
ModHE: Modular Homomorphic Encryption Using
Module Lattices

Potentials and Limitations

Anisha Mukherjee1, Aikata Aikata1, Ahmet Can Mert1, Yongwoo Lee2,
Sunmin Kwon2, Maxim Deryabin2 and Sujoy Sinha Roy1

1Graz University of Technology, Graz, Austria,
2Samsung Advanced Institute of Technology, Suwon, Republic of Korea

Abstract.
The promising field of homomorphic encryption enables functions to be evaluated
on encrypted data and produce results that mimic the same computations done on
plaintexts. It, therefore, comes as no surprise that many ventures at constructing
homomorphic encryption schemes have come into the limelight in recent years. Most
popular are those that rely on the hard lattice problem, called the Ring Learning with
Errors problem (RLWE). One major limitation of these homomorphic encryption
schemes is that in order to securely increase the maximum multiplicative depth, they
need to increase the polynomial-size thereby also increasing the complexity of the
design. We aim to bridge this gap by proposing a homomorphic encryption (HE)
scheme based on the Module Learning with Errors problem (MLWE), ModHE that
allows us to break the big computations into smaller ones. Given the popularity of
module lattice-based post-quantum schemes, it is an evidently interesting research
endeavor to also formulate module lattice-based homomorphic encryption schemes.
While our proposed scheme is general, as a case study, we port the well-known
RLWE-based CKKS scheme to the MLWE setting. The module version of the scheme
completely stops the polynomial-size blowups when aiming for a greater circuit depth.
Additionally, it presents greater opportunities for designing flexible, reusable, and
parallelizable hardware architecture. A hardware implementation is provided to
support our claims. We also acknowledge that as we try to decrease the complexity
of computations, the amount of computations (such as relinearizations) increases. We
hope that the potential and limitations of using such a hardware-friendly scheme will
spark further research.
Keywords: Homomorphic encryption, module lattice, hardware reusability

1 Introduction
The digital world is quite asymmetric: devices like cell phones are compact but compu-
tationally challenged, which is why we often need access to large off-site ‘cloud’ servers
with greater computing power. However, trust is a major issue with such outsourced
computations. For example, a hospital wants statistical analysis on the percentage of
patients with certain dominating illnesses and hence wants to send its patients’ medical
records to a research facility. Can the hospital be assured of the complete privacy and
protection of its data? One solution is that the hospital signs a privacy contract, and
relies on the honesty of the research facility. A better solution would be that the hospital
encrypts all its data beforehand and not rely on anybody for its own privacy. However
for it to be meaningful the research facility must be able to analyze the encrypted data

mailto:

2 ModHE: Modular Homomorphic Encryption Using Module Lattices

without any need for decryption and the hospital would still obtain the same analytical
results as the plain data would provide them. This is the very essence of Homomorphic
Encryption (HE).

In 1978, Rivest, Adleman, and Dertouzos [RAD78] conjectured that computations
could be performed effectively on homomorphically encrypted data without compromising
its security. For the next three decades however, the world only knew of partially homo-
morphic schemes (like RSA [RSA78] and ElGamal [Elg85]) that could support certain
fixed types of operations on the ciphertext. The breakthrough came in 2009 when Gentry
[Gen09] introduced the first Fully Homomorphic Encryption (FHE) scheme that could
perform arbitrary operations on homomorphically encrypted data. He showed that a some-
what homomorphic scheme could be made fully homomorphic with a process he named
‘bootstrapping’ through which ciphertexts can be ‘refreshed’, a way to homomorphically
evaluate the decryption circuit. His construction, although quite complex, sparked active
research and led to the introduction of other simpler homomorphic schemes. Brakerski et
al. [BV11a] proposed an FHE scheme whose security assumption was based on the classical
hardness of solving standard lattice problems in the worst-case, which is more well-known
as the Learning with Errors (LWE) problem. The dimension of the lattice determines the
scheme’s extent of security. Then, in 2011, [BV11b] and in 2012 [FV12] (BFV) ported
Brakerski’s scheme from standard LWE setting to LWE over algebraic rings with the Ring
Learning with Errors problem (RLWE). The BGV scheme[BGV11] is another popular
RLWE-HE candidate. The TFHE scheme [CGGI20] also uses LWE and the RLWE over
a torus but adopts a different bootstrapping procedure. CKKS/HEAAN [CKKS17] and
its residue number system (RNS) variant, [CHK+18b], are recent RLWE-based schemes
that incorporate homomorphic computation of data over the real and complex fields. In
spite of a series of significant advancements in the theoretical aspects of homomorphic
encryption, present-day homomorphic encryption schemes introduce a huge computation
overhead ranging from 104 to 105 compared to plaintext calculations. As a consequence,
software implementations of homomorphic encryption in general-purpose computers are
far from usable in the privacy-preserving outsourcing of computation.

To speed up homomorphic encryption significantly, multiple attempts to develop
customized hardware accelerators have surfaced in the last few years. These works range
from real acceleration works, for example, the GPU and FPGA-based accelerators [JKA+21,
BHM+20, MAK+23, AdCY+23, RLPD20, RJV+18, TRG+20, TRV20], to futuristic ASIC
designs [FSK+21, GVBP+22, KKK+22, SFK+22, KLK+22]. It becomes clear from their
impressive speedup records, that ASIC or FPGA-based hardware accelerators will be
fundamental to making homomorphic encryption usable for real-life privacy-preserving
computation. Studying the above-mentioned hardware acceleration works, we see that they
start with the mathematical representation of a given homomorphic encryption scheme and
make hardware-based building blocks to speed up the mathematical steps of the scheme.
Contrasting the typical hardware accelerator development cycle, our approach takes the
opposite direction and tries to answer the question Could homomorphic encryption schemes
be designed in a way that they become hardware-friendly by construction? Our approach
takes inspiration from the ongoing NIST post-quantum cryptography standardization
project. The post-quantum schemes that were designed based on the MLWE problem, offer
superior performance (in general) and flexibility than their RLWE-based counterparts.

The following two paragraphs present the motivation behind designing a hardware-
friendly homomorphic encryption scheme. Well-known homomorphic schemes like BGV,
BFV, or CKKS make use of RLWE for all scheme arithmetic. This means that applications
requiring complex operations would demand working with a bigger ciphertext modulus and
a corresponding polynomial degree. As an example, while polynomials of degree 212 and a
180-bit ciphertext modulus would suffice for homomorphic evaluation of a simple quadratic
function, an application performing logistic regression would require almost 4 times larger

3

ring and ciphertext modulus sizes. The security of the scheme goes hand-in-hand with the
size of the ciphertext modulus and the degree of the ring: a need for higher multiplicative
depth equates to choosing a bigger ciphertext modulus but to keep the level of security
intact a proportional increase in the ring size is equally imperative. These inevitable
variations in the parameter sets make optimizing the performance of a hardware accelerator
circuit considerably challenging when different applications have to be supported.

In post-quantum public-key cryptography, module lattice-based schemes such as
Saber [DKR+21], Kyber [SAB+21], Dilithium [BDK+21], etc., have been successful in
mitigating similar problems with varying parameter sets. With a fixed polynomial degree,
these schemes only have to switch between dimensions of the vector or the matrix of such
polynomials to incorporate changing security levels. Taking inspiration from that, this
paper gives the sketch of a module lattice-based homomorphic encryption scheme and
discusses its advantages and limitations compared to the state-of-the-art ideal lattice-based
schemes.

1.1 Our contributions
In this work, we present a leveled MLWE-based homomorphic encryption scheme and
as an instance, propose a module variant of CKKS [CKKS17] which we call, ModCKKS.
We analyze, in detail, varied perspectives that could favor the use of this scheme as well
as those that pose challenges. Then we take a step closer to our main goal of achieving
hardware reusability and flexibility within dynamic notions of cryptographic security.

Algorithmically, we try to retain the properties of the ring variant while adapting them
for modules, thereby realizing our motivation without having to make any drastic changes
to the heuristics of the original scheme. We investigate the consequences of choosing a
fixed base ring and then building upon the rank of the associated module depending on
the desired parameters for circuit depth and security.

We provide detailed algorithmic descriptions for the readers to understand the design
decisions and challenges. Through ModHE we reduce the computation complexity, however,
the amount of computations and storage required increases. We acknowledge this as a
trade-off for offering hardware reusability because the availability of physical resources
cannot be at par with the changing security caliber. With every such change, having to
replace a machine’s hardware or buying new ones would not be cheap. It is therefore
highly significant to note that our work addresses this issue and is able to present a way of
mitigating the expense.

The design methodology utilizes the multi-dimensional parallel processing opportunities
offered by ModHE and presents them in the context of RNS-CKKS. ModHE allows us
to continue processing small polynomials even when we require a higher depth. This is
because the number of polynomials packed in a module increases, but their size does
not increase. We show how these different components can be utilized mostly in parallel
and design the hardware accordingly. To the best of our knowledge, no literature exists
that discusses the implications of an MLWE-based homomorphic scheme in hardware. To
support our motivation, we provide area and performance results for a hardware accelerator
architecture targeting the Xilinx FPGA Alveo U280 card.

A proof-of-concept Sage implementation1 of the module-lattice-based leveled CKKS
homomorphic encryption scheme is provided.

Organisation: In Section 2, we provide mathematical details that will be useful to
build concepts in the rest of the paper. We also give a brief description of the important
sub-routines of the RNS-CKKS scheme. In Section 3, we present algorithmic details of
ModCKKS, the error bounds of important sub-routines, and also discuss the RNS represen-

1https://github.com/anonymous-sub-ches/Mod-CKKS

https://github.com/anonymous-sub-ches/Mod-CKKS

4 ModHE: Modular Homomorphic Encryption Using Module Lattices

tation. In section 4, we give the potentials and limitations related to a module-based HE
construction. The hardware design is proposed in Section 5 and Section 6 provides food
for thought toward future possibilities and modifications of ModHE constructions. Section
7 concludes the paper.

