
S𝔲𝔟𝔩𝔬𝔫K : Sublinear Prover P𝔩𝔬𝔫K
Arka Rai Choudhuri ∗ Sanjam Garg † Aarushi Goel ‡ Sruthi Sekar § Rohit Sinha ¶

Abstract

We propose S𝔲𝔟𝔩𝔬𝔫K — a new zero-knowledge succinct non-interactive argument of knowledge
(zkSNARK). S𝔲𝔟𝔩𝔬𝔫K builds on P𝔩𝔬𝔫K [EPRINT’19], a popular state-of-the-art practical zkSNARK.
Our new construction preserves all the great features of P𝔩𝔬𝔫K , i.e., it supports constant size proofs,
constant time proof verification, a circuit-independent universal setup, as well as support for custom
gates and lookup gates. Moreover, S𝔲𝔟𝔩𝔬𝔫K achieves improved prover running time over P𝔩𝔬𝔫K . In
P𝔩𝔬𝔫K , the prover runtime grows with circuit size. Instead in S𝔲𝔟𝔩𝔬𝔫K , the prover runtime grows
with the size of the “active part” of the circuit. For instance, consider circuits encoding conditional
execution, where only a fraction of the circuit is exercised by the input. For such circuits, the prover
runtime in S𝔲𝔟𝔩𝔬𝔫K grows only with the exercised execution path.

As an example, consider the zkRollup circuit. This circuit involves executing one of 𝑛 code seg-
ments 𝑘 times. For this case, using P𝔩𝔬𝔫K involves proving a circuit of size 𝑛 · 𝑘 code segments. In
S𝔲𝔟𝔩𝔬𝔫K , the prover costs are close to proving a P𝔩𝔬𝔫K proof for a circuit of size roughly 𝑘 code
segments. Concretely, based on our implementation, for parameter choices derived from rollup con-
tracts on Ethereum, 𝑛 = 8, 𝑘 = {210 . . . 216}, the S𝔲𝔟𝔩𝔬𝔫K prover is approximately 4.6× faster than the
P𝔩𝔬𝔫K prover. Proofs in S𝔲𝔟𝔩𝔬𝔫K are 2.4KB, and can be verified in under 50ms.

∗NTT Research arkarai.choudhuri@ntt-research.com.
†UC Berkeley and NTT Research sanjamg@berkeley.edu. The author is supported in part by DARPA under Agreement No.

HR00112020026, AFOSR Award FA9550-19-1-0200, NSF CNS Award 1936826, and research grants by the Sloan Foundation, and
Visa Inc.

‡NTT Research aarushi.goel@ntt-research.com.
§UC Berkeley. sruthi@berkeley.edu. The author is supported in part by DARPA under Agreement No. HR00112020026, AFOSR

Award FA9550-19-1-0200, NSF CNS Award 1936826, and research grants by the Sloan Foundation, and Visa Inc.
¶Swirlds Labs. sinharo@gmail.com.

1

mailto:arkarai.choudhuri@ntt-research.com
mailto:sanjamg@berkeley.edu
mailto:aarushi.goel@ntt-research.com
mailto:sruthi@berkeley.edu
mailto:sinharo@gmail.com


Contents

1 Introduction 3
1.1 Our Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.2 Our Techniques . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.3 Example Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
1.4 Related Works . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2 Preliminaries 10
2.1 Algebraic Group Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.2 Preliminary Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.3 Batched KZG Commitments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.4 Pre-processing SNARKs in the Algebraic Group Model . . . . . . . . . . . . . . . . . . . . 11
2.5 Preliminary Lemmas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.6 Our Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.7 Background on P𝔩𝔬𝔫K . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

3 Segment-Lookup Argument 15
3.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
3.2 Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
3.3 Building Blocks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
3.4 Tables with Repeated Elements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
3.5 Protocol . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
3.6 Adding Zero-Knowledge . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

4 Sublonk: Segment Lookup + P𝔩𝔬𝔫K 27
4.1 Pre-Processing Layered Branching Circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
4.2 Post-Processing 𝐹𝑌 Polynomials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
4.3 S𝔲𝔟𝔩𝔬𝔫K Protocol Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

5 Implementation and Evaluation 32
5.1 Evaluated Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
5.2 Prover Time . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
5.3 Proof Size . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
5.4 Verification Cost . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

6 Conclusion 34

A Caulk Sub-protocol: Multi-unity Proof 39

2



1 Introduction

Zero-knowledge succinct non-interactive arguments of knowledge (zkSNARK) [Mic94, BCC+17] are cryp-
tographic primitives, that allow a prover to generate a small certificate of correctness of a potentially ex-
pensive computation. Furthermore, these certificates are cheap to verify and hide secrets that the prover
may have used in performing the computation. Over the past few years, realizing efficient zkSNARKs have
been a topic of extensive research, including numerous applications (e.g., see [BCG+14, ZkR21, KGC+18,
RPX+22, GHH+23, ZFZS20]) and real-world deployments (e.g., see [Gro16, GWC19, BBHR18a]).

Constant Proof Size, Universal Setup zkSNARKs. An influential line of work on zkSNARKs [Gro10,
GGPR13, PHGR13] has focused on realizing zkSNARKs with constant proof size and constant time verifica-
tion. In his seminal paper, Groth [Gro16] gave a zkSNARK with a 3 group element proof. These short proof
sizes make such SNARKs quite appealing for several applications, e.g. ones involving on-chain verification.
However, these first-generation constant-size zkSNARK constructions relied on a circuit-specific trusted
setup — making real-world deployments challenging. The next generation of constant-size zkSNARKs
removed this obstacle by realizing universal setup zkSNARKs [GKM+18, MBKM19]. In particular, these
zkSNARKs relied on a circuit-independent trusted setup that only needed to be done once. Furthermore,
following a circuit-specific pre-processing, these constructions also achieved constant time verification.

The P𝔩𝔬𝔫K Proof System. Improving upon prior work [MBKM19], Gabizon, Williamson, and Ciobo-
taru [GWC19] introduced a practical universal setup zkSNARK with constant proof size (about 400 bytes in
practice) and constant time verification. This construction has found widespread real-world deployments.
A significant reason for the success of P𝔩𝔬𝔫K is its easy adaptability. For example, P𝔩𝔬𝔫K supports cus-
tom gates — gates other than + and ×— that significantly enhance concrete performance. 𝔭𝔩𝔬𝔬𝔨𝔲𝔭 [GW20]
and P𝔩𝔬𝔫K𝔲𝔭 [PFM+22] augment P𝔩𝔬𝔫K to add support for lookup gates — a gate checking that its input
is from a pre-defined lookup list.

Limitations of P𝔩𝔬𝔫K Proof System. A key limitation of P𝔩𝔬𝔫K , and all zkSNARKs with constant
size proofs, is that proof generation is expensive — especially when compared to SNARKs with larger
proof size, such as STARKs [BBHR18a]. Thus, improving proof generation times for P𝔩𝔬𝔫K , or constant
size SNARKs, continues to be an important problem of significant interest. A recent line of work on lookup
arguments [ZBK+22a, PK22, GK22, ZGK+22, EFG22] improves P𝔩𝔬𝔫K proof generation for the special case
of lookup gates to (essentially) independent of the lookup list. Targeting use cases where larger proof sizes
are acceptable, several works [KPV22, plo, CBBZ23a] accelerate P𝔩𝔬𝔫K proof generation at the cost of
increasing proof size.

Going Sublinear. We observe that P𝔩𝔬𝔫K and other similar SNARKs can be wasteful. For example,
consider the following code snippet: if 𝑋 then evaluate, 𝐶0 else evaluate 𝐶1. When evaluating this code
snippet only the “active part,” i.e., either 𝐶0 or 𝐶1 depending on the conditional 𝑋 needs to be evaluated.
In fact, it is often the case that in a computation only a fraction of the circuit is “active.”

More generally, we consider circuits C that can divided into 𝑘 layers, where each layer has the same
branch of 𝑛 𝑠-sized circuits C1, · · · ,C𝑛 . These layers are interleaved in C by activation layers that select a
single active circuit to execute in each layer - the choice of the circuit to be activated in each layer may
depend on the input to C. Thus, for any input to C, the total size of the executed/active sub-circuit is
𝑂 (𝑘𝑠) (independent of 𝑛). We denote circuits that satisfy the above structure as layered branching circuit.1

1While the applications we consider can naturally be cast into this model, our model is general enough to handle a larger
class of circuits but may require more work to be viewed in this framework. Such transformations for more general circuits are

3



In certain scenarios, the input to C may determine the total number of layers 𝑘 ≤ 𝑘 that is activated -
we handle this by adding a special identity circuit Cid (that passes input unchanged to the output), and
requiring that for every layer ≥ 𝑘 , Cid is activated. For such inputs, we say that the effective number of
layers is 𝑘 . For the remainder of the introduction and overview, we will refer to the activated sub-circuit
as effective activated sub-circuit of size 𝑂 (𝑘𝑠).

Rollups, for instance, naturally map to our model of computation, where at each step, the prover ex-
ecutes one of several transaction types. For example, in a typical decentralized exchange (DEX) smart
contract (e.g., Loopring [loo]), which allows users to create one of several types of transactions: deposits,
spot trades, transfers, withdrawals, etc.

Naı̈vely, the prover runtime for SNARKs for the aforementioned circuits grow with the size of the en-
tire circuit (i.e., grow with 𝑂 (𝑛𝑘𝑠)). However, there has been a line of work [WSR+15, ZGK+18, KPPS20,
BBHR18b, lib18, gen20, hod21, GPR21, MAGABMMT23, CFQ19, Lip16, CFH+15, san23, KS22, KS23, BC23]
addressing this issue by additionally requiring an “a la carte” cost profile from the prover, where the cost
of proving should grow only with the size of the executed sub-circuit (of size𝑂 (𝑘𝑠)) rather than the entire
circuit. Unfortunately, prior works either fail to achieve a constant proof size or resort to using crypto-
graphic hash functions in a non-black-box manner2, which is undesirable given the overhead caused.3 See
Section 1.4 for further discussion on this.

Specifically, in our model, we allow the prover to perform a one-time pre-processing that depends
on the circuit C. The stored pre-processed material may in fact depend on 𝑂 (𝑛𝑘𝑠), but the online proof
generation cost grows only with the size of the active sub-circuit (i.e. 𝑂 (𝑘𝑠)). Note that this pre-processing
is separate from the pre-processing required for the verifier to achieve constant time verification.

1.1 Our Contributions

The current state of affairs thus motivates us to construct SNARKs for layered branching circuit in the
pre-processing model where: (i) the proof is of constant size; and (ii) the overhead in the prover cost in
selecting the active circuit at each layer is 𝑂 (1). Our contributions are as follows:

1. We present S𝔲𝔟𝔩𝔬𝔫K , building on a popular SNARK system P𝔩𝔬𝔫K . Our new construction preserves
all the great features of P𝔩𝔬𝔫K , i.e., it supports constant size proofs, constant time proof verification,
a circuit-independent universal setup, as well as support for custom gates and lookup gates. Addition-
ally, S𝔲𝔟𝔩𝔬𝔫K proof generation time grows only with the size of the active sub-circuit. Previously,
P𝔩𝔬𝔫K proof generation grew with the size of the entire circuit.

2. We provide an implementation of S𝔲𝔟𝔩𝔬𝔫K in Rust, and evaluate it on circuits modeling a popular
rollup application.

3. We demonstrate the practical improvements with S𝔲𝔟𝔩𝔬𝔫K . For instance, in our rollup application,
we demonstrate improvements in prover time of up to 4.6×, and we also show potential far greater
speedups for general-purpose programs which only exercise a small fraction of the entire logic in any
execution. Proofs are 2.4KB in size, and verification requires 50 ms on a commodity machine or 716.6K
EVM gas units to verify on-chain.

orthogonal to our work.
2I.e., proving a statement about the hash function by representing it as a set of constraints.
3Non-black-box use of cryptography inherently induces a non-constant overhead when selecting the active circuit at each

layer.

4



1.2 Our Techniques

We now discuss the key technical ideas underlying S𝔲𝔟𝔩𝔬𝔫K . As discussed earlier, our goal is to design
pre-processing SNARKs for layered branching circuit, where the online cost to prove computation grows
only with the active sub-circuit.

Recall that the pre-processing phase for the verifier in pre-processing SNARKs outputs a short sum-
mary - typically a commitment - of all the constraints in the circuit. These SNARKs then allow for the
verifier to determine whether to accept the proof based on the commitment, thereby allowing the verifier
to run in time sub-linear in the size of the circuit (the verifier no longer has to parse the entire circuit).

Core Idea: Note that once the prover executes the layered branching circuit circuit C on input 𝑥 , it
induces the active sub-circuit C̃𝑥 of size 𝑂 (𝑘𝑠) (with the non-active circuits from each layer removed).
Thus, with the induced sub-circuit C̃𝑥 , the prover can generate the proof in time proportional to 𝑂 (𝑘𝑠) as
desired. Unfortunately, such a proof is not useful to the verifier since it cannot verify the proof without
a commitment to the constraints specified only by C̃𝑥 , whereas the verifier has a commitment to the
constraints specified only by C. The first main idea is to enable the verifier to derive the commitment to
C̃𝑥 only given the commitment to C.

As a starting point, note that this is not something that can be addressed in the pre-processing phase
since C̃𝑥 depends on the input 𝑥 . Further, having the prover simply send over the claimed commitment
to C̃𝑥 will not work either since the verifier needs to be convinced that the commitment was correctly
generated. Thus we will require the prover to additionally prove that the new commitment is indeed a
commitment to a valid induced sub-circuit of C, which the verifier can check given the commitment to C.
But note that since the prover is now proving validity with respect to the original circuit of size 𝑂 (𝑛𝑘𝑠),
care must be taken that the prover cost for this does not become proportional to 𝑂 (𝑛𝑘𝑠).

A natural approach for implementing this idea is to compute a Merkle hash of all the constraints in the
pre-processing phase. Later in the online phase, the prover can generate a proof to convince the verifier
that the new claimed commitment to C̃𝑥 is a commitment to a subset of the leaf nodes (constraints) in this
Merkle tree. This simple approach requires making a non-black-box use of hash functions, which adds
significant computational overheads. The inefficiency of this type of approach is well established - in fact,
a recent relevant line of work moved away from the non-black-box use of hash functions for breakthrough
results on efficient sub-linear time lookup arguments [ZBK+22a, ZGK+22, PK22, GK22, EFG22].

Lookup Arguments. As we shall see shortly, lookup arguments will, in fact, be central to our work,
and here we provide an informal description of the requirements in such works. Specifically, given a table
𝑇 of size 𝑁 to which the verifier only has access via an untrusted pre-processed commitment, lookup argu-
ments allow one to prove in time proportional to 𝑂 (𝑚) (independent of 𝑁 ) that the values of a committed
polynomial of size 𝑚 are contained within the table 𝑇 . This is achieved by allowing a one-time prover
pre-processing on the table𝑇 , taking time proportional to𝑂 (𝑁 ), and re-usable across multiple proofs. The
online proof generation time grows only with𝑂 (𝑚). In fact, the𝑚 values allow for repeated elements from
the table 𝑇 , a property we will crucially leverage. Finally, the verification for the lookup arguments we
consider is, in fact, 𝑂 (1) time. The specific lookup protocol that we build on is cached quotients (or 𝔠𝔮),
introduced by Eagen, Fiore and Gabizon [EFG22], which fits well with the P𝔩𝔬𝔫K proof system that we
will use.

S𝔲𝔟𝔩𝔬𝔫K Template: Recall, that in theP𝔩𝔬𝔫K proof system[GWC19], to achieve𝑂 (1)-time verification
for a circuit C, there is an untrusted verifier pre-processing phase that outputs𝑂 (1) sized commitment on
input C. We refer to the pre-processed verifier commitment as a P𝔩𝔬𝔫K commitment to C. Tying in with
our previous discussion on lookup arguments, we have the following high-level template for S𝔲𝔟𝔩𝔬𝔫K for

5



layered branching circuit C: (i) generate a lookup table that appropriately encodes information about the
layered branching circuit C - this will also require prover to compute a one-time prover pre-processing of
the lookup table; (ii) once the induced circuit C̃𝑥 if fixed, use the lookup arguments to derive on-the-fly the
P𝔩𝔬𝔫K commitment to C in time proportional to 𝑂 (𝑘𝑠) and prove that the derivation was done correctly.
While this is indeed the template we follow in this work, there are several challenges in implementing its
details that necessitate new ideas, as we illustrate below.

We begin by describing how we populate the initial table𝑇 given the layered branching circuit C in the
context of 𝔠𝔮. We use the implicit representation of C and store in𝑇 the P𝔩𝔬𝔫K constraints for each circuit
branchC1, · · · ,C𝑛 -4 the exact nature of theP𝔩𝔬𝔫K constraints are not important for this discussion. Since
the P𝔩𝔬𝔫K constraints for an 𝑠 sized circuit can be represented in 𝑂 (𝑠) constraints, the table consists of
𝑂 (𝑛𝑠) entries, where each entry is only a single field element (from an appropriate field).

In the online phase, once the induced circuit C̃𝑥 is fixed, the prover can compute the polynomial com-
mitment com to the P𝔩𝔬𝔫K constraints for C̃𝑥 as a concatenation of the P𝔩𝔬𝔫K constraints for each active
circuit in the 𝑘 layers (since C̃𝑥 itself is a concatenation of 𝑘 circuits)5. Since each of these constraints are
present in the table 𝑇 , the prover can simply run the lookup argument protocol in time proportional to
𝑂 (𝑘𝑠) to generate proof that the constraints are contained in 𝑇 . Unfortunately, the only guarantee pro-
vided by 𝔠𝔮, or any lookup argument for that matter, is that each element in the committed polynomial
com is contained in the table 𝑇 . While this is certainly necessary, it is not a sufficient condition in our
setting. For instance, the relative ordering of the P𝔩𝔬𝔫K constraints is crucial for us to rely on the P𝔩𝔬𝔫K
argument system since the P𝔩𝔬𝔫K security analysis assumes that the pre-processing is done correctly.
This motivates us to extend the notion of lookup arguments to segment lookup arguments that we detail
next.

Segment Lookup. In order to address the specific needs of our application, we extend the 𝔠𝔮 protocol
to achieve a notion of segment lookup. The initial table 𝑇 of size 𝑂 (𝑛𝑠) in a segment lookup protocol is
sub-divided into 𝑛 segments, each consisting of 𝑂 (𝑠) contiguous elements in 𝑇 (starting with the first
element). The prover provides a commitment to a polynomial that encodes values in 𝑇 , and proves that
the committed values additionally satisfy segment granularity. Specifically, for 𝑂 (𝑘𝑠) values committed to
via the polynomial, each of the 𝑘 segments of size 𝑂 (𝑠) (starting with the first element) must correspond
exactly to a segment in 𝑇 , maintaining relative ordering with the segment. It is easy to see that if each
segment corresponds to a P𝔩𝔬𝔫K constraint, a segment lookup protocol will indeed provide the necessary
guarantees to ensure that the polynomial commitment sent by the prover is, in fact, a P𝔩𝔬𝔫K commitment
to C̃𝑥 (for some 𝑥 ), where the validity of the choice of the segments will be checked separately by the
P𝔩𝔬𝔫K proof system.

Unfortunately, we are not able to use existing lookup protocols in a black-box manner to achieve seg-
ment lookup. We extend the ideas present in the 𝔠𝔮 protocol to construct a new segment lookup argument,
where the prover costs grow with the size of the polynomial that is committed.6

Putting It Together. The table𝑇 containing the P𝔩𝔬𝔫K constraints for the circuit branches in C is pre-
processed and provided to the verifier. Once the input 𝑥 is fixed, the prover uses the induced circuit C̃𝑥 to
compute the P𝔩𝔬𝔫K verifier pre-processing for C̃𝑥 , and subsequently, the corresponding segment lookup

4We handle the activation layer constraints by embedding it within each circuit branch, such that the circuit branch activated
in the 𝑗-th layer also outputs the circuit branch to be activated in the 𝑗 + 1-th layer, and thus the activation layer can be ignored
for the purposes of our discussion.

5It should be noted that this description of a concatenation of P𝔩𝔬𝔫K constraints is not fully accurate and written here as
such for simplicity, and we handle this in our technical sections

6One could choose an appropriately large field to encode an entire segment into a single field element to use 𝔠𝔮 in a black-box
manner, but the overhead would be too large for this approach to be meaningful in our setting.

6



proof to it, in time𝑂 (𝑘𝑠). Thus, theS𝔲𝔟𝔩𝔬𝔫K proof consists of (i) theP𝔩𝔬𝔫K verifier pre-processing for C̃𝑥 ;
(ii) a segment lookup proof that the verifier pre-processing was correctly derived from𝑇 ; and (iii) P𝔩𝔬𝔫K
proof for C̃𝑥 to be verifier using the verifier pre-processing sent by the prover. All the communication,
and verification can be done in 𝑂 (1), thus satisfying our efficiency requirements.

While this overview captures the main ideas, we refer the reader to the relevant technical sections for
details. Specifically, we present our segment lookup protocol in Section 3 and show how it can be combined
with P𝔩𝔬𝔫K to get S𝔲𝔟𝔩𝔬𝔫K in Section 4.

1.3 Example Applications

S𝔲𝔟𝔩𝔬𝔫K has the potential to improve prover run-time in nearly all applications of SNARKs, where the
active part of the circuit during execution is not the entire circuit. In this section, we explore some example
applications where it could be particularly beneficial and yield substantial computational savings.

