
Short paper: Diversity Methods for Laser Fault
Injection to Improve Location Coverage

Marina Krček
Delft University of Technology

Delft, The Netherlands
m.krcek@tudelft.nl

Thomas Ordas
STMicroelectronics

Rousset, France
thomas.ordas@st.com

Stjepan Picek
Radboud University

Nijmegen, The Netherlands
stjepan.picek@ru.nl

Abstract—In the first step of fault injection attacks, it is
necessary to perform fault injections for target characterization
to improve the chances of finding vulnerabilities that can be ex-
ploited in the second step. The second step is the attack, where the
vulnerabilities are used to break the security. This work considers
the parameter search on the laser fault injection parameters.
While this work can also be adjusted to find exploitable faults, the
objective here is to find as many faults as possible on the target
device. The goal comes from a security evaluation perspective
to perform a successful target characterization. Previous works
propose several methods, such as the memetic algorithm or
hyperparameter tuning techniques. However, we notice a problem
concerning the convergence of such methods to one specific target
region, which is beneficial for an attack where one parameter
combination could be enough. Indeed, these search algorithms
lead to many observed vulnerabilities, but most seem to come
from the same area on the target, which could mean some
crucial vulnerabilities are missed. In this work, we propose
considering the location coverage of the algorithms and offer two
methods promoting diversity in tested parameter combinations
to increase it while still finding many faults. We compare the grid
memetic algorithm and evolution strategies to the performance
of the memetic algorithm and random search. Our results
show a benefit from introducing diversity to increase location
coverage, but the overall number of vulnerabilities is decreased
compared to the memetic algorithm. However, the number of
unique locations with vulnerabilities is similar between the three
evolutionary algorithms, with evolution strategies providing the
most distant locations.

Keywords-Laser Fault Injection, Parameter Search, Evolution-
ary Algorithms, Diversity, Location Coverage

I. INTRODUCTION

Small embedded devices often run cryptographic algorithms
for security purposes. From Kerckhoff’s principle, it is ex-
pected that without the secret key, the security is intact, even
knowing all the other information about the cryptographic sys-
tem. Thus, these algorithms are often mathematically secure,
and brute force attack is not feasible. However, this is not
the case. For example, implementation attacks, such as side-
channel attacks (SCA) and fault injection (FI) attacks, can
result in a successful security breach. Side-channel attacks are
passive, with the attacker measuring the time [10], power con-
sumption [9], or some other side-channel information from the
target device. Given a correlation between the processed data
and measured side-channel information, the attacker can obtain
secret information. On the other hand, fault injection attacks

are active, such that the attacker purposely interacts with the
device to cause it to make errors during the execution of the
underlining algorithm. Specifically, the attack can use external
sources, such as electromagnetic radiation [15], lasers [20],
temperature [7], and voltage glitching [8], to change data in
the memory, skip instructions, or change the instructions.

We focus on laser fault injections (LFI), as introduced
by Skorobogatov et al. [20]. The issue with laser injection
(and other types of fault injections) comes from the injection
parameters determined by equipment. With the laser, we have
to define the location of the laser shot on the targeted hardware
device (x and y coordinates), the distance from the microscope
lens, which is commonly used with lasers, and, lastly, we
also have the laser settings, such as laser intensity, delay, and
pulse width. Additionally, lasers can have pulses that demand
several more parameters to define. Another critical component
of successful injections is the trigger on when to perform the
injection. In security evaluation, the worst scenario is often
considered, where it is assumed that we have open access and
the trigger can be placed at any point in the execution. As one
can see, there are plenty of parameters we should consider.
Additionally, the possible values and combinations of those
parameters increase to the extent that exhaustive search is not
feasible for security evaluation and attack.

In the attack, the adversary aims to find the parameters
that lead to exploitable fault injection effects. These desired
effects also depend on the method for the attack, where
some of the popular attacks are differential fault analysis
(DFA) [2], statistical fault attack (SFA) [5], and statistical
ineffective fault attacks (SIFA) [4]. Each attack can require
different characteristics of the FI effects. Still, some commonly
desired and possibly exploitable faults include causing the
device to skip instructions or change values in memory. This
work does not consider exploitable faults but focuses on a
scenario where target characterization is needed, as in security
evaluation, to improve the FI parameter search by finding
more vulnerabilities and improving confidence that little to
no vulnerabilities are overlooked.

