
Constant Input Attribute Based (and Predicate) Encryption from

Evasive and Tensor LWE

Shweta Agrawal∗ Mélissa Rossi† Anshu Yadav‡ Shota Yamada§

Abstract

Constructing advanced cryptographic primitives such as obfuscation or broadcast
encryption from standard hardness assumptions in the post quantum regime is an important
area of research, which has met with limited success despite significant effort. It is therefore
extremely important to find new, simple to state assumptions in this regime which can be
used to fill this gap. An important step was taken recently by Wee (Eurocrypt ’22) who
identified two new assumptions from lattices, namely evasive LWE and tensor LWE, and used
these to construct broadcast encryption and ciphertext policy attribute based encryption for
P with optimal parameters. Independently, Tsabary formulated a similar assumption and
used it to construct witness encryption (Crypto ’22). Following Wee’s work, Vaikuntanathan,
Wee and Wichs independently provided a construction of witness encryption (Asiacrypt ’22).

In this work, we advance this line of research by providing the first construction of
multi-input attribute based encryption (miABE) for the function class NC1 for any constant
arity from evasive LWE. Our construction can be extended to support the function class P by
using evasive and a suitable strengthening of tensor LWE. In more detail, our construction
supports k encryptors, for any constant k, where each encryptor uses the master secret
key msk to encode its input (xi,mi), the key generator computes a key skf for a function
f ∈ NC1 and the decryptor can recover (m1, . . . ,mk) if and only if f(x1, . . . ,xk) = 1. The
only known construction for miABE for NC1 by Agrawal, Yadav and Yamada (Crypto ’22)
supports arity 2 and relies on pairings in the generic group model (or with a non-standard
knowledge assumption) in addition to LWE. Furthermore, it is completely unclear how to go
beyond arity 2 using this approach due to the reliance on pairings.

Using a compiler from Agrawal, Yadav and Yamada (Crypto ’22), our miABE can be
upgraded to multi-input predicate encryption for the same arity and function class. Thus, we
obtain the first constructions for constant-arity predicate and attribute based encryption
for a generalized class such as NC1 or P from simple assumptions that may be conjectured
post-quantum secure. Along the way, we show that the tensor LWE assumption can be
reduced to standard LWE in an important special case which was not known before. This
adds confidence to the plausibility of the assumption and may be of wider interest.

∗IIT Madras, Chennai, shweta@cse.iitm.ac.in
†ANSSI, Paris, melissa.rossi@ssi.gouv.fr
‡IIT Madras, Chennai, anshu.yadav06@gmail.com
§AIST, Tokyo, yamada-shota@aist.go.jp

1

Contents

1 Introduction 3

1.1 Prior Work . 4

1.2 Our Results . 4

1.3 Technical Overview . 6

2 Preliminaries 16

2.1 Multi-Input Attribute Based Encryption . 17

2.2 Lattice Preliminaries . 19

2.3 Tensors . 21

3 Assumptions and New Implications 21

3.1 Evasive LWE . 21

3.2 Tensor LWE . 24

3.3 New Implications for Tensor LWE . 24

3.4 New Implications from LWE . 26

4 Two-input ABE from Evasive and Tensor LWE 28

4.1 Construction . 28

4.2 Correctness, Parameters and Security . 30

5 Multi-Input ABE for Any Constant Arity 37

5.1 Construction for NC1 Circuits . 39

5.2 Correctness, Parameters and Security . 40

5.3 A Construction for P . 52

2

1 Introduction

Attribute Based Encryption. Attribute based encryption (ABE) [SW05, GPSW06] enables
fine grained access control on encrypted data. In this notion, an encryptor computes a ciphertext
encoding a secret message m and a public attribute vector x, a key generator computes a secret
key associated with a function f , and decryption outputs m if and only if f(x) = 1. Security is
formalized using an indistinguishability style game, where an adversary is asked to distinguish
between an encryption of (m0,x0) and (m1,x1) given secret keys that do not decrypt the
challenge. A further strengthening of this notion, traditionally referred to as predicate encryption
(PE), additionally enables hiding of the attributes x which are public in ABE.

The Multi-Input Setting. The recent work of Agrawal, Yadav and Yamada [AYY22]
(henceforth by AYY) proposed decentralizing these notions to the multi-input setting, where the
attribute x and the message m may be distributed among multiple parties, who must encrypt
their inputs independently using uncorrelated random coins. In more detail, we now have k
encryptors, who each encrypt their input {xi,mi}i∈[k] using a master secret key msk1, the key
generator provides a key skf for an arity k function f , and decryption recovers (m1, . . . ,mk) if
and only if f(x1, . . . ,xk) = 1.

While the notion of multi-input ABE, denoted by miABE, had been studied before [BJK+18],
this was as a stepping stone to constructing Witness Encryption. AYY argue that miABE is an
important primitive in its own right and not just as a stepping stone to witness encryption,
since it captures the demands of real world data more realistically than single input ABE. At
the heart of miABE is the idea that though data may be generated in different places, it may be
correlated in meaningful ways and natural access control policies are likely to embed constraints
that pertain to the entire data. Hence, all information related to any self-contained unit, such
as an individual or organization, should be considered together for the purpose of access control.

As a simple example, consider a dental care facility that has multiple branches in different
geographical locations. A patient Alice (say) may visit the branch near her home if she needs
a consultation on a Saturday but the branch near her work place if the appointment is on a
weekday. Indeed, she may visit a branch in another city if she is travelling and needs dental
assistance. In this scenario, each branch will contain some subset of the data pertaining to
Alice’s dental history. Yet, all this data must be considered together in order to make decisions
about future treatments. To enable this, each branch might encrypt their patient data everyday
and upload it to a central repository. Ideally, a doctor should be able access all the information
related to Alice’s dental history if the doctor’s key satisfies the relevant access control policy (for
instance if she is one of Alice’s designated doctors and all the records correspond to the Alice).

As another example, consider a businessman Bob (say) whose job involves frequent travelling.
To stay healthy, he may become a member of a fitness center which has branches in several cities
and visit the nearest one in his current location. The fitness center could have reduced rates or
other promotional offers for clients depending on their usage, and Bob would wish to benefit
from these though his usage is split across locations. As in the example above, each branch can
encrypt their local data and upload it to a central location and secret keys could be provided to
compute eligibility for the offer by collating this data. If eligible, the personal information can
be decrypted and the offer can be extended. Finally, consider a research project which spans
multiple universities. Each university could encrypt their findings and upload it to a central
server, and keys could be provided for accessing the joint data based on some policy that spans
the entire dataset. Please see [AYY22] for several other examples.

1As in multi-input functional encryption, the notion of miABE is primarily meaningful in the secret key setting,
due to excessive leakage that occurs in the public key setting.

3

1.1 Prior Work

AYY provided the first constructions for multi-input attribute based (and predicate) encryption.
Specifically, they provided the first construction for two-input key-policy ABE for NC1 from LWE
and pairings by leveraging a surprising connection between the algebraic properties required
to build two input ABE and the techniques developed in the context of broadcast encryption
[AY20, AWY20]. They also provided heuristic constructions for 2 input ABE for P and 3 input
ABE for NC1 – we will not discuss these here since our focus will be on constructions that admit
a proof. Additionally, they gave a compiler that “lifts” any constant arity ABE scheme to a PE
scheme of the same arity using the power of lockable obfuscation, which can be constructed
from the Learning With Errors (LWE) assumption. Independently, Francati et al. [FFMV23]
provided multi-input PE (hence also ABE) schemes for the restricted functionality of conjunctions
of (bounded) polynomial depth from LWE. Notably, one of their constructions can support
polynomial arity unlike AYY, which is a plus. On the other hand, their security model does
not support collusions, which is typically the main technical challenge in constructing ABE and
PE even in the single input setting. As another plus, when restricted to constant (though not
polynomial) arity, their constructions can support user corruption, which AYY cannot – indeed
AYY cannot even support arity for any constant though they support a much more expressive
function class which is not restricted to conjunctions.

We briefly mention the stronger notion of multi-input functional encryption (miFE)
[GGG+14], which generalizes multi-input ABE and PE. In contrast to miABE and miPE,
miFE has been studied extensively, and admits constructions for various functionalities
from a variety of assumptions [GGG+14, AJ15, AGRW17, DOT18, ACF+18, CDG+18,
Tom19, ABKW19, ABG19, LT19, AGT21b, AGT21a, AGT22]. However, since multi-input
FE for NC1 implies indistinguishability obfuscation (iO) [BGI+01, GGH+13], it remains
an important area of study to instantiate weaker notions such as miABE and miPE from
assumptions not known to imply iO. This is particularly important in the post quantum
regime, where constructions of iO are still based on strong, ill-understood assumptions
which are often broken [Agr19, APM20, WW21, GP21, DQV+21, AJS23]. Several prior
works therefore focus on instantiating iO based constructions from weaker assumptions
[AY20, AWY20, Wee22, Tsa22, VWW22, AKYY23], a direction also followed by the present
work.

1.2 Our Results

As seen above, current known results for miABE schemes are quite restricted – the result of AYY
appears to be fundamentally stuck at arity 2, while the result of Francati et al. [FFMV23] is
tailored to the restricted functionality of conjunctions, offering no avenue for generalization to
arbitrary NC1 circuits.

In this work, we significantly extend the reach of multi-input ABE schemes by providing the
first construction of miABE for the function class NC1 for any constant arity from the recently
introduced evasive LWE assumption [Wee22, Tsa22]. Our construction can be extended to
support the function class P by using evasive and a suitable strengthening of tensor LWE. For
the special case of arity 2, we need only the assumptions introduced by Wee, i.e. evasive LWE
for NC1 and evasive plus tensor LWE for P (i.e. we do not need to strengthen tensor LWE).2

In more detail, our construction supports k encryptors, for any constant k, where each
encryptor uses the master secret key msk to encode its input (xi,mi), the key generator

2Actually, our definition of evasive LWE is slightly different from that defined in [Wee22]. Please refer to
Assumption 3.1 and the related discussion.

4

Paper Arity Functionality Corruption Collusion Assumption

[FFMV23] Poly Conjunctions in P No No LWE

[FFMV23] Constant Conjunctions in P Yes No LWE

[AYY22] 2 NC1 No Yes Koala and LWE

[AYY22] 2 P No Yes Heuristic

This 2 P No Yes Evasive and Tensor LWE

This Constant NC1 No Yes Evasive LWE

This Constant P No Yes
Evasive and

strong Tensor LWE

Table 1: Comparison with Prior Work in miPE. Note that KOALA is a non-standard knowledge
type assumption and “heuristic” means that there is no proof of security.

computes a key skf for a function f ∈ NC1 (or P at the cost of a stronger assumption) and
the decryptor can recover (m1, . . . ,mk) if and only if f(x1, . . . ,xk) = 1. We prove security in
the standard indistinguishability game defined by AYY from the aforementioned assumptions.
Using the compiler from AYY, our miABE schemes can be upgraded to multi-input predicate
encryption schemes for the same arity and function class. Along the way, we show that the
tensor LWE assumption can be reduced to standard LWE in a special case which was not known
before. This adds confidence to the plausibility of the assumption and may be of wider interest.

We defer details about our strengthening of tensor LWE for P as well as the new implication
discussed above to the technical overview (Section 1.3) since stating them formally will require
heavy notation which we do not want to introduce here. We provide a comparison with known
results in Table 1.

Perspective: Connection to Witness Encryption. Witness encryption (WE) is defined
for some NP language L with a corresponding witness relation R. In WE, an encryptor encrypts
a message m to a particular problem instance x. The decryptor can recover m if x ∈ L and it
knows a witness w such that R(x,w) = 1. Security posits that a ciphertext hides the message m
so long as x /∈ L. Brakerski et al. [BJK+18] showed that miABE for polynomial arity implies
witness encryption – this may explain in part why constructions of miABE have been so elusive.
Even for smaller arity, there are nontrivial implications – for instance, the arity 2 miABE for NC1

by AYY implies a compression factor of 1/3 for witness encryption, which may be considered
surprising. In the other direction, it is well known that in the single input setting, witness
encryption implies attribute based encryption [GGH+13]. It is completely unclear however, how
to generalize this implication to the multi-input setting – in the setting of single input, the
ABE ciphertext contains a WE ciphertext for an NP statement that embeds the attribute. If
the attributes are distributed amongst multiple parties, the above approach fails and appears
challenging to extend. Thus, miABE implies new results in WE but not the other way around –
indeed, in miABE, all encryptors must choose their randomness independently to construct a
ciphertext for their respective slot, whereas in WE, there is only one encryptor who constructs
the ciphertexts for all slots, making it possible to choose correlated randomness across slots. As
we will see, this creates a major technical hurdle in designing miABE, which is not present in WE.
Also note that miABE can subsequently be strengthened to miPE using lockable obfuscation, as
discussed above.

We also note that single input ABE is the strongest application of the stated definition of
WE in [GGH+13]. Since the definition of WE given in [GGH+13] only hides the message in

5

the ciphertext when the statement is not in the language, the notion is insufficient to give any
meaningful security guarantee when the statement is actually believed to be true but the witness
is not known, such as solutions to some of the Clay Institute Millennium Prize Problems, as
discussed in [GGH+13]. Hence, we believe that the primitives of miABE and miPE deserve to
be studied even from assumptions that are already known to imply WE, such as evasive LWE
[Tsa22, VWW22].

1.3 Technical Overview

Recap of AYY. As observed by AYY, the main difficulty in building an miABE scheme is
simultaneously fulfilling two opposing requirements: (1) each encryptor should be able to
generate its own ciphertexts independently, (2) these independently generated ciphertexts should
permit some kind of “joining” that lets them be viewed as multiple components of a single ABE
ciphertext, such that decryption can proceed as in the single input setting. To achieve joining of
ciphertext components, existing single input schemes generate multiple ciphertext components
using common randomness. However, evidently, two independent sources, each generating an
unbounded number of ciphertexts (say Q1 and Q2 respectively) cannot even store, much less
embed, Q1 ·Q2 random strings in the ciphertexts they compute (even if they share a common
PRF key).

In the two-input setting, AYY solve this conundrum by using the beautiful synergy between
the algebraic structure offered by lattice based single input ABE schemes and pairing based
constructions. This synergy was first discovered and harnessed by Agrawal and Yamada [AY20]
in the context of broadcast encryption (a.k.a succinct single input ciphertext policy ABE for
NC1). The work of AYY noticed that the same synergy can be beneficial for the two-input key
policy ABE setting, albeit for different reasons.

In more detail, AYY achieve the joining of ciphertexts via common randomness by letting
each party embed fresh randomness in the exponent of a pairing based group for each ciphertext
it computes. Now, party 1 (respectively 2) has Q1 (respectively Q2) random elements embedded
in its Q1 (respectively Q2) ciphertexts. Using the pairing operation, the dercryptor can compute
Q1 ·Q2 elements by pairwise multiplication in the exponent. In more detail, for each input, party
1 samples randomness t1 and encodes it in G1, party 2 samples randomness t2 and encodes it
in G2, where G : G1 ×G2 → GT is a pairing group with prime order q. Now these ciphertexts
may be combined to form a new ciphertext with respect to the randomness t1t2 on GT . This
allows to uniquely separate every pair of ciphertexts, since each pair (i, j) where i ∈ [Q1] and
j ∈ [Q2], will have unique randomness ti1t

j
2. We have by security of pairings that these Q1 ·Q2

correlated terms are indistinguishable from random in the exponent. This allows for generating
the requisite randomness and solving the difficulty described above.

Fruitful interplay of pairings and lattices. However, generating joint randomness was not the
final goal – the ciphertexts generated using the above joining procedure must behave like an
ABE! Note that, having relied on a pairing, whatever we have obtained must live in the exponent
of a group. Also note that, pairing based ABE schemes have been rendered unhelpful by this
point, since the single multiplication afforded by the pairing has been used up and can no longer
participate in the design of the ABE. Here, AYY, similarly to [AY20, AWY20] are rescued by the
serendipitously well-fitting structure of a lattice based ABE scheme constructed by Boneh et al
[BGG+14]. In [BGG+14] (henceforth BGG+), decryption works as follows: (i) homomorphically
compute the circuit f on ciphertext encodings – this step is linear even for f ∈ P, (ii) perform a
product of the ciphertext matrix and secret key vector, (iii) round the recovered value to recover
the message. Hence, the first two steps can be performed “upstairs” in the exponent and the

6

last step may be performed “downstairs” by recovering the exponent brute force.

Structure of BGG+. Let us recall the structure of the BGG+ scheme, since this forms the
starting point of our construction. As observed in multiple works, in BGG+, the ciphertext for
an attribute x ∈ [ℓ] in BGG+ is computed by first generating LWE encodings for all possible
values of the attribute x, namely, {ψi,b}i∈[ℓ],b∈{0,1} and then choosing {ψi,xi}i∈[ℓ] where xi is
the i-th bit of attribute x. Here, ψi,b = s(Ai − xi,b ·G) + noise where Ai ∈ Zn×m

q are public
matrices, s ∈ Zn

q is freshly chosen randomness, and G ∈ Zn×m
q is the special “gadget” matrix

which admits a public trapdoor (details not important here). Here, and in the remainder of this
overview, we use noise to denote freshly and independently sampled noise terms of appropriate
dimension, for each sample. Choosing components based on x and concatenating the samples
yields s(A− x⊗G) + noise, where A ∈ Zn×ℓm

q denotes the concatenation of {Ai}i∈[ℓ].
To evaluate a circuit f ∈ P, BGG+ observe that there exists an efficiently computable low

norm matrix, denoted by ĤA,f,x, so that the right multiplication of (A − x ⊗G) by ĤA,f,x

yields a quantity of the form Af − f(x)G – since the matrix is low norm, this can be right
multiplied to s(A− x⊗G) + noise to obtain approximately s(Af − f(x)G) without blowing up
the noise. The decryption key for a function f is a low norm vector which, loosely speaking, is
used in a matrix vector product that allows to cancel the masking term sAf when f(x) = 0,
and this in turn allows to recover the message.

Circling back to AYY, the first encryptor can (roughly speaking) compute [t1 ·ψx]1, [t1]1, the
second encryptor can compute [t2 ·ψy]2, [t2]2 and the decryptor can compute [t1t2ψx∥y]T , [t1t2]T .
Note that randomization by t1t2 is absolutely essential for security, else the adversary can
potentially recover terms like s(A− x⊗G) + noise and s(A− x⊗G) + noise in the exponent,
which allows to cancel sA by subtraction, and leads to a complete break of security. Next, the
circuit f can be evaluated in the exponent as described above by right multiplication with a
low norm matrix and the secret key can be applied by the matrix vector product to obtain the
(scaled) message plus some noise in the exponent. The noise growth can be suitably bounded for
the circuit class NC1, and given [t1t2]T , one can recover the message using brute force discrete
log computation.

While AYY takes an important first step towards constructing miABE schemes, it is evident
that going beyond degree two is difficult while relying on pairings. Indeed, they do consider
arity 3 by additionally relying on ideas from a clever lattice based scheme by Brakerski and
Vaikuntanathan [BV22] but this scheme is heuristic, i.e. does not have a proof based on any
clean assumption. Thus, it is completely unclear how to go beyond arity 2 using the techniques
of AYY, even for NC1. A natural idea to overcome the barrier of 2 is to rely on lattices in lieu of
pairings.

Towards Lattice Based Constructions. Taking a step back, a promising direction would be
to consider the lattice adaptation of the Agrawal-Yamada broadcast encryption scheme [AY20]
recently proposed by Wee [Wee22]. This construction makes important progress in identifying a
clean assumption in the lattice regime that captures the functionality provided by the pairing
without relying on bilinear groups, and can be used to construct advanced primitives like
broadcast encryption and witness encryption without relying on iO (or the messy assumptions
needed to build iO in the post quantum regime). In more detail, Wee [Wee22] suggested two new
assumptions – the evasive LWE and tensor LWE and used these to construct ciphertext polict
ABE schemes with optimal parameters. We describe his approach next.

7

Overview of Wee’s approach. The main idea of Wee is to cleverly replace the randomization
in the exponent by tensoring on the ground. In more detail, Wee observes that the transformation
of (A− x⊗G) to (Af − f(x)G) via right multiplication by ĤA,f,x is preserved under tensoring
with random low norm vectors r. To see this, note that

s(A⊗ r⊤) + noise = s(I⊗ r⊤)︸ ︷︷ ︸
Randomized secret

A+ noise

where the latter quantity can be seen as BGG+ ciphertext with a tensored LWE secret. This
easily implies that homomorphism is preserved even with tensoring as desired. Hence, one
can homomorphically evaluate f on (A− x⊗G)⊗ r⊤ to obtain (Af − f(x)G)⊗ r⊤ via right

multiplication by ĤA,f,x.

Importantly, Wee shows that a very natural adaptation of [AY20], obtained by replacing
randomization in the exponent by tensoring can be shown secure under a new and elegant
assumption, which he calls evasive LWE. To support NC1, he shows that evasive LWE suffices,
while to support P, one additionally needs another new assumption, which he calls tensor LWE.
The formulation of a relatively simple and general assumption in the lattice regime that allows to
give a proof for a very natural construction of succint ciphertext policy ABE is a very important
contribution which is likely to influence many future lattice constructions, including ours. We
describe these assumptions next.

Evasive LWE. The evasive LWE assumption, introduced by Wee [Wee22] (and independently
Tsabary [Tsa22]), is a strengthening of the LWE assumption which says that certain extra
information, namely Gaussian preimages to LWE public matrices, can only be used in a “semi-
honest” way. Recall that the LWE assumption says that

(B, sB+ e) ≈c (B, c)

where B ← Zn×m
q , s ← Zn

q , e ← χm for some low norm “noise” distribution χ and c ← Zm
q .

Intuitively, the evasive LWE assumption says that if the adversary is additionally given some low
norm matrix K such that BK = P, which we denote as B−1(P) (as in the literature, see for
instance [Wee22]), for some efficiently sampleable matrix P, then the adversary can exploit this
extra information only via the limited means of computing the product (sB+ e) ·B−1(P) ≈ sP
and trying to distinguish this from uniform. The assumption says that this is the only additional
capability that the adversary obtains, besides its existing strategies for breaking LWE.

Evidently, the distribution of P here is of crucial importance – for instance, if P = 0, then
B−1(P) is a trapdoor for B and can be used to easily break LWE. On the other extreme, if P
is chosen uniformly, then this assumption reduces to standard LWE. The “playing ground” of
evasive LWE is in the middle – namely, when it holds that

(B,P, sB+ e, sP+ e′) ≈c (B,P, c, c
′)

then
(B, sB+ e,B−1(P)) ≈c (B, c,B

−1(P)).

Here, the former condition is referred to as the PRE condition and the latter as POST. The
actual assumption used by the scheme is more complex and includes more LWE samples that
use the same secret s as well as some (carefully chosen) auxiliary information aux. To formalize
the PRE condition, the assumption must specify an efficient sampler Samp which outputs the
correlated LWE matrices. We defer the formalization to Section 3; here we only remark that
the assumption captures in the lattice setting, the guarantees provided by the generic group

8

model for pairings, namely the intuition that an adversary can only use legitimate operations to
learn anything. It is therefore very natural (in hidsight) that this assumption should be able to
replace the reliance on the generic group model in the constructions of [AY20, AWY20].