1. Rollups: Rollups are becoming increasingly popular due to their potential to address the scaling issue
of modern layer 1 blockchains. Consider a typical decentralized exchange (DEX) smart contract (e.g.
Loopring [loo]), which allows users to create one of several types of transactions: deposits, spot trades,
transfers, withdrawals, etc. The logic within each of these transaction types can be encoded as a circuit
(typically under 60K arithmetic gates for each transaction). A single instance of a rollup transaction
that is submitted to a layer 1 blockchain can batch together over hundreds of these DEX transactions,
along with a single proof attesting to the validity of the state transition (from having applied all of
the above DEX transactions on the state prior to the rollup transaction). Rollups naturally map to
our model of computation, where at each step, the prover executes one of several transaction types
(which map to segments in S𝔲𝔟𝔩𝔬𝔫K). Specifically, if there are 𝑛 different DEX transaction types,
and a rollup batches together 𝑘 such DEX transactions (each of size 𝑠), then we expect S𝔲𝔟𝔩𝔬𝔫K to
operate in roughly 𝑂 (𝑘𝑠 log(𝑘𝑠)) time, whereas the P𝔩𝔬𝔫K prover would operate in 𝑂 (𝑛𝑘𝑠 log(𝑛𝑘𝑠))
time. Our experiments in section 5 show significant speedups for rollups, for parameter values inspired
by Loopring [loo].

2. Smart Contracts: Smart contracts support general computation (beyond rollups discussed above),
but these can include arbitrary conditional statements, thereby often resulting in the active circuit only
comprising a small fraction of the entire logic. For instance, consider a program that is a nested sequence
of conditional statements - which can be represented as a complete tree in our graph-based model of
computation. In such a setting, if each code segment is roughly the same size, the fraction of the executed
path is exponentially smaller than the total size of the program.
Specifically in the above example, if the nested conditional statements resulted in 𝑂 (𝑛) segments each
of size 𝑠 , the run time of a P𝔩𝔬𝔫K prover on any input would grow with 𝑂 (𝑛𝑠). However, since the
execution path along the tree would only execute 𝑂 (log(𝑛)) code segments, the S𝔲𝔟𝔩𝔬𝔫K prover run-
ning time would only grow with 𝑂 (log(𝑛)𝑠). In section 5, we provide some data points that indicate
significant concrete speedups for the above.

3. Proving Existence of Bugs in Large Codebase: Exploitation attacks pose a significant risk to large
and critical software systems, leading to the emergence of bug bounty programs. These programs in-
volve independent research teams auditing deployed software and revealing vulnerabilities in exchange
for monetary incentives.
Recent works [HK20a, HK20b, GHH+23] have explored the idea of using zero-knowledge proof systems
as a means for vulnerability research teams to substantiate to bug bounty program managers that they
have successfully detected a critical exploit. This guarantees that they obtain their reward without
disclosing the exploit prematurely.

7



Although the relation circuit for these proofs grows with the size of the software system, the execution
path needed to prove the existence of a bug is expected to be much smaller than the entire software
system. Having the proof generation time depend on the size of the entire software system could be
very costly, particularly for complex systems. For programs that can be cast as layered branching circuit,
S𝔲𝔟𝔩𝔬𝔫K is well-suited for such scenarios.

4. Combating Disinformation. Naveh and Tromer [NT16] recently demonstrated that zero-knowledge
proofs can be used to verify that images featured in media have undergone a pre-approved set of mod-
ifications since their creation. This capability is especially valuable as it enables journalists to conceal
sensitive content while simultaneously establishing the image’s authenticity.
The complete list of pre-approved edits determines the size of the relation circuit for generating proofs,
while the execution path only considers the edits that are applied to the image. S𝔲𝔟𝔩𝔬𝔫K could help
significantly improve proof generation times in this application.

1.4 Related Works

There are several prior works that focus on building SNARKs where the prover cost grows only with the
size of the program execution. We summarize the most relevant works in Figure 1 and give a detailed
description below.

A La Carte Cost Profile. There is a sequence of works including Buffet[WSR+15], vRAM[ZGK+18] and
Mirage [KPPS20] that consider an “a la carte” cost profile for the provers where the prover cost for proving
a step of computation (akin to layers in our setting) grow only with the size of the circuit representing the
instruction invoked on that step, i.e. independent of the number of branches. Mirage [KPPS20] achieves a
constant proof size using the universal circuit approach, where the trusted setup is run for the universal
circuit (setup is indicated by a ∗ in Figure 1) and the executed circuit is passed as input to this universal
circuit. Since the prover knows the executed sub-circuit, it can simply provide this as input to the universal
circuit. But to achieve constant verification time, one needs to pre-process the circuit that is passed to
the universal circuit and since the sub-circuit is input dependent, it results in an input dependent pre-
processing to achieve an “a la carte” cost profile. vRAM[ZGK+18] handles the issue of conveying the
executed sub-circuit/instructions by only conveying the multiplicity of each instruction and appropriately
encoding the constraints into the proof system, while fully black-box in the use of cryptography vRAM
does not achieve a constant proof size. The proof generation in these works requires the entire transcript
of the program execution in order to compute the proof, making them inherently non-incremental.

Incremental Proofs. A recent line of work; Sangria [san23], SuperNova [KS22], HyperNova [KS23],
ProtoStar [BC23] address the lack of incremental property in the aforementioned works. These works
build on the novel folding technique introduced by Nova [KST22] for designing IVCs (incrementally ver-
ifiable computation). Sangria, SuperNova, HyperNova and ProtoStar generalize the notion of IVCs to
non-uniform IVCs, where at each step of the computation one out of a pre-determined set of instructions
is executed. While the prover cost in these works only grows with the size of executed instructions at
each step, they inherently rely on making non-black-box use of cryptography. This is because all these
works follow the same high-level approach of designing an efficient folding argument and then efficiently
compiling it into a non-uniform IVC using proof recursion. The proof-size of the resulting non-uniform
IVC depends on the underlying SNARK used in this compilation. In Figure 1, we quote the proof sizes
mentioned in the respective papers. However, we note that most of these schemes are compatible with
and hence can be adapted to work with a variety of existing SNARKs (to further reduce their proof size).

8



Constant
Proof Size

Input Inde-
pendent
Verifier

Preprocess-
ing

Black-Box
in Cryptog-

raphy

Incremental
Proof Setup

vRAM [ZGK+18] % ! ! % urs
Mirage [KPPS20] ! % ! % urs∗

Sangria [san23] ! ! % ! urs
SuperNova [KS22] % ! % ! trans
HyperNova [KS23] % ! % ! trans
ProtoStar [BC23] % ! % ! trans
eSTARK [MAGABMMT23] % ! % % trans
Geppetto [CFH+15] % % % ! srs
Our Work ! ! ! % urs

Figure 1: We use!to denote that a certain property is satisfied and%to denote that it is not. When we
say that a scheme does not have constant proof size (by constant we mean that the proof is a constant
number of group or field elements), it means that they have a size that depends on the program execution
size. In the Setup column, we refer to a circuit-dependent setup by srs, the circuit-independent universal
setup by urs, and the untrusted transparent setup by trans. By urs∗ we mean that while the setup is circuit-
dependent, the particular scheme is defined for universal circuits.

Transparent Setup. The works on building zkSTARKs [BBHR18b, lib18, gen20, hod21, GPR21, MAG-
ABMMT23] use a transparent (i.e. untrusted) setup. All these schemes use the algebraic intermediate
representation (AIR), which only encodes the step-by-step trace of the program execution. This inherently
leads to the a la carte prover cost since it will only grow with the AIR size, which in turn grows only
with the number of steps of the program that are executed. However, all these constructions have two
shortcomings - non-constant proof size and non-black-box use of cryptographic hash functions. To en-
sure scalability while keeping the verifier pre-processing input independent, it is crucial that a hash of the
computation trace is given along with proof that the hash computations were done correctly (uses AIR for
“STARK-friendly” hashes). We summarize these properties for the most recent STARK [MAGABMMT23]
in figure 1.

Commit andProve SNARKs (CP-SNARKs). Several works [CFQ19, Lip16, CFH+15] build CP-SNARKs,
which rely on proving statements of the form “𝐶𝑐𝑘 (𝑥) contains 𝑥 such that 𝑅(𝑥,𝑤)”, where 𝐶𝑐𝑘 (𝑥) is a
commitment. Such CP-SNARKs are shown to be useful [CFQ19] in proving the correctness of different
parts of computation using different representations and proof systems (e.g. a QAP-based scheme may
be used to prove one component, while a GKR [GKR08]-based scheme may be used for another). LegoS-
NARK [CFQ19] builds a general framework for CP-SNARKs that would help in linking such different
components and also build CP-SNARKs for some existing SNARKs (Groth [Gro16], Pinnochio [Vee17] and
zk-vSQL [ZGK+17]). This framework requires the prover to prove the knowledge of a valid opening for
the commitment corresponding to the component used. Moreover, the only methods shown [CFH+15] to
combine the proofs of different components involve a bounded bootstrapping (giving proof of a proof),
making them non-black-box. We summarize these properties corresponding to the a la carte CP-SNARK,
Geppetto [CFH+15], in fig. 1.

9



In a recent work [PFM+22], Pearson et al. also consider the idea of integrating P𝔩𝔬𝔫K with a lookup
argument [GK22]. However, their goal was very different from ours. They propose an extension of P𝔩𝔬𝔫K
that enables faster proof generation for relation circuits that include lookup gates, without having to en-
code the lookup relation as an arithmetic circuit.

2 Preliminaries

In this section, we present our model, establish notation and present an overview of P𝔩𝔬𝔫K .

Notation. We denote our field by F. We use F<𝑑 [𝑋 ] to denote the ring of univariate polynomials over
F with a degree smaller than 𝑑 . We denote our security parameter by 𝜆. For a polynomial 𝑃 ∈ F[𝑋 ], and
a subgroup H ⊂ F, we denote the evaluations of 𝑃 at H by 𝑃 |H. We use the additive notations for groups
G1 and G2, and denote their corresponding group elements by [𝑥]1 := 𝑥 .𝑔1 and [𝑥]2 := 𝑥 .𝑔2, where 𝑔1
and 𝑔2 are the generators of G1 and G2, respectively. [𝑛] and [𝑘, 𝑛] are used to denote the sets of integers
{1, · · · , 𝑛} and {𝑘, · · · , 𝑛}, respectively.

Lagrange, and Vanishing Polynomials. For a subgroup containing 𝑛-th roots of unity, i.e., H = {1, 𝜔,
· · · , 𝜔𝑛−1} ⊂ F, we denote the vanishing polynomial corresponding to H by 𝑍H(𝑋 ) ∈ F[𝑋 ], defined
as 𝑍H(𝑋 ) :=

∏𝑛
𝑖=1(𝑋 − 𝜔𝑖). Furthermore, for each 𝑖 ∈ [𝑛], we denote the 𝑖-th Lagrange polynomial

corresponding to H by𝜓H𝑖 (𝑋 ) := 𝑍H (𝑋 )
𝑍 ′
H
(𝑋−𝜔𝑖 ) , where 𝑍 ′H is the derivative of the polynomial 𝑍H.

Bilinear Groups. Let (G1,G2,G𝑇 ) be cyclic groups of prime order𝑞 with generators𝑔1 ∈ G1,𝑔2 ∈ G2. 𝑒 :
G1 ×G2 → G𝑇 be an efficiently computable and non-degenerate pairing, such that 𝑒 (ℎ𝛼1 , ℎ

𝛽

2 ) = 𝑒 (ℎ1, ℎ2)𝛼𝛽 ,
for all 𝛼, 𝛽 ∈ F𝑞 , and all ℎ1 ∈ G1 and ℎ2 ∈ G2.

2.1 Algebraic Group Model

We use the same terminology as prior works [FKL18, GWC19, EFG22]. An algebraic adversary A in an
SRS-based protocol is a poly(𝜆)-time algorithm which satisfies the following: For each 𝑖 ∈ {1, 2}, whenever
A outputs a group element 𝐺 ∈ G𝑖 , it also outputs a vector 𝑣 over F such that 𝐺 = ⟨𝑣, srs𝑖⟩. srs is said
to have degree 𝑑 if all elements of srs𝑖 are of the form [𝐹 (𝜏)]𝑖 for 𝐹 ∈ F<𝑑 [𝑋 ] and uniform 𝜏 ∈ F. In the
following, it is assumed that a degree 𝑑 SRS is used. Let 𝐹𝑖, 𝑗 denote the corresponding polynomial for the
𝑗th element of srs𝑖 .

We require the following 𝑑-DLOG assumption to ensure that the srs in our protocol hides the random
𝜏 ∈ F from A.

Definition 1 (𝑑-DLOG Assumption [FKL18, EFG22]). Fix an integer𝑑 . The𝑑-DLOG assumption for (G1,G2)
ensures that given [1]1.[𝜏]1, · · · , [𝜏𝑑 ]1, [1]2, [𝜏]2, · · · , [𝜏𝑑 ]2 for a uniformly random 𝜏 ∈ F, the probability of
A outputting 𝜏 is negl(𝜆).

Furthermore, we require the following lemma from [EFG22] which ensures that if the “real” pairing
checks in our protocol are guaranteed to pass, then so would the ”ideal” pairing check, where essentially
the algebraic adversary A also gives a field vector corresponding to the group elements in the pairing
check (as described above).

Lemma 1 ([EFG22]). Assume 𝑑-DLOG assumption for (G1,G2). Given an algebraic adversary A, and the
𝑑-degree srs from our protocol, the probability of a real pairing check passing is larger than the corresponding
ideal check, by at most an additive factor of negl(𝜆). The real and ideal pairing checks are described below.

10



Real Pairing Check: For F-vectors 𝑎, 𝑏, whose G1,G2 encodings are given by A during the protocol execution,
the real check is of the form: (𝑎 ·𝑇1) · (𝑇2 ·𝑏) = 0, for some matrices𝑇1,𝑇2 over F. Such a check is done efficiently
given the encoded group elements using the pairing function 𝑒 : G1 × G2 → G𝑡 .
Ideal Pairing Check: Since A is algebraic, for each group encoding [𝑎 𝑗 ]𝑖 corresponding to 𝑎 𝑗 in the vector 𝑎,
it also outputs a vector 𝑣 such that 𝑎 𝑗 =

∑
𝑣ℓ𝐹𝑖,ℓ (𝜏) = 𝑅𝑖, 𝑗 (𝜏), for 𝑅𝑖, 𝑗 (𝑋 ) :=

∑
𝑣ℓ𝐹𝑖,ℓ (𝑋 ) . For 𝑖 ∈ {1, 2}, we

denote the vector of polynomials here by 𝑅𝑖 = (𝑅𝑖, 𝑗 ) 𝑗 . The ideal check is of the form: (𝑅1 ·𝑇1) · (𝑇2 · 𝑅2) ≡ 0.

2.2 Preliminary Definitions

In this section, we provide a formal definition of KZG polynomial commitments [KZG10] and pre-processing
SNARKs in the algebraic group model, as defined in [GWC19].

2.3 Batched KZG Commitments

Definition 2 (Batched KZG Commitment [GWC19]). A 𝑑-polynomial commitment scheme consists of

• KZG.Gen(𝑑): randomized algorithm that outputs srs𝑘𝑧𝑔.

• KZG.Commit(𝑃, srs𝑘𝑧𝑔) : given a polynomial 𝑃 ∈ F<𝑑 [𝑋 ], outputs a commitment com to 𝑃 .

• A public coin protocol between a prover and a verifier. The prover gets 𝑃1, · · · , 𝑃𝑡 ∈ F<𝑑 [𝑋 ]. Both the parties
get the inputs 𝑡 = poly(𝜆), 𝑧1 · · · , 𝑧𝑡 ∈ F, com1, · · · , com𝑡 , the alleged commitments to 𝑃1, · · · , 𝑃𝑡 , and
𝑠1, · · · , 𝑠𝑛 ∈ F, the alleged correct openings 𝑃1(𝑧1), · · · , 𝑃𝑡 (𝑧𝑡 ). At the end of the protocol the verifier outputs
accept or reject.

such that the following properties hold

• Completeness: Fix integer 𝑡 , 𝑧1, · · · , 𝑧𝑡 ∈ F, 𝑃1, · · · , 𝑃𝑡 ∈ F<𝑑 [𝑋 ]. Suppose that for each 𝑖 ∈ [𝑡],
com𝑖 = KZG.Commit(𝑃𝑖 , srs𝑘𝑧𝑔). Then if the prover and verifier honestly run the protocol with inputs
𝑡, {com𝑖 , 𝑧𝑖 , 𝑠𝑖 = 𝑃𝑖 (𝑧𝑖)}𝑖∈[𝑡 ] , the verifier accepts w.p. 1.

• Knowledge Soundness in the algebraic group model: The probability of any efficient algebraic adver-
sary A winning the following game is negl(𝜆).

– Given srs𝑘𝑧𝑔, A outputs 𝑡, com1, · · · , com𝑡 along with polynomials 𝑃1, · · · , 𝑃𝑡 ∈ F<𝑑 [𝑋 ], corresponding
to the commitments.

– A outputs 𝑧1, · · · , 𝑧𝑡 , 𝑠1, · · · , 𝑠𝑡 ∈ F.
– A (as a prover) and the verifier run the commitment protocol with inputs com1, · · · , com𝑡 , 𝑧1, · · · , 𝑧𝑡 ,
𝑠1, · · · , 𝑠𝑡 .

– A wins if and only if the verifier accepts and for some 𝑖 ∈ [𝑡], 𝑠𝑖 ≠ 𝑃𝑖 (𝑧𝑖).

2.4 Pre-processing SNARKs in the Algebraic Group Model

In this section, we provide a formal definition of the pre-processing SNARKs in the algebraic group model,
as defined in [GWC19].
Definition 3 (SNARKs in the Algebraic Group Model [GWC19]). Let R be a relation generator that given
a security parameter 𝜆 in unary returns a polynomial time decidable binary relation 𝑅. For pairs (𝜙,𝑤) ∈ 𝑅
we call 𝜙 the statement and 𝑤 the witness. We define R𝜆 to be the set of possible relations 𝑅 that the relation
generator may output given 1𝜆 . We will in the following for notational simplicity assume 𝜆 can be deduced
from the description of 𝑅. The relation generator may also output some side information, an auxiliary input 𝑧,
which will be given to the adversary. An efficient prover publicly verifiable non-interactive argument for R is
a quadruple of probabilistic polynomial algorithms (Setup, Prove,Ver) defined as:

11



• srs ← Setup(1𝜆, 𝑅): The setup takes the security parameter 𝜆 and the relation 𝑅 as input and produces a
structured reference string srs.

• 𝜋 ← Prove(srs, 𝑅, 𝜙,𝑤): The prover algorithm takes as input srs and (𝜙,𝑤) ∈ 𝑅 and returns an argument
𝜋 .

• 0/1 ← Ver(srs, 𝑅, 𝜙, 𝜋): The verification algorithm takes as input srs, a statement 𝜙 and an argument 𝜋
and returns 0 (reject) or 1 (accept).

We say that Σ = (Setup, Prove,Ver) is a SNARK in the algebraic group model if it satisifes the following
properties.

• Completeness: Given any true statement, an honest prover should be able to convince an honest verifier.
For all 𝜆 ∈ N, 𝑅 ∈ R𝜆 , (𝜙,𝑤) ∈ 𝑅

Pr
[
srs← Setup(1𝜆, 𝑅);𝜋 ← Prove(srs, 𝑅, 𝜙,𝑤) : Ver(srs, 𝑅, 𝜙,𝑤) = 1] ≥ 1 − negl(𝜆) .

• Knowledge soundness in the algebraic groupmodel: The probability of an efficient algebraic adversary
winning in the following game should be negl(𝜆).

– Given the srs and 𝑅, A outputs (𝜙, 𝜋) along with the corresponding witness𝑤 .

– A wins if and only if the verifier accepts and (𝜋,𝑤) ∉ R.

• Succinctness. A non-interactive argument of knowledge where the verifier runs in polynomial time in
𝜆+ |𝜙 | + log( |𝑅 |) and the proof size is polynomial in 𝜆+ log( |𝑅 |) is called a pre-processing SNARK. If we also
restrict the srs to be polynomial in 𝜆 + log( |𝑅 |) we say that the non-interactive argument is a fully succinct
SNARK.

2.5 Preliminary Lemmas

We require several properties of polynomials over fields for our protocol, which are described below. We
require the following lemma on the uniqueness of fractional representations from [EFG22].

Lemma 2. [EFG22, Lemma 4] Let F be an arbitrary field and 𝑚1,𝑚2 : F → F be any functions. Then∑
𝑧∈F

𝑚1 (𝑧 )
𝑋−𝑧 =

∑
𝑧∈F

𝑚2 (𝑧 )
𝑋−𝑧 in the rational field F(𝑋 ), if and only if,𝑚1(𝑧) =𝑚2(𝑧) for every 𝑧 ∈ F.

Sumcheck Lemma. We require the following sumcheck lemma from [EFG22, BCR+19].

Lemma 3. Let 𝐻 ⊂ F be a multiplicative subgroup of size 𝑡 . For 𝐹 ∈ F<𝑡 [𝑋 ], we have∑︁
𝑎∈𝐻

𝐹 (𝑎) = 𝑡 · 𝐹 (0) .

We require the following pre-processing lemma that combines [EFG22, Lemma 3.1] and [EFG22, The-
orem 1].

Lemma4. Let𝐺 ∈ F<𝑛𝑠 [𝑋 ] and a subgroupW ⊂ F of size𝑛𝑠 . Further, suppose theG1 elements {[𝜏𝑖]1}𝑖∈[0,𝑛𝑠−1]
are given. Then, the following two computations are possible:

1. For each 𝑖 ∈ [𝑛𝑠], it is possible to compute the elements 𝑞𝑖 := [𝑄𝑖 (𝜏)]1, where 𝑄𝑖 (𝑋 ) ∈ F[𝑋 ] is such that

𝜓𝑊
𝑖 (𝑋 ) ·𝐺 (𝑋 ) = 𝑔𝑖 ·𝜓𝑊

𝑖 (𝑋 ) + 𝑍W(𝑋 ) ·𝑄𝑖 (𝑋 ),

for 𝑔𝑖 = 𝐺 (𝜔𝑖), in 𝑂 (𝑛𝑠 log(𝑛𝑠)) G1 operations.