2 Mathematical background
2.1 Notation
Let N ∈ N be a power of two. For a number field Q[X]/(ϕ2N (X)) we denote R =
Z[X]/(ϕ2N (X)) as its ring of integers consisting of polynomials modulo the 2N -th cyclo-
tomic polynomial, ϕ2N (X) = XN + 1. Also, let Rq = R/qR be the residue ring of R
modulo an integer q. An element of Rq is a polynomial of the form, a(X) =

∑N−1
i=0 aiXi

with each of its coefficients in Zq. The Euclidean norm on the coefficient vector (ai) is
denoted simply by ∥a∥ while the l∞ norm is ∥a∥∞ such that ∥a∥∞ = supi|ai|. The l∞
norm of a polynomial a under the canonical embedding is denoted by ∥a∥can

∞ . We denote
the module of rank r over Rq as Rr

q.
Unless stated explicitly, we will use q to denote a ciphertext modulus. When discussing

the RNS version we will shift to a notation Q for the large ciphertext modulus which is a
product of the small primes qi.

Elements named in usual lowercase letters will denote single polynomials unless oth-
erwise explicitly specified to be integers; bold lowercase letters will represent a vector of
polynomials (except in sec 2.2 where we use this notation for a vector of integers) and
bold uppercase letters will denote multi-dimensional matrices. The Number Theoretic
Transform (NTT) of a polynomial a is represented by ã.

2.2 The Learning with Errors problem and its algebraic variants
The Learning with Errors, LWE problem was introduced by Regev [Reg05] in 2005. The
LWE problem is parameterized by two integers n ≥ 1 and q ≥ 2, and an error distribution
χerr. It has two variants: the search and the decision variant. The decision variant is
usually preferred for defining cryptographic primitives.

Decision Learning with Errors, LWE: The decision LWEn,q,χerr
problem states that for

a secret vector, s in some distribution χkey(Zn
q), random vector a sampled from a uniform

distribution U(Zn
q) and e sampled from χerr, it is infeasible to distinguish uniformly ran-

dom samples (a, b) ∈ Zn
q ×Zq from samples of the form (a, b = ⟨aT s⟩+e mod q) ∈ Zn

q ×Zq.

The Ring Learning With Errors, RLWE was introduced by Lyubashevsky et al. [LPR10]
for speeding up cryptographic constructions based on LWE.
Decision Ring Learning with Errors, RLWE: The decision RLWEN,q,χerr

problem
states that for a secret, s in some distribution χkey(Rq), a sampled from a uniform
distribution U(Rq) and e sampled from χerr, it is infeasible to distinguish uniformly ran-
dom samples (a, b) ∈ Rq×Rq from samples of the form (a, b = ⟨aT s⟩+e mod q) ∈ Rq×Rq.

While the LWE problem is known to be as hard as worst-case problems on Euclidean
lattices, RLWE is considered as hard as the problems are restricted over special classes of
ideal lattices. The Module Learning with Errors was introduced as a bridge between the
general LWE and RLWE and was discussed in detail by Langlois and Stehlé [LS15].

Decision Module Learning with Errors, MLWE: The decision MLWEN,r,q,χerr

problem states that for a secret, s in some distribution χkey(Rr
q), a sampled from

5

a uniform distribution U(Rr
q) and e sampled from χerr given uniformly random sam-

ples (a, b) ∈ Rr
q × Rq, it is hard to distinguish them from LWE samples of the form,

(a, b = ⟨aT s⟩+ e mod q) ∈ Rr
q ×Rq.

For a fixed number of samples, the MLWE problem can also be viewed in terms of linear
algebra by considering a matrix A whose rows consist of all the sampled ai’s. Interestingly,
for a commutative ring R, an R-algebra is an R-module which is also a ring. The set,
Mn(R) of all square n × n matrices over a commutative ring R with entries in R is
an R-algebra. While a multiplication between two module elements is not intrinsic, a
multiplication between two elements of Mn(R) will still make sense when perceived as
elements in a ring.

2.3 CKKS and RNS-CKKS
In a typical homomorphic encryption protocol, a client sends encrypted data to a cloud
server that performs computations on it and sends the encrypted results back to the client.
The client decrypts the received results locally to again obtain meaningful plaintext results.
The client has his own secret key to be able to en(de)crypt messages.

We give an intuitive description of an RLWE-based homomorphic encryption scheme
in the following part. Let a client’s secret-key be sk = (1, s) ∈ R2

q and the corresponding
public-key be pk = (b, a) ∈ R2

q. Client encrypts a message m using pk and obtains the
ciphertext ct← (c0 = v ·b+e0 +m, c1 = v ·a+e1) ∈ R2

q where ei is a Gaussian distributed
error-polynomial and v is a uniformly random polynomial. Assume that a cloud contains
two ciphertexts ct = (c0, c1) and ct′ = (c′

0, c′
1) ∈ R2

q of the client with respect to messages
m and m′ respectively. The cloud can compute a valid encryption of m + m′ simply by
adding the two ciphertexts as ctadd ← (c0 + c′

0, c1 + c′
1) ∈ R2

q. Computing encryption
of m · m′ is relatively complex and often differs based on the scheme. The basic idea
is that the multiplication of two ciphertexts will result in their respective components
being multiplied with each other, like, ctmult = (c0 · c′

0, c0 · c′
1 + c1 · c′

0, c1 · c′
1) ∈ R3

q.
This intermediate result has three polynomial components and can be decrypted using
(1, s, s2) but not using sk = (1, s). To again allow for decryption to happen using sk, a
‘Key-Switching’ operation is used to transform the three-component ciphertext ctmult back
into the usual two-component ciphertext ctrelin decryptable under (1, s). In this context,
key-switching is called ‘relinearisation’ as it produces a linear ciphertext.

Most ideal lattice-based homomorphic encryption schemes such as BGV [BGV11],
BFV [FV12], CKKS [CKKS17] and RNS-CKKS [CHK+18b] share a similar underlying
protocol structure. We give a brief description of RNS-CKKS [CHK+18b] as we will build
our MLWE construction upon it.

Residue Number System (RNS)
The Residue Number System makes use of the Chinese Remainder Theorem to represent
an integer as a vector of its residues modulo a basis of pairwise co-prime integers. The
same can also be applied to polynomials in rings. If a is a polynomial in the cyclotomic
ring RQ and C = {q0, · · · , qk−1} is a basis such that Q =

∏k−1
i=0 qi then, there is a ring

isomorphism from a ∈ RQ to its representation (a(0), a(1), · · · , a(k−1)) ∈
∏k−1

i=0 Rqi
being

applied coefficient-wise. In compact form, the RNS representation of a can be denoted
by [a]C. RNS proves useful for implementing HE schemes on hardware and software
platforms as it enables the parallelization of computations. Each polynomial involved in
the scheme’s routines has shares with respect to each small moduli in the basis. In other
words, polynomial arithmetic is done among smaller decomposed polynomials instead of
big polynomials modulo a big modulus. HE schemes using RNS choose prime moduli qi’s
so that they can utilise the advantage of Number Theoretic Transform (NTT) for fast
multiplications.

6 ModHE: Modular Homomorphic Encryption Using Module Lattices

RNS-CKKS
The original CKKS scheme could not support a double-CRT representation since the
rounding operation involved in the approximate arithmetic dictated the use of a power-of-
two ciphertext modulus. An RNS variant of CKKS appeared in [CHK+18b] by constructing
algorithms that could incorporate double-CRT without compromising on the benefits of
CKKS. We give a brief description of the important sub-routines of RNS-CKKS. For better
legibility, we will use only CKKS to denote them. Here, Ql is a product of q′

is up to an
arbitrary level l.

• CKKS.KeyGen(s): The secret s is sampled from a secret key distribution χkey such
that the secret key is sk = (1, s). The public key is, pk = (−a · s + e, a) ∈ R2

Ql
,

where the polynomial a is sampled from a uniform distribution U and the error e
from an error distribution χerr.

• CKKS.Enc(m): It encrypts a message m into a ciphertext ct = (c0, c1) = v · pk + (m +
e0, e1) ∈ R2

Ql
, with v sampled from a uniform distribution χenc.

• CKKS.Dec(ct): It returns an approximation of the message m, ⟨ct, sk⟩.

• CKKS.Add(ct, ct′): It adds the polynomial components of the two ciphertexts ct =
(c0, c1) ∈ R2

Ql
and ct′ = (c′

0, c′
1) ∈ R2

Ql
, and computes ctadd = (d0, d1) where

d0 = c0 + c′
0 ∈ R2

Ql
and d1 = c1 + c′

1 ∈ R2
Ql

.

• CKKS.Mult(ct, ct′): It multiplies two input ciphertexts ct = (c0, c1) ∈ R2
Ql

and
ct′ = (c′

0, c′
1) ∈ R2

Ql
, and computes d0 = c0 · c′

0 ∈ RQl
, d1 = c0 · c′

1 + c1 · c′
0 ∈ RQl

,
and d2 = c1 ·c′

1 ∈ RQl
. The output is the non-linear ciphertext d = (d0, d1, d2) ∈ R3

Ql
.

• CKKS.Relin(d, evk): It relinearises the result of CKKS.Mult and produces a ciphertext
with two polynomial components so that it is decryptable under the secret key. Let
d′

2[i] =
[
d2

]
qi

for 0 ≤ i < l. Now one needs to compute ct′′ = (c′′
0 , c′′

1) where c′′
0 =∑l−1

i=0 d′
2[i] · evk0[i] ∈ RpQl

and c′′
1 =

∑l−1
i=0 d′

2[i] · evk1[i] ∈ RpQl
. The final output is

the relinearized ciphertext ctrelin = (d0, d1) + (CKKS.ModDown(c′′
0), CKKS.ModDown(c′′

1))
(mod Ql). The CKKS.ModDown operation is used to reduce the coefficient modulus
from pQl to Ql.

• CKKS.Rescale(ct): It takes a ciphertext c ∈ RQl
with level l and produces a

ciphertext element with level l− 1. Let ct′ ∈ RQl−1 such that ct′[i] = ct[l] (mod qi)
for 0 ≤ i ≤ l − 1. Then, compute ct′′ = ct − ct′ ∈ RQl−1 . Finally, output the
rescaled ciphertext element ct′′ = q−1

l · ct′′ ∈ RQl−1 .