Instead of an exhaustive search, the location on the target
is often searched in a grid-like manner using the same laser
settings. Defined laser settings could come from previous
experience, which might be misleading if the target or the
bench is entirely new. If more options for laser settings are

tested over the whole target area, this process becomes time-
consuming, so a random search is applied as an alternative.
However, both approaches could miss interesting parameter
sets that lead to faults. In grid search, while the location is
relatively thoroughly inspected, fixing the laser settings can
contribute to overlooking some vulnerabilities. On the other
hand, random search is unreliable since it can find many
vulnerabilities or show a relatively low number of faults, which
might not be an accurate representation. Therefore, we see an
incentive to improve this process to search the FI parameter
search space more efficiently and in an automated way.

Evolutionary algorithms (EAs) were explored for laser fault
injection [12], voltage glitching [3], [18], [17], and electro-
magnetic fault injection [13], [19] since laser fault injections
are not the only type of injections suffering from the previ-
ously described issues. From the machine learning domain,
hyperparameter optimization techniques [21] and reinforce-
ment learning [14] were also investigated. Additionally, the
prediction ability of machine learning methods was explored
for portability issues in the FI parameter search [11] and
estimating the full target characterization [22].

This work indicates a new perspective somewhat disre-
garded in related works and proposes a way to address the
issue. The issue with aforementioned search algorithms, such
as genetic and memetic algorithms, is convergence to one
area explored more since they lead to one optimal solution.
Despite this being a suitable method for the attacker’s goal, we
consider target characterization in security evaluation. We want
to identify all possible faults, but considering an exhaustive
search is not feasible, we investigate guided techniques to
identify most existing vulnerabilities. Previous works show a
significant increase in the observed faults clustered in one sen-
sitive region [3], [13]. Thus, we propose including the location
(x-y) coverage as an additional factor to measure the success
of the algorithms for parameter search. We investigate the
performance of several algorithms: random search, memetic
algorithm, and two novel algorithms not explored before in the
FI setting. The new algorithms are Grid Memetic Algorithm
(GridMA) and Evolution Strategies (ES). The new algorithms
are considered as they promote the diversity of the parameter
combinations. By promoting diversity during execution, we
aim to achieve better location coverage and find more distant
vulnerabilities. Improved location coverage provides more
confidence that no vulnerable area is overlooked. Experiments
are performed with laser fault injections but should apply to
other fault injection types.

Our main contributions are:
• We raise an issue with the current methods proposed for

fault injection parameter search and investigate location
coverage as an additional metric of the algorithm perfor-
mance for the FI parameter search.

• We provide two methods that promote diversity in the
total parameter combination tested. Promoted diversity
helps with confidence that fewer vulnerabilities are
missed during the target characterization.

• We show that location coverage is increased using diver-

sity methods. From 38% coverage with the memetic al-
gorithm, we get 70% coverage using evolution strategies.
Evolution strategies also find more distant fault locations
on average. All three evolutionary algorithms find ≈ 30%
more unique locations with fail outcome than random
search.

II. PRELIMINARIES

A. Random Search (RS)

The random search (RS) approach randomly selects the
parameters for testing, where each parameter value has the
same probability of being selected. We also ensure that unique
parameter combinations are considered, avoiding repetition.