12



2. Furthermore, there is an algorithm, that takes as input, the 𝑞𝑖 ’s and [𝜓W𝑖 (𝜏)]1 for each 𝑖 ∈ [𝑛𝑠] from step
1 above, and a 𝑘𝑠-sparse polynomial 𝐻 (𝑋 ) ∈ F<𝑛𝑠 [𝑋 ] given in the sparse representation, and does the
following. It takes 𝑂 (𝑘𝑠) F-operations and 𝑘𝑠 G1-operations to compute [𝑄𝐴 (𝜏)]1 and [𝑅𝐴 (𝜏)]1, where
𝑄𝐴 (𝑋 ), 𝑅𝐴 (𝑋 ) ∈ F<𝑛𝑠 [𝑋 ] are such that

𝐻 (𝑋 )𝐺 (𝑋 ) = 𝑄𝐻 (𝑋 )𝑍W(𝑋 ) + 𝑅𝐻 (𝑋 ) .

2.6 Our Model

We discuss below the model of computation used in this work. At a high level, we will consider layered
circuits C with 𝑘 layers, where each layer supports a branch of 𝑛 circuits {C1, · · · ,C𝑛}. The circuits are
connected via interleaving activation layers where the 𝑗 − 1-th activation layer specifies the circuit C𝑖 that
will be the active branch in the 𝑗-th layer. We allow the output of each activation layer can depend on the
input to the circuit.

Further, we note that our definition follows closely to that of works that consider (i) incremental ver-
ifiable computation (IVC) with non-uniform circuits at every step [BC23]; (ii) the “a la carte” cost profile
of program execution [ZGK+18, WSR+15, KS22].

We formally define the model below by specifying an efficiently computable function 𝜉 that on circuit
input specifies a vector 𝐼 ∈ [1, 𝑛]𝑘 . For notational simplicity, we denote by 𝜉𝑥 the vector 𝜉 (𝑥), which is
indexed at the 𝑗-th location by 𝜉𝑥 [ 𝑗].

Definition 4. Let 𝑠, 𝑘, 𝑛,𝑚 ∈ N, and for every 𝑖 ∈ [𝑛], C𝑖 is an arithmetic circuit of size 𝑠 . Then, a C is a
(𝑠, 𝑘, 𝑛, {C𝑖}𝑛𝑖=1)-layered branching circuit is a circuit such that there exists an efficiently computable function
𝜉 : F𝑚 → [1, 𝑛]𝑘 such that for every input 𝑥 ∈ F𝑚 , C(𝑥) = C̃𝜉 (𝑥), where C̃𝜉 B C𝜉𝑥 [1] | | · · · | |C𝜉𝑥 [𝑘 ] .

Remark 1. To handle scenarios where the input determines the number of layers 𝑘 ≤ 𝑘 that are activated, we
can include a ‘special” circuitCid which implements the identity (i.e., just passes the input through unchanged).
We then say that for any 𝑘 ≤ 𝑘 , the input 𝑥 has effective layer 𝑘 if the circuits active in the final 𝑘 − 𝑘 layers
are all Cid, i.e. ∀𝑗 ∈ [𝑘, 𝑘] C𝜉𝑥 [ 𝑗 ] = Cid. In such a situation, one can in fact require a stronger requirement -
that the prover cost grows with𝑂 (𝑘𝑠) rather than𝑂 (𝑘𝑠). For the rest of this work, we will indeed consider the
effective layer 𝑘 .

The above formalism allows us to contrast between an explicit representation of the layered branching
circuit, which is of size 𝑂 (𝑘𝑛𝑠), and the specific sub-sequence of 𝑘 circuits each of size 𝑠 that are activated
for a specific input. Looking ahead, we will utilize the aforementioned property of layered circuits to
construct a proof system where the prover cost grows with cost of the executed circuits 𝑂 (𝑘𝑠).

We note that while the example applications discussed in Section 1.3 can be naturally cast into this
model, our model is general enough to handle a larger class of circuits. For instance, a generic program
consisting of nested conditional statements of depth 𝑑 can be recast in our above formulation by appro-
priately choosing 𝑛 = 2𝑑 circuits, where the executed path will indeed consist of 𝑑 = 𝑂 (log𝑛) circuits.

2.7 Background on P𝔩𝔬𝔫K
P𝔩𝔬𝔫K [GWC19] is a popular state-of-the-art, pre-processing zkSNARK with a constant-sized proof. As
discussed earlier, our work builds on P𝔩𝔬𝔫K to design a zkSNARK where the proof generation time grows
only with the size of the active sub-circuit. In this section, we provide the relevant background on the
P𝔩𝔬𝔫K proof system that will be useful for understanding our construction. Some of the text in this
section is taken verbatim from [GWC19].

13



P𝔩𝔬𝔫K Constraint System. The P𝔩𝔬𝔫K constraint system is meant to capture fan-in two arithmetic
circuits of unlimited fan-out with 𝑛 gates and 𝑚 wires, but is more general. It is defined as 𝒞 = (V,Q),
where:

– V is of the formV = (a, b, c) ∈ [𝑚]3𝑛 , which implicitly describe a permutation (to be explained shortly)
on [3𝑛].

– Q = (qL, qR, qO, qM, qC) ∈ (F𝑛)5 where qL, qR, qO, qM, qC ∈ F𝑛 are the selector vectors.

We say x ∈ F𝑚 satisfies 𝒞 if for each ℓ ∈ [𝑛],

(qL)ℓ · xaℓ + (qR)ℓ · xbℓ + (qO)ℓ · xcℓ + (qM)ℓ · (xaℓxbℓ ) + (qC)ℓ = 0.

This lets us define relation R𝒞 which is a set of pairs x B (x,w), where x satisfies 𝒞.

FromArithmetic Circuits to P𝔩𝔬𝔫K Constraint System. As an example, we demonstrate how a fan-
in two arithmetic circuit with 𝑛 gates (each one is either an addition or a multiplication gate) and𝑚 wires
(since every gate is assumed to have 2 input wires and 1 output wire associated with it, 𝑚 = 3𝑛.) can be
captured by the P𝔩𝔬𝔫K constraint system. For each gate ℓ ∈ [𝑛]

• Let aℓ , bℓ and cℓ denote the index of the left, right and output wire of the ℓ th gate. Set (qC)ℓ = 0. 7

• Set (qL)ℓ = 0, (qR)ℓ = 0, (qO)ℓ = −1, (qM)ℓ = 1, when the ℓ th gate is a multiplication gate.

• Set (qL)ℓ = 1, (qR)ℓ = 1, (qO)ℓ = −1, (qM)ℓ = 0, when the ℓ th gate is an addition gate.

A circuit constraint system needs to ensure (1) Correct Gate Evaluation: given the left and right input wires,
each gate is evaluated correctly. This is checked by choosing appropriate entries in the selector vectors
based on the gate types (as described in the above example). (2) Consistency of Wire Values: if a wire is
“split” (for instance as input to multiple gates or as the output of one gate and input to another), all the
split wires must indeed contain the same wire value. This is done in the P𝔩𝔬𝔫K proof system via the
copy-check constraints implemented by a permutation 𝜎 : [3𝑛] → [3𝑛]. Specifically, 𝜎 is a collection of
cycles (possibly of length 1), where each cycle is over all wires that are required to contain the same value
as a consequence of the aforementioned “split”.

We note that the P𝔩𝔬𝔫K constraint system can be further generalized to handle custom gates and
gates with arbitrary fan-in. However, for simplicity of presentation, we only work with the above simple
variant.

Verifier Pre-Processing in P𝔩𝔬𝔫K . The P𝔩𝔬𝔫K protocol for the above constraint system is defined
over a multiplicative subgroup W = {1, 𝜔, · · · , 𝜔𝑛−1} of size 𝑛. Let 𝑘1 and 𝑘2 be picked such that 𝑘1 ·W
and 𝑘2 · W are distinct cosets of W. 8 Let W′ = W ∪ (𝑘1 · W) ∪ (𝑘2 · W). Identify [3𝑛] with W′ via
ℓ → 𝜔 ℓ , ℓ +𝑛 → 𝑘1 ·𝜔 ℓ , ℓ + 2𝑛 → 𝑘2 ·𝜔 ℓ . Finally, let 𝜎∗ denote the mapping from [3𝑛] toW′ derived from
applying 𝜎 (as described above) and then this injective mapping intoW′.

The P𝔩𝔬𝔫K protocol requires the following universal trusted setup (needed for computing KZG com-
mitments [KZG10] throughout the protocol): (𝜏 · [1]1, . . . , 𝜏𝑛+5 · [1]1), for a randomly chosen 𝜏 . In addition,
in order to keep the verifier cost low, the P𝔩𝔬𝔫K protocol pre-processes the constraint system to produce

7We remark that the above is only an example. The P𝔩𝔬𝔫K constraint system is quite general and can be used to enforce
other types of constraints as well (e.g., checking if some wire value is equal to a public input by setting the corresponding entry
in qC to that public value, or whether a wire value is a boolean value etc.).

8Since further details regarding the cosets are not relevant to our discussion, we do not elaborate here and refer the reader to
[GWC19] for details.

14



the following pre-processed input, where 𝜓𝑖 correspond to the Lagrange polynomials over multiplicative
sub-groupW.

𝑛, (𝑞𝑀𝑖 , 𝑞𝐿𝑖 , 𝑞𝑅𝑖 , 𝑞𝑂𝑖 , 𝑞𝐶𝑖)𝑛𝑖=1, 𝜎
∗,

qM(𝑋 ) =
𝑛∑︁
ℓ=1

𝑞𝑀𝑖𝜓ℓ (𝑋 ), qL(𝑋 ) =
𝑛∑︁
ℓ=1

𝑞𝐿𝑖𝜓ℓ (𝑋 ),

qR(𝑋 ) =
𝑛∑︁
ℓ=1

𝑞𝑅𝑖𝜓ℓ (𝑋 ), qO(𝑋 ) =
𝑛∑︁
ℓ=1

𝑞𝑂𝑖𝜓ℓ (𝑋 ),

qC(𝑋 ) =
𝑛∑︁
ℓ=1

𝑞𝐶𝑖𝜓ℓ (𝑋 ), S𝜎 1(𝑋 ) =
𝑛∑︁
ℓ=1

𝜎∗(𝑖)𝜓𝑖 (𝑋 ),

S𝜎 2(𝑋 ) =
𝑛∑︁
ℓ=1

𝜎∗(𝑛 + ℓ)𝜓ℓ (𝑋 ), S𝜎 3(𝑋 ) =
𝑛∑︁
ℓ=1

𝜎∗(2𝑛 + ℓ)𝜓ℓ (𝑋 )

Here the KZG commitment to these polynomials are sent to the verifier as [qM(𝜏)]1, [qL(𝜏)]1, [qR(𝜏)]1,
[qO(𝜏)]1, [qC(𝜏)]1, [S𝜎 1(𝜏)]1, [S𝜎 2(𝜏)]1, [S𝜎 3(𝜏)]1. The rest of the protocol proceeds by assuming that this
pre-processing was done honestly, and that the verifier has access to these commitments, while the prover
has access to the above polynomials. 9

Observe that the size of the above polynomials (and hence the prover work in P𝔩𝔬𝔫K) depends on the
“entire” circuit. Looking ahead, we adopt the following high-level approach to reduce the prover work.
Given “some” input-independent verifier pre-processing (based on the entire circuit), we will allow the
prover to efficiently derive a “smaller” verifier pre-processing material (of the above form) that only depends
on the activated sub-circuit and have the prover send KZG commitments to this derived pre-processing
material to the verifier, along with a proof that certifies that these were computed honestly. Finally, given
this “smaller” derived pre-processing, the rest of our protocol will work exactly as P𝔩𝔬𝔫K . A majority of
the rest of this paper is dedicated towards describing our approach that allows the prover to efficiently
derive and convince the verifier that the derived verifier pre-processing for the activated sub-circuit was
honestly computed.

3 Segment-Lookup Argument

In this section, we present an efficient SNARK for segment-lookup. Looking ahead, in Section 4 we show
how this protocol can be combined with P𝔩𝔬𝔫K to obtain S𝔲𝔟𝔩𝔬𝔫K .

3.1 Overview

We start with an overview of the techniques in our construction. As discussed in the introduction, the first
step towards designing S𝔲𝔟𝔩𝔬𝔫K involves designing a protocol for segment lookup. Since our protocol
borrows techniques developed in 𝔠𝔮[EFG22], we first briefly recall the 𝔠𝔮 protocol. This will also allow us
to pinpoint the shortcomings that necessitate a segment lookup protocol, which will allow us to naturally
define the properties required from a segment lookup protocol.

Overview of 𝔠𝔮 [EFG22]. Lookup arguments are succinct proof systems, where given a commitment to
a large lookup table (of size 𝑛), the prover wants to convince the verifier that a commitment to a vector of

9We omit the discussion on how P𝔩𝔬𝔫K works given the above pre-processing, since it is not relevant for understanding our
techniques.

15



𝑘 values are all contained in the large lookup table (the vector is allowed to repeat values from the table).
𝔠𝔮 allows the prover to pre-process the table and generate such proofs in time proportional to 𝑘 , where the
proofs themselves are constant-sized.

The lookup table in 𝔠𝔮 is encoded using a polynomial 𝑇 (𝑋 ) of degree at most 𝑛, and the vector en-
coded using a polynomial 𝐹 (𝑋 ). Both these polynomials are committed via the KZG [KZG10] polynomial-
commitment. The pre-processing for the prover involves pre-computing succinct “quotient” commitments
based on𝑇 . These quotient commitments help the prover generate a proof in the online phase in time that
is proportional to 𝑂 (𝑘).

In more detail, 𝔠𝔮 relies on the following log-derivative lemma from [Hab22], which essentially says
that the values encoded using polynomial 𝐹 (𝑋 ) are a subset of the values encoded using polynomial𝑇 (𝑋 )
if and only if for some𝑚 ∈ F𝑛 ∑︁

𝑖∈[𝑛]

𝑚𝑖

𝑋 + 𝑡𝑖
=

∑︁
𝑖∈[𝑘 ]

1
𝑋 + 𝑓𝑖

,

where 𝑡𝑖 indicates the 𝑖-th entry of the table 𝑇 , and correspondingly 𝑓𝑖 indicates the 𝑖-th entry of 𝐹 . Here
𝑚𝑖 essentially encode the multiplicity of the 𝑖-th element 𝑇 in 𝐹 .

In [EFG22], this identity is checked by letting the verifier evaluate it at a random 𝛽 by requiring the
prover to send polynomial commitments to the following polynomials: (1) 𝑀 (𝑋 ), which is an encoding of
𝑚, and (2) polynomials 𝐴(𝑋 ) and 𝐵(𝑋 ), which are encodings of the summands on the left and right hand
sides of the above equation respectively.

While 𝑀 (𝑋 ) and𝐴(𝑋 ) are both degree 𝑛−1 polynomials, the number of non-zero evaluations of these
polynomials is at most 𝑘 (𝐵(𝑋 ) is only a sum of size 𝑂 (𝑘)). Hence, given pre-processed commitments to
Lagrange polynomials, it is possible for the prover to generate a commitment to 𝑀 and 𝐴 simply using
𝑂 (𝑘) operations. The only remaining step in enabling the verifier to check the above equality is to convince
them that the commitment to polynomial 𝐴(𝑋 ) is well-formed with respect to 𝑇 (𝑋 ). This is be done by
providing the verifier with a commitment to a quotient polynomial 𝑄𝐴 (𝑋 ) and letting them check if

𝐴(𝑋 ) · (𝑇 (𝑋 ) + 𝛽) −𝑀 (𝑋 ) ?
= 𝑄𝐴 (𝑋 ) · 𝑍W(𝑋 ) .

Even though polynomials𝐴(𝑋 ), 𝑀 (𝑋 ) have sparse representations, computing the𝑄𝐴 (𝑋 ) still requires
𝑂 (𝑛) operations. To reduce this overhead, 𝔠𝔮 introduced the idea of cached quotients. They show that if
one pre-process commitments to quotients {𝑄𝑖 (𝑋 )}𝑖∈[𝑛] , of the form

𝜓W𝑖 (𝑋 ) ·𝑇 (𝑋 ) = 𝑄𝑖 (𝑋 ) · 𝑍W(𝑋 ) + 𝑅𝑖 (𝑋 ),

then it is possible to compute a commitment to 𝑄𝐴 (𝑋 ) using just 𝑂 (𝑘) operations.
As evidenced from the above equations, the 𝔠𝔮 protocol only provides guarantees that the element

encoded via 𝐹 (𝑋 ) are contained in 𝑇 (𝑋 ). As described in the introduction, our application for lookup
protocol requires stronger properties that we describe below.

Segment-Lookup. We propose a variant of the standard lookup problem that we refer to as the segment-
lookup problem. At a high level, the look-up table of size 𝑛𝑠 is partitioned into 𝑛 segments consisting of
𝑠 elements each. Now the polynomial 𝐹 (𝑋 ) encoding 𝑘𝑠 elements must contain 𝑘 segments from 𝑇 (𝑋 )
in its entirety, ensuring that the relative order of elements within each segment is maintained. From our
aforementioned discussion of 𝔠𝔮, it does not gurantee such a property. We formally define our requirements
now.

LetW = {𝜔0, . . . , 𝜔𝑛𝑠−1} be a set of 𝑛𝑠 th roots of unity and V = {𝜈0, . . . , 𝜈𝑘𝑠−1} denote the set of 𝑘𝑠 th

roots of unity. Given commitments to𝑛𝑠−1 degree polynomial𝑇 (𝑋 ), for each 𝑖 ∈ [0, 𝑛−1], the 𝑖-th segment
is {𝑇 (𝜔𝑖𝑠), · · · ,𝑇 (𝜔 (𝑖+1)𝑠−1)}. Thus, given a degree 𝑘𝑠−1 polynomial 𝐹 (𝑋 ), the prover in a segment-lookup

16



protocol wants to convince the verifier that for each 𝑖 ∈ [0, 𝑘 − 1], 𝐹 (𝜈𝑖𝑠+0), . . . , 𝐹 (𝜈 (𝑖+1)𝑠−1) represents one
of the original 𝑛 segments in 𝑇 (𝑋 ). In other words, the prover wants to prove that 𝐹 (𝑋 ) is well-formed,
and each segment embedded in 𝐹 (𝑋 ) is taken from 𝑇 (𝑋 ).

With the above requirement in mind, we want to design an efficient pre-processing SNARK with a
constant proof size and constant time verification, where the prover work only grows with 𝑘𝑠 .

Our Approach. We now describe our main ideas for designing such a protocol. For simplicity of nota-
tion, for any polynomial 𝑃 (𝑋 ), we will denote by 𝑝𝑖 the evaluation at𝜔𝑖 (the 𝑖-th power of the correspond-
ing set of roots of unity), i.e. 𝑝𝑖 B 𝑃 (𝜔𝑖). Note that the range of 𝑖 will vary depending on the corresponding
roots of unity 𝑃 is defined over.

Similar to 𝔠𝔮, we start by defining a polynomial 𝑀 (𝑋 ) that is used to indicate which elements of𝑇 (𝑋 )
are included in 𝐹 (𝑋 ), and how many times. i.e. 𝑚𝑖 = #times 𝑡𝑖 appears in (𝑓1, · · · , 𝑓𝑘𝑠). The number of
non-zero entries in 𝑀 is bounded above by min{𝑘𝑠, 𝑛𝑠}.

Since we want the “granularity” of elements selected to correspond to an entire segment, unlike 𝔠𝔮, we
want to enforce some additional constraints on 𝑀 (𝑋 ).

• Constraint I: The first constraint we enforce is that the value {𝑚𝑖}𝑖∈[ 𝑗𝑠,( 𝑗+1)𝑠−1] in 𝑀 (𝑋 ) corresponding
to each segment, must all be equal. We capture this by comparing each pair of consecutive values in
𝑀 , except the first value in each segment since each segment can have distinct values. The test is then
described as, ∀𝑖 ∈ [𝑛𝑠] s.t. 𝑠 ∤ 𝑖,𝑚𝑖 =𝑚𝑖−1. Or in polynomial terms,

∀𝑥 ∈ W, (𝑥𝑛 − 1) (𝑀 (𝑥) −𝑀 (𝑥/𝜔)) = 0.

By the fact thatW consists of 𝑘𝑠-th roots of unity, first term, (𝑥𝑛 − 1) is 0 if and only if 𝑥 = 𝜔 𝑗𝑠 for some
𝑗 , which ensures: (i) the equation is trivially satisfied by the starting index of each segment, which by
description is of the form 𝑗𝑠 , i.e. encodes 𝑠 ∤ 𝑖; and (ii) for all other indices 𝑖 , it must be the case that
𝑚𝑖 = 𝑚𝑖−1 to ensure the condition holds. This check is encoded by the polynomial check in Step 2 of
Round 1.

• Constraint II: A consequence of how the table lookup protocol works in 𝔠𝔮 is that the relative ordering
of elements in 𝐹 (𝑋 ) need not be consistent with the relative ordering of elements in 𝑇 (𝑋 ). Since our
segment will encode a circuit, it is imperative that we maintain the relative ordering of the elements
within a segment.
We encode this test by first defining a function, 𝐿 : [𝑘𝑠] ↦→ [𝑛𝑠] which we will encode as a polynomial
𝐿(𝑋 ) : K ↦→ W (by overloading notation).10 𝐿 maps the indices from 𝐹 to their corresponding location
within𝑇 . For relative ordering, we perform a check akin to that of𝑀 , the indices for consecutive elements
in 𝐹 should be consecutive in 𝑇 (except for the start of the segment), ∀𝑖 ∈ [𝑘𝑠] s.t. 𝑠 ∤ 𝑖, ℓ𝑖+1 = ℓ𝑖 + 1. In
polynomial terms, since we have 𝑘𝑠-th roots of unity, we can rewrite this as,

∀𝑥 ∈ V, (𝑥𝑘 − 1) (𝐿(𝑥𝜈) − 𝜔𝐿(𝑥)) = 0.