• CKKS.Rotate(ct, rtk): The slot rotation operation takes a ciphertext ct = (c0, c1) ∈
R2

Ql
and rotation key rtk and performs an automorphism and a key-switch of the

ciphertext polynomial coefficients. The ciphertext is then encrypted under a rotated
secret key.

The ciphertexts and keys are stored in NTT format to make the sub-routines described
above more efficient (polynomial multiplication becomes O(N log(N))). To provide, an
algorithmic overview of this we also describe the Algorithm 1 CKKS.Add , Algorithm 2
CKKS.Mult, Algorithm 3 CKKS.ModDown, and Algorithm 4 CKKS.Relin.

7

Algorithm 1 CKKS.Add [CHK+18b]
In: c = (c̃0, c̃1), c′ = (c̃′

0, c̃′
1) ∈ R2

Ql

Out: d = (d̃0, d̃1) ∈ R2
Ql

1: d̃0 ← c̃0 + c̃′
0

2: d̃1 ← c̃1 + c̃′
1

Algorithm 2 CKKS.Mult [CHK+18b]
In: ct = (c̃0, c̃1), ct′ = (c̃′

0, c̃′
1) ∈ R2

Ql

Out: d = (d̃0, d̃1, d̃2) ∈ R3
Ql

1: d̃0 ← c̃0 ⋆ c̃′
0, d̃2 ← c̃1 ⋆ c̃′

1
2: d̃1 ← c̃0 ⋆ c̃′

1 + c̃1 ⋆ c̃′
0

Algorithm 3 CKKS.ModDown [CHK+18b]
In: d̃ ∈ RpQl

Out: d̃′ ∈ RQl

1: t← INTT(d̃[l])
2: for i = 0 to l − 1 do
3: t̃← NTT(

[
t
]

qi
) ▷ in Zqi

4: d̃′[i]←
[
p−1 · (d̃[i]− t̃)

]
qi

5: end for

Algorithm 4 CKKS.Relin [CHK+18b]
In: d = (d̃0, d̃1, d̃2) ∈ R3

Ql
, ˜Evk0 ∈ Rl

pQl
, ˜Evk1 ∈ Rl

pQl

Out: d′ = (d̃′
0, d̃′

1) ∈ R2
Ql

1: for j = 0 to l − 1 do
2: d2[j]← INTT(d̃2[j]) ▷ in Zqj

3: end for
4: for j = 0 to l do ▷ Here ql is used to represent special prime p
5: (c̃′′

0 [j], c̃′′
1 [j])← 0

6: for i = 0 to l − 1 do
7: r̃ ← NTT(

[
d2[i]

]
qj

) ▷ in Zqj

8: c̃′′
0 [j]←

[
c̃′′

0 [j] + ˜Evk0[i][j] ⋆ r̃
]

qj
, c̃′′

1 [j]←
[
c̃′′

1 [j] + ˜Evk1[i][j] ⋆ r̃
]

qj

9: end for
10: end for
11: d̃′

0 ← d̃0 + CKKS.ModDown(c̃′′
0), d̃′

1 ← d̃1 + CKKS.ModDown(c̃′′
1)

2.4 Encoding using complex embeddings
Since we work with an underlying polynomial ring structure, we would also expect messages
to be in the form of polynomials. But more often than not data comes in the form of
vectors of plaintexts. [CKKS17] discusses a method to ‘pack’ multiple messages in one
ciphertext.

Let K be the cyclotomic field such that R ⊆ K. The complex canonical embeddings are
the ring homomorphisms τj : K → C such that for a 2N -th root of unity ξ, τj : ξ 7→ ξj where
j ∈ Z∗

2N . The canonical embedding τ : K → CN can be defined as, τ(z) = (τj(z))j∈Z∗
2N

,
z = (zj)j∈Z∗

2N
where addition and multiplication in CN are component-wise. Since τ−j = τ̄j ,

so there can exist a natural projection π : H → CN/2 where, H = {(zj)j∈Z∗
2N

: z−j =
z̄j , j ∈ Z∗

2N}. The encoding process thus involves transforming a vector z under the
inverse of π and then using the inverse of the canonical embedding with some rounding
operation to finally obtain a polynomial in R. Hence, a plaintext is the polynomial
m(X) = τ−1 ◦ π−1(z) ∈ R. The decoding procedure is simply, z = π ◦ τ(m(X)) ∈ CN/2.

8 ModHE: Modular Homomorphic Encryption Using Module Lattices

3 Proposed MLWE-HE scheme: ModCKKS
Let λ be a security parameter that governs the dimension of the underlying ring N , the
rank of the module r, the circuit depth L and the ciphertext modulus q > 0 and an
integer P > 0. For realizing a module lattice-based homomorphic encryption scheme, we
port the ring-based CKKS and RNS-CKKS to the MLWE setting. We name it ModCKKS.
Let, A ∈ Rr×r

q consist of polynomials a sampled uniformly from U(Rq), s be the secret
whose components are chosen randomly from r copies of the set HWT (h) of signed binary
polynomials {0,±1}N with the Hamming weight h and e be the error each of whose
polynomial coefficients is sampled independently from a discrete Gaussian distribution
DG(σ2), σ > 0. We also consider another distribution ZO(ρ) with 0 ≤ ρ ≤ 1 which
samples each entry in the vector also from {0,±1}N , but with probability ρ/2 for each
of −1, +1, and 1− ρ for zero. Let any message m ∈ R be encoded under some encoding
scheme, like the one described in section 2.

• ModCKKS.KeyGen(1λ): Generate a secret key sk = (1, s) with si ← HWT (h).
Sample ai ← U(Rq) for the random matrix A and ei ← DG(σ2) for the error vector e.
Generate public key pk = (b, A) = (−A · s + e, A) (mod q) ∈ Rr

q ×Rr×r
q . Generate

the switching key swk = (bswk, Aswk) = (−A ·s+e+P ·s′, A) (mod q) ∈ Rr
q×Rr×r

q

and similarly, the evaluation key evk = (bevk, Aevk) = (−A · s + e + P · s′′, A)
(mod q) ∈ Rr

q ×Rr×r
q , where the explicit forms of s′′ will be discussed later.

• ModCKKS.Enc(m) : We obtain a ciphertext encrypting a message m, ct = (c0, c1) =
(pk · v + (m + e, e′)) (mod q) ∈ Rq ×Rr

q, v ∈ Rr
q where the polynomials vi of vector

v are sampled as vi → ZO(0.5).

• ModCKKS.Dec(ct) : We obtain an approximation of the message after decryption
under sk, (co + c1 · s) (mod q) ≈ m.

• ModCKKS.Add(ct, ct′) : Given two ciphertexts ct and ct′, their sum is a sum of their
corresponding components.

ctadd = ct + ct′ = (c0 + c′
0, c1 + c′

1) (mod q) ∈ Rq ×Rr
q.

• ModCKKS.Mult(ct, ct′) : For the multiplication operation ′∗′ between two ciphertexts
ct and ct′ to be homomorphic we would like to have,

m ·m′ ≈ ModCKKS.Dec((c0, c1) ∗ (c′
0, c′

1))
≈ ModCKKS.Dec(c0, c1) ∗ ModCKKS.Dec(c′

0, c′
1)

≈ ((c0 + c1 · s) · (c′
0 + c′

1 · s)) (mod q)

≈ c0c′
0 + c0

r−1∑
i=0

c′
1isi + c′

0

r−1∑
i=0

c1isi +
r−1∑
i=0

r−1∑
j=0

c1ic
′
1jsisj .

We write the resultant ciphertext of the multiplication as, ctmult = d = (d0, d1, d2, d3) ∈
Rq ×Rr

q ×Rr
q ×R

r(r−1)/2
q where:

d0 = c0 · c′
0 d1i = c0 · c′

1i + c′
0 · c1i

d2i = c1i · c′
1i d3ij = c1i · c′

1j + c′
1i · c1j , i < j

with all the above arithmetic done modulo q.
The ciphertext thus obtained is ‘extended’ in the sense that it now has more compo-
nents than a usual ciphertext. For example, in the case of a module of rank 2, the
extended decryption equation would look like,

m ·m′ ≈ (d0 + d1 · s + d2 · s2 + d3 · s0s1) (mod q). (1)

9

So just after one multiplication, there is a growth in the number of ciphertext
components from 2 to 4. These changes are not desirable in the design and we
would want to find a way to get ctmult to mimic a usual ciphertext so that it can be
decrypted by the usual secret key components, sk. Like, for eqn. 1 it would mean
that we would want to look for expressions d′

0 and d′
1 such that it can be rewritten

approximately as, d′
0 + d′

1 · s ≈ d0 + d1 · s + d2 · s2 + d3 · s0s1.
The concepts of relinearization and rescaling come in as a method for converting a
degree 2 ciphertext again into a degree 1 ciphertext that can be decrypted under the
secret key sk.

• ModCKKS.Relin(ctmult) : Let P > q be an integer that will be used to control the
increase in error after multiplication.
Continuing with our example of module rank 2, in order to do away with the non-
linear terms (in s) from eqn. (1) with respect to d2 and d3, we take help of the
following evaluation keys:

evkd2 = (−Ad2 · s + e + P · s2, Ad2) (mod P · q)
evkd3 = (−Ad3 [0] · s + e + P · s0s1, Ad3 [0]) (mod P · q)

where for a rank of two Adi
is sampled uniformly from R2×2

P ·q and Ad3 [0] is a vector
of uniformly random polynomials.
We can now define the relinearization components as,

d′
0 = (d0 + P −1 · d2 · evkd2 [0] + P −1 · d3 · evkd3 [0]) (mod q)

d′
1 = (d1 + P −1 · d2 · evkd2 [1] + P −1 · d3 · evkd3 [1]) (mod q)

where components of d2 and d3 have been assumed to have been lifted (modulus
switch) from residue ring modulo q to residue ring modulo P ·q as is done in [CKKS17].
Hence, the central idea here is that by using evaluation keys we adjust the terms
that correspond to secret key components of the form

∑r−1
i=0

∑r−1
j=0 sisj , that is,

relinearization keys are encryptions of these secret key components.
For a general rank r module, these keys have the form, evk = (−A · s + e + P ·∑

i

∑
j≥i sisj , A) (mod P · q), where, 0 ≤ i, j < r and, A ∈ Rr×r

P ·q . So, ctrelin =
(d′

0, d′
1) =

(
d0+P −1(d2·evkd2 [0]+d3·evkd3 [0]), d1+P −1(d2·evkd2 [1]+d3·evkd3 [1])

)
(mod q) ∈ Rq ×Rr

q.