Tensor LWE. The tensor LWE assumption states that correlated BGG+ samples tensored with
different random vectors remain pseudorandom. In more detail, for all x1, · · · ,xQ ∈ {0, 1}ℓ , it
posits that

A,
{
s(In ⊗ r⊤i)(A− xi ⊗G) + ei, r

⊤
i

}
i∈[Q]

≈c A,
{
ci, r

⊤
i

}
i∈[Q]

where A← Zn×ℓm
q , s← Zmn

q , ei ← Dℓm
Z,χ, ri ← Dm

Z,γ , ci ← Zℓm
q .

Note that there are no Gaussian preimages in the above assumption. In our work, we
show that for the special case where xi = 0 ∀i ∈ [Q], tensor LWE reduces to standard LWE
(Lemma 3.7). In more detail, let A be an attacker for Tensor LWE with xi = 0 for all i ∈ [Q].
A is given either A,

{
s(In ⊗ r⊤i)A+ ei, r

⊤
i

}
i∈[Q]

or A,
{
ci, r

⊤
i

}
i∈[Q]

. We prove that under the

LWE assumption, A has a negligible probability of distinguishing the left hand side from the
right hand side. This implication was not known before, and increases our confidence in the
assumption, which is new and not so well studied. Please see Lemma 3.7 for details.

Generalizing Tensor LWE. While tensor LWE as stated by Wee suffices for our construction
of 2-ABE for P, for extending the arity to any constant k, we require a strengthening of this
assumption. In more detail, we require that for all xj1,...,jk ∈ {0, 1}ℓ indexed by j1, . . . , jk ∈ [Q],
it holds that:

A,
{
s(In ⊗ r⊤1,j1 ⊗ · · · ⊗ r⊤k,jk)(A− xj1,...,jk ⊗G) + ej1,...,jk , ri,ji

}
i∈[k],j1,...,jk∈[Q]

≈c A, {ci,ji , ri,ji}i∈[k],j1,...,jk∈[Q]

where A← Zn×ℓm
q , s← Znmk

q , ej1,...,jk ← Dℓm
Z,χ, ri,ji ← Dm

Z,γ , ci,ji ← Zℓm
q .

It is easy to see that the generalized tensor LWE yields Wee’s version of tensor LWE for k = 1.

Two Input ABE from evasive and tensor LWE. As a warmup, we first describe our
construction of miABE for arity 2. For NC1, our construction can be proven secure by relying
solely on evasive LWE while for P, we additionally need tensor LWE. We will show subsequently
how to generalize this to any constant arity. In this work, we consider a modified syntax of miABE
where there is only a single encryption slot which is public key, and multiple key generation
slots, which require the master secret key. This syntax better fits our construction and easily
implies the standard definition of miABE which has multiple encryptors that have as input the
master secret key, and a single key generator who also requires the master secret key – please
see Section 2.1 for details.

Given the above discussion, a natural approach to construct miABE schemes from lattices is
to try adapting the ideas in AYY by replacing the use of pairings with tensoring, analogously
to Wee’s approach of adapting the Agrawal-Yamada broadcast encryption scheme to lattices
in Wee. We show that in the end, this approach indeed can be made to work, but via several
failed attempts which require new techniques to overcome, and a complex security proof, which
requires proving several new lemmas. Below, we outline the pathway to our final construction,
detailing the hurdles we encounter and the ideas towards their resolution.

Attempt 1. We attempt to design a scheme using tensor based randomization from Wee to
instantiate the template of AYY. We sketch the construction at a high level below. We suppress
dimensions for ease of readability in this overview.

9

1. The master public key is (A0,A1,A2,B,u) where A1,A2,B are sampled uniformly and u
is sampled from the discrete Gaussian distribution. The master key is a trapdoor for A0

and a trapdoor for B.

2. The encryptor, given input (x, µ) where x is the attribute and µ is the message, samples
randomness s along with requisite noise terms and computes

sA0 + noise︸ ︷︷ ︸
c0

, s
(
(A1 − x⊗G)⊗ I

)
+ noise︸ ︷︷ ︸

c1

, s(Gu⊤ ⊗ I) + noise︸ ︷︷ ︸
c2

, sB+ noise︸ ︷︷ ︸
c3

if µ = 0 and else samples random elements of appropriate dimensions if µ = 1. Note that
the encryption procedure is public key.

3. The first key generator (to be interpreted as the second encryptor), given input msk and
attribute y samples Gaussian random vector r and computes

sky = B−1
(
(A2 − y ⊗G)⊗ r⊤

)
, r⊤

It outputs this as the secret key for y. Note that the randomizer r is used to prevent
collusion attacks – in its absence, an attacker can obtain samples corresponding to y and
y (i.e. complement of y) and launch attack as discussed earlier.

4. The second key generator, given msk and function f as input computes skf =
(A0∥Af)

−1(Gu⊤) and outputs this as the secret key for f .

5. The decryptor does the following:

(a) Computing ciphertext component for second attribute: It combines the ciphertext c3
with the first secret key sky to obtain s

(
(A2 − y ⊗G)⊗ r⊤

)
+ noise.

(b) Randomizing ciphertext component for first attribute: From c1 and sky, it computes(
s
(
(A1 − x⊗G)⊗ I

)
+ noise

)
(I⊗ r⊤) = s

(
(A1 − x⊗G)⊗ r⊤

)
+ noise

(c) Producing a complete BGG+ ciphertext: Concatenating the results of the previous
two steps, we get

s
(
(A1∥A2)− (x∥y)⊗G)⊗ r⊤

)
+ noise

Note that this looks exactly like a BGG+ sample except for the tensoring with r⊤.
As discussed above, Wee shows that homomorphic computation is preserved under
right tensoring with r⊤.

(d) BGG+ Homomorphic evaluation: Computing the circuit f homomorphically on this
BGG+ sample, we obtain

s
(
(Af − f(x,y)G)⊗ r⊤

)
+ noise

If f(x,y) = 0, then we get s
(
Af ⊗ r⊤

)
+ noise. Concatenating with the ciphertext

component c0, we get
s
(
A0∥Af)⊗ r⊤

)
+ noise

(e) Applying BGG+ secret key. By right multiplying the second slot secret key
(A0∥Af)

−1(Gu⊤)⊗ I to this, we get

s
(
Gu⊤ ⊗ r⊤

)
+ noise

10

(f) BGG+ decryption with tensoring. Multiplying c2 with I⊗ r⊤, we get s
(
Gu⊤ ⊗ r⊤

)
+

noise. Subtracting from the output of the previous step, we get a small value when
µ = 0. Thus, we recover µ when f(x,y) = 0.

The above scheme provides functionality and does not appear to have any immediate attacks.
However, we are unable to prove security of this scheme based on the evasive/tensor LWE
assumption. This is because the evasive LWE assumption accommodates Gaussian preimages
for fixed matrices, namely terms of the form B−1(P), where B is a random matrix and P is
structured, but does not know how to handle terms such as (A0∥Af)

−1(Gu⊤). Since Af is
highly structured, this is incompatible with the assumption.

Attempt 2. To handle this barrier, in our next attempt, we use an idea by Wee to remove

the problematic term (A0∥Af)
−1(Gu⊤). Note that the purpose of this term is to create an

LWE sample with secret s and matrix Af . In more detail, as shown in step 5e, the term
s
(
A0∥Af)⊗ r⊤

)
+ noise obtained by homomorphic evaluation is combined together with the

secret key in the second slot (A0∥Af)
−1(Gu⊤) to obtain s(Gu⊤ ⊗ r⊤) + noise. As shown in

step 5f, this term is then used to unmask the ramdomized c2, i.e. s
(
Gu⊤ ⊗ r⊤

)
+ noise by

subtraction to recover µ.

So as to do away with the requirement of revealing (A0∥Af)
−1(Gu⊤), we provide an alternate

route to recover µ. We change the second slot secret key skf to B−1(Afu ⊗ I), and use this
together with the term sB+ noise provided in the ciphertext to obtain s(Afu⊗ I) + noise. This
allows us to cancel the mask sAf obtained via homomorphic evaluation and brings us closer to
relying only on evasive and tensor LWE.

Below, we detail only the modifications we make to our previous attempt:

1. The encryptor, given input (x, µ) where x is the attribute and µ is the message, samples
randomness s along with requisite noise terms and computes

sA0 + noise︸ ︷︷ ︸
c0

, s
(
(A1 − x⊗G)⊗ I

)
+ noise︸ ︷︷ ︸

c1

, s(Gu⊤ ⊗ I) + noise︸ ︷︷ ︸
c2

, sB+ noise︸ ︷︷ ︸
c3

if µ = 0 else samples random elements of appropriate dimensions if µ = 1.

2. The second key generator, given msk and function f computes skf = B−1(Afu
⊤ ⊗ I). At

this junction, we let u be chosen independently by each user instead of fixing it in the
public parameters to prevent the adversary from requesting keys for correlated functions
and obtaining correlated LWE samples of the form sAfu

⊤ + noise with the same u and
same s.

3. During decryption,

(a) BGG+ homomorphic evaluation is simplified. We only compute the circuit f
homomorphically on this BGG+ sample, to obtain

s
(
(Af − f(x,y)G)⊗ r⊤

)
+ noise

If f(x,y) = 0, then we get s
(
Af ⊗ r⊤

)
+ noise. There is no need to concatenate with

c0 (this is no longer even provided) but we must right multiply by (u⊤ ⊗ I) to obtain
s
(
Afu

⊤ ⊗ r⊤
)
+ noise. Recall that u is low norm, hence does not blow up the noise.

(b) The second slot keyB−1(Afu
⊤⊗I) is right multiplied to c3 to get s(Afu

⊤ ⊗ I) + noise.
By right multiplying with (I⊗ r⊤), we now recover the masking term s

(
Afu⊗ r⊤

)
+

noise which can be subtracted from the output of the previous step. If this is small,
learn that µ = 0.

11

Importantly, at this point, we can hope to use evasive LWE to “get rid” of the preimages
B−1

(
(A2 − y ⊗G) ⊗ r⊤

)
and B−1(Afu

⊤ ⊗ I) from the distribution seen by the adversary.
This essentially reduces the task of proving the security of the scheme to that of proving the
pseudorandomness of the terms

s((A1 − x⊗G)⊗ I) + noise, s((A2 − y ⊗G)⊗ r⊤) + noise, s(Afu
⊤ ⊗ I) + noise

Unfortunately, we are still not done, even by relying additionally on tensor LWE. This is because
tensor LWE only posits pseudorandomness of LWE samples with respect to secret s(I⊗ r). In
particular, the presence of the terms s((A1−x⊗G)⊗ I)+ noise and s(Afu

⊤⊗ I)+ noise cannot
be handled by invoking tensor LWE since they do not have the right form (in particular no r
term appears in these). Therefore, we must handle these next.

Attempt 3. Let us first explain how to deal with the first term s((A1 − x⊗G)⊗ I) + noise.
As in Wee, the idea is to “mask” the problematic term, in this case, s((A1 − x⊗G)⊗ I) + noise,
with a pseudorandom term s0(A0⊗ I)+noise such that there is a way to provide an “unmasking”
term using which, we can recover a simulatable term s((A1 − x⊗G)⊗ r⊤) + noise but nothing
else is revealed 3.

In more detail, we make the following changes:

1. We replace s((A1 − x⊗G)⊗ I) + noise by c = s((A1 − x⊗G)⊗ I) + s0(A0 ⊗ I) + noise.

2. Next, we put some terms so that the ciphertext along with the first slot of the secret key
jointly generates d := s0(A0 ⊗ r⊤) + noise, which is an “unmasking” term.

3. To obtain the desired term, we compute c(I⊗ r⊤)− d = s((A1 − x⊗G)⊗ r) + noise.

Furthermore, it is easy to show that s0(A0 ⊗ I) + noise is pseudorandom by LWE (since s0
is a fresh randomness introduced only for this specific purpose), which implies that c is also
pseudorandom. This allows us to conclude that d does not reveal anything more than the desired
term, since c and the desired term determine d.

At this stage, the scheme looks like the following, where for brevity we again omit to mention
components that are unchanged.

1. The encryptor computes c1 = (s, s0)

(
(A1 − x⊗G)⊗ I

A0 ⊗ I

)
+noise and c2 = (s, s0)B+noise

for µ = 0 (and random elements for µ = 1).

2. The first slot key is sky ← B−1

(
(A2 − y ⊗G)⊗ r⊤

A0 ⊗ r⊤

)

3. The second slot key is skf ← B−1

(
Afu

⊤ ⊗ I

0

)
and u. This key is essentially unchanged

except padding the inner matrix with zeroes to account for the longer secret.

4. Now, from the ciphertext component c2 and the first slot key, we get terms s(A2 − y ⊗
G)⊗ r⊤) + noise and d = s0(A0 ⊗ r⊤) + noise. The second term d is the new term that
we will make use of as described above.

3The informed reader may notice the similarity with randomized encodings [AIK04] and pair/predicate
encodings [Att14, Wee14].

12

5. Now, we compute c(I⊗ r⊤)− d = s((A1 − x⊗G)⊗ r) + noise. Using pseudorandomness
of c, we can argue that d did not reveal anything except s((A1 − x⊗G)⊗ r) + noise.

At this stage, we obtained a term that tensor LWE can handle, namely s((A1−x⊗G)⊗r)+noise.

Attempt 4. Next, we must deal with the second problematic term s(Afu
⊤ ⊗ I) + noise. It is

tempting to try the same strategy as above but unfortunately, this does not work. To see why,
let us try to replace s(Afu

⊤⊗ I) + noise with s(Afu
⊤⊗ I) + s1(D⊗ I) + noise, where D is some

fixed matrix. We can then modify the scheme so that the ciphertext along with the first slot
secret key generate the unmasking term s1(D⊗ r⊤) + noise. Similarly to the above, this allows
us to derive the desired term s(Afu

⊤ ⊗ r⊤) + noise which can be handled by tensor LWE. One
may hope that this suffices to prove security.

However, we run into another problem, namely, that of collusion resistance. In particular, an
adversary may make multiple key queries for the second slot and use the same ciphertext and
first slot key for decryption. These allow her to recover s(Afu

⊤ ⊗ I) + s1(D⊗ r⊤) + noise and

s(Af ′u′⊤ ⊗ I) + s1(D ⊗ r⊤) + noise for different f and f ′. Even though we want to hide two

terms s(Afu
⊤ ⊗ I) and s(Af ′u′⊤ ⊗ I), there is only a single masking term s1(D⊗ r⊤) + noise,

since s1 would be chosen by the encryptor and r by the first slot key – this is clearly problematic.

To fix this, we ensure that the masking term is randomized by a user specific randomness
corresponding to the second slot key. Namely, we replace s(Afu

⊤ ⊗ I) + s1(D⊗ I) + noise with
s(Afu

⊤ ⊗ I) + s1(D⊗ t⊤) + noise, where t is user specific randomness. We then use the ideas
discussed previously to ensure that the ciphertext and second slot key generate s1(D⊗t⊤)+noise.
This mask is removed similarly to the previous case and we may obtain s(Afu

⊤ ⊗ I) + noise.

Attempt 5. Unfortunately, this still does not suffice. Recall that we wanted to generate the

term s(Afu
⊤⊗r⊤)+noise in order to invoke tensor LWE, which the above term does not let us do.

To achieve this, we replace s(Afu
⊤⊗I)+s1(D⊗t)+noise with s(Afu

⊤⊗I)+s1(D⊗t⊗I)+noise,
i.e., we added some space to further randomize the masking term with r⊤. We then let the
ciphertext and secret keys for both slots jointly generate s1(D⊗ t⊤ ⊗ r⊤) + noise.

To do so, we do the following:

1. Include s1B+ noise in the ciphertext and B−1(C⊗ r⊤) in the first slot key. Multiplying
them yields s1(C⊗ r⊤) + noise.

2. Include C−1(D⊗ t⊤) in the second slot key.

Putting these together enables us to recover the masking term as:

(s1(C⊗ r⊤) + noise) ·C−1(D⊗ t⊤) = s1(I⊗ r⊤)C ·C−1(D⊗ t⊤) + noise

= s1(I⊗ r⊤)(D⊗ t⊤) + noise

= s1(D⊗ t⊤ ⊗ r⊤) + noise

The above term contains randomness s1 chosen by the encryptor, r chosen by the first slot
key and t chosen by the second slot key. Intuitively, this randomness triple separates the triple
of ciphertext, first key and second key, from any other triple even if some components of the
triple are reused. This allows to separate the “thread” of computation corresponding to a given
triple, from all other threads, and hopefully allows us to prove security. This brings us to our
final scheme.

We provide the complete construction below. The vector u above is now changed to a matrix
U for syntactic reasons.

13

1. Set mpk = (A0,A1,A2,B,C,D), and msk as trapdoors for B and C.

2. To encrypt a message µ against attribute x, do the following. If µ = 0, do:

(a) Compute c1 = (s, s0)

(
(A1 − x⊗G)⊗ I

A0 ⊗ I

)
+ noise

(b) Compute c2 = (s, s0, s1)B+ noise

(c) Output ctx = (c1, c2)

If µ = 1, output random elements in the appropriate space.

3. To compute the first slot key for attribute y, sample

sky ← B−1

(A2 − y ⊗G)⊗ r⊤

A0 ⊗ r⊤

C⊗ r⊤


4. To compute the second slot key for function f , sample U, t and compute

skf ← B−1

 AfU⊗ I

0

D⊗ t⊤ ⊗ I

 , C−1
(
D⊗ t⊤

)
, U, t

To decrypt, first compute d1 = c1(I⊗r⊤), (d2, d3, d4) = c2 · sky, d5 = c2 · skf,1, d6 = d5(I⊗r⊤)

and d7 = d4 · skf,2. Then compute d8 = d1−d3, d9 = (d8∥d2)Ĥ(A1∥A2),f,(x∥y)U, d10 = d6−d7.
Finally, if d10 − d9 ≈ 0, then output 0, else 1. To see the correctness, observe:

d1 = s((A1 − x⊗G)⊗ r⊤) + s0(A0 ⊗ r⊤) + noise,

d2 = s((A2 − y ⊗G)⊗ r⊤) + noise,

d3 = s0(A0 ⊗ r⊤) + noise, d4 = s1(C⊗ r⊤) + noise,

d5 = s(AfU⊗ I) + s1(D⊗ t⊤ ⊗ I) + noise, d6 = s(AfU⊗ r⊤) + s1(D⊗ t⊤ ⊗ r⊤) + noise,

d7 = d4 ·C−1(D⊗ t⊤) = s1(D⊗ t⊤ ⊗ r⊤) + noise, d8 = s((A1 − x⊗G)⊗ r⊤) + noise

d9 = s((Af − f(x,y)G)⊗ r⊤)U+ noise, d10 = s(AfU⊗ r⊤) + noise

If f(x,y) = 0, then d10 − d9 = noise when µ = 0, else it is large. Above, the terms d2,d8

in blue mimic the ciphertext components of single input BGG+, computed as if with shared
randomness by a single party holding both x and y. Note that all the machinery developed
above was to be able to simulate the single party setting in the two party setting, where the
ciphertexts are produced using independent randomness.

Proof Sketch. For ease of exposition, we sketch the proof for the case where only a single key
is generated for both the slots. First, we observe that we need to invoke evasive LWE twice, once
to handle terms B−1(·) and once for C−1(·). Of these, the first application is standard, following
Wee while the second one requires more care as it uses a structured LWE, as in [VWW22].

Having removed Gaussian preimages with respect to B and C, we are required to show
pseudorandomness of the following terms:

c1 = s((A1 − x⊗G)⊗ I) + s0(A0 ⊗ I) + noise, c2 = (s, s0, s1)B+ noise,

c3 = s((A2 − y ⊗G)⊗ r⊤) + noise c4 = s0(A0 ⊗ r⊤) + noise,

c5 = s1(C⊗ r⊤) + noise, c6 = s(AfU⊗ I) + s1(D⊗ t⊤ ⊗ I) + noise

c7 = s1(D⊗ t⊤ ⊗ r⊤) + noise

14

Above, note that c3, c4, c5 are generated using the secret key for the first slot and the ciphertext,
c6 is generated using the ciphertext and secret key of the second slot, and c7 is generated using
evasive LWE with structured secret, namely by combining C−1(D⊗ t⊤) and c5 = s1(I⊗ r⊤)C+
noise. This yields s1(I⊗ r⊤)(D⊗ t⊤) + noise which is equal to c7.

We now proceed to sketch the hybrid structure of the proof.

Game 0: This is the real game.

Game 1: Express c4 in terms of c1 and a term that tensor LWE can handle:

c4 = c1(I⊗ r⊤)−
(
s((A1 − x⊗G)⊗ r⊤) + noise

)︸ ︷︷ ︸
c4′

The only difference between Game 0 and Game 1 is the distribution of the noise term
which can be handled by noting that c1(I⊗ r⊤) ≈ s((A1 − x⊗G)⊗ r⊤) + s0(A0 ⊗ r⊤)
and using the standard smudging lemma(Lemma 2.10).

Game 2: We now change c1 and c2 to random by using the power of LWE with secret s0.

Game 3: Now, we express c7 in terms of c6 and a term which is friendly with tensor LWE:

c7 = c6(I⊗ r⊤)− s(AfU⊗ r⊤) + noise︸ ︷︷ ︸
c′7

Again, the change follows using the smudging lemma.

Game 4: Change c5 and c6 to random. Note that c6(I⊗ r⊤) ≈ s(AfU⊗ r⊤) + s1(D⊗
t⊤⊗ r⊤)+ noise and c5 = s1(C⊗ r⊤)+ noise. Hence, it suffices to show pseudorandomness
of

s1(C⊗ r⊤) + noise, s1(D⊗ t⊤ ⊗ I) + noise)

We argue this via a new lemma by using only (standard) LWE.

Game 5: At this point it remains to argue that c3, c
′
4 and c′7 are pseudorandom. These

constitute:

s(I⊗ r⊤)
(
(A1∥A2)− (x∥y)⊗G

)
+ noise, s(I⊗ r⊤)(AfU) + noise

and we can directly plug in the tensor LWE assumption to argue this.

Please see Section 4 for the detailed proof.

Extension to Constant Arity. Next, we outline how to extend the above idea to the setting
of constant arity. The basic idea is to let the secret key for slot i ∈ [k] generate

s((A− xi ⊗G)⊗ I⊗ r⊤i ⊗ I) + si(D⊗ I⊗ r⊤i ⊗ I) + noise︸ ︷︷ ︸
masking term

where ri is the user specific randomness associated with the secret key for the i-th slot.

In addition, we also prepare other terms so that the ciphertext and secret keys can
collaboratively generate the unmasking terms as:

si(D⊗ r⊤1 ⊗ · · · ⊗ r⊤k) + noise ∀i ∈ [k]

15

Given the unmasking term, the decryptor can obtain

s((Ai − xi ⊗G)⊗ r⊤1 ⊗ · · · ⊗ r⊤k) + noise

A similar strategy also works for masking s(AfU⊗ I) and we can show that the adversary can
only obtain

s((A− x⊗G)⊗ r⊤1 ⊗ · · · ⊗ r⊤k) + noise, s(AfU⊗ r⊤1 ⊗ · · · ⊗ r⊤k) + noise

which are LWE samples w.r.t randomness s(I⊗ r⊤1 ⊗ · · · ⊗ r⊤k). We refer the reader to Section 5
for the complete construction.