𝐿(𝑋 ) has degree at most 𝑘𝑠 .

• Constraint III: Unfortunately, the above checks are not yet sufficient to achieve the desired segment
granularity. While the tests do ensure that relative ordering is maintained within the segment, it does
not enforce that the segments in 𝐹 (𝑋 ) indeed start at the specified location, i.e. we want to ensure that
ℓ𝑗𝑠 for each 𝑗 ∈ [𝑘] must map to an index 𝑖𝑠 for some 𝑖 ∈ [𝑛] in𝑇 . This will ensure that each segment in
𝐹 indeed corresponds to a segment in 𝑇 .
10Since the same segment can be invoked multiple times, the function is not injective, and thus 𝐿−1 is not well defined.

17



We define a polynomial 𝐷 , that selects {ℓ𝑗𝑠 } 𝑗 , i.e. ∀𝑖 ∈ [𝑘], 𝑑𝑖𝑠 = ℓ𝑖𝑠 . Finally, we need to check that
∀𝑖 ∈ [𝑘], 𝑠 | 𝑑𝑖𝑠 . In polynomial terms, this translates to checking if all of the elements in {𝑑𝑖𝑠}𝑖∈[𝑘 ] are
𝑛-th roots of unity. To perform this check, we invoke a sub-protocol from [ZBK+22a].

Most of the remaining protocol follows the 𝔠𝔮 template, except that since we need to enforce the above
additional constraints, the log-derivative lemma used in 𝔠𝔮 does not suffice in our setting. We work with
the following modified lemma: Each segment embedded in 𝐹 is taken from𝑇 if and only if for some 𝑀 and
𝐿 as defined above, ∑︁

𝑖∈[𝑛𝑠 ]

𝑚𝑖

𝑋 + 𝑡𝑖 + 𝑌𝜔𝑖
=

∑︁
𝑖∈[𝑘𝑠 ]

1
𝑋 + 𝑓𝑖 + 𝑌ℓ𝑖

The verifier picks random field elements to replace𝑋,𝑌 . The prover provides commitments to polynomials
𝐴(𝑋 ) and 𝐵(𝑋 ) that encode the summands in the LHS and RHS, respectively. Similar to 𝔠𝔮, the verifier then
verifies if the above equality holds. Throughout the protocol, when computing commitments to quotient
polynomials of degree 𝑛𝑠 − 1, we use the idea of cached quotients to reduce online prover work at the cost
of some additional pre-processing.

3.2 Definition

We begin by formally defining Segment-Lookup, secure against algebraic adversaries.

Definition 5 (Segment-Lookup). (𝑛, 𝑘, 𝑠)-Segment-Lookup is a pair (gen, segmentLookup) such that:

• gen(𝑛, 𝑘, 𝑠,𝑇 ) : This is a PPT algorithm that takes as input integers 𝑛, 𝑘, 𝑠 and a polynomial 𝑇 ∈ F[𝑋 ] of
degree 𝑛𝑠 − 1. It outputs a string srs of G1 and G2 elements. This algorithm is run in the pre-processing
phase.

• segmentLookup(com, srs,𝑇 , 𝐹 ,V) : This is an interactive public coin protocol between the Prover and the
Verifier, where the prover has a private input 𝐹 ∈ F[𝑋 ] of degree 𝑘𝑠 − 1, and both the parties have access to
𝑇, com and srs := gen(𝑛, 𝑘, 𝑠,𝑇 ), such that it satisfies the following properties of completeness and knowledge
soundness in the algebraic group model.

– Completeness. If com = [𝐹 (𝜏)]1, and if for each 𝑖 ∈ [0, 𝑘 − 1], there exists 𝑗 ∈ [0, 𝑛 − 1] such that, for
each 𝑞 ∈ [0, 𝑠 − 1], 𝐹 (𝜈𝑖𝑠+𝑞) = 𝑇 (𝜔 𝑗𝑠+𝑞), then the verfier accepts with probability 1.

– Knowledge Soundness in the algebraic group model. The probability of any efficient algebraic ad-
versary A winning the following game is negl(𝜆).
1. A chooses integer parameters 𝑛, 𝑘, 𝑠 and the polynomial 𝑇 (𝑋 ) ∈ F[𝑋 ] of degree 𝑛𝑠 − 1.
2. Compute srs := gen(𝑛, 𝑘, 𝑠,𝑇 ).
3. A sends a message com and polynomial 𝐹 (𝑋 ) ∈ F<𝑘𝑠 [𝑋 ] such that com = [𝐹 (𝜏)]1. Here, for max =

max(𝑘, 𝑛), all G1 elements in the srs are linear combinations of {[𝜏𝑖]1}𝑖∈[0,max−1] .
4. A (as the prover) and the verifier run the interactive protocol segmentLookup(com, srs,𝑇 , 𝐹 ,V), where
V ⊂ F is a subgroup of order 𝑘𝑠 generated by 𝜈 .

5. A wins if and only if the verifier accepts and there exists some 𝑖 ∈ [0, 𝑘 − 1], such that for each
𝑗 ∈ [0, 𝑛 − 1] there exists at least one 𝑞 ∈ [0, 𝑠 − 1] such that 𝐹 (𝜈𝑖𝑠+𝑞) ≠ 𝑇 (𝜔 𝑗𝑠+𝑞).

3.3 Building Blocks

We require two main building blocks for our segment-lookup protocol, which we state as two lemmas
below. The first lemma gives a protocol that helps in checking if the evaluations of some polynomial are all
𝑛-th roots of unity, which can be instantiated using Caulk [ZBK+22a]. The second lemma is a modification
of the log-derivative lemma from [EFG22, Hab22].

18



Lemma 5. There exists a knowledge-sound argument for Runity := {(srs, [𝐷]1, {𝜈𝑖𝑠 : 𝑖 ∈ [0, 𝑘 − 1]}, {𝜇𝑖 :
𝑖 ∈ [0, 𝑛 − 1]}) : [𝐷]1 = [𝐷 (𝜏)] for 𝐷 (𝑥) s.t. ∀𝑖 ∈ [0, 𝑘 − 1], 𝐷 (𝜈𝑖𝑠) = 𝜇 𝑗 for some 𝑗 ∈ [0, 𝑛 − 1]}, where
𝜇 is some 𝑛-th root of unity, under the algebraic group model. Moreover, the prover uses 𝑂 (𝑘𝑠 log𝑛) G1- and
F-operations, while the proof size and verifier cost are constant.

We instantiate this lemma using the Multi-unity sub-protocol from Caulk [ZBK+22a, Theorem 4], an
overview of which is given below. The aim of the protocol is to check if the evaluations of some polynomial
are all roots of unity, i.e., prove that for each 𝑖 ∈ [0, 𝑘 − 1], 𝐷 (𝜈𝑖𝑠) ∈ {𝜇0, . . . , 𝜇𝑛−1}, where 𝜇 = 𝜔𝑠

and {𝜇0, . . . , 𝜇𝑛−1} are the 𝑛th roots of unity. To do this, the prover defines a vector ®𝑢0 = (𝐷 (1), 𝐷 (𝜈𝑠),
. . . , 𝐷 (𝜈 (𝑘−1)𝑠)), and iteratively defines ®𝑢 𝑗 = ®𝑢 𝑗−1 ◦ ®𝑢 𝑗−1, for all 𝑗 ∈ [log𝑛]. This means the following must
be proved:

1. ®𝑢0 consists of (𝐷 (1), 𝐷 (𝜈𝑠), . . . , 𝐷 (𝜈 (𝑘−1)𝑠)).

2. ®𝑢 𝑗 = ®𝑢 𝑗−1 ◦ ®𝑢 𝑗−1 for all 𝑗 ∈ [log𝑛 − 1].

3. ®𝑢log𝑛−1 ◦ ®𝑢log𝑛−1 = ®1.

Proving these three statements would imply that the initial statement is proved to hold. To prove steps
1-3 in terms of the polynomial encodings, set 𝑈0(𝑋 ) = 𝐷 (𝑋 ), the polynomial with evaluations ®𝑢0 on K,
𝑈log𝑛 (𝑋 ) = id(𝑋 ), where id is the polynomial evaluating to 1 at all points of V, and𝑈 𝑗 (𝑋 )’s to encode the
intermediate vectors ®𝑢 𝑗 ’s. Then, it needs to be proved that the following equations hold.

𝑈0(𝑋 )𝑈0(𝑋 ) −𝑈1(𝑋 ) ≡ 𝑍V(𝑋 )𝑄𝑈 ,1(𝑋 )
𝑈1(𝑋 )𝑈1(𝑋 ) −𝑈2(𝑋 ) ≡ 𝑍V(𝑋 )𝑄𝑈 ,2(𝑋 )

...

𝑈log𝑛−1(𝑋 )𝑈log𝑛−1(𝑋 ) − id(𝑋 ) ≡ 𝑍V(𝑋 )𝑄𝑈 ,log𝑛 (𝑋 )

All the above checks are aggregated into one equation, using lagrange polynomials {Δ𝑖}𝑖∈[log𝑛] over roots
of unity S = {1, 𝜙, . . . , 𝜙 log𝑛−1} as follows.

(𝑈 2
0 (𝑋 )Δ1(𝑌 ) +

log𝑛∑︁
𝑗=2

𝑈 2
𝑗−1(𝑋 ) · Δ 𝑗 (𝑌 )) −

(log𝑛−1∑︁
𝑗=1

𝑈 𝑗 (𝑋 ) · Δ 𝑗 (𝑌 ) + id(𝑋 ) · Δlog𝑛 (𝑌 )
)
= 𝑍V(𝑋 )𝑄2(𝑋,𝑌 )

for some polynomial 𝑄2(𝑋,𝑌 ). It needs to be shown that the above equation holds at some random point
(𝜁 , 𝜉) using bivariate KZG. We refer the reader to Appendix A for the details of the above subprotocol.

Log-derivative Method. We use a variant of the log-derivative method from [Hab22, EFG22] that is
tailored for our segment lookup. We state the lemma below, whose proof is similar to the log-derivate
lemma from [Hab22].

Lemma 6. Let F be a field with characteristic 𝑝 > max{𝑘𝑠, 𝑛𝑠}. Given three sequences of field elements
𝑓 = (𝑓𝑖 = 𝐹 (𝜈𝑖))𝑖∈[𝑘𝑠 ] , ℓ = (ℓ𝑖 = 𝐿(𝜈𝑖))𝑖∈[𝑘𝑠 ] , and 𝑡 = (𝑡𝑖 = 𝑇 (𝜔𝑖))𝑖∈[𝑛𝑠 ] . Consider segments of 𝑠-consecutive
elements in 𝑓 and 𝑡 , resulting in 𝑘 and 𝑛 segments of 𝑓 and 𝑡 , respectively. We have that for each 𝑖 ∈ [0, 𝑘 −1],
the 𝑖-th segment of 𝑓 corresponds to the ℓ𝑖-th segment of 𝑡 , i.e., ∀𝛿 ∈ F, for each 𝑖 ∈ [𝑘𝑠], there exists some
𝑗 ∈ [𝑛𝑠] such that 𝑓𝑖 + 𝛿ℓ𝑖 = 𝑡 𝑗 + 𝛿𝜔 𝑗 , if and only if, for some 𝑚 ∈ F𝑛𝑠 , the following identity of rational
functions holds. ∑︁

𝑖∈[𝑛𝑠 ]

𝑚𝑖

𝑋 + 𝑡𝑖 + 𝛿𝜔𝑖
=

∑︁
𝑖∈[𝑘𝑠 ]

1
𝑋 + 𝑓𝑖 + 𝛿ℓ𝑖

(1)

19



Proof. Denote by 𝑚𝑓 ,ℓ (𝑧), the multiplicity of field element 𝑧 in the sequence (𝑓𝑖 + 𝛿ℓ𝑖)𝑖∈[𝑘𝑠 ] . Since 𝑝 >

max{𝑘𝑠, 𝑛𝑠}, the multiplicities will be non-zero elements in F. Suppose that for each 𝑖 ∈ [𝑘𝑠], there exists
some 𝑗 ∈ [𝑛𝑠] such that for each 𝛿 ∈ F, it holds that 𝑓𝑖 + 𝛿ℓ𝑖 = 𝑡 𝑗 + 𝛿𝜔 𝑗 . Then, set 𝑚 𝑗 = 𝑚𝑓 ,ℓ (𝑡 𝑗 + 𝛿𝜔 𝑗 ) for
the 𝑗 ∈ [𝑛𝑠] corresponding to the 𝑖’s above, and to be 0 for the remaining 𝑗 ’s in [𝑛𝑠]. Clearly, for these
choice of𝑚 𝑗 ’s, equation 1 holds.
Conversely, suppose equation 1 holds for each 𝛿 ∈ F. By collecting repeating terms of each of the sum-
mands in the field, we get: ∑︁

𝑖∈[𝑛𝑠 ]

𝑚𝑖

𝑋 + 𝑡𝑖 + 𝛿𝜔𝑖
=

∑︁
𝑧∈F

𝑚′(𝑧)
𝑋 + 𝑧 ,∑︁

𝑖∈[𝑘𝑠 ]

1
𝑋 + 𝑓𝑖 + 𝛿ℓ𝑖

=
∑︁
𝑧∈F

𝑚𝑓 ,ℓ (𝑧)
𝑋 + 𝑧 .

where𝑚′(𝑧) is𝑚𝑡 (𝑧)multiplied with the corresponding𝑚𝑖 ’s. Since, 𝑝 > max{𝑘𝑠, 𝑛𝑠}, for each 𝑧 ∈ {𝑓𝑖+𝛿ℓ𝑖},
we have 𝑚𝑓 ,ℓ (𝑧) ≠ 0. By uniqueness of fractional representations (Lemma 2), 𝑚𝑓 (𝑧) = 𝑚′(𝑧) for each
𝑧 ∈ {𝑓𝑖}. Hence, for each 𝑧 ∈ {𝑓𝑖 + 𝛿ℓ𝑖}, there must exist some 𝑗 ∈ [𝑛𝑠] such that 𝑧 = 𝑡 𝑗 + 𝛿𝜔 𝑗 .

3.4 Tables with Repeated Elements

An astute reader may have noted that the Lemma 6 only works if within each segment the table𝑇 consists
of unique values, i.e. ∀𝑖 ∈ [0, 𝑛 − 1]∄ 𝑗, 𝑗 ′ ∈ [𝑠] such that 𝑇 (𝜔𝑖𝑠+𝑗 ) = 𝑇 (𝜔𝑖𝑠+𝑗 ′). At a high level, this is
implicit in the proof of Lemma 6. Particularly, if there is a repeated element in a segment, i.e., 2 elements
in the table correspond to the same 𝑡 𝑗 , then the multiplicity count argument for proving equation 1 in the
proof will no longer hold.

Looking ahead, in our application of the segment lookup protocol, we will indeed deal with tables that
will contain repeated elements with a segment. We now describe how to generically start with any table
𝑇 (𝑋 ), to (i) convert it into a table𝑇 ′(𝑋 ) during the pre-processing step such that each segment consists of
unique values - the prover will run the protocol using 𝐹 ′(𝑋 ) derived from𝑇 ′(𝑋 ); and (ii) have the verifier
perform a single step to recover 𝐹 (𝑋 ) from 𝐹 ′(𝑋 ). The guarantee of our transformation will be that the
witness polynomial is identical in both cases. Specifically, our segment lookup protocol when run on 𝑇 ′

and 𝐹 ′ ensures that ∃ a function 𝜉 : [𝑘] → [𝑁 ] such that ∀𝑖 ∈ [0, 𝑘], 𝑗 ∈ [𝑠], 𝐹 ′(𝜈𝑖𝑠+𝑗 ) = 𝑇 ′(𝜈𝜉 (𝑖 )𝑠+𝑗 ), and
our transformation will ensure that ∀𝑖 ∈ [0, 𝑘], 𝑗 ∈ [𝑠], 𝐹 (𝜈𝑖𝑠+𝑗 ) = 𝑇 (𝜈𝜉 (𝑖 )𝑠+𝑗 ) for the same function 𝜉 .

Let𝑇max B max𝑖 |𝑇 (𝜔𝑖) |, and we shall set ∀𝑖 ∈ [0, 𝑛−1], 𝑗 ∈ [𝑠],𝑇 ′(𝜔𝑖𝑠+𝑗 ) B 𝑇 (𝜔𝑖𝑠+𝑗 ) +2 · 𝑗 · (𝑇max+1).
This is done by further defining two polynomials, 𝐸 (𝑋 ) = ∑𝑛−1

𝑖=0
∑

𝑗∈[𝑠 ] 2 · 𝑗 · (𝑇max +1)𝜓W𝑖𝑠+𝑗 (𝑋 ) and 𝐷 (𝑋 ) =∑𝑘−1
𝑖=0

∑
𝑗∈[𝑠 ] 2 · 𝑗 · (𝑇max + 1)𝜓V𝑖𝑠+𝑗 (𝑋 ). We define the following function makeUnique:

makeUnique(𝑇, 𝐸):
Output 𝑇 ′(𝑋 ) B 𝑇 (𝑋 ) + 𝐸 (𝑋 ).

Within the context of our segment lookup protocol, [𝑇 ′(𝜏)] and [𝐷 (𝜏)] are computed as a part of
pre-processing by running makeUnique(𝑇, 𝐸), when given 𝑇 (𝑋 ) as input - the rest of the pre-processing
remains unchanged. The prover sets 𝐹 ′(𝑋 ) to be 𝐹 ′(𝑋 ) = 𝐹 (𝑋 ) + 𝐷 (𝑋 ), and the verifier sets [𝐹 ′(𝜏)] =
[𝐹 (𝜏)] + [𝐷 (𝜏)] to run segmentLookup(com, srs,𝑇 ′, 𝐹 ′,V), and verifier setting the “output” of the protocol
to be [𝐹 (𝜏)]. For correctness, we rely on the following claims.

Claim 1. If 𝑇max · (2 · 𝑠 + 1) < |F|, then ∀𝑖 ∈ [𝑁 ]∄ 𝑗, 𝑗 ′ ∈ [𝑠] such that 𝑇 ′(𝜔𝑖𝑠+𝑗 ) = 𝑇 ′(𝜔𝑖𝑠+𝑗 ′).

Proof Sketch. If not, for any distinct 𝑗, 𝑗 ′ ∈ [𝑠] consider 𝑇 ′(𝜔𝑖𝑠+𝑗 ) − 𝑇 ′(𝜔𝑖𝑠+𝑗 ′) = 𝑇 (𝜔𝑖𝑠+𝑗 ) − 𝑇 (𝜔𝑖𝑠+𝑗 ′) +
2(𝑇max + 1) ( 𝑗 − 𝑗 ′). Since by definition, 𝑇 (𝜔𝑖𝑠+𝑗 ) − 𝑇 (𝜔𝑖𝑠+𝑗 ′) ∈ [−2𝑇max, 2𝑇max], we have that 𝑇 ′(𝜔𝑖𝑠+𝑗 ) −
𝑇 ′(𝜔𝑖𝑠+𝑗 ′) > 0 if 𝑇max · (2 · 𝑠 + 1) < |F|, and thus 𝑇 ′(𝜔𝑖𝑠+𝑗 ) ≠ 𝑇 ′(𝜔𝑖𝑠+𝑗 ′).

20



Note that we are assuming that 𝑇max · (2 · 𝑠 + 1) < |F| to avoid any “wrap-around” in the field. This
restriction will not hinder the applications we consider.
Claim 2. ∃ a function 𝜉 : [𝑘] → [𝑁 ] such that ∀𝑖 ∈ [0, 𝑘], 𝑗 ∈ [𝑠], 𝐹 ′(𝜈𝑖𝑠+𝑗 ) = 𝑇 ′(𝜈𝜉 (𝑖 )𝑠+𝑗 ), then ∀𝑖 ∈
[0, 𝑘], 𝑗 ∈ [𝑠], 𝐹 (𝜈𝑖𝑠+𝑗 ) = 𝑇 (𝜈𝜉 (𝑖 )𝑠+𝑗 ).

The proof of the above claim follows from the definition of the relevant polynomials.
For the rest of this work, we will assume that we invoke segmentLookup, we are running the above

modified version of the segment lookup protocol that deals with repeated elements within a segment.
Thus, we ignore this issue henceforth.

3.5 Protocol

We now give a formal description of our segment-lookup protocol.

gen(𝑛, 𝑘, 𝑠,𝑇 ): Given 𝑛, 𝑘, 𝑠 and the polynomial 𝑇 (𝑋 ) ∈ F[𝑋 ] of degree 𝑛𝑠 − 1, the pre-processing infor-
mation is computed as follows:

The pre-processing involves computing all the powers of a random 𝜏 (step 1) which is the only step of pre-
processing requiring a trusted setup. In the remaining steps, these trusted powers of 𝜏 are used to generate the
commitments of the relevant vanishing polynomials, the Lagrange polynomials, and some quotient polyno-
mials for reducing prover and verifier work. These quotient polynomial computations are key to reducing the
online prover cost.

