we generate the messages published by the hon-
est parties and the corresponding random strings using the unbounded universal
sampler simulator. Specifically, we generate (U;,u;);cp by performing the fol-
lowing operations:

.Vie PNC: U; + UUS.Setup(1*;r;)
ViePNC: u & {01}
ViePNH: V; <& DSP Gen(1,4)

Vi€ PNH: (u,U;) < UUS.Sim(1*, D, V).

N R

Notice that, with overwhelming probability, for every ¢ € P N H, we have

~

V; = UUS.Sample(U;, D, u;).

This hybrid is indistinguishable from the previous one by the selective one-time
security of UUS.

Hybrid 2. In this hybrid, we change how we generate the random strings
of the corrupted parties. Specifically, we use the unbounded universal sampler
extractor for their generation. Formally, we generate (U;, u;);cp as follows:

1.ViePNC: (pi,u;) & UUS.Extract(1*, D, r;)

54

2.Vie PNH: V;<& DSP.Gen(1,4)
3.ViePNH: (u;,U;) & UUS.Sim(1*, D, V;)
4. Yie PNC: U; < UUS.Setup(1*;r;).

Notice that, with overwhelming probability, for every i € P N C, we have
UUS.Sample(U;, D}, u;) = DS .Gen(1%,4; p;).

This hybrid is indistinguishable from the previous one by the randomness ex-
tractability of UUS.

__Hybrid 3. In this hybrid, we generate the distributed sampler messages
(Vi)iepnm using the simulator for DSE. Formally, the operations we perform for
the generation of (U;,u;);ep become the following:

Vie PNC: U; < UUS.Setup(1*;r;)

Vie PNC: (pi,ui) & UUS.Extract(1*, D}, 7;)
RED

(Vi)iepnm & DS .Sim(1%, PN C, R, (pi)icrnc)
Vie PNH: (u;,U;) & UUS.Sim(1}, Dl Vj).

oLk o=

Notice that with overwhelming probability the final output is now R. This hybrid
is indistinguishable from Hybrid 2 by the weakly semi-malicious security of DSE.

We summarise the operations performed by the one-time, party-dynamic
simulator Sim(]lA, P,PNC,D,R, (’I"i)ie’pmc) are the following.

.Yie PNC: U; + UUS.Setup(1*;r;)
ViePNC: (pi,ui) & UUS.Extract(1*, D}, r;)
(Vi)iepnm < DSE .Sim(1*, P N C, R, (pi)iepnc)
ViePNH: (u,U;) & UUSSm(IY, D), V).
. Output (Ui, u;)iep.

UL WD

6.2 Reusable, Maliciously Secure Construction

In this section, we show how we can upgrade our one-time, party-dynamic dis-
tributed universal sampler with weakly semi-malicious security so that we can
reuse the messages published by the parties to sample from multiple distribu-
tions and for different subsets of parties, achieving at the same security against
a fully malicious adversary. We call a construction satisfying the above proper-
ties a reusable, party-dynamic DUS with malicious security.

The security model. Formally, in our security model, we let the adversary choose
when to make a party join the construction. At that point, the adversary can
decide whether to corrupt the party or not, the state of the corruption cannot
be changed afterwards. Upon activation, each party is asked to publish a single
message on a bulletin board. If the party is corrupt, we let the adversary choose

55

the message. At any point, any subset of active parties can pool their messages
on the bulletin board and use them to sample from any distribution they desire.
We set no bound on the circuit size of the distribution. Furthermore, we can reuse
the same messages to sample from different distributions and for different subsets
of parties. We let the environment control from which distributions we sample
and the corresponding subset of parties. The correctness of the protocol requires
that all the honest parties belonging to the chosen subset, output the same
sample. Security instead, states that the adversary cannot learn any information
in addition to the outputs of the honest parties, which must be random.

Influence of the adversary. We observe that a reusable, party-dynamic dis-
tributed universal sampler with active security unavoidably allows some influ-
ence to the environment. Indeed, the adversary can always activate the corrupted
parties after the honest parties, benefiting from the opportunity of choosing the
malicious messages when the honest ones are already fixed. In particular, the ad-
versary can generate the corrupted messages multiple times in its head and test
them on the honest ones. In this way, it obtains multiple samples from different
distributions and for different subsets of players. The adversary can then select
the messages of the corrupted parties corresponding to the group of samples it
likes the most. If the environment ever recreates the tested executions, the adver-
sary is guaranteed that the honest players will output the precomputed values.

Formalising the model. We formalise the definition of reusable, party-dynamic
DUS with malicious security using the UC model. In the correspondent function-
ality Fpapus, each candidate message for a party P; is modelled as a different la-
bel id;. Before taking its final decision on the corrupted messages, the adversary
is allowed to test the candidates (id;);cc by querying them to the functionality
along with the distribution and the subset of parties they would be used for. The
answer is a random sample from the selected distribution. At the moment of P;’s
activation, the adversary needs to take a binding decision, specifying a label id I
If any of the tested executions is ever recreated by the environment, the function-
ality outputs the test response to all honest players involved in the computation.

Definition 6.3 (Reusable, party-dynamic DUS with malicious secu-
rity). A reusable, party-dynamic distributed universal sampler with malicious
security is a protocol implementing the functionality Foapus (see Fig. 14) against
an active adversary in the UC model. Each party is required to send at most one
message during its whole execution.

To further motivate why we need a random oracle, notice that if the con-
struction of Def. 6.3 existed in the plain model (with or without) CRS, it would
be possible to construct adaptively secure universal samplers in the plain model
[HJK*16]. Furthermore, they could be used to build actively secure distributed
samplers that violate the results described in Section 4.

56

THE FUNCTIONALITY Fpdpus
Initialisation. The functionality initialises the set of honest parties H, of cor-
rupted parties C' and queries Q to 0.
Query. On input (Query, P, (id;) jep\ #, D) from the adversary where P is a subset
of parties, the functionality performs the following operations:

— If @ contains a tuple (P, (id;);ep\m, D, R), send R to the adversary.

— Otherwise, sample R & D, store (P, (id;)jer\u, D, R) in Q and send R to
the adversary.

Join. On input Join from a party P; where i ¢ C'U H, the functionality waits for
a message from the adversary.

— If the adversary sends (corrupt, Eil), the functionality sets C' « C' U {i} and
stores (%, id;).
— Otherwise, it sets H - H U {¢}.

Sample. On input (Sample, P, D) from a honest party P; where i € P C HUC,
the functionality performs the following operations

— If there exists a j € PN C such that i?j]- = 1, output L to P;.

— If there exists a tuple (P, (idj)jernc, D, R) € Q, output R to P;.

— Otherwise, sample R & D, output R to P; and store (P, (iaj)jepmc, D, R) in
Q.

Fig. 14: Reusable, party-dynamic distributed universal sampler functionality

On the labelling system in Fpapus. At first, it may seem that there exist easier
ways of labelling the queries in Fpgpus. It turns out, however, that simpler so-
lutions make the functionality weaker. We observe that it is important that the
adversary specifies the labels fixing the outputs upon activation of the corrupted
parties: if we allow the adversary to supply the chosen label at the time of sam-
pling, the adversary can base its decision on all information received'” since the
activation of the corrupted parties. In many contexts, this would be problematic.

We also observe that abstracting every test query under a single, monolithic
identifier (i.e. the identifier cannot be split into the contributions of the single
parties) makes our model less expressive. Indeed, in the protocol, when the ad-
versary fixes the messages of the corrupted parties in a subset P, it inevitably
fixes also all outputs relative to subsets P’ C P. Modelling this fact using mono-
lithic identifiers is complex.

Adaptive Universal Samplers and Randomness Extractability. The
reusable, party-dynamic DUS we will present in the next section relies on an

7 The functionality Fpapus can be used as a resource for another protocol in which
the parties are constantly interacting. Sampling may occur several rounds after the
players’ activation.

o7

adaptive (bounded) universal sampler [HJK'16]. The latter differs from its se-
lectively, one-time secure version as its CRS can be reused multiple times to sam-
ple from different distributions. Even if such distributions are adaptively chosen
by the adversary after receiving the CRS, the construction is still guaranteed to
reveal no information in the addition to the outputs.

Below, we recall the formal definition of adaptive universal sampler [HJK16].
We point out that such construction can exist only in the programmable ran-
dom oracle model, so, its definition is intrinsically connected to such model.

Definition 6.4 (Adaptive and bounded universal sampler). An adaptive
and bounded universal sampler is a pair of PPT algorithms (Setup, Sample) with
the following syntax:

— Setup is a PPT algorithm taking as input the security parameter 1" and a
bound L(X\). The output is an adaptive sampler adU.

— Sample is a deterministic algorithm having access to a random oracle H. The
inputs are a sampler adU and a distribution D having circuit size at most
L(\). The output is a sample R.

The sampler satisfied adaptive security if there exist PPT simulators Sim and
SimRO such that, for every bound L(\), no PPT adversary A can win the game
G3YUS(1%) (see Fig. 15) with non-negligible advantage.

Essentially, the above definition states that the real universal sampler cannot
be distinguished from a fake one which can be programmed to output ideal
samples via the random oracle.

Randomness extractable unbounded universal sampler. Our reusable, party-dy-
namic DUS requires an additional property from adaptive distributed samplers.
Specifically, we require that if we know the randomness used to generate the
universal sampler, then, we can efficiently extract the randomness used to gen-
erate the outputs. We formalise the definition below. Using the same techniques
in the proof of Theorem 5.5, it is easy to prove that the adaptive distributed
sampler of [HJK'16] is randomness extractable.