On Circuit Depth. As discussed above, for our miABE for NC1, we rely only on evasive LWE,
even for constant arity. For our miABE for P, we require evasive and tensor LWE for arity 2, but
for general k, we need to generalize tensor LWE as discussed above.

To remove the need for (any) tensor LWE in the restricted case of NC1 circuits, we use low
norm Ai and switch out G for I, as suggested by Wee. We also leverage the observation by
Wee, that a weaker version of homomorphic computation is still possible in this setting. In
addition, we show that when Ai and G are changed as above, LWE samples w.r.t x obtained by
combining ciphertexts and secret keys are indistinguishable from those that are computed using
fresh randomness for all combinations of ciphertexts and secret keys.

In more detail, let i = (i1, . . . , ik) denote the ciphertext queries in the k slots which are being
combined for decryption. Then, we show that{
s
(
(A−xi⊗I)⊗ri11

⊤⊗ . . .⊗rik1
⊤)

+noise

}
i1,...,ik∈[Q]

≈c

{
si1,...,ik

(
A−xi⊗I

)
+noise

}
i1,...,ik∈[Q]

where si1,...,ik is a unique, freshly sampled secret for the combination i = (i1, . . . , ik). Intuitively,
the shortness of A and I is used to argue that:

s
(
(A−xi⊗ I)⊗ri11

⊤⊗ . . .⊗rikk
⊤)

+noise ≈c

(
s(I⊗ri11

⊤⊗ . . .⊗rikk
⊤
)+noise

)(
A−xi⊗ I

)
+noise

which in turn allows to express s(I⊗ ri11
⊤⊗ . . .⊗ rikk

⊤
)+noise as si1,...,ik by iteratively separating

out r
ij
j

⊤
, and adding noise to obtain a fresh secret4. Please see Section 5 for details.

2 Preliminaries

Notation. We begin by defining the notation that we will use throughout this work. We use
bold letters to denote vectors and the notation [a, b] to denote the set of integers {k ∈ N | a ≤
k ≤ b}. We use [n] to denote the set [1, n]. By default, we treat a vector as a row vector. For
any vector x of length ℓ, we let xi denote the i-th coordinate of x, for i ∈ [ℓ]. For any two
vectors x and y (resp. matrices X, Y), x∥y (resp. X∥Y) represents horizontal concatenation of
vectors x and y (resp. matrices X and Y). We use 1ℓ×m (resp. 0ℓ×m) to represent a matrix of
dimensions ℓ×m having each entry as 1 (resp. 0). Similarly, we write 1a (resp. 0a) to represent
(1, . . . , 1) ∈ Za

q (resp. (0, . . . , 0) ∈ Za
q). For any n > 0, In represents an identity matrix of size n.

When n = m, we denote Im by only I and I⊗i denotes Imi = I⊗ · · · ⊗ I︸ ︷︷ ︸
i times

for any integer i.

4The informed reader may be reminded of the Naor-Reingold argument [NR97] used to construct a PRF from
DDH or its lattice analogue [BPR12].

16

We say a function f(n) is negligible if it is O(n−c) for all c > 0, and we use negl(n) to
denote a negligible function of n. We say f(n) is polynomial if it is O(nc) for some constant
c > 0, and we use poly(n) to denote a polynomial function of n. We use the abbreviation
PPT for probabilistic polynomial-time. The function log x is the base 2 logarithm of x. For
two distributions D1, D2 we use the notation D1 ≈c D2 (resp. D1 ≈s D2) to denote that
a PPT adversary cannot distinguish between the distributions D1 and D2 except only with
a computational (resp. satistical) negligible distinguishing advantage. In addition, we write
D1 ≡ D2 when D1 and D2 are perfectly indistinguishable.

2.1 Multi-Input Attribute Based Encryption

Following [AYY22], we define multi-input Attribute Based Encryption (ABE) below. A k-input
ABE scheme is parametrized over an attribute space {(Aλ)

k}λ∈N and function space {Fλ}λ∈N,
where each function maps {(Aλ)

k}λ∈N to {0, 1}. Such a scheme is described by procedures
(Setup,Enc,KeyGen1, . . . , KeyGenk−1, KeyGenk,Dec) with the following syntax:

Setup(1λ)→ (mpk,msk): The Setup algorithm takes as input a security parameter and outputs
a master public key mpk and a master secret key msk.

Enc(mpk,x0, µ)→ ctx0,µ: The encryption algorithm takes as input the master public key mpk,
an attribute x0 ∈ Aλ, and message µ ∈ {0, 1}, and outputs a ciphertext ctx0,µ. The
attribute string x0 is also included as part of the ciphertext.

KeyGeni(msk,xi)→ ski,xi for 1 ≤ i ≤ k − 1: The KeyGen algorithm for the ith slot where i ∈
[k − 1], takes as input the master secret key msk, and an attribute xi ∈ Aλ and outputs a
key for slot i, ski,xi . Again, we assume that the attribute string xi is included as part of
the secret key.

KeyGenk(msk, f)→ skk,f : The KeyGen algorithm for slot k takes as input the master secret key
msk and a function f ∈ Fλ and outputs a key skk,f .

Dec(mpk, ctx0,µ, sk1,x1 , . . . , skk−1,xk−1
, skk,f)→ µ′: The decryption algorithm takes as input a

ciphertext ctx0,µ, k keys sk1,x1 , . . . , skk−1,xk−1
, and skk,f and outputs a string µ′.

Next, we define correctness and security. For ease of notation, we drop the subscript λ in what
follows.

Correctness: For every λ ∈ N, µ ∈ {0, 1}, x0, . . . ,xk−1 ∈ A, f ∈ F , it holds that if
f(x0, . . . ,xk−1) = 0,5 then

Pr

[
Dec

(
mpk, Enc(mpk,x0, µ),

KeyGen(msk,x1), . . . ,KeyGenk−1(msk,xk−1),KeyGenk(msk, f)

)
= µ

]
= 1− negl(λ)

where the probability is over the choice of (mpk,msk) ← Setup(1λ) and over the internal
randomness of Enc and KeyGen1, . . . ,KeyGenk.

Definition 2.1 (Ada-IND security for k-ABE). For a k-ABE scheme k-ABE = {Setup,Enc,
KeyGen1, . . ., KeyGenk−1, KeyGenk,Dec}, for an attribute space {(Aλ)

k}λ∈N, function space
{Fλ}λ∈N and an adversary A, we define the Ada-IND security game as follows.

5We follow the convention in lattice based cryptography where the decryption condition is reversed with respect
to the output of the function.

17

1. Setup phase: On input 1λ, the challenger samples (mpk,msk) ← Setup(1λ) and gives
mpk to A.

2. Query phase: During the game, A adaptively makes the following queries, in an arbitrary
order.

(a) Key Queries: A makes polynomial number of key queries for each slot, say p = p(λ).
As a j-th query for slot i, A chooses{

xi,j if i ∈ [k − 1]

fj if i = k,

where xi,j ∈ Aλ and fj ∈ Fλ. The challenger computes{
ski,xi,j = KeyGeni(msk,xi,j) if i ∈ [k − 1]

skfj = KeyGenk(msk, fj) if i = k

and returns it to A.
(b) Challenge Query: A issues a challenge query for encryption. A declares (x0, (µ0, µ1))

to the challenger, where x0 ∈ Aλ is an attribute and (µ0, µ1) ∈ {0, 1} × {0, 1} is
the pair of messages. Then, the challenger samples β ← {0, 1}, computes ctβ =
Enc(mpk,x0, µβ) and returns it to A.

3. Output phase: A outputs a guess bit β′ as the output of the experiment.

For the adversary to be admissible, we require that for every f1, . . . , fp ∈ F , it holds that
fjk(x0,x1,j1 , . . . ,xk−1,jk−1

) = 1 for every j1, . . . , jk ∈ [p].

We define the advantage AdvAda-INDk-ABE,A(1
λ) of A in the above game as

AdvAda-INDk-ABE,A(1
λ) :=

∣∣∣Pr[Expk-ABE,A(1λ) = 1|β = 0]− Pr[Expk-ABE,A(1
λ) = 1|β = 1]

∣∣∣ .
The k-ABE scheme k-ABE is said to satisfy Ada-IND security (or simply adaptive security)

if for any stateful PPT adversary A, there exists a negligible function negl(·) such that
AdvAda-IND

k-ABE,A(1
λ) = negl(λ).

Definition 2.2 (VerSel-IND security for k-ABE). The definitions for VerSel-IND security for
k-ABE is the same as Ada-IND security above except that the adversary A is required to submit
the challenge query and key queries to the challenger before it samples the public key.

Comparing with the miABE Definition in [AYY22]: We note that our definition of kABE
is equivalent to the one in [AYY22], except that the encryption algorithm that encrypts the
message with an attribute is a public algorithm in our definition, while it is a secret algorithm
in [AYY22]. Note that both in our definition as well as [AYY22], the message is associated with
only a single attribute, which was shown to be sufficient in [AYY22]. In more detail, Enc(mpk,x, µ)
above is same as Enc1(msk,x, µ) in [AYY22], except that Enc1 is a secret algorithm while Enc is
a public algorithm. KeyGeni(msk,xi) is same as Enci+1(msk,xi) in [AYY22], KeyGenk(msk, f)
is same as KeyGen(msk, f) in [AYY22]. Further, note that since the encryption algorithm in our
definition is a public algorithm, it suffices to consider that the adversary issues only one challenge
query of the form (x0, (µ0, µ1)), while it can issue polynomially many key queries for each slot
i ∈ [k] similar to [AYY22], where the adversary can issue polynomially many key queries and
encryption queries for each slot. Finally, note that since the challenge bit β is encoded only
in the ciphertext returned by the (public) encryption algorithm, the distinction between the
stronger and weaker security notions in [AYY22] disappears in our definition. Thus, the security
definition given above is same as the stronger security defined in [AYY22].

18

2.2 Lattice Preliminaries

Here, we recall some facts on lattices that are needed for the exposition of our construction.
Throughout this section, n, m, and q are integers such that n = poly(λ) and m ≥ n⌈log q⌉. In the
following, let SampZ(γ) be a sampling algorithm for the truncated discrete Gaussian distribution
over Z with parameter γ > 0 whose support is restricted to z ∈ Z such that |z| ≤

√
nγ.

Learning with Errors. We introduce the learning with errors (LWE) problem.

Definition 2.3 (The LWE Assumption). Let n = n(λ), m = m(λ), and q = q(λ) > 2 be integers
and χ = χ(λ) be a distribution over Zq. We say that the LWE(n,m, q, χ) hardness assumption
holds if for any PPT adversary A we have

|Pr[A(A, sA+ x)→ 1]− Pr[A(A,v)→ 1]| ≤ negl(λ)

where the probability is taken over the choice of the random coins by the adversary A and
A ← Zn×m

q , s ← Zn
q , x ← χm, and v ← Zm

q . We also say that LWE(n,m, q, χ) problem is

subexponentially hard if the above probability is bounded by 2−nϵ · negl(λ) for some constant
0 < ϵ < 1 for all PPT A.

As shown by previous works [Reg09, BLP+13], if we set χ = SampZ(γ), the LWE(n,m, q, χ)
problem is as hard as solving worst case lattice problems such as gapSVP and SIVP with
approximation factor poly(n) · (q/γ) for some poly(n). Since the best known algorithms for 2k-

approximation of gapSVP and SIVP run in time 2Õ(n/k), it follows that the above LWE(n,m, q, χ)
with noise-to-modulus ratio 2−nϵ

is likely to be (subexponentially) hard for some constant ϵ.

LWE with Low-Norm Samples. The following lemma states that the LWE problem is hard
even when the public matrix is chosen from low norm Gaussian distribution.

Lemma 2.4. [BLMR13] Let k = k(λ), m = m(λ) and q = q(λ) > 2 be integers. Then if
LWE(n,m, q, γ) hardness assumption holds then for any PPT adversary A we have

|Pr[A(A, sA+ x)→ 1]− Pr[A(A,u)→ 1]| ≤ negl(λ)

where A← Dk×m
Z,σ , s← Zk

q , x← Dm
Z,γ, u← Zm

q , k ≥ 6n log q and σ = Ω(
√
n log q).

Trapdoors. Let us consider a matrix A ∈ Zn×m
q . For all V ∈ Zn×m′

q , we let A−1(V) be an

output distribution of SampZ(γ)m×m′
conditioned on A·A−1(V, γ) = V. A γ-trapdoor for A is a

trapdoor that enables one to sample from the distribution A−1(V, γ) in time poly(n,m,m′, log q)
for any V. We slightly overload notation and denote a γ-trapdoor for A by A−1

γ . We also define

the special gadget matrix G ∈ Zn×m
q as the matrix obtained by padding In⊗(1, 2, 4, 8, . . . , 2⌈log q⌉)

with zero-columns. The following properties had been established in a long sequence of works
[GPV08, CHKP10, ABB10a, ABB10b, MP12, BLP+13].

Lemma 2.5 (Properties of Trapdoors). Lattice trapdoors exhibit the following properties.

1. Given A−1
τ , one can obtain A−1

τ ′ for any τ ′ ≥ τ .

2. Given A−1
τ , one can obtain [A∥B]−1

τ and [B∥A]−1
τ for any B.

3. There exists an efficient procedure TrapGen(1n, 1m, q) that outputs (A,A−1
τ0) where A ∈

Zn×m
q for some m = O(n log q) and is 2−n-close to uniform, where τ0 = ω(

√
n log q logm).

19

Lattice Evaluation. The following is an abstraction of the evaluation procedure in previous
LWE based FHE and ABE schemes. We follow the presentation by Tsabary [Tsa19].

Lemma 2.6 (Fully Homomorphic Computation [BGG+14]). There exists a pair of deterministic
algorithms (EvalF,EvalFX) with the following properties.

• EvalF(B, F) → HF . Here, B ∈ Zn×mℓ
q and F : {0, 1}ℓ → {0, 1} is a circuit.

• EvalFX(B, F,x)→ ĤB,F,x. Here, x ∈ {0, 1}ℓ is a binary string whose first bit is 0 and the
second bit is 1 and F : {0, 1}ℓ → {0, 1} is a circuit with depth d that ignores the first and
the second bit of the input. Then, we have

[B− x⊗G]ĤB,F,x = BHF − F (x)G mod q,

where we denote [x1G∥ · · · ∥xkG] by x⊗G. Furthermore, we have

∥HF ∥∞ ≤ m · 2O(d), ∥ĤB,F,x∥∞ ≤ m · 2O(d).

Finally, we have that the topmost m rows of ĤB,F,x constitutes an identity matrix.

• The running time of (EvalF,EvalFX) is bounded by poly(n,m, log q, 2d).

Remark 2.7. As pointed out in [KNYY20] (See also [BV15]), we need some entry of x to be 1
to support arbitrary F . We therefore assume that the second bit of x is 1. Furthermore, we
assume the first bit of x is 0. This assumption is introduced to make sure that the topmost
m rows of ĤB,F,x constitutes an identity matrix, which is not guaranteed for the evaluation
algorithms in [BGG+14]. As we explain below, this can be ensured easily by modifying the
evaluation algorithms in [BGG+14]. Suppose that we have EvalF′ and EvalFX′ without this
property. Denoting x = (0,x′) and B = [B0∥B′], we have

[B′ − x′ ⊗G]Ĥ′
B′,F ′,x′ = B′H′

F ′ − F (x)G mod q,

where F ′ is the same function as F except that it ignores only the first bit, Ĥ′
B′,F ′,x′ =

EvalFX(B′, F ′,x′), and EvalF(B′, F ′) → H′
F ′ . We then define the new evaluation algorithms

EvalF and EvalFX as EvalFX(B, F,x) = ĤB,F,x =

[
I

Ĥ′
F ′,x′

]
and EvalF(B, F) = HF =

[
I

H′
F ′

]
. It

is easy to see that the new evaluation algorithms satisfy all the desired properties. In our paper,
we implicitly assume that x input to the circuit F always has 0∥1 as its prefix so that the above
lemma holds and will not explicitly write the leading bits for the sake of notational simplicity.
In our context, this means that the first two bits of an attribute x associated with a ciphertext
should be 0∥1.

Low Norm Variant. We also consider the low norm variant of the lattice evaluation algorithm
defined in [Wee22], where B has low-norm and G is replaced with I.

Lemma 2.8. Fix parameters m, ℓ. Given a matrix B ∈ Zm×mℓ and a circuit F : {0, 1}ℓ → {0, 1}
of depth d, we can efficiently compute a matrix HF ∈ Zmℓ×m such that ∥HF ∥∞ = (∥B∥∞m)O(2d)

and for all x ∈ {0, 1}ℓ, there exists a matrix ĤB,F,x ∈ Zℓm×m with ∥ĤB,F,x∥∞ = (∥B∥∞m)O(2d)

such that
(B− x⊗ Im) · ĤB,F,x = BHF − F (x)Im

Moreover, ĤB,F,x is efficiently computable given B, F,x. We use EvalF(B, F), EvalFX(B, F,x)

to denote the algorithms computing HF , ĤB,F,x respectively. Finally, the topmost m rows of

ĤB,F,x constitutes an identity matrix.

20

Remark 2.9. The condition that the top most m rows of ĤB,F,x constitutes an identity matrix
can be satisfied by adding suitable modifications to the evaluation algorithms without this
property. See Remark 2.7 for the detail.

Smudging Lemma. We will also require the standard smudging lemma.

Lemma 2.10 (Smudging Lemma [WWW22]). Let λ be a security parameter. Take any a ∈ Z
where |a| ≤ B. Suppose χ ≥ Bλω(1). Then the statistical distance between the distributions
{z : z ← DZ,χ} and {z + a : z ← DZ,χ} is negl(λ).

2.3 Tensors

In this work, similarly to [Wee22], we use the tensor product techniques. Let A = (ai,j) ∈ Zm×n
q

and B ∈ Zs×t
q . The tensor product is defined as:

A⊗B :=


a1,1B · · · a1,nB

...
...

am,1B · · · am,nB

 ∈ Zms×nt
q .

Throughout the paper, we will heavily use the mixed-product equality, stated as follows. Let
A ∈ Zm×n

q , B ∈ Zs×t
q , C ∈ Zn×u

q and D ∈ Zt×v
q ,

(A⊗B) · (C⊗D) = (AC)⊗ (BD) ∈ Zms×uv
q .

The mixed-product can be naturally generalized following

(A1 ⊗ · · · ⊗Ak) · (B1 ⊗ · · · ⊗Bk) = (A1B1)⊗ · · · ⊗ (AkBk).

Note that we adopt the same convention as in [Wee22] where matrix multiplication takes
precedence over tensor products, i.e. A⊗BC = A⊗ (BC).

3 Assumptions and New Implications

In this section, we discuss the evasive and tensor LWE assumptions. Our variants of these
assumptions differ slightly from the original formulation by [Wee22] as discussed below.

3.1 Evasive LWE

Below, we state a variant of the Evasive-LWE assumption which will be useful for our
constructions.

Assumption 3.1 (Evasive LWE). Let n,m, t,m′, q ∈ N be parameters and λ be a security
parameter. Let χ and χ′ be parameters for Gaussian distributions. Let Samp be a PPT
algorithm that outputs

S ∈ Zm′×n
q ,P ∈ Zn×t

q , aux ∈ {0, 1}∗

on input 1λ. For a PPT adversary Adv, we define the following advantage functions:

APRE
Adv (λ) := Pr[Adv0(B,SB+E,SP+E′, aux) = 1]− Pr[Adv0(B,C0,C

′, aux) = 1]

APOST
Adv (λ) := Pr[Adv1(B,SB+E,K, aux) = 1]− Pr[Adv1(B,C0,K, aux) = 1]

21

where
(S,P, aux)← Samp(1λ),

B← Zn×m
q ,

C0 ← Zm′×m
q ,C′ ← Zm′×t

q ,

E← Dm′×m
Z,χ ,E′ ← Dm′×t

Z,χ′

K← B−1(P) with standard deviation O(
√
m log(q)).

We say that the evasive LWE (EvLWE) assumption holds if for every PPT Samp and Adv1,
there exists another PPT Adv0 and a polynomial Q(·) such that

APRE
Adv0(λ) ≥ A

POST
Adv1 (λ)/Q(λ)− negl(λ).

Remark 3.2. In the above definition, all the entries of E′ are chosen from the same distribution
DZ,χ′ . However, in our security proof, we often consider the case where some entries of E′ are
chosen from DZ,χ′ and others from DZ,χ′′ with different χ′ ≫ χ′′. The evasive LWE assumption
with such a mixed noise distribution for E′ is implied by the evasive LWE assumption with all
entries in E′ being chosen from DZ,χ′ as above definition, since if the precondition is satisfied for
the latter case, that for the former case is also satisfied. To see this, it suffices to observe that
we can convert the distribution from DZ,χ′′ into that from DZ,χ′ by adding extra Gaussian noise.

Remark 3.3. In the above, we chose χ′ to be smaller than χ following [VWW22]. This makes
the precondition stronger, which in turn makes evasive LWE weaker.

Comparison with the original evasive LWE [Wee22]. Our assumption is closely related
to the evasive LWE assumption that appeared in Wee [Wee22] with minor differences. In Wee,
the secret S is chosen uniformly whereas in our assumption, the secret can be structured and
output by the sampler, subject to the pre-condition being true. On the other hand, in [VWW22],
S is the public matrix and can be structured, while B is secret and is random. An additional
difference is related to the auxiliary input. In Wee, aux contains all the coin tosses used by the
sampler – this suffices to rule out obfuscation based counter-examples where aux may contain
information of the trapdoor for P in a hidden way. On the other hand, in [VWW22], the coins
of the sampler are private, and aux contains information including certain Gaussian preimages.
They argue that their assumption nevertheless avoids the obfuscation based counter-examples,
since their auxiliary input does not contain trapdoor for the matrix P. In both their and our
cases, aux is derived from the trapdoor for P or related information that should be kept hidden,
but it does not contain the trapdoor itself. We may therefore expect that there is no space for
embedding an obfuscation into our auxiliary input, similarly to [VWW22]. We also note that
as observed in [VWW22], Tsabary’s variant of evasive LWE is less conservative than ours and
theirs, since her definition allows aux to depend on B.

In the security proof of our constructions, we sometimes want to include information
dependent on S into the auxiliary information. However, this makes the corresponding evasive
LWE assumption stronger and not desirable. The following lemma allows us to do this without
strengthening the assumption under certain conditions. In the lemma, we separate the auxiliary
information into two parts aux1 and aux2, where aux1 is typically the part dependent on S.
The lemma roughly says that if aux1 is pseudorandom, then we can apply the evasive LWE
with respect to a modified sampler whose aux1 is replaced with a random string to derive the
conclusion on postcondition distribution.

22

Lemma 3.4. Let n,m, t,m′, q ∈ N be parameters and λ be a security parameter. Let χ and χ′

be Gaussian parameters. Let Samp be a PPT algorithm that outputs

S ∈ Zm′×n
q , aux = (aux1, aux2) ∈ S × {0, 1}∗ and P ∈ Zn×t

q

for some set S. Furthermore, we assume that there exists a public deterministic poly-time
algorithm Reconstruct that allows to derive P from aux2, i.e. P = Reconstruct(aux2).