1. Choose a random 𝜏 ∈ F. Let max = max(𝑘, 𝑛). Compute {[𝜏𝑖]1}𝑖∈[0,max·𝑠−1] and {[𝜏𝑖]2}𝑖∈[0,max·𝑠−1] .

2. Compute [𝑍W(𝜏)]2, [𝑍V(𝜏)]2 and [𝑍K(𝜏)]2.

3. Compute and output [𝑇 (𝜏)]2.

4. For 𝑖 ∈ [𝑛𝑠], use lemma 4 to compute:

(a) 𝑞𝑖,1 = [𝑄𝑖,1(𝜏)]1 and 𝑞𝑖,2 = [𝑄𝑖,2(𝜏)]1 such that

𝜓W𝑖 (𝑋 ) ·𝑇 (𝑋 ) = 𝑡𝑖 ·𝜓W𝑖 (𝑋 ) + 𝑍W(𝑋 ) ·𝑄𝑖 (𝑋 )
𝜓W𝑖 (𝑋 ) · 𝑋 = 𝜔𝑖 ·𝜓W𝑖 (𝑋 ) + 𝑍W(𝑋 ) ·𝑄𝑖,2(𝑋 )

(b) [𝜓W𝑖 (𝜏)]1.

(c) [𝜓
W
𝑖
(𝜏 )−𝜓W

𝑖
(0)

𝜏
]1.

5. For 𝑖 ∈ [𝑘𝑠], compute the commitments [𝜓V𝑖 (𝜏)]1, [𝜓V𝑖 (𝜏𝜈)]1, for all 𝑖 ∈ [𝑘𝑠], corresponding to the set
V.

6. For 𝑖 ∈ [𝑛𝑠], use lemma 4 to compute:

(a) 𝑞𝑖,3 = [𝑄𝑖,3(𝜏)]1 and 𝑞𝑖,4 = [𝑄𝑖,4(𝜏)]1 such that:

𝜓W𝑖 (𝑋 ) · (𝑋𝑛 − 1) = 𝑔𝑖𝜓
W
𝑖 (𝑋 ) + 𝑍W(𝑋 ) ·𝑄𝑖,3(𝑋 )

𝜓W𝑖 (𝑋/𝜔) · (𝑋𝑛 − 1) = 𝑔𝑖𝜓
W
𝑖 (𝑋/𝜔) + 𝑍W(𝑋 ) ·𝑄𝑖,4(𝑋 ),

where 𝑔𝑖 := (𝜔𝑖𝑛 − 1).
(b) [𝜓W𝑖 (𝜏/𝜔)]1.

Output srs: {[𝜏𝑖]1, [𝜏𝑖]2}𝑖∈[0,max·𝑠−1] , [𝑍W(𝜏)]2,[𝑍V(𝜏)]2, [𝑍K(𝜏)]2, [𝑇 (𝜏)]2, 𝑞𝑖,1, 𝑞𝑖,2, 𝑞𝑖,3, 𝑞𝑖,4, [𝜓W𝑖 (𝜏)]1,
[𝜓W𝑖 (𝜏/𝜔)]1, and [𝜓

W
𝑖
(𝜏 )−𝜓W

𝑖
(0)

𝜏
]1 for each 𝑖 ∈ [𝑛𝑠], and [𝜓V𝑖 (𝜏)]1, [𝜓V𝑖 (𝜏𝜈)]1 for each 𝑖 ∈ [𝑘𝑠].

21



segmentLookup(com, srs,𝑇 , 𝐹 ,V): This protocol proceeds as follows:

In Round 1, the prover first commits to the multiplicity vector𝑚 from eq. 1. Then, the prover computes
the vector ℓ , such that ℓ𝑖 corresponds to the segment of 𝑡 that matches the 𝑖-th segment of 𝑓 , and generates
commitments of two polynomials encoding ℓ𝑖 : 𝐿, which helps in checking that within each of the 𝑖-th segment,
the consecutive elements of 𝑓 correspond to consecutive elements of 𝑡 in the ℓ𝑖-th segment, and𝐷 , which helps in
checking that 𝐿 is well-formed, i.e., the first entries of each segment form a set of 𝑛-th roots of unity. Note here
that all the commitments on 𝜏 (which the prover does not know) are computed by taking a linear combination
of the corresponding Lagrange commitments, all of which are given in the srs.

Round 1 (Prover→ Verifier). The prover does the following:

1. Computes a polynomial 𝑀 of degree 𝑛𝑠 − 1 as follows: For each 𝑖 ∈ [0, 𝑛 − 1], if 𝑖th segment in 𝑡 is
executed 𝑦 times in 𝐹 |V, then for each 𝑗 ∈ [0, 𝑠 − 1], 𝑀 (𝜔𝑖𝑠+𝑗 ) = 𝑦, and sends [𝑀 (𝜏)]1 and [𝑀 (𝜏/𝜔)]1
to the verifier.

2. Computes and sends [𝑄𝑀 (𝜏)]1 using the srs and lemma 4, where 𝑄𝑀 (𝑋 ) is such that11

(𝑋𝑛 − 1) (𝑀 (𝑋 ) −𝑀 (𝑋/𝜔)) = 𝑍W(𝑋 )𝑄𝑀 (𝑋 ) (2)

where 𝑍W(𝑋 ) denotes the vanishing polynomial corresponding to the setW.

3. Computes 𝐿(𝑋 ) of degree 𝑘𝑠 − 1 as follows: For each 𝑖 ∈ [0, 𝑘 − 1], if the segment executed at the 𝑖th

step (i.e., the 𝑖th segment in 𝑓 = 𝐹 |V) is the 𝑗 th segment in 𝑡 , then for each 𝑞 ∈ [0, 𝑠−1], 𝐿(𝜈𝑖𝑠+𝑞) = 𝜔 𝑗𝑠+𝑞 ,
and sends [𝐿(𝜏)]1 and [𝐿(𝜏𝜈)]1 to the verifier.

4. Computes 𝑄𝐿 (𝑋 ) such that

(𝑋𝑘 − 1) (𝐿(𝑋𝜈) − 𝜔𝐿(𝑋 )) = 𝑍V(𝑋 )𝑄𝐿 (𝑋 ) (3)

where 𝑍V(𝑋 ) denotes the vanishing polynomial corresponding to the set V, and sends [𝑄𝐿 (𝜏)]1 to the
verifier.

5. Computes a degree 𝑘 − 1 polynomial 𝐷 (𝑋 ) such that for each 𝑖 ∈ [0, 𝑘 − 1], 𝐷 (𝜈𝑖𝑠) = 𝐿(𝜈𝑖𝑠), and sends
[𝐷 (𝜏)]1 to the verifier.

6. Computes 𝑄𝐷 such that
𝐿(𝑋 ) − 𝐷 (𝑋 ) = 𝑍K(𝑋 )𝑄𝐷 (𝑋 ) (4)

where 𝑍K(𝑋 ) denotes the vanishing polynomial corresponding to the set K, and sends [𝑄𝐷 (𝜏)]1 to the
verifier.

In Round 2, the verifier checks validity of the equation 2 at 𝜏 . For soundness, it is important that the
eqs 3 and 4 corresponding to 𝐿 and 𝐷 in Round 1 are checked at random challenges. For efficiency reasons, we
combine these checks with the other checks in rounds 14-15.

11Given 𝑞𝑖,3, 𝑞𝑖,4, [𝜓W
𝑖
(𝜏)]1, [𝜓W𝑖 (𝜏/𝜔)]1, for each 𝑖 ∈ [𝑛𝑠], we can slightly modify the step 2 of lemma 4 to compute a linear

combination and obtain [𝑄𝑀 (𝜏)]1 and the commitment of the remainder polynomials corresponding to the 𝑘𝑠-sparse polynomial
𝐻 (𝑋 ) := (𝑀 (𝑋 ) −𝑀 (𝑋/𝜔)).

22



Round 2 (Verifier). The verifier proceeds to check the following:

𝑒 ( [𝑀 (𝜏)]1 − [𝑀 (𝜏/𝜔)]1, [𝜏𝑛]2 − [1]2) = 𝑒 ( [𝑄𝑀 (𝜏)]1, [𝑍W(𝜏)]2)

In Rounds 3-8, the prover and verifier run the sub-protocol from [ZBK+22a, Figure 5], as described in
Section 3.3 to check that the first entries of each segment 𝑖 ∈ [0, 𝑘 − 1] of 𝑓 , form the 𝑛-th roots of unity
𝜈0, . . . , 𝜈𝑛−1, for 𝜈 = 𝜔𝑠 . Recall, this was needed to guarantee the correctness of 𝐿.

Round 3-8 (Prover←→Verifier). Using the instantiation of Lemma 5, the prover and verifier engage in
a protocol to prove that the polynomial 𝐿 is well-formed, i.e., for each 𝑖 ∈ [0, 𝑘−1], 𝐷 (𝜈𝑖𝑠) ∈ {𝜇0, . . . , 𝜇𝑛−1},
where 𝜇 = 𝜔𝑠 and {𝜇0, . . . , 𝜇𝑛−1} are the 𝑛th roots of unity.
In Rounds 8-10, the prover computes the polynomials 𝐴 and 𝐵 corresponding to the two summations in
equation 1, and sends the needed commitments for the verifier to check the correctness of 𝐴 at 𝜏 , and to
perform degree-check of the polynomial that has the least degree amongst 𝐴 and 𝐵 at 𝜏 . No such degree check
is needed if 𝑘 = 𝑛.

Round 9 (Verifier). The verifier sends random 𝛽, 𝛿 ∈ F to the prover.

Round 10 (Prover→ Verifier). The prover does the following:

1. The prover computes 𝐴(𝑋 ) of degree 𝑛𝑠 − 1 such that for each 𝑖 ∈ [0, 𝑛𝑠 − 1],

𝐴(𝜔𝑖) = 𝑀 (𝜔𝑖)
𝛽 +𝑇 (𝜔𝑖) + 𝛿𝜔𝑖

and sends [𝐴(𝜏)]1 to the verifier.

2. The prover computes [𝑄𝐴 (𝜏)]1 using the srs and step 2 of lemma 4, where 𝑄𝐴 (𝑋 ) is such that12

𝐴(𝑋 ) (𝛽 +𝑇 (𝑋 ) + 𝛿𝑋 ) −𝑀 (𝑋 ) = 𝑍W(𝑋 )𝑄𝐴 (𝑋 ).

3. The prover computes 𝐵(𝑋 ) of degree 𝑘𝑠 − 1 such that for each 𝑖 ∈ [0, 𝑘𝑠 − 1],

𝐵(𝜈𝑖) = 1
𝛽 + 𝐹 (𝜈𝑖) + 𝛿𝐿(𝜈𝑖)

and sends [𝐵(𝜏)]1 to the verifier.

4. The prover computes 𝑄𝐵 (𝑋 ) such that

𝐵(𝑋 ) (𝛽 + 𝐹 (𝑋 ) + 𝛿𝐿(𝑋 )) − 1 = 𝑍V(𝑋 )𝑄𝐵 (𝑋 ),

and sends [𝑄𝐵 (𝜏)]1 to the verifier.

5. The prover computes 𝐵0(𝑋 ) = 𝐵 (𝑋 )−𝐵 (0)
𝑋

, 𝐴0(𝑋 ) = 𝐴(𝑋 )−𝐴(0)
𝑋

, and sends [𝐴0(𝜏)]1, [𝐵0(𝜏)]1 to the veri-
fier.

6. For degree check, which is needed only for 𝑘 ≠ 𝑛,
if 𝑛 > 𝑘 : the prover computes 𝑃𝐵 (𝑋 ) = 𝐵0(𝑋 ) · 𝑋𝑛𝑠−(𝑘𝑠+1) and sends [𝑃𝐵 (𝜏)]1 to the verfier;
else if 𝑘 > 𝑛: the prover computes 𝑃𝐴 (𝑋 ) = 𝐴0(𝑋 ) · 𝑋𝑘𝑠−(𝑛𝑠+1) and sends [𝑃𝐴 (𝜏)]1 to the verfier.

12Given 𝑞𝑖,1, 𝑞𝑖,2, and [𝜓W
𝑖
(𝜏)]1, for each 𝑖 ∈ [𝑛𝑠], we can slightly modify the step 2 of lemma 4 to obtain [𝑄𝐴 (𝜏)]1 and the

commitment of the remainder polynomials: compute a linear combination of the quotients and remainders corresponding to the
division of 𝐴(𝑋 )𝑇 (𝑋 ) and 𝐴(𝑋 )𝑋 by 𝑍W (𝑋 ).

23



Round 11 (Verifier). The verifier proceeds as follows:

1. Checks that 𝐴 encodes the correct values:

𝑒 ( [𝐴(𝜏)]1, [𝑇 (𝜏)]2 + 𝛿 [𝜏]2) = 𝑒 ( [𝑄𝐴 (𝜏)]1, [𝑍W(𝜏)]2) · 𝑒 ( [𝑀 (𝜏)]1 − 𝛽 [𝐴(𝜏)]1, [1]2)

2. Degree Check: If 𝑛 > 𝑘 , check

𝑒 ( [𝐵0(𝜏)]1, [𝜏𝑛𝑠−𝑘𝑠−1]2) = 𝑒 ( [𝑃𝐵 (𝜏)]1, [1]2)

else if 𝑘 > 𝑛, check
𝑒 ( [𝐴0(𝜏)]1, [𝜏𝑘𝑠−𝑛𝑠−1]2) = 𝑒 ( [𝑃𝐴 (𝜏)]1, [1]2)

3. Samples random 𝛾 ∈ F and sends them to the prover.

In Rounds 12-15, the prover gives a correctness proof of 𝐵 at a random challenge. As wementioned before,
we combine this check with the correctness checks of eqs 3 and 4 to reduce the number of pairing checks and
give the KZG-opening proofs corresponding to all the involved polynomials evaluated at the random challenge.

Round 12 (Prover). The prover sends 𝑏0,𝛾 = 𝐵0(𝛾), 𝑓𝛾 = 𝐹 (𝛾), ℓ𝛾 = 𝐿(𝛾), 𝑎0 = 𝐴(0), ℓ𝛾,𝜈 = 𝐿(𝜈𝛾),
𝑞𝛾,𝐿 = 𝑄𝐿 (𝛾), 𝑑𝛾 = 𝐷 (𝛾), 𝑞𝛾,𝐷 = 𝑄𝐷 (𝛾). to the verifier13.

Round 13 (Verifier). Verifier samples a random 𝜂 ∈ F and sends to the prover.

Round 14 (Prover). The prover computes the following:
𝑃 (𝑋 ) = 𝐿(𝑋𝜈) + 𝜂𝐿(𝑋 ) + 𝜂2𝑄𝐿 (𝑋 ) + 𝜂3𝐷 (𝑋 ) + 𝜂4𝑄𝐷 (𝑋 ) + 𝜂5𝐵0(𝑋 ) + 𝜂6𝐹 (𝑋 ) + 𝜂7𝑄𝐵 (𝑋 ) and

𝐻𝑃 (𝑋 ) =
𝑃 (𝑋 ) − 𝑝𝛾
𝑋 − 𝛾

where 𝑝𝛾 = ℓ𝛾,𝜈 + 𝜂ℓ𝛾 + 𝜂2𝑞𝛾,𝐿 + 𝜂3𝑑𝛾 + 𝜂4𝑞𝛾,𝐷 + 𝜂5𝑏0,𝛾 + 𝜂6 · 𝑓𝛾 + 𝜂7𝑞𝐵,𝛾 , for 𝑏𝛾 = 𝑏0,𝛾 · 𝛾 + 𝐵(0) and

𝑞𝐵,𝛾 =
𝑏𝛾 (𝑓𝛾 + 𝛽 + 𝛿ℓ𝛾 ) − 1

𝑍V(𝛾)
.

The prover then sends [𝐻𝑃 (𝜏)]1 and [𝑃 (𝜏)]1 to the verifier.

Round 15 (Verifier). The verifier proceeds as follows:

1. Sets 𝑏0 = 𝑛𝑠 · 𝑎0/𝑘𝑠 .

2. As part of checking the correctness of 𝐵, it computes 𝑍V(𝛾) = 𝛾𝑘𝑠 − 1, 𝑏𝛾 = 𝑏0,𝛾 · 𝛾 + 𝑏0 and

𝑞𝐵,𝛾 =
𝑏𝛾 (𝑓𝛾 + 𝛽 + 𝛿ℓ𝛾 ) − 1

𝑍V(𝛾)

3. Computes 𝑝𝛾 = ℓ𝛾,𝜈 + 𝜂ℓ𝛾 + 𝜂2𝑞𝛾,𝐿 + 𝜂3𝑑𝛾 + 𝜂4𝑞𝛾,𝐷 + 𝜂5𝑏0,𝛾 + 𝜂6 · com + 𝜂7𝑞𝐵,𝛾 .
13Given the sparse representation of 𝐴, the prover can compute 𝐴(0) in time 𝑂 (𝑘𝑠), given the pre-computed Lagrange evalua-

tions at 0.

24



4. Checks the following:

𝑒 ( [𝐻𝑝 (𝜏)]1, [𝜏]2) = 𝑒 ( [𝑃 (𝜏)]1 − 𝑝𝛾 + 𝛾 [𝐻𝑝 (𝜏)]1.[1]2)
𝑒 ( [𝐴(𝜏)]1 − [𝑎0]1, [1]2) = 𝑒 ( [𝐴0(𝜏)]1, [𝜏]2)
(𝛾𝑘 − 1) (ℓ𝛾,𝜈 − 𝜔ℓ𝛾 ) − 𝑍V(𝛾)𝑞𝛾,𝐿 = 0
ℓ𝛾 − 𝑑𝛾 − 𝑍K(𝛾)𝑞𝛾,𝐷 = 0

Proof. It is easy to check that our protocol is complete, assuming the completeness of the caulk sub-
protocol.

Proof of Knowledge Soundness. Suppose A is an efficient algebraic adversary attacking the knowl-
edge soundness of our protocol, as in Definition 5. Since A is algebraic, it will send a polynomial 𝐹 (𝑋 ) ∈
F<𝑘𝑠 [𝑋 ] corresponding to com in Step 3) of the knowledge soundness game. Furthermore, corresponding
to all the commitments in the protocol, A sends the corresponding polynomials of appropriate degree.
Let Win denote the event that A wins the knowledge soundness game and Acc denote the event that the
verifier accepts. Then, Win ⊂ Acc and Acc implies that all the pairing checks in our protocol verify. By
Lemma 1, this means that the corresponding ideal checks will also verify, except with a negl(𝜆)-probability.
Assuming this, we want to prove that for each 𝑖 ∈ [0, 𝑘 − 1], there exists 𝑗 ∈ [0, 𝑛 − 1] such that, for each
𝑞 ∈ [0, 𝑠 − 1], 𝐹 (𝜈𝑖𝑠+𝑞) = 𝑇 (𝜔 𝑗𝑠+𝑞).

If all the ideal pairing checks verify, then the following holds.

• By the security of KZG commitments, the pairing checks in Round 15 implies that except with probability
𝑘𝑠/|F| over 𝛾, 𝜂 ∈ F, it holds that ℓ𝛾,𝜈 = 𝐿(𝛾𝜈), ℓ𝛾 = 𝐿(𝛾), 𝑞𝛾,𝐿 = 𝑄𝐿 (𝛾), 𝑑𝛾 = 𝐷 (𝛾), 𝑞𝛾,𝐷 = 𝑄𝐷 (𝛾),
𝑏0,𝛾 = 𝐵0(𝛾), 𝑓𝛾 = 𝐹 (𝛾) and 𝑞𝐵,𝛾 = 𝑄𝐵 (𝛾).

• This implies that the checks in Round 15, Step 4) at the random point 𝛾 implies that the following equa-
tions hold:

𝐵(𝑋 ) (𝛽 + 𝐹 (𝑋 ) + 𝛿𝐿(𝑋 )) − 1 = 𝑍V(𝑋 )𝑄𝐵 (𝑋 )
(𝑋𝑘 − 1) (𝐿(𝑋𝜈) − 𝜔𝐿(𝑋 )) = 𝑍V(𝑋 )𝑄𝐿 (𝑋 )
𝐿(𝑋 ) − 𝐷 (𝑋 ) = 𝑍K(𝑋 )𝑄𝐷 (𝑋 )

• By the knowledge soundness of the caulk sub-protocol (c.f. [ZBK+22a, Theorem 4]), Rounds 3-8 in our
protocol guarantee that 𝐿 is well-formed, i.e., for each 𝑖 ∈ [0, 𝑘 − 1], 𝐷 (𝜈𝑖𝑠) ∈ {𝜇0, · · · , 𝜇𝑛−1}, for 𝜇 = 𝜔𝑠 .

• Since the verifier obtains [𝜏𝑘𝑠−𝑛𝑠−1]2, [𝜏𝑛𝑠−𝑘𝑠−1]2 from the srs, the degree pairing checks in Round 11
imply the the following:

– If 𝑛 > 𝑘 , then 𝑑𝑒𝑔(𝐵0) ≤ 𝑘𝑠 − 2, and if 𝑘 > 𝑛, then 𝑑𝑒𝑔(𝐴0) ≤ 𝑛𝑠 − 2.
– In either case above, the other polynomial also satisfies the degree check because the commitment of

the corresponding power of 𝜏 will be the highest G1-power in srs. This is also why no degree check
is needed if 𝑘 = 𝑛. Furthermore, since 𝐵(𝑋 ) = 𝐵0(𝑋 )𝑋 + 𝑏0 for 𝑏0 = 𝑛𝑠𝑎0/𝑘𝑠 , 𝑑𝑒𝑔(𝐵) < 𝑘𝑠 .