B. Memetic Algorithm (MA)

Memetic algorithm (MA) [16] is a genetic algorithm with
local search. The invocation of the local search can be done
in different places. A genetic algorithm (GA) is a population-
based algorithm inspired by biological evolution. The pop-
ulation is a set of individuals that represent solutions for
specific optimization problems addressed with the algorithm.
With a defined solution representation, the algorithm goes
through its process, which starts with generating the initial
population using an initialization procedure. Commonly, the
initialization procedure is random sampling, which was also
used in our case. The learning process uses GA operators
- selection, crossover, and mutation. The selector operator
selects specific solutions for the next operator. Usually, we
choose the best solutions we want to reproduce as they could
lead to even better solutions. For the selection, we need to
have each solution’s fitness value. The fitness value comes
from evaluating the solution with a fitness function specific to
the optimization problem. Thus, fitness is a relative measure
to compare one solution to the rest of the current population
or a different solution. Selected solutions are called parent so-
lutions, which are then recombined into one or more solutions
using the crossover operator. These created solutions are called
offspring. The third GA operator is the mutation operator. As
in biology, mutation introduces some random variations in the
offspring solutions. Mutation can be done by modifying some
parts of the solutions or changing the offspring with an entirely
new randomly generated solution. The mutation probability is
kept low to not converge to the random sampling method. One
can implement each of the explained operators differently, but
they all lead to creating a new population that continues to
another generation/iteration of the algorithm. To make sure
that we do not lose the best-observed solutions, a common
mechanism to use is elitism. Elitism explicitly keeps one or
more best solutions from the current population for the next
population. The iteration ends with selecting some solutions
for improvements using local search. In this work, we use the
memetic algorithm from [12]. There, the local search is the
Hooke-Jeeves algorithm, an optimization algorithm that does
not require derivatives of the objective function [6].

C. Grid Memetic Algorithm (GridMA)

We propose an algorithm that makes a grid over the target
area we want to explore and then runs the previously explained
MA in each grid region. We call this approach Grid Memetic
Algorithm (GridMA). The idea is to directly force the algo-
rithm to dedicate time and evaluations to all target regions in
the same manner to decrease the chances that vulnerabilities
in specific x-y locations are overlooked. For example, if the
target area is divided into a 3 × 3 grid, resulting in nine
independent regions, we run MA nine times for a single run
of GridMA. Hyperparameters of the MA are then adjusted as
the search space size becomes reduced, as we can use fewer
iterations, smaller populations, etc. The algorithm is a minor
modification to the existing MA, but it was a first step to
test the performance where we directly force the algorithm to
address all regions of the target.

D. Evolution Strategies (ES)

Evolution Strategies (ES), as GAs, belong to evolutionary
algorithms since the idea for the method also comes from
evolution [1]. The first version of ES consisted of a parent so-
lution from which we obtained one offspring using a procedure
like mutation. Then, the better solution is kept, and the better
solution continues to go through the same process until some
condition is met. From this first concept, ES developed through
time, and now, in a more general setting, we have (µ+, λ)-ES.
With this notation, the first version is (1+1)-ES since only
one parent and one offspring exist. Thus, µ is the number of
parents, and λ is the number of offspring. Additionally, we can
have µ/ρ notation for parents, where we have µ parents, but
if we use crossover, then ρ individuals from that set of parents
are taken for crossover. In the notation, we use + or , to mark
if we select solutions for the following generation from parents
and offspring (µ+ λ) or discard the parents (µ) and keep the
offspring regardless of fitness. With the described notation, we
use the (µ+λ)-ES. In the case of a single parent and a single
offspring, the convergence is again for one best solution. Thus,
we diversify by setting a µ > 1. This can be considered as
the population size used in MA. The initial set is at different
locations, and in each iteration, we generate new offspring
from each of those parents. The described process can lead
to distinct clusters with the local optima. Therefore, using
ES, diverse solutions are kept in the population that evolves
through iterations. With this, we also expect to decrease the
chances of overlooking vulnerabilities from the target.

III. EXPERIMENTAL SETUP

A. Target

In collaboration with STMicroelectronics, we utilize their
products for our experiments. Due to confidentiality reasons,
we cannot disclose the details of the targets and the utilized
laser bench. Revealing this information may provide malicious
attackers with what kind of bench they could use to attack
the products. The target for our experiments is an integrated
circuit (IC) constructed with 40nm technology. Since we use
lasers for fault injection, mechanical thinning was part of the

preparation for the experiments, which is a standard procedure.
During security evaluation, test programs are deployed on the
targeted products. The program running on our target device is
a test program where data words are loaded into a register from
the non-volatile memory (NVM). The target has no security
countermeasures as the purpose is target characterization rather
than attack breaking the device’s security. The implementation
is displayed in Pseudocode 1. The trigger_event function
is a monitored event that is used to inject faults at the desired
time - on loading a data word into a register (marked with
a comment in Pseudocode 1). The implementation is in the
C programming language. Three main functions are visible,
where the first one is the trigger event for triggering the laser
shot, and then the loading to the register is done. The injection
is aimed during the execution of that method. Lastly, we read
the register and compare the value with the expected data.
There is a fault if the register value has changed (fault class
fail). On the other hand, if the injection was unsuccessful and
the data is unmodified, equal to the expected value, then we
give this response a fault class pass. Lastly, if there is no
response from the device, we categorize this as a fault class
mute.