Definition 6.5 (Randomness extractable adaptive universal sampler).
Suppose that (Setup, Sample) is an adaptive universal sampler with random oracle
H. Let M(X) denote the bit-length of the randomness needed by Setup. We say
that (Setup, Sample) is randomness extractable if there exists a PPT algorithm
Extract having access to H such that, for any PPT adversary A and polynomial

L(A), it holds that

(D.r) & A*(1Y, L(V)

U + Setup(1*, L(X\); r)

p Extract’ (1%, D, L(\), r)
R <« Sample™ (U, D)

The above probability is taken also over the random coins of the oracle.

Pr [D(p) =R =1 — negl(})

58

THE GAME G%YS(1%)
Initialisation. The challenger instantiates a random oracle H and a sampling
oracle O. The latter is a equipped with a truly random function F' outputting
L(X) bits. Upon receiving any distribution D having circuit size at most L()), the
oracle O outputs the sample R < D(F(D)).
Then, the challenger performs the following operations:

b & {0,1}

adUo & Setup(1*, L(N))
(adUy,7) & Sim@ (1%, L(\))
provide A with adU,.

=W N

Oracle query. On input (oracle, D) from the adversary, the challenger performs
the following operations:

1. 7o < H(D)
2. (r1,7) <& SimRO° (7, D)
3. provide A with ry.

Sample query. On input (sample, D) from the adversary, the challenger performs
the following operations:

1. R < Sample™(adUo, D)
2. R+ O(D)
3. provide A with Rp.

The adversary wins if it ends its execution outputting b.

Fig. 15: The adaptive universal sampler game

Building Reusable, Party-Dynamic DUS with Malicious Security. We
now explain how to upgrade a one-time, party-dynamic DUS with weakly semi-
malicious security into a reusable one achieving security against an active ad-
versary.

The main challenge: from selectively chosen inputs to adaptively chosen ones.
One-time, party-dynamic DUSs permit any subset of parties to sample from any
distribution. The main challenge, however, is that they achieve security only
if the messages are used only once and the distribution and the corresponding
subset of parties are fixed before the generation of the messages. In reusable,
party-dynamic DUSs, this does not happen: the environment can choose the
distributions and the subsets of parties as well as the messages of the corrupted
parties after seeing the honest messages. Furthermore, we reuse the messages to
sample multiple times.

Reusing the same message to sample from multiple distributions and for multiple
subsets of parties. Our idea is to non-interactively generate new, independent-

59

REUSABLE, PARTY-DYNAMIC DISTRIBUTED UNIVERSAL SAMPLER WITH
MALICIOUS SECURITY
CRS. Provide all the parties with urs <~ NIZK.Gen(1*).
Join. In order to join the protocol, party P; performs the following operations:

r &40, 1}MX)

adU; < adUS.Setup (1%, L(\); ;)

7 & NIZK.Prove(1*, urs, adU;, ;)

Publish (adU;, ;) on the public bulletin board.

- w e

Sample. On input a set of parties P and a distribution D, each party P; for i € P
performs the following operations:

1. Retrieve the messages (adU;, ;) ep on the bulletin board.

2. If there exists j € P such that NIZK.Verify(urs, 7;,adU;) = 0, output L.

3. Query (P, (adU;,m;)jep, D) to the random oracle H. Let h € {0,1}* be the
answer.

4. For every j € P, let D; 1, be the distribution that outputs (7, k) along with a
random sample from pdDUS.Gen(1%).

5.Vj€P: U« adUS.Sample™(adU;, D; 1)

6. For every i € P, query (’P7 (Uj)jer, D, z) to the one-time, party-dynamic DUS
random oracle. Let u; be the pp (), |P|)-bit response.

7. Output R < pdDUS.Sample(P, (U;) e, (u;);er, D).

Fig. 16: Reusable, party-dynamic DUS with malicious security

looking one-time, party-dynamic DUS messages for every distribution D and
subset of parties P. Clearly, it is sufficient to produce only the structured part
of the messages, the generation of the unstructured part is instead entrusted
to the random oracle. We achieve our goal by making each party P; publish
an adaptive universal sampler adU;. We generate the one-time, party-dynamic
DUS messages by querying the corresponding distributions. Notice that, now,
we never use any of the one-time DUS messages twice.

A minor issue we encounter is that, if an adaptive universal sampler is queried
multiple times with the same distribution, the output remains always the same.
We solve this problem by parametrising the queried distributions with a different
tag h € {0,1}* and the identifier j of the addressed party: the distribution la-
belled with (4, h) outputs h and j along with a random one-time, party-dynamic
DUS message. Since all the queried distributions are now different, the adaptive
universal samplers are guaranteed to output independent-looking samples.

Dealing with the adaptive choices of the adversary using a random oracle. We
observe that the solution described in the previous paragraph is not secure yet.
The main issue is that there is nothing that prevents the adversary from adap-
tively choosing the subset of parties P, the distribution D and the messages of

60

the corrupted parties after seeing the one-time, party dynamic DUS messages of
the honest players.

Following the blueprint of [HJK*16] and [ASY22], we solve this issue using
the random oracle. In particular, we force the adversary to query the subset of
parties, the corresponding adaptive universal samplers and the distribution it
wants to sample from to the random oracle. The response is the tag h € {0,1}*
parametrising the distributions of the one-time, party-dynamic DUS messages.
In other words, the adversary cannot learn any outputs without first presenting
its plans to the random oracle. In the security proof, this allows us to use the one-
time, party-dynamic DUS simulator and program the final output. Specifically,
we generate the honest, one-time, party-dynamic DUS messages (U;)jepnu by
feeding an ideal sample R from D into the corresponding simulator. Then, we
use the adaptive universal sampler programmability to make adU; output U; for
every j € PNH. In this way, the output of the construction is guaranteed to be R.

Detecting malformed messages and extracting the randomness of the corrupted
parties. We observe that the one-time, party-dynamic DUS simulator needs to be
provided with the randomness of the corrupted parties. We need to find a way to
extract it. In the current state, the construction suffers also from another vulner-
ability: nothing prevents the corrupted parties from publishing malformed and
potentially malicious messages. We solve both issues using simulation-extractable
NIZKs. The latter bases its security on a CRS. In many instantiations, however,
the CRS is unstructured, so, we can use the random oracle to generate it with-
out any interaction.

We modify our construction so that each party P;, now, publishes a proof of
well-formedness 7; along with its adaptive universal sampler. Before outputting
any sample, the parties involved in the computation check the NIZK proofs
of the other participants. If any verification fails, the players output L. We
slightly change also the queries issued to the random oracle by appending the
well-formedness proofs. In this way, in the security proof, we can extract the
randomness used to generate (adU;);ep\ - Using the randomness extractability
of the adaptive universal samplers, we can then retrieve the random coins used
for the generation of the one-time, party-dynamic DUS messages of the corrupted
parties.

Formal description. The precise description of our reusable, party-dynamic
DUS with malicious security is in Fig. 16. The construction relies on an adaptive
universal sampler adUS = (Setup, Sample) satisfying randomness extractability.
We use M () to denote the bit-length of the randomness needed by adUS.Setup.
We also use a one-time, party-dynamic DUS pdDUS = (Gen, Sample) satisfying
weakly semi-malicious security. We denote by D; ;, the distribution that outputs
the tag (j,h) along with a sample from pdDUS.Gen(1"). We choose L(\) to
be a polynomial upper bound on the circuit length of D; ;. Finally, we rely
on a simulation-extractable NIZK scheme NIZK = (Gen, Prove, Verify) having

61

unstructured CRS. The corresponding language is

{(U, r)’U — adUS Setup (1%, L(\); 7“)} .

THE RESOURCE FBulletin
Publish. On input (Publish,m;) from party P;, the functionality stores (,m;).
Subsequent queries of this kind from party P; are ignored.
Read. On input (Read,j) from a party P;, retrieve the pair (j,m;) if it was
previously stored, and send m; to P;.

Fig.17: The bulletin board resource

Finally, the construction assumes the existence of a bulletin board function-
ality Fgulietin (see Fig. 17). The latter permits each party P; to publish a single
message. At any point in the future, the other players can retrieve the message
published by P; without needing further communication from P;. It is possible
to implement such a functionality using blockchains.

Since there exist multiple primitives using the random oracle in our proto-
col, we assume that each oracle query is prepended with a description of its con-
text. For instance, any query relative to P;’s adaptive universal sampler will be
prepended with adU;.

Theorem 6.6. Assume that NIZK = (Gen, Prove, Verify) is a simulation-ez-
tractable NIZK, adUS = (Setup, Sample) is an adaptively secure universal sam-
pler and pdDUS = (Gen,Sample) is a party-dynamic DUS with weakly semi-
malicious, one-time security. Then, the construction in Fig. 16 is a reusable,
party dynamic DUS with malicious security in the Fgujetin-hybrid model with
random oracle.

Proof. We prove the security of the construction through a sequence of compu-
tationally indistinguishable hybrids. Hybrid 0 corresponds to the real protocol,
the last hybrid corresponds to the ideal world. We present the precise descrip-
tion of the simulator at the end. To simplify the notation, we assume that we
have access to multiple random oracles: the random oracle H of the construc-
tion, a random oracle H,qu for every possible adaptive universal samplers adU
and the one used by the one-time party-dynamic DUS H,qpus. It is easy to im-
plement the three oracles using only one'®. In each hybrid, we mark the changed
operations using red font.