• ModCKKS.Rescale(ct) : Since every message has an inherent scaling factor, say ∆ ≥ 1
to preserve a certain degree of precision, multiplications between ciphertexts also
result in an exponential increase in the scaling factor size. Let, at a level l, 0 < l ≤ L,
ql = ∆l · q0. Therefore, to keep the scale constant and also to reduce the noise, we
can define the rescaling operation of a ciphertext ct in a level l to a level l − 1 as,
ct′ =

⌊
ql−1

ql
· ct

⌉
(mod ql−1).

Additionally, we also mention the two subroutines of CKKS called rotation and conjugation.
It is intuitive to understand how messages in the same i-th plaintext slot of a ciphertext
could be added or multiplied. However, to operate between messages in two different
plaintext slots, there should be a way to permute data easily across slots of the ciphertext.
In this regard, permutations and rather automorphisms of the associated algebraic ring can
be efficiently used for the process of rotation of slots. Like, for a polynomial a in a power-of-
two cyclotomic ring R replacing it with a(k)(X) = a(Xk) (mod ϕ2N (X)), k ∈ Z∗

2N , k > 1
would result only in a permutation of the coefficients. In particular, κk : a(X)→ a(Xk)
(mod ϕ2N (X)) would serve as the suitable rotation map. So a ciphertext ct encrypting a

10 ModHE: Modular Homomorphic Encryption Using Module Lattices

message m with respect to a secret key s would have a ‘rotated’ ciphertext κk(ct) which
is a valid encryption of κk(m) with secret key κk(s). This operation is equivalent to a
key-switching technique similar to the ring setting and requires a switching key swk. Notice
that one of the generating sets of the group of units Z∗

2N is {5,−1} as the integer 5 has
an order N/2 in Z∗

2N . If k = 5i−j (mod 2N) for 0 ≤ i, j < N/2, then m(ξ5i−j

j) = m(ξi),
which resembles a permutation of the plaintext slots.

• ModCKKS.Rotate(ct, rtk) : The associated rotation key can be written as, rtk =
(−Arot · s + e + P · κk(s), Arot) (mod P · q). The rotated ciphertext is ct′ =
(c0, 0) + (P −1 · c1 · rtk) (mod q) ∈ Rq ×Rr

q.

• ModCKKS.Conjugate(ct, cjk) : Another property to note here is that for 2N -th
primitive roots of unity ξj , we know ξ̄j = ξ−1

j . Then for a polynomial a in R,
a(ξj) = a(ξ̄j) = a(ξ−1

j). Considering k = −1 for the mapping κk, the ciphertext c̄t
can be seen as the encryption of the conjugate z̄ of a vector z. The conjugate key is
cjk = (−Acj · s + e + P · κ−1(s), Acj) (mod P · q) and c̄t = (c0, 0) + (P −1 · c1 · cjk)
(mod q) ∈ Rq ×Rr

q.

3.1 Noise estimations
Note that in a ring setting, the error bound grows in proportion to the size of the ring.
Instead, in a module setting, the size of the ring remains fixed and the change in the error
bound follows the rank of the module. For a similar security level, the lattice dimension
N · r of an MLWE instance with the rank r and ring dimension N will be roughly equal
to the ring dimension N ′ of the RLWE instance. Therefore the error growth in an MLWE
instance with lattice dimension N · r will be similar to an RLWE instance with ring size
N ′.

We discuss the following error estimations along the lines of [CKKS17], [CHK+18b], and
[CS16]. First, we mention a few facts about the various distributions that the polynomials
have been sampled from: Let all sampled coefficients be independent and identically
distributed, and let σ2 be the variance of each such coefficient. Then, a polynomial
sampled from a uniform distribution U over Rq has a variance of q2N/12, a polynomial
sampled from the discrete Gaussian distribution DG(σ2) of mean centered around zero has
variance σ2N and a polynomial sampled from ZO(ρ) has variance ρN . For a distribution
HWT (h) over signed binary integers {0,±1} the variance is just its Hamming weight,
h. In the case of a multiplication of two independent random variables sampled from
Gaussian distributions with variances σ2

1 and σ2
2 , the high-probability bound is set to

16σ1σ2. As a consequence of the law of large numbers, the high-probability bound on the
(ring) canonical embedding norm is taken to be 6σ.

Lemma 1. The error induced during encryption is bounded by Benc = 16rσ(N/
√

2 +√
hN) + 6σ

√
N .

Proof. Consider the decryption equation of a ciphertext ct encrypting a message m.

c0 + c1 · s = ((pk[0] · v + m + e) + (pk[1] · v + e′) · s) (mod q)
= (m + epk · v + e + e′ · s) (mod q)

= (m +
r−1∑
i=0

eipk
· vi + e +

r−1∑
i=0

e′
i · si) (mod q)

Let, E = (
∑r−1

i=0 eipk
· vi + e +

∑r−1
i=0 e′

i · si). The upper bound can then be established

11

with the following inequality:

∥E∥can
∞ ≤ r · 16 · σ ·N√

2
+ 6σ

√
N + r · 16σ

√
hN

= 16rσ(N/
√

2 +
√

hN) + 6σ
√

N

Lemma 2. Intuitively, the error bound after one addition is the sum of the error bounds
corresponding to the individual ciphertexts.
Lemma 3. The error induced in the rescaling step is bounded by Bres = 6

√
N/12 + r ·

16
√

hN/12.
Proof. The error induced during rescaling is because of the fact that we try to approximate
a ciphertext ct with ct′ using ql−1

ql
ct. Thus an error bound Eres can be found on the

error vector using the expression,

ct′ − ql−1

ql
ct (mod ql−1) = (ϵ0, ϵ1)

Assuming that each coefficient of the polynomials in the error vector has an approximate
variance of 1/12, we write the error bound during the decryption of this vector by the
following inequality:

((ϵ0, ϵ1), s) = (ϵ0 +
r−1∑
i=0

ϵ1i · si)

≤ ∥ϵ0∥can
∞ +

r−1∑
i=0
∥ϵ1i · si∥can

∞

≤ 6
√

N/12 + r · 16
√

hN/12.

Lemma 4. The cumulative error bound after a homomorphic multiplication is the sum
of the bounds of Bres + Bmult + Brelin where Bmult and Brelin are the upper bounds of
errors induced during the actual multiplication steps and relinearization respectively.
Proof. Homomorphic multiplication involves a series of operations, starting with actual
multiplications, relinearization, and rescaling. Each of these steps contributes to the error
growth. First, note that the multiplication m ·m′ is approximated by (co +c1 ·s)(c′

o +c′
1 ·s)

(mod q) with respect to the two ciphertexts ct and ct′. Let ⟨ct, s⟩ = m + E (mod q) and
⟨ct′, s⟩ = m′ + E′ (mod q) such that ∥E∥can

∞ and ∥E′∥can
∞ have error bounds B and B′

respectively, then we may write the error expression corresponding to multiplication as:

(m + E)(m′ + E′) (mod q) = (mm′ + mE′ + m′E + EE′) (mod q)
∥Emult∥can

∞ ≤ ∥mE′ + m′E + EE′∥can
∞

= µB′ + µ′B + BB′

where, µ and µ′ are respectively the upper bounds of the message space of m and m′. Next,
some error is also induced during relinearization when d2 and d3 are multiplied with their
respective evaluation keys. More precisely we can write the error during relinearization
with the following inequality:

Erelin = P −1 · ((d2 · ed2 + d3 · ed3) (mod P · q))

∥Erelin∥can
∞ ≤ P −1 · r(r + 1)/2 · 16

√
Nq2

12 σ
√

N

12 ModHE: Modular Homomorphic Encryption Using Module Lattices

3.2 RNS representation for ease of implementation: ModRNS.CKKS

In section 2.3, we described how the RNS representation can improve the efficiency of HE
operations. A natural extension would be to also define an RNS variant of ModCKKS. We
can define the module isomorphism between Rr

Q and the module
∏k−1

i=0 Rr
qi

which is the
direct product of the modules Rr

qi
, i ∈ {0, · · · , k − 1} such that,

a = (at)r−1
t=0 7→ ([a0]C , [a1]C , · · · , [ar−1]C) = [a]C

and [at]C = (a(0)
t , a

(1)
t , · · · , a

(k−1)
t) ∈

∏k−1
i=0 Rqi . For simplicity, we will use either the

notation a(j) or A(j) as per context to specify that each component of the module element
has its corresponding j residue polynomials. Following are the RNS variants of all ModCKKS
algorithms. We denote them by ModRNS.

• ModRNS.Setup(q, L, η; 1λ): For security parameter λ we choose an integer q which
determines the approximate basis, levels L as before, a bit precision η, ensuring
qj/q ∈ (1− 2−η, 1 + 2−η). We choose a prime p and the basis C = {q0, · · · , qL} such
that at a certain level 0 ≤ l ≤ L, Cl = {q0, · · · , ql}.

• ModRNS.KeyGen(1λ): Generate a secret key sk = (1, s), si ← HWT (h).
Sample a = [a]C’s such that the coefficients of each such residue polynomial are
sampled uniformly from U over

∏L
j=0Rr

qj
. Generate public key pk =

(
pk(j) =

(b(j), A(j)) ∈ Rr
qj
×Rr×r

qj

)
0≤j≤L

and evaluation key, evk =
(
evk(j) = (b(j)

evk, A(j)
evk) ∈

Rr
pqj
×Rr×r

pqj

)
0≤j≤L+1, where b and bevk are defined as in ModCKKS.KeyGen.

• ModRNS.Enc(m) : We obtain a ciphertext, ct = (ct(j))0≤j≤L such that each ct(j) =
(pk(j) · v + (m + e, e′)) (mod qj) ∈ Rqj ×Rr

qj
.

• ModRNS.Dec(ct) : For a ciphertext ct = (ct(j))0≤j≤L retrieve an approximation of
the message m under the secret key sk , ⟨ct(0), sk⟩ (mod q0) ≈ m.