Pseudocode 1: Pseudocode of the program running on the
target device.

. . .
t r i g g e r e v e n t ()
l o a d r e g i s t e r () / / i n j e c t i o n here
r e a d r e g i s t e r ()
. . .

The FI parameter search is done on the following five
parameters - x, y, delay, laser pulse width, and intensity.
These parameters are commonly used in literature and practice
during a security evaluation [11], [13]. We use a subset of
the available values for each of the five parameters, defined
according to the known layout. The intervals are kept the
same for all experiments. While we cannot share the parameter
intervals as they are specific to the product and laser bench,
we note that there are 370 772 710 possible combinations of
the parameter values. The exhaustive search with the defined
subset of possible values takes around 643 days if we consider
that one laser shot takes ≈ 0.15 seconds. Additionally, since
we perform the laser shot several times with the same param-
eters, this would increase the necessary time to complete the
exhaustive search. Thus, there is certainly a need for optimized
search methods to make the security evaluation feasible for
many products.

B. Algorithm Details

For all algorithms, we set that the maximum number of
FI parameter evaluations is 30 000, where we inject five times
with the same parameter combination. Thus, we evaluate 6 000
unique parameter combinations. The number of evaluations is
set as a limit for algorithm execution time, as in previous
works, it was shown that approximately that many evaluations
were used for successful convergence. We can obtain different

fault class responses since we perform five measurements with
the same parameter combination. We differ slightly in the fault
classification from the related work. In our results, we display
classes so that if there was even just one response with fail,
we consider it critical and count under fail comb. notation
meaning fail combination. We, therefore, disregard which
exact combination occurred when there was a fail and count it
all in one class. If we were considering a specific attack, these
classes might be different, and we could change the setup.
Since we are in a security evaluation scenario, any occurrence
of a fail response is critical. Other classes we display are
with 5/5 times mute response, a combination of mute and pass
referred to as mute pass, and lastly, there is a pass class where
only pass class occurred in five measurements.

Fitness function for all algorithms is calculated as
fP ·NP+fM ·NM+fF ·NF

NP+NM+NF
, where fP , fM , and fF represent the

fitness values for fault classes pass, mute, and fail, respectively.
NP , NM , and NF represent the number of times the pass,
mute, and fail class occurred out of the number of measure-
ments for a specific parameter set. The sum of NP , NM , and
NF is the number of measurements per parameter combina-
tion. This method is used in previous works, e.g., [12], [11].
The values for fP , fM , and fF are 1, 2, 10, respectively. The
values are slightly different as we make a larger difference
between the fitness of each class, forcing any fail combination
to have a larger fitness.

1) MA Hyperparameters: We use a population of size
100, with an elite size of 10. The initialization method is
random sampling without allowing duplicates. The selection
operator is the roulette wheel. We use uniform crossover and
mutation with a mutation probability of 0.05. Lastly, the local
search is the Hooke-Jeeves algorithm. Before evaluating the
whole population, we perform sorting using a greedy approach
based on the Manhattan distance between different locations
of the FI parameter combinations in the population. The
termination condition is the number of evaluations. Defined
hyperparameters stay the same in our experiments and are
taken based on information from previous work [12].

2) GridMA Hyperparameters: The GridMA algorithm’s
hyperparameters were explored more than MA, as it is a new
method. We performed quick tuning guided by experience
until we reached a satisfying convergence. Here, we describe
hyperparameters for the final version of the GridMA, whose
results are shown in Section IV. The MA running in each grid
has the same hyperparameters as described in III-B1, except
for some hyperparameters that we were able to decrease since
the areas explored are smaller. Thus, the population size is set
to 30, with an elite size of 5. We divide the area in 4×4 grid,
running 16 MA algorithms in total for one run of GridMA.
Since we keep the number of evaluations the same - 6 000
parameter combinations, each region can evaluate only 375 FI
parameter combinations.