We introduce the following advantage functions:

APRE′
Adv (λ) := Pr[Adv(B,SB+E,SP+E′, aux1, aux2) = 1]− Pr[Adv(B,C0,C

′, c, aux2) = 1]

APOST′
Adv (λ) := Pr[Adv(B,SB+E,K, aux1, aux2) = 1]− Pr[Adv(B,C0,K, c, aux2) = 1]

where
(S, aux = (aux1, aux2),P)← Samp(1λ),

B← Zn×m
q

C0 ← Zm′×m
q ,C′ ← Zm′×t

q , c← S

E← Dm′×m
Z,χ ,E′ ← Dm′×t

Z,χ

K← B−1(P) with standard deviation O(
√
m log(q)).

Then, under the Evasive-LWE (cited above in Assumption 3.1) with respect to Samp′ that
outputs (S, (c, aux2),P) for random c, if APRE′

Adv (λ) is negligible for any PPT adversary Adv, so
is APRE′

Adv (λ) for any PPT adversary Adv.

Proof. By the assumption, we have (B,SB + E,SP + E′, aux1, aux2) ≈c (B,C0,C
′, c, aux2).

This in particular implies (B,SB+E,SP+E′, aux2) ≈c (B,C0,C
′, aux2) since discarding the

term making the task of distinguishing the distributions harder. This further implies

(B,SB+E,SP+E′, c, aux2) ≈c (B,C0,C
′, c, aux2)

since adding random term c chosen independently from the other terms does not make the task
of distinguishing the the distributions easier. Applying the evasive LWE with respect to Samp′

defined in the statement, we have

(B,SB+E,K, c, aux2) ≈c (B,C0,K, c, aux2).

To complete the proof, it suffices to show

(B,C0,K, aux1, aux2) ≈c (B,C0,K, c, aux2).

To show this, we first observe that the precondition implies (aux1, aux2) ≈c (c, aux2), since
discarding the terms making the task of distinguishing the distributions harder. We then observe
that (B,C0,K) can be sampled publicly given aux2. This suffices to complete the proof, since
having extra terms that can be computed efficiently from the given terms does not make the
task of distinguishing the distributions easier. To sample (B,C0,K), we first sample B with the
trapdoor as (B,B−1

τ0)← TrapGen(1n, 1m, q) where τ0 = ω(
√
n log q logm) ≤ O(m log q), compute

P by P = Reconstruct(aux2), and finally sample K← B−1(P, O(
√
m log(q))).

23

3.2 Tensor LWE

In this section, we define the tensor LWE assumption introduced by Wee [Wee22]. Then, we
provide new arguments supporting the assumption.

Assumption 3.5 (Tensor LWE). Let n,m, q, ℓ,Q ∈ N be parameters and γ, χ > 0 be Gaussian
parameters. For all x1, · · · ,xQ ∈ {0, 1}ℓ , we have

A,
{
s(In ⊗ r⊤i)(A− xi ⊗G) + ei, r

⊤
i

}
i∈[Q]

≈c A,
{
ci, r

⊤
i

}
i∈[Q]

where A← Zn×ℓm
q , s← Zmn

q , ei ← Dℓm
Z,χ, r

⊤
i ← Dm

Z,γ , ci ← Zℓm
q .

To gain confidence in the tensor LWE assumption, we study conditions under which it can be
reduced to standard LWE. To begin, we recall the following lemma which is implicit in [Wee22].
The lemma says that a variant of the tensor LWE assumption holds under the standard LWE
assumption if A matrices are chosen from Gaussian distribution and G is replaced with I in
certain parameter settings.

Lemma 3.6 (Implicitly proved in [Wee22]). Let n,m, q, ℓ,Q, β ∈ N be parameters and χ0, χ,
and γ be a Gaussian parameter satisfying m = Ω(n log q), γ = λω(1), χ = χ0γλ

ω(1). For all
x1, · · · ,xQ ∈ {0, 1}ℓ, LWE(n,Q+m, q, χ0) hardness assumption implies

A,
{
s(In ⊗ r⊤i)(A− xi ⊗ Im) + ei, r

⊤
i

}
i∈[Q]

≈c A,
{
ci, r

⊤
i

}
i∈[Q]

where A← Dn×ℓm
Z,γ , s← Zmn

q , ei ← Dℓm
Z,χ, r

⊤
i ← Dm

Z,γ , ci ← Zℓm
q .

3.3 New Implications for Tensor LWE

We now introduce a new lemma that also proves the same implication between LWE and Tensor
LWE in another particular case. Notably, the lemma shows the hardness for the case where A is
chosen uniformly at random rather than from a Gaussian distribution, albeit with the downside
of assuming xi = 0 for all i.

Lemma 3.7 (Tensor LWE with {xi = 0}i). Let n,m, q, ℓ,Q, β ∈ N be parameters and χ0, χ,
and γ be a Gaussian parameter satisfying m = Ω(n log q), γ = Ω(

√
n log q), and χ = γχ0λ

ω(1).
Then, LWE(n,m, q, χ0) hardness assumption implies

A,
{
s(In ⊗ r⊤i)A+ ei, r

⊤
i

}
i∈[Q]

≈c A,
{
ci, r

⊤
i

}
i∈[Q]

where A← Zn×ℓm
q , s← Zmn

q , ei ← Dℓm
Z,χ, r

⊤
i ← Dm

Z,γ , ci ← Zℓm
q .

Proof. Let A be an attacker for Tensor-LWE with xi = 0 for all i ∈ [Q]. A is given either
A,
{
s(In ⊗ r⊤i)A+ ei, r

⊤
i

}
i∈[Q]

or A,
{
ci, r

⊤
i

}
i∈[Q]

. We provide a proof to show that under the

LWE assumption, A has a negligible advantage of distinguishing the left hand side from the right
hand side.

G0 : A is given A,
{
s(In ⊗ r⊤i)A+ ei, r

⊤
i

}
i∈[Q]

.

G1 : We rewrite s(In ⊗ r⊤i)A+ ei using the tensor decomposition of s ∈ Zmn
q . In other words,

s =

m∑
j=1

sj ⊗ ϵj ,

24

where ϵj are the canonical vectors of Zm
q and sj ∈ Zn

q . Let us fix an index 1 ≤ i ≤ Q and
rewrite the i-th sample. We get

s(In ⊗ r⊤i)A+ ei =
∑m

j=1(sj ⊗ ϵj) · (In ⊗ r⊤i)A+ ei

=
∑m

j=1(sj ⊗ ϵjr
⊤
i︸︷︷︸

:=ri[j] scalar

)A+ ei

=
∑m

j=1 ri[j] · sj ·A+ ei,

where ri[j] is the j-th entry of the vector ri. Hence, in this game, A is given

A,


m∑
j=1

ri[j] · sj ·A+ ei, r
⊤
i


i∈[Q]

.

This is a conceptual change : G1 ≡ G2.

G2 : We now add some extra noise to the distribution to introduce an LWE instance. Define
e′j ← Dℓm

Z,χ0
for all j ∈ [1,m]. In this game, the attacker is given

A,


m∑
j=1

ri[j] · (sj ·A+ e′j) + ei, r
⊤
i


i∈[Q]

.

Note that this game is different from the previous game only in the noise term. In the
previous game, the noise is ei for the i-th sample, while it is ei +

∑
j ri[j] · e′j in this

game. Since we have ∥
∑

j ri[j] · e′j∥∞ ≤ poly(λ)γχ0 and χ = λω(1) · γχ0, we can apply
Lemma 2.10 to conclude that this only introduces a statistical change: G2 ≈s G1.

G3 : In this game, we replace each (sj ·A+ e′j) by a uniform vector c′j ← Zℓm
q . The attacker A

thus gets

A,


m∑
j=1

ri[j] · c′j + ei, r
⊤
i


i∈[Q]

.

This game is computationally indistinguishable from G2 under the standard LWE
assumption: G3 ≈c G2.

G4 : Let us define C′ :=


c′1
...

c′m

 and obtain


∑m

j=1 r1[j] · c′j + e1
...∑m

j=1 rQ[j] · c′j + eQ

 =


r′1
...

r′Q


︸ ︷︷ ︸
public

· C′︸︷︷︸
secret

+


e1
...

eQ


︸ ︷︷ ︸
error

.

In this game, we replace r′iC
′ + ei by a uniform random vector ci ← Zℓm

q . Hence the
adversary is given

A,
{
ci, r

⊤
i

}
i∈[Q]

.

This game is computationally indistinguishable from G3: we use LWE with short public
matrix and large secret [BLMR13], which is implied by the standard LWE (See Lemma 2.4).
Hence, G4 ≈c G3.

25

In the last game, the distribution corresponds to the random case, which allows to conclude the
proof.

We can introduce a corollary that follows from Lemma 3.7 where A is replaced by A−x⊗G.

Corollary 3.8 (Tensor LWE with the same xi). Let n,m, q, ℓ,Q ∈ N, χ0, χ, and γ be parameters
defined as Lemma 3.7. Let x ∈ {0, 1}ℓ. Then, LWE(n,m, q, χ0) hardness assumption implies

A,
{
s(In ⊗ r⊤i)(A− x⊗G+ ei, r

⊤
i

}
i∈[Q]

≈c A,
{
ci, r

⊤
i

}
i∈[Q]

where A← Zm×ℓm
q , s← Zmn

q , ei ← Dℓm
Z,χ, r

⊤
i ← Dm

Z,γ , ci ← Zℓm
q .

What prevents Lemma 3.7 to be proved in the general case? The proof of Lemma 3.7
cannot be easily adapted for arbitrary xi. Following the same proof strategy, we have to prove
the pseudorandomness of the following terms:

s(In ⊗ ri)(A− xi ⊗G) + ei =
∑

j ri[j] · (sj · (A− xi ⊗G) + e′j)−
∑

j ri[j]e
′
j + ei.

However, it is not possible to replace sj · (A− xi ⊗G) + e′j with random vectors as is done in
Section 3.2, if we are given the term for multiple i with different xi and for the same sj . Thus,
the approach cannot be directly transferred.

3.4 New Implications from LWE

In this section, we provide new lemmata under the LWE assumption which will be useful for our
constructions. We believe these may be of broader applicability.

Lemma 3.9. Let n = n(λ), m = m(λ), N = N(λ), q = q(λ), γ = γ(λ), χ0 = χ0(λ) ∈ λω(1),
χ = χ(λ), and k = O(1) be parameters satisfying m = Ω(n log q), χ(λ) ≥ (mγχ0)

k. If
LWE(n,Q, q, χ0) holds, then the following distributions are computationally indistinguishable:{

cj1,...,jk := s(IN ⊗ r⊤1,j1 ⊗ · · · ⊗ r⊤k,jk) + ej1,...,jk

}
j1,...,jk∈[Q]

≈c {wj1,...,jk}j1,...,jk∈[Q]

where s← ZNmk

q , ri,ji ← Dm
Z,γ, ej1,...,jk ← DN

Z,χ, wj1,...,jk ← ZN
q for i ∈ [k] and j1, . . . , jk ∈ [Q].

Proof. We prove this by induction. The case of k = 1 follows from LWE with short public
matrices [BLMR13] (Lemma 2.4). Here, we prove the statement for k = τ + 1 assuming it is is
true for k = τ . To show the indistinguishability, we start from the distribution on the left hand
side and gradually change it to that on the right hand side. We first change the distribution of
{cj1,...,jτ+1}j1,...,jτ+1 so that they are sampled as

cj1,...,jτ+1 =
(
s(IN ⊗ Im ⊗ r⊤2,j2 ⊗ · · · ⊗ r⊤τ+1,jτ+1

) + e′j2,...,jτ+1

)
︸ ︷︷ ︸

:=s′j2,...,jτ+1

(
IN ⊗ r⊤1,j1

)
+ ej1,...,jτ+1 .

where e′j2,...,jτ+1
← DNm

Z,(mγχ0)τ
for j2, . . . , jτ+1 ∈ [Q]. We claim that this is statistically

indistinguishable from the original distribution. To see this, we observe that(
s(IN ⊗ Im ⊗ r⊤2,j2 ⊗ · · · ⊗ r⊤τ+1,jτ+1

) + e′j2,...,jτ+1

)(
IN ⊗ r⊤1,j1

)
+ ej1,...,jτ+1

= s(IN ⊗ r⊤1,j1 ⊗ r⊤2,j2 ⊗ · · · ⊗ r⊤τ+1,jτ+1
) + e′j2,...,jτ+1

(
IN ⊗ r⊤1,j1

)
+ ej1,...,jτ+1︸ ︷︷ ︸

=error

26

and these distributions only differ in the error terms. We have

ej1,...,jτ+1 ≈s e
′
j2,...,jτ+1

(
IN ⊗ r⊤1,j1

)
+ ej1,...,jτ+1

by the smudging lemma, since we have χ ≥ (mγχ0)
τ+1 and ∥e′j2,...,jτ+1

(
IN ⊗ r⊤1,j1

)
∥∞ ≤

mγ · poly(λ) · ∥e′j2,...,jτ+1
∥∞ ≤ (mγ)τ+1 · χτ

0 · poly(λ)·.
In the next step, we replace each s′j2,...,jτ+1

with random vectors. Namely, {cj1,...,jτ+1}j1,...,jτ+1

are sampled as

cj1,...,jτ+1 = s′j2,...,jτ+1

(
IN ⊗ r⊤1,j1

)
+ ej1,...,jτ+1 ,

where s′j2,...,jτ+1
← ZNm

q . We can see that this change is computationally indistinguishable, by
applying the induction hypothesis for each combination of indices (j2, . . . , jτ+1). We then use
the induction hypothesis for the case of k = 1 to replace {cj1,...,jτ+1}j1 with random vectors
for each combination of j2, . . . , jτ+1 one by one. This brings us to the distribution where all
cj1,...,jτ+1 are random vectors. This completes the proof of the lemma.

Lemma 3.10. Let n = n(λ), m = m(λ), N = N(λ), q = q(λ), χ = χ(λ), and k = O(1) be
parameters. If LWE(n, (m+1)kN, q, χ) holds, then, the following distributions are computationally
indistinguishable:(

{Bi}i∈[0,k], s(B0 ⊗ I⊗k
m) + e0, . . . , s(Bi ⊗ I⊗(k−i)

m) + ei, . . . , sBk + ek

)
≈c

(
{Bi}i∈[0,k], c0, c1, . . . , ck

)
where Bi ← Znmi×Nmi

q , ei ← DmkN
Z,χ , and c0, c1, . . . , ck ← ZmkN

q for i ∈ [0, k], s← Znmk

q .

Proof. We prove the lemma by induction. First, the statement is trivially true when k = 0. We
then prove that the statement is true for k = τ + 1 assuming it is true for k = τ . To show this,
we first observe that any x ∈ Znmτ+1

q can be written as x =
∑

j∈[m] xj ⊗ ϵj using xj ∈ Znmτ

q

where ϵj is the j-th canonical unit vector of dimension m. We then have

s(Bi ⊗ I⊗(τ+1−i)
m) + ei =

∑
j∈[m]

(sj ⊗ ϵj)((Bi ⊗ I⊗(τ−i)
m)⊗ Im) +

∑
j∈[m]

ei,j ⊗ ϵj

=
∑
j∈[m]

(
sj(Bi ⊗ I⊗(τ−i)

m) + ei,j

)
⊗ ϵj

for i ∈ [0, τ] where we decompose s and ei as s =
∑

j∈[m] sj ⊗ ϵj and ei =
∑

j∈[m] ei,j ⊗ ϵj . We
also have

sBτ+1 + eτ+1 =
∑
j∈[m]

sj(Inmτ ⊗ ϵj)Bτ+1 + eτ+1.

27

Therefore, omitting {Bi}i∈[0,τ+1], the input to the adversary is({
s(Bi ⊗ I⊗(τ+1−i)

m) + ei

}
i∈[0,τ]

, sBτ+1 + eτ+1

)

=


∑

j∈[m]

(
sj(Bi ⊗ I⊗(τ−i)

m) + ei,j

)
⊗ ϵj


i∈[0,τ]

,
∑
j∈[m]

sj(Inmτ ⊗ ϵj)Bτ+1 + eτ+1


≈c


ci,1 ⊗ ϵ1 +

∑
j∈[2,m]

(
sj(Bi ⊗ I⊗(τ−i)

m) + ei,j

)
⊗ ϵj


i∈[0,τ]

, cτ+1 +
∑

j∈[2,m]

sj(Inmτ ⊗ ϵj)Bτ+1


≡


ci,1 ⊗ ϵ1 +

∑
j∈[2,m]

(
sj(Bi ⊗ I⊗(τ−i)

m) + ei,j

)
⊗ ϵj


i∈[0,τ]

, cτ+1


≈c


ci,1 ⊗ ϵ1 +

∑
j∈[2,m]

ci,j ⊗ ϵj


i∈[0,τ]

, cτ+1


≡

(
{ci}i∈[0,τ] , cτ+1

)
where ci ← Zmτ+1N

q and ci,j ← ZmτN
q . In the third line, we used the induction hypothesis for

secret s′ := s1 and matrices

B′
i :=

{
Bi ∈ Zn×Nmi

q if i ∈ [0, τ − 1]

(Bτ∥(Inmτ ⊗ ϵj)Bτ+1) ∈ Zn×N(m+1)mτ

q if i = τ

and the parameter N ′ = (m + 1)N . Note that the number of columns in each B′
i is at most

N ′mi and thus the indistinguishability follows from the induction hypothesis and the assumption
LWE(n, (m+1)τ+1N, q, χ). The indistinguishability of the fifth line also holds from the induction
hypothesis similarly to the third line. Here, we apply the induction hypothesis for each j ∈ [2,m]
one by one, by setting secret s′ := sj and matrices B′

i = Bi for all i ∈ [0, τ]. This completes the
proof of the lemma.

4 Two-input ABE from Evasive and Tensor LWE

4.1 Construction

In this section, we define our construction of 2ABE for P using evasive LWE (Assumption 3.1) and
tensor LWE (Assumption 3.5). As discussed in Section 1, when restricted to NC1, our construction
can be modified to rely only on evasive LWE. We defer the details of this modification to Section
5 and focus on circuit class P for this section.

Let ℓ be the length of the attribute in each slot. The construction supports general circuits
with bounded depth d and the decryption is possible when f(x0∥x1) = 0, where x0 is the
attribute associated with a ciphertext, x1 is the attribute associated with the first slot key, and
f is the function associated with the second slot key. Below I refers to Im.

Setup(1λ): The setup algorithm takes as input the security parameter λ and does the following:

• Sample A0,A1,A2 ← Zn×mℓ
q ; (B,B−1

τB
)← TrapGen(1λ, 2nm+ nm2, (2nm+ nm2)w);

(C,C−1
τC

)← TrapGen(1λ, nm, nmw), where w ∈ O(log q); D← Zn×m
q .

28

• Output mpk = (A0,A,B,C,D), where A = (A1∥A2), msk = (B−1
τB
,C−1

τC
).

Enc(mpk,x0, µ): The encryption algorithm takes as input the master public key mpk, an attribute
x0 and message bit µ ∈ {0, 1} and does the following:

• If µ = 1, sample c1 ← Zm2ℓ
q , c2 ← Z(2nm+nm2)w

q .

• Else,

– Sample s, s0 ← Znm
q and s1 ← Znm2

q .

– Sample error vectors e1 ← Dm2ℓ
Z,χ1

, e2 ← D(2nm+nm2)w
Z,χ2

.

– Compute c1 = (s, s0)

(
(A1 − x0 ⊗G)⊗ I

A0 ⊗ I

)
+ e1.

– Compute c2 = (s, s0, s1)B+ e2.

• Output ctx0 = (c1, c2).

KeyGen1(msk,x1): The keygen algorithm for slot 1 takes as input the master secret key msk and
the slot attribute x1 ∈ {0, 1}ℓ and does the following:

• Sample r← Dm
Z,γ .

• Sample Lx1 ← B−1


(A2 − x1 ⊗G)⊗ r⊤

A0 ⊗ r⊤

C⊗ r⊤

 , τB

.

• Output sk1,x1 = (r,Lx1).

KeyGen2(msk, f) The keygen algorithm for slot 2 takes as input the master secret key msk and
slot function f , which is a function represented as a binary circuit f : {0, 1}2ℓ → {0, 1}
and does the following:

• Sample t← Dm
Z,γ , U← D

m×m
Z,γ .

• Compute Hf = EvalF(A, f) and Af = AHf .

• Sample Mf ← B−1


 AfU⊗ I

0nm×m2

D⊗ t⊤ ⊗ I

 , τB

 and Nf ← C−1
(
(D⊗ t⊤), τC

)
.

• Output sk2,f = (t,U,Mf ,Nf).

Dec(mpk, ctx0 , sk1,x1 , sk2,f) The decryption algorithm takes as input the ciphertext ctx0 , key
sk1,x1 for slot 1, and key sk2,f for slot 2 and does the following:

• Parse ctx0 as (c1, c2), sk1,x1 as (r,Lx1) and sk2,f as (t,U,Mf ,Nf).

• Compute ĤA,f,(x0∥x1) = EvalFX(A, f, (x0∥x1)).

• Compute the following:

d1 = c1, (d2, d3, d4) = c2Lx1 , d5 = c2Mf ,

d6 = Nf , d′
1 = d1(Imℓ ⊗ r⊤)− d3, d′

5 = d5(I⊗ r⊤)− d4d6,

d7 = (d′
1∥d2)ĤA,f,(x0∥x1)U, d8 = d7 − d′

5.
Note that d6 is a matrix of size nmw ×m and di for all i ̸= 6 are vectors.

• If ∥d8∥∞ ≤ β0 (where β0 is as defined in the Sec. 4.2) then output µ′ = 0, else output
1.

29

4.2 Correctness, Parameters and Security

Correctness: Here, we show correctness of the scheme.
When µ = 1: We first show the correctness for the case of µ = 1. For an honest run of the
protocol, d1 is distributed uniformly at random over its domain. Then, since r ̸= 0 with
overwhelming probability and thus Imℓ ⊗ r⊤ is a full-rank matrix, d′

1 is distributed uniformly at

random over its domain. Then, since the topmost m rows of ĤA,f,(x0∥x1) constitutes an identity

matrix by Lemma 2.6, (d′
1∥d2)ĤA,f,(x0∥x1) is distributed uniformly at random over its domain.

Finally, since each column of U is chosen from Dm
Z,γ , with overwhelming probability, there exists

i ∈ [m] such that the i-th column of U is not a zero vector. This in turn implies that that the
i-th entry of d7 is distributed uniformly at random over Zq. Since we set β0/q = λ−ω(1), the
probability that the decryption algorithm falsely outputs 0 is negligible as desired.

When µ = 0: Next, we show the correctness for the case of µ = 0. For an honest run of the
protocol, we have

• d1 = c1 = s((A1 − x0 ⊗G)⊗ I) + s0(A0 ⊗ I) + e1.