Hybrid 0. This hybrid corresponds to the real world. The simulator pro-
vides the parties with urs <¢- NIZK.Gen(1"). When a honest party joins, the sim-
ulator generates a reusable, party-dynamic message following the protocol and

18 Tt is sufficient to prepend the label of the addressed oracle to each query.

62

publishes it on the bulletin board. The samples output by the honest parties
are also generated as in the protocol. Finally, the random oracle queries are an-
swered using random strings.

Hybrid 1. In this hybrid, we generate the URS and the zero-knowledge
proofs of the honest parties using the simulators for the simulation-extractable
NIZK. Specifically, urs is generated as

(urs, 7) < NIZK.Sim, (1*)

Whenever an honest party P; joins, the simulator generates its message (adU;, 7;)
as follows:

1. adU; ¢ adUS.Setup(1*, L()))
2. m; & NIZK.Simy(urs, 7, adU;)

This hybrid is indistinguishable from Hybrid 0 due to the multi-theorem zero-
knowledge property of NIZK.

Hybrid 2. In this hybrid, instead of generating the adaptive samplers for
the honest parties using adUS.Setup, we use the simulator adUS.Sim. We also
use adUS.SimRO to simulate the queries to the corresponding random oracles.
Formally, we generate the message of the honest party P; as follow:

1. We instantiate a sampling oracle O; equipping it with a random function Fj.
On input a distribution D of size at most L(\), O; outputs D(F;(D)).

2. (adU;, ;) ¢~ adUS.Sim? (1%, L(\))

3. m; < NIZK.Simg(urs, 7, adU;)

We reply to the oracle queries to Haqu, using adUS.SimROY" (7;). Since adU; has
large entropy, the probability that the adversary as already queried Haqy, before
is negligible. We conclude that this hybrid is indistinguishable from the previous
one by the adaptive security of adUS = (Gen, Sample).

We now repeat Hybrid 3.t for ¢t = 1,2,...,T. Here, T denotes a polynomial
upper bound on the number of oracle queries issued by the adversary.

Hybrid 3.t. We introduce some notation. Assume that

q .= (P, (ade, %j)jeﬁ’ D)

is the t-th random oracle query issued by the adversary where

— NIZK.Verify(urs, %\j,a/d-l\Jj) =1 for every j € P
— (adU;,7;) = (adU;, 7;) for every j € PN H.

We define the set W C ﬁ\H containing the indexes j such that (a/dTJj, 7;) is the
copy of an honest party’s message on the bulletin board. Let Z = 73\ (HUW)
and let h € {0,1}* denote the answer of H to the query q. For every j € Z, we
define the element Uj such that

adUS Sample™*" (adU;, D, 7) = (j. h, U)).

.

63

In this hybrid, for every j € PNH , we change the answer of the sampling or-
acle O; on input DJ For every j € W, we also change the answer of the sam-
pling oracle of the copled party on input D ;- Specifically, instead of outputting

a random sample from pdDUS.Gen(]l)‘), we use the simulator for the one-time
party dynamic DUS with weakly semi-malicious security pdDUS. In such com-
putation, we treat the parties in W U (P N H) as honest (the adversary knows
nothing about how their messages have been generated).

We notice that simulator for pdDUS needs to be provided with the random-
ness (p;);ez used for the generation of (U)jez. We extract such randomness in
two steps: first, using the am/@tlon—extractablhty of NIZK, we retrieve the ran-
dom coins used to generate adU; for every j ¢ PNH. Then, using the random-
ness extractability of adUS, we obtain (pj)jeﬁ\H'

We also provide pdDUS.Sim with a sample R from D. We obtain the latter
by querying the functionality with
(Query, P, (ade,%j)jeﬁ\H,D)~
The simulator of pdDUS provide us also with random strings (aj)j cp- From

now on, if (ﬁ ((7)JEP’D i) with i € P is ever queried to the one-time, party-
dynamic DUS oracle, we reply with ;.
Formally, in this hybrid the simulator performs the following steps:

Send (Query7 P, (ﬁJj, %J)jeﬁ\H’ 23) to the functionality. Let R be the reply.
Vje Z: r; < NIZK.Extract(urs,7,adU;,7,)

Vi€ Z: p;+ adUS.Extract’ s (1), D+, L(A), ;)

(Uj, ;) ;e < pdDUS.Sim(1*, P, Z,D, R, (p;) e z)

For every j € PN H, if DJ 7 is queried to Oj, we reply with U

For every j € W who copied the honest party P, if D. B is quelied to Oy,

U W

we reply with U].
7. If (P, (Uj)jeﬁ, D, i) with i € P is ever queried to Hpapus, we reply with ;.

We notice that by the simulation extractability of NIZK, for every j € Z, we
have that adU; = adUS.Setup(1*, L()\); r;). Furthermore, by the randomness

extractability of adUS, for every j € Z, we have that U = pdDUS. Gen(]l>‘ P;5)-
Both equations holds with overwhelming probability.
By the weakly semi-malicious, one-time security of pdDUS, we also know that

(Uj,1;);c5 < pdDUS.Sim(1*,P, Z,D, R, (p;) e z)
is indistinguishable from
U; & pdDUS.Gen(1) Vje P\ Z
(Us,u);e5|U; Uj VieZ
u; & {0,13pr) VjeP

64

Indistinguishability holds even if the adversary knows the inputs to pdDUS.Sim.
We observe that the responses of Hyqpus that we changed look like random
strings of the right size. Furthermore, with overwhelming probability, the adver-
sary has never issued the modified queries before. This is a consequence of the
fact that U; has w(log \) min-entropy for every j € H (otherwise, pdDUS would
not be secure). As a consequence, the adversary cannot notice that we changed
the oracle responses only after receiving q.

Finally, we observe that, with overwhelming probability, any O; (including
O;) is never queried with Djﬁ before ¢ is sent either. Indeed, the executions

of adUS.Sim and adUS.SimRO are independent of T until the query q is issued.
Moreover, for any i, adUS.Sim and adUS.SimRO can issue only a polynomial
number of queries to O;, while A is uniformly distributed over {0,1}*. Since the
answers of O; to different queries look independent, the adversary cannot detect
if we change the answer of O; to Djﬁ only after receiving ¢q. Notice also that if

1€ 73, we are changing the answer of O; to two different queries: D " and Di,ﬁ'
By the above arguments, we conclude that Hybrid 3.1 is indistinguishable
from Hybrid 2. Furthermore, for every ¢ > 1, Hybrid 3.t is indistinguishable from
Hybrid 3.(t — 1).
We conclude our proof by observing that, by the security of adUS, for every
jeEPNH,

adUS.SampIeSimRo(m(ade7Dj,g) =0;(D;3) = (7.7,).
Moreover, for any j € W copying the messages of the honest party P;, we have
adUS.Sample>™ ") (adU;, D, 7) = 0;(D; 3) = (3, h. Uj).

The above equations hold except with negligible probability. We conclude that, if
the adversary activates and corrupts all the parties in P\ H choosing (adU;, 7;)j eP\H
as their messages, the sample output by any honest party P; on input (ﬁ, 13) is

pdDUS.Sample(P, (U;) 5, (1i;) ;e D)-

By the one-time security of pdDUS, the latter coincides with the sample provided
by the functionality. In other words, we can let the functionality deal the outputs
of the honest parties without the adversary noticing it.

We summarise the operations performed by our simulator in Fig. 18.

6.3 Party-Dynamic, Ideal Public-Key PCF's.

Public-key PCFs. Public-key pseudorandom correlation functions (PCFs), in-
troduced by [OSY21] and formalised in [ASY22], are one-round protocols per-
mitting a set of players to generate large amounts of correlated randomness in
a distributed way and with minimal communication. In the construction, each
party generates a key pair broadcasting the public counterpart. Using the public

65

THE SIMULATOR Sim
Initialisation. All the oracle queries are initially answered using random ele-
ments. The simulator keeps a log of the queries elements and if a value is queried
multiple times, it replies always in the same way. The simulator generates the
CRS as follows:

1. (urs,7) & NIZK.Sim; (1)
2. Output urs.

Join. When a corrupted party P; joins the protocol, the simulator performs the
following operation:

1. Receive (adUj, ;) from the adversary.

2. If NIZK Verify(urs, m;,adU;) = 0, send (corrupt,id, = L) to the functionality.
3. Otherwise, send (corrupt, i/(\jj = (adU;, ;).

4. Publish (adU;, ;) on the bulletin board on behalf of P;.

If P; joins instead as a honest party, the simulator performs the following steps:

1. Instantiate a sampling oracle O;. On input any distribution D of size at
most L()), the oracle replies with R <~ D. The simulator keeps a log of all
the responses of O;. If the same distribution is queried multiple times, the
simulator always provides the same answer.

(adUj;, 7;) & adUS.Sim® (1%, L(N))

7; & NIZK.Sima(urs, 7, adU;)

Publish (adUj, m;) on the bulletin board on behalf of P;.

Queries to Haqu; are from now on replied using adUS.SimRO% ().

GUp N

Queries to H. All queries to H are answered with random elements in {0, 1})‘.
However, the simulator performs the following operations if the query is of the
form (P, (ade,%j)jeﬁ,D) where NIZK.Verify(urs, 7;,adU;) = 1 for every j € P
and (a/dTJj,?Tj) = (adUj, ;) for every j € PN H.If Z =10, the simulator changes
nothing.