• ModRNS.Add(ct, ct′) : Given two ciphertexts ct = (ct(j))0≤j≤l and ct′ = (ct′(j))0≤j≤l

both in
∏l

j=0Rr+1
qj

at some arbitrary level l, their sum is given by, ctadd =
(ctadd

(j))0≤j≤l ∈
∏l

j=0Rr+1
qj

where ctadd
(j) = ct(j) + ct′(j) (mod qj), 0 ≤ j ≤ l

following the algorithm ModCKKS.Add.

• ModRNS.Mult(ct, ct′) : For ciphertexts ct =
(
ct(j) = c

(j)
0 , c1

(j))
0≤j≤l

and ct′ =(
ct′(j) = c′

0
(j)

, c′
1

(j))
0≤j≤l

, we write the result ctmult = d of ModCKKS.Mult in the
RNS form as (d(j)

0 , d1
(j), d2

(j), d3
(j)),

d
(j)
0 = c

(j)
0 · c′

0
(j)

d
(j)
1t = c

(j)
0 · c′

1t
(j) + c′

0
(j) · c(j)

1t

d
(j)
2t = c

(j)
1t · c′

1t
(j)

d3tt′ = c
(j)
1t · c′

1t′
(j) + c′

1t
(j) · c1t′

(j), t < t′, 0 ≤ t, t′ < r

with all arithmetic done (mod qj), 0 ≤ j ≤ l.

• ModRNS.Relin(ctmult) : We need to relinearize the module components (d2
(j))0≤j≤l

and (d3
(j))0≤j≤l. As in CKKS.Relin and in ModCKKS.Relin we perform an equivalent

of the ‘modulus up’ operation of each d2
(j) and d3

(j) intrinsically using a prime
p. Also, recall from ModCKKS.Relin that the evaluation key, evk is in the modulo
domain of P · q. In RNS representation we denote each of its residues (mod pqj)

13

by evk(j) = (b(j)
evk, A(j)

evk) ∈ Rr
pqj
×Rr×r

pqj
. Let, (d′′

0)(j) =
(
d2

(j) · evkd2
(j)[0] + d3

(j) ·
evkd3

(j)[0]
)
∈ Rpqj

and (d1
′′)(j) =

(
d2

(j) ·evkd2
(j)[1]+d3

(j) ·evkd3
(j)[1]

)
∈ Rr

pqj
. The

relinearized ciphertext is then ctrelin such that each of its residue shares is given by,
(ctrelin)(j) = (d′

0
(j)

, d′
1

(j)))0≤j≤l such that d′
0

(j) = (d(j)
0 + CKKS.ModDown

(
(d′′

0)(j)))
(mod qj) ∈ Rqj

and d′
1

(j) = (d1
(j) + CKKS.ModDown

(
(d1

′′)(j))) (mod qj) ∈ Rr
qj

.

• ModRNS.Rescale(ct): A ciphertext ct = (ct(j))0≤j≤l ∈
∏l

j=0Rqj ×
∏l

j=0Rr
qj

is
changed into a ciphertext ct′ = (ct′(j))0≤j≤(l−1) =

(
q−1

l ·(c
(j)
0 −c

(l)
0), q−1

l ·(c1
(j)−c1

(l))
(mod qj)

)
0≤j≤(l−1) ∈

∏l−1
j=0Rqj ×

∏l−1
j=0Rr

qj
.

We present pseudo-codes of the major ModRNS algorithms- Algorithm 5, 6, 7, 8. We
use the representation

∏l
j=0Rr

qj
= Rr

Ql
in the pseudo-codes.

Algorithm 5 ModRNS.Add Algorithm
In: ct = (c̃0, c̃1), ct′ = (c̃′

0, c̃′
1) ∈ Rr+1

QL

Out: d = (d̃0, d̃1) ∈ Rr+1
QL

1: d̃0 ← c̃0 + c̃′
0

2: for i = 0 to r − 1 do
3: d̃1[i]← c̃1[i] + c̃′

1[i]
4: end for

Algorithm 6 ModRNS.Mult Algorithm
In: ct = (c̃0, c̃1), ct′ = (c̃′

0, c̃′
1) ∈ Rr+1

QL

Out: d = (d̃0, d̃1, d̃2, d̃3) ∈ RQl
×Rr

Ql
×Rr

Ql
×R

r(r−1)/2
Ql

1: d̃0 ← c̃0 ⋆ c̃′
0

2: for i = 0 to r − 1 do
3: d̃1[i]← c̃0[i] ⋆ c̃′

1[i] + c̃1[i] ⋆ c̃′
0[i]

4: d̃2[i]← c̃1[i] ⋆ c̃′
1[i]

5: for j = 1 to r − 1 do
6: if i < j then
7: d̃3[i, j]← c̃1[i] ⋆ c̃′

1[j] + c̃1[j] ⋆ c̃′
1[i]

8: end if
9: end for

10: end for

4 Potentials and limitations of MLWE-based homomorphic
encryption

Although the shift from rings to modules looks almost seamless, there are a few factors we
need to analyze when deciding the module rank and the security of the scheme.

4.1 Hardware-reusability and fixed optimization target
RLWE-based homomorphic encryption schemes set their ring dimensions based on the
desired level of security and the multiplicative depth. For example, CKKS [CKKS17] sets
the degree of polynomial to 214 or 215 for the multiplicative depths 6 and 10 respectively.
Note that, an increase in the multiplicative depth increases the ciphertext modulus size

14 ModHE: Modular Homomorphic Encryption Using Module Lattices

Algorithm 7 ModRNS.SubRelin Algorithm
In: d́ ∈ Rr

Ql

In: ˜Evk0 ∈ Rr·L
pQL

, ˜Evk1 ∈ Rt·r·L
pQL

Out: d = (d́0, d́1) ∈ Rr+1
QL

1: for k = 0 to r − 1 do
2: for j = 0 to l do ▷ Here ql is used to represent special prime p
3: for i = 0 to l − 1 do
4: ũ← NTT(INTT(

[
d́[i][k]

]
)qj) ▷ in Zqj

5: d́0 ← d́0 + ˜Evk0[i][j][k] ⋆ ũqj

6: d́1[j, k]←
∑r−1

t=0 ˜Evk1[i][j][k][t] ⋆ ũqj

7: end for
8: end for
9: end for

Algorithm 8 ModRNS.Relin Algorithm
In: d = (d̃0, d̃1, d̃2, d̃3) ∈ RQl

×Rr
Ql
×Rr

Ql
×R

r(r−1)/2
Ql

In: ˜Evk0 ∈ R
(r·(r+1)·L)/2
pQL

, ˜Evk1 ∈ R
(r·r·(r+1)·L)/2
pQL

Out: d′ = (d̃′
0, d̃

′
1) ∈ Rr+1

QL

1: t0, t1 ← 0 ▷ (t0, t1) ∈ R
((r+1)·L)/2
pQL

×R
(r·(r+1)·L)/2
pQL

2: (t0[0], t1[0])← ModCKKS.SubRelin(d̃2, ˜Evk0[0], ˜Evk1[1])
3: for j = 1 to (r + 1)/2 do
4: (t0[j], t1[j])← ModCKKS.SubRelin(d̃3[j − 1], ˜Evk0[j], ˜Evk1[j])
5: end for
6: d̃

′
0 ←

∑(r+1)/2
j=0 t0[j] + CKKS.ModDown(c̃′′

0), d̃
′
1 ←

∑(r+1)/2
j=0 t1 + CKKS.ModDown(c̃′′

1)

which results in diminished security. To compensate for the security loss, the dimension of
the lattice is increased by increasing the polynomial degree. The polynomial size changes
by a factor of two for different multiplicative depths when cyclotomic rings are used.

Such variations in the polynomial degree in the RLWE-based homomorphic encryption
scheme make hardware implementation of a parameter-flexible architecture challenging.
Furthermore, when the polynomial degree is 213 or larger, implementation of the large
accelerator circuit in hardware becomes very challenging due to low resource utilization,
placement, routing, slow clock frequency, and limited on-chip memory, as discussed
in [RLPD20, MAK+23].

MLWE-based homomorphic encryption scheme avoids these problems due to its modular
nature. This is explained as follows. When working with modules, we can choose a base
ring of some suitable (and small) dimension, say N = 2k, and then we can adjust the rank
r of the module as per our requirements. This is a good way to restrain the degree of the
polynomial from increasing every time we want more depth.

Furthermore, it becomes easier to optimize the ASIC/FPGA implementations as the
ring size is fixed and small in MLWE. For a given and fixed ring size in MLWE, hardware
architecture designers could now focus on optimizing the implementation (with fixed
parameters) to achieve better clock frequency, memory utilization, area optimization,
placement, routing, etc.

4.2 Increased scope for parallel computations
In our ModRNS construction, mod-switching and key-switching parts of the relinearization
step are performed on independent module components, (d2, d3) ∈ Rr

Ql
× R

r(r−1)/2
Ql

in

15

M
ul

tip
lic

at
io

n
R

el
in

ea
riz

at
io

n

Data exchange

Figure 1: An operation schedule of the relinearization step demonstrating massive paral-
lelism and limited communication for module-dimension r = 2

parallel. At the end of it, an accumulation is performed to combine all the results. For
the r = 2 setting discussed above, d2 has two ring elements, and d3 has one ring element.
Therefore, in total, we need to perform three relinearizations. All of these components are
data and computation-independent of each other through the relinearization until the very
end when accumulation is performed. Thus, in a multi-accelerator setting (common in
clouds), dedicated accelerators can be used to compute these three operations in parallel.
An example with three such accelerators is shown in Figure 1. We observe that until the
very end of the multiplication and key-switching, there was no communication required
between the accelerators. Note that frequent inter-accelerator data exchanges due to data-
dependent steps are problematic for parallel processing. The same applies to multi-threaded
or multi-processor software systems.