3) ES Hyperparameters: Evolution Strategies are a new
approach, so we first explore different hyperparameters until
we reach competitive results. However, no extensive tuning
was performed, as we quickly got the reported performance.

More tuning could lead to better results. The reported results
come from ES with 40 parent solutions and 5 offspring. Initial-
ization is random sampling, while the number of evaluations
is the same and is the termination condition. As in MA and
GridMA, when we evaluate the entire set of solutions, we
first sort them using the same greedy approach based on
the different locations’ Manhattan distance. We do not have
crossover in this algorithm, but there is a uniform mutation,
where the mutation probability is 0.4, much higher than with
MA. Since there is no crossover, mutation is the only way
to introduce changes. Therefore, we use more significant
probability as the probability is for each specific dimension of
the parameter combinations, where with 40%, we will perform
the mutation from uniformly distributed possible values of the
given parameter. While forcing small local changes around
the parent is commonly used, there are more non-vulnerable
areas than vulnerable ones. So, in the FI parameter search,
we consider allowing more ‘jumps’ will benefit this domain.
However, in future work, we plan to test a more innovative
mutation operator, which starts with local changes but also
allows for more significant ‘jumps’.

IV. EXPERIMENTAL RESULTS

We run all the algorithms five times for more relevant
observations and report the average numbers. First, we look at
the percentage of observed fail responses as in previous work.
The average percentages are shown in Table I. Compared to
previous work [12], we see a similar increase in observed fail
responses between random search (RS) and memetic algorithm
(MA). We find more than 50× more FI parameter combina-
tions leading to fail response with MA. On the other hand,
in the two new methods that provide more diversity in the
population of the FI parameters, we observe less percentage
of fail responses. Considering that we use the same number of
evaluations, 6 000, we get fewer fail responses compared to the
previous MA algorithm. Compared to random search, we still
find ≈ 12× more fails with GridMA, and ≈ 7.5× more with
the ES search. The decrease in the percentage comes from the
fact that we force the GridMA to look even where there might
be no fail outcomes, and for ES, since we use only mutation,
the algorithm has more randomness than MA. However, as
mentioned, we try to address an issue not previously discussed
when evaluating the search algorithms for FI parameter search.

TABLE I: The average percentage of observed fault classes
from all tested parameter combinations (6 000) using four
different algorithms on the same IC. The mean is calculated
over five runs.

RS MA GridMA ES

fail comb. 0.61% 33.84% 7.54% 4.77%
mute 1.23% 3.23% 4.44% 4.53%
mute pass 0.79% 1.21% 2.24% 2.83%
pass 97.36% 61.72% 85.79% 87.88%

In security evaluation, there should be a certain confidence
that not many vulnerabilities are missed during the assessment
of the IC. That was the reason to explore algorithms that
promote diversity in the population to produce vulnerabilities
distant in the utilized 5D space. Most importantly, we want
distant solutions when looking at the observed vulnerabilities’
location (x-y). Thus, in Table II, we report the number of
unique parameter combinations with different fault classes and
the number of unique locations per fault class from those
parameter combinations. Again, these numbers are average
on five runs with each algorithm. The table has two columns
per algorithm, with the first showing the numbers from all
the tested parameter combinations and the second showing
the number of unique x-y locations. We also calculate what
we refer to as location coverage by dividing the number of
unique locations (2D) by the number of total tested unique
5D parameter combinations. The numbers of the location
coverage are in the row with the name Nb. loc./Nb. comb..
This number shows how much area we cover within the
tested parameter combinations. The numbers are quite small
if we look at all possible locations directly. To put it into
perspective, from all possible combinations (≈ 370 million),
we only test 0.00162% with 6 000 combinations. Unique tested
locations from all possible locations (2D) per algorithm are
4.27%, 1.67%, 2.02%, and 3.07% for RS, MA, GridMA, and
ES, respectively. We see an increase in the absolute location
coverage between different evolutionary approaches, but RS
still has the best result. In the table, we compare where the
difference is more prominent, as we want to see how much
diversity is there in an algorithm without forcing specifically
location diversity instead of whole parameter combination
diversity. The results show that RS has the best coverage
with 97.95% as the algorithm has no guidance. We force
unique 5D parameter combinations but not unique locations.
The worst location coverage is with MA (38.24%), which was
noticed and raised as an issue and motivation for this work.
GridMA and ES improve coverage with 46.36% for GridMA
and 70.29% for ES. Looking at the number of locations with
fail response compared to the number of tested locations, we
have 0.62%, 2.11%, 1.77%, and 1.11% fail locations for RS,
MA, GridMA, and ES, respectively. Thus, using any of the
evolutionary methods, we observe more locations with fail but
no increase with diversity methods compared to MA. However,
we get that only 2.38% of observed fail responses come from
unique locations when using MA. On the contrary, RS has
98.38%. GridMA and ES improve from MA with 10.88%
and 16.45% for GridMA and ES, respectively. We confirm
the assumption that exploiting the same and nearby locations
by testing different laser settings brings MA to find many
vulnerable parameter combinations. Comparing the unique
locations with fail response between MA, GridMA, and ES,
we see that the algorithms find a similar number of unique
spots with fail - around 48, which is around 30% more than
with RS (36.4).