1. Let & be the answer of H. -
2. VjeZ: r; <« NIZK.Extract(urs, ,adU;,7;)
H—

3.Vj€Z: pj« adUS.Extract *Vi (1), D, 5, L(N),7;)

4. query (Query,ﬁ7 (a/dTJj,%j)jeﬁ\H,ﬁ) to the functionality. Let R be the an-
swer. PR

5. (Uj, 1)) ;e < pdDUS.Sim(1*,P, Z,D, R, (p;) e)

6. If O; is ever queried with D, 7 for any j € PN H, from now on, the sampling
oracle replies with Uj.

7. For every j € W who copied the honest party P;, if Djﬁ is queried to O;, we
reply with Uj.

8. IfAthg\ one-time, party-dynamic DUS random oracle is ever queried with
(P, (Uj)je,ﬁ7 D, i) for any ¢ € P, from now on, the simulator replies with ;.

Fig. 18: The reusable, party-dynamic DUS simulator

66

keys of all participants and their own secret key, the players are able to gener-
ate large amounts of correlated randomness. Clearly, each party can obtain only
the material addressed to it, the other players’ outputs remain secret.

An issue with entropy (again). One of the most important qualities we require
from a public-key PCF is that the public keys are small (i.e. sublinear in size)
compared to the amount of produced material. In this way, we can design proto-
cols for the generation of correlated material with minimal communication com-
plexity. This requirement conflicts however with entropy. Indeed, the size of the
keys should be at least equal to the Yao entropy of the outputs. In other words,
if we want to generate ideal correlated samples in the plain model, the size of
the public keys must be at least linear in the size of the produced material.

Known solutions. In the last years, two solutions to the above problem were
found: weakening the security definition of public-key PCFs [BCG'19] or re-
laying on the random oracle to non-interactively introduce entropy in the con-
struction [ASY22]. The first line of research led to the standard definition of
PCFs. The notion asks that the adversary is unable to distinguish between the
real outputs of the honest parties and fake ones produced from the outputs of
the corrupted players conditioned on satisfying the desired correlation rule. Not
all types of correlation permit this kind of operation, so the standard notion of
public-key PCF's is restricted to a particular family of functions called reverse
samplable'®. We also notice that this weaker definition of PCF does not prevent
the adversary from having very strong influence on the protocol. For instance, a
PCF can be secure even if the corrupted parties are allowed to choose their out-
put. This might be problematic in some contexts.

The second line of research led to the definition of ideal, public-key PCFs
[ASY22]. These constructions satisfy a stronger security definition: the protocol
directly implements the functionality that generates the desired correlated ma-
terial and distributes it to the parties. Since it is a one-round protocol, in the ac-
tively secure case, the functionality allows some limited influence in the form of
providing multiple samples (a polynomial number and only the parts addressed
to the corrupted parties) and letting the adversary choose which to output the
the honest players. Due to the random oracle, ideal public-key PCF's do not need
to be tailored to any specific correlation, the latter can be provided as input to
the sampling algorithm. The big advantage of ideal public-key PCFs is also that
they do not restrict to reverse samplable correlation. Furthermore, they limit
the influence of the adversary. The big disadvantage is that they need a random
oracle.

Generating Correlated Randomness for a Dynamically Changing Set
of Parties. In [ASY22], Abram, Scholl and Yakoubov presented the first ideal
public-key PCF, which was built using obfuscation and distributed samplers.
The construction is tailored to a certain number of parties n, meaning that if the

19 For instance, it is impossible to generate garbled circuits using standard PCFs.

67

THE FUNCTIONALITY Fideal-pkPCF
Initialisation. The functionality initialises the set of honest parties H, of cor-
rupted parties C' and queries Q to 0.
Query. On input (Query, P, (id;) jep\ a,C) from the adversary where P is a subset
of parties and C is a |P|-party correlation function, the functionality performs the
following operations:

— If Q contains a tuple (P, (id;);ep\a,C, (Rj)jer), send (R;);cp\u to the ad-
versary.

— Otherwise, sample (R;);jepr < C, store (P, (idj)jep\a,C, (Rj)jer) in Q and
send (R;);ep\u to the adversary.

Join. On input Join from a party P; where i ¢ C'U H, the functionality waits for
a message from the adversary.

— 1If the adversary sends (corrupt, id;), the functionality sets C' + C U {i} and
stores (%, id;).
— Otherwise, it sets H < H U {i}.

Sample. On input (Sample, P,C) from a honest party P; where i € P C HUC
and C is a |P|-party correlation function, the functionality performs the following
operations

— If there exists a j € P N C such that i/C\ij = 1, output L to P;.

— If there exists a tuple (P, (id;);epnc,C, (R;)jer) € Q, output R; to P;.

— Otherwise, sample (R;);ep < C, store (P, (Bj)jePﬂC,C, (Rj)jer) in Q and
output R; to P;.

Fig. 19: Reusable, party-dynamic, ideal public-key PCF functionality

set of participants changes, the players are forced to restart the protocol. In this
section, we formalise an even stronger definition of ideal public-key PCF in which
the messages of the parties are independent of the set of participants. Following
the same approach that we used for party-dynamic DUSs, we could start by
considering the weaker one-time, semi-maliciously secure definition. Since we
have to rely on the random oracle anyway and our construction is fairly simple,
we go straight to the reusable, actively secure version.

Definition 6.7 (Reusable, party-dynamic, ideal public-key PCF with
malicious security). A reusable, party-dynamic, ideal public-key PCF with
malicious security is a protocol implementing the functionality Figeal-pkPcF (S€€
Fig. 19) against an active adversary in the UC model. Each party is required to
send at most one message during its whole execution.

Notice that the above definition follows the blueprint of Def. 6.3. As before,
the adversary is free to misbehave as it pleases. The environment has total
control over when to activate parties. Moreover, it is completely free to choose

68

from which correlation functions to sample and the set of parties involved in the
computation. The messages of the honest parties can be reused to sample from
multiple correlations and for different subsets of players (even more than one at
the same time). The environment is also free to make these choices as well as to
choose the corrupted messages after seeing the messages of the honest parties.
We highlight that the state of corruption is chosen upon activation of a party
and cannot be changed afterwards. So, we achieve static security.

We represent all possible messages of a corrupted player P; via a label id;.
The functionality allows the adversary to test the messages of the corrupted par-
ties before publishing them. This is modelled by the querying procedure: after
providing the set of participants, the candidate corrupted messages and the cor-
relation function, the functionality provides the adversary with the correspond-
ing samples of the corrupted players, while keeping those of the honest parties
secret. If the adversary decides to use the queried corrupted messages and the
environment recreates the tested situation, the functionality reveals the honest
samples that were previously kept secret by outputting them to the honest play-
ers. The adversary specifies the chosen message for a corrupted P; by providing

the corresponding label I/c\i7 to the functionality upon P;’s activation.

A Reusable, Party-Dynamic, Ideal Public-Key PCF. We use the simple
idea of [ASY22]: we let each party publish the public counterpart of a PKE key.
Let C the correlation function we want to sample from, let P be the set of par-
ticipants. We use a reusable, party-dynamic DUS to sample from the distribu-
tion D¢ that runs C and, for every j € P, encrypts its j-th output under P;’s
public key. In this way, only P; is able to retrieve its sample.

We formally describe the construction in Fig. 20. We work in the (Fpdpus,
FBulletin)-hybrid model (see Fig. 14 and Fig. 17). We also rely on an IND-CPA
public key encryption scheme PKE = (Gen, Enc, Dec).

Theorem 6.8. If PKE = (Gen, Enc, Dec) is an IND-CPA public-key encryption
scheme, the construction in Fig. 20 is a reusable, party-dynamic, ideal public-
key PCF with malicious security in the (Fpdpus, FBulletin)-hybrid model.

Proving Theorem 6.8 is rather straightforward. The result is immediately
implied by the IND-CPA security of PKE. For this reason, we do not provide a
formal proof.

Public-key PCF with master secrets. We notice that our construction has some
advantages over the ideal public-key PCF of [ASY22]. Indeed, thanks to the
unbounded universal sampler hidden in Fpypys, we set no bound on the circuit
size of the correlation functions we sample from. As a consequence, differently
from the solution of [ASY22], our ideal public key PCF supports also master
secrets. We say that a correlation function has master secrets if it is parametrised
by random values, one for each party, which must remain private. An example
of this kind of correlation is authenticated beaver triples: each sample from
the correlation is authenticated using the same MAC key. Each party holds a

69

A REUSABLE, PARTY-DYNAMIC, IDEAL PUBLIC-KEY PCF
Join. In order to join the protocol, each party P; performs the following opera-
tions:

1. (pk,,sk;) < PKE.Gen(1*)
2. Send Join to Fpdpus-
3. Publish pk; on Fgyietin and keep sk; secret.

Sample. On input a subset of players P where ¢ € P and a |P|-party correlation
function C, each party P; performs the following operations:

1. Read the public keys (pk;)jer from Fauietin-

2. Let D¢ be the distribution that computes (R;)jep < C, derives ¢; <

PKE.Enc(pk;, R;) for every j € P and outputs (c;);jep-

3. Send (Sample, P, Dc) to Fpapus. If the result is L, P; outputs L, otherwise,
let (¢;);jep be the result.

4. Output R; <+ PKE.Dec(sk;, ¢;).

Fig. 20: A reusable, party-dynamic, ideal public-key PCF

share of the key, such share must remain private. We say that a public-key PCF
supports master secrets if it allows the generation of multiple samples using
the same master secrets while leaking no information about the secrets of the
honest parties. We notice that the master secrets are not necessarily input by
the parties, they can also be sampled at random by the public-key PCF itself.
We refer to [ASY22] for a more formal definition.