4.3 Ciphertext compression due to module rank reduction
Module-based homomorphic encryption scheme offers additional flexibility in determining
the dimension of the lattice problem to work with. This also let us adapt the module rank
depending on the size of the ciphertext modulus. In a leveled homomorphic encryption
scheme, the ciphertext modulus is initially the largest and then it gradually reduces with
the multiplicative depth. Therefore, we may scale down the lattice problem from the initial
dimension N · r to a smaller N · r′ where r > r′ while keeping the security of the scheme
in place. Smaller ciphertexts would also mean a reduced decryption complexity, lower
computation overhead, and smaller key size.

4.4 Message packing and Key size
As previously mentioned, the packing of plaintext messages does not increase with an
increase in the module dimension. So, applications that only need sparse packing can still
benefit from the added depth that ModHE provides. Note that, in view of the canonical

16 ModHE: Modular Homomorphic Encryption Using Module Lattices

embedding map τ : K → CN , the map (τ, τ, · · · , τ) will be an embedding from Kd → CNr,
r ≤ d. For an R-module M ⊆ Kd (if M is full rank then r = d) let us then denote this
embedding as τM . The set τM (M) is then a module lattice of dimension Nr. This map
could help to extend packing along the rank of a module and its use for applications that
necessarily require full packing of plaintexts could be explored.

Another limitation of using MLWE is that the number of (small) ring-level operations
as well as the number of polynomials in the keys increases quadratically with the module
dimension r. More generally, with the module rank r, there will be O(r2) polynomial mul-
tiplications where each polynomial is of size N/r coefficients. In comparison, homomorphic
multiplication in RLWE requires only 4 polynomial multiplications of size N coefficients.
Therefore, the proposed MLWE-based scheme performs more polynomial operations than
the corresponding RLWE-based scheme for the same parameter set. Although the number
of polynomials is higher in MLWE than in RLWE, the polynomials in MLWE are smaller
by r times than those in RLWE. Therefore, choosing a too-small ring size and a very large
module rank will not be an ideal design decision for a homomorphic encryption scheme.

Next, to understand how the rank r of the module affects the total number of keys,
we recall that for the secret vector s = {s0, · · · , sr−1}, we require relinearization keys
containing the product of every two of its components, that is,

∑r−1
i,j=0 sisj but with terms

of the form sisj and sjsi for a pair of (i, j) absorbed into the same relinearization key.
Thus the total number of keys would be r(r+1)

2 relinearization keys with respect to each
distinct quadratic secret component along with the usual r decryption keys. Choice of
optimal parameters thus depends mainly on the level of security we desire, the amount of
packing and multiplicative circuit depth an application demands, as well as polynomial
degree-relinearization key size tradeoffs based on computational feasibility.

5 Hardware architecture for ModRNS and its evaluation
In the literature, several ASIC- and FPGA-based hardware accelerators for homomorphic
encryption have been proposed. Present-day ASIC implementation papers [FSK+21,
KLK+22] typically use RTL-based behavioral models of their accelerators for obtaining
performance estimates. Several FPGA-based accelerators e.g., [MAK+23, AdCY+23,
RLPD20], etc., present performance results after implementing the full-stack system.

In this paper, along with a sage implementation, we define a proof-of-concept hardware
architecture for the proposed RNS-based and module lattice-based homomorphic encryption
scheme, write its RTL design, and evaluate its area and performance using the Xilinx
design tool for the Xilinx Alveo U280 accelerator card. We do not target a full system
implementation, for example, prototyping in actual hardware, as we believe the new module
lattice-based scheme is in its early stage and needs further algorithmic and mathematical
advancements before becoming ready for engineering explorations. We provide area and
performance estimates obtained after compiling the RTL of our accelerator using the Xilinx
toolchain.

5.1 Hardware architecture
Intuitively, the proposed MLWE-based homomorphic encryption scheme ModRNS adds an
additional layer of abstraction with respect to the RLWE-based RNS-CKKS scheme – a
module element is a collection of ring elements. Hence, RLWE-based and MLWE-based
homomorphic encryption schemes share very similar homomorphic routines and arithmetic
operations. For example, the relinearization operation of RNS-CKKS (Algorithm 4) is very
similar to the relinearization subroutine of ModRNS (Algorithm 7). Both operations include
NTT/INTT and multiplication with evaluation keys. The ModRNS performs the ring-
relinearization subroutine several times to perform the module-relinearization operation

17

Figure 2: High-level architecture of the proposed design which follows the ring-based
interconnect proposed in [MAK+23]. Each RPAU has a 16-core NTT coupled with a
16-core twiddle factor generator, an 8-core dyadic unit, and on-chip BRAM/URAMs.

as shown in Algorithm 8. Thus, a hardware architecture designed for an RLWE-based
homomorphic encryption scheme can be re-used for an MLWE-based scheme with very
few changes. For example, any accelerator architecture for the RNS-CKKS scheme can
be adapted to accelerate the homomorphic operations of the ModRNS. To that end, we
followed the design approach of an existing instruction-based accelerator architecture,
Medha [MAK+23], and showcase how with minimal changes it can efficiently support the
ModRNS scheme. As a proof of concept, we selected polynomial degree N as 214, module
dimension r as 2, and the number of small RNS primes as 15.

Medha’s [MAK+23] arithmetic units are designed for a polynomial size of N = 214.
Medha designs and implements residue polynomial arithmetic units (RPAU) for each small
RNS prime used in the RNS-CKKS scheme where each RPAU has an NTT (main) unit,
a dyadic unit, and on-chip memory for data and key storage. Medha can execute NTT
and dyadic operations in parallel and it tailored its computational resources accordingly
for implementing the relinearization operation of RNS-CKKS efficiently. For example,
the relinearization operation of RNS-CKKS requires one NTT and two evaluation key
multiplications (steps 7,8 of Algorithm 4). Thus, Medha used a 16-core NTT unit and a
4-core dyadic unit. In ModRNS, on the other hand, based on the module dimension r, the
relinearization operation needs r(r + 1)/2 evaluation key multiplications. For example, for
r = 2, it requires three multiplications. Thus, we used an 8-core dyadic unit instead of a
4-core dyadic unit in each RPAU.

Medha uses the Xilinx Alveo U250 card as the target platform and uses only on-chip
BRAMs and URAMs to store evaluation keys. As explained in Section 4, one limitation of
ModRNS is that the key size can increase with large module dimensions. Thus, using only
on-chip memory resources for storing the evaluation keys can become more challenging
for large module dimensions. To that end, for our proof-of-concept design, we selected
the Xilinx Alveo U280 card, equipped with a high bandwidth memory (HBM) providing
460GB/s, as our target platform. This high-speed data transfer eliminates excessive use of
on-chip memory, and it also enables storing evaluation keys in onboard HBM and reading
them during homomorphic operations without degrading the performance. The increased
key size of ModRNS does not have an impact on the performance as we utilize HBM’s
bandwidth to load the keys when needed. We employ 8 RPAUs where each RPAU can
support two small RNS primes by employing reconfigurable modular reduction units. For
the rest of the architecture, we followed the same approach as Medha.

We synthesized our RTL for the Xilinx Alveo U280 accelerator card using Vivado
2022.2. The synthesis results show that our design consumes only 700,773 LUTs, 463,293
FFs, 3,200 DSPs, 1,034 BRAMs, and 305 URAMs. It could achieve a clock frequency of
120MHz. A very high-level architecture diagram of the proposed accelerator is shown in
Fig. 2.

18 ModHE: Modular Homomorphic Encryption Using Module Lattices

5.2 Performance benchmarking
Estimated performance results for ModRNS.Add, ModRNS.Mult and ModRNS.Relin operations
are presented in Table 1. It should be noted that the proposed accelerator can be used in
a multi-FPGA setting where each FPGA implements the accelerator of Fig. 2 to improve
the performance as shown in Fig. 1. Cloud providers such as Amazon AWS use FPGA
stacks for accelerating computation. Our base ring dimension (when r = 1) is 214, with
the packing of 213, and for higher multiplicative depth, we increase the r = 2. Note that
at this point, we have more multiplicative depth; however, the maximum available packing
stays fixed at 213.

Table 1: Estimated performance figures

N r Depth Homomorphic Perf. (Cycle) Perf. (Cycle)
(L) Operation (1 accelerator) (r(r+1)

2 accelerators)
214 1 7 Add. 1,152 1,152
214 1 7 Mult. 2,560 2,560
214 1 7 Mult.+Relin. 99,448 99,448
214 2 15 Add. 3,456 1,152
214 2 15 Mult. 13,824 4,608
214 2 15 Mult.+Relin. 1,193,376 397,792

The fixed amount of packing is one limitation of the ModRNS scheme, as we go higher
up in the module dimension, the amount of packing does not increase, unlike RLWE-based
schemes. However, large packing is only important for applications that require full packing,
for example, machine learning training. Most machine learning inference applications
do not require full packing and, on the other hand, might require more depth. Thus,
using ModRNS for the later cases is likely to give comparable run time to the RLWE-based
constructions and ensure hardware reusability.

We also provide an estimated benchmark for the logistic regression inference. For
computing the logistic function g(x) = 1/(1 + ex) homomorphically, we use Taylor’s
polynomial approximation up to polynomial degree-9 i.e., g(x) ≈ 1/2 + 1/4x− 1/48x3 +
1/480x5 − 17/80640x7 + 31/1451520x9. The proposed ModRNS hardware architecture
consumes 3.8M clock cycles and requires 31.7 ms using a three accelerator setting (see
Fig. 1) when the FPGA-based accelerator runs at 120 MHz. The same application
consumes 1.8 seconds using the SEAL library with polynomial degree N = 215 on one
Intel(R) Core(TM) i5-10210U CPU running at 1.60GHz. Although we only provide
estimates for logistic regression, similar estimations can be extended to other function
approximations, for example, sine, cosine, etc.