• In Round 11, we check the following equation at 𝜏 :

𝐴(𝑋 ) (𝛽 +𝑇 (𝑋 ) + 𝛿𝑋 ) −𝑀 (𝑋 ) = 𝑍W(𝑋 )𝑄𝐴 (𝑋 )

This implies that 𝐴(𝜔𝑖) =
𝑀 (𝜔𝑖 )

𝛽+𝑇 (𝜔𝑖 )+𝛿𝜔𝑖 for each 𝑖 ∈ [𝑛𝑠]. Furthermore, since 𝐵 is well-formed, we
know that

∑
𝑖∈[𝑘𝑠 ] 𝐵(𝜈𝑖) =

∑
𝑖∈[𝑘𝑠 ]

1
𝛽+𝐹 (𝜈𝑖 )+𝛿𝐿 (𝜈𝑖 ) . Further, by Lemma 3,

∑
𝑖∈[𝑘𝑠 ] 𝐵(𝜈𝑖) = 𝑘𝑠 · 𝑏0 and

25



∑
𝑖∈[𝑛𝑠 ] 𝐴(𝜔𝑖) = 𝑛𝑠 · 𝑎0. Since, in the protocol 𝑏0 is set such that 𝑘𝑠 · 𝑏0 = 𝑛𝑠 · 𝑎0, we have that∑
𝑖∈[𝑛𝑠 ]

𝑀 (𝜔𝑖 )
𝛽+𝑇 (𝜔𝑖 )+𝛿𝜔𝑖 =

∑
𝑖∈[𝑘𝑠 ]

1
𝛽+𝐹 (𝜈𝑖 )+𝛿𝐿 (𝜈𝑖 ) . This implies that except with probability (𝑘𝑠 · 𝑛𝑠)/|F| over

𝛽 ∈ F, the following will hold:∑︁
𝑖∈[𝑛𝑠 ]

𝑀 (𝜔𝑖)
𝑋 +𝑇 (𝜔𝑖) + 𝛿𝜔𝑖

=
∑︁

𝑖∈[𝑘𝑠 ]

1
𝑋 + 𝐹 (𝜈𝑖) + 𝛿𝐿(𝜈𝑖) (5)

This implies that the following two equation checks on 𝜏 in Rounds 2 and 15,

(𝑋𝑛 − 1) (𝑀 (𝑋 ) −𝑀 (𝑋/𝜔)) = 𝑍W(𝑋 )𝑄𝑀 (𝑋 )
𝐴(𝑋 ) − 𝑎0 = 𝐴0(𝑋 ) · 𝑋

will guarantee that these equations hold and that𝑀 is guaranteed to be well-formed14. Thus, by Lemma 6,
eq. 5 implies that for each 𝑖 ∈ [𝑘𝑠], there exists some 𝑗 ∈ [𝑛𝑠] such that 𝐹 (𝜈𝑖) + 𝛿𝐿(𝜈𝑖) = 𝑇 (𝜔 𝑗 ) + 𝛿𝜔 𝑗 .

• Thus, by the definition of polynomial 𝐿, this implies that for each 𝑖 ∈ [0, 𝑘−1], there exists a 𝑗 ∈ [0, 𝑛−1]
such that for each 𝑞 ∈ [0, 𝑠 − 1], 𝐹 (𝜈𝑖𝑠+𝑞) + 𝛿𝜔 𝑗𝑠+𝑞 = 𝑇 (𝜔 𝑗𝑠+𝑞) + 𝛿𝜔 𝑗𝑠+𝑞 , i.e., 𝐹 (𝜈𝑖𝑠+𝑞) = 𝑇 (𝜔 𝑗𝑠+𝑞) .

Thus, the event Acc that the verifier accepts implies that all the ideal pairing checks will verify except with
a negl(𝜆) probability. By the above implications, this in turn implies that for each 𝑖 ∈ [0, 𝑘−1], there exists
a 𝑗 ∈ [0, 𝑛 − 1] such that for each 𝑞 ∈ [0, 𝑠 − 1], 𝐹 (𝜈𝑖𝑠+𝑞) = 𝑇 (𝜔 𝑗𝑠+𝑞), except with a negl(𝜆) probability.
This proves the knowledge soundness of our protocol.

Efficiency. The efficiency of gen follows from Lemma 4. The additional multiplicative log-factor is due to
the use of FFTs to compute the quotient polynomials. By Lemma 4 it is guaranteed that the online prover
cost of our protocol is dominated by the following two costs: first, the instantiation of Lemma 5 uses
𝑂 (𝑘𝑠 log𝑛) G1- and F-operations; second, the FFT computation for computing the quotient polynomials,
onV requires𝑂 (𝑘𝑠 log𝑘𝑠) F-operations. It is easy to see that the proof size and verifier cost of our protocol
are 𝑂 (1).

3.6 Adding Zero-Knowledge

Our segment-lookup protocol as described in the previous section, does not achieve zero-knowledge (i.e.,
it does not hide the segments encoded using polynomial 𝐹 (𝑋 )). However, as is the case with most ex-
isting efficient SNARKs [GWC19, EFG22, CHM+20], our protocol can be easily modified to achieve zero-
knowledge with the caveat that it leaks the effective layer 𝑘 of the input. The main idea is to use randomized
polynomial encodings (as opposed to unique polynomial encodings) when computing commitments to
witness-dependent vectors. The reason why this simple modification suffices for ensuring zero-knowledge
is because, throughout the protocol, the verfier only sees evaluations of these polynomial encodings at a
few random points. When using higher-degree randomized polynomial encodings, these polynomial eval-
uations do not leak any information about the encoded vector.

In more detail, if for instance the verifier receives 𝛼 evaluations of polynomial 𝐹 (𝑋 ) in our segment-
lookup protocol, then it suffices for the prover to commit to and work with a randomized polynomial
𝐹 (𝑋 ) = 𝐹 (𝑋 ) + 𝑅(𝑋 ) · 𝑍V(𝑋 ) instead of 𝐹 (𝑋 ), where 𝑅(𝑋 ) is a random polynomial of degree 𝛼 − 1.
Our segment-lookup protocol will achieve zero-knowledge if all witness-dependent polynomials in the

14if 𝑀 was not correctly formed, and the pairing check of round 2 was set to be true by A, then the equality guaranteed by
eq. 5 will not hold.

26



above protocol are randomized in a similar manner. For simplicity of presentation, we chose to present
the protocol in the previous section without the zero-knowledge property. Since the primary focus of our
work was to reduce the prover run-time, this allowed us to highlight the main technical ideas without
having to deal with unnecessarily complex notation.

4 Sublonk: Segment Lookup + P𝔩𝔬𝔫K
In this section, we will utilize the segment-lookup protocol described in Section 3 in conjunction with
the P𝔩𝔬𝔫K proof system to construct a proof system where, as described in the introduction, the prover
cost grows with the length of the execution path, rather than the entire circuit. We elaborate on this
requirement now. Consider a layered branching circuit C with at most 𝑘 layers, where each layer has the
same branch of 𝑛 𝑠-sized circuits C1, . . .C𝑛 . On a given input, let it be the case that a sequence of 𝑘 ≤ 𝑘

circuit branches C̃ B (C̃(𝑖 ) )𝑖∈[𝑘 ] (where 𝑘 , as well as the sequence, is possibly dependent on the input),
are executed in order. We want the prover to cost to grow with the size of the total executed sub-circuit
of size 𝑘𝑠 , rather than 𝑘𝑛𝑠 . For simplicity of notation, throughout the rest of this section, we will assume
that the effective number of layers 𝑘 is fixed in advance (and hence even the pre-processing algorithm will
take 𝑘 as input). At the end of Section 4.3, we discuss how our protocol can be generalized to handle any
𝑘 ≤ 𝑘 and hence the pre-processing algorithm of S𝔲𝔟𝔩𝔬𝔫K only needs to take 𝑘 as input.

The core idea underlying our solution is to store the encoding of the circuit constraints for each sub-
circuit in a segment-lookup table such that the prover only needs to access the constraints determined by
the sequence C̃, and further prove to the verifier that the appropriate constraints were selected from the
table. In more detail, as discussed in Section 2.7, the P𝔩𝔬𝔫K proof system encodes circuit constraints via a
number of polynomials that are pre-processed to their KZG commitment (see Section 2.3) and provided to
the verifier. Since the output of our segment-lookup protocol in Section 3 is indeed a KZG commitment to
the polynomial defined by the selected segments, this gives the following natural approach to achieving a
sub-linear prover:

1. We represent each of the circuit branches C1, . . . ,C𝑛 using the P𝔩𝔬𝔫K constraint system. Generate a
table𝑇 where the 𝑖-th segment contains the P𝔩𝔬𝔫K constraints for C𝑖 , i.e. 𝑇 consists of 𝑛 segments.

2. Depending on the sequence of activated circuit branches, the prover can use our segment-lookup
protocol (from Section 3) to generate the KZG commitment of the 𝑘 constraints corresponding to
the 𝑘 activated circuit branches along with a proof of correctness.

3. The prover post-processes the above derived KZG commitment so that it has the same form as the
KZG commitments received by a P𝔩𝔬𝔫K verifier in the pre-processing phase for C̃.

4. Given the above, we can directly rely on the P𝔩𝔬𝔫K protocol for C̃.

Unfortunately, while this is indeed the template for our protocol, the details do not work out in such a
straightforward manner. We present the details in this section.

4.1 Pre-Processing Layered Branching Circuit

In this section, we describe how the P𝔩𝔬𝔫K constraints for each of the circuit branches C1, . . . ,C𝑛 is stored
in a table 𝑇 consisting of 𝑛 segments. We start by establishing some notation.

27



EnsuringCorrect Sequence ofActivatedCircuit Branches. The activated sub-circuit C̃ (ofC on input
𝑥 ) of size 𝑘𝑠 is specified by a sequence of 𝑘 activated circuit branches (C̃(𝑖 ) )𝑖∈[𝑘 ] . Further, as discussed in
Section 2.6, ∃ a function 𝜉 : F𝑚 → [1, 𝑛]𝑘 such that ∀𝑖 ∈ [𝑘], C̃(𝑖 ) = C𝜉𝑥 (𝑖 ) (where we use 𝜉𝑥 to denote
𝜉𝑥 ). We assume that each circuit branch when executed, specifies the next circuit branch to be executed in
the next layer. To ensure that the circuit branches are executed in order, we assume that one of the output
wires for C̃(𝑖 ) outputs 𝜉𝑥 (𝑖 + 1), and each circuit C(𝑖 ) has hardcoded within it the index 𝑖 to check whether
the aforementioned incoming wire into 𝜉𝑥 (𝑖 + 1) indeed has the hardwired value 𝜉𝑥 (𝑖 + 1).

P𝔩𝔬𝔫K constraints. Let us denote the 𝑛 P𝔩𝔬𝔫K constraint systems for the 𝑛 circuit branches {C𝑖}𝑖∈[𝑛]
as {𝒞 (𝑖 ) = (V (𝑖 ) ,Q (𝑖 ) )}𝑖∈[𝑛] . The corresponding pre-processed polynomials (refer to Section 2.7 for nota-
tion) are denoted by (qM (𝑖 ) (𝑋 ), qL (𝑖 ) (𝑋 ), qR (𝑖 ) (𝑋 ), qO (𝑖 ) (𝑋 ), qC (𝑖 ) (𝑋 ), S𝜎 (𝑖 )1 (𝑋 ), S𝜎

(𝑖 )
2 (𝑋 ), S𝜎

(𝑖 )
3 (𝑋 )). These

polynomials will be relevant to our subsequent discussion.
Let {xℓ }ℓ∈[3𝑘𝑠 ] be the extended witness/satisfying assigment for the P𝔩𝔬𝔫K constraints such that for

each 𝑗 ∈ [𝑘], {x𝑗𝑠+𝑖 , x𝑘𝑠+𝑗𝑠+𝑖 , x2𝑘𝑠+𝑗𝑠+𝑖}𝑖∈[𝑠 ] correspond to the extended-witnesses for branching circuits
C̃( 𝑗 ) (= C(𝜉𝑥 ( 𝑗 ) ) ).

Checking Wire-Consistency or Copy-Check Constraints. Recall from Section 2.7, that the consis-
tency of wire values in a circuit is checked in P𝔩𝔬𝔫K using the copy-check constraints. In our setting, in
addition to checking these constraints within each individual circuit branch, we need an additional copy-
constraint. In particular, in our setting, the 𝑗-th output wire of a circuit C̃(𝑖 ) must have the same value
as the 𝑗-th input wire of C̃(𝑖+1) . We ensure this by assuming that the output wires of C̃(𝑖 ) are not a part
of any cycles induced by the copy-check constraints 𝜎 (𝑖 ) within C̃(𝑖 ) . For instance, this requirement can
be satisfied by considering “output gates” in the final layer of the circuit that pass values unchanged, but
ensure the input and output wire remain in different cycles within the permutation. Finally, since the
(relative) index of the 𝑗-th output wire of C̃(𝑖 ) is fixed and known to C̃(𝑖+1) , the copy-constraint for C̃(𝑖+1)
is constructed ensuring that the 𝑗-th output wire of C̃(𝑖 ) and 𝑗-th input wire of C̃(𝑖+1) are a part of the
same cycle in 𝜎 (𝑖+1) . Thus in each circuit branch C𝑖 , if there are 𝑝 input and output wires, the permutation
within the circuit-branch is defined to be 𝜎 (𝑖 ) : [−3𝑝 : 3(𝑠 − 𝑝)] → [−3𝑝 : 3(𝑠 − 𝑝)].

This avoids any potential for cycles across circuit branches, except for the ones we discussed, and thus
C̃ consists of disjoint cycles, and thus {𝜎 (𝑖 ) }𝑖∈[𝑛] remains a permutation. For simplicity of notation, for
the remainder of the section, we treat 𝜎 (𝑖 ) to be 𝜎 (𝑖 ) : [3𝑠] → [3𝑠].

Parallel Repeated Version of the Segment-Lookup Protocol. Before the next discussion, we remark
that in our final protocol, we will 9 copies of our segment-lookup protocol segmentLookup. In particular,
we will encode each of the 8 types of polynomials 𝑌 ∈ {qM, qL, qR, qO, qC, S𝜎 1, S𝜎 2, S𝜎 3} for all the circuit
branches in a separate table (to be described shortly) and run our segment lookup protocol on each of
these 8 tables individually. Let {𝑇𝑖}𝑖∈[8] denote the 8 tables. Each of these 𝑇𝑖s has identical sizes and
an identical number of segments. Further, even though we run separate instances of segmentLookup on
each of them, we require that the same witness polynomial 𝑀 (𝑋 ) polynomial is used across each copy of
segmentLookup(𝑇𝑖) execution. Note that this can be done naı̈vely by running the base segmentLookup
protocol many times and have the prover sending a single round 1 message (which includes the KZG
commitment to [𝑀 (𝜏)]1), which is then subsequently shared across each execution of the protocol.

But we utilize the fact that our segment-lookup protocol inherits linear homomorphism from 𝔠𝔮. Specif-
ically, once the prover sends the commitments to the various 𝐹 (𝑋 ) polynomials, say 𝐹1(𝑋 ) and 𝐹2(𝑋 ) for
tables 𝑇1(𝑋 ) and 𝑇2(𝑋 ), the verifier samples a random challenge 𝛾 , the prover and verifier can run the
segment-lookup protocol on 𝐹1(𝑋 ) + 𝛾𝐹2(𝑋 ) for the table 𝑇1(𝑋 ) + 𝛾𝑇2(𝑋 ). With this observation, we only
need to run one copy of the segmentLookup protocol internally.

28



Polynomials for Segment-Lookup. We are finally ready to describe how we encode the constraints
for each circuit branch {C𝑖}𝑖∈[𝑛] in the 8 tables. We define the following 8 table polynomials of degree
𝑛𝑠 − 1 in their value representation form - for 𝑌 ∈ {qM, qL, qR, qO, qC, S𝜎 1, S𝜎 2, S𝜎 3},

∀𝑖 ∈ [0, 𝑛 − 1], 𝑗 ∈ [𝑠], 𝑇𝑌 (𝜔𝑖𝑠+𝑗 ) B 𝑌 (𝑖 ) (𝜂 𝑗 )

where the set {0, 𝜂, 𝜂2, · · · , 𝜂 (𝑠−1) } B {0, 𝜔𝑛, 𝜔2𝑛, · · · , 𝜔 (𝑠−1)𝑛} are the 𝑠-th roots of unity. We useW and V
as defined in Section 3 to be the set of 𝑛𝑠 and 𝑘𝑠 roots of unity respectively. If we view𝑇𝑌 as consisting of 𝑛
segments each of size 𝑠 , the above equation indicates that the 𝑖-th segment consists of {𝑌 (𝑖 )

𝑗
} 𝑗∈[𝑠 ] . Similarly,

we define the following 8 𝑘𝑠 − 1-degree polynomials, for 𝑌 ∈ {qM, qL, qR, qO, qC, S𝜎 1, S𝜎 2, S𝜎 3},

∀𝑖 ∈ [0, 𝑘 − 1], 𝑗 ∈ [𝑠], 𝐹𝑌 (𝜈𝑖𝑠+𝑗 ) B 𝑌 (𝜉 (𝑖 ) ) (𝜂 𝑗 )

For each𝑌 ∈ {qM, qL, qR, qO, qC, S𝜎 1, S𝜎 2, S𝜎 3}, we run instances of segmentLookup as described above. For
clarity of exposition, we abuse notation and denote this as theP andV executing segmentLookup⊗ℓ ({𝑇𝑖 , }𝑖∈[8])
(shortening from segmentLookup⊗ℓ ({com𝑖 ,𝑇𝑖 , 𝐹𝑖}𝑖∈[8], srs,V)), where the verifier output is {[𝐹𝑖 (𝜏)]1}𝑖 if
the proof accepts.

In Section 4.2, we describe how the 𝐹𝑌 polynomials, can be easily post-processed to obtain a verifier
pre-processing identical to that in P𝔩𝔬𝔫K for the activated sub-circuit 𝐶 .

4.2 Post-Processing 𝐹𝑌 Polynomials

In this section, we describe how the 𝐹𝑌 polynomials, can be post-processed to obtain a verifier pre-processing
identical to that in P𝔩𝔬𝔫K for the activated sub-circuit 𝐶 . Let {q̃M, q̃L, q̃R, q̃O, q̃C, S̃𝜎 1, S̃𝜎 2, S̃𝜎 3} denote the
P𝔩𝔬𝔫K constraints for 𝐶 . We prove the following claims.

Selector Polynomials. For 𝑌 ∈ {qM, qL, qR, qO, qC}, we observe that the corresponding 𝐹𝑌 polynomials
are exactly the selector polynomials {q̃M, q̃L, q̃R, q̃O, q̃C}.

Claim 3. For 𝑌 ∈ {qM, qL, qR, qO, qC}, 𝐹𝑌 (𝑋 ) = 𝑌 (𝑋 ).

Proof Sketch. We sketch the proof for q̃M(𝑋 ) and 𝐹qM (𝑋 ), and the proof extends identically to the other
polynomials in the claim. For any 𝑖 ∈ [0, 𝑘 − 1], 𝑗 ∈ [𝑠], it is the case that 𝑞𝑀 (𝜈𝑖𝑠+𝑗 ) = 𝑞

(𝜉 (𝑖 ) )
𝑀

(𝜂 𝑗 ) =
𝐹qM (𝜈𝑖𝑠+𝑗 ), where the first equality follows from the fact that C̃ = (C(𝜉 (𝑖 ) ) )𝑖∈[0,𝑘−1] and the definition of
𝑞
(𝜉 (𝑖 ) )
𝑀

(𝑋 ), and the second follows from the definition of 𝐹qM (𝑋 ).

Permutation Polynomials. For𝑌 ∈ {S𝜎 1, S𝜎 2, S𝜎 3}, we observe that the corresponding 𝐹𝑌 polynomials
are a function of the selector polynomials {S̃𝜎 1, S̃𝜎 2, S̃𝜎 3}. More formally,

Claim 4. ∀𝑎 ∈ [3],∀𝑖 ∈ [0, 𝑘 − 1], 𝑗 ∈ [𝑠], 𝐹S𝜎𝑎
(𝜈𝑖𝑠+𝑗 ) · 𝜈𝑖𝑠 = S̃𝜎𝑎 (𝜈𝑖𝑠+𝑗 )

Proof Sketch. For any 𝑖 ∈ [0, 𝑘 − 1], 𝑗 ∈ [𝑠], consider S̃𝜎𝑎 (𝜈𝑖𝑠+𝑗 ). As described, the permutation 𝜎 for
C can be split into disjoint permutations {𝜎 (𝑖 ) }𝑖 , where by the definition of P𝔩𝔬𝔫K , 𝜎 (𝑖 ) : I𝑖 → I𝑖 for
I𝑖 B [𝑖𝑠 + 1, (𝑖 + 1)𝑠] ∪ [𝑘𝑠 + 𝑖𝑠 + 1, 𝑘𝑠 + (𝑖 + 1)𝑠] ∪ [2𝑘𝑠 + 𝑖𝑠 + 1, 2𝑘𝑠 + (𝑖 + 1)𝑠].

This in turn implies that S̃𝜎𝑎 (𝜈𝑖𝑠+𝑗 ) ∈ {𝜈𝑖𝑠+ℓ , 𝜈𝑖𝑠+ℓ · 𝑘1, 𝜈
𝑖𝑠+ℓ · 𝑘1}, where ℓ ∈ [𝑠] and 𝑘1 and 𝑘2 are

such that 𝑘1V and 𝑘2V are disjoint cosets of V (see P𝔩𝔬𝔫K [GWC19] for details regarding the cosets).