How to sample with master secrets. In our construction, the parties can input
a special distribution DF* into Fpapus: DE*® generates the master secrets for all
parties and uses them to produce multiple samples from the correlation function.
Then, it encrypts each result under the public keys of the participants. If Fpqpus
is implemented using our unbounded universal sampler, the parties do not even
need to retrieve all the generated samples in one go. They can indeed use the
unbounded universal sampler to garble only the parts of DF** that they need (for
instance the part computing the first £ outputs). If, at a later stage, the parties
need additional correlated material, they can garble and evaluate a new piece of
Dg*. The downside is that before even beginning the garbling, the parties need
to hash Dg* and the random oracle responses. The operation requires linear
computation in the amount of generated material. Our solution has also another
disadvantage: the amount of correlated randomness we can generate using the
same master secrets is polynomially bounded. The bound is chosen when Dg*®
is input in Fpgpus. When the parties deplete their source of correlated material,

70

they are forced to query DTS again®’. The new batch of correlated material will
however use independent master secrets.

We highlight that it is actually possible to use the techniques we just de-
scribed also in the construction of [ASY22], in that case, however, the size of the
PCF public keys would blow up linearly in the amount of generated correlation.

Acknowledgements

The authors would like to thank Ivan Damgard, Jesper Buus Nielsen and Sophia
Yakoubov for their feedback and support.

This work has been carried out with the generous support of the Independent
Research Fund Denmark (DFF) under project number 0165-00107B (C3PO),
the Aarhus University Research Foundation (AUFF) and the grant MOE2019-
T2-1-145, “Foundations of quantum-safe cryptography”.

References

ABI*23. Damiano Abram, Amos Beimel, Yuval Ishai, Eyal Kushilevitz, and
Varun Narayanan. Cryptography from Planted Graphs: Security with
Logarithmic-Size Messages , 2023.

ASY22. Damiano Abram, Peter Scholl, and Sophia Yakoubov. Distributed (Cor-
relation) Samplers: How to Remove a Trusted Dealer in One Round. In
EUROCRYPT 2022. Springer, 2022.

AWZ23. Damiano Abram, Brent Waters, and Mark Zhandry. Security-Preserving
Distributed Samplers: How to Generate any CRS in One Round without
Random Oracles. In CRYPTO 2023. Springer, 2023.

BCCT12. Nir Bitansky, Ran Canetti, Alessandro Chiesa, and Eran Tromer. From
extractable collision resistance to succinct non-interactive arguments of
knowledge, and back again. In ITCS 2012. ACM, January 2012.

BCG™19. Elette Boyle, Geoffroy Couteau, Niv Gilboa, Yuval Ishai, Lisa Kohl, and
Peter Scholl. Efficient pseudorandom correlation generators: Silent OT ex-
tension and more. In CRYPTO 2019, Part III, LNCS. Springer, Heidel-
berg, August 2019.

BCG™'20. Elette Boyle, Geoffroy Couteau, Niv Gilboa, Yuval Ishai, Lisa Kohl, and
Peter Scholl. Correlated pseudorandom functions from variable-density
LPN. In 61st FOCS. IEEE Computer Society Press, November 2020.

Bdo4. Josh Cohen Benaloh and Michael de Mare. One-way accumulators: A de-
centralized alternative to digital sinatures (extended abstract). In EURO-
CRYPT’93, LNCS. Springer, Heidelberg, May 1994.

BFK™19. Saikrishna Badrinarayanan, Rex Fernando, Venkata Koppula, Amit Sa-
hai, and Brent Waters. Output compression, MPC, and iO for turing ma-
chines. In ASIACRYPT 2019, Part I, LNCS. Springer, Heidelberg, De-
cember 2019.

20 We can parametrise D using a public nonce = € {0,1}*: we ask DF° to output z
along with its outputs. If we query Dg* for different nonces x, Fpapus provides us
with independent looking values.

71

BGItO01.

BGI14.

BHR12.

BL20.

BP15.

BW13.

Can01.

CCD™20.

CKLO03.

CLTV15.

DGH™'20.

DPSZ12.

FLOP18.

FLS90.

GGH*13.

GGMS6.

GOO0r7.

Boaz Barak, Oded Goldreich, Russell Impagliazzo, Steven Rudich, Amit
Sahai, Salil P. Vadhan, and Ke Yang. On the (im)possibility of obfuscating
programs. In CRYPTO 2001, LNCS. Springer, Heidelberg, August 2001.
Elette Boyle, Shafi Goldwasser, and Ioana Ivan. Functional signatures
and pseudorandom functions. In PKC 2014, LNCS. Springer, Heidelberg,
March 2014.

Mihir Bellare, Viet Tung Hoang, and Phillip Rogaway. Foundations of
garbled circuits. In ACM CCS 2012. ACM Press, October 2012.

Fabrice Benhamouda and Huijia Lin. Mr NISC: Multiparty reusable non-
interactive secure computation. In TCC 2020, Part II, LNCS. Springer,
Heidelberg, November 2020.

Nir Bitansky and Omer Paneth. ZAPs and non-interactive witness indistin-
guishability from indistinguishability obfuscation. In T'CC 2015, Part 11,
LNCS. Springer, Heidelberg, March 2015.

Dan Boneh and Brent Waters. Constrained pseudorandom functions and
their applications. In ASIACRYPT 2013, Part II, LNCS. Springer, Hei-
delberg, December 2013.

Ran Canetti. Universally composable security: A new paradigm for cryp-
tographic protocols. In 42nd FOCS. IEEE Computer Society Press, Octo-
ber 2001.

Megan Chen, Ran Cohen, Jack Doerner, Yashvanth Kondi, Eysa Lee,
Schuyler Rosefield, and abhi shelat. Multiparty generation of an RSA mod-
ulus. In CRYPTO 2020, Part III, LNCS. Springer, Heidelberg, August
2020.

Ran Canetti, Eyal Kushilevitz, and Yehuda Lindell. On the limitations
of universally composable two-party computation without set-up assump-
tions. In FUROCRYPT 2003, LNCS. Springer, Heidelberg, May 2003.
Ran Canetti, Huijia Lin, Stefano Tessaro, and Vinod Vaikuntanathan. Ob-
fuscation of probabilistic circuits and applications. In TCC 2015, Part 11,
LNCS. Springer, Heidelberg, March 2015.

Nico Déttling, Sanjam Garg, Mohammad Hajiabadi, Daniel Masny, and
Daniel Wichs. Two-round oblivious transfer from CDH or LPN. In EU-
ROCRYPT 2020, Part II, LNCS. Springer, Heidelberg, May 2020.

Ivan Damgard, Valerio Pastro, Nigel P. Smart, and Sarah Zakarias.
Multiparty computation from somewhat homomorphic encryption. In
CRYPTO 2012, LNCS. Springer, Heidelberg, August 2012.

Tore Kasper Frederiksen, Yehuda Lindell, Valery Osheter, and Benny
Pinkas. Fast distributed RSA key generation for semi-honest and mali-
cious adversaries. In CRYPTO 2018, Part II, LNCS. Springer, Heidelberg,
August 2018.

Uriel Feige, Dror Lapidot, and Adi Shamir. Multiple non-interactive zero
knowledge proofs based on a single random string (extended abstract). In
81st FOCS. IEEE Computer Society Press, October 1990.

Sanjam Garg, Craig Gentry, Shai Halevi, Mariana Raykova, Amit Sahai,
and Brent Waters. Candidate indistinguishability obfuscation and func-
tional encryption for all circuits. In 54th FOCS. IEEE Computer Society
Press, October 2013.

Oded Goldreich, Shafi Goldwasser, and Silvio Micali. How to construct
random functions. Journal of the ACM, (4), October 1986.

Jens Groth and Rafail Ostrovsky. Cryptography in the multi-string model.
In CRYPTO 2007, LNCS. Springer, Heidelberg, August 2007.

72

GOS06.

GS18.

HIJ*17.

HILL99.

HJK*16.

HLRO7.

HMR™19.

HV16.

HW15.

TKM™'13.

107Z14.

JLS21.

KPTZ13.

KPW13.

KRS15.

Jens Groth, Rafail Ostrovsky, and Amit Sahai. Non-interactive zaps and
new techniques for NIZK. In CRYPTO 2006, LNCS. Springer, Heidelberg,
August 2006.

Sanjam Garg and Akshayaram Srinivasan. A simple construction of iO
for turing machines. In TCC 2018, Part II, LNCS. Springer, Heidelberg,
November 2018.

Shai Halevi, Yuval Ishai, Abhishek Jain, Ilan Komargodski, Amit Sahai,
and Eylon Yogev. Non-interactive multiparty computation without corre-
lated randomness. In ASIACRYPT 2017, Part III, LNCS. Springer, Hei-
delberg, December 2017.

Johan Hastad, Russell Impagliazzo, Leonid A. Levin, and Michael Luby.
A pseudorandom generator from any one-way function. SIAM Journal on
Computing, (4), 1999.