Finding distant vulnerable locations is considered more
valuable, so we compare algorithms based on that information.

TABLE II: The number of unique parameter combinations and
x-y locations per fault class, and in total for all four algorithms.

RS MA GridMA ES

Nb. comb. | Nb. loc. 6000 5877.2 6000 2294.6 6000 2781.4 6000 4217.4
Nb. loc./Nb. comb. 0.9795 0.3824 0.4636 0.7029

fail comb. 37 36.4 2030.2 48.4 452 49.2 285.6 47
mute 74 73 194 60.4 266.2 70.4 271.6 93.2
mute pass 47.4 47 72.8 45.8 134.6 61.4 169.8 67.6
pass 5841.6 5723.4 3703 2218.8 5147.2 2704.8 5273 4088.6

We calculate the number of clusters based on the Manhattan
distance between two subsequent points. First, we sort the 2D
location points in the same manner for all algorithms, and the
Manhattan distance is calculated between them. Since we sort
the points, the points belong to the same cluster if the Man-
hattan distance is lower than a certain threshold. On the other
hand, if the distance is larger than a threshold, a new cluster is
formed. Table III shows the number of clusters averaged over
five runs. Thus, if the number of clusters is more significant,
the vulnerabilities are observed in more distant locations on
the target, which is the desired objective. We count as a cluster
when the Manhattan distance between two points is at least
ten steps. We also tested with 100 steps distance, and while
the number of clusters was smaller, the relative relation stayed
the same. These distances were reasonable for our setup, but
the threshold distance should be adjusted depending on the
size of the area one is testing. The results show that ES

TABLE III: The number of clusters based on Manhattan
distance between the unique x-y locations per fault class. The
threshold distance to count as a cluster is ten steps. The
number of collections is averaged over five runs.

Locations RS MA GridMA ES

fail comb. 28.4 24.6 28.2 34
mute 55.8 36.4 43.4 66.4
mute pass 36.4 30.4 37.8 49.2
pass 3770.8 1545.8 1716 2543.8

finds the most clusters with fail outcome, implying that the
observed locations are more distant than with other algorithms.
Comparing the number of unique locations with the number
of clusters, we have 78.02%, 50.83%, 57.32%, and 72.34%
locations are at least ten steps distant clusters for RS, MA,
GridMA, and ES, respectively.

To conclude, we compare the algorithms in seven differ-
ent aspects. As is done before, we compare the number of
parameter combinations with the fail response to the number
of all tested parameter combinations. We also compare the
number of locations with fail to the number of tested locations
in percentage and average numbers. From these three cases,
we can rank the algorithms so that MA performs best (1.3),
followed by GridMA (1.6), ES (3), and RS (4). We compare
the location coverage by calculating the percentage of unique
locations divided by unique 5D parameter combinations. Then

we look at the coverage of tested locations compared to all
possible locations. Lastly, we compare the number of clusters
and the percentage of points forming the clusters. In this case,
the average rank over those four cases is 1.25 for RS, 1.75
for ES, GridMA with a rank of 3, and MA with a rank of 4.