Let (e′2, e
′
3, e

′
4) = e2 · Lx1

• d2 = s((A2 − x1 ⊗G)⊗ r⊤) + e′2,

• d3 = s0(A0 ⊗ r⊤) + e′3,

• d4 = s1(C⊗ r⊤) + e′4,

• d5 = s(AfU⊗ I) + s1(D⊗ t⊤ ⊗ I) + e′5, where e′5 = e2 ·Mf

• d′
1 is computed as

d′
1 = d1(Imℓ ⊗ r⊤)− d3

= (s((A1 − x0 ⊗G)⊗ I) + s0(A0 ⊗ I) + e1)(Imℓ ⊗ r⊤)− s0(A0 ⊗ r⊤)− e′3

= s((A1 − x0 ⊗G)⊗ r⊤) + s0(A0 ⊗ r⊤)− s0(A0 ⊗ r⊤) + e′′1

= s((A1 − x0 ⊗G)⊗ r⊤) + e′′1

Here e′′1 = e1(Imℓ ⊗ r⊤)− e′3

• d′
5 is computed as

d′
5 = d5(I⊗ r⊤)− d4d6

= (s(AfU⊗ I) + s1(D⊗ t⊤ ⊗ I) + e′5)(I⊗ r⊤)− (s1(C⊗ r⊤) + e′4)Nf

= s(AfU⊗ r⊤) + s1(D⊗ t⊤ ⊗ r⊤)− s1(D⊗ t⊤ ⊗ r⊤) + e′′5,

= s(AfU⊗ r⊤) + e′′5

where we use (C⊗ r⊤)Nf = CNf ⊗ r⊤ = D⊗ t⊤⊗ r⊤ and define e′′5 := e′5(I⊗ r⊤)− e′4Nf

on the third line.

30

• d7 is computed as

d7 = (d′
1∥d2) · (ĤA,f,(x0∥x1)U)

= ((s((A1 − x0 ⊗G)⊗ r⊤) + e′′1)∥(s((A2 − x1 ⊗G)⊗ r⊤) + e′2)) · (ĤA,f,(x0∥x1)U)

= (s((A1∥A2 − (x0∥x1)⊗G)⊗ r⊤) + (e′′1∥e′2)) · (ĤA,f,(x0∥x1)U)

= s((Af − f(x0∥x1)G)⊗ r⊤)U+ e′7

= s((Af − f(x0∥x1)G)U⊗ r⊤) + e′7

= s(AfU⊗ r⊤) + e′7 if f(x0∥x1) = 0

where we define e′7 := (e′′1∥e′2)ĤA,f,(x0∥x1)U on the fourth line.

• d8 = d7 − d′
5 = s(AfU⊗ r⊤) + e′7 − s(AfU⊗ r⊤)− e′′5 = e′7 − e′′5 which is small (≤ β0).

Therefore, the decryption algorithm outputs 0 as desired.

Error Bound: The error term is bounded as follows. Let β0 denote the error bound.

∥e′7∥∞ + ∥e′′5∥∞ = ∥(e′′1∥e′2)ĤA,f,(x0∥x1)U∥∞ + ∥e′5(I⊗ r⊤)− e′4Nf∥∞
= ∥(e1(Imℓ ⊗ r⊤)− e′3∥e′2)ĤA,f,(x0∥x1)U∥∞ + ∥e′5(I⊗ r⊤)− e′4Nf∥∞
≤ ((χ1γ + χ2τB)βγ + χ2τBγ + χ2τBτC) poly(m)

since (e′2, e
′
3, e

′
4) = e2Lx1 and e′5 = e2Mf

≤ β0.

Parameters: We set the parameters as follows.

n = poly(λ, d), m = O(n log q), τB = O(
√

(2nm+ nm2) log q),

τC = O(
√
nm log q), β = (2m)d, γ = χ1 = λω(1),

χ3 = χ4 = χ6 = γχ1λ
ω(1), χ7 = χ3χ4βγλ

ω(1), χ5 = λω(1)χ7,

χ2 = χ5λ
ω(1), β0 = βγ2τBτCχ1χ2λ

ω(1), q = β0λ
ω(1).

In the above, χ3, χ4, χ5, χ6, and χ7 are the parameters that only appear in the security proof.

Security: Here, we prove the following theorem, which asserts the security of our scheme.

Theorem 4.1. Assuming evasive LWE (Assumption 3.1), tensor LWE (Assumption 3.5), and
LWE, our construction for 2-input ABE for P satisfies very selective security (Definition 2.2).
Moreover, for the restricted class NC1, our construction for 2-input ABE relies only on evasive
LWE.

Proof. To prove the security, we need to prove the indistinguishability of the following two
distributions. Let Qc and Qs be the number of slot 1 and slot 2 key queries, respectively. In
the following, for simplicity, we let Qc = Qs = Q, which can be assumed without loss of generality.

Distribution D0: mpk, c1 = (s, s0)

(
(A1 − x0 ⊗G)⊗ I

A0 ⊗ I

)
+ e1, c2 = (s, s0, s1)B+ e2{

sk1,x1,i =
(
ri,Lx1,i

)}
i∈[Q]

,
{
sk2,fj =

(
tj ,Uj ,Mfj ,Nfj

)}
j∈[Q]



31

Distribution D1:(
mpk, c1 ← Zm2ℓ

q , c2 ← Z(2nm+nm2)w
q{

sk1,x1,i =
(
ri,Lx1,i

)}
i∈[Q]

,
{
sk2,fj =

(
tj ,Uj ,Mfj ,Nfj

)}
j∈[Q]

)

where x0 is the attribute for the encryption, x1,1, . . . ,x1,Q are the key queries for slot 1, f1, . . . , fQ
are key queries for slot 2, and sk1,x1,i (resp., sk2,fj) is secret key for x1,i (resp., fj) for slot 1
(resp., slot 2). In particular, we have

Lx1,i ← B−1


(A2 − x1,i ⊗G)⊗ r⊤i

A0 ⊗ r⊤i
C⊗ r⊤i

 , τB


and

Mfj ← B−1


AfjUj ⊗ I

0nm×m2

D⊗ t⊤j ⊗ I

 , τB

 , Nfj ← C−1
(
(D⊗ t⊤j), τC

)
.

We note that we have fj(x0∥x1,i) = 1 for all i, j ∈ [Q] by the definition of the security game.
We can see that D0 and D1 are the views of the adversary when µ = 0 and µ = 1 are encrypted,
respectively. We then apply our variant of evasive LWE (Lemma 3.4) assumption for matrix B
with the sampler Samp that outputs (S,P, aux = (aux1, aux2)) defined as follows:6

S = (s, s0, s1)

aux1 = c1 = (s, s0)

(
(A1 − x0 ⊗G)⊗ I

A0 ⊗ I

)
+ e1,

aux2 = (x0,x1,1, . . . ,x1,Q, f1, . . . , fQ, coinsA, r1, . . . , rQ, t1, . . . , tQ,U1, . . . ,UQ,

Nf1 , . . . ,NfQ ,A0,A,C,D)

P0 =
(
(A2 − x1,1 ⊗G)⊗ r⊤1 ∥ · · · ∥(A2 − x1,Q ⊗G)⊗ r⊤Q

)
P1 = (A0 ⊗ r⊤1 ∥ · · · ∥A0 ⊗ r⊤Q)

P2 =
(
C⊗ r⊤1 ∥ · · · ∥C⊗ r⊤Q

)
P3 =


Af1U1 ⊗ I

0nm×m2

D⊗ t⊤1 ⊗ I


∥∥∥∥∥∥∥· · ·

∥∥∥∥∥∥∥
AfQUQ ⊗ I

0nm×m2

D⊗ t⊤Q ⊗ I




P =


P0

P1

P2


∥∥∥∥∥∥∥ P3


where coinsA is adversary’s coin. By Lemma 3.4, to prove that D0 and D1 are computationally
indistinguishable, it suffices to show the computational indistinguishability of the following
distributions:

6By Lemma 3.4, it suffices to invoke the evasive LWE for a modified sampler that outputs random aux1, instead
of aux1 that is dependent on (s, s0). The same comments apply to other invocations of the assumption.

32

Distribution D′
0:c1 = (s, s0)

(
(A1 − x0 ⊗G)⊗ I

A0 ⊗ I

)
+ e1, c2 = (s, s0, s1)B+ e2, B

{c3,i, c4,i, c5,i}i∈[Q] , {c6,j}j∈[Q] , aux′


Distribution D′

1: (
w1, w2, B

{w3,i,w4,i,w5,i}i∈[Q] , {w6,j}j∈[Q] , aux′

)
In the above distributions,

(c3,i, c4,i, c5,i, c6,j) =

(s , s0, s1)


(A2 − x1,i ⊗G)⊗ r⊤i

A0 ⊗ r⊤i
C⊗ r⊤i


∥∥∥∥∥∥∥
AfjUj ⊗ I

0nm×m2

D⊗ t⊤j ⊗ I




+ (e3,i, e4,i, e5,i, e6,j)

where aux′ above is defined as aux2 in distribution D0, e3,i ← Dmℓ
Z,χ3

, e4,i ← Dmℓ
Z,χ4

, e5,i ← Dnmw
Z,χ5

,

and e6,j ← Dm2

Z,χ6
and all the w vectors are of the same dimension as the corresponding c vector

and chosen randomly from their respective domains. Note that we set χ2 > χ3, χ4, χ5, χ6 so that
we can rely on quantitatively weaker evasive LWE assumption (See Remark 3.3). We also note
that here, we have χ5 ̸= χ3 = χ4 = χ6, where Gaussian distributions with different standard
deviations are mixed. We refer to Remark 3.2 for details. We have

c3,i = s((A2 − x1,i ⊗G)⊗ r⊤i) + e3,i

c4,i = s0(A0 ⊗ r⊤i) + e4,i

c5,i = s1(C⊗ r⊤i) + e5,i which can be rewritten as s1(Inm ⊗ r⊤i)C+ e5,i

c6,j = s(AfjUj ⊗ I) + s1(D⊗ t⊤j ⊗ I) + e6,j .

We then apply the evasive LWE assumption once again, now for matrix C with sampler
Samp′ that outputs (S′,P′, aux′ = (aux′1, aux

′
2)) defined as follows:

S′ =


s1(Inm ⊗ r⊤1)

...

s1(Inm ⊗ r⊤Q)


aux′1 = (c1, c2, {c3,i, c4,i}i∈[Q], {c6,j}j∈[Q])

aux′2 = (x0,x1,1, . . . ,x1,Q, f1, . . . , fQ, coinsA, r1, . . . , rQ, t1, . . . , tQ,U1, . . . ,UQ,A0,A,B,D)

P′ = (D⊗ t⊤1 ∥ · · · ∥D⊗ t⊤Q)

where c1, c2, c3,i, c4,i, and c6,j are chosen as in distribution D′
0. By Lemma 3.4, it suffices

to prove the computational indistinguishability of the following distributions:

Distribution D′′
0 : (

c1, c2, C,

{c3,i, c4,i, c5,i}i∈[Q] , {c6,j}j∈[Q] , {c7,i,j}i,j∈[Q] , aux′′

)

33

Distribution D′′
1 :(

w1, w2, C,

{w3,i,w4,i,w5,i}i∈[Q] , {w6,j}j∈[Q] , {w7,i,j}i,j∈[Q] , aux′′

)
where aux′′ is defined as aux′2 in distribution D′

0,

c7,i,j = s1(D⊗ t⊤j ⊗ r⊤i) + e7,i,j , where e7,i,j ← Dm
Z,χ7

and w7,i,j is a random vector with the same dimension as c7,i,j . Note that we set χ5 > χ7 so
that we can rely on quantitatively weaker evasive LWE assumption (See Remark 3.3). The rest
of the vectors are defined as in distribution D′

0 and D′
1. From the above discussion, it suffices to

prove Lemma 4.2 in the following to complete the proof of Theorem 4.1.

Lemma 4.2. Distributions D′′
0 and D′′

1 are computationally indistinguishable under the hardness
assumption of LWE and tensor LWE.

Proof. We prove the lemma via the following hybrids.

G0 : This is same as D′′
0 .

G1 : In this hybrid, the challenger computes c4,i as

c4,i = c1(Imℓ ⊗ r⊤i)−
(
s((A1 − x0 ⊗G)⊗ r⊤i) + e4,i

)
︸ ︷︷ ︸

:=c′4,i

.

G2 : In this hybrid, the challenger samples c1 and c2 randomly as c1 ← Zm2ℓ
q , c2 ← Z(2nm+nm2)w

q .

G3: In this hybrid, c7,i,j is computed as c7,i,j = c6,j(I⊗ r⊤i)−
(
s(AfjUj ⊗ r⊤i) + e7,i,j

)
︸ ︷︷ ︸

:=c′7,i,j

.

G4 : In this hybrid, c5,i and c6,j are chosen randomly as c5,i ← Znmw
q and c6,j ← Zm2

q .

G5: In this hybrid, c′7,i,j is computed differently as

c′7,i,j = [c′4,i∥c3,i]ĤA,f,(x0∥x1,i)Uj + s(GUj ⊗ r⊤i) + e7,i,j︸ ︷︷ ︸
c′′7,i,j

.

G6 : In this hybrid, c3,i ← Zmℓ
q , c′4,i ← Zmℓ

q and c′′7,i,j ← Zm
q .

G7 : In this hybrid, c4,i ← Zmℓ
q , c7,i,j ← Zm

q .

It is easy to see that the distribution in G7 is the same as that of D′′
1 .

Indistinguishability of hybrids:
We prove the indistinguishability between the hybrid distributions via the following claims.

Claim 4.3. G0 ≈s G1.

Proof. The two hybrids differ only in the error term in c4,i and are indistinguishable due to the
smudging lemma.
In G0:

c4,i = s0(A0 ⊗ r⊤i) + e4,i

34

In G1:

c4,i = c1(Imℓ ⊗ r⊤i)−
(
s((A1 − x0 ⊗G)⊗ r⊤i) + e4,i

)
= (s((A1 − x0 ⊗G)⊗ I) + s0(A0 ⊗ I) + e1)(Imℓ ⊗ r⊤i)− s((A1 − x0 ⊗G)⊗ r⊤i)− e4,i

= s((A1 − x0 ⊗G)⊗ r⊤i) + s0(A0 ⊗ r⊤i)− s((A1 − x0 ⊗G)⊗ r⊤i) + e1(Imℓ ⊗ r⊤i)− e4,i

= s0(A0 ⊗ r⊤i) + e1(Imℓ ⊗ r⊤i)− e4,i

Clearly, the two hybrids differ only in the error terms in c4,i. Thus, the indistinguishability
follows due to the following:

e4,i ≈ −e4,i + e1(Imℓ ⊗ r⊤i)

which is true since the distribution of −e4,i is the same as that of e4,i by the symmetry of the
discrete Gaussian distribution and χ4 ≥ γχ1λ

ω(1).

Claim 4.4. G1 ≈c G2 due to LWE.

Proof. Let us write B as (B⊤
U B⊤

M B⊤
L)

⊤. Then we can see that the indistinguishability follows
from LWE by applying Lemma 3.10 for k = 1, which implies (A0,BM , s0(A0 ⊗ I) + e1, s0BM +

e2) ≈c (A0,BM ,w
′
1,w

′
2), where w′

1 ← Zm2ℓ
q ,w′

2 ← Z(2nm+nm2)w
q .

In particular, let B = (B⊤
U B⊤

M B⊤
L)

⊤. Then
In G1,

(c1, c2) = (s((A1 − x0 ⊗G)⊗ I) + s0(A0 ⊗ I) + e1, sBU + s0BM + s1BL + e2)

≈c (s((A1 − x0 ⊗G)⊗ I) +w′
1, sBU + s1BL +w′

2) (from LWE)

≈s (w1,w2) where w1 ← Zm2ℓ
q ,w2 ← Z(2nm+nm2)w

q

Claim 4.5. G2 ≈s G3

Proof. The two hybrids differ only in the error terms in c7,i,j and are indistinguishable due to
the smudging lemma.
In G2:

c7,i,j = s1(Inm ⊗ r⊤i)(D⊗ t⊤j) + e7,i,j

In G3:

c7,i,j = c6,j(I⊗ r⊤i)− s(AfjUj ⊗ r⊤i)− e7,i,j

= (s(AfjUj ⊗ I) + s1(D⊗ t⊤j ⊗ I) + e6,j)(I⊗ r⊤i)− s(AfjUj ⊗ r⊤i)− e7,i,j

= s(AfjUj ⊗ r⊤i) + s1(D⊗ t⊤j ⊗ r⊤i) + e6,j(I⊗ r⊤i)− s(AfjUj ⊗ r⊤i)− e7,i,j

= s1(Inm ⊗ r⊤i)(D⊗ t⊤j) + e6,j(I⊗ r⊤i)− e7,i,j

Clearly, the two hybrids differ only in the error terms in c7,i,j . Thus, the indistinguishability
follows due to the following:

e7,i,j ≈s −e7,i,j + e6,j(I⊗ r⊤i)

which is true since χ7 ≥ γχ6λ
ω(1) and by the symmetry of the discrete Gaussian distribution.

35

Claim 4.6. G3 ≈ G4

Proof. The indistinguishability follows from Lemma 4.10.

Claim 4.7. G4 ≈s G5.

Proof. The two hybrids differ only in the error terms in c7,i,j . The indistinguishability follows
from the smudging lemma.
In G4,

c′7,i,j = s(AfjUj ⊗ r⊤i) + e7,i,j .

In G5,

c′7,i,j = (c′4,i∥c3,i)ĤA,fj ,(x0∥x1,i)Uj + s(GUj ⊗ r⊤i) + e7,i,j

=
(
s((A1 − x0 ⊗G)⊗ r⊤i) + e4,i|s((A2 − x1,i ⊗G)⊗ r⊤i) + e3,i

)
ĤA,fj ,(x0∥x1,i)Uj

+ s(GUj ⊗ r⊤i) + e7,i,j

= s((A1∥A2 − (x0∥x1,i)⊗G)⊗ r⊤i)ĤA,fj ,(x0∥x1,i)Uj + (e4,i∥e3,i)ĤA,fj ,(x0∥x1,i)Uj

+ s(GUj ⊗ r⊤i) + e7,i,j

= s((Af − fj(x0∥x1,i)G)Uj ⊗ r⊤i) + (e4,i∥e3,i)ĤA,fj ,(x0∥x1,i)Uj + s(GUj ⊗ r⊤i) + e7,i,j

= s(AfUj ⊗ r⊤i) + (e4,i∥e3,i)ĤA,fj ,(x0∥x1,i)Uj + e7,i,j (since fj(x0∥x1,i) = 1)

Clearly, the two hybrids differ only in the error terms in c′7,i,j . Thus, the indistinguishability
follows due to the following:

e7,i,j ≈s e7,i,j + (e4,i∥e3,i)ĤA,fj ,(x0∥x1,i)Uj

which is true when χ7 ≥ χ3χ4βγλ
ω(1), where ∥ĤA,fj ,(x0∥x1,i)∥∞ ≤ β

Claim 4.8. G5 ≈c G6 under the tensor-LWE assumption.

Proof. The indistinguishability between the two hybrids follows from tensor-LWE which implies

A1,A2, {Uj , r
⊤
i , s(In⊗r⊤i)(A1−x0⊗G)+e4,i, s(In⊗r⊤i)(A2−x1,i⊗G)+e3,i, s(In⊗r⊤i)GUj+e7,i,j}i,j

≈c A1,A2, {Uj , r
⊤
i , random, random}i,j .

Claim 4.9. G6 ≡ G7

Proof. This follows since in G6, c4,i and c7,i,j are masked by random vectors c′4,i and c′7,i,j ,
respectively.

To complete the proof of Lemma 4.2, it remains to prove the following.

Lemma 4.10. Given {tj}j∈[Q], {ri}i∈[Q], C,D,

({zC,i := s1(Inm ⊗ r⊤i)C+ e5,i}i, {zD,j := s1(D⊗ t⊤j ⊗ I) + e6,j}j) ≈c ({w′
5,i}i, {w′

j}6,j),

where w′
5,i ← Znmw

q and w′
6,j ← Zm2

q assuming LWE.

36

Proof. We prove the lemma by considering a sequence of games where we start from the LHS
and gradually change it to that of RHS in a way that is not noticed by the adversary.

G̃0 : This is the same distribution as in LHS.

G̃1 : In this hybrid, we change the distribution to bezC,i = (s1(C⊗ I) + eC)︸ ︷︷ ︸
:=sC

(Inmw ⊗ r⊤i) + e5,i


i

,

zD,j =
(
s1(D⊗ I⊗2) + eD

)︸ ︷︷ ︸
:=sD

(I⊗ t⊤j ⊗ I) + e6,j


j

,

where eC ← Dnm2w
Z,χ1

, eD ← Dm3

Z,χ1
.

This hybrid differs from the previous one only in the error terms in zC,i and zD,j . The
indistinguishability follows from the smudging lemma.
To see this, observe that we have

(s1(C⊗ I) + eC) (Inmw ⊗ r⊤i) + e5,i = s1(C⊗ r⊤i) + eC(Inmw ⊗ r⊤i) + e5,i︸ ︷︷ ︸
=error

and(
s1(D⊗ I⊗2) + eD

)
(I⊗ t⊤j ⊗ I) + e6,j = s1(D⊗ t⊤j ⊗ I) + eD(I⊗ t⊤j ⊗ I) + e6,j︸ ︷︷ ︸

=error

.

Thus, the indistinguishability follows due to the following:

e5,i ≈s eC(Inmw ⊗ r⊤i) + e5,i, e6,j ≈s eD(I⊗ t⊤j ⊗ I) + e6,j ,

which is true when χ5, χ6 > γλω(1)χ1.

G̃2 : In this hybrid, we replace sC and sD with random vectors sampled as sC ← Znm2w
q ,

sD ← Zm3

q . This hybrid is indistinguishable from the previous one by Lemma 3.10 with
k = 2 assuming LWE.

G̃3 : In this game, {zC,i}i and {zD,j}j are replaced with random vectors sampled as zC,i ← Znmw
q

and zD,j ← Zm2

q for all i, j ∈ [Q]. We can see that this hybrid is indistinguishable from
the previous one by LWE with low norm samples (Lemma 2.4) once with respect to secret
sC , and then with respect to sD.

It is clear that the distribution in G̃3 is the same as that of RHS in the statement of the lemma.

This completes the proof of Lemma 4.2.

5 Multi-Input ABE for Any Constant Arity

In this section, we extend the construction in Sec. 4 to construct k-ABE for any constant k using
evasive LWE. Our main construction supports functions in NC1 and proven secure assuming
evasive LWE. We also discuss a variant that supports any polynomial size circuit of bounded
depth, which can be proven secure assuming a strengthening of tensor LWE in addition.

37

T
ab

le
2
:
S
u
m
m
ar
y
o
f
h
y
b
ri
d
s
in

p
ro
of

of
se
cu

ri
ty

fo
r
2A

B
E
co
n
st
ru
ct
io
n
.
A
ll
th
e
w

an
d
w

′
ve
ct
or
s
ar
e
sa
m
p
le
d
ra
n
d
om

ly
.