Dennis Hofheinz, Tibor Jager, Dakshita Khurana, Amit Sahai, Brent Wa-
ters, and Mark Zhandry. How to generate and use universal samplers. In
ASIACRYPT 2016, Part II, LNCS. Springer, Heidelberg, December 2016.
Chun-Yuan Hsiao, Chi-Jen Lu, and Leonid Reyzin. Conditional computa-
tional entropy, or toward separating pseudoentropy from compressibility.
In EUROCRYPT 2007, LNCS. Springer, Heidelberg, May 2007.

Carmit Hazay, Gert Laessge Mikkelsen, Tal Rabin, Tomas Toft, and An-
gelo Agatino Nicolosi. Efficient RSA key generation and threshold paillier
in the two-party setting. Journal of Cryptology, (2), April 2019.

Carmit Hazay and Muthuramakrishnan Venkitasubramaniam. What se-
curity can we achieve within 4 rounds? In SCN 16, LNCS. Springer, Hei-
delberg, August / September 2016.

Pavel Hubacek and Daniel Wichs. On the communication complexity of
secure function evaluation with long output. In ITCS 2015. ACM, January
2015.

Yuval Ishai, Eyal Kushilevitz, Sigurd Meldgaard, Claudio Orlandi, and
Anat Paskin-Cherniavsky. On the power of correlated randomness in se-
cure computation. In TCC 2013, LNCS. Springer, Heidelberg, March 2013.
Yuval Ishai, Rafail Ostrovsky, and Vassilis Zikas. Secure multi-party
computation with identifiable abort. In CRYPTO 2014, Part II, LNCS.
Springer, Heidelberg, August 2014.

Aayush Jain, Huijia Lin, and Amit Sahai. Indistinguishability obfuscation
from well-founded assumptions. In Proceedings of the 53rd Annual ACM
SIGACT Symposium on Theory of Computing, page 6073, New York, NY,
USA, 2021. Association for Computing Machinery.

Aggelos Kiayias, Stavros Papadopoulos, Nikos Triandopoulos, and Thomas
Zacharias. Delegatable pseudorandom functions and applications. In ACM
CCS 2013. ACM Press, November 2013.

Stephan Krenn, Krzysztof Pietrzak, and Akshay Wadia. A counterexam-
ple to the chain rule for conditional HILL entropy - and what deniable
encryption has to do with it. In TCC 2013, LNCS. Springer, Heidelberg,
March 2013.

Dakshita Khurana, Vanishree Rao, and Amit Sahai. Multi-party key ex-
change for unbounded parties from indistinguishability obfuscation. In
ASIACRYPT 2015, Part I, LNCS. Springer, Heidelberg, November / De-
cember 2015.

73

LZ17. Qipeng Liu and Mark Zhandry. Decomposable obfuscation: A framework
for building applications of obfuscation from polynomial hardness. In
TCC 2017, Part I, LNCS. Springer, Heidelberg, November 2017.

OPWW15. Tatsuaki Okamoto, Krzysztof Pietrzak, Brent Waters, and Daniel Wichs.
New realizations of somewhere statistically binding hashing and positional
accumulators. In ASTACRYPT 2015, Part I, LNCS. Springer, Heidelberg,
November / December 2015.

OSY21. Claudio Orlandi, Peter Scholl, and Sophia Yakoubov. The rise of pail-
lier: Homomorphic secret sharing and public-key silent OT. In FURO-
CRYPT 2021, Part I, LNCS. Springer, Heidelberg, October 2021.

PS109. Chris Peikert and Sina Shiehian. Noninteractive zero knowledge for NP
from (plain) learning with errors. In CRYPTO 2019, Part I, LNCS.
Springer, Heidelberg, August 2019.

PVWO08. Chris Peikert, Vinod Vaikuntanathan, and Brent Waters. A framework
for efficient and composable oblivious transfer. In CRYPTO 2008, LNCS.
Springer, Heidelberg, August 2008.

Reyll. Leonid Reyzin. Some notions of entropy for cryptography - (invited talk).
In ICITS 11, LNCS. Springer, Heidelberg, May 2011.

Sha48. C. E. Shannon. A mathematical theory of communication. Bell Sys. Tech.
J., 27:623-656, 1948.

SW14. Amit Sahai and Brent Waters. How to use indistinguishability obfusca-

tion: deniable encryption, and more. In 46th ACM STOC. ACM Press,
May / June 2014.

Yao82. Andrew Chi-Chih Yao. Theory and applications of trapdoor functions (ex-
tended abstract). In 28rd FOCS. IEEE Computer Society Press, Novem-
ber 1982.

Yao086. Andrew Chi-Chih Yao. How to generate and exchange secrets (extended

abstract). In 27th FOCS. IEEE Computer Society Press, October 1986.

A Additional Preliminaries

In this appendix, we present the notions we used for our proofs and construc-
tions. In particular, we recall the definitions of distributed samplers, indistin-
guishability obfuscation, puncturable PRFs, SSB hash functions, garbled circuits
and simulation-extractable NIZKs. Then, in Appendix A.7, we recall various def-
initions of entropy and basic results.

A.1 Distributed Samplers

Distributed samplers (DS) are a strong primitive allowing n parties to securely
generate CRSs with a single round of interaction. Specifically, a distributed sam-
pler for the distribution D(]l)‘) is a one-round protocol that generates a sample
R from ’D(]l)‘) without revealing any information except R itself.

The notion was introduced for the first time by Abram, Scholl and Yakoubov
in [ASY22]. In the paper, the authors show how to build the primitive from
indistinguishability obfuscation and multi-key FHE. In this section, we recall
their definition considering multiple adversarial models.

74

We start by consider security against a weakly semi-malicious adversary, i.e.
a non-rushing adversary that, as in the semi-honest model, follows the protocol,
but before beginning the execution, it chooses the random tapes of the corrupted
parties as it prefers. If the adversary follows the protocol but instead chooses
the randomness of the corrupted parties after seeing the honest messages, we
say that we are dealing with a strongly semi-malicious adversary.

Definition A.1 (Weakly semi-maliciously secure distributed sampler).
Let D(]l)‘) be an efficiently samplable distribution. An n-party distributed sampler
(DS) for D(]IA) is a pair of PPT algorithms (Gen,Sample) having the following
syntax:

1. Gen is a probabilistic algorithm taking as input the security parameter 1
and the indez i of the party running it. The output is the distributed sam-
pler message U; of the i-th party. We assume that Gen needs M () bits of
randomness.

2. Sample is a deterministic algorithm taking as input n distributed sampler
messages (Uj)jcin), one for each party. The output is a sample R.

We say that the distributed sampler is weakly semi-maliciously secure if there
exists a PPT simulator Sim such that, for every subset C C [n] of corrupted
parties and associated randomness (p;)icc, the following two distributions are
computationally indistinguishable.

v pi & {0,1}MX) Vie H
i)i€H
© U; + Gen(1*,4; p;) Vi € [n]
(pi)i607R
R+ Sample(Uy,...,Uy,)
(Ui)ien | R D(1Y)
(p)icos B | (Up)ien & Sim (1Y, C, R, (pi)iec)

The security definition essentially states that even for the worst randomness
choice of the corrupted parties, the honest messages leak no information except
the output itself. Observe that if we run Sample over the simulated messages,
the output coincides with R with overwhelming probability. Notice that any
adversary corrupting no party but just listening to the conversations is always
able to obtain the output. Indeed, the latter is just a deterministic function of
the transcript.

It is possible to reformulate the above definition by saying that weakly semi-
maliciously secure distributed sampler is a one-round protocol implementing the
functionality that provides all the parties with the same sample R from D(]l)‘).
Unfortunately, it is impossible to implement the above functionality against
rushing adversaries. Indeed, after receiving the messages of the honest parties,
the adversaries can always rerun the protocol in its head multiple times, changing
only the messages of the corrupted parties. In this way, the attacker obtains
multiple samples from D(]l)‘)7 it can therefore choose the one it likes the most
and send the corresponding corrupted messages in the protocol. In other words,

75

the adversary can always choose the output among a set of polynomially many
samples. For this reason, in the rushing setting, distributed samplers are defined
as in Def. 2.1.

A.2 Indistinguishability Obfuscation

Some of the constructions presented in this work are based on indistinguishabil-
ity obfuscation [BGIT01, GGH*13]. An indistinguishability obfuscator is a cryp-
tographic primitive that on input a circuit in a certain class outputs an equiva-
lent circuit, i.e. a circuit with ezxactly the same input-output behaviour. The op-
erations performed by the output circuit are however so different from the orig-
inal ones that it is impossible to tell how the input circuit was behaving. In the
context of obfuscation, we often refer to circuits as programs. We recall now the
formal definition.

Definition A.2 (Indistinguishability obfuscator). Let {L)}ren be a class
of circuits where each element ¢ € Lx maps an inp(\)-bit input into an out(\)-
bit output. An indistinguishability obfuscator for {L)}ren is a PPT algorithm
iO satisfying the following properties:

— Correctness. For every A € N, z € {0,1}"°N) and ¢ € Ly, we have that

Pr [c’(x) = c(z)|d L0, ¢)| = 1.

— Security._ For every circuits co,c1 € Ly such that co(x) = c1(x) for every
x € {0,1}"N) e have

i0(1%, ¢o) ~ I0(1*, ¢1).

We point out that every obfuscator is tailored to a specific class of circuits.
As the latter grows, the size of the obfuscated programs and of the obfuscator
itself often increases.