6 Future scopes
6.1 Bootstrapping
The next step would be to analyze the bootstrapping procedure of ModCKKS. [CHK+18a]
presents a series of procedures for bootstrapping in the CKKS/HEAAN scheme. It
aims at refreshing or recrypting a ciphertext in a low level of modulus q to produce an
equivalent ciphertext with a larger modulus Q ≫ q such that both of these ciphertexts
decrypt approximately to the same message over their respective moduli. This approximate
decryption would also involve a modular reduction resulting in a polynomial of a substantial
degree and evaluating it during refreshing would again consume a lot of levels. To avoid
this problem, [CHK+18a] instead proposed approximating the modular reduction function
with a scaled sine function, both possessing a periodic behavior in a given suitable

19

interval and ultimately exploiting its relation with the complex exponential function
to arrive at a desired polynomial approximation. The sequence of high-level routines
involved in CKKS bootstrapping consists of ModRaise, CoeffToSlot, EvalExp, ImgExt and
SlotToCoeff respectively. Since these routines are part of a homomorphic recryption,
they are built upon combinations of fundamental homomorphic functions. For example,
CoeffToSlot and SlotToCoeff involve linear transformations of vectors over plaintext
slots, which in turn involve homomorphic multiplication and rotation functions. Likewise,
conjugation is required for extracting the imaginary part of the recrypted ciphertext in
ImgExt. Therefore, bootstrapping in the module variant of CKKS could follow along these
lines. It serves as an interesting future scope for a complete analysis of the process as well
as its feasible implementation.

6.2 Other HE schemes and MLWE
At the beginning of the paper we listed quite a few popular HE schemes such as the
BFV/FV [FV12] and the BGV [BGV11] schemes that rely on the RLWE problem. Although
these schemes differ in their concrete noise management techniques, they share a similar
underlying structure for their arithmetic circuits. For example, the polynomials involved
in the en(de)cryption routines of the FV [FV12] HE scheme could be replaced by module
elements such that the ciphertext ct now becomes a vector of polynomials contained in
the module. The decryption is still valid as all modulo operations with respect to the
ciphertext modulus or the plaintext modulus can be performed component-wise over the
resulting module elements. In fact, homomorphic functions like homomorphic addition or
multiplication could be extended to operate over module elements just like we showcased
in our MLWE construction. One has to however apply the relinearization techniques with
some caution so as to maintain the correctness of the decryption. A similar intuition can
also be applied to the BGV scheme [BGV11] as well. Therefore, it is not just CKKS but
also the other RLWE-based HE schemes that could be ported to the module setting.

6.3 Memory-centric platforms
Various memory-centric platforms like processing-in-memory (PIM) and computing-in-
memory (CIM) are emerging as the future paradigms of computing. PIM [AMY+23]
platforms are ideal when there are several small computation tasks in an algorithm.
Operands for the small tasks could be fetched fast from the near-memory, then processed
in the processing elements of the platform, and finally written back in low latency to the
near-memory. CIM platforms [VJV+19] offer computation in memory so data movement
is minimal and is within the memory. The smaller the computation requirement, the easier
it is to perform it in this setting.

The proposed ModRNS is a suitable algorithm for such platforms, owing to its ability to
process smaller rings for homomorphic operations instead of one big ring. The NTT/INTT
transforms, and the remaining homomorphic operations can be more efficiently evalu-
ated using the ModRNS setting. Expensive operations such as relinearization are done
independently on each non-linear module element. Even within a module element that
consists of a component equal to the rank of the module, each of the module components
is operated upon separately. Once these operations are done, a data share is indeed
required to add the result to the remaining elements. The proposed hardware architecture
is optimized for module components and features parallel dyadic units that can utilize all
three relinearization key components in parallel.

In the emerging memory landscape, Micron Technology Inc. introduced 3D stacked
memory [Sch], called Hybrid Memory Cube (HMC) that offers an aggregate bandwidth of
480 GBps at much lower power and a smaller form factor. More recently AMD designed
the 3D Chiplets [JP] that can offer up to 2 terabytes of bandwidth. Such Chiplets feature

20 ModHE: Modular Homomorphic Encryption Using Module Lattices

DRAM2

DRAM0

DRAM1

DRAM3

Pa
ck

ag
e

Su
bs

tr
at

e

M
od

R
N

S
pr

oc
es

si
ng

 u
ni

t
+

M
em

or
y

C
on

tr
ol

le
r

ModRNS processing unit + Memory controller

DRAM

Figure 3: (a) shows the side-view of the 3D stack where the bottom layer after the substrate
is the logic layer and the upper layers are memories, and (b) is a cross-sectional view to
show the TSV interconnects connecting multiple different layers.

multiple DRAM layers stacked on top of each other and connected through high bandwidth
through silicon vias (TSVs) as shown in Figure 3. The bottom layer of the 3D stack is the
logic layer which contains the necessary computation circuits for the memory controller.
As the logic layer could not be arbitrarily large, a small ModRNS processing unit could
be placed in the logic layer. All the above memory layers can be used to store all the
required keys and ciphertexts. Thus, the data can be fetched fast via TSVs (i.e., high
bandwidth), processed fast in the ModRNS processing unit, and then stored back fast into
the memory layers. In this way, data will never leave the memory cube and thus the
classical memory-processor data transfer bottlenecks will be avoided.

7 Conclusions and future directions

In this paper we discussed the use of module lattices to instantiate homomorphic encryption
schemes and as a concrete construction present ModCKKS, a module version of the original
ring-based CKKS scheme. We then proposed an RNS variant of the scheme to further
improve the efficiency of HE operations. The original scheme’s sub-routines were adapted
in a way that requires minimum deviations from its fundamental approaches. In addition
to reaping the benefits of the ring-based CKKS, our scheme also aids hardware reusability
and long-lived parallel computation opportunities. It eliminates the need to increase the
polynomial degree every time we want our scheme to support a higher level of security.
We also made a few important observations about module-based HE constructions: while
ModHE can flourish in environments that need greater circuit depth, selecting appropriate
parameter trade-offs is vital for achieving its full potential. It faces shortcomings in the
context of an increased load on memory and the amount of computations. We discussed
a hardware implementation that is consistent with our primary goal of reusability and
flexibility. We then provided results for homomorphic operations in the module setting.

MLWE-based HE schemes are fairly unexplored: there is immense scope for investigation
of its properties and designing concrete hardware prototypes. Efficient bootstrapping for
ModHE and detailed analysis of MLWE instances of other popular ring-based HE schemes
are the major future direction of research in this area. We believe that experimenting
with different parameter sets and improving functionalities of module-based homomorphic
encryption in order to overcome its limitations would indeed be worthwhile.

21

8 Acknowledgement
This work was supported in part by the Samsung Electronics co. ltd., Samsung Advanced
Institute of Technology and the State Government of Styria, Austria – Department
Zukunftsfonds Steiermark.

References
[AdCY+23] Rashmi Agrawal, Leo de Castro, Guowei Yang, Chiraag Juvekar, Rabia Tugce

Yazicigil, Anantha P. Chandrakasan, Vinod Vaikuntanathan, and Ajay Joshi.
FAB: an fpga-based accelerator for bootstrappable fully homomorphic en-
cryption. In IEEE International Symposium on High-Performance Computer
Architecture, HPCA 2023, Montreal, QC, Canada, February 25 - March 1,
2023, pages 882–895. IEEE, 2023.

[AMY+23] Kazi Asifuzzaman, Narasinga Rao Miniskar, Aaron R. Young, Frank Liu, and
Jeffrey S. Vetter. A survey on processing-in-memory techniques: Advances and
challenges. Memories - Materials, Devices, Circuits and Systems, 4:100022,
2023.

[BDK+21] Shi Bai, Léo Ducas, Eike Kiltz, Tancrède Lepoint, Vadim Lyubashevsky, Peter
Schwabe, Gregor Seiler, and Damien Stehlé. CRYSTALS-Dilithium. Proposal
to NIST PQC Standardization, Round3, 2021. https://csrc.nist.gov/Pr
ojects/post-quantum-cryptography/round-3-submissions.

[BGV11] Zvika Brakerski, Craig Gentry, and Vinod Vaikuntanathan. Fully homo-
morphic encryption without bootstrapping. Electron. Colloquium Comput.
Complex., page 111, 2011.

[BHM+20] Ahmad Al Badawi, Louie Hoang, Chan Fook Mun, Kim Laine, and Khin
Mi Mi Aung. Privft: Private and fast text classification with homomorphic
encryption. IEEE Access, 8:226544–226556, 2020.

[BV11a] Zvika Brakerski and Vinod Vaikuntanathan. Efficient fully homomorphic
encryption from (standard) lwe. In 2011 IEEE 52nd Annual Symposium on
Foundations of Computer Science, pages 97–106, 2011.

[BV11b] Zvika Brakerski and Vinod Vaikuntanathan. Fully homomorphic encryption
from ring-lwe and security for key dependent messages. In Phillip Rogaway,
editor, Advances in Cryptology – CRYPTO 2011, pages 505–524, Berlin,
Heidelberg, 2011. Springer Berlin Heidelberg.

[CGGI20] Ilaria Chillotti, Nicolas Gama, Mariya Georgieva, and Malika Izabachène.
Tfhe: fast fully homomorphic encryption over the torus. Journal of Cryptology,
33(1):34–91, 2020.

[CHK+18a] Jung Hee Cheon, Kyoohyung Han, Andrey Kim, Miran Kim, and Yong-
soo Song. Bootstrapping for approximate homomorphic encryption. In
Jesper Buus Nielsen and Vincent Rijmen, editors, Advances in Cryptology
– EUROCRYPT 2018, pages 360–384, Cham, 2018. Springer International
Publishing.

[CHK+18b] Jung Hee Cheon, Kyoohyung Han, Andrey Kim, Miran Kim, and Yongsoo
Song. A full RNS variant of approximate homomorphic encryption. In Carlos
Cid and Michael J. Jacobson Jr., editors, Selected Areas in Cryptography -

https://csrc.nist.gov/Projects/post-quantum-cryptography/round-3-submissions
https://csrc.nist.gov/Projects/post-quantum-cryptography/round-3-submissions

22 ModHE: Modular Homomorphic Encryption Using Module Lattices

SAC 2018 - 25th International Conference, Calgary, AB, Canada, August 15-
17, 2018, Revised Selected Papers, volume 11349 of Lecture Notes in Computer
Science, pages 347–368. Springer, 2018.

[CKKS17] Jung Hee Cheon, Andrey Kim, Miran Kim, and Yong Soo Song. Homomorphic
encryption for arithmetic of approximate numbers. In Tsuyoshi Takagi and
Thomas Peyrin, editors, Advances in Cryptology - ASIACRYPT 2017 - 23rd
International Conference on the Theory and Applications of Cryptology and
Information Security, Hong Kong, China, December 3-7, 2017, Proceedings,
Part I, volume 10624 of Lecture Notes in Computer Science, pages 409–437.
Springer, 2017.