T
o
p
ro
v
e
D

′′ 0
≈

D
′′ 1
:
G
iv
en

C
,
au

x′
′
=

(x
,{
y
i
,r

i
} i
,c
o
in
s A

,{
f j
,t

j
,U

j
} j
A

0
,A

,B
,D

),
to

p
ro
v
e
p
se
u
d
o
ra
n
d
o
m
n
es
s
o
f
c
1
,c

2
,
c
3
,i
,
c
4
,i
,
c
5
,i
,
c
6
,j
,
c
7
,i
,j

c
1

c
2

c
3
,i

c
4
,i

c
5
,i

c
6
,j

c
7
,i
,j

R
em

a
rk

G
0

s(
(A

1
−

x
⊗

G
)
⊗

I)
+
s 0
(A

0
⊗
I)
+
e
1

(s
,s

0
,s

1
)B

+
e
2

s(
(A

2
−

y
i
⊗

G
)⊗

r⊤ i
)+

e
3
,i

s 0
(A

0
⊗

r⊤ i
)
+

e
4
,i

s 1
(I

n
m

⊗
r⊤ i

)C
+

e
5
,i

s(
A

f
j
U

j
⊗
I)
+
s 1
(D

⊗
t⊤ j

⊗
I)

+
e
6
,j

s 1
(D

⊗
t⊤ j

⊗
r⊤ i

)
+

e
7
,i
,j

G
1

↓
↓

↓
c
1
(I

m
ℓ
⊗
r⊤ i

)
−
(s
((
A

1
−

x
⊗

G
)
⊗

r⊤ i
)
+

e
4
,i
)

↓
↓

↓
sm

u
d
g
in
g

le
m
m
a

G
1
.5

s(
(A

1
−

x
⊗

G
)
⊗

I)
+

w
′ 1
,

(s
,
0
,
s 1
)B

+
w

′ 2
,

↓
↓

↓
↓

↓
LW

E

G
2

w
1

w
2

↓
↓

↓
↓

↓
ra
n
d
o
m

m
a
sk

G
3

↓
↓

↓
↓

↓
↓

c
6
,j
(I

⊗
r⊤ i

)
−

(s(
A

f
j
U

j
⊗

r⊤ i
)
+

e
7
,i
,j

)
︸

︷︷
︸

:=
c
′ 7
,i
,j

sm
u
d
g
in
g

G
3
.5

↓
↓

↓
↓

w
5
,i

s(
A

f
j
U

j
⊗

I)
+

w
′ 6
,j

↓
LW

E

G
4

↓
↓

↓
↓

↓
w

6
,j

ra
n
d
o
m

m
a
sk

G
5

↓
↓

↓
↓

↓
↓

c
6
,j
(I

⊗
r⊤ i

)
−

[c
′ 4
,i
∥c

3
,i
]Ĥ

A
,f

j
,(
x
∥y

i
)
U

j
−

(s
(G

U
j
⊗

r⊤ i
)
+

e
7
,i
,j

︸
︷︷

︸
:=

c
′′ 7
,i
,j

)

sm
u
d
g
in
g

G
6

↓
↓

w
3
,i

c
1
(I

m
ℓ
⊗

r⊤ i
)
−

w
′ 4
,i

↓
↓

c
6
,j
(I

⊗
r⊤ i

)
−

[c
′ 4
,i
∥c

3
,i
]Ĥ

A
,f

j
,(
x
∥y

i
)
U

j
−

w
′′ 7
,i
,j

te
n
so
r
LW

E

G
7

↓
↓

↓
w

4
,i

↓
↓

w
7
,i
,j

ra
n
d
o
m

m
a
sk

38

5.1 Construction for NC1 Circuits

Here, we show our construction. Let ℓ be the length of each of the k attributes. Decryption
is possible when f(x0,x1, . . . ,xk−1) = 0, where x0 ∈ {0, 1}ℓ is the attribute associated with
the public encryption, xi ∈ {0, 1}ℓ is the attribute associated with the slot i, and f is a binary
circuit associated with the slot k key. Below I refers to Im. We require an upper bound on the
depth of the circuit and denote it by d. We require d = O(log λ).

In the construction, we will use the low-norm variant of the lattice evaluation algorithms
(EvalF,EvalFX) from Lemma 2.8.

Setup(1λ): The setup algorithm takes as input the security parameter and does the following:

• Sample A0, . . ., Ak−1 ← Dm×mℓ
Z,γ ; D0, . . ., Dk−1 ← Zn×mℓ

q , Dk ← Zn×m
q , U← Dm×m

Z,γ .
Let A = (A0, . . . ,Ak−1).

• Sample (B,B−1
τB

)← TrapGen(1λ,mk+1 + (k + 1)nmk, (mk+1 + (k + 1)nmk)w), where
w ∈ O(log q);
{(Ci,C

−1
i,τC

)← TrapGen(1λ, (k + 1)nmi−1, (k + 1)nmi−1w)}i∈[2,k]

• Set C1 =


D0

D1

. . .

Dk


• Output mpk = (A,B,C1, . . . ,Ck,D0, . . . ,Dk,U),
msk = (B,B−1

τB
,C−1

2,τC
, . . . ,C−1

k,τC
).

Enc(mpk,x0, µ): The Enc algorithm is a public encryption algorithm. It takes as input the
master public key mpk, attribute x0 and message bit µ ∈ {0, 1} and does the following:

• Sample s← Zmk+1

q , s0, . . . , sk ← Znmk

q .

• If µ = 1, sample c1 ← Zℓmk+1

q , c2 ← Z(mk+1+(k+1)nmk)w
q .

Else, compute

– c1 = s((A0 − x0 ⊗ I)⊗ I⊗k) + s0(D0 ⊗ I⊗k) + e1, where e1 ← Dℓmk+1

Z,χ1
.

– c2 = (s, s0, · · · , sk)B+ e2, where e2 ← D(mk+1+(k+1)nmk)w
Z,χ2

.

• Output ctx0 = (c1, c2).

KeyGeni(msk,xi) for 1 ≤ i ≤ k − 1: The keygen algorithm for slot 1 ≤ i ≤ k− 1, takes as input
the master secret key msk and attribute xi and does the following:

• Samples ri ← Dm
Z,γ

• Samples Xi ← B−1



(Ai − xi ⊗ I)⊗ I⊗(i−1) ⊗ r⊤i ⊗ I⊗(k−i)

0inmk×ℓmk

Di ⊗ I⊗(i−1) ⊗ r⊤i ⊗ I⊗(k−i)

0(k−i)nmk×ℓmk

 , τB

, and Yi ←

C−1
i+1

(
(Ci ⊗ r⊤i), τC

)
• Returns ski,xi = (ri,Xi,Yi)

39

KeyGenk(msk, f): The keygen algorithm for slot k takes as input the master secret key, msk,
and k-arity function f and does the following:

• Samples rk ← Dm
Z,γ

• Computes Hf = EvalF(A, f) and Af = AHf

• Computes Mf ← B−1


AfU⊗ I⊗(k−1) ⊗ r⊤k

0knmk×mk

Dk ⊗ I⊗(k−1) ⊗ r⊤k

 , τB

 and

Nf ← B−1

((
0mk+1×(k+1)nmk−1w

Ck ⊗ r⊤k

)
, τB

)
• Returns skk,f = (rk,Mf ,Nf)

Dec(mpk, ctx0 , sk1,x1 , . . . , skk−1,xk−1
, skk,f) The decryption algorithm takes a ciphertext ctx0 , k

keys sk1,x1 , . . . , skk−1,xk−1
and skk,f and does the following:

• Parse ctx0 as (c1, c2), ski,xi as (ri,Xi,Yi) for 1 ≤ i ≤ k− 1 and skk,f as (rk,Mf ,Nf).
Let x = (x0, . . . ,xk−1).

• Compute ĤA,f,x = EvalFX(A, f,x).

• Compute the following

* d′
0 = c1(Imℓ ⊗ r⊤1 ⊗ · · · ⊗ r⊤k)

* d′
i = c2Xi(Imℓ ⊗ r⊤1 · · · ⊗ r⊤i−1 ⊗ r⊤i+1 ⊗ · · · ⊗ r⊤k), for 1 ≤ i ≤ k − 1,

* d′
f = c2Mf (Im ⊗ r⊤1 · · · ⊗ r⊤k−1)

* (d′′
0, · · · , d′′

k−1, d
′′
f) = c2NfYk−1 · · ·Y1

* di = d′
i − d′′

i , for i = 0 to k − 1.

* df = d′
f − d′′

f

* d = (d0| · · · |dk−1)ĤA,f,xU− df

• If ∥d∥∞ ≤ β0, where β0 is as defined in section 5.2 then return µ = 0, else return
µ = 1.

5.2 Correctness, Parameters and Security

Correctness. Here, we show the correctness of the scheme.
When µ = 1: We first show the correctness for the case of µ = 1. For an honest run of the
protocol, c1 is distributed uniformly at random over its domain. Then, since ri ̸= 0 for all i ∈ [k]
with overwhelming probability and thus Imℓ ⊗ r⊤1 ⊗ · · · ⊗ r⊤k is a full-rank matrix, d′

0 and thus
d0 are distributed uniformly at random over their domains. Then, since the topmost m rows
of ĤA,f,x constitutes an identity matrix by Lemma 2.8, (d0∥ · · · ∥dk−1)ĤA,f,x is distributed
uniformly at random over its domain. Finally, since each column of U is chosen from Dm

Z,γ ,
with overwhelming probability, there exists i ∈ [m] such that the i-th column of U is not a zero
vector. This in turn implies that that the i-th entry of d is distributed uniformly at random over
Zq. Since we set β0/q = λ−ω(1), the probability that the decryption algorithm falsely outputs 0
is negligible as desired.

When µ = 0: We now show the correctness for the case of µ = 0.

40

* Let us first compute d′
0.

d′
0 = c1(Imℓ ⊗ r⊤1 ⊗ · · · ⊗ r⊤k)

=
(
s ·
(
(A0 − x0 ⊗ Im)⊗ I⊗k

)
+ s0 · (D0 ⊗ I⊗k)

)
·
(
Imℓ ⊗ r⊤1 ⊗ · · · ⊗ r⊤k

)
+ ed′

0

= s ·
(
(A0 − x0 ⊗ Im)⊗ r⊤1 ⊗ · · · ⊗ r⊤k

)
+ s0 ·

(
D0 ⊗ r⊤1 ⊗ · · · ⊗ r⊤k

)
+ ed′

0

where ed′
0
:= e1 · (Imℓ ⊗ r⊤1 ⊗ · · · ⊗ r⊤k).

* Let 1 ≤ i ≤ k − 1,

d′
i = c2 ·Xi ·

(
Imℓ ⊗ r⊤1 · · · ⊗ r⊤i−1 ⊗ r⊤i+1 ⊗ · · · ⊗ r⊤k

)
= ((s, s0, · · · , sk)B+ e2) ·B−1



(Ai − xi ⊗ Im)⊗ I⊗(i−1) ⊗ r⊤i ⊗ I⊗(k−i)

0inmk×ℓmk

Di ⊗ I⊗(i−1) ⊗ r⊤i ⊗ I⊗(k−i)

0(k−i)nmk×ℓmk

 , τB


·(Imℓ ⊗ r⊤1 · · · ⊗ r⊤i−1 ⊗ 1⊗ r⊤i+1 ⊗ · · · ⊗ r⊤k)

=
(
s((Ai − xi ⊗ Im)⊗ I⊗(i−1) ⊗ r⊤i ⊗ I⊗(k−i)) + si · (Di ⊗ I⊗(i−1) ⊗ r⊤i ⊗ I⊗(k−i))

)
·(Imℓ ⊗ r⊤1 · · · ⊗ r⊤i−1 ⊗ 1⊗ r⊤i+1 ⊗ · · · ⊗ r⊤k) + ed′

i
.

= s · ((Ai − xi ⊗ Im)⊗ r⊤1 ⊗ · · · ⊗ r⊤k) + si · (Di ⊗ r⊤1 ⊗ · · · ⊗ r⊤k) + ed′
i

where ed′
i
:= e2 ·Xi(Imℓ ⊗ r⊤1 · · · ⊗ r⊤i−1 ⊗ r⊤i+1 ⊗ · · · ⊗ r⊤k).

* Now we compute d′
f .

d′
f = c2Mf (Im ⊗ r⊤1 · · · ⊗ r⊤k−1)

= ((s, s0, · · · , sk)B+ e2)B
−1


AfU⊗ I⊗(k−1) ⊗ r⊤k

0knmk×mk

Dk ⊗ I⊗(k−1) ⊗ r⊤k

 , τB

 (Im ⊗ r⊤1 · · · ⊗ r⊤k−1 ⊗ 1)

=
(
s · (AfU⊗ I⊗(k−1) ⊗ r⊤k) + sk · (Dk ⊗ I⊗(k−1) ⊗ r⊤k)

)
· (Im ⊗ r⊤1 · · · ⊗ r⊤k−1 ⊗ 1) + ed′

f

= s · (AfU⊗ r⊤1 ⊗ · · · ⊗ r⊤k) + sk · (Dk ⊗ r⊤1 ⊗ · · · ⊗ r⊤k) + ed′
f

where ed′
f
:= e2Mf (I ⊗ r⊤1 · · · ⊗ r⊤k−1).

* Next, we compute:

(d′′
0, · · · , d′′

k−1, d
′′
f) = c2NfYk−1 · · ·Y1

= ((s, s0, · · · , sk)B+ e2)B
−1

((
0mk+1×(k+1)nmk−1w

Ck ⊗ r⊤k

)
, τB

)
·Yk−1 · · ·Y1

= (s0, · · · , sk) · (Ck ⊗ r⊤k) ·Yk−1 · · ·Y1 + (ed′′
0
, · · · , ed′′

k
)

= (s0, · · · , sk) · (Ck ⊗ r⊤k) · (C
−1
k

(
(Ck−1 ⊗ r⊤k−1), τC

)
⊗ 1) ·Yk−2 · · ·Y1 + (ed′′

0
, · · · , ed′′

k
)

= (s0, · · · , sk) · (Ck ·C−1
k

(
(Ck−1 ⊗ r⊤k−1), τC

)
⊗ r⊤k) ·Yk−2 · · ·Y1 + (ed′′

0
, · · · , ed′′

k
)

= (s0, · · · , sk) · (Ck−1 ⊗ r⊤k−1 ⊗ r⊤k) ·Yk−2 · · ·Y1 + (ed′′
0
, · · · , ed′′

k
)

=
...

= (s0, · · · , sk) · (C1 ⊗ r⊤1 ⊗ · · · ⊗ r⊤k) + (ed′′
0
, · · · , ed′′

k
)

= (s0 · (D0 ⊗ r⊤1 ⊗ · · · ⊗ r⊤k) + ed′′
0
, · · · , sk · (Dk ⊗ r⊤1 ⊗ · · · ⊗ r⊤k) + ed′′

k
)

with (ed′′
0
, · · · , ed′′

k
) := e2NfYk−1 · · ·Y1.

41

* Let 0 ≤ i ≤ k − 1,

di = d′
i − d′′

i

= s((Ai − xi ⊗ Im)⊗ r⊤1 ⊗ · · · ⊗ r⊤k) + si(Di ⊗ r⊤1 ⊗ · · · ⊗ r⊤k) + ed′
i
− si(Di ⊗ r⊤1 ⊗ · · · ⊗ r⊤k)− ed′′

i

= s((Ai − xi ⊗ Im)⊗ r⊤1 ⊗ · · · ⊗ r⊤k) + edi

with edi
:= ed′

i
− ed′′

i
.

* Next, df = d′
f − d′′

f . So,

df = s(AfU⊗ r⊤1 ⊗ · · · ⊗ r⊤k) + sk(Dk ⊗ r⊤1 ⊗ · · · ⊗ r⊤k) + ed′
f
− sk(Dk ⊗ r⊤1 ⊗ · · · ⊗ r⊤k)− ed′′

f

= s(AfU⊗ r⊤1 ⊗ · · · ⊗ r⊤k) + edf

with edf
:= ed′

f
− ed′′

f
where ed′′

f
:= ed′′

k
.

* And finally, d = (d0∥ · · · ∥dk−1) · ĤA,f,xU− df . First,

(d0∥ · · · ∥dk−1)

= (s((A0 − x0 ⊗ I)⊗ r⊤1 ⊗ · · · ⊗ r⊤k)∥ · · · ∥s((Ak−1 − xk−1 ⊗ I)⊗ r⊤1 ⊗ · · · ⊗ r⊤k)) + (ed0∥ · · · ∥edk−1
)

= (s(((A0∥A1∥ · · · ∥Ak−1)− (x0∥x1∥ · · · ∥xk−1)⊗ I)⊗ r⊤1 ⊗ · · · ⊗ r⊤k)) + (ed0∥ · · · ∥edk−1
)

= (s((A− (x0∥x1∥ · · · ∥xk−1)︸ ︷︷ ︸
=x

⊗I)⊗ r⊤1 ⊗ · · · ⊗ r⊤k)) + (ed0∥ · · · ∥edk−1
).

From Lemma 2.8, we deduce

(A− x⊗ I)ĤA,f,x = Af − f(x)I mod q.

Hence,

(d0∥ · · · ∥dk−1)ĤA,f,xU− df

= s((A− x⊗ I)⊗ r⊤1 ⊗ · · · ⊗ r⊤k)(ĤA,f,xU⊗ 1⊗ 1 · · · ⊗ 1) + ed − s(AfU⊗ r⊤1 ⊗ · · · ⊗ r⊤k)− edf

= s((A− x⊗ I)ĤA,f,xU⊗ r⊤1 ⊗ · · · ⊗ r⊤k)− s(AfU⊗ r⊤1 ⊗ · · · ⊗ r⊤k) + ed − edf

= s((AfU− f(x)U)⊗ r⊤1 ⊗ · · · ⊗ r⊤k)− s(AfU⊗ r⊤1 ⊗ · · · ⊗ r⊤k) + ed − edf

= −s(f(x)U⊗ r⊤1 ⊗ · · · ⊗ r⊤k) + ed − edf

= ed − edf
if f(x) = 0.

where ed := (ed0∥ · · · ∥edk−1
)ĤA,f,xU. Thus, when µ = 0, ∥d∥∞ is small (≤ β0), and hence,

the decryption correctly outputs 0.

Error Bound: The error term is bounded as follows. Let β0 denote the error bound.

∥ed∥∞ + ∥edf
∥∞

= ∥(ed0∥ · · · ∥edk−1
)ĤA,f,xU∥∞ + ∥ed′

f
− ed′′

f
∥∞

= ∥
(
(ed′

0
∥ · · · ∥ed′

k−1
)− (ed′′

0
∥ · · · ∥ed′′

k−1
)
)
ĤA,f,xU∥∞ + ∥ed′

f
− ed′′

f
∥∞

≤
((
χ1(mγ)

O(k) + wχ2τB(mγ)
O(k) + χ2τB(wτC)

O(k)mO(k2)
)
·mβγ

+wχ2τB(mγ)
O(k) + χ2τB(wτC)

O(k)mO(k2)
)
poly(m)

≤ (mχ1χ2wγτBτC)
O(k2)

≤ β0,

42

where we used ∥ed′
0
∥∞ ≤ χ1(mγ)

O(k), ∥ed′
i
∥∞, ∥ed′

f
∥∞ ≤ wχ2τB(mγ)

O(k), and ∥ed′′
i
∥∞, ∥ed′′

f
∥∞ ≤

χ2τB(wτC)
O(k)mO(k2).

Parameters: We set the parameters as follows.
n = poly(λ, 2d), m = O(n log q), τB = O(

√
2kmk+1 log q), τC = O(

√
2kmk log q),

β = (mγ)O(2d), γ = λω(1), χ1 = (mγ)2k, χ3 = χ4 = (mγ)4k,

χ6 = (mγ)6k, χ7 = mβℓχ6λ
ω(1), χ5,i = γk−i · χ7 for i ∈ [0, k], χ2 = γχ5

β0 = (mχ1χ2wγτBτC)
O(k2), q = β0λ

ω(1)

where we define χ5 := χ5,0. We note that in the above, χ3, χ4, χ5,i, χ6, and χ7 are the parameters
that only appear in the security proof.

Security: Here, we prove the following theorem, which asserts the security of our scheme.

Theorem 5.1. Assuming evasive LWE (Assumption 3.1) and LWE, our construction for k-input
ABE for NC1 satisfies very selective security (Definition 2.2).

Proof. To prove the security, we need to prove the indistinguishability of the two distributions
given below. Let Qi be the number of key queries to KeyGeni(msk, ·) oracle for i ∈ [k]. In the
following, for simplicity, we let Q1 = · · · = Qk = Q. Note that this can be assumed without loss
of generality.

Note that compared to Section 4.2 where i and j are the indexes for the keys, in this proof,
i ∈ [k] is the index of the key generator, and we denote j1, · · · , jk ∈ [Q] the indexes of the keys.
In the sequel, for the ease of the reading, we often suppress the subscript and simply write j
when differentiating the indexes is not necessary.

Distribution D0:mpk, c1 = (s, s0)

(
(A0 − x0 ⊗ Im)⊗ I⊗k

D0 ⊗ I⊗k

)
+ e1, c2 = (s, s0, · · · , sk)B+ e2,

{ski,xi,j = (ri,j ,Xi,j ,Yi,j)}i∈[k−1],j∈[Q], {skk,fj = (rk,j ,Mfj ,Nfj)}j∈[Q]


Distribution D1:(
mpk, c1 ← Zℓmk+1

q , c2 ← Z(mk+1+(k+1)nmk)w
q ,

{ski,xi,j = (ri,j ,Xi,j ,Yi,j)}i∈[k−1],j∈[Q], {skk,fj = (rk,j ,Mfj ,Nfj)}j∈[Q]

)
,

where x0 is the attribute for public encryption, xi,j for i ∈ [k− 1] is the j-th key query for slot i,
and fj is the j-th key query to KeyGenk(msk, ·), ski,xi,j is the j-th key for slot i and skk,fj is the
key for function fj . In particular, we have

43

Xi,j ← B−1



(Ai − xi,j ⊗ Im)⊗ I⊗(i−1) ⊗ r⊤i,j ⊗ I⊗(k−i)

0inmk×ℓmk

Di ⊗ I⊗(i−1) ⊗ r⊤i,j ⊗ I⊗(k−i)

0(k−i)nmk×ℓmk

 , τB


Yi,j ← C−1

i+1

(
(Ci ⊗ r⊤i,j), τC

)
Mfj ← B−1


AfjUj ⊗ I⊗(k−1) ⊗ r⊤k,j

0knmk×mk

Dk ⊗ I⊗(k−1) ⊗ r⊤k,j

 , τB


Nfj ← B−1

((
0mk+1×(k+1)nmk−1w

Ck ⊗ r⊤k,j

)
, τB

)

e1 ← Dℓmk+1

Z,χ1
, e2 ← D(mk+1+(k+1)nmk)w

Z,χ2
.