The first candidate indistinguishability obfuscator was designed by Garg et
al. in [GGH™13] based on non-standard assumptions. The work opened the way
to a vast line of research focused on weakening the assumptions needed by iO
[JLS21]. All the constructions presented so far, however, either rely on subexpo-
nentially secure primitives or an exponential number of polynomially secure ones.

A.3 Puncturable PRFs

This paper also makes use of puncturable PRFs [KPTZ13, BW13, BGI14]. As
for standard PRF's, the latter is a primitive that using a random secret key, maps
a nonce into a pseudorandom string. These constructions however satisfy an
additional property: it is possible to remove from any key K all the information
about the expansion of a chosen nonce x. The operation is called puncturing and
basically, provides a modified key K. The latter can be expanded as the original
one for every nonce except x, obtaining exactly the same outputs. However, the
expansion of using K looks random even for an adversary holding K. We recall
the formal definition below.

76

Definition A.3 (Puncturable PRF). A puncturable PRF with output space
(Z\)aen and nonce space (Vx)aen s a pair of PPT algorithms (F,Punct) satis-
fying the following properties

— correctness. For every A € N, and K € {0,1}* and z,y € Y\ such that
x # 1y, we have that

Pr|F(K,y) = F(K,y)|K « Punct(K,a:)} -1

— Security. For every x € Yy, no PPT adversary can distinguish between

K& {0, 11 K& {0, 1}
K, z|K « Punct(K, z) K, z|K « Punct(K,z)
Z = F(K,(ﬂ) z & Z,\

It is easy to build puncturable PRFs using the GGM construction [BW13,
GGMS86]. Puncturable PRFs are part of the standard toolkit for iO based cryp-
tography [SW14].

A.4 Somewhere Statistically Binding Hash Functions

We recall the definition of somewhere statistically binding hash functions (SSB
hashing) [HW15, OPWW15]. Informally speaking, an SSB hash function is a
hash function with block alphabet X' hashing messages of length at most L()).
The particular property of the construction is that it hides an index 7 in its
hash key hk. As for any hash function, despite being hard to find, there always
exist messages @ # ' having colliding hashes Hash(hk,) = Hash(hk, ’). SSB
hash functions satisfy however an additional binding property: if the hash of x
collides with the hash of x’, the i-th block of x is guaranteed to coincide with
the i-th block in '

The construction allows also the generation of (usually short) proofs proving
that a certain value z € X' coincides with the j-th block of a preimage of a digest
h. The index j does not need to be the one hidden in the hash key. The proofs
are not necessarily zero-knowledge. We recall the formal definition.

Definition A.4 (SSB hash function). An somewhere statistically binding
(SSB) hash function with block alphabet X and output length fuash(A) is a tuple
of PPT algorithms (Gen, Hash, Open, Verify) with the following syntaz:

— Gen is a PPT algorithm taking as input the security parameter 1%, a bound
L < 2* and an index i € [L]. The output is an SSB hash key hk.

— Hash is a deterministic algorithm taking as input an SSB hash key hk and a
message © € Y=L the output is a digest h € {0,1} (),

— Open is a PPT algorithm taking as input an SSB hash key hk, a message
x € X=F and an index i € [L]. The output is an SSB proof 7.

7

— Verify is a deterministic algorithm taking as input an SSB hash key hk, a
digest h, an index i € [L], a value x € X and an SSB proof . The output is
a bitbe {0,1}.

We also require the following properties:

— Correctness. For any A € N, bound L < 2*, indezes i,j € [L] and message
x € XL k-length at most L, we have

hk & Gen(1*, L,)
Pr | Verify(hk, h, j, z;,7) = 1|h < Hash(hk, x)

I
—

7 & Open(hk, z, 7)
— Index hiding. For every bound L(\) < 2* and indezes 1,7 € [L()\)],
Gen(1*, L(\), i) ~. Gen(1*, L(\),)

— Somewhere statistically binding. For every bound L(\) < 2* and index
i € [L(N\)], we have
Az, 2’ h,m, 7" s.t.
x#x
Verify(hk, h,i,2,m) = 1
Verify(hk, h,i, 2", 7") =1

hk & Gen(1*, L(\),7) | = negl()).

We point out that thanks to both correctness, hiding and binding, SSB hash
functions are also collision resistant. Furthermore, we also highlight that in order
for binding to hold, the digest length £p,s, must be at least log|X|.

SSB hash functions can be built from various cryptographic assumptions
including FHE [HW15], DDH and DCR [OPWW15].

A.5 Garbled Circuits

This work uses garbled circuits [Yao86, BHR12]. A garbling scheme is a crypto-
graphic primitive allowing us to encrypt a circuit and its inputs. The result of
such operation is called the garbling. A party provided with the garbled circuit
is able to retrieve its output without learning any additional information except
the structure of the circuit.

We point out that garbled circuits and obfuscation are very different con-
cepts. Garbled circuits can be usually evaluated on at most one input and the
structure of the circuit is always leaked. Obfuscated programs instead have no
bound on the number of times they can be evaluated and they never leak any
information about the original circuit. The difference between the two notions
is also mirrored by the assumptions needed for their construction: while all the
candidate obfuscators are based on subexponentially secure primitives, garbled
circuits can be built from one-way functions.

We recall the formal definition of garbling scheme.

78

Definition A.5 (Garbling scheme). A garbling scheme is a tuple of PPT
algorithms (Garble, Eval, En, De) with the following syntax:

— Garble is a PPT algorithm taking as input the security parameter 1% and a
circuit c. The output is the garbled circuit G, the encoding information e and
the decoding information d.

— En is a deterministic algorithm taking as input a value x and the encoding
information e. The output is the input information X.

— Eval is a deterministic algorithm taking as input a garbled circuit G and the
input information X. The output is the output information Y .

— De is a deterministic algorithm taking as input the output information Y
and the decoding information d. The output is a value y.

We require the scheme to satisfy the following properties:

— Correctness. For any A € N, circuit ¢ and input x,

(G, e,d) & Garble(1*, ¢)
Pr |De(Y,d) = c¢(x)| X < En(z,e) =1 —negl(A).
Y + Eval(G, X)

— Security. There exists a PPT simulator Sim such that, for every circuit ¢
and input x, the following distributions are computationally indistinguish-
able:

{G,X,d

A famous garbling scheme. The constructions in this paper do not make a black-
box use of the primitive. We therefore sketch how it is possible to garble and
evaluate a circuit using a 2-keyed PRF only. The scheme below is credited to
[Yao86].

(G, e,d) & Garble(1,¢)
X + En(z,e)

} and {Sim(IlA,struct(c),c(ac))}.

The labels of the wires. Suppose that ¢ is a binary circuit made of XOR and
AND gates. We associate every wire w of ¢ with two random strings k0, kL €
{0,1}*, called the labels of w. The two labels are associated with the value that
w can assume, namely 0 and 1 and they correspond to keys of the PRF. At the
right time, the party performing the evaluation will learn only one of the two
labels for every wire, specifically, the one associated with the value of w in that
particular execution of the circuit. The evaluator will not know however if the

known label is k¥ or kL.

Garbling the gates. Each gate g in c is garbled by “encrypting” the labels of
the output wire under the labels of the corresponding inputs. The operations is
performed using the 2-keyed PRF. Specifically, let u,v be the input wires and
let w be the output wire. For every pair (b1,b2) € {0,1} x {0,1}, we encrypt

g (br-b2) using k% and k% . The evaluator is provided with all the four ciphertexts

79

generated in this way. We permute their order to avoid leaking the value of the
inputs to which they are associated. Notice that the evaluator can retrieve a label
of the output wire if and only if it knows the labels of the corresponding inputs.
In other words, it can decrypt only one of the four ciphertexts, in the other cases,
it will obtain random looking strings. If we properly pad the plaintexts before
encryption, the evaluator can learn when the decryption succeeds and when it
fails.

The encoding and decoding information. In order to allow the evaluator compute
c(x) without learning any additional information about x, we provide it with
the labels of the input wires associated with w, i.e. for every i, we reveal Kk}
where w; is the i-th input wire and z; is the i-th bit in x. This is sufficient to
trigger the chain of decryptions that leads to labels of the output wires. In order
to decode the latter, we provide the evaluator with both labels k0 and k. for
every output wire w.

The locality of garbling. An important property of the garbling scheme we just
described is its locality: as long as we know the labels associated with the input
and output wires of a gate, we can garble it without knowing any information
about the rest of the circuit. This will be fundamental in the constructions
presented in this paper.

A.6 Simulation-Extractable NIZKs

The last cryptographic primitive we need in in this paper is multi-theorem
simulation-extractable NIZKs [GO07]. A NIZK (or non-interactive zero-knowledge
proof) is a construction proving that a public input z, called the statement, be-
longs to an NP language L. The construction relies on a CRS. Given the latter
and a witness w for x, it is possible to efficiently generate a proof 7. The proof
can easily be verifier on the CRS and the statement without further interaction.

The construction satisfies multi-theorem zero-knowledge, meaning that, even
if we prove multiple statements using the same CRS, the adversary cannot dis-
tinguish between the real proofs and fake ones simulated without using the wit-
nesses by relying on a trapdoor embedded in the CRS. The construction sat-
isfies also simulation extractability, meaning that the trapdoor in the CRS al-
lows to efficiently extract the witness from the valid proofs generated by any
PPT adversary. The condition holds even if the adversary is provided with sim-
ulated proofs for multiple statements chosen ahead of time. In other words, a
simulation-extractable NIZK is a proof of knowledge.