29



Further, ℓ is determined by 𝜎𝜉 (𝑖 ) ( 𝑗), the permutation polynomial for C(𝜉 (𝑖 ) ) . Therefore, we have for any
𝑖 ∈ [0, 𝑘 − 1], 𝑗 ∈ [𝑠],

S̃𝜎𝑎 (𝜈𝑖𝑠+𝑗 ) = 𝜎∗(𝑖 ) ( 𝑗)
= 𝜈𝑖𝑠𝜎∗(𝜉 (𝑖 ) ) ( 𝑗)

= 𝜈𝑖𝑠S𝜎
(𝜉 (𝑖 ) )
𝑎 (𝜂 𝑗 )

= 𝜈𝑖𝑠𝐹S𝜎𝑎
(𝜈𝑖𝑠+𝑗 )

Post-Processing the P𝔩𝔬𝔫K Permutation Polynomial. From our previous two claims, it is clear that
while the (commitment of the) selector polynomials output from the segment-lookup protocol work as is,
the same is not true of the permutation polynomial. But we will utilize Claim 4 to make the prover send
the commitment to the correct permutation polynomial S̃𝜎𝑎 (𝑋 ), and prove the relation to 𝐹S𝜎𝑎

(𝑋 ). To this
end, we define a new polynomial

𝑈 (𝑋 ) B
𝑘−1∑︁
𝑖=0

𝜈𝑖
𝑠∑︁
𝑗=1

𝜓V𝑖𝑠+𝑗 (𝑋 ).

From Claim 4, we have that 𝑖 ∈ [0, 𝑘 − 1], 𝑗 ∈ [𝑠]

𝐹S𝜎𝑎
(𝜈𝑖𝑠+𝑗 ) ·𝑈 (𝜈𝑖𝑠+𝑗 ) − S̃𝜎𝑎 (𝜈𝑖𝑠+𝑗 ) = 0.

Since the above holds for all 𝜈 ∈ V, it can be represented by the following polynomial check,

𝐹S𝜎𝑎
(𝑋 ) ·𝑈 (𝑋 ) − S̃𝜎𝑎 (𝑋 ) = 𝑍V(𝑋 )𝑄S𝜎𝑎

(𝑋 )

Given commitments to the polynomials above, the verifier will check that the equation is satisfied at a
random point, and then proceed to invoking P𝔩𝔬𝔫K using the commitment to S̃𝜎𝑎 (𝑋 ). We note that the
commitment to 𝑈 (𝑋 ) will be produced as a part of the pre-processing since it is input independent.

4.3 S𝔲𝔟𝔩𝔬𝔫K Protocol Description

We finally describe our full S𝔲𝔟𝔩𝔬𝔫K protocol in Figure 2.
We state our theorem relative to the costs of the segment-lookup and P𝔩𝔬𝔫K protocols. Specifically,

TimesegmentLookup
P (𝑛, 𝑘, 𝑠) denotes the prover time for the segment-lookup protocol when parameterized by

𝑛, 𝑘 and 𝑠 . Similarly TimeP𝔩𝔬𝔫KP (𝑘𝑠) denotes the prover time when P𝔩𝔬𝔫K is run on a circuit of size𝑂 (𝑘𝑠).
Verifier time and proof size are denoted in an analogous manner.

Theorem 1. Given a (𝑠, 𝑘, 𝑛, {C𝑖}𝑛𝑖=1) layered branching circuit C such that can be partitioned into 𝑛 sub-
circuits of size 𝑠 such that the execution path has length𝑂 (𝑘𝑠), the above protocol is a pre-processing SNARK
in the Algebraic Group Model for 𝒞 induced by C such that the following properties hold:
Prover Time: TimesegmentLookup

P (𝑛, 𝑘, 𝑠) + TimeP𝔩𝔬𝔫KP (𝑘𝑠) + 𝑂 (𝑘𝑠 log(𝑘𝑠)) G1, G2 and F operations

Verifier Time: TimesegmentLookup
V (𝑛, 𝑘, 𝑠) + TimeP𝔩𝔬𝔫KV (𝑘𝑠) + 3 Pairings.

Proof Size: SizesegmentLookup
V (𝑛, 𝑘, 𝑠) + SizeP𝔩𝔬𝔫KV (𝑘𝑠) + 13 G1 elements.

Except with negligible probability (over the choice of𝛾 ), given that the verifier check in Step 7 succeeds,
the commitments sent by the prover in Step 4 must be the correct polynomial. Thus the security of the
scheme follows directly from the security of the underlying schemes.

Plugging in the asymptotic costs of the underlying protocol, we have the following corollary for The-
orem 1 for Theorem 1.

30



PreProcess(C = (𝑘, {C(𝑖 ) }𝑖∈[𝑛]))

1. Define polynomials (𝑇qM (𝑋 ),𝑇qL (𝑋 ),𝑇qR (𝑋 ),𝑇qO (𝑋 ),𝑇qC (𝑋 ),𝑇S𝜎 1 (𝑋 ),𝑇S𝜎 2 (𝑋 ),𝑇S𝜎 3 (𝑋 )) as de-
scribed in Section 4.1.

2. Run pre-processing for the segment-lookup, i.e. for each 𝑌 ∈ {qM, qL, qR, qO, qC, S𝜎 1, S𝜎 2, S𝜎 3},

pre𝑌 = gen(𝑛, 𝑘, 𝑠,𝑇𝑌 ) .

3. Compute 𝑈 (𝑋 ) B ∑𝑘−1
𝑖=0 𝜈𝑖

∑𝑠
𝑗=1𝜓

V
𝑖𝑠+𝑗 (𝑋 )

4. Output pre B {pre𝑌 }𝑌 , [𝑈 (𝜏)]2.

S𝔲𝔟𝔩𝔬𝔫K(pre, 𝜙,C,V,W)

1. P parses the execution path C̃ = {C̃(𝑖 ) }𝑖∈[𝑘 ] , and computes the function 𝜉 : F𝑚 → [1, 𝑛]𝑘 (on
statement and witness pair 𝑥 = (𝜙,𝑤)), that maps C̃(𝑖 ) to C𝜉𝑥 (𝑖 ) .

2. P uses 𝜉 to compute 𝐹𝑌 (𝑋 ) for all 𝑌 ∈ {qM, qL, qR, qO, qC, S𝜎 1, S𝜎 2, S𝜎 3}.

3. P and V run segmentLookup⊗ℓ (𝑇qM,𝑇qL,𝑇qR,𝑇qO,𝑇qC,𝑇S𝜎 1,𝑇S𝜎 2,𝑇S𝜎 3) with verifier output ( [𝐹qM (𝜏)]1,
[𝐹qL (𝜏)]1, [𝐹qR (𝜏)]1, [𝐹qO (𝜏)]1, [𝐹qC (𝜏)]1, [𝐹S𝜎 1 (𝜏)]1, [𝐹S𝜎 2 (𝜏)]1, [𝐹S𝜎 3 (𝜏)]1).

4. P sends [S̃𝜎 1(𝜏)]1, [S̃𝜎 2(𝜏)]1, [S̃𝜎 3(𝜏)]1 to V.

5. V sends a random 𝛾 ∈ F to P.

6. P computes for each 𝑎 ∈ [3], [𝑄𝜎𝑎 (𝜏)]1 such that

𝑈 (𝑋 ) · 𝐹S𝜎𝑎
(𝑋 ) − S̃𝜎𝑎 (𝑋 ) = ZV(𝑋 ) ·𝑄𝜎𝑎 (𝑋 )

7. V checks if the following holds for each 𝑎 ∈ [3],

𝑒 ( [𝐹S𝜎𝑎
(𝜏)]1, [𝑈 (𝜏)]2) · 𝑒 ( [S̃𝜎𝑎 (𝜏)]1, [1]2)−1

= 𝑒 ( [𝑄𝜎𝑎 (𝜏)]1, [ZV(𝜏)]2)

8. P and V run P𝔩𝔬𝔫K (PP𝔩𝔬𝔫K ,VP𝔩𝔬𝔫K) with pre-processed inputs
(
[𝐹qM (𝜏)]1, [𝐹qL (𝜏)]1, [𝐹qR (𝜏)]1,

[𝐹qO (𝜏)]1, [𝐹qC (𝜏)]1, [S̃𝜎 1(𝜏)]1, [S̃𝜎 2(𝜏)]1, [S̃𝜎 3(𝜏)]1
)

9. V accepts if all checks pass.

Figure 2: The S𝔲𝔟𝔩𝔬𝔫K Protocol

Corollary 1. The asymptotic costs for the protocol in Theorem 1 is𝑂 (𝑘𝑠 · (log(𝑘𝑠) + log(𝑛))) for prover cost,
and 𝑂 (1) for verifier cost and proof size.

Allowing Arbitrary Number of Effective Layers. So far in this section, we assume that the effective
number of layers 𝑘 is fixed in advance. However, as discussed in Section 2.6, 𝑘 depends on the input to the
circuit C. Our protocol can be easily generalized to handle this case. In particular, let 𝑘 be the maximum

31



number of layers in C. We can easily modify the pre-processing algorithm in S𝔲𝔟𝔩𝔬𝔫K to take as input 𝑘 ,
instead of 𝑘 as follows: The modified pre-processing algorithm does the computation dependent on 𝑛, as
described in Figure 2. For the remaining computation in the pre-processing phase that depends on 𝑘 , we
compute this for every 𝑘 ′ < 𝑘 . In the online phase, once the prover learns the value of 𝑘 upon evaluating
the circuit on a given statement and witness, he can communicate this 𝑘 to the verifier. For the rest of the
protocol, both the prover and verifier work with the pre-processing corresponding to 𝑘 ′ = 𝑘 and ignore
the rest.

5 Implementation and Evaluation

We implement the S𝔲𝔟𝔩𝔬𝔫K proof system in Rust, and are working towards an open-source release. The
implementation relies on the BLS12-377 pairing-based curve as implemented in arkworks [ac22]. More-
over, we rely on the implementation of P𝔩𝔬𝔫K available at [jel].

All experiments are run on a Macbook Pro with M1 Pro 3.2 Ghz chip and 32 GB RAM. We also report
EVM gas costs15 for publishing and verifying signatures on-chain.

5.1 Evaluated Applications

DEXRollups. We demonstrate the improvement ofS𝔲𝔟𝔩𝔬𝔫K on rollup applications. Consider a typical
decentralized exchange (DEX) smart contract (e.g. Loopring [loo]) which allows users to create one of
several types of transactions: deposits, spot trades, transfers, withdrawals, etc. The logic within each of
these transaction types is encoded as a circuit, typically ranging from 30K to 60K arithmetic gates – we
round up the circuit size to the nearest power of 2 when modeling as a segment, so we use 216 gates16.
A single instance of a rollup transaction that is submitted to a layer 1 blockchain (e.g. Ethereum) can
batch together hundreds of such transactions, along with a single proof attesting to the validity of the next
state transition (i.e., the final state of the DEX contract is attained by correctly evaluating the hundreds
of transactions starting from the initial state that is recorded on the layer 1 chain). Rollups naturally map
to our layered branching circuit model, where at each step, the prover executes one of several transaction
types (segments).

Additional Rollup Applications In addition to application-specific rollups, as discussed above with
DEX, we experiment with generic rollup solutions which allow for sequentially composing multiple differ-
ent applications. For each of the following applications (borrowed from [CBBZ23b]), we compose circuits
for that application with other similar-sized mock circuits.

• Proof of knowledge of exponent: each circuit segment encodes the statement that the witness, which
is the scalar 𝑥 , maps to the group element 𝑔𝑥 , which is part of the input. We use the BLS12-377 curve
(group G1). The segment has size 212 gates.

• ZCash: each circuit segment encodes the proof circuit for a ZCash [HBHW16] (Sapling) transaction.
Here, each segment has size 217 gates.

• Nested conditional branching: we consider a generic program containing nested conditional state-
ments, producing a control flow graph comprising a number of possible segments that can be exer-

15Our calculation uses the pre-compiled gas costs for the BLS12-381 curve as defined in EIP-2537 [eip]: G1 additions cost 600,
G1 multiplications cost 12000, G2 additions cost 800, G2 multiplications cost 45000, and 𝑛 pairings cost 115000 + 𝑛 · 23000.

16This is not a technical limitation, as we could further decompose a segment into a set of smaller segments, each of size a
power of two. We have not implemented this idea.

32



cised by a particular input – for instance, we report performance for an artificial program with 256
total segments, each of size 216 gates, where an active path only exercises 16 segments.

Note that unlike [CBBZ23a], we do not use custom gates in our circuit encoding, so it results in larger
circuits (comparable to the R1CS encoding).

Figure 3: Prover runtime with 𝑘 = 128 segments, with segment choices 𝑛 ∈ {1, 2, 4, 8}, and segments of size
210, 212, and 214

Figure 4: Prover runtime for varying segment sizes

5.2 Prover Time

In our first experiment, we encode the DEX rollup computation as a sequence of 𝑘 = 128 steps, where
each step has a conditional choice between 𝑛 ∈ {1, 2, 4, 8} segments, each of size 216 gates; note that 𝑛 is
typically between 4 and 8 for a typical DEX rollup (see [loo]), however we also demonstrate S𝔲𝔟𝔩𝔬𝔫K on
smaller values of 𝑛 to better illustrate its performance tradeoffs.

Figure 3 reports the prover time for both S𝔲𝔟𝔩𝔬𝔫K and the baseline P𝔩𝔬𝔫K systems. The baseline
refers to the invocation of P𝔩𝔬𝔫K using the conventional encoding where the circuit representation of all
𝑛 transaction types are “stitched” together for each of the 128 steps; i.e., the circuit size is 128×𝑛×216 gates.
S𝔲𝔟𝔩𝔬𝔫K with P𝔩𝔬𝔫K refers to our proof system, which includes our segment-lookup protocol followed
by an invocation of P𝔩𝔬𝔫K . The overhead incurred by the segment-lookup protocol can be computed by
subtracting the S𝔲𝔟𝔩𝔬𝔫K prover time from the baseline prover time for 𝑛 = 1. Not surprisingly, as we
increase 𝑛, we find larger speedups from S𝔲𝔟𝔩𝔬𝔫K , with over 4.8x speedup for 𝑛 = 8 and segment size
216. In addition to improvements in the prover time, we also believe that S𝔲𝔟𝔩𝔬𝔫K enables better scaling

33



as it reduces the degree of the polynomials that are provided to the P𝔩𝔬𝔫K sub-procedure, thus reducing
the memory needs (and likely to execute on smaller machines).

More generally, programs with conditional branches observe a large gap between the total number
of segments and the number of executed segments, which makes S𝔲𝔟𝔩𝔬𝔫K’s improvement even more
significant. As an example, consider a control flow graph of a program with 256 possible segments, each
of size 216. Now consider the an execution, where the active path only exercised 16 segments. The baseline
P𝔩𝔬𝔫K prover requires roughly 175 seconds to produce a proof, whereasS𝔲𝔟𝔩𝔬𝔫K requires 20.04 seconds;
that marks an improvement in prover time of 8.7×.

Finally, we report prover times for the additional rollup applications. In Figure 4, we vary the segment
size while fixing 𝑘 = 64 and 𝑛 = 4 – i.e., for each application, the rollup consists of mock circuits of size
equal to the segment size, where the rollup prover can choose between 4 possible statements to prove at
each of the 64 steps.

5.3 Proof Size

Our proof consists of 42 G1 elements and 12 scalar F elements, of which 9 G1 and 6 F elements arise from
the proof generated by the P𝔩𝔬𝔫K subprocedure. Concretely, this makes our proof 2.4 KB in size. While
the proof is substantially larger compared to the P𝔩𝔬𝔫K baseline, which is 624 bytes, we find this to be a
valuable performance tradeoff when considering the reductions in prover time.

5.4 Verification Cost

The primary operations of the verifier include 23 pairings, 26 G1 operations, and 1 G2 operation – if one
wishes to strictly enforce that the verifier must be constant time, then one could have the prover compute
the opening to the vanishing polynomials, but we find the distinction to be minor in practice due to the
efficiency of computing log(𝑛𝑠) field multiplications. A S𝔲𝔟𝔩𝔬𝔫K proof requires 716.6K EVM gas units
to verify on-chain and 50 ms to verify on a Macbook Pro laptop, where the computation is dominated
by the cost to compute pairings. In comparison, verifying a P𝔩𝔬𝔫K proof requires 2 pairings and 18 G1
multiplications, and costs 377K EVM gas units to verify on-chain.

6 Conclusion

We propose S𝔲𝔟𝔩𝔬𝔫K , significantly reducing the proof generation costs of P𝔩𝔬𝔫K . Our improvements
are most dramatic when only a small fraction of the circuit is active.

References

[ac22] arkworks contributors. arkworks zksnark ecosystem. https://arkworks.
rs, 2022. 32

[BBHR18a] Eli Ben-Sasson, Iddo Bentov, Yinon Horesh, and Michael Riabzev. Fast reed-solomon
interactive oracle proofs of proximity. In Ioannis Chatzigiannakis, Christos Kaklama-
nis, Dániel Marx, and Donald Sannella, editors, ICALP 2018, volume 107 of LIPIcs, pages
14:1–14:17. Schloss Dagstuhl, July 2018. 3

[BBHR18b] Eli Ben-Sasson, Iddo Bentov, Yinon Horesh, and Michael Riabzev. Scalable, transparent,
and post-quantum secure computational integrity. Cryptology ePrint Archive, Report
2018/046, 2018. https://eprint.iacr.org/2018/046. 4, 9

34

https://arkworks.rs
https://arkworks.rs
https://eprint.iacr.org/2018/046


[BC23] Benedikt Bünz and Binyi Chen. Protostar: Generic efficient accumulation/folding for
special sound protocols. Cryptology ePrint Archive, Paper 2023/620, 2023. 4, 8, 9, 13

[BCC+17] Nir Bitansky, Ran Canetti, Alessandro Chiesa, Shafi Goldwasser, Huijia Lin, Aviad Ru-
binstein, and Eran Tromer. The hunting of the SNARK. J. Cryptol., 30(4):989–1066,
2017. 3

[BCG+14] Eli Ben-Sasson, Alessandro Chiesa, Christina Garman, Matthew Green, Ian Miers, Eran
Tromer, and Madars Virza. Zerocash: Decentralized anonymous payments from bit-
coin. In 2014 IEEE Symposium on Security and Privacy, pages 459–474. IEEE Computer
Society Press, May 2014. 3

[BCR+19] Eli Ben-Sasson, Alessandro Chiesa, Michael Riabzev, Nicholas Spooner, Madars Virza,
and Nicholas P. Ward. Aurora: Transparent succinct arguments for R1CS. In Yuval
Ishai and Vincent Rijmen, editors, EUROCRYPT 2019, Part I, volume 11476 of LNCS,
pages 103–128. Springer, Heidelberg, May 2019. 12

[CBBZ23a] Binyi Chen, Benedikt Bünz, Dan Boneh, and Zhenfei Zhang. HyperPlonk: Plonk with
linear-time prover and high-degree custom gates. In EUROCRYPT 2023, Part II, LNCS,
pages 499–530. Springer, Heidelberg, June 2023. 3, 33

[CBBZ23b] Binyi Chen, Benedikt Bünz, Dan Boneh, and Zhenfei Zhang. Hyperplonk: Plonk
with linear-time prover and high-degree custom gates. In Advances in Cryptology–
EUROCRYPT 2023: 42nd Annual International Conference on the Theory and Applications
of Cryptographic Techniques, Lyon, France, April 23–27, 2023, Proceedings, Part II, pages
499–530. Springer, 2023. 32

[CFH+15] Craig Costello, Cédric Fournet, Jon Howell, Markulf Kohlweiss, Benjamin Kreuter,
Michael Naehrig, Bryan Parno, and Samee Zahur. Geppetto: Versatile verifiable com-
putation. In 2015 IEEE Symposium on Security and Privacy, SP 2015, San Jose, CA, USA,
May 17-21, 2015, pages 253–270. IEEE Computer Society, 2015. 4, 9

[CFQ19] Matteo Campanelli, Dario Fiore, and Anaı̈s Querol. LegoSNARK: Modular design
and composition of succinct zero-knowledge proofs. In Lorenzo Cavallaro, Johannes
Kinder, XiaoFeng Wang, and Jonathan Katz, editors, ACM CCS 2019, pages 2075–2092.
ACM Press, November 2019. 4, 9

[CHM+20] Alessandro Chiesa, Yuncong Hu, Mary Maller, Pratyush Mishra, Psi Vesely, and
Nicholas P. Ward. Marlin: Preprocessing zkSNARKs with universal and updatable SRS.
In Anne Canteaut and Yuval Ishai, editors, EUROCRYPT 2020, Part I, volume 12105 of
LNCS, pages 738–768. Springer, Heidelberg, May 2020. 26

[EFG22] Liam Eagen, Dario Fiore, and Ariel Gabizon. cq: Cached quotients for fast lookups.
Cryptology ePrint Archive, Report 2022/1763, 2022. https://eprint.iacr.
org/2022/1763. 3, 5, 10, 12, 15, 16, 18, 19, 26

[eip] EIP-2537: Precompile for BLS12-381 curve operations. 32

[FKL18] Georg Fuchsbauer, Eike Kiltz, and Julian Loss. The algebraic group model and its ap-
plications. In Hovav Shacham and Alexandra Boldyreva, editors, CRYPTO 2018, Part II,
volume 10992 of LNCS, pages 33–62. Springer, Heidelberg, August 2018. 10

35

https://eprint.iacr.org/2022/1763
https://eprint.iacr.org/2022/1763


[gen20] genSTARK. https://github.com/guildofweavers/genstark, 2020. 4, 9

[GGPR13] Rosario Gennaro, Craig Gentry, Bryan Parno, and Mariana Raykova. Quadratic span
programs and succinct NIZKs without PCPs. In Thomas Johansson and Phong Q.
Nguyen, editors, EUROCRYPT 2013, volume 7881 of LNCS, pages 626–645. Springer,
Heidelberg, May 2013. 3

[GHH+23] Matthew Green, Mathias Hall-Andersen, Eric Hennenfent, Gabriel Kaptchuk, Benjamin
Perez, and Gijs Van Laer. Efficient proofs of software exploitability for real-world pro-
cessors. Proc. Priv. Enhancing Technol., 2023(1):627–640, 2023. 3, 7