We can see that D0 and D1 are the views of the adversary when µ = 0 and µ = 1 are
encrypted, respectively. We then apply Evasive LWE (EvLWE) with respect to matrix B with
sampler Samp1 that outputs aux1 = (aux11, aux

1
2),P

1,S1 as follows:7

S1 = (s, s0, . . . , sk)

aux11 = s((A0 − x0 ⊗ Im)⊗ I⊗k) + s0(D0 ⊗ I⊗k) + e1

aux12 = (x0, {xi,j , ri,j}i∈[k−1],j∈[Q], {Yi,j}i∈[k−1],j∈[Q], {fj , rk,j}j∈[Q],A,C1, . . . ,Ck,U)

Pi,j =


(Ai − xi,j ⊗ I)⊗ I⊗(i−1) ⊗ r⊤i,j ⊗ I⊗(k−i)

0inmk×ℓmk

Di ⊗ I⊗(i−1) ⊗ r⊤i,j ⊗ I⊗(k−i)

0(k−i)nmk×ℓmk

 , for i ∈ [k − 1], j ∈ [Q]

Pk,j =

AfjU⊗ I⊗(k−1) ⊗ r⊤k,j
0knmk×mk

Dk ⊗ I⊗(k−1) ⊗ r⊤k,j

 , for j ∈ [Q]

Pk+1,j =

(
0mk+1×(k+1)nmk−1w

Ck ⊗ r⊤k,j

)
, for j ∈ [Q]

P1 = (P1,1∥ · · · ∥P1,Q∥ · · · ∥Pk−1,1∥ · · · ∥Pk−1,Q∥Pk,1∥ · · · ∥Pk,Q∥Pk+1,1∥ · · · ∥Pk+1,Q)

Then from Lemma 3.4, to prove that D0 and D1 are computationally indistinguishable, it suffices
to prove the computational indistinguishability between the following distributions:
Distribution D1

0:(
aux12, B, c1, c2,

{ci,j}i∈[k−1],j∈[Q], {ck,j ,dj}j∈[Q]

)

Distribution D1
1:(

aux12, B, v1, v2,

{vi,j}i∈[k−1],j∈[Q], {vk,j ,wj}j∈[Q]

)
,

7By Lemma 3.4, it suffices to invoke the evasive LWE for a modified sampler that outputs random aux1. The
same comments apply to other invocations of the assumption.

44

where v (resp., w) vectors above are sampled uniformly at random from the same domain as
the corresponding c (resp., d) vectors and

ci,j = S1Pi,j + ei,j

= s((Ai − xi,j ⊗ I)⊗ I⊗(i−1) ⊗ r⊤i,j ⊗ I⊗(k−i)) + si(Di ⊗ I⊗(i−1) ⊗ r⊤i,j ⊗ I⊗(k−i)) + ei,j

ck,j = S1Pk,j + ek,j

= s(AfjUj ⊗ I⊗(k−1) ⊗ r⊤k,j) + sk(Dk ⊗ I⊗(k−1) ⊗ r⊤k,j) + ek,j

dj = S1Pk+1,j + e′j

= (s0, . . . , sk)(Ck ⊗ r⊤k,j) + e′j

= (s0, . . . , sk)(I(k+1)nmk−1 ⊗ r⊤k,j)Ck + e′j

where ei,j ← Dℓmk

Z,χ3
, ek,j ← Dmk

Z,χ4
, e′j ← D

(k+1)nmk−1w
Z,χ5

.

Note that we set χ2 > χ3, χ4, χ5 so that we can rely on quantitatively weaker evasive LWE
assumption (See Remark 3.3). We also note that here, we have χ3 = χ4 ̸= χ5, where Gaussian
distributions with different standard deviations are mixed in the precondition distribution. We
refer to Remark 3.2 for the detail.

To show the indistinguishability between the two distributions D1
0 and D1

1, we again apply
Evasive LWE, this time with respect to matrix Ck and a sampler Samp2 as described below:

S2 =


(s0, . . . , sk)(I(k+1)nmk−1 ⊗ r⊤k,1)

...

(s0, . . . , sk)(I(k+1)nmk−1 ⊗ r⊤k,Q)


aux21 = c1, c2, {ci,j}i∈[k−1],j∈[Q], {ck,j}j∈[Q]

aux22 = (x0, {xi,j , ri,j}i∈[k−1],j∈[Q], {Yi,j}i∈[k−2],j∈[Q], {fj , rk,j}j∈[Q],A,B,C1, . . . ,Ck−1,U)

P2 = (Ck−1 ⊗ r⊤k−1,1∥ · · · ∥Ck−1 ⊗ r⊤k−1,Q),

where c1, c2, ci,j , ck,jfor i ∈ [k − 1], j ∈ [Q] are as defined in distribution D1
0. Then again using

Lemma 3.4, to prove that the two distributions are computationally indistinguishable, it suffices
to prove the computational indistinguishability between the following two distributions:
Distribution D2

0:(
aux22, Ck, c1, c2,

{ci,j}i∈[k−1],j∈[Q], {dj1 ,dj1,j2}j1,j2∈[Q], {ck,j}j∈[Q]

)

Distribution D2
1:(

aux22, Ck, v1, v2,

{vi,j}i∈[k−1],j∈[Q], {wj1 ,wj1,j2}j1,j2∈[Q], {vk,j}j∈[Q]

)
,

where
(dj1,j2)j1,j2∈[Q] = S2P2 + (e′j1,j2)j1,j2∈[Q], e′j1,j2 ← D

(k+1)nmk−2w
Z,χ5,2

,

all the c vectors and {dj1}j1 are defined same as previously, and v (resp., w) vectors are sampled
uniformly at random from the same domain as their corresponding c (resp., d) vectors. In the
above, (aj1,j2)j1,j2∈[Q] denotes a matrix obtained by vertically concatenating vectors {aj1,j2}j1,j2
of the same dimensions for all possible combinations of j1, j2 ∈ [Q]. In particular, we have

dj1,j2 = (s0, s1, . . . , sk)(I(k+1)nmk−1 ⊗ r⊤k,j1)(I(k+1)nmk−2 ⊗ r⊤k−1,j2)Ck−1 + e′j1,j2 .

45

To show that the two distributions - D2
0 and D2

1 - are computationally indistinguishable,
we again apply Evasive LWE, now with respect to matrix Ck−1. In general, we apply evasive
LWE k times, where the sampler Sampl for l ∈ [k] for the l-th application of the evasive LWE
assumption is defined as follows: Samp1 is as defined before.
For l ∈ [2, k], evasive LWE is applied with respect to the matrix Ck−(l−2) and Sampl outputs the
following:

Sl =
...

(s0, . . . , sk)(I(k+1)nmk−1 ⊗ r⊤k,j1)(I(k+1)nmk−2 ⊗ r⊤k−1,j2
) · · · (I(k+1)nmk−l+1 ⊗ r⊤k−l+2,jl−1

)
...


j1,...,jl−1∈[Q]

auxl1 = c1, c2, {ci,j}i∈[k−1],j∈[Q], {ck,j}j∈[Q], {dj1 ,dj1,j2 ,dj1,j2,j3 , . . . ,dj1,...,jl−2
}j1,...,jl−2∈[Q]

auxl2 = (x0, {xi,j , ri,j}i∈[k−1],j∈[Q], {Yi,j}i∈[k−l],j∈[Q], {fj , rk,j}j∈[Q],A,B, {Ci}i∈[k]\{k−l+2},U)

Pl = (Ck−l+1 ⊗ r⊤k−l+1,1∥ · · · ∥Ck−l+1 ⊗ r⊤k−l+1,Q),

where

dj1,j2,...,jt

= (s0, s1, . . . , sk)(I(k+1)nmk−1 ⊗ r⊤k,j1) · · · (I(k+1)nmk−t ⊗ r⊤k−t+1,jt)Ck−t+1 + e′j1,...,jt

= (s0, s1, . . . , sk)(I(k+1)nmk−t ⊗ r⊤k−t+1,jt ⊗ r⊤k−t+2,jt−1
⊗ · · · ⊗ r⊤k,j1)Ck−t+1 + e′j1,...,jt , for t ∈ [k]

where e′j1,...,jt ← D
(k+1)nmk−t

Z,χ5,t
when t ≤ k − 1. When t = k, e′j1,...,jk is chosen as e′j1,...,jk =

(e′0,j1,...,jk , . . . , e
′
k,j1,...,jk

), where e′i,j1,...,jk ← Dmℓ
Z,χ6

for i ∈ [0, k − 1] and e′k,j1,...,jk ← Dm
Z,χ7

.
Similarly to the first application of evasive LWE, we set χ5 > χ5,2 > · · · > χ5,k−1 > χ6, χ7 so

that we can rely on quantitatively weaker evasive LWE assumption (See Remark 3.3). We also
note that here, we have χ6 ≠ χ7 for the final usage of evasive LWE, which means that Gaussian
distributions with different standard deviations are mixed in the precondition distribution. We
refer to Remark 3.2 for the detail. Thus, after applying EvLWE l times and using Lemma 3.4, it
suffices to prove the indistinguishability between the following two distributions.
Distribution Dl

0:(
auxl2, Ck−l+2, c1, c2,

{ci,j}i∈[k−1],j∈[Q], {dj1 ,dj1,j2 ,dj1,j2,j3 , . . . ,dj1,j2,...,jl}j1,...,jl∈[Q], {ck,j}j∈[Q]

)

Distribution Dl
1:(

auxl2, Ck−l+2, v1, v2,

{vi,j}i∈[k−1],j∈[Q], {wj1 ,wj1,j2 ,wj1,j2,j3 , . . . ,wj1,j2,...,jl}j1,...,jl∈[Q], {vk,j}j∈[Q]

)
,

where all the c and the d vectors are same as defined previously and v (resp., w) vectors are
sampled uniformly at random from the same domain as their corresponding c (resp., d) vectors.

In particular, we get that after applying EvLWE k times, it suffices to prove the
indistinguishability between the following two distributions:

Distribution D′
0 = Dk

0 :(
aux′2, C2, c1, c2,

{ci,j}i∈[k−1],j∈[Q], {dj1 ,dj1,j2 ,dj1,j2,j3 , . . . ,dj1,j2,...,jk}j1,...,jk∈[Q], {ck,j}j∈[Q]

)

46

Distribution D′
1 = Dk

1 :(
aux′2, C2, v1, v2,

{vi,j}i∈[k−1],j∈[Q], {wj1 ,wj1,j2 ,wj1,j2,j3 , . . . ,wj1,j2,...,jl}j1,...,jl∈[Q], {vk,j}j∈[Q]

)
,

where aux′2 = (x0, {xi,j , ri,j}i∈[k−1],j∈[Q], {fj , rk,j}j∈[Q],A,B, {Ci}i∈[k]\{2},U). All the c, d,
v, and w vectors are same as defined before.

From the discussion above, to complete the proof of Theorem 5.1, it suffices to prove
Lemma 5.2 in the following.

Lemma 5.2. Distributions D′
0 and D′

1 are computationally indistinguishable under the hardness
assumption of LWE.

Proof. We prove the computational indistinguishability between the two hybrids - D′
0 and D′

1

via the following hybrids:

G0 : This is same as the distribution D′
0. For ease of reading and setting up notations, let us

list what the adversary can see here. The adversary can see

aux : =
(
x0, {xi,j , ri,j}i∈[k−1],j∈[Q], {fj , rk,j}j∈[Q],A,B, {Ci}i∈[k],U

)
c1 = s((A0 − x0 ⊗ I)⊗ I⊗k) + s0(D0 ⊗ I⊗k) + e1

c2 = (s, s0, · · · , sk)B+ e2

ci,j = s((Ai − xi,j ⊗ I)⊗ I⊗(i−1) ⊗ r⊤i,j ⊗ I⊗(k−i)) + si(Di ⊗ I⊗(i−1) ⊗ r⊤i,j ⊗ I⊗(k−i)) + ei,j

for i ∈ [k − 1], j ∈ [Q]

ck,j = s(AfjU⊗ I⊗(k−1) ⊗ r⊤k,j) + sk(Dk ⊗ I⊗(k−1) ⊗ r⊤k,j) + ek,j

for j ∈ [Q]

djt,jt+1,...,jk = (s0, s1, . . . , sk)(I(k+1)nmt−1 ⊗ r⊤t,jt ⊗ r⊤t+1,jt+1
⊗ · · · ⊗ r⊤k,jk)Ct + e′jt,...,jk ,

for t ∈ [k], jt, . . . jk ∈ [Q]

where we have relabeled the subscripts j1, j2, . . ., for making the notation simpler. Note
that this can be done without loss of generality. We then observe that

dj1,j2,...,jk

= (s0, s1, . . . , sk)(I(k+1)n ⊗ r⊤1,j1 ⊗ · · · ⊗ r⊤k,jk)C1 + e′j1,...,jk

= (s0, s1, . . . , sk)


In ⊗ r⊤j1,...,jk

. . .

In ⊗ r⊤j1,...,jk



D0

. . .

Dk

+ e′j1,...,jk

=

s0(In ⊗ r⊤j1,...,jk)D0 + e′0,j1,...,jk︸ ︷︷ ︸
:=p0,j1,...,jk

, . . . sk(In ⊗ r⊤j1,...,jk)Dk + e′k,j1,...,jk︸ ︷︷ ︸
:=pk,j1,...,jk


where r⊤j1,...,jk = r⊤1,j1 ⊗ · · · ⊗ r⊤k,jk and e′j1,...,jk = (e′0,j1,...,jk , . . . , e

′
k,j1,...,jk

).

G1 : In this hybrid, dj1,j2,...,jk = {pi,j1,...,jk}i∈[0,k],j1,...,jk∈[Q] is computed differently. Namely, for

47

j1, . . . , jk ∈ [Q], they are computed as

p0,j1,...,jk = c1(Imℓ ⊗ r⊤j1,...,jk)−
(
s((A0 − x0 ⊗ Im)⊗ r⊤j1,...,jk) + e′0,j1,...,jk

)
︸ ︷︷ ︸

:=c′0,j1,,...,jk

pi,j1,...,jk = ci,ji(Imℓ ⊗ r⊤j1,...,ji−1,ji+1,...,jk
)−

(
s((Ai − xi,ji ⊗ Im)⊗ r⊤j1,...,jk) + e′i,j1,...,jk

)
︸ ︷︷ ︸

:=c′i,j1,,...,jk

for i ∈ [k − 1],

pk,j1,...,jk = ck,jk(Im ⊗ r⊤j1,...,jk−1
)−

(
s(Afjk

⊗ r⊤j1,...,jk) + e′k,j1,...,jk

)
︸ ︷︷ ︸

:=c′k,j1,,...,jk

G2 : In this hybrid, the challenger samples djt,jt+1,...,jk for t ≥ 2 differently. Namely, for t ∈ [2, k]
and jt, . . . , jk ∈ [Q], they are computed as

djt,jt+1,...,jk

=
(
(s0, s1, . . . , sk)(Ct ⊗ I⊗(k−t+1)) + e′′t

)
︸ ︷︷ ︸

:=s′t

(I(k+1)nmt−1w ⊗ r⊤t,jt ⊗ · · · ⊗ r⊤k,jk) + e′jt,...,jk

where e′′t for t ∈ [2, k] are sampled as e′′t ← D
(k+1)nmkw
Z,χ1

.

G3 : In this hybrid, c1, c2, and s′t for t ∈ [2, k] are replaced with random vectors sampled as

c1 ← Zℓmk+1

q , c2 ← Z(mk+1+(k+1)nmk)w
q , and s′t ← Z(k+1)nmkw

q for t ∈ [2, k].

G4 : In this hybrid, the challenger samples djt,jt+1,...,jk for t ≥ 2 randomly as djt,jt+1,...,jk ←
Z(k+1)nmt−1w
q .

G5 : In this hybrid, the challenger samples ci,j for i ∈ [k], j ∈ [Q] randomly. Namely, they are

sampled as ci,j ← Zℓmk

q for i ∈ [k − 1], j ∈ [Q] and ck,j ← Zmk

q for j ∈ [Q]. Note that in
this hybrid, all the vectors except for {dj1,j2,...,jk}j1,...,jk∈[Q] = {pi,j1,...,jk}i∈[0,k],j1,...,jk∈[Q]

are random.

G6 : In this hybrid, c′i,j1,...,jk for i ∈ [0, k], j1, . . . , jk ∈ [Q] are sampled differently. Namely, they
are sampled as

c′0,j1,...,jk =
(
s(I⊗ r⊤j1,...,jk) + e′′j1,...,jk

)
︸ ︷︷ ︸

:=s′j1,...,jk

(A0 − x0 ⊗ I) + e′0,j1,...,jk

c′i,j1,...,jk =
(
s(I⊗ r⊤j1,...,jk) + e′′j1,...,jk

)
︸ ︷︷ ︸

=s′j1,...,jk

(Ai − xi,ji ⊗ I) + e′i,j1,...,jk

c′k,j1,...,jk =
(
s(I⊗ r⊤j1,...,jk) + e′′j1,...,jk

)
︸ ︷︷ ︸

=s′j1,...,jk

Afjk
+ e′k,j1,...,jk

for i ∈ [k − 1], j1, . . . , jk ∈ [Q], where e′′j1,...,jk ← Dm
Z,χ1

.

G7 : In this hybrid, s′j1,...,jk for j1, . . . , jk ∈ [Q] are replaced with random vectors sampled as
s′j1,...,jk ← Zm

q .

48

G8 : In this hybrid, c′k,j1,...,jk for j1, . . . , jk ∈ [Q] are computed differently as

c′k,j1,...,jk = c′[0,k−1],j1,...jk
ĤA,fjk ,xj1,...jk−1

U+
(
s′j1,...,jkU+ e′k,j1,...,jk

)
.

where c′[0,k−1],j1,...jk
:= (c′0,j1,...jk | · · · |c

′
k−1,j1,...jk

) and xj1,...jk−1
= (x0|x1,j1 | · · · |xk−1,jk−1

)

G9 : In this hybrid, c′i,j1,...,jk for i ∈ [0, k], j1, . . . , jk ∈ [Q] are sampled randomly. Namely, for

j1, . . . , jk ∈ [Q], we have c′i,j1,...,jk ← Zmℓ
q for i ∈ [0, k − 1] and c′k,j1,...,jk ← Zm

q .

It is easy to see that the distribution in G9 is the same as that of D′
1.

Indistinguishability of hybrids:
We prove the indistinguishability between the hybrid distributions via the following claims.

Claim 5.3. G0 ≈s G1

Proof. The two hybrids differ only in the error terms in {pi,j1,...,jk}i∈[0,k] and are indistinguish-
able due to the smudging lemma 2.10. We show this for the case of i ∈ [k − 1] here. The case of
i = 0 and i = k can be shown similarly.
In G0:

pi,j1,...,jk = si(In ⊗ r⊤j1,...,jk)Di + e′i,j1,...,jk

In G1:

pi,j1,...,jk = ci,ji(Imℓ ⊗ r⊤j1,...,ji−1,ji+1,...,jk
)−

(
s((Ai − xi,ji ⊗ Im)⊗ r⊤j1,...,jk) + e′i,j1,...,jk

)
= s((Ai − xi,ji ⊗ Im)⊗ r⊤j1,...,jk) + si(Di ⊗ r⊤j1,...,jk) + ei,j(Imℓ ⊗ r⊤j1,...,ji−1,ji+1,...,jk

)

−
(
s((Ai − xi,ji ⊗ Im)⊗ r⊤j1,...,jk) + e′i,j1,...,jk

)
= si(Di ⊗ r⊤j1,...,jk) + ei,j(Imℓ ⊗ r⊤j1,...,ji−1,ji+1,...,jk

)− e′i,j1,...,jk︸ ︷︷ ︸
:=error

Clearly, the two hybrids differ only in the error terms. Thus, the indistinguishability follows due
to the following:

e′i,j1,...,jk ≈s −e′i,j1,...,jk + ei,j(Imℓ ⊗ r⊤j1,...,ji−1,ji+1,...,jk
).

The above is true since the distribution of −ei,j1,...,jk is the same as that of ei,j1,...,jk by the
symmetry of the discrete Gaussian distribution and by the sumdging lemma, which is applicable
since χ6 ≥ (mγ)kλω(1)χ3 and we have ∥ei,j(Imℓ ⊗ r⊤j1,...,ji−1,ji+1,...,jk

)∥∞ ≤ (mγ poly(λ))kχ3. The

case of i = k is handled similarly, by using χ7 ≥ (mγ)kλω(1)χ4.

Claim 5.4. G1 ≈s G2

Proof. The two hybrids differ only in the error term in {djt,jt+1,...,jk}t≥2,jt,...,jk∈[Q] and are
indistinguishable due to the smudging lemma. In G1:

djt,jt+1,...,jk = (s0, s1, . . . , sk)(I(k+1)nmt−1 ⊗ r⊤t,jt ⊗ · · · ⊗ r⊤k,jk)Ct + e′jt,...,jk

In G2:

djt,jt+1,...,jk

=
(
(s0, s1, . . . , sk)(Ct ⊗ I⊗(k−t+1)) + e′′t

)
(I(k+1)nmt−1w ⊗ r⊤t,jt ⊗ · · · ⊗ r⊤k,jk) + e′jt,...,jk

= (s0, s1, . . . , sk)(I(k+1)nmt−1 ⊗ r⊤t,jt ⊗ · · · ⊗ r⊤k,jk)Ct

+ e′jt,...,jk + e′′t (I(k+1)nmt−1w ⊗ r⊤t,jt ⊗ · · · ⊗ r⊤k,jk)︸ ︷︷ ︸
=error

49

Clearly, the two hybrids differ only in the error terms. Thus, the indistinguishability follows due
to the following:

e′jt,...,jk ≈s e
′
jt,...,jk

+ e′′t (I(k+1)nmt−1w ⊗ r⊤t,jt ⊗ · · · ⊗ r⊤k,jk).

The above is true by the smudging lemma, since we have χ5,t ≥ (mγ)kχ1 · λω(1) for t ≥ 2 and
∥e′′t (I(k+1)nmt−1w ⊗ r⊤t,jt ⊗ · · · ⊗ r⊤k,jk∥∞ ≤ (mγ poly(λ))kχ1.

Claim 5.5. G2 ≈c G3 due to LWE.

Proof. Let us write B as (B⊤
U |B⊤

M |B⊤
L)

⊤ so that

c2 = (s, s0, · · · , sk)B+ e2 = sBU + (s1, . . . , sk)BL + (s0BM + e2).

We also write Ct as Ct = (C⊤
t,U |C⊤

t,L)
⊤ so that

s′t = (s0, s1, . . . , sk)(Ct ⊗ I⊗k−t+1) + e′′t

= (s0, s1, . . . , sk)

(
Ct,U ⊗ I⊗k−t+1

Ct,L ⊗ I⊗k−t+1

)
+ e′′t

= (s1, . . . , sk)(Ct,L ⊗ I⊗k−t+1) +
(
s0(Ct,U ⊗ I⊗k−t+1) + e′′t

)
By Lemma 3.10, we have that s0(D⊗ I⊗k)+ e1, s0BM + e2, and {s0(Ct,U ⊗ I⊗k−t+1)+ e′′t }t∈[2,k]
are indistinguishable from random vectors. The claim follows since these terms mask c1, c2, and
{s′t}t∈[2,k], respectively.

Claim 5.6. G3 ≈c G4 due to LWE.

Proof. In G3, djt,jt+1,...,jk is chosen as s′t(I(k+1)nmt−1w ⊗ r⊤t,jt ⊗ · · · ⊗ r⊤k,jk) + e′jt,...,jk where s′t is
chosen uniformly at random for all t. The indistinguishability follows by applying Lemma 3.9
for each t ∈ [2, k], which is possible since we set χ5,t ≥ (mγ · λω(1))k.

Claim 5.7. G4 ≈c G5 due to LWE.