V. CONCLUSIONS AND FUTURE WORK

Previous works show the benefits of algorithms such as
memetic algorithm in finding vulnerabilities with FI parameter
combinations compared to commonly used random search.
These works consider the number of unique parameter com-
binations with fail responses for evaluation and comparison.
This work shows that coverage of the search is also crucial
information. Indeed, in security evaluation, we do not want to
neglect possibly exploitable vulnerabilities. Thus, we propose
diversity algorithms that promote variety in the population
of evolutionary algorithms. One such algorithm is evolution
strategies. Additionally, we reused the MA for the Grid
Memetic Algorithm approach to force the location coverage
improvement. We evaluate algorithms with seven scenarios,
where three are directly concerned with the number of ob-
served fail responses, and the other four measure coverage
with different metrics. As in previous works, MA shows the
best performance when only the number of faults is concerned,
even when locations are compared. However, the difference
between the other two evolutionary approaches is smaller
when the location is considered. On the other hand, cases
measuring coverage show that RS has the highest coverage,
followed by ES, while MA shows the worst results. The
best coverage comes from no guidance in the RS that would
confine the search to some regions. However, our results show
that despite having lower location coverage, all evolutionary
algorithms still find around 30% more unique locations with
fail responses than RS. Additionally, the ES algorithm had the
most significant number of clusters on average, meaning that
the locations observed with fail response are more distant than
those found with other algorithms.

We raise a critical concern for FI parameter search im-
provements. Different algorithms can be performed depending
on the objective of the parameter search, and this work
provides insights into different algorithms for a different intent
than before. In future work, we plan to define a metric that
considers the number of faults and coverage for evaluating FI
parameter search algorithms more systematically, mitigating
the need to compare and rank based on several distinct as-
pects. Additionally, we will consider more advanced diversity
algorithms that could provide better results on coverage and
the number of vulnerabilities without limiting the approach to
force diversity in locations rather than the entire parameter set.

REFERENCES

[1] Beyer, H.G., Schwefel, H.P.: Evolution strategies–a comprehensive in-
troduction. Natural computing 1, 3–52 (2002)

[2] Biham, E., Shamir, A.: Differential fault analysis of secret key cryp-
tosystems (1997)

[3] Carpi, R.B., Picek, S., Batina, L., Menarini, F., Jakobovic, D., Golub,
M.: Glitch it if you can: parameter search strategies for successful fault
injection. In: International Conference on Smart Card Research and
Advanced Applications. pp. 236–252. Springer (2013)

[4] Dobraunig, C., Eichlseder, M., Korak, T., Mangard, S., Mendel, F.,
Primas, R.: Sifa: Exploiting ineffective fault inductions on symmetric
cryptography. IACR Trans. Cryptogr. Hardw. Embed. Syst. 2018, Is-
sue 3, 547–572 (2018). https://doi.org/10.13154/tches.v2018.i3.547-572,
https://tches.iacr.org/index.php/TCHES/article/view/7286

[5] Fuhr, T., Jaulmes, E., Lomné, V., Thillard, A.: Fault attacks on aes with
faulty ciphertexts only. In: Proceedings of the 2013 Workshop on Fault
Diagnosis and Tolerance in Cryptography. p. 108–118. FDTC ’13, IEEE
Computer Society, USA (2013). https://doi.org/10.1109/FDTC.2013.18,
https://doi.org/10.1109/FDTC.2013.18

[6] Hooke, R., Jeeves, T.A.: “ direct search” solution of numerical and
statistical problems. J. ACM 8, 212–229 (1961)

[7] Hutter, M., Schmidt, J.M.: The temperature side channel and heating
fault attacks. In: International Conference on Smart Card Research and
Advanced Applications. pp. 219–235. Springer (2013)

[8] Kim, C.H., Quisquater, J.J.: Fault attacks for crt based rsa: New attacks,
new results, and new countermeasures. In: IFIP International Workshop
on Information Security Theory and Practices. pp. 215–228. Springer
(2007)