[GK22] Ariel Gabizon and Dmitry Khovratovich. flookup: Fractional decomposition-based
lookups in quasi-linear time independent of table size. Cryptology ePrint Archive,
Report 2022/1447, 2022. https://eprint.iacr.org/2022/1447. 3, 5, 10

[GKM+18] Jens Groth, Markulf Kohlweiss, Mary Maller, Sarah Meiklejohn, and Ian Miers. Up-
datable and universal common reference strings with applications to zk-SNARKs. In
Hovav Shacham and Alexandra Boldyreva, editors, CRYPTO 2018, Part III, volume 10993
of LNCS, pages 698–728. Springer, Heidelberg, August 2018. 3

[GKR08] Shafi Goldwasser, Yael Tauman Kalai, and Guy N. Rothblum. Delegating computation:
interactive proofs for muggles. In Richard E. Ladner and Cynthia Dwork, editors, 40th
ACM STOC, pages 113–122. ACM Press, May 2008. 9

[GPR21] Lior Goldberg, Shahar Papini, and Michael Riabzev. Cairo – a turing-complete
STARK-friendly CPU architecture. Cryptology ePrint Archive, Report 2021/1063, 2021.
https://eprint.iacr.org/2021/1063. 4, 9

[Gro10] Jens Groth. Short pairing-based non-interactive zero-knowledge arguments. In
Masayuki Abe, editor, ASIACRYPT 2010, volume 6477 of LNCS, pages 321–340. Springer,
Heidelberg, December 2010. 3

[Gro16] Jens Groth. On the size of pairing-based non-interactive arguments. In Marc Fischlin
and Jean-Sébastien Coron, editors, EUROCRYPT 2016, Part II, volume 9666 of LNCS,
pages 305–326. Springer, Heidelberg, May 2016. 3, 9

[GW20] Ariel Gabizon and Zachary J. Williamson. plookup: A simplified polynomial protocol
for lookup tables. Cryptology ePrint Archive, Report 2020/315, 2020. https://
eprint.iacr.org/2020/315. 3

[GWC19] Ariel Gabizon, Zachary J. Williamson, and Oana Ciobotaru. PLONK: Permutations over
lagrange-bases for oecumenical noninteractive arguments of knowledge. Cryptology
ePrint Archive, Report 2019/953, 2019. https://eprint.iacr.org/2019/
953. 3, 5, 10, 11, 13, 14, 26, 29

[Hab22] Ulrich Haböck. Multivariate lookups based on logarithmic derivatives. page 1530, 2022.
16, 18, 19

[HBHW16] Daira Hopwood, Sean Bowe, Taylor Hornby, and Nathan Wilcox. Zcash protocol spec-
ification. GitHub: San Francisco, CA, USA, 4:220, 2016. 32

36

https://eprint.iacr.org/2022/1447
https://eprint.iacr.org/2021/1063
https://eprint.iacr.org/2020/315
https://eprint.iacr.org/2020/315
https://eprint.iacr.org/2019/953
https://eprint.iacr.org/2019/953


[HK20a] David Heath and Vladimir Kolesnikov. A 2.1 KHz zero-knowledge processor with Bub-
bleRAM. In Jay Ligatti, Xinming Ou, Jonathan Katz, and Giovanni Vigna, editors, ACM
CCS 2020, pages 2055–2074. ACM Press, November 2020. 7

[HK20b] David Heath and Vladimir Kolesnikov. Stacked garbling for disjunctive zero-knowledge
proofs. In Anne Canteaut and Yuval Ishai, editors, EUROCRYPT 2020, Part III, volume
12107 of LNCS, pages 569–598. Springer, Heidelberg, May 2020. 7

[hod21] hodor. https://github.com/matter-labs/hodor, 2021. 4, 9

[jel] Jellyfish: A Rust Implementation of the PLONK ZKP System and Extensions. 32

[KGC+18] Harry A. Kalodner, Steven Goldfeder, Xiaoqi Chen, S. Matthew Weinberg, and Ed-
ward W. Felten. Arbitrum: Scalable, private smart contracts. In William Enck and
Adrienne Porter Felt, editors, USENIX Security 2018, pages 1353–1370. USENIX Associ-
ation, August 2018. 3

[KPPS20] Ahmed E. Kosba, Dimitrios Papadopoulos, Charalampos Papamanthou, and Dawn
Song. MIRAGE: Succinct arguments for randomized algorithms with applications to
universal zk-SNARKs. In Srdjan Capkun and Franziska Roesner, editors, USENIX Secu-
rity 2020, pages 2129–2146. USENIX Association, August 2020. 4, 8, 9

[KPV22] Assimakis A. Kattis, Konstantin Panarin, and Alexander Vlasov. RedShift: Transparent
SNARKs from list polynomial commitments. In Heng Yin, Angelos Stavrou, Cas Cre-
mers, and Elaine Shi, editors, ACM CCS 2022, pages 1725–1737. ACM Press, November
2022. 3

[KS22] Abhiram Kothapalli and Srinath Setty. SuperNova: Proving universal machine execu-
tions without universal circuits. Cryptology ePrint Archive, Report 2022/1758, 2022.
https://eprint.iacr.org/2022/1758. 4, 8, 9, 13

[KS23] Abhiram Kothapalli and Srinath Setty. Hypernova: Recursive arguments for customiz-
able constraint systems. Cryptology ePrint Archive, Paper 2023/573, 2023. 4, 8, 9

[KST22] Abhiram Kothapalli, Srinath Setty, and Ioanna Tzialla. Nova: Recursive zero-
knowledge arguments from folding schemes. In Yevgeniy Dodis and Thomas Shrimp-
ton, editors, CRYPTO 2022, Part IV, volume 13510 of LNCS, pages 359–388. Springer,
Heidelberg, August 2022. 8

[KZG10] Aniket Kate, Gregory M. Zaverucha, and Ian Goldberg. Constant-size commitments to
polynomials and their applications. In Masayuki Abe, editor, ASIACRYPT 2010, volume
6477 of LNCS, pages 177–194. Springer, Heidelberg, December 2010. 11, 14, 16

[lib18] libSTARK. https://github.com/elibensasson/libstark, 2018. 4, 9

[Lip16] Helger Lipmaa. Prover-efficient commit-and-prove zero-knowledge SNARKs. In David
Pointcheval, Abderrahmane Nitaj, and Tajjeeddine Rachidi, editors, AFRICACRYPT 16,
volume 9646 of LNCS, pages 185–206. Springer, Heidelberg, April 2016. 4, 9

[loo] Loopring: A Decentralized Token Exchange Protocol. 4, 7, 32, 33

[MAGABMMT23] Héctor Masip-Ardevol, Marc Guzmán-Albiol, Jordi Baylina-Melé, and Jose Luis Muñoz-
Tapia. estark: Extending starks with arguments. Cryptology ePrint Archive, Paper
2023/474, 2023. 4, 9

37

https://eprint.iacr.org/2022/1758


[MBKM19] Mary Maller, Sean Bowe, Markulf Kohlweiss, and Sarah Meiklejohn. Sonic: Zero-
knowledge SNARKs from linear-size universal and updatable structured reference
strings. In Lorenzo Cavallaro, Johannes Kinder, XiaoFeng Wang, and Jonathan Katz,
editors, ACM CCS 2019, pages 2111–2128. ACM Press, November 2019. 3

[Mic94] Silvio Micali. CS proofs (extended abstracts). In 35th FOCS, pages 436–453. IEEE Com-
puter Society Press, November 1994. 3

[NT16] Assa Naveh and Eran Tromer. Photoproof: Cryptographic image authentication for
any set of permissible transformations. In IEEE Symposium on Security and Privacy, SP
2016, San Jose, CA, USA, May 22-26, 2016, pages 255–271. IEEE Computer Society, 2016.
8

[PFM+22] Luke Pearson, Joshua Fitzgerald, Héctor Masip, Marta Bellés-Muñoz, and Jose Luis
Muñoz-Tapia. PlonKup: Reconciling PlonK with plookup. Cryptology ePrint Archive,
Report 2022/086, 2022. https://eprint.iacr.org/2022/086. 3, 10

[PHGR13] Bryan Parno, Jon Howell, Craig Gentry, and Mariana Raykova. Pinocchio: Nearly
practical verifiable computation. In 2013 IEEE Symposium on Security and Privacy, pages
238–252. IEEE Computer Society Press, May 2013. 3

[PK22] Jim Posen and Assimakis A. Kattis. Caulk+: Table-independent lookup arguments.
Cryptology ePrint Archive, Report 2022/957, 2022. https://eprint.iacr.
org/2022/957. 3, 5

[plo] Plonky2: Fast Recursive Arguments with PLONK and FRI. 3

[RPX+22] Deevashwer Rathee, Guru Vamsi Policharla, Tiancheng Xie, Ryan Cottone, and Dawn
Song. Zebra: Anonymous credentials with practical on-chain verification and appli-
cations to kyc in defi. Cryptology ePrint Archive, Paper 2022/1286, 2022. https:
//eprint.iacr.org/2022/1286. 3

[san23] Sangria: A Folding Scheme for PLONK, 2023. 4, 8, 9

[Vee17] Meilof Veeningen. Pinocchio-based adaptive zk-SNARKs and secure/correct adaptive
function evaluation. In Marc Joye and Abderrahmane Nitaj, editors, AFRICACRYPT 17,
volume 10239 of LNCS, pages 21–39. Springer, Heidelberg, May 2017. 9

[WSR+15] Riad S. Wahby, Srinath T. V. Setty, Zuocheng Ren, Andrew J. Blumberg, and Michael
Walfish. Efficient RAM and control flow in verifiable outsourced computation. In
NDSS 2015. The Internet Society, February 2015. 4, 8, 13

[ZBK+22a] Arantxa Zapico, Vitalik Buterin, Dmitry Khovratovich, Mary Maller, Anca Nitulescu,
and Mark Simkin. Caulk: Lookup arguments in sublinear time. In Heng Yin, Angelos
Stavrou, Cas Cremers, and Elaine Shi, editors, ACM CCS 2022, pages 3121–3134. ACM
Press, November 2022. 3, 5, 18, 19, 23, 25

[ZBK+22b] Arantxa Zapico, Vitalik Buterin, Dmitry Khovratovich, Mary Maller, Anca Nitulescu,
and Mark Simkin. Caulk: Lookup arguments in sublinear time. In Heng Yin, Angelos
Stavrou, Cas Cremers, and Elaine Shi, editors, Proceedings of the 2022 ACM SIGSAC
Conference on Computer and Communications Security, CCS 2022, Los Angeles, CA, USA,
November 7-11, 2022, pages 3121–3134. ACM, 2022. 39

38

https://eprint.iacr.org/2022/086
https://eprint.iacr.org/2022/957
https://eprint.iacr.org/2022/957
https://eprint.iacr.org/2022/1286
https://eprint.iacr.org/2022/1286


[ZFZS20] Jiaheng Zhang, Zhiyong Fang, Yupeng Zhang, and Dawn Song. Zero knowledge proofs
for decision tree predictions and accuracy. In Jay Ligatti, Xinming Ou, Jonathan Katz,
and Giovanni Vigna, editors, ACM CCS 2020, pages 2039–2053. ACM Press, November
2020. 3

[ZGK+17] Yupeng Zhang, Daniel Genkin, Jonathan Katz, Dimitrios Papadopoulos, and Charalam-
pos Papamanthou. A zero-knowledge version of vsql. IACR Cryptol. ePrint Arch., page
1146, 2017. 9

[ZGK+18] Yupeng Zhang, Daniel Genkin, Jonathan Katz, Dimitrios Papadopoulos, and Charalam-
pos Papamanthou. vRAM: Faster verifiable RAM with program-independent prepro-
cessing. In 2018 IEEE Symposium on Security and Privacy, pages 908–925. IEEE Com-
puter Society Press, May 2018. 4, 8, 9, 13

[ZGK+22] Arantxa Zapico, Ariel Gabizon, Dmitry Khovratovich, Mary Maller, and Carla Ràfols.
Baloo: Nearly optimal lookup arguments. Cryptology ePrint Archive, Report
2022/1565, 2022. https://eprint.iacr.org/2022/1565. 3, 5

[ZkR21] ZkRollups. An incomplete guide to rollups. https://vitalik.ca/general/2021/01/
05/rollup.html, 2021. 3

A Caulk Sub-protocol: Multi-unity Proof

For the sake of completeness, we give the full protocol description of [ZBK+22b, Figure 5] whose informal
description was given in Section 3.3. We require the following variant of bivariate KZG commitment
from [ZBK+22b] for the sub-protocol.

KZG for Bivariate Polynomials. For a bivariate polynomial 𝑃 (𝑋,𝑌 ) with degree up to 𝑑1 − 1 in 𝑋 and
𝑑2 − 1 in 𝑌 , this protocol requires a universal setup with 𝑑1𝑑2 powers. For this, the setup corresponding
to the univariate KZG itself can be used. To commit to 𝑃 (𝑋,𝑌 ), using the commit algorithm of univariate
KZG, one can commit to [𝑃 (𝜏𝑑2, 𝜏)]1. Opening this commitment requires two steps: first, partially open
𝑃 (𝑋,𝑌 ) at some 𝑋 = 𝛼 to a commitment [𝑃 (𝛼, 𝜏)]1. The partial proof is given by [𝐻𝛼 (𝜏𝑑2, 𝜏)]1, where
𝐻𝛼 (𝑋,𝑌 ) = 𝑃 (𝑋,𝑌 )−𝑃 (𝛼,𝑌 )

𝑋−𝛼 ; second, fully evaluate 𝑃 (𝛼,𝑌 ) at 𝑌 = 𝛽 via standard univariate KZG proof with
a degree bound of 𝑑2 − 1 on [𝑃 (𝛼, 𝜏)]1.

The main protocol takes as input the commitment [𝑢0]1 and polynomial 𝑈0(𝑋 ), and proves that the
commitment indeed corresponds to𝑈0(𝑋 ) that encodes (𝐷 (1), 𝐷 (𝜈𝑠), . . . , 𝐷 (𝜈 (𝑘−1)𝑠)), and checks that for
each 𝑖 ∈ [0, 𝑘 − 1], 𝐷 (𝜈𝑖𝑠) ∈ {𝜇0, · · · , 𝜇𝑛−1}, for 𝜇 = 𝜔𝑠 . As explained in the informal description, this is
equivalent to proving that the following aggregated equation holds:

(𝑈 2
0 (𝑋 )Δ1(𝑌 ) +

log𝑛∑︁
𝑗=2

𝑈 2
𝑗−1(𝑋 )Δ 𝑗 (𝑌 )) − (

log𝑛−1∑︁
𝑗=1

𝑈 𝑗 (𝑋 )

· Δ 𝑗 (𝑌 ) + id(𝑋 )Δlog𝑛 (𝑌 )) = 𝑍V(𝑋 )𝑄2(𝑋,𝑌 )

for some polynomial 𝑄2(𝑋,𝑌 ). We describe the details of the protocol below, which helps in checking the
above equation at a random point (𝛼, 𝛽). On a high level each round of the protocol does the following:

39

https://eprint.iacr.org/2022/1565


• Checking the above equation for some polynomial 𝑄2(𝑋,𝑌 ) at (𝛼, 𝛽) is equivalent to showing that the
following polynomial evaluates to 0 at 𝑌 = 𝛽 :

𝑃 (𝑌 ) = (𝑈 2
0 (𝛼)Δ1(𝛽) +

log𝑛∑︁
ℓ=2

𝑈 2
ℓ−1(𝛼)Δℓ (𝛽)

+ 𝑍S(𝛽) (−𝑄1(𝛽) +𝑄1(𝑌 ))) − (
log𝑛−1∑︁
ℓ=1

𝑈ℓ (𝛼)Δℓ (𝛽)

+ id(𝛼)Δlog𝑛 (𝛽)) − 𝑍V(𝛼)𝑄2(𝛼,𝑌 )

for some polynomial 𝑄1(𝑌 ). For this, the prover sends commitments and values needed to reconstruct
[𝑃 (𝜏)]1 and provides a proof for opening 𝑃 at 0 and 𝛽 .

• The other observation used is that since Δℓ ’s take 0/1 values, for each 𝑌 ∈ S, it holds that:

(𝑈 2
0 (𝑋 )Δ1(𝑌 ) +

log𝑛∑︁
ℓ=2

𝑈 2
ℓ−1(𝑋 )Δℓ (𝑌 ))

= (𝑈0(𝑋 )Δ1(𝑌 ) +
log𝑛∑︁
ℓ=2

𝑈ℓ−1(𝑋 )Δℓ (𝑌 ))2

In the protocol below, we denote𝑈 (𝑋,𝑌 ) = ∑log𝑛
ℓ=2 𝑈ℓ−1(𝑋 )Δℓ (𝑌 ) and𝑈 (𝑋,𝑌 ) = 𝑈 (𝑋,𝑌 ) +𝑈0(𝑋 )Δ1(𝑌 ).

• Now, the prover takes the univariate polynomials correponding to𝑈 and𝑄2 and sends the commitments
[𝑈 (𝜏 log𝑛, 𝜏)]1, [𝑄2(𝜏 log𝑛, 𝜏)]1 to the verifier. This is intended to be a bivariate commitment, but we want
to reuse the srs containing only powers of 𝜏 .

• For the remaining rounds, the prover essentially sends the necessary commitments and opening proofs
for the remaining polynomials corresponding to the equation above. Additional to the equation check,
one additional check is done for the correctness of 𝑈 and 𝑈 (check 𝑈 (𝑋, 1) = 0, and then enforce the
degree check).

The protocol uses the srs from our protocol of section 3.5. The common inputs for the prover and verifier
is [𝑈0(𝜏)]1.

Round 1 (Prover→ Verifier). The prover takes the input srs and𝑈0(𝑋 ) and samples 𝑡1, · · · , 𝑡log𝑛 ← F
to compute:

1. For ℓ = 1, · · · , log𝑛, 𝑈ℓ (𝑋 ) =
∑𝑘𝑠

𝑗=1(𝜇𝑖 𝑗 )2
ℓ

Δ 𝑗 (𝑋 ) + 𝑡ℓ𝑍V(𝑋 ) .

2. 𝑈 (𝑋,𝑌 ) = ∑log𝑛
ℓ=1 𝑈ℓ−1(𝑋 )Δℓ (𝑌 ).

3. 𝑈 (𝑋,𝑌 ) = 𝑈 (𝑋,𝑌 ) −𝑈0(𝑋 )Δ1(𝑌 ).

4. 𝑄2(𝑋,𝑌 ) =
∑log𝑛

ℓ=1 Δℓ (𝑌 )𝑄2,ℓ (𝑋 ), for 𝑄2,ℓ (𝑋 ) = (𝑈 2
ℓ−1(𝑋 ) −𝑈ℓ (𝑋 ))/𝑍V(𝑋 ).

The prover sends [𝑈 (𝜏 log𝑛, 𝜏)]1, [𝑄2(𝜏 log𝑛, 𝜏)]1 to the verifier.

Round 2 (Verifier). The verifier sends a challenge 𝛼 ∈ F.

40



Round 3 (Prover→ Verifier). The prover computes 𝑄1(𝑌 ) = (𝑈 2(𝛼,𝑌 ) −∑log𝑛
ℓ=1 𝑈 2

ℓ−1(𝛼)Δℓ (𝑌 ))/𝑍S(𝑌 )
and sends [𝑄1(𝜏)]1 to the verifier.

Round 4 (Verifier). Sends challenge 𝛽 ∈ F.

Round 5 (Prover→ Verifier). The prover does the following:

1. Computes 𝑃 (𝑌 ) = (𝑈 2(𝛼, 𝛽) −𝑈 (𝛼, 𝛽𝜙) + id(𝛼)Δlog𝑛 (𝛽)) − 𝑍V(𝛼)𝑄2(𝛼,𝑌 ).

2. Computes and sends 𝑈0(𝛼), [𝑈 (𝛼, 𝜏)]1, [𝑄2(𝛼, 𝜏)]1, and their KZG opening proofs at 𝛼 : 𝜋1, 𝜋2, 𝜋3,
respectively.

3. Computes and sends𝑈 (𝛼, 1) = 0,𝑈 (𝛼, 𝛽),𝑈 (𝛼, 𝛽𝜙) along with their KZG opening proof at (1, 𝛽, 𝛽𝜙):
𝜋4.

4. Computes and sends 𝑃 (𝛽) = 0, along with its opening proof at 𝛽 : 𝜋5.

Round 6 (Verifier). The verifier computes [𝑃 (𝜏)]1 = (𝑈0(𝛼)Δ1(𝛽)+𝑈 (𝛼, 𝛽))2−[𝑄1(𝜏)]1𝑍S(𝛽)−(𝑈 (𝛼, 𝛽𝜙)+
id(𝛼)Δlog𝑛 (𝛽)) −𝑍V(𝛼) [𝑄2(𝛼, 𝜏)]1, and accepts if and only if all the KZG opening proofs 𝜋1, · · · , 𝜋5 verify.

41


	Introduction
	Our Contributions
	Our Techniques
	Example Applications
	Related Works

	Preliminaries
	Algebraic Group Model
	Preliminary Definitions
	Batched KZG Commitments
	Pre-processing SNARKs in the Algebraic Group Model
	Preliminary Lemmas
	Our Model
	Background on P lonK

	Segment-Lookup Argument
	Overview
	Definition
	Building Blocks
	Tables with Repeated Elements
	Protocol
	Adding Zero-Knowledge

	Sublonk: Segment Lookup + P lonK
	Pre-Processing Layered Branching Circuit
	Post-Processing FY Polynomials
	SublonK Protocol Description

	Implementation and Evaluation
	Evaluated Applications
	Prover Time
	Proof Size
	Verification Cost

	Conclusion
	Caulk Sub-protocol: Multi-unity Proof