Below, we recall the formal definition of multi-theorem simulation-extractable
NIZK.

Definition A.6 (Multi-theorem simulation-extractable NIZK). A multi-
theorem simulation-extractable NIZK (non-interactive zero-knowledge proof) for
an NP relation R is a triple of PPT algorithms (Gen,Prove, Verify) with the
following syntaz:

80

— Gen is a PPT algorithm taking as input the security parameter 1 and out-
puts a CRS o.

— Prove is a randomised algorithm taking as input the security parameter 17,
a CRS o, a statement x and a witness w. The output is a proof © for x.

— Verify is a deterministic algorithm taking as input a CRS o, a proof m and
a statement x. The output is a bit b € {0,1}.

We require the following properties:

— Completeness. For every (x,w) € R, we have

o & Gen(1Y)

Pr [Verify(o7 mar)=1 =1 —negl(}).

7 & Prove(1*, o, z, w)

— Multi- Theorem Zero-Knowledge. There exists PPT simulators Simy and
Simy such that, for every polynomial L(X\) and tuple of pairs (xi,w;)ic(r) €
R, no PPT adversary can distinguish between the following distributions

o & Gen(1%)
Viell]: m & Prove(]l)‘,a, X, w;)

(o,7) & Siml(]l’\) }

iell]: m & Simy(o, 7, 2;)

{07 (Wi)ie[L]

{Ua (ﬂ'i)iE[L]

— Simulation Extractability There exists a PPT extractor Extract such that,
for every polynomial L()), statements (z;,w;)icir) € R and PPT adversary
A, we have

(o,7) & Simy (1)

Vie [L]: (2, 7") # (x5, m;)

Pr Verify(o, 7', 2') = 1 .
(l",,w/) ZR (xlvﬂ/) A A(]lkvg’ (mi’ Wi)ie[L])

w’ + Extract(o, 7,2,)

Vie|Ll: m & Simg(o,T,z;) ~ negl()

We point out that it is possible to build multi-theorem simulation-extractable
NIZK where the CRS is unstructured [FLS90, GOS06, PS19, BP15], i.e. it can
be derived in a secure way from a random string of bits. Unstructured CRSs can
always be generated without interaction in the random oracle model.

A.7 Notions of Entropy

In information theory, entropy is used to measure the unpredictability of ran-
dom variables. After almost a century of research, several definitions have been
formalised. In this appendix, we recall some of the important notions and the
related properties. We start with Shannon’s entropy [Sha48].

81

Definition A.7 (Shannon’s entropy). Let X be a random variable having
finite support. The Shannon’s entropy of X is

Z Pr[X =] - log(Pr[X = z]).

We recall also the notion of conditional Shannon’s entropy.

Definition A.8 (Conditional Shannon’s entropy). Let X andY be random
variables having finite support and let E be an event. The Shannon’s entropy of
X conditioned on E is

H(X|E) : ZPI = z|E] - log (Pr[X = z|E]).

The Shannon’s entropy of X conditioned on'Y is instead
HX|Y) : ZPrY yl - HX|Y =y).

Shannon’s entropy satisfies an important property called the strong chain
rule. We recall it below.

Theorem A.9 (Strong chain rule). Let X and Y be random variables with
finite support. Then,
H(X,Y) =H(Y) + HX|Y).

Notice that (X,Y) is a random variable, so H(X,Y) is defined as in Def. A.7.
We also recall the following properties of Shannon’s entropy.

Lemma A.10. Let X,Y and Z be random variables with finite support. Then,

— If X is uniform over a set of cardinality m, H(X) = logm.
— If X is independent of Y, given Z, H(X|Y,Z) = H(X|Z).
— H(XY, Z) < H(X|Z).

— If f is a deterministic function, H(f(X)) < H(X).

We now recall other definitions of entropy that are used to prove our results.

Definition A.11 (Max entropy). Let X be a random variable with finite sup-
port, let E be an event. We define the maz entropy of X to be

Ho(X) = log|Supp(X)|.
We define the max entropy of X conditioned on E to be
Ho(X|E) = log|Supp(X|E)|.

Definition A.12 (Min entropy). Let X be a random variable with finite sup-
port, let E be an event. We define the min entropy of X to be

Hoo (X) = — log(max Pr[X = z]).
We define the min entropy of X conditioned on E to be
0 (X|E) = —log(max Pr[X = z|E]).

82

Finally, we recall the definition of collision entropy.

Definition A.13 (Collision entropy). Let X and Y be random variables with
finite support, let E be an event. We define the collision entropy of X to be

Ha(X) = —log(z Pr[X = x]2> = —log(Pr[X = X)),

where X' is independent and identically distributed to X. We define the collision
entropy of X conditioned on E to be

Ha (X |E) = 710g<ZPr — 2| E])
The average collision entropy of X given Y is instead

Ha(X[Y) = log(ZPr PrX ::U|Y:y]2>.

All the above definitions of entropy are not equivalent. For instance, Shan-
non’s entropy can assume values that are significantly larger than min and col-
lision entropy. The definitions are however related by the following well-known
inequalities.

Theorem A.14. Let X be a random variable with finite support, let E be an
event. We have that

0 < Hoo(X) < Hz(X) < H(X) < Ho(X),
0 < Hoo(X|E) < Ho(X[E) < H(X|E) < Ho(X|E) < Ho(X).

Yao’s Incompressibility Entropy. All the entropy notions we recalled above
are great for measuring information theoretic properties, however, they all suffer
from an important disadvantage, namely, they do not behave well under com-
putational indistinguishability. Specifically, if X ~. X', the entropy of X can be
significantly different from the entropy of X', it does not matter which of the
above definitions we consider.

We solve this issue by relying on a notion of computational entropy [Yao82,
HLRO7]. We recall the definition.

Definition A.15 (Yao’s entropy). Let (X))aen be an ensemble of random
variables. We say that the Yao entropy of X is smaller or equal to k(X), written
Hvao(X) < Ek(X), if there exists a pair of polynomial sized deterministic circuits
(ex,dx)xen such that

Prd(e(X)) = X] > 2

In the above formula, £(\) denotes the output size of cx. The circuit ¢y is called
a compressor, whereas dy is called a decompressor.

83

In [HLRO7], Hsiao, Lu and Reyzin generalised the definition to the conditional
case. We recall it below.

Definition A.16 (Conditional Yao’s entropy). Let (Xx)xen and (Y))ren
be two ensembles of random variables. We say that the Yao entropy of X condi-
tioned on'Y is smaller or equal to k(N\), written Hyao(X|Y) < k(N), if there ex-
ists a pair of polynomial sized deterministic circuits (cx,dx)xen such that

2@()\)
Pr[d(¢(X,Y),Y) = X] > 20 negl(A).
In the above formula, ¢(\) denotes the output size of cx. The circuit ¢y is called
a compressor, whereas dy is called a decompressor. If Hyao(X|Y) < k(X) where
k() is O(log \), we will simply write that Hy.o(X|Y) = O(log \).

Essentially, Yao’s incompressibility entropy measures how much it is possible
to compress, in polynomial time, samples from a distribution X given that the
outcome of the possibly correlated random variable Y is known.

We observe that Yao’s entropy can assume values that are significantly larger
than Shannon’s entropy. Examples of this kind are the outputs of PRGs. In
some particular cases, however, also the opposite is true. For instance, there
exist distributions X such that Hoo (X) = O(log A) but H(X) = w(log A). For all
such X, we have Hy,o(X) = O(log A) (consider the compressor that outputs the
empty string and the decompressor that outputs the most likely element).

The following well-known lemma formalises the fact that Yao’s entropy pre-
serves under computational indistinguishability.

Lemma A.17. Let (Xx,Y))xen and (X},YY)ren be two ensembles of random
variables such that (X, Yy) ~¢ (X5,Y). Then, Hyao(X|Y) < k() if and only
if Hyao (X' |Y") < E(N).

We highlight that Yao’s entropy is not the only notion of computational en-
tropy [Reyll, HILL99, HLR07]. Among all the studied notions, it is however the
one assuming highest values [HLRO7]. We decided to use Yao’s entropy exactly
for this reason, making the results presented in this paper as strong as possible.

84

	On the (Im)possibility of Distributed Samplers: Lower Bounds and Party-Dynamic Constructions
	Introduction
	Our Results

	Technical Overview
	(Im)possibility of Distributed Samplers without Random Oracle
	Constructing Unbounded Universal Samplers
	Building Unbounded and Party-Dynamic, Distributed Universal Samplers
	Related Work

	Preliminaries
	Impossibility of Distributed Samplers without Random Oracle
	Distributed Sampler CRSs Cannot be Used Twice
	Distributed Sampler CRSs Cannot be Short
	Distributed Sampler CRSs Cannot be (too) Nice

	Succinct and Unbounded Universal Samplers
	Our Succinct Universal Sampler
	Building Unbounded Universal Samplers from Polynomially Secure Primitives

	Party-Dynamic Distributed Universal Samplers
	One-Time, Party-Dynamic DUS
	Reusable, Maliciously Secure Construction
	Party-Dynamic, Ideal Public-Key PCFs.

	Additional Preliminaries
	Distributed Samplers
	Indistinguishability Obfuscation
	Puncturable PRFs
	Somewhere Statistically Binding Hash Functions
	Garbled Circuits
	Simulation-Extractable NIZKs
	Notions of Entropy