[9] Kocher, P., Jaffe, J., Jun, B.: Differential power analysis. In: Annual
international cryptology conference. pp. 388–397. Springer (1999)

[10] Kocher, P.C.: Timing attacks on implementations of diffie-hellman, rsa,
dss, and other systems. In: Proceedings of the 16th Annual Interna-
tional Cryptology Conference on Advances in Cryptology. p. 104–113.
CRYPTO ’96, Springer-Verlag, Berlin, Heidelberg (1996)

[11] Krček, M., Ordas, T., Fronte, D., Picek, S.: The more you know:
Improving laser fault injection with prior knowledge. In: 2022 Workshop
on Fault Detection and Tolerance in Cryptography (FDTC). pp. 18–29.
IEEE (2022)

[12] Krček, M., Fronte, D., Picek, S.: On the importance of initial solu-
tions selection in fault injection. In: 2021 Workshop on Fault De-
tection and Tolerance in Cryptography (FDTC). pp. 1–12 (2021).
https://doi.org/10.1109/FDTC53659.2021.00011

[13] Maldini, A., Samwel, N., Picek, S., Batina, L.: Genetic algorithm-based
electromagnetic fault injection. In: 2018 Workshop on Fault Diagnosis
and Tolerance in Cryptography (FDTC). pp. 35–42. IEEE (2018)

[14] Moradi, M., Oakes, B.J., Saraoglu, M., Morozov, A., Janschek, K.,
Denil, J.: Exploring fault parameter space using reinforcement learning-
based fault injection. In: 2020 50th Annual IEEE/IFIP International
Conference on Dependable Systems and Networks Workshops (DSN-
W). pp. 102–109. IEEE (2020)

[15] Moro, N., Dehbaoui, A., Heydemann, K., Robisson, B., Encrenaz, E.:
Electromagnetic fault injection: towards a fault model on a 32-bit
microcontroller. In: 2013 Workshop on Fault Diagnosis and Tolerance
in Cryptography. pp. 77–88. IEEE (2013)

[16] Moscato, P.: On evolution, search, optimization, genetic algorithms
and martial arts - towards memetic algorithms. Caltech Concurrent
Computation Program (10 2000)

[17] Picek, S., Batina, L., Buzing, P., Jakobovic, D.: Fault injection with
a new flavor: Memetic algorithms make a difference. In: International
Workshop on Constructive Side-Channel Analysis and Secure Design.
pp. 159–173. Springer (2015)

[18] Picek, S., Batina, L., Jakobović, D., Carpi, R.B.: Evolving genetic
algorithms for fault injection attacks. In: 2014 37th International Con-
vention on Information and Communication Technology, Electronics and
Microelectronics (MIPRO). pp. 1106–1111. IEEE (2014)

[19] Rais-Ali, I., Bouvet, A., Guilley, S.: Quantifying the speed-up offered
by genetic algorithms during fault injection cartographies. In: 2022
Workshop on Fault Detection and Tolerance in Cryptography (FDTC).
pp. 61–72. IEEE (2022)

[20] Skorobogatov, S.P., Anderson, R.J.: Optical fault induction attacks.
In: International workshop on cryptographic hardware and embedded
systems. pp. 2–12. Springer (2002)

[21] Werner, V., Maingault, L., Potet, M.L.: Fast calibration of fault injection
equipment with hyperparameter optimization techniques. In: Interna-
tional Conference on Smart Card Research and Advanced Applications.
pp. 121–138. Springer (2021)

[22] Wu, L., Ribera, G., Beringuier-Boher, N., Picek, S.: A fast characteriza-
tion method for semi-invasive fault injection attacks. In: Cryptographers’
Track at the RSA Conference. pp. 146–170. Springer (2020)

https://tches.iacr.org/index.php/TCHES/article/view/7286
https://doi.org/10.1109/FDTC.2013.18

	Introduction
	Preliminaries
	Random Search (RS)
	Memetic Algorithm (MA)
	Grid Memetic Algorithm (GridMA)
	Evolution Strategies (ES)

	Experimental Setup
	Target
	Algorithm Details
	MA Hyperparameters
	GridMA Hyperparameters
	ES Hyperparameters

	Experimental Results
	Conclusions and Future Work
	References