Proof. We observe that ci,j is masked by vi,j := si(Di⊗ I⊗(i−1)⊗ r⊤i,j⊗ I⊗(k−i))+ei,j for i ∈ [k],
j ∈ [Q]. We show that {vi,j}j∈[Q] is pseudorandom for the case of i = k. Other cases can be
shown similarly. To show the indistinguishability, we first change the distribution of {vk,j}j so
that they are sampled as

vk,j =
(
sk(Dk ⊗ I⊗k) + e′′k

)
︸ ︷︷ ︸

:=s′k

(
I⊗k ⊗ rk,j

)
+ ek,j .

where e′′k ← D
m+1
Z,χ1

. We claim that this is statistically indistinguishable from the original
distribution. To see this, we observe that

vk,j = sk(Dk ⊗ rk,j) + e′′k

(
I⊗k ⊗ rk,j

)
+ ek,j︸ ︷︷ ︸

=error

and these distributions only differ in the error terms. We have

ek,j ≈s e
′′
k

(
I⊗k ⊗ rk,j

)
+ ek,j

50

by the smudging lemma, since we have χ3 ≥ (mγ)kλω(1)χ1 and ∥e′′k
(
I⊗k ⊗ rk,j

)
∥∞ ≤

(mγ poly(λ))kχ1. The case of i ̸= k is shown similarly, using χ4 ≥ (mγ)kλω(1)χ1. We then
observe that we can replace s′k with a random vector by applying LWE with secret sk. We then
apply LWE once again, now the variant with short public matrix and with the secret s′k, we can
conclude that {vk,j}k,j are indistinguishable from random vectors.

Claim 5.8. G5 ≈s G6

Proof. The two hybrids differ only in the error terms in {c′i,j1,...,jk}i∈[0,k],j1,...,jk∈[Q] and are
indistinguishable due to the smudging lemma. We first show this for the case of i ∈ [k − 1]. In
G5:

c′i,j1,,...,jk = s((Ai − xi,ji ⊗ I)⊗ r⊤j1,...,jk) + e′i,j1,...,jk

In G6:

c′i,j1,,...,jk =
(
s(Im ⊗ r⊤j1,...,jk) + e′′j1,...,jk

)
(Ai − xi,ji ⊗ I) + e′i,j1,...,jk

= s((Ai − xi,ji ⊗ I)⊗ r⊤j1,...,jk) + e′′j1,...,jk(Ai − xi,ji ⊗ I) + e′i,j1,...,jk︸ ︷︷ ︸
=error

Clearly, the two hybrids differ only in the error terms. Thus, the indistinguishability follows due
to the following:

e′i,j1,...,jk ≈s e
′
i,j1,...,jk

+ e′′j1,...,jk(Ai − xi,ji ⊗ I)

The above is true by the smudging lemma, since we have χ6 ≥ mγχ1λ
ω(1) and ∥e′′j1,...,jk(Ai −

xi,ji ⊗ I)∥∞ ≤ mγ poly(λ). The case of i = 0 is shown in the same manner. The case of i = k is
shown similarly, noting that

e′k,j1,...,jk ≈s e
′
k,j1,...,jk

+ e′′j1,...,jkAfjk

holds since we have χ7 ≥ mβχ1 · λω(1) and ∥e′′j1,...,jkAfjk
∥∞ ≤ mχ1∥Afjk

∥∞ · poly(λ) ≤ mβχ1 ·
poly(λ).

Claim 5.9. G6 ≈c G7

Proof. The indistinguishability follows from LWE by Lemma 3.9, which is applicable since
χ1 ≥ (mγ)kλω(1).

Claim 5.10. G7 ≈s G8

Proof. The two hybrids differ only in the error terms in c′k,j1,...,jk . The indistinguishability
follows from the smudging lemma. In G7,

c′k,j1,...,jk = s′j1,...,jkAfjk
U+ e′k,j1,...,jk

In G8,

c′k,j1,...,jk = c′[0,k−1],j1,...jk
ĤA,fjk ,xj1,...jk−1

U+
(
s′j1,...,jkU+ e′k,j1,...,jk

)
=
(
s′j1,...,jk(A− xj1,...,jk−1

⊗ I) + e′[0,k−1],j1,...,jk

)
ĤA,fjk ,xj1,...jk−1

U+
(
s′j1,...,jkU+ e′k,j1,...,jk

)
= s′j1,...,jk(Afjk

− fjk(xj1,...,jk−1
) · I)U+ s′j1,...,jkU+ e′k,j1,...,jk + e′[0,k−1],j1,...,jk

ĤA,fjk ,xj1,...jk−1
U

= s′j1,...,jkAfjk
U+ e′k,j1,...,jk + e′[0,k−1],j1,...,jk

ĤA,fjk ,xj1,...jk−1
U︸ ︷︷ ︸

=error

,

51

where we define e′[0,k−1],j1,...,jk
= (e′0,j1,...,jk , . . . , e

′
k−1,j1,...,jk

) in the second line and we use

fjk(xj1,...,jk−1
) = 1 in the last line. Clearly, the two hybrids differ only in the error terms. Thus,

the indistinguishability follows due to the following:

e′k,j1,...,jk + e′[0,k−1],j1,...,jk
ĤA,fjk ,xj1,...jk−1

≈s e
′
k,j1,...,jk

which is true when χ7 ≥ mβℓχ6 · λω(1), since we have ∥e′[0,k−1],j1,...,jk
ĤA,fjk ,xj1,...jk−1

∥∞ ≤
mβℓχ6 poly(λ), where ∥ĤA,fjk ,xj1,...jk−1

∥∞ ≤ β.

Claim 5.11. G8 ≈c G9

Proof. The indistinguishability between the two hybrids follows from the fact that the following
distribution is indistinguishable from random:

A,U,
{
ri,ji , s

′
j1,...,jk

(A− xj1,...,jk ⊗ I) + e′[0,k−1],j1,...,jk
, s′j1,...,jkU+ e′k,j1,...,jk

}
i∈[k],j1,...,jk∈[Q]

This can be shown by LWE with short public matrix as follows. Here, we change the LWE
sample with respect to matrix (A− xj1,...,jk ⊗ I|U) into random vectors for each combination of
(j1, . . . , jk) one by one. To do so, we first use the smudging lemma to see that the distribution
of A and A− xj1,...,jk ⊗ I are statistically indistinguishable, since each entry of xj1,...,jk ⊗ I is
either 0 or 1, while that of A is chosen from DZ,γ with γ = λω(1). We then apply the LWE
with short public matrix to see that the LWE samples with respect to the secret sj1,...,jk are
indistinguishable from the random vectors.

This completes the proof of Lemma 5.2.

5.3 A Construction for P

Here, we discuss the variant of our scheme that can deal with circuits with arbitrary (bounded)
polynomial depth. Because the construction is very similar to our construction for NC1 circuits,
we only highlight the difference here.

• We sample the matrices A0, . . . ,Ak−1 uniformly at random from Zn×mℓ
q rather than a

Gaussian distribution over Zm×mℓ.

• We replace A0 − x0 ⊗ I in the encryption algorithm with A0 − x0 ⊗G. Similarly, we
also replace Ai − xi ⊗ I in Xi with Ai − xi ⊗G. Accordingly, s is chosen randomly from
Znmk−1

q rather than Zmk

q .

• The low-norm variant of the lattice evaluation algorithms (EvalF,EvalFX) from Lemma 2.8
used in KeyGenk and Dec are replaced with those of Lemma 2.6 (i.e., the regular one).

• We use the same parameters as Sec. 5.2 except that β is set to be (2m)O(d) reflecting the
fact that we replace the homomorphic lattice evaluation algorithm.

The correctness of the scheme can be shown similarly to Sec. 5.2. The scheme can be proven
secure assuming the strengthening of the tensor LWE assumption defined below.

Assumption 5.12 (Extended Tensor LWE). Let n,m, q, ℓ,Q ∈ N be parameters, χ and γ be
Gaussian distributions, and k be a constant. For all xj1,...,jk ∈ {0, 1}ℓ indexed by j1, . . . , jk ∈ [Q],
we have

A,
{
s(In ⊗ r⊤1,j1 ⊗ · · · ⊗ r⊤k,jk)(A− xj1,...,jk ⊗G) + ej1,...,jk , ri,ji

}
i∈[k],j1,...,jk∈[Q]

≈c A, {cj1,...,jk , ri,ji}i∈[k],j1,...,jk∈[Q]

52

where A ← Zm×ℓm
q , s ← Zmkn

q , ej1,...,jk ← Dℓm
Z,χ, ri,j ← Dm

Z,γ , ci,ji ← Zℓm
q for i ∈

[k], j1, . . . , jk ∈ [Q].

Theorem 5.13. Assuming evasive LWE (Assumption 3.1) and extended tensor LWE (Assumption
5.12) our k input miABE for P satisfies very selective security (Definition 2.2).

Since the proof is very similar to that of Theorem 5.1 in Sec. 5.2, we only provide an overview
while highlighting the difference. The first step of the proof is the same as that of Theorem 5.1,
where we invoke the evasive LWE assumption k times to conclude that in order to prove the
security of the scheme, it suffices to show the indistinguishability of the two distributions D′

0

and D′
1. These distributions are defined similarly, except that A0 − x0 ⊗ I and Ai − xi,ji ⊗ I

are replaced with A0 − x0 ⊗G and Ai − xi,ji ⊗G. Then, the indistinguishability is shown by
similar sequence of hybrids with the following difference.

• We skip G6 and G7 and directly argue that G5 ≈c G8, where c′k,j1,...,jk is replaced with

c′k,j1,...,jk = c′[0,k−1],j1,...jk
ĤA,fjk ,xj1,...jk−1

U+
(
s(In ⊗ rj1,...,jk)GU+ e′k,j1,...,jk

)
.

in G8.

• G8 ≈c G9 is shown directly from the extension of the evasive LWE assumption above.

Acknowledgements This collaboration was initiated when Mélissa Rossi was visiting IIT
Madras. Such a visit has been made possible thanks to the funding of the cybersecurity center
of excellence of IIT Madras and of a L’Oreal-UNESCO for Women in Science Young Talent
France 2019 grant. This work was also supported in part by the DST “Swarnajayanti” fellowship,
Cybersecurity Center of Excellence, IIT Madras, National Blockchain Project and the Algorand
Centres of Excellence programme managed by Algorand Foundation. Any opinions, findings,
and conclusions or recommendations expressed in this material are those of the author(s) and
do not necessarily reflect the views of sponsors. Shota Yamada was partially supported by JST
AIP Acceleration Research JPMJCR22U5, JST CREST Grant Number JPMJCR22M1, and
JSPS KAKENHI Grant Number 19H01109.

53

References

[ABB10a] Shweta Agrawal, Dan Boneh, and Xavier Boyen. Efficient lattice (H)IBE in the
standard model. In EUROCRYPT, 2010.

[ABB10b] Shweta Agrawal, Dan Boneh, and Xavier Boyen. Lattice basis delegation in fixed
dimension and shorter-ciphertext hierarchical IBE. In CRYPTO, 2010.

[ABG19] Michel Abdalla, Fabrice Benhamouda, and Romain Gay. From single-input to
multi-client inner-product functional encryption. In Steven D. Galbraith and Shiho
Moriai, editors, ASIACRYPT 2019, Part III, volume 11923 of LNCS, pages 552–582.
Springer, Heidelberg, December 2019.

[ABKW19] Michel Abdalla, Fabrice Benhamouda, Markulf Kohlweiss, and Hendrik Waldner.
Decentralizing inner-product functional encryption. In Dongdai Lin and Kazue
Sako, editors, PKC 2019, Part II, volume 11443 of LNCS, pages 128–157. Springer,
Heidelberg, April 2019.

[ACF+18] Michel Abdalla, Dario Catalano, Dario Fiore, Romain Gay, and Bogdan Ursu. Multi-
input functional encryption for inner products: Function-hiding realizations and
constructions without pairings. In Hovav Shacham and Alexandra Boldyreva, editors,
CRYPTO 2018, Part I, volume 10991 of LNCS, pages 597–627. Springer, Heidelberg,
August 2018.

[Agr19] Shweta Agrawal. Indistinguishability obfuscation without multilinear maps: New
techniques for bootstrapping and instantiation. In Eurocrypt, 2019.

[AGRW17] Michel Abdalla, Romain Gay, Mariana Raykova, and Hoeteck Wee. Multi-input
inner-product functional encryption from pairings. In Jean-Sébastien Coron and
Jesper Buus Nielsen, editors, EUROCRYPT 2017, Part I, volume 10210 of LNCS,
pages 601–626. Springer, Heidelberg, April / May 2017.

[AGT21a] Shweta Agrawal, Rishab Goyal, and Junichi Tomida. Multi-input quadratic functional
encryption from pairings. In CRYPTO, 2021.

[AGT21b] Shweta Agrawal, Rishab Goyal, and Junichi Tomida. Multi-party functional
encryption. In TCC, 2021.

[AGT22] Shweta Agrawal, Rishab Goyal, and Junichi Tomida. Multi-input quadratic functional
encryption: Stronger security, broader functionality. In TCC, 2022.

[AIK04] Benny Applebaum, Yuval Ishai, and Eyal Kushilevitz. Cryptography in NC0. In
45th FOCS, pages 166–175. IEEE Computer Society Press, October 2004.

[AJ15] Prabhanjan Ananth and Abhishek Jain. Indistinguishability obfuscation from
compact functional encryption. In CRYPTO, 2015.

[AJS23] Paul Lou Aayush Jain, Huijia Lin and Amit Sahai. Polynomial-time cryptanalysis
of the subspace flooding assumption for post-quantum io. In Eurocrypt, 2023.

[AKYY23] Shweta Agrawal, Simran Kumari, Anshu Yadav, and Shota Yamada. Trace and
revoke with optimal parameters from polynomial hardness. In Eurocrypt, 2023.

54

[APM20] Shweta Agrawal and Alice Pellet-Mary. Indistinguishability obfuscation without
maps: Attacks and fixes for noisy linear fe. In Advances in Cryptology–EUROCRYPT
2020: 39th Annual International Conference on the Theory and Applications of
Cryptographic Techniques, Zagreb, Croatia, May 10–14, 2020, Proceedings, Part I,
pages 110–140. Springer, 2020.

[Att14] Nuttapong Attrapadung. Dual system encryption via doubly selective security:
Framework, fully secure functional encryption for regular languages, and more. In
Phong Q. Nguyen and Elisabeth Oswald, editors, EUROCRYPT 2014, volume 8441
of LNCS, pages 557–577. Springer, Heidelberg, May 2014.

[AWY20] Shweta Agrawal, Daniel Wichs, and Shota Yamada. Optimal broadcast encryption
from lwe and pairings in the standard model. In TCC, 2020.

[AY20] Shweta Agrawal and Shota Yamada. Optimal broadcast encryption from pairings
and lwe. In EUROCRYPT, 2020.

[AYY22] Shweta Agrawal, Anshu Yadav, and Shota Yamada. Multi-input attribute based
encryption and predicate encryption. In Yevgeniy Dodis and Thomas Shrimpton,
editors, CRYPTO 2022, Part I, volume 13507 of LNCS, pages 590–621. Springer,
Heidelberg, August 2022.

[BGG+14] Dan Boneh, Craig Gentry, Sergey Gorbunov, Shai Halevi, Valeria Nikolaenko,
Gil Segev, Vinod Vaikuntanathan, and Dhinakaran Vinayagamurthy. Fully key-
homomorphic encryption, arithmetic circuit ABE and compact garbled circuits. In
EUROCRYPT, 2014.

[BGI+01] B. Barak, O. Goldreich, R. Impagliazzo, S. Rudich, A. Sahai, S. Vadhan, and
K. Yang. On the (im)possibility of obfuscating programs. In CRYPTO, 2001.

[BJK+18] Zvika Brakerski, Aayush Jain, Ilan Komargodski, Alain Passelègue, and Daniel
Wichs. Non-trivial witness encryption and null-io from standard assumptions. In
SCN, 2018.

[BLMR13] Dan Boneh, Kevin Lewi, Hart William Montgomery, and Ananth Raghunathan.
Key homomorphic PRFs and their applications. In Ran Canetti and Juan A. Garay,
editors, CRYPTO 2013, Part I, volume 8042 of LNCS, pages 410–428. Springer,
Heidelberg, August 2013.

[BLP+13] Zvika Brakerski, Adeline Langlois, Chris Peikert, Oded Regev, and Damien Stehlé.
Classical hardness of learning with errors. In STOC, 2013.

[BPR12] Abhishek Banerjee, Chris Peikert, and Alon Rosen. Pseudorandom functions and
lattices. In David Pointcheval and Thomas Johansson, editors, EUROCRYPT 2012,
volume 7237 of LNCS, pages 719–737. Springer, Heidelberg, April 2012.

[BV15] Zvika Brakerski and Vinod Vaikuntanathan. Constrained key-homomorphic PRFs
from standard lattice assumptions - or: How to secretly embed a circuit in your PRF.
In Yevgeniy Dodis and Jesper Buus Nielsen, editors, TCC 2015, Part II, volume
9015 of LNCS, pages 1–30. Springer, Heidelberg, March 2015.

[BV22] Zvika Brakerski and Vinod Vaikuntanathan. Lattice-inspired broadcast encryption
and succinct ciphertext policy abe. In ITCS, 2022.

55

[CDG+18] Jérémy Chotard, Edouard Dufour Sans, Romain Gay, Duong Hieu Phan, and David
Pointcheval. Decentralized multi-client functional encryption for inner product. In
Thomas Peyrin and Steven Galbraith, editors, ASIACRYPT 2018, Part II, volume
11273 of LNCS, pages 703–732. Springer, Heidelberg, December 2018.

[CHKP10] David Cash, Dennis Hofheinz, Eike Kiltz, and Chris Peikert. Bonsai trees, or how
to delegate a lattice basis. In EUROCRYPT, 2010.

[DOT18] Pratish Datta, Tatsuaki Okamoto, and Junichi Tomida. Full-hiding (unbounded)
multi-input inner product functional encryption from the k-Linear assumption. In
Michel Abdalla and Ricardo Dahab, editors, PKC 2018, Part II, volume 10770 of
LNCS, pages 245–277. Springer, Heidelberg, March 2018.

[DQV+21] Lalita Devadas, Willy Quach, Vinod Vaikuntanathan, Hoeteck Wee, and Daniel
Wichs. Succinct lwe sampling, random polynomials, and obfuscation. In Theory
of Cryptography: 19th International Conference, TCC 2021, Raleigh, NC, USA,
November 8–11, 2021, Proceedings, Part II 19, pages 256–287. Springer, 2021.

[FFMV23] Danilo Francati, Daniele Friolo, Giulio Malavolta, and Daniele Venturi. Multi-key
and multi-input predicate encryption from learning with errors. In Eurocrypt, 2023.

[GGG+14] Shafi Goldwasser, S. Dov Gordon, Vipul Goyal, Abhishek Jain, Jonathan Katz,
Feng-Hao Liu, Amit Sahai, Elaine Shi, and Hong-Sheng Zhou. Multi-input functional
encryption. In EUROCRYPT, 2014.

[GGH+13] Sanjam Garg, Craig Gentry, Shai Halevi, Mariana Raykova, Amit Sahai, and Brent
Waters. Candidate indistinguishability obfuscation and functional encryption for all
circuits. In FOCS, 2013. http://eprint.iacr.org/.

[GP21] Romain Gay and Rafael Pass. Indistinguishability obfuscation from circular
security. In Proceedings of the 53rd Annual ACM SIGACT Symposium on Theory
of Computing, pages 736–749, 2021.

[GPSW06] Vipul Goyal, Omkant Pandey, Amit Sahai, and Brent Waters. Attribute-based
encryption for fine-grained access control of encrypted data. In ACM CCS, 2006.

[GPV08] Craig Gentry, Chris Peikert, and Vinod Vaikuntanathan. Trapdoors for hard lattices
and new cryptographic constructions. In STOC, 2008.

[KNYY20] Shuichi Katsumata, Ryo Nishimaki, Shota Yamada, and Takashi Yamakawa.
Adaptively secure inner product encryption from LWE. In Shiho Moriai and
Huaxiong Wang, editors, ASIACRYPT 2020, Part III, volume 12493 of LNCS,
pages 375–404. Springer, Heidelberg, December 2020.

[LT19] Benôıt Libert and Radu Titiu. Multi-client functional encryption for linear functions
in the standard model from LWE. In Steven D. Galbraith and Shiho Moriai, editors,
ASIACRYPT 2019, Part III, volume 11923 of LNCS, pages 520–551. Springer,
Heidelberg, December 2019.

[MP12] Daniele Micciancio and Chris Peikert. Trapdoors for lattices: Simpler, tighter, faster,
smaller. In Eurocrypt, 2012.

[NR97] Moni Naor and Omer Reingold. Number-theoretic constructions of efficient pseudo-
random functions. In 38th FOCS, pages 458–467. IEEE Computer Society Press,
October 1997.

56

http://eprint.iacr.org/

[Reg09] Oded Regev. On lattices, learning with errors, random linear codes, and cryptography.
J.ACM, 56(6), 2009.

[SW05] Amit Sahai and Brent Waters. Fuzzy identity-based encryption. In EUROCRYPT,
2005.

[Tom19] Junichi Tomida. Tightly secure inner product functional encryption: Multi-input
and function-hiding constructions. In Steven D. Galbraith and Shiho Moriai, editors,
ASIACRYPT 2019, Part III, volume 11923 of LNCS, pages 459–488. Springer,
Heidelberg, December 2019.

[Tsa19] Rotem Tsabary. Fully secure attribute-based encryption for t-CNF from LWE. In
CRYPTO, 2019.

[Tsa22] Rotem Tsabary. Candidate witness encryption from lattice techniques. In Advances
in Cryptology–CRYPTO 2022: 42nd Annual International Cryptology Conference,
CRYPTO 2022, Santa Barbara, CA, USA, August 15–18, 2022, Proceedings, Part I,
pages 535–559. Springer, 2022.

[VWW22] Vinod Vaikuntanathan, Hoeteck Wee, and Daniel Wichs. Witness encryption and
null-io from evasive lwe. In ASIACRYPT, pages 195–221. Springer, 2022.

[Wee14] Hoeteck Wee. Dual system encryption via predicate encodings. In Yehuda Lindell,
editor, TCC 2014, volume 8349 of LNCS, pages 616–637. Springer, Heidelberg,
February 2014.

[Wee22] Hoeteck Wee. Optimal broadcast encryption and CP-ABE from evasive
lattice assumptions. In Orr Dunkelman and Stefan Dziembowski, editors,
EUROCRYPT 2022, Part II, volume 13276 of LNCS, pages 217–241. Springer,
Heidelberg, May / June 2022.

[WW21] Hoeteck Wee and Daniel Wichs. Candidate obfuscation via oblivious lwe sampling. In
Advances in Cryptology–EUROCRYPT 2021: 40th Annual International Conference
on the Theory and Applications of Cryptographic Techniques, Zagreb, Croatia,
October 17–21, 2021, Proceedings, Part III, pages 127–156. Springer, 2021.

[WWW22] Brent Waters, Hoeteck Wee, and David J Wu. Multi-authority abe from lattices
without random oracles. In TCC, 2022.

57

	Introduction
	Prior Work
	Our Results
	Technical Overview

	Preliminaries
	Multi-Input Attribute Based Encryption
	Lattice Preliminaries
	Tensors

	Assumptions and New Implications
	Evasive LWE
	Tensor LWE
	New Implications for Tensor LWE
	New Implications from LWE

	Two-input ABE from Evasive and Tensor LWE
	Construction
	Correctness, Parameters and Security

	Multi-Input ABE for Any Constant Arity
	Construction for NC1 Circuits
	Correctness, Parameters and Security
	A Construction for P