[CS16] Ana Costache and Nigel P. Smart. Which ring based somewhat homomorphic
encryption scheme is best? In Kazue Sako, editor, Topics in Cryptology -
CT-RSA 2016, pages 325–340, Cham, 2016. Springer International Publishing.

[DKR+21] Jan-Pieter D’Anvers, Angshuman Karmakar, Sujoy Sinha Roy, Frederik
Vercauteren, Jose Maria Bermudo Mera, Michiel Van Beirendonck, and
Andrea Basso. SABER. Proposal to NIST PQC Standardization, Round3,
2021. https://csrc.nist.gov/Projects/post-quantum-cryptography/
round-3-submissions.

[Elg85] T. Elgamal. A public key cryptosystem and a signature scheme based on
discrete logarithms. IEEE Transactions on Information Theory, 31(4):469–
472, 1985.

[FSK+21] Axel Feldmann, Nikola Samardzic, Aleksandar Krastev, Srini Devadas, Ron
Dreslinski, Karim Eldefrawy, Nicholas Genise, Christopher Peikert, and Daniel
Sanchez. F1: A fast and programmable accelerator for fully homomorphic
encryption (extended version), 2021.

[FV12] Junfeng Fan and Frederik Vercauteren. Somewhat practical fully homomorphic
encryption. IACR Cryptol. ePrint Arch., page 144, 2012.

[Gen09] Craig Gentry. A Fully Homomorphic Encryption Scheme. PhD thesis, Stan-
ford, CA, USA, 2009.

[GVBP+22] Robin Geelen, Michiel Van Beirendonck, Hilder V. L. Pereira, Brian Huffman,
Tynan McAuley, Ben Selfridge, Daniel Wagner, Georgios Dimou, Ingrid
Verbauwhede, Frederik Vercauteren, and David W. Archer. Basalisc: Flexible
asynchronous hardware accelerator for fully homomorphic encryption, 2022.

[JKA+21] Wonkyung Jung, Sangpyo Kim, Jung Ho Ahn, Jung Hee Cheon, and Younho
Lee. Over 100x faster bootstrapping in fully homomorphic encryption through
memory-centric optimization with gpus. IACR Transactions on Cryptographic
Hardware and Embedded Systems, 2021(4):114–148, Aug. 2021.

[JP] Cadence John Park, Product Management Group Director for Advanced
IC Packaging. Chiplets and heterogeneous packaging are changing system
design and analysis. https://www.cadence.com/content/dam/cadence-w
ww/global/en_US/documents/tools/ic-package-design-analysis/ch
iplets-and-heterogeneous-packaging-are-changing-system-desig
n-and-analysis.pdf accessed on 14 April, 2023.

[KKK+22] Sangpyo Kim, Jongmin Kim, Michael Jaemin Kim, Wonkyung Jung, John
Kim, Minsoo Rhu, and Jung Ho Ahn. Bts: An accelerator for bootstrappable
fully homomorphic encryption. In Proceedings of the 49th Annual International

https://csrc.nist.gov/Projects/post-quantum-cryptography/round-3-submissions
https://csrc.nist.gov/Projects/post-quantum-cryptography/round-3-submissions
https://www.cadence.com/content/dam/cadence-www/global/en_US/documents/tools/ic-package-design-analysis/chiplets-and-heterogeneous-packaging-are-changing-system-design-and-analysis.pdf
https://www.cadence.com/content/dam/cadence-www/global/en_US/documents/tools/ic-package-design-analysis/chiplets-and-heterogeneous-packaging-are-changing-system-design-and-analysis.pdf
https://www.cadence.com/content/dam/cadence-www/global/en_US/documents/tools/ic-package-design-analysis/chiplets-and-heterogeneous-packaging-are-changing-system-design-and-analysis.pdf
https://www.cadence.com/content/dam/cadence-www/global/en_US/documents/tools/ic-package-design-analysis/chiplets-and-heterogeneous-packaging-are-changing-system-design-and-analysis.pdf

23

Symposium on Computer Architecture, ISCA ’22, page 711–725, New York,
NY, USA, 2022. Association for Computing Machinery.

[KLK+22] Jongmin Kim, Gwangho Lee, Sangpyo Kim, Gina Sohn, John Kim, Minsoo
Rhu, and Jung Ho Ahn. Ark: Fully homomorphic encryption accelerator with
runtime data generation and inter-operation key reuse, 2022.

[LPR10] Vadim Lyubashevsky, Chris Peikert, and Oded Regev. On ideal lattices
and learning with errors over rings. In Henri Gilbert, editor, Advances
in Cryptology – EUROCRYPT 2010, pages 1–23, Berlin, Heidelberg, 2010.
Springer Berlin Heidelberg.

[LS15] Adeline Langlois and Damien Stehlé. Worst-case to average-case reductions
for module lattices. Des. Codes Cryptogr., 75(3):565–599, 2015.

[MAK+23] Ahmet Can Mert, Aikata, Sunmin Kwon, Youngsam Shin, Donghoon Yoo,
Yongwoo Lee, and Sujoy Sinha Roy. Medha: Microcoded hardware accelerator
for computing on encrypted data. IACR Trans. Cryptogr. Hardw. Embed.
Syst., 2023(1):463–500, 2023.

[RAD78] R L Rivest, L Adleman, and M L Dertouzos. On data banks and privacy
homomorphisms. Foundations of Secure Computation, Academia Press, pages
169–179, 1978.

[Reg05] Oded Regev. On lattices, learning with errors, random linear codes, and
cryptography. In Proceedings of the Thirty-Seventh Annual ACM Symposium
on Theory of Computing, STOC ’05, page 84–93, New York, NY, USA, 2005.
Association for Computing Machinery.

[RJV+18] S. Sinha Roy, K. Järvinen, J. Vliegen, F. Vercauteren, and I. Verbauwhede.
HEPCloud: An FPGA-based multicore processor for FV somewhat homo-
morphic function evaluation. IEEE Transactions on Computers, 2018.

[RLPD20] M. Sadegh Riazi, Kim Laine, Blake Pelton, and Wei Dai. Heax: An architec-
ture for computing on encrypted data. In Proceedings of the Twenty-Fifth
International Conference on Architectural Support for Programming Lan-
guages and Operating Systems, ASPLOS ’20, page 1295–1309, New York, NY,
USA, 2020. Association for Computing Machinery.

[RSA78] R. L. Rivest, A. Shamir, and L. Adleman. A method for obtaining digital
signatures and public-key cryptosystems. Commun. ACM, 21(2):120–126, feb
1978.

[SAB+21] Peter Schwabe, Roberto Avanzi, Joppe Bos, Leo Ducas, Eike Kiltz, Tancrede
Lepoint, Vadim Lyubashevsky, John M. Schanck, Gregor Seiler, and Damien
Stehle. CRYSTALS-KYBER. Proposal to NIST PQC Standardization, 2021.
https://csrc.nist.gov/Projects/post-quantum-cryptography/roun
d-3-submissions.

[Sch] Andreas Schlapka. Micron announces shift in high-performance memory
roadmap strategy. https://www.micron.com/about/blog/2018/august/
micron-announces-shift-in-high-performance-memory-roadmap-str
ategy accessed on 14 April, 2023.

[SFK+22] Nikola Samardzic, Axel Feldmann, Aleksandar Krastev, Nathan Manohar,
Nicholas Genise, Srinivas Devadas, Karim Eldefrawy, Chris Peikert, and
Daniel Sanchez. Craterlake: A hardware accelerator for efficient unbounded

https://csrc.nist.gov/Projects/post-quantum-cryptography/round-3-submissions
https://csrc.nist.gov/Projects/post-quantum-cryptography/round-3-submissions
https://www.micron.com/about/blog/2018/august/micron-announces-shift-in-high-performance-memory-roadmap-strategy
https://www.micron.com/about/blog/2018/august/micron-announces-shift-in-high-performance-memory-roadmap-strategy
https://www.micron.com/about/blog/2018/august/micron-announces-shift-in-high-performance-memory-roadmap-strategy

24 ModHE: Modular Homomorphic Encryption Using Module Lattices

computation on encrypted data. In Proceedings of the 49th Annual Interna-
tional Symposium on Computer Architecture, ISCA ’22, page 173–187, New
York, NY, USA, 2022. Association for Computing Machinery.

[TRG+20] Jonathan Takeshita, Dayane Reis, Ting Gong, Michael Niemier, X. Sharon Hu,
and Taeho Jung. Algorithmic acceleration of b/fv-like somewhat homomorphic
encryption for compute-enabled ram. Cryptology ePrint Archive, Report
2020/1223, 2020. https://ia.cr/2020/1223.

[TRV20] Furkan Turan, Sujoy Sinha Roy, and Ingrid Verbauwhede. Heaws: An
accelerator for homomorphic encryption on the amazon aws fpga. IEEE
Transactions on Computers, 69(8):1185–1196, 2020.

[VJV+19] Naveen Verma, Hongyang Jia, Hossein Valavi, Yinqi Tang, Murat Ozatay,
Lung-Yen Chen, Bonan Zhang, and Peter Deaville. In-memory computing:
Advances and prospects. IEEE Solid-State Circuits Magazine, 11(3):43–55,
2019.

https://ia.cr/2020/1223

	Introduction
	Our contributions

	Mathematical background
	Notation
	The Learning with Errors problem and its algebraic variants
	CKKS and RNS-CKKS
	Encoding using complex embeddings

	Proposed MLWE-HE scheme: ModCKKS
	Noise estimations
	RNS representation for ease of implementation: ModRNS.CKKS

	Potentials and limitations of MLWE-based homomorphic encryption
	Hardware-reusability and fixed optimization target
	Increased scope for parallel computations
	Ciphertext compression due to module rank reduction
	Message packing and Key size

	Hardware architecture for ModRNS and its evaluation
	Hardware architecture
	Performance benchmarking

	Future scopes
	Bootstrapping
	Other HE schemes and MLWE
	Memory-centric platforms

	Conclusions and future directions
	Acknowledgement

